
Performance of Multiple Cabin Optimization Methods in
Airline Revenue Management

by

Pierre-Olivier Lepage
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Abstract
Although many airlines offer seats in multiple cabins (economy vs. premium classes)

with different service quality, previous work on airline revenue management has focused
on treating the cabins separately.

In this thesis, we develop several single-leg multiple cabin revenue management
optimization algorithms. We extend two different single-leg separate cabin dynamic
programming algorithms to the multiple cabin case, and also present three Expected
Marginal Seat Revenue (EMSR) based heuristics and a dynamic programming decom-
position heuristic. We then evaluate the revenue and passenger mix performance of the
different algorithms using the Passenger Origin-Destination Simulator (PODS) which
simulates competitive markets with passenger choice of fare options and cabin. We first
test the methods in a simple single market network and then in a more realistic complex
network.

We find that multiple cabin methods do not lead to a systematic revenue increase.
Indeed, simulation results show that the performance of the different methods ranges
from a decrease of 9.6% to an increase of 2.4% in revenues. The discrepancies in
performance between the different methods are explained by the trade-off between rev-
enue gains from additional economy bookings and the losses from displaced premium
passengers. Further, we observe that successful methods lead to a revenue increase
by accepting additional bookings in top economy classes rather than in low economy
classes. Finally, the poor performance of the dynamic programming methods tested is
due to a misalignment between the underlying assumptions of the algorithms and the
reality of the booking and passenger choice process.

Thesis Supervisor: Peter P. Belobaba
Title: Principal Research Scientist, Aeronautics and Astronautics

Thesis Reader: Cynthia Barnhart
Title: Ford Professor, Civil and Environmental Engineering and Engineering Systems,

Associate Dean, School of Engineering
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Chapter 1

Introduction

IN an effort to maximize their profit, airlines have relied on quantitative approaches

to assist their decision making process. In this thesis, we focus on the single-leg

multiple-cabin revenue management problem. More specifically, on a given flight-leg

providing non-stop service between an origin and a destination, airlines have to decide

at what fare they are willing to sell their seats by taking into account historical bookings,

time remaining until departure, and remaining capacity in the different cabins.

We define the single-leg multiple cabin revenue management problem, present rel-

evant previous work, describe multiple algorithms that we developed, and test these

algorithms in a realistic simulation environment. Our contribution is to extend existing

separate cabin algorithms to the multiple cabin problem and highlight the different

trade-offs that need to be taken into account when solving the multiple cabin revenue

management problem in a competitive passenger choice environment.

In this chapter, we provide some background and explain the motivations behind

our work. We review relevant airline revenue management concepts, define the single-

leg multiple-cabin revenue management problem, explicitly state the contribution of

our work, and present the structure of this thesis.

� 1.1 Airline revenue management concepts

In this section, we provide some background relevant to the multiple cabin revenue

management problem. More specifically, we review the concept of differential pricing

and define the logic behind revenue management.

� 1.1.1 Differential pricing

Following US airline industry deregulation in 1978, airlines were allowed more flexibility

in pricing and route choice. In an effort to increase revenues, airlines extended the

13



14 CHAPTER 1. INTRODUCTION

practice of selling seats at different fares by implementing multiple fare classes. As

a result, two identical seats can be sold at different fares in a strategy referred to

as “differential pricing.” Consequently, airlines charge higher fares and extract more

revenues from consumers with high willingness-to-pay (WTP) while accepting low fare

bookings requests from low-WTP passengers. For the airlines, the advantage is that

they can capture a higher proportion of consumers’ WTP and increase their revenues.

Passengers also gain from this strategy because more passengers can afford to buy

tickets and airlines, motivated by increased revenue opportunities, offer more traveling

options.

Figure 1.1. Potential revenue with a single fare (A) and multiple fares (differential pricing) (B)

Figure 1.1 shows a typical demand curve and potential revenues for two different

pricing strategies. In Figure 1.1(A), the airline offers a single fare. In this strategy,

passengers with a WTP lower than the offered fare cannot afford to buy a ticket; all

passengers that have a WTP greater than or equal to the offered fare buy tickets at this

single offered fare. As illustrated by the shaded area under the curve in Figure 1.1(A),

the potential revenue for this strategy is the product of the fare and the number of

passengers with WTP greater than or equal to the offered fare. The second strategy,

differential pricing, which is presented in Figure 1.1(B) is to offer multiple fares. Here,

more people are able to buy tickets than with the first strategy because the lowest fare

offered is lower than the single fare offered in the first strategy. The potential revenue

of differential pricing is represented by the shaded area under the curve in Figure 1.1(B)

and, as one can see, is greater than the potential revenue for the single fare strategy.

This theory assumes that each and every passenger is forced to buy the highest fare

available that is less than or equal to their WTP. For obvious reasons, there is no way

airlines can know somebody’s WTP and, even if they were able, they could not force
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Table 1.1. Example of a fare structure

Cabin Class Fare Adv. Purchase Min. Stay Change fee Cancel fee

Premium
F $1000 0 No No No
P $850 7 No No $ 150

Economy

Y $700 0 No No No
M $500 5 No No $150
B $300 14 No $ 100 $ 150
Q $150 21 Sat. Stay $ 200 $ 150

people to buy a specific fare. That said, there exists a strategy airlines use to prevent

high-WTP passengers from buying cheaper fares; airlines add different restrictions on

low fare classes that make these low fare classes unattractive to high-WTP passengers.

Table 1.1 shows an example of a differentiated fare structure for two different types

of seats. In this example the airline offers seats in two different cabins, premium and

economy, each at multiple price points. Note that differential pricing is applied within

each cabin. Following industry practice, a letter designates the booking class in which

tickets are sold. It is generally assumed that high-WTP passengers make their travel

decisions later in the booking process than low-WTP passengers, that they spend a

relatively short period of time at their destination, and that they are likely to change

their travel plans at some point in the booking process. In this example, the airline

uses four types of restrictions:

1. Advance Purchase

Advance purchase requires passengers to purchase x days before departure. For

example, Class B can be bought up to 14 days before departure.

2. Minimum stay (at destination)

Minimum stay restrictions requires passengers to stay at the destination for a

minimum time. For example, Class Q can be bought by passengers staying over a

Saturday night at their destination.
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3. Change fee

Change fee restrictions requires passengers to pay a nominal fee for any change to

the reservation. For example, changing a Class B ticket for a different Class or a

different departure time costs $100.

4. Cancel fee

Cancel fee restrictions requires passengers to pay a nominal fee upon cancellation

of the booking. For example, Canceling a ticket in classes P, M, B, and Q costs

$150.

These are examples of restrictions in the industry, but other restrictions can also

be applied on the different fare products (e.g. Round-trip requirement, etc.). We refer

interested readers in a complete discussion of differentiated fare structures to Botimer’s

PhD thesis [7] on pricing and fare structure differentiation.

� 1.1.2 Revenue management

Because airlines use differential pricing and because capacity is limited, airlines have

to decide the number of seats to allocate to each fare class. In fact, instead of allo-

cating seats to a specific class, airlines define nested booking limits for each fare class.

Figure 1.2 shows nested booking limits for four different classes going from the most

valuable Y-class to the least valuable Q-class. As we can see, nested booking limits are

such that as long as there are still seats available, airlines never reject booking requests

in the highest booking class.

The advantage of differential pricing is that it increases the potential revenue that

airlines can capture, while the inconvenience of differential pricing is that it forces air-

lines to decide whether to accept or reject each booking request. In the airline context,

we define revenue management as the science of maximizing revenues by determining

the number of seats available at each fare class.

Figure 1.3 shows the different operational decisions that an airline has to make

from a long term horizon until the day of departure. At the strategic level, airlines

decide what kind of aircraft they buy and which route they serve. At the tactical level,

airlines can affect their revenues by choosing their pricing strategy, by applying revenue

management. Revenue management occurs after the decisions regarding fleet planning,

scheduling, and pricing have occurred. Revenue management is the last opportunity

for the airline to maximize its profit through revenue maximization. Since the airline



Figure 1.2. Nested booking limits [1]

Figure 1.3. Airline operation planning process [5]
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has already committed to fly on a given route and that the marginal cost of a passenger

(i.e. a meal and incremental fuel) is negligible, we can assume cost to be fixed at the

time of the booking request which makes revenue maximization equivalent to profit

maximization.

� 1.2 Problem definition

In this section, we describe the problem on which this thesis focuses. The objective is

to better understand the characteristics of the single-leg multiple cabin revenue man-

agement problem as it is faced by the airlines in today’s air transportation industry.

We first explain the difference between separate and multiple cabin revenue man-

agement problems, describe how people make their traveling decision, and illustrate

how airlines make their revenue management decision.

� 1.2.1 Separate vs multiple cabin

It is important to understand the difference between separate and multiple cabin revenue

management problems. In the separate cabin revenue management problem, passengers

with bookings in a given cabin are only allowed to use seats in their respective cabin.

However, in the multiple cabin revenue management problem, passengers with bookings

in the economy cabin can be upgraded to a premium cabin seat while premium bookings

are always using premium capacity. It is assumed that economy passengers always

accept an upgrade to a higher quality premium seat.

Here, we focus on upgrades caused by the airline’s effort to better use its capacity

and we are not taking any other types of upgrades into account. For example, we are

not interested in upgrades due to frequent-flyer programs or credit card deals. Stated

otherwise, we are only interested in cases for which the demand is such that a given

flight would depart with empty seats in the premium cabin, while some passengers are

rejected because the economy cabin is full. In these cases, allowing additional economy

bookings to use available premium capacity can potentially increase revenue.

Although both separate and multiple cabin revenue management problems compare

the immediate benefit of a booking with the decrease in future expected revenue caused

by the reduction in capacity, the multiple cabin revenue management problem is more

complex because the airline has to take into account the trade-off between economy and

business cabin bookings.
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� 1.2.2 Passenger decision process

Figure 1.4 shows a schematic representation of the different options available for a pas-

senger that wants to travel from the origin “O” to the destination “D”. Because the

origin lies within the catchment area of two different airports, the passenger chooses

between these two different departure airports to initiate his trip and chooses between

the multiple itinerary options available at each airport. We make the distinction be-

tween passenger itineraries and flight-legs. A passenger itinerary is defined as any set

of flights allowing the passenger to go from his or her preferred origin to his or her

desired destination. A flight-leg is the unit of operation of an airline, and passengers

fly on multiple flight-legs to complete their itineraries. Therefore, a single flight-leg

provides service to passengers going from different origins to different destinations. In

Figure 1.4, flight-legs are represented by full arrows between any pair of airport and an

itinerary would be any set of flight-leg that links the departure airport to the arrival

airport.

A1 
A2 

A3 

Ground transportation 

Air transportation 

O 

D A4 

A1 Airport 

Airport catchment area 

X Origin/Destination 

Figure 1.4. Passenger itinerary choice

At the time of booking, passengers also have a preferred time window in which they

would like to travel. Passengers have schedule restrictions such that they cannot leave

the origin before a given time and they have to be at the destination before a given

time. Passengers also have finite financial resources and there exist a threshold value

for the fare above which they will decide not to travel. Finally, passengers have different
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product preferences. For example, they might be interested in booking a refundable

ticket in order to keep flexibility in their travel plans. Given all these characteristics,

passengers choose the traveling option that maximizes their utility.

� 1.2.3 Airline decision process

Airlines apply revenue management principles based on their assumptions about pas-

senger behavior and on available historical booking data. Figure 1.5 shows the different

data sources and models used in the airlines decision process. In this thesis, we focus

on the “optimization model” part of the process.

Figure 1.5. Airline information structure

The objective of the airline decision process is to define a decision rule allowing the

airline to decide whether to accept or reject incoming booking requests. We explain two

different decision rules. First, airlines can use nested booking limits as a decision rule

and accept booking requests in a given class as long as the nested booking limit for this

class is greater than zero. Second, airlines can use bidprices which are defined as the

lowest fare at which the airline is willing to sell its capacity. Airlines accept booking

requests in classes for which the fare is greater than or equal to the bidprice. Regardless

of the specifics of the airline’s selected decision rule, three pieces of information are

needed.
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1. Average class fares

In order to make the right decision regarding a booking request, airlines have to

know what is the expected financial benefit from this booking and what is the

expected revenue from other bookings. Using historical revenue data, airlines can

obtain the average fare for a class on a given flight-leg. Since a flight-leg is flown

by passengers on different itineraries and fares are different between itineraries,

there does not exist a single fare for a given class on a flight-leg and airlines need

to find an average fare for each class.

For example, airlines can allocate the fare of a single passenger to the different

flight-legs on his or her itinerary based on the fraction of the total itinerary flying

distance traveled on each flight-legs. Averaging these value will give the airline an

array of fares, one for each class for each flight-leg.

2. Expected number of bookings to come

Using historical booking data for similar flight-legs and actual bookings at hand,

airlines are able to forecast bookings to come by class. Airlines use this forecast

to compute the number of seats to protect for high fare class bookings against low

fare class bookings.

3. Number of available units

Finally, using “no-show” data and the expected number of bookings to come,

airlines can decide how many units they make available. It is important to note

that the number of available units might be greater than the total number of seats

on the plane. Indeed, it is known that some passengers will not show up at the

time of departure. Therefore, airlines allow for more bookings than they have seats

available in a process called overbooking. However, in this thesis, overbooking is

not taken into consideration and, for the sake of simplicity, we will refer to the

number of remaining units as the number of remaining seats.

These different sources of information are used to find nested booking limits or

bidprices. As stated earlier, these are used together with airline analysts’ business

knowledge to decide whether to accept or reject booking requests in each classes.

Re-optimization

Since airlines operate a large number of flight-legs in a complex network, it is com-

putationally impossible to continuously optimize to obtain the latest nested booking
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limits or the latest bidprices. Consequently, airlines divide the booking horizon in a

manageable number of time frames and update the decision rule values once per time

frame.

� 1.3 Contribution

The contribution of this work is two-fold. First, we develop different heuristics and

extend existing separate cabin revenue management optimization methods to solve the

multiple cabin problem. Second, we test these methods in a realistic simulation environ-

ment and provide insights on the behavior of the different methods in an environment

with realistic passenger choice and competing airlines. More specifically,

• we extend the existing separate cabin dynamic programming formulation by Laut-

enbacher and Stidham [16] to develop a dynamic programming formulation for the

multiple cabin revenue management problem,

• we extend a separate cabin realistic variance approach by Walczak [17] to the

multiple cabin revenue management problem,

• we develop four heuristic methods based on the dynamic programming formulation

and on the Expected Marginal Seat Revenue (EMSR) heuristic [2],

• we evaluate the performance of the different methods in a simulation environment

with realistic passenger choice behavior, and we find that multiple cabin optimiza-

tion is not systematically leading to a revenue increase.

� 1.4 Structure of the thesis

First, in Chapter 2 we discuss in detail relevant literature on the revenue management

optimization problem and more specifically on the multiple cabin optimization problem.

In Chapter 3, we present the different algorithms that on which we focus in this thesis

and their underlying assumptions. In Chapter 4, we present the Passenger Origin-

destination Simulator (PODS), a realistic passenger choice simulation tool, and we will

compare the revenue performance of the different methods in two different competitive

environments: first, in a single market competitive environment and, second, in a more

realistic network scenario with four airlines competing in multiple markets. Finally, in

Chapter 5, we will discuss the different findings and propose future areas for research.



Chapter 2

Literature Review

IN this chapter, we review relevant previous work on the multiple cabin revenue man-

agement problem. More specifically, we first look at existing work on the separate

cabin revenue management problem. We review a dynamic programming formulation,

an extension to this dynamic programming algorithm that allows for higher demand

variance, and a static heuristic widely used in the industry. We then briefly review

existing work on the multiple cabin revenue management problem. Finally, we review

a capacity control mechanism for multiple cabin environments, shared nesting, which

allows airlines to keep track of the remaining capacity throughout the booking process

and prevents overselling.

� 2.1 Separate cabin revenue management problem

In this section, we review existing work on the single-leg separate cabin revenue manage-

ment problem. We present a dynamic programming formulation, an extension to this

dynamic programming formulation that allows for higher variance, and the Expected

Marginal Seat Revenue (EMSR) static heuristic.

� 2.1.1 Lautenbacher-Stidham dynamic programming

In their 1999 paper, Lautenbacher and Stidham [16] develop a dynamic programming

model for the single leg multiple fare class revenue management problem. Their model

divides the booking horizon into time slices for which the probability of observing more

than one booking during any one time slice is negligible. At any time slice, the airline

decides whether to accept or reject the requested fare. They assume that bookings in a

given class i in the set of classes F follow a Poisson process with known rate λit at time

frame t. They then approximate the booking arrival process with a Bernoulli process

with pit =
λit
Nt

as the probability of observing a booking during one of the Nt time slices

23
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of time frame t. The probability of observing no bookings is given by p0t = 1−
∑

i∈F p
i
t.

More formally, the dynamic program is

Un(x, ri) = max{ri + Ej(Un−1(x− 1, j)),Ej(Un−1(x, j))}, if ri > 0

Un(x, 0) = Ej(Un−1(x, j)), if ri = 0

where Un(x, ri) is the expected future revenue at time slice n with x seats remaining

when observing a booking request of ri, and Ej is the expected value over the different

fares offered. Or equivalently,

Un(x) =
∑
i∈F

pin ·max{ri + Un−1(x− 1), Un−1(x)}+ p0nUn−1(x), ∀x ≥ 1;∀n ≥ 1

with U0(x) = Un(0) = 0, ∀x and ∀n. In this equation, x is the number of remaining

seats, Un(x) is the expected revenue at time slice n with x seats remaining and ri is the

fare for Class i, and F is the set of fare classes. Airlines compute expected revenues at

each time slice for all possible values of x.

As defined previously, a bidprice is the lowest price at which an airline is willing

to sell a given seat. Airlines will use bidprices to make their decision regarding a

booking request. If the requested fare is higher than the bidprice, the booking request

is accepted, and it is rejected otherwise. Bidprice at a given time slice n for a given

capacity x (BPn(x)) can be computed using expected revenue computed previously in

the following equation:

BPn(x) = Un−1(x)− Un−1(x− 1).

We now discuss the strengths and weaknesses of the approach proposed by Laut-

enbacher and Stidham. Their dynamic programming formulation suits the structure of

the revenue management problem because it acknowledges the fact that bookings are

interspersed among different fare classes over multiple time frames in the booking pro-

cess. Howerver, since it assumes booking requests arrive according to a Poisson process,

the variance of the number of booking requests in Class i at time frame t, var(Bi
t), is

equal to the mean number of bookings in Class i at time frame t, E[Bi
t]:

E[Bi
t] = var(Bi

t) = λit.
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However, we know from observation in the airline industry that the variance-to-

mean ratio for the number of bookings is frequently greater than 1. Consequently,

some information about the underlying demand distribution and more specifically the

variance in the number of booking requests is not used when applying the Lautenbacher-

Stidham approach despite the fact that the airline can estimate the variance of the

number of booking requests to come.

As shown by Diwan [11] in his Master’s thesis, since the Lautenbacher-Stidham

algorithm underestimates the variance, it is overly confident about future high-WTP

demand and leads to bidprices that are excessively high. Bidprices that are too high

lead to a decrease in revenues because the airline rejects a greater proportion of low

fare classes booking requests early in the process while high fare demand predicted by

the Poisson process does not materialize later in the booking process.

Finally, computational time can also be an issue with this formulation. As we

saw, the Lautenbacher-Stidham formulation requires one calculation for each possible

capacity level per time slice. The number of calculations required is so large that the

Lautenbacher-Stidham approach is not commonly used in practice. This drawback

motivates the need for heuristics that find reasonable sub-optimal solutions in a less

computationally intensive way.

� 2.1.2 Higher demand variance in dynamic programming

In order to address the variance issue raised for the Lautenbacher-Stidham algorithm,

Walczak [17] proposes to allow for higher variances by assuming batched booking ar-

rivals. The idea is to allow bookings to arrive in batches of size bit at a rate of rate λ̄it
such that

bit =

⌊
var(Bi

t)

E[Bi
t]

⌉

λ̄it =
λit
bit
.

By setting bit equal to the variance-to-mean ratio, we keep the expected number of

bookings E[B̄i
t] equal to E[Bi

t] and increase the variance so that V ar[B̄i
t] is bit times

greater than V ar[Bi
t] where B̄i

t is the number of Class i booking requests observed

during time frame t. We have
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E[B̄i
t] = λ̄it · bit

=
λit · bit
bit

= λit

and,

V ar[B̄i
t] = V ar[bit ·Ait]

=
(
bit
)2 · V ar[Ait]

=
(
bit
)2 · λ̄it

= bit · λit
= bit · V ar[Bi

t]

where Ait is the number or Class i booking request batches at time frame t. The dynamic

program becomes

Un(x) =
∑
i∈F

p̄in · max
j={1,...,min{bit,x}}

{j ∗ ri + Un−1(x− j), Un−1(x)}+ p̄0nUn−1(x)

where U(x), i, F , bit, x, and ri are defined as previously, j is the number of bookings

from the batch that will be accepted, and p̄in is the probability of observing a booking

batch arrival in Class i at time n such that:

p̄in =
λ̄it
Nt
.

Walczak’s approach is flexible and addresses one of the criticisms of the Lautenbacher-

Stidham formulation. Indeed, the Walczak approach allows for higher variances in the

booking arrival process and does not assume equal variance for the different fare classes.

That said, computation time is still a major concern with the Walczak approach which

reinforces the need for less computationally intensive heuristics.
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� 2.1.3 Expected Marginal Seat Revenue (EMSR)

In his doctoral thesis, Belobaba [2] develops the original version of a the Expected

Marginal Seat Revenue static heuristic (EMSRa) to define nested booking limits assum-

ing independent and normally distributed demands for the different classes. Belobaba

[3] then further refined the heuristic and presented EMSRb, an improved and more

robust version of EMSR. In this thesis, we focus solely on the EMSRb approach.

At a given time and with given demand distribution, the booking limit for the top

class (Class 1) is equal to the remaining capacity and the booking limit for subsequent

classes is given by

BLni = BLn1 −
[
µn1,...,i−1 + σn1,...,i−1 · Φ−1

(
1− rni

r1,...,i−1

)]
.

Where BLni is the booking limit for Class i at time n, µn1,...,i−1 is the joint mean

demand to come for classes 1 to i−1, σn1,...,i−1 is the joint standard deviation of demand

for classes 1 to i− 1 and rn1,...,i−1 is the weighted average fare for classes 1 to i− 1. We

have

µn1,...,i−1 =

i−1∑
j=1

µnj(
σn1,...,i−1

)2
=

(
σn1,...,i−2

)2
+
(
σni−1

)2
rn1,...,i−1 =

∑i−1
j=1 r

n
j · µnj

µn1,...,i−1

The EMSR heuristic is widely used in the industry and empirical results show that

it performs well in practice [3]. We can also use EMSR to obtain an approximation

of the expected marginal revenue of each seat at a given time which can be used as

a bidprice. Once the airline finds the expected marginal revenue for a given seat, it

can then compare it with a booking request and decide whether to accept or reject it.

Define the expected marginal revenue from each seat x at time n as EMSRn(x). We

have
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EMSRn(x) = max
i∈F

[
min

(
rni , r

n
1,...,i ·

(
1− Φ

(
x− µn1,...,i
σn1,...,i

)))]

Although EMSR is a static heuristic, it is possible to recalculate the EMSRn(x)

value multiple times throughout the booking process, i.e. at each time frame. This

implementation is quite common in practice and we will use it as a baseline scenario

when comparing the different algorithms.

The main advantage of the EMSRb heuristic is that the computation time required is

significantly smaller than the computation time required for the Lautenbacher-Stidham

and Walczak approaches.

� 2.2 Multiple cabin revenue management problem

In this section, we briefly review existing work on the multiple cabin revenue manage-

ment problem. We first look at two papers dealing with multiple products, each offered

at a single price point, and then look at a capacity sharing mechanism, shared nesting,

used to manage remaining availability.

� 2.2.1 Multiple product upgrades

We identify three papers as relevant to our work. First, in their 2009 paper, Shumsky

and Zhang [13], provide the optimal dynamic programming solution to the multiperiod

capacity allocation. Second, in their working paper, Gallego and Stefanescu [12] in-

troduce two dynamic programming formulations for the revenue management problem

with upgrades. Their formulations differ by the time at which the upgrade decision has

to be made.

In our terms, they focus on the multiple cabin revenue management problem with

a single class in each cabin. They were able to show that using upgrades helps airlines

in balancing supply and demand by using excess premium cabin capacity for economy

cabin demand. They were also able to show that “fairness” is easy to ensure and does

not affect the optimality of the solution. An upgrade mechanism is considered fair if

the upgrade priority goes to the passengers who bought higher-end products. In the

airline context, this means that a passenger booked in a fully unrestricted and more

expensive economy class will be upgraded to the premium cabin before any passenger

that booked in a cheaper economy class.
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Lastly, the paper by Steinhardt and Göensch [15] is closely related to the work

presented in this thesis. They address the upgrade and the capacity control problems

simultaneously in the revenue management context. They introduce a decomposition

heuristic using deterministic linear programming, and develop a dynamic programming

algorithm that solves the upgrade and capacity control problems simultaneously.

� 2.2.2 Shared nesting

In his 2010 AGIFORS presentation, Walczak [18] introduces an availability control

mechanism for multiple cabin optimization. We refer to this control mechanism as

shared nesting. If we assume that, for a given flight, a premium cabin capacity of

CAPP , an economy cabin capacity of CAPE , the number of seats available, AV LP

and AV LE for classes in the premium and in the economy cabin respectively, the

number of accepted bookings, BKGP and BKGE for the premium and economy cabins

respectively, and the number of premium cabin seats available for economy booking

upgrades UPG which is assumed to be given at this stage, and to be less than or equal

to AV LP . Shared nesting works as follows:

if BKGE < CAPE ,

AV LP = CAPP −BKGP

UPGa = min(UPG,CAPP −BKGP )

AV LE = CAPE + UPGa −BKGE

if BKGE ≥ CAPE ,

AV LP = CAPP −BKGP − (BKGE − CAPE)

UPGa = min(UPG,CAPP −BKGP )

AV LE = CAPE + UPGa −BKGE

This approach assures that the airline is not overselling its capacity.
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� 2.3 Chapter summary

In this chapter, we reviewed relevant literature on the separate cabin revenue manage-

ment problem. We reviewed dynamic programming approaches and a static heuristic.

We also identified relevant existing work on the multiple cabin revenue management

problem and reviewed shared nesting, a useful capacity control mechanism. In the next

chapter, we will present the different multiple cabin optimization methods we developed

in collaboration with MIT PODS consortium airline members.



Chapter 3

Dynamic Formulations and

Heuristics

IN this chapter, we present the different algorithms we developed in collaboration with

the MIT PODS consortium airline members and on which we focus in this thesis. We

first present an extension of the Lautenbacher-Stidham separate cabin model and then

present different EMSR-based heuristics and a dynamic programming decomposition

heuristic that can be used to solve the multiple cabin problem.

� 3.1 Multiple cabin dynamic programming (DP) formulations

In this section, we present two different dynamic programming algorithms for the mul-

tiple cabin problem. They are extensions of Lautenbacher-Stidham and Walczak’s al-

gorithms for the separate cabin revenue management problem presented in Chapter 2.

� 3.1.1 Multiple cabin DP

We first propose a multiple cabin dynamic programming algorithm which we refer to as

“Multiple cabin DP”. Similar to the separate cabin Lautenbacher-Stidham formulation,

it assumes a single flight with multiple fare classes and known independent demands.

It also assumes that booking requests arrive following a Poisson process. We have the

following equations:

31
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Un(xp, xe) =
∑
i∈Fp

pin ·max{ri + Un−1(xp − 1, xe), Un−1(xp, xe)}

+
∑
j∈Fe

pin ·max{ri + Un−1(xp − 1, xe), ri + Un−1(xp, xe − 1), Un−1(xp, xe)}

+p0nUn−1(xp, xe),∀x ≥ 1;∀n ≥ 1

with U0(xp, xe) = Un(0, 0) = 0, ∀x and ∀n. In this equation, xp and xe are the number

of remaining seats in the premium and economy cabin respectively, Un(xp, xe) is the

expected revenue at time slice n with xp and xe seats remaining in each cabin, ri is the

fare for Class i, Fp and Fe are the sets of premium and economy classes, respectively,

and pin is the probability of observing a booking in Class i during time slot n.

As in the separate cabin case, airlines compare requested fares with bidprices. The

difference here is that the airline compute a different bidprice for each cabin and compare

the requested fare to the appropriate bidprice. Specifically, premium booking requests

can be compared with the premium cabin bidprice and economy booking requests are

compared with both premium and economy bidprices. A given economy booking request

is first compared to the economy cabin bidprice, if it is greater than the economy

bidprice, the booking request is accepted in the economy cabin. Otherwise, the booking

request is compared to the premium cabin bidprice, if it is greater than the premium

bidprice, it is accepted and upgraded to the premium cabin. Otherwise, the booking

request is rejected. Bidprices are computed using the following formulas:

BPPn (xp, xe) = Un−1(xp, xe)− Un−1(xp − 1, xe)

BPEn (xp, xe) = Un−1(xp, xe)− Un−1(xp, xe − 1)

where BPPn (xp, xe) and BPEn (xp, xe) are bidprices for premium and economy cabins

respectively at time slice n with xp seats remaining in the premium cabin and xe seats

remaining in the economy cabin. As in the separate cabin case presented in Chapter 2,

there is a mismatch between the assumed variance of the “Multiple cabin DP” algorithm

and the observed variance. Indeed, the formulation presented above assumes that the

variance-to-mean ratio for demand to come in each class is equal to 1, and observations

from airline data show that this ratio is generally higher than 1.
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� 3.1.2 Multiple Cabin DP with Variance

Based on the Walczak modification to the separate cabin Lautenbacher-Stidham algo-

rithm, the “Multiple cabin DP with Variance” algorithm allows different variance levels

for demand to come in each class. The formulation is very similar to the “Multiple

cabin DP” algorithm, but it assumes higher variance-to-mean ratios by allowing book-

ing requests in the different classes to arrive in batches. Following Walczak’s approach,

bookings arrive in batches of size bit with a rate λ̄it such that

bit =

⌊
var(Bi

t)

E[Bi
t]

⌉

λ̄it =
λit
bit

Where λit is the arrival rate of booking requests in Class i at time t and Bi
t is a

random variable for the number of bookings observed in Class i at time t. Setting bit

equal to the variance-to-mean ratio for Class i at time frame t ensures that the expected

number of booking requests stays the same while the assumed variance for bookings to

come increases to the desired level. The dynamic program is

Un(xp, xe) =
∑
i∈Fp

p̄in max
j∈{1,...,min{bit,xp}}

[j · ri + Un−1(xp − j, xe), Un−1(xp, xe)] +

∑
i∈Fe

p̄in max
j∈{1,...,min{bit,xp+xe}}

[
j · ri + max

k∈{max(0,j−xe),min(xp,j)}
(Un−1(xp − k, xe − j + k)) ,

Un−1(xp, xe)]

+p̄0nUn−1(xp, xe),∀x ≥ 1.∀n ≥ 1.

With U0(xp, xe) = Un(0, 0) = 0, ∀x and ∀n. As in the “Multiple cabin DP” for-

mulation, xp and xe are the number of remaining seats in the premium and economy

cabin respectively, Un(xp, xe) is the expected revenue at time slot n with xp and xn

seats remaining in each cabin, ri is the fare for Class i, Fp and Fe are the sets of pre-

mium and economy classes respectively, p̄in is the probability of observing a batch of

bit Class i bookings at time slice n within time frame t, j is the number of bookings

requests accepted, and k is the number of economy bookings using premium capacity.

The decision rule is the same as in the “Multiple cabin DP”.
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� 3.2 Heuristics

In this section, we review different heuristics that we developed to solve the multiple

cabin revenue management problem with the help of the MIT PODS consortium air-

line members. We first cover two different EMSR-based heuristic which we refer to

as “Shared nesting with EMSR” and “Shared nesting EMSRc bidprice control”, and

then present a dynamic programming decomposition which we call “Multiple cabin DP

heuristic.”

� 3.2.1 Shared nesting with EMSR

In Chapter 2, we presented shared nesting, which is a control mechanism that keeps

track of the number of seats remaining when an airline is using multiple cabin optimiza-

tion. Suppose that, for a given flight, we have a premium cabin capacity of CAPP , an

economy cabin capacity of CAPE , the number of seats available, AV LP and AV LE for

classes in the premium and in the economy cabin respectively, the number of accepted

bookings, BKGP and BKGE for the premium and economy cabins respectively, and

the number of premium cabin seats available for economy booking upgrades UPG which

is assumed to be given at this stage, and to be less than or equal to AV LP . Shared

nesting works as follows:

if BKGE < CAPE ,

AV LP = CAPP −BKGP

UPGa = min(UPG,CAPP −BKGP )

AV LE = CAPE + UPGa −BKGE

if BKGE ≥ CAPE ,

AV LP = CAPP −BKGP − (BKGE − CAPE)

UPGa = min(UPG,CAPP −BKGP )

AV LE = CAPE + UPGa −BKGE



Sec. 3.2. Heuristics 35

Table 3.1. Calculation example for “Shared nesting Full EMSR”

Cabin Class Avg. fare Demand Std. dev. Protection Total BL Mod. BL

Premium
F $ 800 10 4 7 150 20
U $ 600 12 8 12 143 13

Economy

Y $600 13 7 32 138 138
M $ 400 15 9 46 118 118
B $ 350 22 10 77 104 104
L $ 200 27 9 107 73 73
Z $ 149 34 13 147 43 43
Q $ 99 42 11 - 3 3

One can think of the shared nesting as a two-step approach. The airline defines the

number of premium seats it is willing to share with economy passengers in one step

and the airline applies the standard EMSR approach in each cabin in a second step.

Both steps are done independently and can be done in any order, as we will see in the

following section. We developed three different ways of applying shared nesting with

EMSR.

Shared nesting full EMSR

The “Shared nesting full EMSR” approach applies the EMSRb algorithm to the entire

capacity and then modifies the booking limit for premium classes.

For example, we have a flight with 20 seats in the premium cabin and 130 seats in the

economy cabin. Table 3.1 shows, for each class in the different cabins, the average fare,

the mean expected demand, the standard deviation associated with this demand, the

protection level computed using the EMSR approach, total booking limits that would

be applied if the entire capacity was treated as a separate cabin, and modified booking

limits for the “Shared nesting full EMSR” approach. We can see that the difference

between total booking limits and modified booking limits is only observed in premium

classes. Indeed, we obtain the “Shared Nesting Full EMSR” premium classes’ booking

limit by subtracting the remaining economy cabin capacity to the total booking limits.

This method is very simple to implement for airlines already using the EMSR heuris-

tic. On the other hand, an important drawback of this method is that is assumes

premium demand uses economy capacity when calculating the booking limits. Indeed,

the EMSR heuristic protects seats for top classes against lower classes. Therefore, by

not changing the joint protect calculation, “Shared nesting Full EMSR” is making an

invalid assumption about capacity utilization.
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Table 3.2. Calculation example for “Shared nesting Economy EMSR”

Cabin Class Avg. fare Mean demand Std. dev. Protection Modified BL

Premium
F $ 800 10 4 7 20
U $ 600 12 8 12 13

Economy

Y $600 13 7 10 138
M $ 400 15 9 22 128
B $ 350 22 10 51 116
L $ 200 27 9 80 87
Z $ 149 34 13 120 58
Q $ 99 42 11 - 18

Shared nesting economy EMSR

“Shared nesting Economy EMSR” is very similar to “Shared nesting Full EMSR”, but

it fixes the capacity utilization issue identified above. We will look at the same example

and apply “Shared nesting Economy EMSR” to compare the booking limits between

the two methods.

In “Shared Nesting Economy EMSR”, we first apply the EMSRb algorithm to the

premium cabin and define the number of seats that must be protected against the

highest economy class. In our example, it is determined that 12 seats have to be

protected. Therefore, 8 seats can be shared with the economy classes. The second step

is to apply the EMSRb algorithm to the economy classes and to find the booking limits

using the total economy capacity plus the number of seats shared. We can see that the

modified booking limit in premium classes with “Shared Nesting Economy EMSR” are

identical the the ones obtained with “Shared Nesting Full EMSR.”

The difference between “Shared nesting full EMSR” and “Shared nesting economy

EMSR” is at the economy class booking limit level. More precisely, we can see by

comparing tables 3.1 and 3.2, that the booking limits for classes M, B, L, Z, and Q are

higher with “Shared nesting economy EMSR” when compared to “Shared nesting full

EMSR.” This is due to two factors: first, the EMSR heuristic protects seats for top

classes against lower classes, and second, in “Shared nesting full EMSR” the EMSRb

heuristic is applied on the entire set of classes while it is applied independently within

each cabin in “Shared nesting economy EMSR.” Because premium classes are not taken

into consideration when calculating economy classes’ booking limit in “Shared nesting

economy EMSR”, there are fewer valuable classes for which to protect seats against

cheaper classes.
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Shared nesting EMSRc bidprice control

In “Shared nesting EMSRc bidprice control” algorithm we first define the number of

seats to be shared and then apply the EMSRb algorithm within each cabin. As booking

requests come, capacity is then managed using the shared nesting control mechanism.

Figure 3.1. Cabin EMSR values

The idea is to use the EMSRb algorithm to find cabin bidprices. We set each cabin

bidprice to be equal to the Expected Marginal Seat Revenue of the last seat available

in each cabin using the following equation:

EMSRhn(x) = max
i∈Fh

[
min

(
rni , r

n
j,...,i ·

(
1− Φ

(
x− µnj,...,i
σnj,...,i

)))]

where EMSRhn(x) is the Expected Marginal Seat Revenue of the xth seat in cabin h

at time n, F h is the set of classes in cabin h, rni is the fare for class i at time n, rnj,...,i
is the weighted average fare with respect to expected demand for classes j to i with j

being the highest Class in cabin h, Φ(·) is the normal distribution, µnj,...,i is the total

expected demand for classes j to i at time n, and σnj,...,i is the standard deviation for

the total expected demand for classes j to i at time n. We share the largest number

of premium seats for which the economy cabin bidprice is greater than or equal to the

premium cabin bidprice. Figure 3.1 shows a visual representation of the calculation of

the number of seats to share. We then apply the EMSRb algorithm in both cabins as

we did in the Shared Nesting Economy EMSR case.

Taking the same example as in tables 3.1 and 3.2, we compute the value for different

capacities in each cabin and the results are shown in Table 3.3.

We first look at the hypothetical case where, at this specific time, there are 20
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Table 3.3. Expected Marginal Seat Revenue for different cabin capacities

Capacities Premium Economy

1 790.22 574.06
2 781.80 565.18

. . .

5 715.48 524.07
6 673.08 504.81
7 618.70 482.59
8 600.00 457.48
9 600.00 429.69
10 600.00 400.00
11 600.00 400.00

. . .

18 464.73 399.10
19 436.20 386.92
20 406.58 373.86

. . .

Table 3.4. Example for “Shared nesting EMSRc bidprice control” (0 seat shared)

Cabin Class Avg. fare Mean demand Std. dev. Protection Modified BL

Premium
F $ 800 10 4 7 20
U $ 600 12 8 12 13

Economy

Y $600 13 7 10 10
M $ 400 15 9 22 0
B $ 350 22 10 51 0
L $ 200 27 9 80 0
Z $ 149 34 13 120 0
Q $ 99 42 11 - 0

and 10 seats remaining respectively in the premium and economy cabins. We can see

that the EMSR for the 20th premium cabin unit is is greater than the EMSR for the

11th economy cabin seat. This implies that the expected revenue from premium cabin

passengers for the last seat available in the premium cabin is greater than the expected

revenue from an additional unit in the economy cabin. Therefore, in this case, we decide

not to share any premium seats. Applying the EMSR heuristic yields the booking limits

presented in Table 3.4.

We now look at the hypothetical case where there are 20 and 5 units remaining

respectively in the premium and economy cabins. Here, we can see that the ESMR for

the 6th economy cabin seat ($504.81) is greater than the EMSR for the 20th premium
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Table 3.5. Example for “Shared nesting EMSRc bidprice control” (2 seats shared)

Cabin Class Avg. fare Mean demand Std. dev. Protection Modified BL

Premium
F $ 800 10 4 7 20
U $ 600 12 8 12 13

Economy

Y $600 13 7 10 7
M $ 400 15 9 22 0
B $ 350 22 10 51 0
L $ 200 27 9 80 0
Z $ 149 34 13 120 0
Q $ 99 42 11 - 0

cabin seat ($406.58). This implies that the expected revenue from premium cabin

passengers for the last seat available in the premium cabin is smaller than the expected

revenue from an additional seat in the economy cabin, and we decide to share the

last premium seat with economy passengers. We then compare the EMSR of the 7th

economy cabin seat ($482.59) and we can see that it is also greater than the EMSR for

the 19th premium cabin seat ($436.20). Therefore, we decide to also share the second to

last seat in the premium cabin with economy passengers. Using the same logic, we can

see that it does not make sense to share a third premium seat with economy passengers.

We conclude that the airline should share two seats with economy passengers. Finally,

we apply the EMSRb heuristic independently in each cabin which yields the booking

limits presented in Table 3.5.

� 3.2.2 Multiple cabin DP heuristic

The last heuristic that we developed in collaboration with the PODS MIT consortium

member airlines is based on the Lautenbacher-Stidham algorithm presented in Chap-

ter 2. The idea behind the heuristic is to decompose the large multiple cabin problem

into smaller separate cabin problems and use the dynamic programming solution of

these smaller problems depending on the number of seats remaining in each cabin.

More specifically, we apply the separate cabin Lautenbacher-Stidham algorithm to

three different single-leg revenue management problems.

1. Premium pax

Premium classes’ demand using premium cabin capacity

2. Economy pax

Economy classes’ demand using economy cabin capacity
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Figure 3.2. Three different separate cabin DP problems

3. All pax

All classes’ demand using total capacity

We then compare the different booking requests with the bidprice of the different

solution depending on the capacity remaining. Specifically, when there are seats remain-

ing in the economy cabins, premium booking requests are compared to the “Premium

pax” bidprice and economy booking requests are compared to the “Economy pax” bid-

price. When there are no seats left in the economy cabin, all booking requests are

compared to the “All pax” bidprice.

� 3.3 Chapter summary

In this chapter, we presented the different algorithms we developed in collaboration with

MIT PODS consortium airline members. We presented a dynamic programming for-

mulation for the multiple cabin problem that extends the separate cabin Lautenbacher-

Stidham dynamic programming formulation, as well as an extension to the Walczak for-

mulation for the multiple cabin dynamic programming formulation. We also presented

different EMSR-based heuristics and a dynamic programming decomposition heuristic.

These heuristics can be used to control capacity in a multiple cabin environment. More

precisely, we saw three different ways that an airline can calculate the number of units

to be shared in a shared nesting scheme: “Shared Nesting Full EMSR,” “Shared Nesting

Economy EMSR,” and “Shared nesting EMSRc bidprice control.” Finally, we presented

a dynamic programming decomposition that uses the solution from smaller problems

at different times to control capacity in the multiple cabin environment. In the next

chapter, we will compare the performance of these different approaches in two different

simulation environments using the Passenger Origin-Destination Simulator.



Chapter 4

Simulation and Results

IN this chapter, we compare the performance of the different algorithms presented in

Chapter 3 based on simulation results in a competitive environment. More specifi-

cally, we explain differences in revenue and load factor performance by analyzing class

closure rates and fare class mix, and test the sensitivity of these results to different

demand levels.

In this chapter, we introduce the Passenger Origin-Destination Simulator (PODS),

we explicitly define the performance metrics of interest, and compare the performance

of the different algorithms in the realistic passenger choice simulation environment of

PODS.

� 4.1 Simulator description

In this subsection, we describe the simulation tool used in this thesis, the Passenger

Origin-Destination Simulator, which was created by Hopperstad at Boeing in the 1990s.

PODS simulates hypothetical airlines competing for virtual demand in a virtual

network. Figure 4.1 presents its architecture. It is divided in two parts: (1) the Passen-

ger Choice Model, and (2) the Revenue Management System. In the first part, virtual

passengers are created with multiple characteristics such as a preferred schedule, a

maximum willingness-to-pay, and different sensitivity to fare class constraints. In the

second part, the airlines’ logic is defined. Airlines in PODS manage their capacity like

real airlines in the industry by forecasting future demand based on recorded historical

bookings, and can choose from an array of revenue management methods to make their

seat availability decisions.

We limit our description to a relatively high level since PODS has been extensively

described in previous work. We refer readers interested in implementation details to

Carrier’s Master’s thesis [8].
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Figure 4.1. PODS Architecture representation [4]
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� 4.1.1 Passenger Choice Model

The Passenger Choice Model generates virtual passengers with a need for transportation

between the different cities in the network. The simulator generates two different pas-

senger types, business and leisure passengers. The generation process for both passenger

types is identical, the only difference being the value of the different input parameters.

Figure 4.2 shows typical passenger arrival curves for the different passenger types. As

we can see, business passengers arrive, on average, later in the booking process when

compared to leisure passengers. There are three main characteristics that are defined

for each passenger:

Figure 4.2. Passenger arrival curves

1. Willingness-to-pay

Passengers are randomly assigned a maximum out-of-pocket willingness-to-pay.

As one would expect, business passengers have, on average, a higher maximum

willingness-to-pay than leisure passengers.

2. Schedule preference

Based on the Time Of Day Demand curves [10], passengers are assigned a preferred

traveling time window; they are then assigned a rescheduling cost. Passengers pre-

fer itineraries that are within their preferred time window and incur a rescheduling

cost if their selection option is outside their preferred window. As one would ex-

pect, business passengers are generally more sensitive to schedule changes than

leisure passengers.
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3. Restriction sensitivity

Passengers are randomly assigned a sensitivity level to the different restrictions

applied by the airlines to fare classes. As explained in Chapter 1, examples of

restrictions are, among others, minimum stay at destination, change fee, and cancel

fee. The restrictions applied to the different fare classes force passengers to book

in higher fare classes. Another restriction introduced in PODS is the “Economy

cabin” restriction. It represents the disadvantage of not having a confirmed seat

in the premium cabin. As expected, business passengers are, on average, more

sensitive to restrictions than leisure passengers.

As shown on Figure 4.1 after defining passenger characteristics, the passenger choice

set is defined. As its name indicates, the passenger choice set is the subset of fare classes

from which a given passenger makes its final choice. It is created by eliminating fare

classes that have a fare greater than the passenger’s maximum willingness-to-pay from

the set of classes made available by the airline. It is worth noting that “no-go” is an

option for passengers with a WTP lower than the lowest fare class in the set of classes

made available by the airline.

At the last step in the Passenger Choice Model, passengers select the option from

the passenger choice set that minimizes their total cost, where total cost is defined as the

sum of the fare and the costs associated with rescheduling and the cost of restrictions.

The passenger’s final choice is then recorded as a booking by the airline’s revenue

management system.

� 4.1.2 Revenue Management System

In this subsection, we describe the Revenue Management System. The Revenue Man-

agement System is the airline side of the simulation and does not have any knowledge

of the underlying parameters of the Passenger Decision Model. The function of the

Revenue Management System is to maximize revenues assuming a given flight schedule

and fixed capacity. There are three main components of the Revenue Management

System:

1. Historical Booking Database

Like in the real airline industry, airlines in PODS record historical booking data.

The observed booking history information stored in the Historical Booking Database

is the only historical information available to the airlines to forecast future demand

and make their seat allocation decision.
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2. Forecaster

Using historical booking data and accepted bookings up to the current reoptimiza-

tion time, airlines forecast bookings-to-come in two steps: (1) Detruncation, and

(2) using different statistical methods (e.g. exponential smoothing).

Detruncation is the process needed to convert observed bookings to an estimate

of true or unconstrained demand. Indeed, airlines have no way of knowing real

demand for a given class on a specific itinerary, and one classic way to estimate

it is to use the Boeing Spill model [9]. Once the airline has an estimate for the

unconstrained demand for a past flight, it can use statistical methods to forecast

demand for future flights.

3. RM Seat Allocation Optimizer

Given forecasted bookings-to-come, airlines use different optimization methods

such as the ones presented in Chapter 3.

The RM seat allocation optimizer keeps track of the number of seats remaining and

decides, based on a specified revenue management algorithm, which fare classes

are available at any given time. The set of available classes is passed to passengers

so that they can define their own “passenger choice set”. As described earlier, the

passenger choice set is then used in the Passenger Choice Model.

PODS represents the state of the art in terms of realistic simulation environment

for airline revenue management and is constantly evolving based on the inputs from the

PODS consortium airline members. Now that we have a better understanding of how

the simulator works, we define the performance indicators that we use to evaluate the

performance of the different methods presented in Chapter 3.

� 4.2 Performance indicators

Before comparing the different methods, we need to define the different performance

metrics that we use to evaluate their the performance.

• Revenue Passenger Miles (RPM) is a measure of the total capacity used by pas-

sengers. It is computed by summing over all the flight-legs operated by an airline

the product of the number of passengers flying to the distance flown.
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• Available Seat Miles (ASM) is a measure of the total capacity offered by a given

airline. It is computed by summing over all the flight-legs operated by an airline

the product of the number of seats to the distance flown.

• Revenue is the total amount of money received by the airline. It is calculated by

summing the product of the number of confirmed bookings by the fare in each

class across all itineraries. Revenue is generally the first metric we examine since,

in revenue management, the objective is to maximize revenues.

• Load factor is a measure of utilization of capacity. It is the ratio of used capacity to

the amount of available capacity. For a specific leg, it is calculated by dividing the

total number of passengers sitting on the plane at departure by the total number

of seats on the plane, whereas at the network level, it is calculated by dividing

the total number of RPM with the total number of ASM. In this thesis, we look

at total load factor, which is computed for the entire capacity, and at cabin load

factor, which is computed for each cabin separately.

Load factor is a critical variable in revenue management. Indeed, one of the vari-

able directly influencing revenue is the total number of passengers flying. However,

high load factor does not necessarily lead to high revenues. Indeed, one can think

of a case where a flight is filled with many low fare class passengers.

• Yield is the average revenue generated by a passenger flying one mile. It is calcu-

lated by dividing total revenue by total RPM.

Yield is the other critical variable in revenue management. Because of the law

of supply and demand, high yield is generally associated with lower load factor.

Therefore, one can see that there exists a trade-off between yield and load factor

when maximizing revenues.

• Fare class mix is a measure of the booking spread across the different fare classes.

One can observe the relative strengths and weaknesses of different methods by

comparing fare class mix.

• Closure rate is a measure of availability of the different fare classes. Airline Rev-

enue Management analysts can use closure rates to see what percentage of flights

had a specific class available at a given time.

We will use these different metrics to compare the relative performance of the meth-

ods, and provide some insights on the practical implications of the results.
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Table 4.1. Single market fare structure

Cabin Class Fare AP R1 R2 R3

Premium
1 $ 779 0 NO NO NO
2 $ 702 3 NO YES NO

Economy

3 $ 624 0 NO NO NO
4 $ 440 3 NO YES NO
5 $ 309 7 NO YES YES
6 $ 208 10 YES YES YES
7 $ 171 14 YES YES YES
8 $ 135 14 YES YES YES

� 4.3 Results

In this section, we compare the performance of different seat allocation methods. We

first present the general characteristics of the simulations, we then analyze each method

using the performance metrics defined previously and test the sensitivity of the results

to different demand levels.

� 4.3.1 Network and fare structure

We use two distinct network and fare structures to compare the different algorithms.

The first network is a single market case with two airlines offering a single flight each in

which we can test computationally intensive methods. The second network is a realistic

network with four airlines competing in multiple markets in which we can better assess

the practical performance of the different algorithms.

Single market

First, we have a single market competitive network with two airlines offering one flight

each in the market. The fare structure in this market is presented in Table 4.1. It

shows the array of different classes offered with their respective fare, Advance Purchase

requirement (AP), and which of the three product restrictions apply. We note that R1

is the most restrictive of all three restrictions and that R3 is more restrictive than R2.

It is important to remember that all economy classes have the additional “Economy

cabin” disutility restriction to model the decision process with regards to the different

cabins. By more restrictive, we mean that the associated contribution to the total cost

used at the passenger decision step in the Passenger Choice Model is higher then the

one associated with other restrictions.
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Table 4.2. Realistic network restricted fare structure
Cabin Class avg. Fare AP R1 R2 R3

Premium

1 $ 1666 0 NO NO NO
2 $ 1500 0 NO YES NO
3 $ 1140 7 YES YES NO
4 $ 801 14 YES YES YES

Economy

5 $ 1333 0 NO NO NO
6 $ 920 3 NO YES NO
7 $ 725 7 NO YES YES
8 $ 602 10 YES YES YES
9 $ 504 14 YES YES YES
10 $ 416 14 YES YES YES

Table 4.3. Realistic network semi-restricted fare structure
Cabin Class avg. Fare AP R1 R2 R3

Premium

1 $ 683 0 NO NO NO
2 $ 594 0 NO YES NO
3 $ 446 7 NO YES NO
4 $ 343 14 NO YES YES

Economy

5 $ 506 0 NO NO NO
6 $ 364 0 NO YES NO
7 $ 280 7 NO YES YES
8 $ 223 7 NO YES YES
9 $ 183 14 NO YES YES
10 $ 153 14 NO YES YES

This single market case will be used to assess the performance of the multiple cabin

dynamic programming formulation. We compare the dynamic programming methods

to the base case and to the “Multiple cabin DP heuristic.” Indeed, since the dynamic

programming formulations are computationally intensive, we can only test them in a

relatively small network.

Realistic network

The second scenario is a more realistic network where four airlines compete in 572

markets. These markets are divided in two market types: (1) higher value restricted

markets, and (2) lower value semi-restricted markets. There are two different market

types in order to simulate the market diversity observed in the industry.

The fare structures for both markets are presented in table 4.2 and 4.3. The re-
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Table 4.4. Distinct EMSR results in single market scenario at low demand

AL ASM RPM LF Yield Rev

1 166940 126028 75.5 0.2440 30749
2 166940 125355 75.1 0.2469 30945

Table 4.5. Distinct EMSR results in single market scenario at medium demand

AL ASM RPM LF Yield Rev

1 166940 138091 82.7 0.2523 34840
2 166940 136580 81.8 0.2596 35458

stricted fare structure is used in 276 markets while the semi-restricted fare structure is

used in the remaining 296 markets. We can see that this network has more classes than

the single market case, and that the average fare for the lowest classes in the premium

cabin is lower than the average fare for top classes in the economy cabin. These differ-

ences make this network more realistic and we will use it to compare the performance of

the different heuristics. It is important to remember that all economy classes have the

additional “Economy cabin” disutility restriction to model the decision process with

regards to the different cabins.

� 4.3.2 Base case scenarios

In this section, we define base case scenarios at different demand levels in each network.

Upgrades are not allowed in the base cases and every airline uses the EMSR heuristic

independently in both cabins.

Passengers have the flexibility to choose a seat in both cabins depending on their

inherent characteristics. That said, passengers selecting a premium cabin fare class

have a confirmed seat in the premium cabin and passengers selecting an economy cabin

fare class have a confirmed seat in the economy cabin and it is impossible for them to

be upgraded to a seat in the premium cabin.

Single market

For the single market case, tables 4.4, 4.5, and 4.6 show ASM, RPM, total load factor,

yield, and revenue for the two airlines in the market at a low, medium and high demand

respectively.

The results presented here are sample level averages over five simulation trials of

600 samples where each sample simulates the entire booking process for all flights in the
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Table 4.6. Distinct EMSR results in single market scenario at high demand

AL ASM RPM LF Yield Rev

1 166940 143464 85.9 0.2610 37437
2 166940 141796 84.9 0.2689 38131

Table 4.7. Distinct EMSR fare class mix in single market scenario at low demand

Class AL 1 AL 2

1 8.4 8.4
2 0.9 1.0

Premium total 9.3 9.4

3 1.5 1.7
4 15.3 15.8
5 10.5 10.8
6 2.6 2.8
7 1.0 1.1
8 88.0 86.2

Economy total 119.0 118.3

Grand total 128.3 127.7

network. In other words, it is the average flight revenue performance of each airline. We

can see that both airlines have the exact same number of ASMs at all demand levels.

This is due to the fact that they both offer a single 982-mile flight with two cabins,

economy and premium, having 150 and 20 seats respectively. Both airlines are using

the exact same forecasting and revenue management method, and the fact that Airline

2 has a slight revenue advantage over Airline 1 at all demand levels is due to random

variation in the simulation. It is interesting to note the trade-off between load factor

and yield. Indeed, although Airline 2’s load factor is 0.9 percentage point higher than

Airline 1’s, which could be interpreted as advantageous for Airline 1 by an untrained

analyst, Airline 2’s yield is higher which explains why Airline 2’s revenues are higher

than Airline 1’s.

Tables 4.7, 4.8, and 4.9 show the average number of bookings in each class over

the different trials and the different samples at three different demand levels. We can

see that the large majority of bookings observed are Class 8 bookings and that Class

1 is the fare class for which we observe the most bookings in the premium cabin. We

can also see that Class 8 bookings represent a smaller fraction of bookings as demand

increases. This indicated that the revenue management system is able to select the most

valuable passengers and reject lower fare class when demand increases. Consistent with



Table 4.8. Distinct EMSR fare class mix in single market scenario at medium demand

Class AL 1 AL 2

1 10.1 9.9
2 1.3 1.2

Premium total 11.4 11.1

3 1.4 1.8
4 17.1 18.8
5 13.4 14.3
6 4.1 5.2
7 2.8 3.6
8 90.5 84.3

Economy total 129.3 127.95

Grand total 140.6 139.1

Table 4.9. Distinct EMSR fare class mix in single market scenario at high demand

Class AL 1 AL 2

1 10.8 10.6
2 1.4 1.3

Premium total 12.1 12.0

3 1.4 1.8
4 18.8 20.7
5 15.9 17.0
6 7.2 8.5
7 7.3 7.7
8 83.3 76.8

Economy total 134.0 132.4

Grand total 146.1 144.4
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results in tables 4.4, 4.5, and 4.6, Airline 1 accepted more bookings than Airline 2, but

the mix is such that the average fare per booking or, equivalently, the yield is higher

for Airline 2. It is also interesting to note that, on average, a little over 8 seats out of

the 20 available premium seats at medium demand are left empty. Successful multiple

cabin optimization methods will accept additional economy bookings and allow these

passengers to use available premium cabin capacity.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
e

rc
e

n
ta

ge
 o

f 
cl

o
se

d
 

Time frame 

Airline 1 closure rate by class at low demand 

Class 1

Class 2

Class 3

Class 4

Class 5

Class 6

Class 7

Class 82 
1 

3 4 

5 

6 

7 
8 

Figure 4.3. Airline 1 class closure rates in single market scenario at low demand

Figures 4.3, 4.4, and 4.5 show Airline 1’s percentage of samples for which the spec-

ified class is closed as a function of time before departure, which we refer to as closure

rates. The booking horizon is divided in sixteen “time frames” and departure is at the

end of time frame 16. As one would expect, lower classes close earlier than in the book-

ing process than higher classes, and closure rates are generally increasing as demand is

increasing.

Realistic network

Tables 4.10, 4.11, and 4.12 show average sample results over 2 trials of 600 samples. One

can see by comparing ASMs that this scenario is much bigger than the single market

scenario. In this network, Airline 1 is the dominant carrier in terms of ASMs, RPMs,
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Figure 4.4. Airline 1 class closure rates in single market scenario at medium demand
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Figure 4.5. Airline 1 class closure rates in single market scenario at high demand
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Table 4.10. Distinct EMSR results in realistic network scenario at low demand
AL ASM RPM LF Yield Rev

1 28,743,562 20,821,930 72.4 0.1585 3,301,295
2 23,584,496 17,401,240 73.8 0.1500 2,609,477
3 10,311,962 7,115,968 69.0 0.1485 1,056,680
4 17,870,366 12,413,867 69.5 0.1540 1,911,148

Table 4.11. Distinct EMSR results in realistic network scenario at medium demand
AL ASM RPM LF Yield Rev

1 28,743,562 22,928,808 79.8 0.1590 3,645,111
2 23,584,496 19,059,300 80.8 0.1500 2,859,374
3 10,311,962 7,839,079 76.0 0.1485 1,163,760
4 17,870,366 13,849,365 77.5 0.1534 2,123,841

yield and revenues. Airlines 1, 2 and 4 are providing service in a mix of restricted

and semi-restricted markets. Airline 3 has less capacity than other airlines, as exposed

by its significantly smaller number of ASMs, and is offering service in semi-restricted

markets only. We can see that total load factor is increasing as demand increases.

Tables 4.13, 4.14, and 4.15 show the average number of bookings per sample on the

entire network for each class and for each airline at different demand levels. We can

see that the majority of bookings are observed in Class 10. This is due to the fact that

Class 10 has the lowest fare in all markets and that the restrictions in place are such

that a majority of the bookings are observed in this class. For similar reasons, Class 3

is the fare class for which we observe the most bookings in the premium cabin.

Figures 4.6, 4.7, and 4.8 show Airline 1’s rate across samples and trials of flights for

which the specified class is closed as a function of time in the booking process, which

we refer to as closure rates. We can see that high class closure rates are lower than

low class closure rate in both cabins and that closure rates increase for all classes when

demand increases.

In this subsection, we presented the base line performance at different demand levels

Table 4.12. Distinct EMSR results in realistic network scenario at high demand

AL ASM RPM LF Yield Rev

1 28,743,562 24,722,054 86.0 0.1600 3,954,362
2 23,584,496 20,372,184 86.4 0.1516 3,089,123
3 10,311,962 8,497,807 82.4 0.1496 1,271,283
4 17,870,366 15,113,955 84.6 0.1538 2,324,899



Table 4.13. Distinct EMSR fare class mix in realistic network scenario at low demand
Class AL 1 AL 2 AL 3 AL 4

1 323.03 245.66 46.86 156.98
2 49.82 39.95 14.57 36.34
3 548.28 526.65 547.89 454.34
4 36.84 71.55 34.36 34.95

Premium total 957.97 883.81 643.68 682.61

5 534.93 429.09 338.59 302.87
6 1076.15 980.85 312.15 576.83
7 327.94 261.78 38.84 158.04
8 139.1 150.18 115.42 119.07
9 11.09 7.95 7.72 3.78
10 4954.94 4478.53 3312.53 3698.96

Economy total 7044.15 6308.38 4125.25 4859.55

Grand total 8002.12 7192.19 4768.93 5542.16

Table 4.14. Distinct EMSR fare class mix in realistic network scenario at medium demand
Class AL 1 AL 2 AL 3 AL 4

1 346.97 257.93 46.24 168.66
2 54.56 40.64 13.5 38.63
3 564.08 552.08 572.2 474.17
4 35.23 69.7 34.32 34.84

Premium total 1000.84 920.35 666.26 716.3

5 624.05 496.53 400.63 355.76
6 1218.24 1107.85 365.96 652.31
7 379.89 300.65 43.32 182.27
8 157.02 170.48 138.33 135.48
9 58.17 49 38.33 35.94
10 5421.71 4865.65 3585.75 4088.21

Economy total 7859.08 6990.16 4572.32 5449.97

Grand total 8859.92 7910.51 5238.58 6166.27



Table 4.15. Distinct EMSR fare class mix in realistic network scenario at high demand

Class AL 1 AL 2 AL 3 AL 4

1 373.27 273.28 45.08 183.34
2 60.27 44.41 13.19 42.24
3 576.23 568.94 598.08 488.75
4 35.84 67.74 35.27 34.43

Premium total 1045.61 954.37 691.62 748.76

5 689.9 558.89 468.28 394.66
6 1374.02 1250.69 430.77 740.39
7 446.28 353.42 52.5 216.9
8 188.5 212.29 185.58 168.28
9 213.5 183.93 133.25 136.83
10 5652.62 5019.01 3707.52 4333.51

Economy total 8564.82 7578.23 4977.9 5990.57

Grand total 9610.43 8532.6 5669.52 6739.33
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Figure 4.6. Airline 1 class closure rates in realistic network scenario at low demand
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Figure 4.7. Airline 1 class closure rates in realistic network scenario at medium demand

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
e

rc
e

n
ta

ge
 o

f 
cl

o
se

d
 

Time frame 

Airline 1 closure rate by class at high demand 

Class 1

Class 2

Class 3

Class 4

Class 5

Class 6

Class 7

Class 8

Class 9

Class 10

2 

1 

3 

4 

5 

6 

7 

8 

9 
10 

Figure 4.8. Airline 1 class closure rates in realistic network scenario at high demand
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in the two scenarios of interest. We saw that, in the single market case, both airlines

perform very similarly whereas there are clear differences between the airlines in the

realistic network scenario.

� 4.3.3 Performance evaluation

In this subsection, we compare the relative effect on Airline 1’s performance of different

multiple cabin optimization methods. For each method, we focus on relative revenue

performance, load factor changes, fare class mix variation, and closure rates differences;

we test the sensitivity of the results to different demand levels; and we also discuss the

practical implications of the results.

Single market

We first compare all algorithms presented in Chapter 3 in the single market case. We

are interested in the competitive implication of the methods, so we test the variation

when only Airline 1 uses the different optimization methods while Airline 2 uses the

EMSR heuristic independently in each cabin (Distinct EMSR).
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Figure 4.9. Relative revenue change over base case in single market scenario at low demand

Figures 4.9, 4.10, and 4.11 show the revenue percentage change for both airlines when
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Airline 1 is using the specified method. It is important to note that “Distinct LDP”

and “Distinct LDP with variance” are not multiple cabin optimization methods. These

methods were presented in Chapter 2 and they were introduced in the analysis to allow

us to isolate the effects of multiple cabin optimization from dynamic programming. We

can see that most of the multiple cabin optimization methods lead to a revenue decrease

for Airline 1. In fact, only the “Multiple cabin DP heuristic” leads to a 1% increase in

the low and medium demand levels and to a 0.5% increase in the high demand case. We

can see, by comparing “Multiple cabin DP” with “Multiple cabin DP with Variance”

that accounting for variance improves the performance of multiple cabin optimization.

Finally, in the single market case, none of the EMSR-based multiple cabin heuristics

improve revenues over the distinct cabin base case.
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Figure 4.12. Load factors in single market scenario at low demand

Figures 4.12, 4.13, and 4.14 show total load factor changes for both airlines when

Airline 1 is using different methods. We observe that allowing additional economy book-

ings to use available premium capacity by using a multiple cabin optimization method

leads to a total load factor increase for Airline 1. Indeed, comparing EMSR-based

heuristics with the “Distinct EMSR” base case, and the Multiple cabin DP methods

with their respective distinct case, we can see that total load factor increases when
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using a multiple cabin optimization method.
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Figure 4.15. Cabin load factors in single market scenario at low demand

Figures 4.15, 4.16, and 4.17 show Airline 1’s cabin load factor when Airline 1 uses the

specified revenue management algorithm at different demand levels. Because multiple

cabin methods allow additional economy booking requests to use available premium

capacity, we observe that all multiple cabin methods lead to an increase in premium

cabin load factor and that the economy cabin load factor is not changing significantly

when compared to the base case scenario.

Figures 4.18, 4.19, and 4.20 show the average number of bookings per sample in each

class for Airline 1 with exact numbers shown for classes 1 and 8. We note that most

multiple cabin methods lead to an increase in Class 8 bookings and in a decrease in

Class 1 bookings. This means that there is a trade-off between the additional economy

bookings accepted by the airline and displaced high value premium bookings. The

difference in revenue performance is explained by two things. First, the magnitude of

the displacement effect of premium passengers by economy passengers and, second, the

average fare paid by additional economy cabin bookings. Figures 4.9, 4.10, and 4.11

show that “Multiple cabin DP heuristic” is the only multiple cabin optimization method

that leads to a revenue increase. Looking at the fare class mix, we can see that the



0

10

20

30

40

50

60

70

80

90

100

Distinct
EMSR

Distinct
LDP

Multiple
cabin DP

Distinct
LDP with
variance

Multiple
cabin DP

with
variance

Shared
nesting

Full
EMSR

Shared
Nesting

Economy
EMSR

Shared
Nesting
EMSRc

bid price
control

Multiple
cabin DP
heuristic

Airline 1’s cabin Load factors when Airline 1 uses different 
optimization methods (Airline 2 uses distinct EMSR) in a single 

market scenario at medium demand 

Premium

Economy

Figure 4.16. Cabin load factors in single market scenario at medium demand
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Figure 4.17. Cabin load factors in single market scenario at high demand
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Figure 4.20. Fare class mix in single market scenario at high demand

“Multiple cabin DP heuristic” is the only one for which the number of Class 8 bookings

increase over its relevant distinct case (Distinct LDP). Furthermore, we can see that

the number of Class 3 bookings increases over the distinct case. This indicates that the

“Multiple cabin DP heuristic” forces additional economy bookings into more valuable

economy classes, which leads to a revenue increase.

Figures 4.21, 4.22, and 4.23 show the average percentage of samples for which a spec-

ified class is closed as a function of time in the booking process for different optimization

methods, which we refer to as closure rates. First, we observe that, in general, closure

rates have very similar patterns from one method to the other and that there are a few

methods that have significantly different closure rates. We focus on “Multiple cabin

DP with variance” at medium demand, and we can see from figure 4.22(D) that closure

rates for the lowest economy cabin fare class are relatively high early in the booking

process, decrease midway to a level below the average closure rates of other methods

and finally closes late in the booking process. We can also see from figure 4.22(A) and

figure 4.22(B) that closure rates for premium classes are slightly higher early in the

booking process, and generally flatter later in the booking process. The overall trend

is not affected by different demand levels.
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Figure 4.21. Closure rates in single market scenario at low demand
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Figure 4.22. Closure rates in single market scenario at medium demand
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Figure 4.23. Closure rates in single market scenario at high demand

The relatively poor performance of most of the multiple cabin optimization methods

presented in this section is due to the fact that revenues gained from additional econ-

omy bookings are smaller than revenues lost from displaced premium passengers. The

“Multiple cabin DP heuristic” leads to a revenue increase because additional economy

bookings are in higher classes. Benefits from multiple cabin optimization methods are

driven by (1) the number of additional bookings, (2) the average fare paid by these

extra economy passengers, (3) the number of displaced premium passengers, and (4)

the average fare paid by displaced premium cabin passengers. In the single market case,

the vast majority of premium bookings are Class 1 bookings; this implies that most of

the displaced premium passengers are high-value Class 1 passengers. Since all premium

fares are higher than economy fares, additional economy passengers have to outnumber

displaced premium passengers. Since the number of extra economy bookings is limited

by the available capacity in premium, only methods that force extra economy bookings

in higher classes lead to a revenue increase. Another interesting observation, as we

noted when analyzing Figure 4.13, is that multiple cabin optimization methods all lead

to a total load factor increase. This is viewed as highly positive by airline management

teams since it sends the signal that their company is more efficient and better uses its

capacity. Finally, the multiple cabin results were not significantly different from one

demand level from the other.
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When dynamic programming methods were introduced in chapters 2 and 3 we pre-

sented them as being well suited for the revenue management problem. Therefore, it

is surprising that “Multiple cabin DP” and “Multiple cabin DP with variance” do not

perform better than the “Multiple cabin DP heuristic.” This is due to the mismatch

between the underlying assumptions of multiple cabin dynamic programming and the

reality of the booking and passenger choice process. We identified the variance assump-

tion implied by the Poisson arrival process as the reason why “Multiple cabin DP”

underperforms compared to the base case scenario. As exposed by Diwan [11], this

variance assumption causes the algorithm to be overconfident regarding late high-WTP

booking requests, which in turn leads to decreasing closure rates during the booking

process as shown in figures 4.21, 4.22, and 4.23. Consequently, high-WTP passengers

arriving later in the booking process are able to book in lower classes; this effect ex-

plains the change in fare class mix and the reduction in revenues for “Multiple cabin

DP.”

“Multiple cabin DP with Variance” addresses the variance issue, but still under-

performs compared to the base case scenario and compared to the “Multiple cabin DP

heuristic.” It is also interesting to note that “Multiple cabin DP with variance” also

suffers from the declining closure rates effect as shown on figures 4.21, 4.22, and 4.23.

This indicates that the variance assumption is not the only reason explaining dynamic

programming methods’ underperformance. Indeed, the dynamic programming formu-

lations also assume that the airline can reoptimize and change the bidprice value after

every single booking. We saw in Chapter 1 that airlines in practice reoptimize at a

relatively small number of times throughout the booking process; this causes dynamic

programming to respond more slowly to changes in the booking behavior and leads to

the observed revenue performance and closure rate patterns.

Also, dynamic programming methods, like the other multiple cabin algorithms

tested, do not take competitive interactions or passenger choice into consideration.

In other words, they do not take into account competitors’ strategy and they assume

that demand is independent between the different fare classes. Our results suggest

that the dynamic programming methods tested are more sensitive to the assumption

misalignment than the heuristics we developed.

Realistic network

We now look at the more realistic network scenario. Since this is a more complex and

bigger scenario, it is not practical to run “Multiple cabin DP” and “Multiple cabin DP
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with variance”. Therefore, we compare the performance of different heuristics.
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Figure 4.24. Relative revenue change over base case in realistic network scenario at low demand

Figures 4.24, 4.25, and 4.26 show relative revenue change for all four airlines when

Airline 1 uses different optimization methods. We can see that the “Multiple cabin DP

heuristic” leads to a 0.6%, 1.2%, and 2.4% increase in revenues at low, medium, and

high demand, respectively. This result is in line with what we observed in the single

market scenario. As in the single market case, most of the EMSR-based heuristics lead

to a revenue decrease. However, we can see that “Shared Nesting Full EMSR” leads to

a revenue increase for Airline 1 ranging from 0.1% to 0.4% over the base case depending

on the demand level.

Figures 4.27, 4.28, and 4.29 show total load factors for all four airlines when Airline

1 is using different optimization methods. We can see that total load factor changes are

smaller in magnitude compared to the single market case. It is important to note that

total load factor increases from the base case when using all multiple cabin heuristics

apart from “Shared Nesting Full EMSR.”

Figures 4.30, 4.31, and 4.32 show Airline 1’s cabin load factors when it is using

the specified revenue management method. We observe a similar pattern to the one

observed in the single market scenario, with an increase in premium cabin load factor



-0.8%

-0.6%

-0.4%

-0.2%

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

Shared nesting Full
EMSR

Shared Nesting
Economy EMSR

Shared Nesting
EMSRc bid price

control

Multiple cabin DP
heuristic

Relative Revenue change over base case when airline 1 uses 
different optimization methods (other airlines use distinct 

EMSR) in realistic network scenario at medium demand 

Al 1

Al 2

Al 3

Al 4

Figure 4.25. Relative revenue change over base case in realistic network scenario at medium demand
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Figure 4.26. Relative revenue change over base case in realistic network scenario at high demand
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Figure 4.27. Load factor in realistic network scenario at low demand
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Figure 4.28. Load factor in realistic network scenario at medium demand
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Figure 4.29. Load factor in realistic network scenario at high demand
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Figure 4.30. Cabin load factor in realistic network scenario at low demand
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Figure 4.31. Cabin load factor in realistic network scenario at medium demand
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and slight variations in economy cabin load factor when using multiple cabin methods.
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Figure 4.33. Fare class mix in realistic network scenario at low demand

Figures 4.33, 4.34, and 4.35 show the average number of bookings across samples

in the different fare classes for multiple optimization methods. We first see that the

vast majority of bookings are observed in Class 10 for all methods. We can also see

that “Shared Nesting Full EMSR” is the only method that has a smaller number of

Class 10 bookings when compared to the base case. It is also important to note that

only “Shared Nesting Full EMSR” and “Multiple cabin DP heuristic” are leading to an

increase in Class 5 (i.e. top economy) bookings.

Figures 4.36, 4.37, and 4.38 show the average percentage of Airline 1 flights for

which the specified class is closed over the simulation samples, known as closure rates,

for the highest and lowest class in both cabin. All the EMSR-based heuristics have

very similar closure rate behavior, but the “Multiple cabin DP heuristic” has the lowest

closure rate for Class 10 midway in the booking process and the lowest Class 5 closure

rate late in the booking process. This explains why this method is able to keep a high

number of Class 10 bookings while accepting more Class 5 bookings late in the booking

process.

The results observed in the realistic network are in line with what was observed
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Figure 4.36. Closure rates in realistic network scenario at low demand

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10111213141516

(D) Class 10 

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10111213141516

(B) Class 4 

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10111213141516

(C) Class 5 

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10111213141516

(A) Class 1 

Distinct EMSR 

Shared Nesting Full EMSR 

Shared Nesting Economy EMSR 

Shared Nesting EMSRc bid price control 

Multiple cabin DP heuristic 

Figure 4.37. Closure rates in realistic network scenario at medium demand
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Figure 4.38. Closure rates in realistic network scenario at high demand

in the single market scenario. Indeed, the multiple cabin optimization methods that

leads to a revenue increase forces additional economy bookings in top economy classes.

Interestingly, “Shared Nesting Full EMSR” leads to a total load factor decrease in this

scenario. This is a counterintuitive result since one would expect that allowing for

upgrades would systematically lead to a total load factor increase. Although the pre-

mium cabin load factor increases, the decrease in total load factor for “Shared Nesting

Full EMSR” is driven by a decrease in economy cabin load factor due to an increase

in the protection levels against low economy classes. Higher protection levels against

low economy classes means that passengers are forced to book in high economy classes

which, in turn, increases the forecasted demand for these high economy classes, which

further increases the protection levels against low economy classes. In fact, this effect

is the exact opposite of the “spiral down” effect in revenue management. The fact that

we observe a total load factor decrease for this method is an indication that this “spiral

up” effect is stronger than the effect of adding available seats in the economy cabin.

We also note that since the fare of the top economy classes are higher than the fare

for low premium classes, some of the displaced premium passengers are replaced by more

valuable economy passengers. Therefore, there is a greater potential for revenue increase

for multiple cabin optimization methods. This realistic network scenario also highlights

the competitive interactions. Indeed, we can see that airlines 2, 3, and 4 experience a
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revenue decrease when Airline 1 experiences a revenue increase and vice versa. This

indicates that competitors are affected by Airline 1’s decision and they accept premium

passengers rejected by Airline 1, while Airline 1 takes economy passengers from its

competitors. Finally, as in the single market scenario, multiple cabin optimization

performance was not significantly affected by the change in demand levels.

� 4.4 Chapter summary

In this chapter, we compared the relative performance of the different multiple cabin

optimization methods explained in Chapter 3. We presented the Passenger Origin-

Destination Simulator used to test the algorithms. Finally, we discussed the perfor-

mance of the different optimization methods in two different simulation scenarios.

We saw that multiple cabin optimization can lead to a revenue increase. We ob-

served that the “Multiple cabin DP heuristic” leads to an increase in revenues ranging

from 0.5% to 2.5% depending on the network and the demand level. “Shared nesting

Full EMSR” leads to a revenue increase ranging from 0.1% at low demand to 0.4% at

high demand in the realistic network scenario. Other methods led to a revenue de-

crease ranging from 9.6% for “Shared nesting Economy EMSR” at high demand in the

single market scenario to 0.05% for “Shared nesting EMSRc bid price control” at low

demand in the realistic network scenario. The performance of the different optimiza-

tion methods is explained by the trade-off between revenues gained from additional

economy cabin bookings and revenues lost from rejected premium cabin bookings, and

successful multiple cabin methods were all increasing the gain from additional economy

cabin bookings by forcing passengers to sell up to top economy classes.

We also discussed the mismatch between the underlying assumptions of the dynamic

programming approaches and the reality of the booking process. Although dynamic

programming is theoretically appealing for the revenue management problem, our re-

sults show that it is not performing as well in a competitive environment as some of

the heuristics we developed. Diwan [11] suggested that dynamic programming under-

performs because of the mismatch between the Poisson variance assumption and the

higher observed variance in the airline industry. This assertion is supported by the

results obtained with “Multiple cabin DP”. Although taking variance into account

improves dynamic programming’s performance as exposed by the “Multiple cabin DP

with Variance” performance, we observe that the “Multiple cabin DP heuristic” still

performs better than “Multiple cabin DP with Variance”. This is due to the fact that
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dynamic programming methods assume that airlines reoptimize and can change the

decision rule after every booking request whereas airlines do not have the ability to

do so in practice. This implies that airlines applying dynamic programming have to

average their bidprices, which reduces the ability of the dynamic programming algo-

rithm to respond to changes in the booking behavior. Also, our results suggests that

dynamic programming methods, “Multiple cabin DP” and “Multiple cabin DP with

Variance”, are less robust to the fact that other underlying assumptions do not match

the competitive reality of the booking and passenger choice process when compared to

the proposed heuristics.
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Chapter 5

Conclusion

IN this thesis, we defined the multiple cabin single-leg revenue management problem

and compared the performance of different optimization methods and heuristics in a

competitive environment. In this chapter, we review our contribution, summarize our

findings, and discuss future research opportunities.

� 5.1 Contribution and findings

The contribution of this work is two fold. First, we developed multiple optimization

methods to solve the multiple cabin problem. We extended existing separate cabin

single-leg dynamic programming formulations to the multiple cabin problem. Further-

more, we developed several heuristics based on existing dynamic programming formula-

tions or on approaches widely used in the industry. Second, we compared and discussed

the performance of the different methods developed using simulation results from the

Passenger Origin-Destination Simulator (PODS).

The objective of multiple cabin revenue management is to better use the airline’s

capacity by allowing economy bookings to use available premium capacity. One would

think that this can only lead to a revenue increase since airlines allow additional econ-

omy bookings to use available premium capacity. Interestingly, we found that most

methods tested did not lead to a revenue increase when simulated in a competitive

environment with passenger choice. As expected, we observed an increase in premium

cabin load factor with all the methods tested, and an increase in total load factor when

using most of the multiple cabin optimization methods, “Shared nesting Full EMSR” in

the realistic network scenario being the only exception. However, these additional econ-

omy passengers were using the premium capacity, and because of the stochastic nature

of the observed demand, some premium booking requests were rejected. Therefore, in-

stead of a systematic revenue increase driven by additional bookings in economy classes,
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we observed a trade-off between revenue gains from additional economy bookings and

revenue losses from displaced premium passengers.

Only two multiple cabin optimization methods led to a revenue increase over the

base case: “Shared nesting Full EMSR” led to an increase ranging from 0.1% to 0.4% in

the realistic network scenario depending on the demand level, and the “Multiple cabin

DP heuristic” led to increases ranging from 0.5% to 2.4% depending on the demand

level and on the scenario. These methods were successful because they forced additional

economy bookings in top economy classes. Since top economy classes are more valuable

than low economy classes, the revenue benefit from these additional economy bookings

is greater. This effect is in fact more important than the impact of increased load

factor from better capacity usage. This is illustrated by the fact that “Shared nesting

Full EMSR” led to a revenue increase despite a slight total load factor decrease in the

realistic network scenario.

Although theoretically appealing, dynamic programming methods have not per-

formed well compared to some of the heuristics we developed. This is due to existing

differences between the underlying assumptions of the dynamic programming formula-

tions and the characteristics of the booking process faced in practice by the airlines.

More precisely, the combination of at least two effects is leading to the observed result.

First, as shown by Diwan [11], the assumed variance by the Poisson process behind

dynamic programming makes the method overconfident about late high-WTP booking

requests, and the fact that airlines cannot reoptimize after each booking request re-

duces the ability of dynamic programming to correct the bidprice when it realizes that

late high-WTP booking requests do not materialize or when it identifies changes in the

booking behavior. Moreover, our results also suggest that the dynamic programming

methods tested are less robust to underlying assumption mismatch when compared to

the proposed heuristics.

� 5.2 Directions for further research

We focused on the multiple-cabin revenue management problem. While providing so-

lutions to this problem, we made some simplifying assumptions. Most importantly,

we focused on the single-leg revenue management problem and ignored the fact that

airlines are offering multiple interdependent flight-legs in a complex network. Future

work should address the network multiple-cabin revenue management problem. In the

single-leg multiple-cabin revenue management problem we are making the simplifying
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assumption that all the demand on a given flight-leg is flying from the flight-leg’s ori-

gin to the flight-leg’s destination. Therefore, future work should take into account the

trade-off between accepting a booking request from a passenger using multiple flight-

legs and a booking request from a passenger using a single flight-leg. There exist

network formulations for the separate cabin revenue management problem. Extending

the existing virtual nesting approach [14] to the multiple cabin problem using one of

the EMSR-based heuristics proposed in this thesis seems to be a reasonable practical

starting point.

Computational time is a major issue with the dynamic programming algorithms

we proposed in this work. Therefore, developing a robust heuristic that reduces com-

putation time while providing a solution of quality can still be explored further. In

this thesis, we proposed many EMSR-based heuristics, and a dynamic programming

decomposition, but future work could incorporate dynamic programming roll-outs as

Bertsekas [6] described in his book. Indeed, using the EMSRb heuristic, a relatively

fast heuristic, to estimate expected future revenue at a given time, one can use dynamic

programming over a reduced number of time slices to improve on the EMSR estimate

and, in theory, find a better solution.
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