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Abstract

Fracture mechanics is a field of continuum mechanics with the objective to predict how cracks
initiate and propagate in solids. It has a wide domain of application. While aerospace en-
gineers want to make sure a defect in a structure will not grow and possibly lead to failure,
petroleum engineers try to increase the permeability of gas shale rocks by fracturing it. In
this context, we introduce some elements of linear elastic fracture mechanics in anisotropic
solids. Notably, a special attention is paid to transverse isotropy, often used to model rocks
but also some piezoelectric materials or fiber-reinforced composites. We focus on brittle ma-
terials, that is, we consider only elastic deformations; we thus ignore dissipative phenomena
other than the one associated with the creation of crack surface.
This thesis aims at understanding and predicting how pressurized cracks propagate in
anisotropic brittle solids, in the framework of linear elastic fracture mechanics. The elastic
coefficients relevant to the study of a pressurized crack in such materials are identified. In-
terestingly, they are directly related to quantities easily measured in a lab at the macroscopic
scale through indentation tests and acoustic measurements. As an application, the fluid-
driven crack problem is addressed. It is shown that the classical tools of the isotropic fluid-
driven crack model remain valid in anisotropy, provided the appropriate elastic constants are
used. We introduce the concept of crack-shape adaptability: the ability of three-dimensional
cracks to shape with the elastic content. This ability could be ruled by three criteria herein
introduced. The first one is based on the maximum dissipation principle. The second one
is based on Irwin's theory of fracture and the concept of stress intensity factors. As for the
third one, it is based on Griffith's energetic theory. While the first criterion predicts that
circular cracks are more favorable, the others predict that elliptical shapes are more likely
to be seen.
This thesis could be valuable in the context of the stimulation of unconventional oil and gas
from organic-rich shale.

Thesis Supervisor: Franz-Josef Ulm
Title: Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

1.1 Industrial context

Over the past decade, unconventional resources of energy such as gas shale have gained a

specific attention from the oil and gas industry. Analysts from the United States Depart-

ment of Energy predicted [46] that by 2035, the share of shale gas in the U.S. natural gas

production could reach 49% while it represented only 23% in 2010.

Unlike more conventional resources, gas shale rock has a very low permeability. In order

to fully recover the gas trapped in the nanopores of the rock, it became common practice to

stimulate the rock by hydraulic fracturing. In fact, it is the only known method to stimulate

a shale formation with an intrinsically low permeability. The technique consists of fluid

injection in already existing cracks generated by means of explosives. The pressurized fluid

makes the fractures propagate, and therefore increases the permeability of the rock.

In order to improve the well productivity but also to reduce the environmental footprint

of the shale gas industry, a better understanding of crack propagation in anisotropic media

is valuable.

1.2 Research objectives and approach

In this thesis, we intend to better understand and predict how a crack propagates in an

elastically anisotropic brittle medium, the model we consider for rock-type materials.

To do so, we chose to first focus on two-dimensional crack propagation. This problem has

been extensively studied in the case of cracks in isotropic media subjected to pure pressure
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loading (see for instance Ref. 1, 10, 11, 15, 19, 21, 42]). For our part, we consider cracks

in anisotropic media possibly subjected to shear conditions due to some stress anisotropy

existing in the field conditions.

We then add one more dimension to the problem, by considering elliptical cracks. This

raised an original, at least to our knowledge, question on the crack-shape adaptability due

to elastic anisotropy.

The overall goal of this thesis is to identify the relevant elastic coefficients intervening in

the pressurized crack problem, the most favorable directions for crack propagation and the

preferred crack-shapes to be seen in the field.

1.3 Thesis outline

To meet the objectives presented here above, we first recall in Chapter 2 some relations of

plane-strain problems in transverse isotropy and introduce relevant concepts of linear elastic

fracture mechanics (LEFM). This Chapter thus provides the tools necessary to address a

fracture mechanics problem under plane-strain conditions. The scratch testing of anisotropic

materials illustrates the formalism introduced in the Chapter.

Chapter 3 provides the full solution of the plane-strain crack problem. The problem

consists in obtaining the stress, strain and displacement fields in a cracked body subjected

to loading conditions involving either prescribed stresses or prescribed displacements on

the crack surface. To do so, we use the complex potential theory introduced by Muskhel-

ishvili [35] in the isotropic case, and extended to the anisotropic case through Lekhnitskii's

formalism [32].

In Chapter 4, the fluid-driven crack propagation problem is addressed. We show that

the coupled fluid/solid problem can be broken into two weak coupling problems: a solid

problem and a fluid problem. While the solid problem has been addressed in Chapter 3, the

fluid problem is formulated in the context of the lubrication theory. A numerical method to

solve the non-linear strong coupling between the solid and fluid phases is also introduced.

Chapter 5 then deals with three-dimensional flat ellipsoidal cracks subjected to uniform

loadings. After summarizing Hoenig's main results [26], we apply them to the specific case

of transverse isotropy. Different criteria aiming to find how a crack could adapt to the

elasticity are introduced.

18



Finally, Chapter 6 provides conclusions with the main findings and recommendations of

future work.
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Chapter 2

The plane-strain problem in

transverse isotropy

In this Chapter, we present the necessary tools to solve linear elastic fracture mechanics

problems in transversely isotropic (TI) media, in the particular case of plane-strain state.

As a warm-up, we study a specific fracture mechanics problem, the scratch test on a TI ma-

terial. The study of this problem will allow us to introduce some basic concepts of fracture

mechanics within the framework of plane-strain state.

We will first give the expression of the two-dimensional generalized Hooke's law for different

orientations of the material's orthonormal basis. We will then write the governing equa-

tions of continuum mechanics in the specific case of generalized plane-strain and introduce

the notion of complex potentials. After recalling some important features of linear elastic

fracture mechanics, we will address the scratch problem in transverse isotropy.

2.1 Plane-strain Hooke's law in transverse isotropy

2.1.1 Three-dimensional Hooke's law in transverse isotropy

Consider an elastic material with elastic properties characterized by means of the fourth-

order compliance tensor S. The stress-strain relationship is written as eii = Sijklki (with

E the strain tensor, g the stress tensor and where we use Einstein summation convention).

Since the stress and the strain tensors are symmetric (Eij = eji and o-ij = o-ji), the compli-

ance tensor must satisfy the (minor) symmetries Sijkl = Sjikl = Sijlk. In addition, since the
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Figure 2-1: Definition of the material canonical basis of a TI medium.

strain energy density 0 = g : r = - UiSijko0k1 should not change when interchanging

subscripts ij and kl, the compliance tensor also satisfies the (major) symmetry Sijkl = SkIij.

From these symmetries, one deduces that the elastic properties of a material are fully char-

acterized by means of twenty-one independent compliance constants.

Using Voigt notation, one can take advantage of these symmetries to simplify some nota-

tions. Indeed, one can reduce to two the number of subscripts of the compliance constants

by regrouping into one subscript the first two and last two subscripts (S{iJ}-+a,{k1}-+8) ac-

cording to Table 2.1. Voigt notation is extensively used in e.g. finite-element method (see

for instance [7]).

The particularity of TI materials is that their properties, and notably the elastic proper-

ties, are invariant by rotation about an axis. One can deduce that the number of independent

elastic constants of such materials is reduced to five.

We introduce the orthonormal basis (e1 , e2, 3 ) where e3 is the axis of rotational symme-

try. Any plane parallel to vect(fi, f 2 ) is then a plane of isotropy (see Fig. 2-1). The basis

(f1, f2, e3 ) will be referred to as the material canonical orthonormal basis in the sense that

in this basis, the three-dimensional Hooke's law exhibits its simplest form. Specifically, in

this basis, using the Voigt notation, the generalized Hooke's law for a TI material is written

in terms of the compliance constants as:

22

Classical notation ij/kl 11 22 33 23 32 13 31 12 21
Voigt notationoa/0 1 2 3 4 4 5 5 6 6

Table 2.1: From the classical notation to Voigt notation.



e =sin~e, +cos~e3

e,=cos0e,-sinOe 3

ez=-ez

Figure 2-2: First rotation considered, e2 parallel to ez.

Eni Sn1  S 12 S13 0 0 0 an

622 S12 Sn1  S13 0 0 0 U22

633 S13 S 13  S33  0 0 0 33 (2.1)

2E23 0 0 0 S44 0 0 023

2E13 0 0 0 0 S44  0 U13

2E12 0 0 0 0 0 2(Sn1 -S 12 ) \ 12

For the sake of simplicity, we chose here to express Hooke's law in terms of the five compli-

ance constants {Snl, S 12 , S 13 , S33, S 44} instead of the stiffness constants

{Cl, C12, C13, C33, C44} or the set of elastic constants {E1, E 3 , v 12 , V13 , G 13}. The relation-

ships linking one set of constants to the others are given in Appendix B.

In general, the basis (ei, e 2 , f3) is not be the most relevant one for the problems consid-

ered. For instance, if one wants to study the propagation of a crack in the plane (,e, z) that

originally belongs to the plane y = 0 that makes an angle 0 with the plane x 3 = 0, the basis

(e, f, ez) will be more relevant. We will then need a stress-strain relationship analogous

to the previous one in the rotated basis (el, e,,, e). In what follows, we will consider two

rotations; the first type of rotation will be such that e2 is parallel to ez (see Fig. 2-2) while

for the second one, e2 will be parallel to ey (see Fig. 2-3).

Later on, we will consider structures or material systems in which the length in one

direction (say, in the z-direction) is much greater than the others. It is readily understood

that such a problems is two-dimensional, for which the strains exz, Eyz and ez vanish. Under
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e, -ez

e,=-sin~e1+cos~e3

e,=cos~e,+sinOe 3

Figure 2-3: Second rotation considered, f2 parallel to ey.

these generalized plane-strain conditions, the only independent stress components are o-22,

01yY and oxy, as shown here below. For this case, we will employ a two-dimensional Hooke's

law of the form:

{e}= [f] {} (2.2)

with [f] a 3x3 symmetric matrix, {E} = , [exx 6Y, 2exy], and {} = t [a.x UYY oXY].

2.1.2 Two-dimensional Hooke's law in transverse isotropy: first rotation

considered

Consider the orthonormal basis (e, e,, z) where e2 is parallel to fy (see Fig. 2-2). From now

on, roman subscripts (i, j) will refer to the material canonical basis while Greek subscripts

(a, 3) will refer to the basis (e, e_, fz). This basis is such that e, = Paie, where:

cos0 0 -sin 1
P = sin 0 0 cos 0 (2.3)

0 -1 0

The compliance tensor S'in the basis (e, e, ez) is deduced from the one in the material

canonical basis using the transformation formula (for more details, the reader is directed to

Appendix D or to Ref. [32]): S, = (ZE)ai Sij ( ie) for (a,#) E Rl, 6Jx[[1, 6I1 where the

transformation matrix [RE] is defined as:

1a,b] = {j E Zja <ij b}.
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sin2 o

cos 2 0

0

0

0

-2 sin9 cos 9

0

0

0

- cos 9

sin 9

0

- cos 9 sin 0

cos 9 sin 9

0

0

0

cos 2 0 - sin 2 0

Using Voigt notation, the compliance tensor S' can then be written as (to simplify the

writings, we used the following notations: while Ski refers to the material canonical basis

(elf2,f3), S refers to the basis (eey, fz) so that Si= S S11 etc.):

[S/] (9) =

Ss2(9)S12(0)

Sis (9)

0

0

S16 (9)

S$2 (9)
1~2 (o)

S62'20)

S23(o)

0

0

S26 (o)

S13 (o)

S33(6)

0

0

S36 ()

0

0

0

S4 (9)

S45 (0)

0

0

0

0

S45 (0)

S5(0)

0

S26 (0)

S36 (0)

0

0

S66()

(2.5)

The three-dimensional Hooke's law in the rotated basis is then:

(2.6)

where {'} = [e Ey ezz 2eyz 2exz 26yz] and {o'} = ' [ox oyy ozz Oyz ozz Oyz].

Consider then the plane-strain conditions 612 = E22 = 632 = 0, which are strictly equiv-

alent to letting cxz = Eyz = Ezz = 0. Using the stress-strain relationship (2.6), these three

equations can be rewritten as:

I0

0

0

= Sixx + S 3 oYY + S330zz + S3 6L-xy

= S 4 yz + Si5cYzz

= S45oyz + Si5oxz

(2.7)
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[Re] =

cos 2 9

sin 2 9

0

0

0

2 sin 0 cos 9

0

0

1

0

0

0

0

0

0

- sin 9

- cos9

0

(2.4)



Considering only the last two equations in (2.7), the determinant A of the sub-system

is: A = - S's = 2S44(Su - S12 ). For A # 0, we thus deduce that:

OXz = Oyz = 0 (2.8)

Moreover, the first equation in (2.7) allows us to express ozz in terms of o_, ay, and oxy

as:

(2.9)ozz = -[3 
1 3Oxx + S 23 vY + S36axI]

433

where S33 = I # 0 (the materials we consider are deformable).

Thus, under plane-strain conditions, Eq. (2.6) together with (2.9) and (2.8) gives the

strain-stress relationship:

C6XX

Ioyzcxz

czz

fu(0)

= f12(6)

f13(0)

fu(6)

f 12(0)

fi3(0)

f22(0)

f23(9)

f33 (0)

f12(6) f3(0)

f22(0) f23(0)

f23(0) f33(0) ICO'xx

oUyy

xy
(2.10)

(2.11)

=S/ -2
33

S= i/

33
= S/2 - '3 3

= 26 S3S33=/ Q1s

The three remaining stress components verify:

=0

=0

=- [S3XX + S23(YY + S367xY]

(2.12)
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2.1.3 Two-dimensional Hooke's law in transverse isotropy: second rota-

tion considered

Consider now the orthonormal basis (er, e, tz) where e2 is parallel to ez (see Fig. 2-3).

This basis is such that e = ae, with:

-sin

0

cos0

0

-1

0

cos 1
0

sin 0

(2.13)

The compliance tensor S' in the basis (e,, ey, ez) is deduced from the one in the material

canonical basis using the transformation formula: S, = (Ze)a Sij ( aZE)j for (OZ,#) E

[[1, 612 where the transformation matrix [RE] is given as:

sin 9o

0

cos 2 0

0

-2cos6sin9

0

0

1

0

0

0

0

cos2 9

0

sin 2 9

0

2 cos 9 sin 9

0

0

0

0

- sin 9

0

- cos 0

- cos 9 sin 0

0

cos 9 sin 0

0

cos 2 9 - sin 2 0

0

The derivation of the stress-strain relationship for the rotation studied in Part 2.1.2

applies step by step, mutatis mutandis, for the rotation studied here. The strain-stress

relationship can then be written as:

Cey,
2ExY [fii(9)

fi 2(0)

0

f 2 (0)

f22(0)

0

0

0

f33(0) ICcYXX

cTYY

OrXY

(2.15)

with:
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[Re] =

0

0

0

- cos 9

0

sin 0

(2.14)



fi(O) = Si1 + si3(s3Ss56-s3s56)+16(g65s1-s33s)

f12(0) = SI 2 + S'3(S5S3,-S3S,,)+3( 3368 5 )
12 g3356-S2 (2.16)

f22 (0) - S'2 + S23(s3,Ssi-s2as55)+S 25(&S23S33S2asi)
233-55-35

f33 (0) = S66 -f~ 3(O = -S 44

The three remaining stress components verify:

Iyz = ~-Oexy
I S44

_J S'-S'S' S'S' -S3S'
Ocrz = 35'3S S' cX yy? (2.17)

x -- 3356-$5 533 5-S 3 5

zz -- 33S56~-35 S3356-.5 62 S yy

2.2 Plane-strain governing equations

With the expressions of the three independent strains and the three independent stresses

just derived, we try to expressiong the governing equations of continuum mechanics for the

plane-strain state.

2.2.1 Potential method

Considering all the fields independent of the z coordinate and neglecting body forces, the

equilibrium equation divg = 0 is written as:

{ xx,x + exy,y = 0 (2.18)

axy)x + ayy'y = 0

where ( =

Then, introduce the potential T _ %(x, y), and express the stresses in terms of the partial

derivatives as follows:

yy = xx (2.19)

axy ~-9,fxy

Equation (2.19) ensures that for any stress function T, the equilibrium condition divg = 0

is satisfied.
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The potential 'F must satisfy some constraints. Indeed it has to satisfy the compatibility

condition which ensures that a displacement field ( exists, such that E = ( _) + vx) .

In plane-strain, it merely consists in the single equation:

6xx,yy + Eyy,xx - 2exy,xy = 0 (2.20)

Using the stress-strain relationship (2.2) in Eq. (2.20), the strain tensor 6 can be derived

from a displacement field if:

fll(O)',4y + f22(0)'I,4x + (f33(6)+ 2f12 (0))P,2x2y (2.21)

-2fi3 (0)qF,x 3y - 2f 2 3 (O)'F,3 xy = 0

where, to simplify the notation, we used XP,2x2y = 'I,xxyy etc.

Let us introduce the linear operator Lo defined as:

LO(-) = f11(O)(.),4y + f22()(.),4x+ (f33(0) + 2f12(6))(.),2x2y (2.22)

- 2 f13(0)(.),x3y - 2 f23(6)(.),3xy

This allows us to rewrite the compatibility equation (2.21) in a simpler form:

Lo(I) = 0 (2.23)

To solve any plane-strain problem, one has to find a potential T satisfying the boundary

conditions of the problem and the compatibility equation (2.23).

Remark 1 In the case of an isotropic material, the compatibility equation expressed in terms

of the stress components is known as the Beltrami equation. Furthermore, since fni(0) =

f22(0) = 172, f12(0) = -(1 + V), f13(0) = f23(0) = 0 and f33(0) 2(1+v) , Eq. (2.23)

can be simplified and gives the well-known equation:

',4y + 'T,4x + 2 q',2x2y = AA : = 0 (2.24)

That is, T is biharmonic (the L operator is such that L = AA where A(.) = (.),xx + (.),yy

is the two-dimensional Laplacian). In this sense, Eq. (2.23) is a mere generalization to the
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plane-strain anisotropic case.

2.2.2 Complex potential theory

We saw in the previous Section that solving an elasticity problem in plane-strain can be re-

duced to solving for a potential T satisfying some constraints. The determination of such a

potential is usually far from obvious. For elasticity problems in isotropy, Muskhelishvili [351

provides an expression of the (biharmonic) potential T in terms of two analytic functions of

the complex variable z = x + iy.

Lekhnitskii [32] proposed an analogous method that is summarized here below.

Given the two-dimensional compliance matrix [f] defined by Eq. (2.2), introduce the

fourth-order polynomial P[f1 (X):

P[f](X) = fuX4 - 2f 1 3 X 3 + (2f12 + f 33 ) X 2 - 2f 23 X + f22 (2.25)

Let 77 be a complex number, possibly different from the imaginary unit i, and introduce a

holomorphic function F of the complex variable z = x + qy. The L operator introduced in

Eq. (2.22) applied to F gives:

d4 F
Lo(F(z)) = P[f] )(). dz4 (z) (2.26)

The compatibility equation (2.23) will then be satisfied by any function T(z) = F(x + qy) 2

if q is a root of Pf I.

Lekhnitskii proved that the roots of P[f] are always complex. Let p, and A2 be the roots

of P[f] with a strictly positive imaginary part. Then, introduce the two complex variables

zi = x + ply and Z2 = x + p2y, and the two complex potentials 41 and 42.

In the absence of body forces, and ignoring the rigid-body displacements, the general ex-

pressions of the stresses and displacements ensuring the equilibrium condition (2.19), com-

2 Since the F function may be complex, one can define T as T = Re [F] to ensure that the stresses and
strains be real valued functions.
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patibility equation (2.23) and the constitutive equation (2.2) are given by the relationships:

O-z(z) = 2Re [(i) 2 4'1(zi) + )242 )

o-yy(z) = 2Re[<b(z1)+ '(z2)]

OXY=(z) -2Re[pI<'(zi)+p2<b'(z2)] (2.27)

x(z) = 2Re[p141 (zi)+p 2<2(z2)]

= 2Re[qibi(zi)+q 2<2(z2)]

where:

pi = f1(ti)2 + f12 - f13i (2.28)

qi =fti + f2 - f23

for i = 1 or 2 and where (z) = zi

Solving any problem then reduces to finding the complex potentials #1 and <b2 satisfying

the stress and/or displacement boundary conditions.

2.2.3 A reminder of Plemelj's formula and Hilbert's problem [31]

Some additional mathematical tools that will turn out usefule are briefly recalled.

The Plemelj formula

Consider L an oriented line, and h an analytic function defined and differentiable along L.

We define f the C \ L-analytic function of the complex variable z = x + iy as:

f(z) = . I hi) dt (2.29)
2zir L t - z

This integral is often referred to as the Cauchy integral.

Plemelj's formula states that 3 :

f(t+) - f(t-) = h(to), Vto E L (2.30)

'Here and in what follows, the notation t0 stands for t = t ± i, c -4 0, E > 0.
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Figure 2-4: Two-dimensional crack.

The Hilbert problem

Given an oriented line L - whose boundaries in the complex plane are a C C and b E C - and

given k, a function defined and differentiable on L, Hilbert's problem consists of finding the

analytic function f of complex variable z that vanishes when Iz| -+ +00, and that satisfies:

f(t+) + f(t-) = k(to), Vto E L \ {a, b} (2.31)

The solution is given by:

f(z) - (t)dt + CF(z) (2.32)
2igtEL F(t+)(t - z)

where C is a constant and F(z) = 1 (F is defined such that F(z) ~ at infinity
(z-a)(z-b)

and its branch cut is L).

2.3 Elements of linear elastic fracture mechanics

Since the theory of linear elastic fracture mechanics (LEFM) will be used extensively in

the continuation, we here recall some elements of brittle fracture mechanics. For a general

overview of the subject, the reader is referred to the first part of Leblond's review book [31].

2.3.1 The three fracture modes and stress intensity factors

In two-dimensions, a crack is defined as a line of discontinuity L parameterized by the

curvilinear abscissa s. Let n(s) be the unit vector normal to L and pointing toward the

upper surface; t(s) be the unit vector tangent to L, and define b = t x n (see Fig. 2-4). Let
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s+ and s- refer to the upper and lower surfaces of the crack, respectively. The displacement

jump [[J(s) = (s+) - (s-) can then be decomposed as (for more details, see for instance

[45]):

[](s) = ([](s).n(s)) n(s) + ([t](s).t(s)) t(s) + ([f](s).b(s)) b(s) (2.33)

In isotropy this decomposition allows us to define three fracture modes:

" In isotropy, a crack is said to be loaded in Mode I, if the displacement jump reduces

to a normal displacement discontinuity:

[]Ji(s) = ([](s).(s)) n(s) (2.34)

This mode is often referred to as the opening mode.

" In isotropy, Mode II refers to loadings which lead to an in-plane tangential displace-

ment discontinuity:

NII(s) = ([](s).t(s)) t(s) (2.35)

This mode is referred to as the sliding mode.

" As for Mode III (still in isotropy), it refers to loadings which lead to an out-of-plane

tangential displacement discontinuity:

[]jII(s) = ([1J(s).b(s)) b(s) (2.36)

This mode is referred to as the tearing mode.

In the specific case of plane-strain, no displacement is allowed in the out-of-plane direction

b so that only Modes I and II need to be considered.

Due to the displacement discontinuity that define a crack, stresses become singular at

the crack tip(s). The dominant singular term at a crack tip is of the order a- oc r-1/2 where r

is the distance to the tip. The Mode I, II and III stress intensity factors KI, KII and Kiri

quantify the degree of singularity of the normal, in plane and out of plane shear stresses,

respectively. For a crack belonging to the plane y = 0 (t = es, n = ey and b = ez), the stress
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intensity factors are defined as:

K = lim v27ro-y (x = r, y = 0)

KII = lim 12rraxy (x = r, y = 0) (2.37)r-+o+

K1 1  = lim 2irrayz(x = r, y = 0)r-+o+

These stress intensity factors depend on the geometry, the loading and possibly the elastic

properties of the solid studied.

Remark 2 As we shall see in Section 3.4.4, the definition of the three fracture modes in

terms of displacement discontinuities is actually valid only in isotropy and in some specific

cases in anisotropy. Indeed, in anisotropy, the existence of a tangential displacement jump

does not always ensure the singularity of the shear stress.

2.3.2 Some crack-propagation criteria

Linear elastic fracture mechanics is not able to predict the coalescence of cracks. However, it

is able to predict whether or not an already existing crack propagates. To do so, two criteria

are often used. The first one is said to be local in the sense that it focuses on what happens

at the crack tip. The relevant quantities are then the stress intensity factors introduced in

Section 2.3.1. Another one is based on energy dissipation considerations. The link between

the two approaches can be made through Irwin's formula introduced here below.

Irwin's criterion or the local approach [34]

Irwin's criterion applies to cracks in linear elastic brittle solids subjected to purely Mode I

(opening) loadings. Irwin postulated the existence of a critical stress intensity factor that

cannot be exceeded and below which a crack cannot propagate [29]. This critical value

of the Mode I stress intensity factor is called fracture toughness and is written Kc. It is

commonly considered as a material property, independent of the problem considered.

Irwin's propagation criterion can be summarized in three laws4 :
4 This propagation criterion was based on the Kuhn-Tucker complementary condition [23], extensively

used in rate-independent plasticity:

En9 > 0

* f<0

e f = 0
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" Irreversibility: L > 0

" Threshold: K < Kmc

" Propagation condition: (KI - Kc)dl = 0

In other words, this criterion states that if K < Kc, the crack cannot propagate while

if K1 = K 1C, crack propagation is possible.

The drawback of Irwin's criterion is that it ignores any other loading than pure Mode I

loading. According to this criterion, an existing crack subjected to a pure Mode II loading

would never propagate since 0 = K1 < Kc. Moreover, one can argue that Irwin's criterion

is based on a mathematical construct, the Mode I stress intensity factor K1 , and that no

real material can stand an infinite stress.

Griffith's criterion or the global approach [341

While Irwin's criterion uses the notion of fracture toughness Kc, Griffith's criterion [22]

makes use of the fracture energy gc, a material property characterizing a brittle material.

When a crack propagates, surfaces are created and energy is dissipated. This energy is

proportional to the area of the surfaces created, the proportionality factor being the fracture

energy 9c. If any other dissipative phenomenon (such as plasticity) is ignored, this energy

should be equal to 2-y, where -y, is the surface energy and the factor two accounts for upper

and lower surfaces associated with surface created during propagation.

We introduce g the energy release rate defined as:

G(F) = -e- (2.38)

where S, is the potential energy of the structure (the energy stored in the structure due to

external loading) and F the crack area (length in 2-D). G is the amount of energy per unit

of created surface required (and dissipated) to propagate a crack. It has to be equal to 9c

if propagation occurs.

Griffith's criterion can then be summarized as follows:

o Irreversibility: dF > 0

where f is the yield function and d' is the equivalent plastic strain rate.
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" Threshold: 9 < ge

* Energy balance: ( - = 0

From the local approach to the global approach

So far, we introduced two propagation criteria: Irwin's criterion based on fracture toughness,

and Griffith's criterion based on fracture energy. The handshake between the two criteria

can be made through Irwin's formula [29]. This formula links the energy release rate to

the stress intensity factors. In the case of two-dimensional plane-strain problems, it can be

written as5 :

g = 7rt{K}. [H] . {K} (2.39)

where {K} - t [K1 KiI) is a vector containing the stress intensity factors, and [H], coined

here the Irwin matrix, a 2x2 matrix that depends on the elastic properties of the material.

The energy release rate g is quadratic fuction of the stress intensity factors. Its associated

matrix is the Irwin matrix [H]. In plane-strain isotropy, [H] is diagonal and is equal to:

[H] V2[1 0] (2.40)
7rE 0 1

where E is the Young's modulus and v the Poisson's ratio of the material.

Putting together Irwin's and Griffith's criteria for a crack subjected to a pure Mode I

loading, one can relate the fracture energy c to the fracture toughness KIc through the

formula:

c K2 (2.41)
E I

For mixed-mode loadings, one can extend the definition of fracture toughness by means of

a generalized toughness defined as

K2 1 E (2.42)
1 - v29

5 This writing of Irwin's formula in a matrix form is not standard. However, we found it very convenient
especially when it comes to anisotropic media where the Modes I and II are coupled. The name Irwin
matrix is also not standard but since this matrix will play an important role is the continuation, it was
convenient to have it named.
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Provided that 9c is mode angle independent (the mode angle E is defined as tanE = -),

the fracture toughness should also be mode angle independent.

In anisotropy, a generalized Irwin formula was proposed 6 by Sih et al. in Ref. [39]. We

write it here in a matrix form (2.39), with the Irwin matrix given by:

_f21M pi+p12 1 I 1-f22 1

[H] = L " Im [1mp12 p2 ful /12 (2.43)
27r 1 Im 22I p1 2

where pi and fij were defined in Section 2.2.2. In contrast to the isotropic case (2.40),

this matrix is no more diagonal, which means that there exists some coupling between the

Modes.

2.3.3 On the direction of crack propagation

So far, the energy release rate was determined assuming that the crack-propagation was

symmetrical and collinear to the original crack. The first hypothesis is reasonable if we

restrict ourselves to symmetrical loadings; and - at least in isotropy - the second one should

also be reasonable in the case of pure Mode I loading.

For an isotropic material, the typical argument reads as follows [311:

e If there is propagation, it will be done in the direction such that Kyjr = 0 where Kj71

is the Mode II stress intensity factor at the crack tip of an infinitesimal crack kink.

{ < no crack propagation is possible

= Qc crack propagation is possible

This propagation criterion (propagation such that Ky7 = 0) is known as the principle

of local symmetry. Other criteria such as the maximal hoop stress and maximal energy

release rate criteria also exist. They predict that the crack propagation should occur in the

direction that either maximizes the hoop stress or the energy release rate.

In isotropy, these three criteria all agree in one point, nomely that in pure Mode I no

branching should occur. As we will see in Section 3.4.5, this is true only for some specific

crack orientations in anisotropy.
6 A proof of this formula shall also be given in the continuation.
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(a) Three-dimensional scratch test. (b) Two-dimensional scratch test.

Figure 2-5: Scratch test on a TI material.

2.4 Application: Scratch-test on a transversely isotropic ma-

terial

Consider a scratch test performed on a transversely isotropic (TI) material (for more details

on the scratch test as a fracture characterization method, see [2]). The scratch tool (e.g.

a blade) is moved along the x-direction that makes an angle 0 with the direction e of the

material (Fig. 2-5a). We can consider this problem as two-dimensional. In addition, if the

width w is large compared to the height H of the scratched sample, plane-strain equations

can be used. Let us hypothesize the existence of a pre-existing horizontal crack at the tip of

the blade (Fig. 2-5b). If the initial crack-length 1 is long compared to the depth of scratching

2h, the upper left part of the structure can be considered as a beam loaded on its left end

by a transversal force.

The aim of this Section is to use the tools introduced in the previous Sections to determine

the scratch toughness of a brittle TI material. We will first give a possible approximation of

the solution of the simple beam problem in transverse isotropy using the governing equations

introduced in Section 2.2. From this approximation, we will use the concepts presented in

Section 2.3 to derive the expression of the scratch toughness.

2.4.1 The rectangular beam problem

If the initial crack-length, 1, is long enough, the upper left part of the scratched material

can be considered as a beam loaded at its left end by a transversal force F'. We will make

some approximations of the stress, strain and displacement fields in a TI beam subjected to

a transversal force.
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(a) Rectangular beam. (b) TI beam with end-load.

Figure 2-6: Two-dimensional beam problem.

Problem statement

Consider the two-dimensional problem of an elastic rectangular beam of height 2h and length

1 >> h (Fig. 2-6a) made of a TI material.

Introduce the orthonormal basis (ex, e, ez) such that (k, f) = 0, (e,, e) =, (fz, f2) =

7r.

The beam is loaded on its left end by a horizontal force F, a vertical force Fy and is

fixed at its right end (Fig. 2-6b).

We saw in Section 2.2.1 that solving a plane-strain problem reduces to finding a potential

T satisfying the compatibility equation (2.23) and the boundary conditions of the problem

considered.

Following a method used in isotropy [5], let us try to find k of the form:

4 k

4'(x, y) = E E akx Xyk-1

k=O 1=0

so that:

(7xx

o-yy

C7XY

yy = k= 1=0 aklI(k - 1 - 1)(k - 1 - 2)x y

x= k=0ol=okIll - 1)x 2 k-

- y= - >k=0 Z=0 Ok1l(k - l)xl-1yk1

(2.44)

Using Eq. (2.44) and the compatibily equation (2.23), we deduce:

6f 11 (9)a 4O - 3f 2 3 (9)a 41 + (f33(0) - 2f12(0))a42 - 3f13(0)a43 + 6f22(0)a44 = 0 (2.45)
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We then enforce the boundary conditions (in a strong sense) on the surface y = th as:

SOxy(X, y = ±h)

oyy(x, y = h)

-0

-0

Vx E [0, 1]

Vx E [0, 1]

Using Eq. (2.44), the first condition in (2.46) can be rewritten as:

2 4

Oay (x, ± h) = E (1 + 2)(l + 1) akl+2( ± h)k-=-2 0
1=0 k=1+2

(2.46)

(2.47)

and the second one as:

2 4

OrxY(x, k h) =-E x1(1 + 1) ( akl+1( k h) k-1-2 =0
1=0 k=1+2

(2.48)

The two polynomials of degree two in x appearing in Eq. (2.47) and (2.48), vanishing in the

segment [0, 1], are equal to the trivial polynomial. All their coefficients are then null; thus

we have:

k=2 ak2( ±

Ek=3 ak3( ±

k4 ak4( ±

E$=2 aeki(k - 1)(

:=k 3 ak2(k - 2)(

k=4 ak3(k - 3)(

h)k-2 =a22 k±

h)k-3= a 3 3 ±

h)k-4 = a 44

i h)k-2 = a 2 1

i h)k-3 -- a 3 2

" h)k-4 = a 4 3

a3 2 h+ a 42 h 2 = 0

a 43 h = 0

-0

± 2a 3 ih + 3a 41h 2

± 2a 42 h

=0

=0

=0

Equation (2.49) together with (2.50) give:

{ 0
0

= a 3 2 = a33 = a 4 2 = a 4 3 = a44 = a2 2

= a2l ± 2a 31 h + 3a 41h 2
(2.51)

so that we finally have:

''(x, y) = a202 + a21xy + a303 + a 3 1xy2 + a 4oy4 + a 41 xy3 (2.52)

(the terms in k = 0, 1 have been omitted since they lead to a trivial stress field). The
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compatibility equation (2.45) then reduces to:

6fuj(O)a 4 o - 3f 2 3 (6)Ca 4 1 = 0 (2.53)

Furthermore, we have to impose the boundary conditions (this time in a weak sense) on the

left end of the rectangular beam, that is:

h ' -h(3a 2 +( F x fnh 0-x(0, y)wdy = - 3 20

Fy = f y X(0, y) wdy = -2hw(a21

and the weak boundary condition on the right end of the beam:

+ 4a 4oh 2 )

+ a4 1 h2)
(2.54)

Fyl = - yo-XX(1, y)wdy/ h-

Conclusion: A stress field satisfying the equilibrium equations, the compatibility equations,

the strong boundary conditions on the surfaces y = ± h and the weak boundary conditions

on the left and right ends of the beam can be derived from a potential T (x, y) of the form

(2.52) with its coefficients aij satisfying Eq. (2.51), (2.53), (2.54) and (2.55). We define

[M], a 6x6 matrix, as:

[M] =

-4wh

0

0

0

0

0

0

-2wh

0

1

1

0

0

0

4wh3

0

0

0

0

0

0

2h

-2h

0

- wh 3

0

0

0

0

6fiu(9)

0

-2wh 3

41wh 3

3h 2

3h 2

-3f23(0)

(2.56)

It satisfies [M] . {a} = {F} with {a} = ' [a20 a21 a3o a3 a40 a41] and

{F} = [F Fy Fyl 0 0 0]. Since det[M] oc h8 f11 (O), [M] can be inverted provided that

f11(O) # 0 (which is always true). Finally, the stress function XP is completely determined

by the coefficients aij deduced from:

{a} = [M]-'. {F} (2.57)
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Stress, strain and displacement fields in the case of a transverse loading

For the specific case of a transversal loading (F = 0), we obtain from Eq. (2.57) {a} =

t [- j 0 0 0 0 0] so that if(x, y) = -hy 2 and thus:{ XX =- 2hw
O-yy = 0 (2.58)

-xy = 0

Using the stress-strain relationship, we deduce:

EXX = = -fii(6)

j yy = (y = -f12(0) ' (2.59)

2 fxy = X,y +(y,x = --f3(0)

Integrating the first two equations in (2.59), we find:

(x(x, y) = f(0)(a(y) - I x)
2wh (2.60)

(y(X, Y) = fi2(0)(b(x) - Iy)

Substituting these expressions in (2.593), one gets:

F
fii(6)a'(y) = -fi 2b'(x) -- f3(6) (2.61)

While the left-hand term in Eq. (2.61) depends only on the variable y, the right-hand term

depends only on x. Those two terms are then equal to a constant C independent of x and

y. This leads to the following displacement field:

( x(x, y) = ao - f 12(6)F XCy

y (x, y) = bo - Fxf13 (6)+2hC fl2 (0) F 62)
2wh X 2wh Y

with ao, bo and C three constants to be determined. To find ao, bo and C, let us consider

the displacement boundary conditions on the right end of the beam. Ideally, we would like

to have:

(Xx =,y) = (y x = 1, y) = 0 Vy E [-h, h] (2.63)
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which is clearly impossible here. Instead, we enforce the following weak boundary conditions:

0h -x f.N(1~,y) dy = (ao - 111(whF'1)2h

hy (1,y)dy = (bo fi3(0)Fh+2hC l)2h (2.64)

0= x(l,y)dy = 2Ch3

The first two equations in (2.64) impose a null average horizontal and vertical displacement,

while the third one imposes a null average slope of the right end of the beam. Equation

(2.64) then gives: C = 0, ao = 11 (w)F- 1 and bo = 13(0)Fx
2wh - 2wh

Conclusion: The problem of a rectangular TI beam whose plane of isotropy makes an

angle 0 with the plane (e, ez) and loaded by an horizontal force Fx to its left extremity

has been solved in a weak sense. This solution leads to the following stress, strain and

displacement fields:

9XX 2wh

o-yy = 0

-xy = 0

= -fi(0) wh(2.65)

fy, = -f12(6)

(X ,y) = 2(O)Fx X fF2(9)Fx

2.4.2 Determination of the scratch toughness

We introduces in Section 2.3.2 a quantity of interest, the energy release rate, g = -

where E, is the potential energy of the structure and IF = wl is the crack area. The determi-

nation of g generally requires the knowledge of the stress, strain and displacement fields in

the whole volume of the structure, including in the near-tip region. An available technique

to avoid the calculation of the (singular) fields associated with the near-tip region is the use

of the J-integral, introduced by Rice [38]. The J-integral for a crack propagating along the
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Figure 2-7: Contour &D (in red) for the computation of the J-integral.

direction e is defined as:

J =avds (2.66)

where &D is any contour enclosing the crack tip and n the outward unit vector normal to

the surface OD. Provided that the crack surfaces are traction-free, it can be shown that

J = wg in our problem.

We restrict ourselves to the cases where:

" The initial crack is long enough and horizontal, so that the beam approximation ap-

plies;

" The crack propagates collinearly to its original orientation, so that the J-integral can

be used to estimate the energy release rate;

" The crack surfaces are traction-free (i.e. no crack closure), so that again, the J-integral

can be used to estimate the energy release rate.

Considering the contour BD drawn on Fig. 2-7 with R > 1, the only contribution to the

J-integral will come from the contact surface between the blade and the material, x = 0,

y E [ -h, h]. Indeed, all the other surfaces are traction-free; and if the radius R is taken

big enough, the material points intersected by the contour do not feel the loading. The

J-integral is then equal to:

J= 2 fi1()(-1) + ( )2 fii(O)) wdy (2.67)

so that:
F 2

J = F () (2.68)
4wh
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We then deduce:
J F 2

g-- 4tU2hfu(6)
(2.69)

Using Irwin's formula (2.39) and Griffith's propagation criterion introduced in Section 2.3.2,

we deduce that when the crack propagates, the transversal force Fx should satisfy:

2wV F at propagation

rt {K}a. [H(p)] . {K}

fii(O){K} at propagation

The right-hand side of Eq. (2.70) could be defined as a scratch toughness K,:

Ks - irt {K}. [H(O)]. {K}

{K} at propagation

and could be measured through the transversal force Fx.

Specifically, for a crack in the bedding plane, we would have:

Ks(6 = 0) = '4 K( +
07103 - C23

033
K{K}

(2.72)

at propagation

while for a crack normal to the bedding plane, we would have:

C1C33 - C123
Ks( = 2) = r71 + K at propagation

with 71 = A C11c -c I + __ 3 1

The drawback of the scratch toughness definition (2.71) is that even if the fracture energy

was isotropic (if 9c was independent of 0), the scratch toughness would be anisotropic.

Indeed, we would have:

Ks(6 = 0) = K(6 = ir/2)

A way to correct this drawback would be to define another scratch toughness K' as:

K' = (Ks
fui(0)

(2.74)

(2.75)
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with K, defined by (2.71).

With the help of Eq. (2.70), we then would have:

K' lfu(() F2 (2.76)
S f11(0) 2wv/h Fx at propagation

For an isotropic material (see Section 2.3.2), fu1(0) = and H11 = H22 = so

that the scratch toughness is strictly equivalent to the generalized fracture toughness Kc

defined in Section 2.3.2, Eq. (2.42):

K.s0 =~ 8 
= E

Ks'"= K =(2.77)

2.5 Chapter summary

We introduced in this Chapter the tools necessary to address a fracture mechanics problem in

the specific case of plane-strain state conditions. This allowed us to identify some specificities

of anisotropic media such as the fracture modes coupling. We also showed that the scratch-

test model could be extended to the anisotropic case, provided some hypotheses are verified

and that a scratch toughness is properly defined.
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Chapter 3

Plane-strain cracks in anisotropic

media

In the previous Chapter, we introduced the necessary tools to study anisotropic fracture

mechanics problems under plane-strain conditions. We will now apply these tools to study

the problem of a straight crack subjected to an external loading. As it is custom in con-

tinuum mechanics, we consider that these external solicitations can be either in the form of

prescribed stresses or prescribed displacements.

We first introduce the two types of boundary conditions that will turn out relevant for

the fluid-driven crack propagation problem (addressed in Chapter 4). For these boundary

conditions, the stress and displacement fields are derived using the complex potentials theory.

The crack shape induced by an imposed stress field is also studied, and the question of crack

propagation is addressed.

While England and Green [16] - using the potential theory - and Sneddon and Lowengrub

141] - using the Hankel transform - studied this problem for isotropic materials, we consider

here anisotropic solids, and specifically TI solids. Hoenig [27] already considered this problem

but only focused on the near-tip behavior under uniform loading conditions. Barnett and

Asaro [6] also considered this problem - using dislocation theory - but did not give the actual

crack shape induced.
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Figure 3-1: Boundary-stress method.

z
e

D
e, D

Figure 3-2: Displacement-jump method.

3.1 Problem statement

We consider a two-dimensional (plane-strain) crack in a linear elastic anisotropic brittle

material. The crack belongs to the plane y = 0 and has a half-length 1; the crack initially

belongs to the segment:

L = {z = x + sy|(x, y) E [-l, l] x { -El, El}l, E -+ 0} (3.1)

where E is a dimensionless parameter. Two types of external loadings are considered: normal

and shear stresses on the crack (see Fig. 3-1); normal and transverse displacement jumps

on the crack surface (see Fig. 3-2).
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3.1.1 Boundary-stress method

The first case considered consists of crack surfaces loadedl by a normal stress -p and a

shear stress -q defined and differentiable on L.

Given the pressure and shear fields p and q acting on the faces of the line crack , we aim

at finding the crack shape and the stress and displacement fields induced in the cracked body.

In an anisotropic medium, we have to find the complex potentials 41 and 42 introduced

in Section 2.2.2 that satisfies the following boundary conditions:I YY(z) = -p(x), z=x+iyEl\{-l,l)

o-XY(z) = -q(x), z=x+iyEL\{-l,l} (3.2)

Ig|(z) - 0, |z - +oo

3.1.2 The displacement-jump method

The second load scenario considers normal and tangential displacement jumps defined by

the functions DY and D2, respectively, imposed on the crack surface. The functions Dy and

Dx are defined and differentiable on L.

Given the displacement jumps imposed on a line crack , we aim at finding the traction

T = -pln - qt acting on the crack lips and the stress and displacement fields induced in the

body.

In an anisotropic medium, we have to find the complex potentials 4 1 and 42 introduced

in Section 2.2.2 that satisfy the following boundary conditions:

z](x) = D2(x), z=x+iyE2E\ {-l,l)

zI (x) = Dy (x), z = x + iy \{-l, l}

o-yy](z) = 0, z = x + iy \{-l, l} (3.3)

[-yI (z) = 0, z = x + iy E \{-l, l}

lg|(z) -+ 0, jzj* +oo

|(|(z) -+ 0, Iz| -+ +oo

'We consider that the pressure acts normally to the initial crack surface and not to the deformed one:

2. = -pn - qt = ±p, k qe..
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Remark 3 Contrary to the boundary-stress method, the displacement-jump method is a

mixed-boundary value problem. Indeed, while the boundary conditions of the boundary-stress

method involve only the stress tensor c;, the ones of the displacement-jump method involve

stress and displacement components.

Remark 4 In isotropic media, if one knows the displacement jump Di (i = x or y) on the

crack, one can deduce the displacement on the top and lower surfaces of the crack; indeed, by

symmetry of the problem, 6 = Di/2. This formula obviously does not apply in anisotropic

media.

3.2 On the determination of the complex potentials

3.2.1 Complex potentials for the boundary-stress method

We introduce the complex potentials Q1 and Q2 such that:

{ 1(z i = 2 , (p29 1(zl) + Q 2 (z ))

2(z2)= 22 ([tl01(z 2 ) + Q2(Z2 ))

(for p1 # p2). These new potentials will allow us to separate the normal and shear stresses.

According to Eq. (2.27), the normal and shear stresses oyy and o-zy can then be written as:

oyy(z) = 4Ref 1 [P2 Q1(zi) - P101(Z2)1

+4 Re f A [2(zi) -} 2(z2)(3

o-zy (z) = - 4 Re AlA?2, [Q' (zi) -' '(Z2))]

-4 Re {/ [P 1 'ZA(zi) - (Z2

Remark 5 The reasoning here is valid only if the material's elastic properties and the crack

orientation are such that p1 # p2, which is not always true. For instance, isotropic materials

are such that p,1 = = i. However, one can overcome this restriction by replacing p 1 = i

and P2 = i by Al = e + p1 and p2 = -e + p1, respectively, and by letting e go to 0 (this

ensures that p1 + P2 E iR and that p1p2 E IR, a property of cracks belonging to a plane of

material symmetry - see Appendix E).
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More specifically, on the crack (for z. xciiyEE\{-l,l) 2 ,3

= 4Re['(z)]

= 4Re [Q'(z±)]

The boundary conditions (3.2) then lead to:

= 2 f+'(z;)]

= 2 '[Q(z;) + n'(zf)]

for i = 1 or 2 with wi = p and w2 = q.

Taking the difference of the two equations in (3.7), one obtains:

- '] (Z+) - - n'g] (z;) - 0 VZC E C \ {-, l}

close to a constant, Q' - n' is then given by the Cauchy integral (see Section 2.2.3) with

k = 0; and we deduce:

'z= n')(z) (3.9)

(we take the constant C = 0 so that O' - n vanishes at infinity). Using Eq. (3.9) in (3.7),

we have to find Q' such that:

'(z+) + Q'(z;) = - "' ) Vzc E E \ {-l, l}

One recognizes here a Hilbert's problem in which k =-- (see Section 2.2.3). We then2

have:

(Z) (z)
4i7r I ' wi(t)dt 1

F(t+)(t - z) 47rvz 2
- 12

wi(t) dt
t=_ 1 z - t

(3.11)

Again, we take C = 0 since Q' has to be 0(1/z2) as Iz| -+ +oo [31].

More specifically, on the plane y = 0, we have:

(x)= sgn(x) w (t) V2 _ t2 dt
4,jrV x2 - j2 _ w _ i X - t

2 One should remember that Im pi > 0 for i = 1 or 2 so that lir z = lirn z = z±.
YsoO± Y-cOa

3 For f analytic, we use Muskhelishvili conjugate I defined as: f(z) f (s) [351.
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{ oyy(z)
o( (4)

= 2 [Q(z) + 0'(zF)]

= 2 [Q(z) + 2(zT)]
(3.6)

{ -wi(xc)-wi(xc)

(3.7)

(3.8)

(3.10)

(3.12)



Remark 6 What is interesting here is that the functions Q', for i = 1 or 2, are independent

of the elastic properties of the material.

Ignoring the rigid body translation

England and Green [16] are equal to:

along the x-direction, the primitives Qh given by

i I> Fi(t) + zGi(t)dt
t =0 V'Z2 _ t2

(3.13)

with:

Fi (t) = -k t f (u) du
27rfu=O V't2- 2  

(3.14)
Gi (t) = - t f u" ")du

where fi and gi are the projections of wi on the vector space of even and odd functions,

respectively. They are differentiable and defined on [-1,1] as fi(x) = w'x)2w(-x) and

gi(x) = w'(x)-Wi(-x) so that we trivially have wi = fi + gi.

Remark 7 On the crack - for zc = xc + iye £ \ {-l, l} - we have:

qi z-) = sgn(xc) j F(t) + xG(t) dt -±
t =0 Vx - 2 t=|xc|

Now that we have the expressions of Qi and W' in terms

displacement fields are known in the whole domain:

Fi(t) + xcGi(t) dt

t 2
-

(3.15)

of the loading wi, the stress and
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o-x(z) = 4 Re A [p' (zil) -p2'1 (z2)]

o- (z) = 4Re 2 l +4R ( { p1  1

+4Re 1[11'2(z) - j'2)P.2-P1 12 22Z)
o-2 (z) = 4 Re [2 '(zi) -O '1(z2))(316

+4 Re [p1 2(zi) - p2 2 (z2)]}

z(z) = 4 Re { 2 ,l [Qi' 2 Q1(zli) -p 2 p1(z2)]}

+4 Re (1(2(zi) - p202(z2)]

(y (z) =4 Re P2'l[qip2Q1(zi) - q2p1Q1(z2)]}

+4 Re 2A(qi2(z) - q22(z2)]}

3.2.2 Complex potentials for the displacement-jump method

In the displacement-jump method (see Eq. (3.3)), we consider that the displacement jumps

are given along the crack surface. Furthermore, we impose the stresses to be the same on

both crack surfaces.

Introduce two new complex potentials, T1 and X'2, such that:

(<bi(zi) = ,,1- (q24T1(zl) - p 2A 2 (zi)) (3.17)

<b2(Z2) = -1 (q, 11(z2) + p1T2(z2))
IP pq2 -P2q1

(for p1q2 5 p2M1). This will allow us to separate the normal and transverse displacement

jumps. The normal and transverse displacements $y and (x can then be written as:

=x(z) 2Re { 1 [piq241I(zi) - P2q141(z2)]}

+2 Re P 2  [-_2(Zl) + '2(Z2)] (3.18)

y(z) = 2Re { [Pq2-P 1(zi) - 1(z2)]

+2 Re {p~q21P2q1 [-p 2q1 '2(zi) + pi q2T2(z2)]}
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Remark 8 The reasoning conducted here should be valid only if the material elastic prop-

erties and the crack orientation are such that p1q2 # p2q1; which is not always true. For

instance, isotropic materials are such that p1 = p2 = i so that p1 = P2 and q1 = q2.

However, this restriction can be overcome just as in Remark 5.

More specifically, on the crack (for z = Xc t i L \ {-, l}):

{x (z) = 2Re['q(f)] =
C (3.19)

y(4z) = 2Re[T'(z)] = T'(z±)+i'(z:F)

To satisfy the boundary conditions (3.3), we must have: [(II(xc) = Di where i = x of y

so that Eq. (3.19) gives:

[Wi - zpi] (z+) - [WF - 4J] (z-) = Di(zc) Vze E £ \ {-l, l} (3.20)

Ti - 'i' is then given, close to a constant, by the Cauchy integral (see Section 2.2.3) with

h = Di, resulting in:

Ii(z) - Ti(z) = dt (3.21)
2iwr JL t__

(we take the constant C = 0 in order to have the (i vanish at infinity).

Furthermore, the normal and shear stresses are given by:

oyy (z) = 2Re [q2 I'(zi) - qi (Z2)]

+2 Re (,,2P,, [-p22(z1) + P1'I2(z2 )](
(3.22)

oax(z) = 2Re { q [-/Lq2q'1(zi) + p2q1I1(z2)]}

+2Re plq2P2ql [p1ip2 2 (zi) - p2P1 2 (Z2 )]}

On the crack - for z xc t y E \{-l,l} - we have:

( o-YY (z) = 2 Re -- )l (zf)I + 2Re - '(z)(( -I piqP-pqq 12 (3.23)
oxy (z±) = 2 Re - "_+ (z)I + 2 Re -_P_ 2(z_)

which can be rewritten as:

o ) = 2 Re {aij' (z±)} (3.24)
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where i = x or y and :

1 [ q2-q P1-P2

p1q2 - P2q1 -/12 +p2q1 p1P2 - p2P1 I (3.25)

The stress-boundary conditions in Eq. (3.3) then lead to:

[aijxF/- aig F ] (zc+) - [ai - dij 5 Z~) = 0 (3.26)

aig ff- digx is then given, close to a constant, by the Cauchy integral (see Section 2.2.3)

with h = 0; resulting in:

aij T[ - digj 'P = 0

(we take the constant C = 0 so that the stresses vanish at infinity).

This leads to:

aij WIj - di PJ = c

(3.27)

(3.28)

where c is a constant.

Together, Eq. (3.28) and (3.21) give:

(aij - nij) fj (z) = - ni f D,(t)dt + c
2ir ]r t - z

1 Im aij } f D ()dt + C
47r nJ t - Z 2i

or:

(3.29)

(3.30)

Provided that det [Im {a}] f 0, we can introduce [#] = [Im {a}]1, and deduce:

W -= 3iXjajk j Dk(t)dt + pgj
47r Jr t - Z 2i

(3.31)

Again, we take the constant c equal to zero since there should be no displacement for

IzI -+ oo.

We finally have:

Wpi(z) = i7rk J Dk(t) dt (3.32)

Now that we have the expression of Ti in terms of the loading conditions, the stress and
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displacement fields are known in the whole domain:

= 2Re 1q(pq [ qi)2 q2 '' 1 (zi) - (p2)2 qi 1 (z 2 )

+2 Re { (i)2 p2V'(zi) + (p2)2 Pp'(Z2)

2Re { [q2 I(zl) - gitV(Z2)]

+2 Re -1 [ -p 2'2(zi)+ p1'2(z2 )]}

o-XY (z) = 2 Re {[-1q2V'(zi) + p2 q1i(z2 )]}

+2 Re 1 p21 [1P'2(zi) - p 2pI1'(z2 )I}

x(z) = 2 Re { { 1 [piq2I1

Sq2-P2q j

y (z)+2 Re P
±2 1q2-P q

(z)= 2Re _* [1z)

+2 Re
-p2-qM

(zi) - P2q1IP1(z2)]}

[-'I'2(zl) + T2(z2)I}

- T1 1(z2)]}

[-p2q"2 (zi) + piq2112 (z 2 )]}

3.3 Analysis of the displacement fields

3.3.1 On the deformed crack-shapes

We found in Section 3.2.1 the stress and displacement fields induced by a normal stress -p

and a shear stress -q acting on the crack surfaces. From the displacement field, the crack

shape induced by this loading can be deduced.

As the principle of superposition applies, we can study separately the normal stress -p

(derived from the complex potential Q1) and the shear stress -q (derived from the complex

potential f 2 ). To deduce the crack shape induced by the loading, one needs the displacement

field (:,,(zc) and Vj(zc) induced by the potential Qj (i = 1 or 2) for z, E E \ {-l, l}.
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Crack shape induced by the normal stress

By setting Q2 = 0 in Eq. (3.16), one obtains 4:

{ x,1(z4) = 4 Re [P1/2t1 (3.34)

) = 4 Re 2i Q1 (4)]

Since P12 - P2pi = -(2 -/1)(fi112+ f12) and qp2 - q2t1 = ([2 - I1)(f22 21±t12 - f23),

we deduce that:

I'x~,1(z) = -4 (fii Re [pip2] + f12) Re [Q1(z)]

I. ±4fii Im [/i1p2] Im [Qi(z4)]

= 4 (f22 Re [+ 2

(3.35)
- f23) Re [Qi(z4)]

T4f22 Im [tI+/2 Im [Qi(z)]

= 87r (Xsgn(x)

= 87r (Zsgn(x)

AtIx Fi(t)+xGi (t) d

fxI Fi(t)+xGi(t) dtJt=O VX2 -t 2

± 1  Fi(t)+xGi(t) dt

1 Fi(t)+xGi(t)dt

where we introduced the first set of plane-strain elastic constants:

= g (fii Re [1112] + f12)

=4l IM 1I[pip2]
(3.37)

Z = (f22Re [I 2

N = yf22Im [I+ 2

- f23)

Remark 9 If the crack belongs to a plane of material symmetry, it can be shown (see

Appendix E) that p1+ p 2 G iR, l192 e F and f23 = 0 SO that IC = Z =0 and:

{ YS (x')
sm(X±)

87rXsgn(x) fLxZ Fi(t)+xGi(t)dt

-87rw fl Fi(t) xGi(t)t
(3.38)

4One should remember that on the crack surface, yc = 0t so that, since Impi > 0, zi = = zc
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Crack shape induced by the shear stress

By setting Q1 = 0 in Eq. (3.16), one gets:

{G,2(Z ) = 4Re[PI2 2 (z) ()

6y,2 (z) = 4 Re I2 Q2(z)1

Asp1 -p2 (2 -p1l)(fs -f1(p11+p2 )) and qi -q 2 = (A2 -l)(f22 - f12), we deduce

that:

fx,2(z4 ) = 4(f13 - f11Re [p1 +p 21)Re[Q 2(z4)]

±4fii Im [P1 + P21 Im [Q2 ()] (3.40)

1y,2(z) = 4 (f22 Re - f12) Re [Q2(z+)]

zF4f22 IM IM [Q2 (zc)]

or:
f F2(t)+xG2(t)dt6x,2X±) 87r(z'sgn(x) t= _____7

t~lxlvrt-F--x7(3.41)
6y,2 (X = 87r X'sgn(x) fkcxl F2(t,)xG (t)dt

±c f1 F2(t)+xG2(t)dt

where we introduced the second set of plane-strain elastic constants:

Z' = Y1 (i-- fi11Re [pi+ P2])

IR' = afuIM[Pi+P21
=/ 1 [ (3.42)
' = (f12 - f 22 Re[ 1 ]j)

C =. bf 22 Im [ ]= fu Im [P1 P2]

Remark 10 If the crack belongs to a plane of material symmetry, C = Z'= 0 and:

(2 F2(t)+xG2(t
~~ m ~~) T~i~f,1 ~1 (3.43)

6YS2m(x) = -87rX'sgn(x) AZ F2(t (t )dt
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ey 3 ey 1

e,=e1" ex=-e

(a) Crack in bedding plane: (b) Crack normal to bedding (c) Transv

ey = e3. plane: e = ~e3. z = -f3-

Figure 3-3: Three crack orientations considered.
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erse crack:

Crack displacement-jump induced by normal and shear stresses

From Eq. (3.36) and (3.41), one deduces the following normal and tangential displacement

jumps, [(n]x) = [(y](x) and [(t](x) = [(x](x), respectively:

]n(x) = -167r W -C TI Ft)+x1() dt (3.44)
kt - / ' t=\ x vt 2 x2 F2(t) + xG 2 (t) )

where the constants N, N' and C are defined by Eq. (3.37) and (3.42). We will see shorlty

that the square matrix involving these three constants will play an important role in the

continuation.

3.3.2 Specification for transverse isotropy

Displacement field induced

We now focus on TI materials (as in the previous parts, fs is the direction normal to the

plane of isotropy). Let us introduce the stiffness constant 5 C 3 1 = C11C33. As the strain

energy must be positive: V) = 1c : C : E ) 0, the stiffness tensor is positive definite. We

then deduce that det[f] = 4 C2 0 (where the matrix [f] was taken in the principal

base (fi, f2, f3)), so that C32 > C13.

Let us first consider a crack belonging to the planes of material symmetry. For a TI

material, the study of these special cracks reduces to the study of three crack orientations:

1) cracks in bedding plane (Fig. 3-3a), 2) cracks normal to bedding plane (Fig. 3-3b), 3)

'One should pay attention that this is a definition of C31. C3 1 is different from C3311: C 13 = C113 =

C3311 $ C31-
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e,=sin~e1+cos~e3

L e,=cos~er-sin6e3

ez=-e2

Figure 3-4: Rotated crack: (ev, 2 ) = ir and (0) =1) .

transverse cracks (Fig. 3-3c). We can introduce the plane-strain elastic constants X, X'i,

Wi and V' introduced in Eq. (3.37) and (3.42) (where subscript i = 1, 2 or 3 stands for the

crack orientation):

X1 X 2

X 3

X/ 1

N1i= 7'2

2 =N'i
W2 L3 71' W

= c31 C13

27r C11+C 12

1 1
- r 2iC44 C1+CC- c1+c 12

2i 31 13 +~ ± 13 C31 )

=2rVC 31 C13

11 12

+ 133

A crack of type i will then have the following displacement field/pressure field relation-

ships:

S (xi) - 87r Xisgn(x) ftx F1(t)+xG1( t )dt

(3.46)
_F Ht)1F2(t)+xG2(t

- (=(l fV't_2-2
=87r X sgn(x) ftlx F2 (t)+xG2(t) dt

1 F1(t)+xG1(t)d
T-" t=|xl gt 2 -_X2

Let us consider cracks in a TI material such that 2 ) = ir and (fx, f 1) = 0 (see Fig.

3-4). A1 and A2 are the roots of P[f](=0o)(X) (see Section 2.2.2).

P[](0) csOxso) = P[f](O=0 )(X). As Im

that p() = sinO+A cos 0
cosO-pi sin6

It can be shown that

cos Ai si] > 0 for i = 1 or 2, one deduces
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The plane-strain elastic constants X, X', IC, Z, Z', N and N' defined in Eq. (3.37) and

(3.42) then depend on 6 and are given by:

X(6) = X1 (cos4 6 + sin4 0) + 2X 4 cos2 9 sin 2 9

X'(9) = X2

K() = (N1 - N 2 ) cos sin 9

Z(9) = 0 (3.47)

Z'(9) = 0

N(6) = -icos20+N 2 sin 2 o

N'(W) = N 2 COS 0 + N1 sin 2

where X4 = + 31 1 - C C )

On the normal opening elastic constants Ni

The elastic constants Ni depend on the five (independent) characteristic constants of the TI

material considered. These coefficients can be related to the first Thomsen parameter E =

C 33 accessible through accoustic measurements [441, and the indentation moduli6 in the

horizontal and vertical directions Mi and M 3 , respectively, accessible through indentation

tests. Their expressions in terms of the stiffness constants Cyj can be found in Ref. [141.

Using these expressions, one obtains:

1 = 
1

W2 = 7r 1+2e M (3.49)

For typical stiffness values of shales, we usually have (see Appendix C, Table C.3):

N1 > W 2 > N3  (3.50)

6"i The indentation modulus [in direction i] is defined from the unloading branch of an indentation test

[...J [as]:

A = - N/MAf (3.48)
dh 42

where Pi is the applied load [in direction i], h is the rigid-body displacement of the indenter relative to the

half-space [and] A is the projected area of contact." [141
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3.3.3 Crack geometry induced by uniform loading

The simplest case to study is the case of uniform loading w? = PO, 0 = qo. We then have:

fi(z) = w, gi(z) = 0, i = 1 or 2, so that, according to Eq. (3.15), the complex potentials

Q; reduce to:

(z+) = (-x+i l2 -X2) (3.51)

The displacement field on the crack is then given by:{0 (z?) = A(po,qo)x ± B(po,qo)/2 x 2

(3.52)

(z') = C(po,qo)x ± D(po,qo) 1/2 _x 2

where

A(po,qo) = -27r(Xpo+Z'qo)

B(po,qo) = -2,r(Kpo-?J'qo) ()
C(po,qo) = -2,r(Zpo-X'qo)

D(po, qo) = 27r(Wpo - Kqo)

Initially, the crack is defined as F = {z = x ± is, x E J-1, 1[, E -+ 0+}. Let zi E F be a point

belonging to the initial crack. Define s± = z+/l the dimensionless abscissa. The deformed

crack shape is then defined as: r' = {z(s*) = x(si) + iy(s±), s E ]-1, 1[} with:

x(s') = (1+A(po,qo))ls±B(po,qo)lv/1 - s 2

(3.54)

y(si) = C(po, qo)ls ± D(po, qO)l/1 -s2

The crack volume is then given by:

VO =TI+ _ E~ (3.55)

where:

6 2 y ±')dx'± (3.56)
fx'(-1*)
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Since dx* = 1 [(1 + A(po, qo)) - B(po, qo) 1S2 ds, we have:

_T 12J [C(po, qo)s ± D(po,qo)/1 - s21 [(1+ A(po, qo)) -B(po, qo) 2]ds

±l2 [D(po, qo) (1 + A(po, qo)) - B(po, qo)C(po, qo)] (3.57)

so that the crack volume is given by:

V0 = 7rl 2 [D(po, qo) (1 + A(po, qo)) - B(po, qo)C(po, qo)] (3.58)

It can be shown from Eq. (3.54) that:

" A crack subjected only to an uniform normal stress has always an elliptical deformed

shape.

- If the crack belongs to a plane of material symmetry, its principal axes are

collinear to e, and eY,

- If the crack is in a TI material such that (e,,2) = ir and (ee) = 0, its principal

axes belong to the plane z = 0.

* The deformed shape of a crack subjected only to an uniform shear stress is an ellipse

whose principal axes belong to the plane z = 0, only if the crack belongs to a plane of

material symmetry .

3.4 On crack propagation

3.4.1 Energy release rate for a symmetrical and collinear crack propaga-

tion

A quantity of interest for fracture propagation is the energy release rate g(l), where 1 is the

crack half-length (see Section 2.3).

We consider here that both crack tips propagate symmetrically and in a direction

collinear to the initial crack (see Fig. 3-5). Furthermore, we consider that the pressure

p and the shear stress q immediately after the crack propagation are null for |xl E ]l, 1 + dl[

and remain the same as before the propagation for Ix| E [0, 1 + dl[. For a crack filled with a
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p(x) q x)

p(x) q(x)

cdt 2t de
ezI

Figure 3-5: Symmetrical and collinear crack propagation.

fluid, this means that the fluid does not propagate as the crack tip does.

For our problem, using Clapeyron's formula [45], we have7 :

9P(1) = - (p(x) [ ,jy(x) + q(x)[zj(x)) dx (3.59)

The definition (2.38) of the energy release rate can be rewritten as:

Ep(l + dl) - Fp(l)
9(l) = - lim (3.60)

dl-+O 2dl

so that:

+ 1= i f= 0 f(u)du 1 ug (udu)2

7= y12-u ) I U=0 V/r2_,2

1 f1(u)du f2 (u)du + 1 1 ug1(u)du l ug2(u)du
== u=0 1 2

_
2  =

If we introduce the fracture energy (or critical energy release rate) 9c, the propagation

will be possible only if 9(l) = 9c

3.4.2 The local approach

In the previous Section, we used an energy (global) approach: we derived the energy release

rate from the potential energy of the whole structure. In linear elastic fracture mechanics,

another approach focuses on what happens at the crack tip. Relevant quantities are then

7 A detailed computation of the energy release rate is given in Appendix F.
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the stress intensity factors (see Section 2.3.2).

From the complex potentials Q.' found in Part 3.2.1, we can quantify the strength of

the singularity of the stress fields at each crack tip by computing the Mode I and Mode II

stress intensity factors.

For the left-hand crack tip, we define KjCI(l) and Ki (l) the Mode I and Mode II stress

intensity factors:

Kjf(l) = lim v'5FNoyy(z = -l - r)
r-+o+ (3.62)

IK11 (l) = lim v2irrxy(z = -l r)
r-+o+

For the right-hand crack tip, we define KI(l) and Kyr(l) the Mode I and Mode II stress

intensity factors:

Kj(l) = lim V2ro-yy (z = + r)
r--+o+ (3.63)

K r,(l) = lim V2iay(z = 1 + r)
r-+o+

On the plane y = 0, putting together Eq. (3.12) and (3.16), we have:

{- y(x) = " _ p(t) d t9Y, f t=-7r v 1 p x-t (3.64)
-xy(X) sgn(x) q(t)Z dt

Remark 11 It is worth mentioning that since o-yy and o-xy do not depend (at least on the

plane y = 0) on the elastic properties of the material, the stress intensity factors will also be

independent of the elastic properties.

One deduces from Eq. (3.64) the following expressions for the left-hand and right-hand

stress intensity factors:

Kj(l) = A _ifp(t) F dt

f 1(t)dt 1 tg1 (t)dt

1 0 _t
2 t f=0V12t2(3.65)

Kj (1) - = _ 1 q(t) y dt

2  V I f2 (t)dt 1 fl t92(t)dt
~ ir t=0 v/--t V7i Jt=0 Vl2T--tf
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and:

Kj(1) = jf p(t) dt

= i r1  
h(t)dtf + i_ tg2(t)dt

y J t=O V iT VW Jt=O 
(366)1 7~~~tl_ =fL q(t) V 1-tdt

= { ff2(t)dt + f1 flt92(t) dt}

If the loading is symmetrical (i.e. if gi = 0, i = 1 or 2), the left-hand and right-hand

stress intensity factors are obviously the same (Kj(l) = Kj(l), j = I or II).

3.4.3 Generalized Irwin's formula

Let us write the stress intensity vector {K} = t[K1 , K 1 ]. For any crack problem in mixed-

modes I and II, the generalized Irwin formula for an anisotropic material containing a crack

propagating collinearly (i.e. without branching) is given by Eq. (2.39), which we recall:

9(l) = rt {K}. [H] .{K} (3.67)

where the Irwin matrix [H] is given by Eq. (2.43). It can actually be rewritten in terms of

the plane-strain elastic constants introduced in Eq. (3.37) as:

[H} = (3.68)

The Irwin matrix only depends on the crack orientation and the elastic properties of the

material.

This is consistent with the energy release rate expression computed previously - Eq.

(3.61) - from Q(l) = - (l). Indeed as we consider that the two crack tips propagate
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symmetrically and without branching, Irwin's formula gives:

Q(l) = 2el '1

- K( ([(l) 2+[K() ' K1) [K i(l)]

-2K (KI(1)K 1(l) + K (1)KI(1)) }
=4 _T 2__J 1fi (u) du )2 + I ug (u) du ) 2]n=0 V2 _ U2 2 (f Vl U2

+__2_ (d' ug2 (u)d (3.69)uw[ j ~~±K=0 122 -= U2 (.9

-2K [1 fi(u)du f 2 (u)du +1 Ug(u)du f u92(u)du
oV12 _U2 Ju 2 -U 2  1 _ 1 2 _ =- 12 _u 2 1J

3.4.4 On the near-tip displacement jump

Using Eq. (3.44), the near-tip normal and tangential displacement jumps, [En (r) = f[y] (r)

and [6t] (r) = [X]j (r) (where x = ± (1 - r)), respectively, can be written in terms of the

stress intensity factors as (a proof is given in Appendix G):

](r) ~ 87r r [H].{K} (3.70)
t) r-+0 2 7r

where the matrix [H] is the 2x2 the symmetric Irwin matrix introduced in Eq. (2.43).

In isotropy, we saw in Part 2.3.2 that the matrix [H] was diagonal and equal to [H] =

-- 21 so that a crack subjected to loading conditions inducing only a hoop (respectively

shear) stress singularity will only have a normal (respectively tangential) displacement jump

on its surface.

In anisotropy, unless under specific conditions 8 , the Irwin matrix is not diagonal. This

means that a crack subjected to loading conditions inducing only a hoop stress singularity

(K1 > 0, K 11 = 0) will have not only a normal displacement jump [(d](r) 8 7_r-HKI

but also a tangential displacement jump [(t](r) 87r N;K1 on its surface. Similarly,

a crack subjected to loading conditions inducing only a shear stress singularity (K1 = 0,

K1 1 = 0) will have not only a tangential displacement jump [(t](r) r~ 8w 27r -'K1  but

also a normal displacement jump [n](r) - -87r fKKJI on its surface.

8Notably, when the crack belongs to a plane of material symmetry, it is shown in Appendix E that

PipZ2 E F so that K = H 12 = H 2 1 = 0.
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Figure 3-6: Crack kink, definition of the angle v.

To be consistent with the denomination of Mode I and Mode II stress intensity fac-

tors, the definition of the fracture modes should be given in terms of stresses instead of

displacement jumps as it is usually the case in isotropic media (see Section 2.3. 1).

Remark 12 In the specific case of plane strain, a definition of the fracture modes in terms

of the stresses would also be confusing. Indeed, as we have seen in Eq. (2.17), for some crack

orientations, the out of plane shear stress ayz is proportional to the in plane shear stress o-,y.

This infers that the Modes II and III cannot be separated, meaning that it would be possible

to be in presence of Mode III even in a two-dimensional plane-strain problem. However,

since the third Mode shall not contribute to the energy release rate (161 = VzA = 0), it can

be disregarded.

3.4.5 On the direction of crack propagation

Until now, we have considered only collinear crack propagation. If we were dealing with

isotropic materials, this would be perfectly legitimate if the loading prescribed on the crack

was a pure Mode I loading (see Section 2.3.3). However, we will see in the continuation

that in anisotropy, crack-kinking can be more favorable than collinear crack extension even

in pure ModeI, depending on the propagation criterion chosen.

Irwin's formula for a kinked crack

Let us now consider that the crack does not propagate collinearly. Instead, it propagates

by an amount dl with an angle v with respect to its original orientation (see Fig. 3-6). It is

legitimate to consider that for a very small extension dl -n 0 and for a small kink angle v, the
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stress field at the crack tip will be similar to the stress field derived in Section 3.2. We can

then introduce the new stress intensity factors K;*''I(l, v) and K;' (l, v) for an infinitesimal

small kink and for a small kink angle:

{ *' = lim /2irdlo-, (zril(dl, v))
al--+o+ (Z,(3.71)

Kj 1*(1, v) = lm /2,rdl-rv (z'l(dl, v))
dl-+0+

where zr(dl, v) = l+ dl cos v + pidl sin v and z(dl, v) = -zr(dl, v) are the coordinates of the

left-hand and right-hand crack tips, and:

f VV = g.e, .ef = O-XX sin2 V + o-yy cos 2 v - 20-y sin v cos v

o' V = ag. e .e, = o-r, (sin 2 v - cos 2 V ) + (-xx - -yy) sin v cos v

are the hoop and shear stresses in the new local crack-tip polar coordinates (r, v).

Noting that:

lim A/27rdlQ' (zi(dl, v)) = ( 1(l)
dl-+o+ I vcos v+1Lsin v (3.73)

lir /2rd1Q' (zi(dl, v)) = K11(()
dl-*+O+2 co tzsiv

where the Q' are those of Eq. (3.12), we have:

{K*(l, v)} = [F(v)] . {K(l)} (3.74)

where [4]:

F,(v) = 4 Re /12 (psin v + cosV)32

2 (A2 sin v + cos v)3/2

F1,11(v) = 4 Re I 1 (p1 sin v + cos V)3/2

- 2 I1 ( 2 sin v + cos v)3/2 ]

/12/14(3.75)

F1,1(v)= 4 Re A2 /p1 sin v+ cos v (-p1 cos v + sin v)

l /p2 sin v + cos v (-p2 cos v + sin v)

F11,1(v ) = 4Re [ /2l p1 sin v + cos v (-p1 cos v + sin v)

2 2sinvT+cosv/(-2cosv+sinv)
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Figure 3-7: Definition of the 0 and v angles.

A possible expression for the energy release rate of a (single) crack tip kinking with an

angle v with respect to the initial crack direction would then be [41:

9*(1, v) = tr'{K*(l, v)}. [H*(v)] . {K*(l, v)} (3.76)

where [H*(v)] is the Irwin matrix [H] introduced in Section 3.4.3 for a crack having the

same orientation as the kink. For instance, if we consider a crack in a TI material such that

(6z' f2) = ir and (f, el) = 0, we have [H*(v, 0)] = [H(9 - v)] (see Fig. 3-7).

As F, 1 (0) = F 1,11 (0) = 1 and Fr,1 (0) = Fij (0) = 0, we obviously have g*(1, v = 0) =

9(l).

Some propagation criteria in anisotropy

Possible generalizations to anisotropy of the crack-propagation criterion introduced for

isotropic materials in Section2.3.2 could be as follows:

* If there is propagation, it will be done at a kink angle ukink such that:

- Vkink = arg max, ( (maximum energy release rate criterion) or,

- vkink = arg maxI Kj(v) (maximum hoop stress criterion) or,

- vkink such that Ky1 (vkink) = 0 (principle of local symmetry)

g*(vkink) < gc(Vkink) no crack propagation

9*(Vkink) = c(vkink) possible crack propagation

where 9c is the fracture energy for a crack propagating in the direction of the kink. This

quantity is considered to be a material property independent of the geometry and of the
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Figure 3-8: 0(0, v), Kf(v, 9) and |K 1(v, 9)| in the polar coordinates (v, 9) for a TI clay
model [37] subjected to a pure Mode I loading.

applied load. In an anisotropic material, it could depend on the direction of the crack

propagation.

Remark 13 As ' (v) oc Kj 1 (v), the last two criteria should be equivalent.

Considering ge independent of the crack orientation, we can define the functions 9, KR

and IKT1 as: { v - { K}.t [F(v)]. [H* (v)|.[F(v-)] .{ K}
t{K}.[H] .{K}

1 (v) = F1,1(v) + F1,11(v) (3.77)

|R1(V)| I= |F11,1(v) + FI,I1(v) K

Depending on the chosen criterion, these functions should tell us at which kink angle the

propagation should be the most favorable.

For a crack in a TI material such that (f, I) = r and (.,) = 0 (Fig. 2-2) subjected to

a pure Mode I loading, we plot in Fig. 3-8 and 3-9 kink diagrams showing 0(0, V), [ 4(v, 9)

and |IK1 (v, 0)1 in the polar coordinates (v, 0) for a TI clay model [37] and for a reference9

TI medium.

Figures 3-10 and 3-11 show Vkink as a function of the crack orientation 9 for the clay

model [37] and the reference TI material, respectively. The fracture energy ge is taken

independent of the crack orientation and the loading is a pure Mode I loading. For a crack

belonging to a plane of material symmetry (9 = 0 [!]), the kinking angle is null so that, as

9This reference material is such that Ei = 1 GPa, E3 = 2 GPa, V12 = 0, V13 = 0.4 and G23 = 1 GPa, see
Table C.4.
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Figure 3-9: Q(0, v), R7(v, 9) and |R*1 (v, 0)| in the polar coordinates (V, 0) for the reference

TI material subjected to a pure Mode I loading.

in isotropy, no kinking should occur for a pure Mode I loading. However, if the initial crack

does not belong to a plane of material symmetry and if we consider the maximum energy

release rate criterion, Vkink does not vanish anymore so that kinking should occur even for

a pure Mode I loading. If the zero-Kj1 and the max-Kj criteria are consistent, the max-g

criterion diverges from the two others. While in Mode I the zero-K 1 and max-Kj predict

a collinear crack propagation, the max-g predicts a crack-kinking.

If one opts for the max-9 criterion, a stability10 analysis predicts that a crack belonging

to the plane of material symmetry for which the N coefficient is the greater, will be more sta-

ble. By way of example, for the clay model for which N(9 = ir/2) = N 2 < N 1 = 1(9 = 0),

if the initial crack has an orientation 9 = ± e with e positive and close to zero, the kinked

angle v will have the same sign as 9 so that the crack tip will eventually go back to the stable

plane 9 = 0. However, if the initial crack has an orientation 9 =,7r/2 ± e with e positive and

close to zero, the kinked angle v will have an opposit sign as 9 - ir/2 so that the crack tip

will move away from the plane 9 = ir/2. The same kind of argument can be made for the

reference TI material for which N(6 = 7r/2) = N 2 > N1 = 11(9 = 0); for this one, the stable

plane is the plane 9 = 7r/2.

If we now consider the third type of cracks (Fig. 3-3c), the functions F() (v) and Fy ?(v)

are ill defined since si = p2 = i. A trick to overcome this problem is to set I = e + i and

01n LEFM, a crack is said to be stable if 2 < 0. The term stability is used here in a different context.
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Figure 3-10: Comparison of the three criteria for the clay model subjected to a pure Mode

I loading (in solid blue: max-9, in dashed green: max-Kj7 and in red circle: zero-KII).
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Figure 3-11: Comparison of the three criteria for the reference
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Figure 3-12: 9(0, v), 7j( (v, 9) and k7f(v, 0)| in the polar coordinates (v, 9) for a crack of
the third type subjected to a pure Mode I loading.

p2 = -6 + i. A Taylor series at the first order in e of F., gives us:

F cosvcos + ' sin v sin 2

F () ={ sin v cos 'I0 (in)s 2(3.78)

FJ (V) = sinv cos

F ( (v)= cosv cos - sinv sin g

These are the classical terms for isotropic materials (see Ref. [12]). For this type of cracks,

g(0, v), K7(0, v) and Kj1 (0, v)| are independent of 9 but also independent of the elastic

properties of the material since the crack kink sees the same elasticity as the main crack

([H*(v)] = [H]). These quantities are plotted for a pure Mode I loading on Fig. 3-12.

Remark 14 At high kink angles, one can put in question the legitimacy of the use of the

functions Fi,j(v) from Eq. (3.75) (derived from the stress field before kinking). However,

if we restrict ourselves to Mode I dominant loadings, the three criteria seem to agree that

the most favorable kink angle should be small so that the Fi (v) functions from Eq. (3.75)

should be accurate. If Mode I is not dominant, a way to compute numerically the functions

Fi, (v) at high kink angle is given in Ref. [361. In Ref. [4], it is shown that the max-K7 (or

zero-KII) criterion where K7 is derived from the functions Fj(v) introduced in Eq. (3.75)

predicts similar kink angles compared to max-K, where KI is derived from the numerical

functions Fi,3 (v) from Ref. [36].

Remark 15 As Azhdari mentions in his paper [4], we are aware of the fact that even if
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we did not account here for the fracture energy anisotropy, it should play an even more

important role than the elastic anisotropy. A possible way to assess the fracture anisotropy

at the scale of elementary constituents would be to perform molecular simulations such as in

[8].

3.5 Chapter summary

We applied Muskhelishvili's formalism to Lekhnitskii's anisotropic complex potentials and

we derived the solution of the plane-strain crack problem, for both prescribed stress and

prescribed displacement boundary conditions. The solution of this last type of boundary

conditions is of interest, notably for the implementation of a boundary element method

algorithm such as the one proposed by Crouch et al. for isotropic media 113].

We were able to identify a symmetric-square matrix, the so-called Irwin matrix that links

the crack displacement jumps to the loading or the stress intensity factors. It also relates

the energy release rate, the driving force of fracture propagation, to the stress intensity

factors. This matrix depends on the elastic properties of the material through which the

crack propagates and on the crack orientation. Interestingly, the coefficients appearing in

this matrix are directly related to the indentation moduli accessible through macro-scale

indentations and the first Thomsen parameter available by ultra-sonic measurements.

Contrary to the isotropic case, when a crack does not belong to a plane of material

symmetry, the fracture Modes are not directly correlated to the normal and tangential

crack displacement jumps (due to the existence of non diagonal terms in the Irwin matrix).

Another difference with the isotropic case is the discrepancy between the three possible

criteria ruling the direction of crack kinking, even for pure pressure loadings. If one uses

the maximum energy release rate criterion, a stable plane of crack propagation can be

identified.
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Chapter 4

Fluid-driven crack propagation

We now consider a two-dimensional plane-strain crack in a linear elastic transversely isotropic

brittle material of stiffness tensor C, and fracture energy 9c that may depend on the crack

orientation. The crack, of half-length 1, is possibly inclined with respect to the plane of sym-

metry of the material considered. It is subjected to a far-field stress g = oei 0 ei (stresses

positive in traction) and pressurized through fluid injection at a constant volumetric rate,

Qo, from a line source located on the plane x = 0 (the origin of coordinates is taken at the

center of the initial crack). The fluid pressure is defined by the function pf acting normally

to the crack lips (in the reference configuration). Our goal is to find at any time t the crack

opening (i.e. the crack shape), the fluid pressure and the crack half-length, given the initial

conditions, the fluid and solid properties and the injection rate. This problem involves a

strong coupling between the fluid and solid phases that can be broken into two weak cou-

plings.

The first weak coupling can be reformulated as follows: given the crack half-length, the

crack opening and the fluid injection rate, determine the fluid pressure.

As for the second weak coupling, it can be reformulated as follows: given a fluid pres-

sure field, determine the crack half-length and crack opening. We start with the first weak

coupling, relative to the fluid problem. We then apply the results of Chapter 3 to the fluid-

driven crack propagation problem. The two weak problems will then be put together in a

dimensionless form.

The same kind of problem has been extensively studied in the case of cracks in isotropic
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media subjected to a normal stress. The interested reader is referred to the review paper

from Detournay [15]. For more details on the small and large toughness regimes, the reader

is referred to Ref. [201 and [19], respectively. We consider here cracks in anisotropic media

possibly undergoing some shear. This will mainly modify the equations of the solid problem.

The fluid/solid coupled problem is strongly non-linear and we propose in this Chapter a

numerical method to solve it while others introduced self-similar solutions for some specific

regimes (see, for instance, Ref. [42] or [1]). Comparisons between the self-similar and

numerical solutions were given in Ref. [11] in the small toughness regime. Herein we suggest a

way to numerically solve the solid problem (second weak coupling), that is to find numerically

the crack opening induced by an arbitrary pressure field. Finally the strong coupling problem

will be tackled using a numerical method, and some simulation results are presented.

4.1 The first weak coupling: Fluid problem

We consider here that the crack geometry is known. We thus look for the pressure of the

fluid injected in the crack. To do so, we will use the conservation of mass and momentum

equations.

Remark 16 Note that this first weak coupling is physically impossible since the injection of

an incompressible fluid into a crack will inevitably lead to changing the crack opening.

4.1.1 Conservation of momentum

We consider that the fluid is Newtonian so that we have the following relationship between

the shear stress r and the velocity gradient perpendicular to the shear direction OUX:

Bu
a = -(4.1)By

where i is the fluid dynamic viscosity.

The conservation of momentum for an incompressible Newtonian fluid is then equivalent

to the Navier-Stokes equation (see, for instance, Ref. [28]). Considering that the flow is

two dimensional (we have a priori u = ux(, y)e + u.(x, y)ef and pf(x, y)), the projection

along x and y of the Navier-Stokes equation can be written as:
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(4.3)

1P9±X±U )U V ay ax 5 __ (4.2)j9 ) UY = PL a2 .92

Let us write the fluid velocities in the x and y directions, U2 and UY0 , at x = 0 and w0

and po, the opening and pressure at x = 0. Now we introduce the dimensionless parameters:

x

- U

t

U0  0
Figure 4-1: Simplified geometry: ~ -.

Using those parameters and the relationship U0 ~ * UO (Fig. 4-1), the Navier-Stokes

equation (4.2) can be rewritten in a dimensionless form:

{ ii + ±i OX+ii%% =ii ap+1(W _i+ 2i
it- at Y)a a R, I -WT) !(4.4)

where Re = puowo is the Reynolds number.
77

At low Reynolds numbers and neglecting the inertial terms, considering that the crack

opening is small compared to the half-crack length (wO < 1) - these are the hypotheses of

lubrication theory 1241-, we have:

- 1 7X

2& = 0
Dy
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Integrating Eq. (4.5) and taking into account the fact that the velocity u. must vanish on

the walls at y = ± , we deduce that:

ux(xy) = - (x1
877 ~x) (4.6)

Since the opening is small compared to the crack length, the mean value of the velocity over

the plane of abscissa x, (ux), defined as:

1(UX) (X) = )W(x)

W(X)uxyd

2 (4.7)

is representative of the flow velocity. This mean value is equal to:

(uX)(x) -2 (fx) (4.8)

The mean flow (Q) (x) is then equal to:

(Q) (x) =- W(X) Pf (4.9)

The flow must also satisfy the condition of no flow at the crack tip, which can be written

as:

(Q) (x = l(t)) = 0 (4.10)

4.1.2 Conservation of mass

Let us consider a slice of a fluid contained between x and x + dx. The mass conservation

between the moments of time t and t + dt can be written as:

(p.w)(x, t + dt) - (p.w)(x,t) +
dt

(p.w. (ux))(x + dx,t + dt) - (p.w. (ux))(x, dt)

dx 0
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(p.w)(x,t)dx =

so that:

(p.w)(x,t + dt)dx

+(p.w. (ux))(x + dx,t + dt)dt - (p.w. (ux ))(x, dt)dt
(4.11)

(4.12)

- 4 ( 
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Thus, a first order expansion in dx and dt leads to:

(x, t) + (x, t) = 0 (4.13)

Considering an incompressible fluid (2 = 0 and a = 0) we then deduce that:

8 x &(Q)
(x, t) + (x, t) 0 (4.14)

at 0 X

Moreover, we must have' at x = 0:

(Q) (x = 0,t) = Q. (4.16)

Integrating the relationship (4.14) between x = 0 and 1 and taking into account relationship

(4.16), we get:
DV

+(t) (Q) (1, t) - (Q) (0, t) = 0 (4.17)
at

so that:
Vt 2 (4.18)

where V(t) is the volume of fluid contained in half the crack at time t.

4.1.3 First weak coupling equations

Combining the previous equations, we deduce a new system of equations linking the fluid

pressure to the crack opening:

(x, t) - 3 (~) p (x, t)) (X, ) = 0

_ L- ) (X_= 0, t) = 0

_ (=, = 0 (4.19)

p5(x,t =0) = pW(x)

at-f ow(x,t)dx 2

We then deduce that, given a crack opening and a flow rate Qo, we can compute the

'Rigorously, we should write:

(x, t) + ( X, ) = ) (4.15)

where 6(x) is the Dirac delta function. This expression contains both Eq. (4.14) and (4.16) but it is also

more difficult to be numerically implemented.
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fluid pressure field - close to a constant - using Eq. (4.19).

4.2 The second weak coupling: Solid problem

This Section aims at solving the second weak coupling of the fluid-driven crack problem.

It consists of finding the crack-geometry induced by any fluid-pressure field acting on the

surfaces of the crack. As we saw in the previous section, we will consider only one dimensional

flow so that the only relevant information for the crack geometry are the crack length 21 and

the crack opening w.

4.2.1 Crack opening induced by the pressure field

Let us consider for a moment uniform fluid pressure field. In the case of hydraulic fracturing,

the coefficients defined in Eq. (3.53) are such that

E = A(po, qo) - B(po, qo) - C(po, qo) ~ D(po, qo) (4.20)

with e < 1 (typically, c ~ 10~5 for 7 ~ 10-"Pa- 1, po ~ 105 Pa) so that the deformed crack

shape (3.54) can be approximated by:

x0(s1) ~- is

(4.21)

y0 (si) C(po,qo)ls±D(po,qo)l1 -s2

where we recall that s is the dimensionless abscissa.

We introduce the new set base vectos (e's, e') such that:

e = cos E8oe' - sin E 0 e'

(4.22)

wy =esin 8Ce' + cos 8pe

where tan 280o = (po,q q One obtains the Cartesian equation in this new

system of coordinates :

( 1 (4.23)
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where a and b are equal to:

D(po, qo)l 4.24)

V(C(po, qo) sin o + cos )2 + (D(po, qo) sin E 0 ) 2

and

b D(po, qo)l (4.25)

(C(po, go) cos 80 - sin 8)2 + (D(po, qo) cos 0)

The crack shape can then be approximated by an ellipse whose principal axes are rotated

by an angle e0 ~ C(po, qo) ~ e and whose semi-major and semi-minor axes are a and b,

respectively. In the case of hydraulic fracturing, this angle is very small. One can thus ap-

proximate that the principal axes by the directions x and y, even when the crack undergoes

shear. The crack opening w(s) - in the deformed configuration - to be considered in the

fluid Eq. (4.19) can be approximated by the normal displacement jump in the reference

configuration: w(s) ~_ [ y)(s) = 2D(po, qo)lv/1 -s2.

Let us now drop the restriction of constant pressure in the crack. We will consider that,

as for the case of uniform loading, it is legitimate to consider that the normal displacement

jump is still a good approximation of the crack opening.

For linear elastic materials, the second weak coupling problem can be broken into two

sub-problems (Fig. 4-2). In the first one, a material with no crack is subjected to far field

stresses a and the artificial crack is subjected to a normal stress a' and a shear stress r.

In the second one, a crack is subjected to a normal stress p(s) = pf(s) - o-" and to a shear

stress q(s) = -r without far-field stresses. The stress field induced by the first sub-problem

is uniform and does not present any singularity; only the second sub-problem is then of

interest for the study of the crack propagation. This problem is purely equivalent to the one

studied in Chapter 3.

Given the geometry, we have a,- = -0 cos 2 0 - oi sin 2 0 and r = (03 - a,) cos 6 sinG.

If we set p(s, 9) = pf (s) + (a3 cos 2 0 + 7l sin 2 9) and q(s, 0) = (al - a3) cos 9 sin 0, we can

use the results from Chapter 3 to get the normal displacement jump w(s) ~ [(1](s). In

fact, Eq. (3.36) and (3.52) give (we assume that the fluid pressure field is an even function:
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0 3303.

Figure 4-2: Decomposition of the problem in two sub-problems.

pf (U) pf (-u))

w(s,9) = -47rC(6)(o-1 - 3)cos sinl Gi1 - s2/ T fT p (u) - an (4.26)
+8,r - (O) ndudT

Jr=|s| T
2 _2 u=O r 2 

- U2

Remark 17 The theory developed previously is valid only if the crack is globally in traction.

The effective pressure felt by the crack pf(x) - Orn can be negative as long as3 :

f=- _(p!(t) -on) dt > 0 (4.27)
f _(p(t) - on) dt > 0

4.2.2 Crack propagation

Since we are in presence of mixed-modes, we will use the propagation criterion based on the

energy release rate but without crack kinking (see Section 2.3.2). Using the even pressure

field assumption, we have the following stress intensity factors (see Eq. (3.65)):

K 1 (l) = (03 cos 2 9 + a1 sin2 9) V1 r + 2 ft' _ d(t) dt

K 1 1 (l) = (a1-U3)cos~sin9VI=(

The propagation will take place only if the energy release rate 9 is equal to the fracture

energy 9c which may depend on crack orientation. Thus, the following conditions must be

2 We write here the crack opening as a function of the pressure as in [211. Another possibility would have

been to write the pressure in terms of the crack opening as in [10] or [11], for instance.
3 The cases for which these two conditions are not satisfied could be tackled by allowing a crack closure

and adding a sliding (without friction) between the crack lips.
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satisfied:

g > g =7r'{K}.[H].{K}

a(t) > 0 (4.29)

0 = a(t) (9 - 9c)

where [H] is the Irwin matrix from Eq. (3.68) whose coefficients are given by Eq. (3.47).

4.2.3 Favored direction of crack propagation

In isotropy, we know that crack propagation will always be more favorable in the direc-

tion normal to the minimum far-field stress. By more favorable we mean that in order to

propagate a crack in a specific orientation, the fluid will have to be pressurized at a lower

pressure than for any other crack orientation. When considering cracks in a material where

the vertical far-field stress is greater (in absolute value) than the horizontal one, the crack-

propagation will be more favorable in the vertical direction.

When it comes to TI media, the favored direction of crack propagation is not that obvious

since there will be a competition between two phenomena:

" The first one, also present in the isotropic case, is due to the stress anisotropy: in order

to propagate the crack, the reduced pressure p' = g A_._pf(t) N±dt has to be at

least equal to the normal stress on(O). When considering cracks in the field conditions,

we usually have:

lon(6= 0)1 = 1o-3| > JlI = Jon( = 7r/2)1 (4.30)

so that a crack in the bedding plane (9 = 0) will require a greater fluid pressure to

propagate compared to a vertical crack (9 = 7r/2) .

* The second one, specific to the anisotropic case, is due to the difference in the compli-

ance felt by the crack R(O). For instance, when considering shale materials (see Table

C.3),

W(6 = 0) = 7i > N2 = -(9 = 7r/2) (4.31)

so that it is easier to open a crack in the bedding plane (0 = 0) than a vertical crack

(0 = 7r/2).

Below, we investigate how these two phenomena compete together. Putting together Eq.
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(4.28) and (4.29), one obtains:

Q(l, 6) = ir2 lN 1 { cos2 9 + 2 sin 2 ) pf+ 2 (0s cos2 9 + W2o-1 sin 2 9 p' +
Pf P (4.32)
2 cos2 0+ W2 gsin29}

We consider the fracture energy Qc independent of the crack-orientation and the mode

angle (see Section 2.3.2). Thus, we rewrite Eq. (4.32) as:

S(cos2 9 + A sin2 9) -+ 2 (3 cos 2 9 + Ai sin 2 9) -'+ge Pf Pf(4.33)
&2 cos 2 9 + A& sin 2 9 _ 1

where we introduced the parameter A = that quantifies the degree of anisotropy and the

dimensionless fluid pressure and far-field stresses j'_ =-, 1 = &- and 3 = ' where

0o3c = is the critical stress required to propagate a fracture of length 21 in the bed-

ding plane.

The critical fluid pressure required to propagate a crack making an angle 9 with respect

to the bedding plane can be obtained by equating the energy release rate and the critical

one in Eq. (4.33): 9(1, 9) = 9c.

We then introduce the dimensionless critical pressure:

p'y(6) - l -1 _ 03=f F (1 = -, 03 = -, A = -- ; 0) (4.34)
p'y(6 = 0) 03c 0'3c N1

that reaches its minimal value for the preferred crack orientation.

The function F is given by:

=3 cos2 + A&i sin 2 9- icos20+ A sin 2 0 - A (Ei - C73 )2 sin2 O cos2 (
(&3 - 1) (cos 2 6 + A sin 2

0)

For the sake of simplicity, we compare here only two crack orientations: 9 = 0 and 9 =

7r/2. The crack propagation will be more favorable in the vertical direction if F(7r/2) < 1.
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This condition can be rewritten as:

V' (|1|1 - J3|) < V/ - 1 (4.36)

In isotropy, A = 1 so that the condition (4.36) is satisfied if Iail < 1U3l We thus recover

the well-known result: In isotropic media, crack propagation is more favorable in the direc-

tion normal to the minimum far-field stress.

From now on, we assume lo-il < 1o3| as the general case.

Let us first consider the cases in which A > 1 that is to say for materials such that

> or, in other terms, for materials with negative first Thomsen parame-

ter e (see Appendix B). For such materials, condition (4.36) is also always satisfied since

V2A (I&I - |31) < 0 < VX - 1. This allows us to extend the previous property: In materials

having a negative first Thomsen parameter (e < 0), crack propagation is more favorable in

the vertical direction than in the horizontal direction if |0-1| < lo-3|.

If we now consider materials with a strictly positive first Thomsen parameter (e > 0 4

A < 1), the most favorable crack orientation will depend on the crack length and the fracture

energy (or toughness). We introduce the reduced toughness k, defined as:

kc = T (4.37)

If A < 1 and I al < lo-3 1, there exists a critical crack half-length le below which the favored

crack orientation is horizontal and above which the favored crack orientation is vertical.

This critical crack length is equal to:

k2 -_A 2

e = -(4.38)
irA lo-31 - IalIJ

Remark 18 Unless for very high fracture energies (toughnesses), the critical crack length

le is usually small. For instance, if we take ke = 5 MPa.m1/2, A = 0.7, |0-3| = 40 MPa and

|o-1| = 38 MPa, one gets 1e = 7.6 cm. We then deduce that the favored crack orientation is,

even in transverse isotropy, usually perpendicular to the minimum far-field stress, just as in

isotropy.
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4.3 The strong coupling equations

4.3.1 Dimensionless equations for a viscous fluid

In the case of a constant injection rate Qo let us introduce V(t) and T, the dimensionless

abscissa and time and dF, p, K and I the dimensionless crack opening, effective pressure,

stress intensity factor (and toughness) and crack half-length defined as:

ki

X

t

-p

(4.39)

with P a reference pressure and:

T

W

L

163

S3rjQo-47;P2

25671p4

163 /

(4.40)

We also introduce the dimensionless horizontal and vertical far-field stresses: ai = g,
the dimensionless Irwin matrix: Hij = H and the dimensionless fracture energy: c(6) =

.(6) If we introduce the dimensionless parameter A = 7 - that catches the degree of

anisotropy -, the dimensionless Irwin matrix can be written as:

1 cos 2 0 + A sin 2 0

cos2 6+ A sin 2
0 [(A - 1)cos0sin6

(A - 1) cos 6 sin 1
sin 2 6 + A cos 2 0

Since the dimensionless abscissa T depends here on time t, one should notice

fOf 828f
(.t, 0) = "f(z, 0~ + (2,; t)' (4.42)

Also, as the fluid pressure pf(x) appears only through its derivative with respect to x, and

as o-, is uniform, one can replace the fluid pressure pf(x) by the effective pressure p(x) =
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pf (X) - 0n

Using the dimensionless parameters just introduced, the coupled problem can be written

as:

Find p(2, f) and I(t) for (zt) E [0, 1x [0, §If] such that:

H12 cos 0 sin 0(7i - o3)IV/l -t2

±I(t) f15 = " f) dudT = (z., )
F'"= Dw(O V___U 1&

T-, -j)- += ,t) T2(x, t) (2,t)) (,t) = 0

T() > 0

a (RJ R - Qc(0)) = 0 (4.43)

1~ (i-,19) ('t = ,)1- (z-i = , )

1(3)(z= 1, ) = 0

T((0f 1 ) (u,)du = 1

i(f= 0) = 1o

Equation (4.43) is a highly non-linear system of equations which needs to be solved

numerically.

Remark 20 One can notice that the set of dimensionless equations to be verified depends

only on six parameters: the dimensionless initial effective pressure po(x) = p'(x, the dimen-

sionless initial crack half-length lo = , the crack orientation 0, the dimensionless fracture

energy Uc(9) = the degree of anisotropy A = k and the degree of stress heterogeneity

&1 - &3 = aoi o3

4.3.2 Dimensionless equations for a non-viscous fluid

If the fluid is considered as non-viscous (rj = 0), then there is no flow in the crack (Q(x, t) =

0) and the pressure in the crack is uniform (p(x, t) = p(t)).

For this case, let us introduce dimensionless crack half-length, effective pressure, far-field

89



stresses and time defined as:

with P' a reference pressure and:

I
T'

T

- t)
7T (4.44)

(4.45)
=Qlo

2Qou

Then introduce the dimensionless fracture energy 0c = , and the dimensionless Irwin

matrix from Section 4.3.1.

Using the dimensionless parameters just introduced, the coupled problem can then be written

as:

Find i(t) and I() for T E [0, Tf] such that:

± p ( 2H112qP(i ± fi22q2)

a 2 + 2H 1 2U(I) + $ 2 2q2

= 0)

I(T = 0)

A +±Hi2 q +

0

0

(a1 - a3) cos 0 sin 0

1

(4.46)

4.4 Numerical solution for the solid problem

Except for some specific cases, the computation of the integrals in Eq. (4.43.1) is not

straightforward. We have to make use of numerical methods to solve our problem.

4.4.1 Discretization

The segment [0,1] is divided into NN - 1 segments of length h = N 1. Given the fluid

pressure at each of the NN nodes, the pressure is interpolated by the use of the hat function
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(x) = (1 - |xl)1[-1,1I(x):
NN

= 1Pk~x)
k=1

(4.47)

with Xk = (k - 1)h; while #k(x) = #(x-Xk) is the hat function which is equal to 1 at node

k and 0 at every other node.

4.4.2 First numerical integration

To be able to compute the crack opening, we first need to compute the function:

P() = T du
JO r 2

(4.48)

Substituting (4.47) into the (4.48), we obtain:

NN

P(T) = EPk. (rPk(r))
k=1

(4.49)

with:

0I

k (X) dx

h 1[_,1( )d
V1r2 _ X2 h

(4.50)

If r < k-1, then Pk(t) = 0, otherwise:

_k(T) min(TJk+l) 1 (h - Ix - kI d
Jmax(0,k_1) h r 2 

-

Jmin(7,4k+1) 
1 + min(T,2t)

max(O,2k-1) 2 2 max(O,st_1)

X-Xk dx
h V 2 -X 2

/min(max(r,-tk),zk+1) 1 X - Xk
Xk h ,72 _ X 2

min(-,sk)max(0,5k-1)

1 h-Xk d- dx±
h y2 -_x 2

I min(T,-k) x dx

max(0,2ki) h r 2-x 2

min(max(r,-k),-k+1) 1 h + Xk
- dx

k h vr72 _- x2
min(max(r,-k),2k+1) X dx

h 72 _ x2
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Finally we have:

~'/Xk, Jmin(-r,7-k) )(T) + (1+tk)jmin(!naX(T,,tk)-tk1(
Pk (T) = l]zk_1+oo m (z_)mnmax(,,k),k h +

+ 1Jm(mX-) jmin(max(,-k),-k+1) (T) (4.52)

with:

a dx arcsin a (4.53)
a V72 _ X2 T a

and:

Ja j bT2X 2 dx= - X2] b (4.54)
a a

Using Eq. (4.49) - (4.54), one can then compute the function P(r) = r fJ AU2 du.

4.4.3 Computation of dimensionless crack opening

We saw in the previous Section that the first integral in Eq. (4.43) can be analytically

computed when the pressure field is interpolated from the values of jp at NN nodes by means

of hat function. However, the computation of the crack opening involving the integration of

functions of the form I--= and acn r is much more complicated.

Indeed, we have to compute for t c [0, 1]:

=v J 1 P(I dTr

= l Pk d (4.55)
k=1 5}2_2

so that:
NN k 1 r(u)Pk(r(u))

w( ) = Jpk d-u (U - (4.56)
k=1 - ,g2_g

with T(u) = Iu+ .

The integral appearing in Eq. (4.56) can be computed using Gauss-Legendre's method (for

more details, the reader is directed to Ref. [251, for instance) approximating the integral of

a function f on the segment [-1, 1] by:

1 NG

Sf (u)du N wf (y) (4.57)
-1if 
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where y are the roots of the NG-th Legendre's polynomial PNG(x) and the weight wi =

(NG+1)PNG i)PNG+1(yi). The computation of the roots yi can be done using Laguerre's

method.

Knowing the value of the fluid pressure at each node, one can deduce the value of the

crack opening at each node using the relationship:

{ } =TI[M] . {M} (4.58)

where:

Mig

ri (u)

{}i

{p}i

= 1-( f du

2 2

=p~zi)

(i, j) E [1, NN x [1 NN]

i E [1, NN]

i E [1, NN]

i E [1, NNI

(4.59)

4.4.4 Computation of the dimensionless Mode I stress intensity factor

One can notice that the algorithm developed in Section 4.4.2 allows the computation of the

stress intensity factor k1 (I) as well:

fi~) d NN

$ 1 (I) = vt PU)dU =iiZPk.Pk(T 1)
u=0 -1 k=1

(4.60)

We define [A] the 1xNN matrix such that A1,k = P(T = 1), leading to:

Kr(I) = \/I[A) . {p} (4.61)

4.5 Numerical solution for the strong coupling

Because of the first weak coupling (the fluid problem) and the crack-propagation criterion,

the strong coupling is highly non-linear. While the second weak coupling could be linearized

(Eq. (4.58)), solving the strong coupling requires the use of numerical methods. We here

chose to use an improved Newton's method: Broyden's method, sometimes used in fluid/solid

coupling problems [3].
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4.5.1 Solving a non-linear problem

We have to solve an equation of the type {F} ({X}) = {0} where {X} is a nxl vector

containing the unknowns and {F} a nxl vector to be vanished.

The classical Newton method involves the (expensive) computation at each iteration i of

the Jacobian: [Jj = a ({X}) or of its inverse. Indeed, while some norm of the vector

{ F} ({X}) to be vanished is greater than a certain value e, Newton's method requires the

computation of {X}i+1 using:

[J]i .({X}i+ 1 - {X}2 ) = - {F} ({X}) (4.62)

As for Broyden's method [9], it only computes the Jacobian [J]O1 once and then uses the

following approximation for the Jacobian at the next iteration:

{AX - [J]T1 {AF}j 1±J 1=Jf t{Ax}.[J] 1.{ AF {AX}+ 1 {[J]T (4.63)

where {AXjj+1 = {X}jg - {X}j and {AF} 1 = {F} ({X};j 1 ) - {F} ({X}j).

The vector {X}j+1 is then computed as follows:

{X}jg = {X}, - [J]7 . {F} ({X};) (4.64)

4.5.2 Implementation

To solve the strong coupling using the method presented in the previous section, we need to

define the vector {F} ({X}) to be vanished.

We denote by {Vi} any vector {V} at time fj, and by Ati the time step AP' = Fj+1 - Fj.

Here, the unknowns are the pressure at each of the NN nodes and the crack half-length

at time Tj, knowing these quantities at time Ti1. Thus, the unknown vector {X} is such

that: Xj = jk fork E {1, ..., NN} and X'VN+1 = I. The vector {F} will have to regroup the

information contained in the equations of the two weak couplings. We can already remark

that the boundary condition (4.437) is verified provided that the crack opening verifies Eq.

94



( 4 .4 3 1), and provided that L is not singular at T = 1.

Equation (4.432) can then be discretized as follows:

tj-fj' '{Iin 1 [D{]ftFjI~ + i FFj-I
A * [) {t'} + 1 (4.65)

(- [Dx] {({1a})3 * [Dx] {#} = {O}

with [Dx] the NNxNN space differentiation matrix defined by [D2]ij = (-6i, + i,j+1)

(6 i,j being the Kronecker delta). The spatial derivative is here defined as (0k) = +

* is the term by term multiplication: {{a} * {b} = aibi and ({a}) 3 = {a} * {a} * {a}.

Substituting Eq. (4.58) into (4.65), one obtains:

______--''' IX [M] {+ -M Pj V- 1)
t- * [V [ { (4.66)

(1 7 [Dx] { ([M {pj})3 * [Dx] {P}} = 0

One may think that Eq. (4.66), containing NN independent equations, would be enough

to define the first NN components of the vector F. However, the last equation cannot be

used since the derivative at T = 2NN = 1 is ill defined. The NN-th component of the {F}

vector can be obtained from condition (4.438):

1 0 (4.67)

or,

_ _ - 1 = 0 (4.68)

where 9i is the volume of the half-crack at time Tj approximated, for instance, by the

relationship:

9 = I h h ... h h]. { }(4.69)

For the last component of {F}, we will use the propagation criterions (4.433)-(4.435). If

the crack does not propagate, then FNN+1({X I) = I' - I- 1. If the crack propagates, then

FNN+1({Xj}) = Km(I)HmnKn(I) - Uc, with kR (P) = v [A] {j i}.

Let {X}l be the NNx1 vector containing the NN first components of {X} (Xk = Pk)).
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We then have at each time step:

Fk({X}) = - N N+1 E * [Dx] [M] -+NN+1

- [Dx] ([M] * [DX]

for k E{1...NN - 1}

FNN({X}) = h ... h A] . [M] {N+1N'+1-XjN-4{3 }- i
2 2 At- 1

FNN+1({X}) XNN+1 XN+1 if the crack does not propagate

FNN+l({X} 2 ) = Rm(0)RfmnRn(T() - Oc if the crack propagates

4.5.3 Solving scheme

We consider the following problem: Given the dimensionless initial half-length Io of a plane-

strain crack oriented by angle 0 with respect to the plane of isotropy, the dimensionless

fracture energy Cc, the dimensionless initial effective pressure 150, the degree of anisotropy

A = 7 and the stress heterogeneity &3 - &1, find the dimensionless crack opening, pressure

field and half-crack-length at the dimensionless time Tf.

To solve this problem, we will have to:

1. Discretize the space segment [0, 1] into NN - 1 segments of length h 1NN-1

2. Compute once the NNxNN matrix M with NG Gauss points.

3. Initialize the time increment j at j = 0, the time step APt = V, the X-vector at

Xk = - for k E {1, ... , NN} and XNN+1 = lT and the prediction of the unknown

vector at {X*j+1} = {X}.

4. Get the predicted X-vector {X*j+l } at time step j+1 solving the nonlinear problem

{F} ({X*i+1}) = {0} without allowing crack propagation (FNN+1({X}3 ) = XNN+1

X*NN+1)

5. Compute the stress intensity factor R*j = k,({X*j+1

if R j+1g g*j+1 < 6c then {Xj+1} = {X*j+I),
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else get the X-vector {Xj+1 } at time step Tj+ 1 solving the non linear problem

{F} ({XJ+1 }) = {0} enforcing the crack propagation (FNN+1({X}') = Rmi()ftmnkn(T))

6. i +- j+ 1, {X*j+l} = {X*j}, APt = N; and goto step 4 if t< Tf;

4.6 Numerical results

4.6.1 Comparison to Carbonell's self-similar solution

We first benchmark our simulator by comparing our numerical solution to a self-simular

solution given in Ref. ill] (in the small toughness regime). We employ similar parameters

to those given in this paper. Specifically, the fluid injection rate, fluid dynamic viscosity,

elastic coefficient, fracture toughness, initial length and final time are taken equal to:

Qo = 4.10-3 m 2 .s 1

7 = 853.10-3 Pa.s-1

1 = 0.012 GPa-1

K = 0.14 MPa.m1 / 2  (4.70)

lo = 0.4 m

tf 1000s

This comparison is displayed in Fig. 4-3 to 4-5, showing an excellent agreement of our

results with the benchmark results. In Fig. 4-3, the crack-half length is plotted as a function

of time. Figure 4-4 (4-5) shows the crack-opening (effective pressure) at the injection point

and close to the crack-tip.

4.6.2 On the influence of the problem parameters

The numerical results presented below inverstigate the influence on the crack propagation

of the elastic coefficient 7, the fracture toughness KIc and the dynamic viscosity q.

The fixed parameters are the flow rate Qo = 4.10-3 m2 .s 1 , the initial pressure po = 20

MPa and the initial crack length 10 = 0.4 m.
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Figure 4-3: Crack half-length as a function of time computed numerically (solid blue) and
from the self-similar solution (dashed red).

0.1 1 10 100 1000
Time (s)

(a) At injection point.

(.

.S o

EL

2 E.

0

0.1 1 10
Time (s)

(b) Close to the crack-tip.

Figure 4-4: Crack-opening as functions of time computed numerically (solid blue) and from

the self-similar solution (dashed red).

Influence of the elastic coefficient N

We consider two materials of different elastic coefficients N: N = 0.012 GPa- 1 and N' =

0.015 GPa- 1 . The apparent stiffness of the first material is greater than the second one.

Since the crack volume is equal to the volume of the (incompressible) fluid, a crack in the

first material tends to propagate while a crack in the second one tends to inflate (see Fig.

4-6 and 4-7).

Influence of the fracture toughness Krc

We consider two materials of different fracture toughness Kic: K c = 1 MPa.m1 / 2 and

K' = 10 MPa.mi/ 2 . Irwin's criterion K1 = Kmc is first reached in the material with the

lower toughness and the crack should thus propagate faster (see Fig. 4-8 and 4-9).
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(a) At injection point.

Figure 4-5: Fluid pressure as function of time
the self-similar solution (dashed red).
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(b) Close to the crack-tip.
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Figure 4-6: Crack half-length (left) and crack-opening at injection point (right) as functions

of time for different elastic coefficients R (in solid blue: W = 0.012 GPa-1, in dashed red:

'H = 0.015 GPa- 1 ). The fracture toughness was taken equal to 1 MPa.m1 / 2 and the dynamic

viscosity to 0.8 Pa.s- 1 .

Influence of the dynamic viscosity r/

Numerical simulations are performed for several dynamic viscosities. The results show that

the higher the viscosity, the lower the pressure at the crack tip. As a consequence, the stress

intensity factor (which depends strongly on the pressure at the crack tip) is lower for high

viscosities. Thus, a crack propagates faster at low viscosities (see Fig. 4-10 and 4-11).

Application to gas shale, the effect of anisotropy

Shale materials can be considered as transversely isotropic [37]. The toughnesses in the prin-

cipal directions 1, 2 and 3 can be estimated experimentally. Furthermore, the indentation

moduli in directions 1 and 3 can also be measured. To determine the coefficients Wi, i = 1,

2 and 3 of shale, we also need the ratio C1 1 /C 3 3 which we do not have a priori. This ratio
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Figure 4-7: Effective pressure distribution along the crack (0 corresponds to the injection

point and 1 to the crack-tip) for different elastic coefficients W (in solid blue: R = 0.012

GPa-1, in dashed red: W = 0.015 GPa-1). The fracture toughness was taken equal to 1

MPa.m1 /2 and the dynamic viscosity to 0.8 Pa.s- 1 .

can however be expressed in terms of the first Thomsen parameter c as: C33/Cu = 1 + 2E.

Except for a non-viscous fluid, we cannot directly conclude in which direction the crack

will propagate faster. For a non-viscous fluid, let us consider two materials such that W > '

and Kc < Kc. Comparing two cracks propagating in these different materials (with the

same initial conditions), we have: l' 3/2 (t) _ 13 / 2 (t) = at + b where a and b are two constants.

It can be shown that a is such that:

a oc 1 _ c (4.71)

We then conclude that, eventually (i.e. for a large enough time t), the crack with the

smaller ?KIc value will propagate faster. To compare two cracks, we then have to compare

the product -Kc. For viscous fluids, numerical computations lead to a similar conclusion.

4.7 Chapter summary

In this Chapter, we modelled the fluid-driven crack propagation in anisotropic materials,

and possibly under shear conditions.

It was shown that, provided that the right elastic parameters are used, one could take

advantage of the work already done in the isotropic case.

We also introduced a critical crack length below which the crack propagation will be more
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Figure 4-8: Crack half-length and crack opening at the injection point as functions of time

for different fracture toughnesses K 1c (in solid blue: KIc = 1 MPa.m-1/2, in dashed red:

Krc = 10 MPa.mi/ 2). The elastic coefficient was taken equal to 0.012 GPa- 1 and the

dynamic viscosity to 0.8 Pa.s- 1 .

favorable in the direction for which the stiffness felt by the crack is smaller. However, above

this critical crack length, the favored direction of crack-propagation is, as in the isotropic

case, perpendicular to the minimum far-field stress.

The governing equations of the problem were written in a dimensionless form.

A possible way to solve numerically the non-linear solid/fluid coupled problem was also

suggested. Our numerical results were compared to an existing self-similar solution for the

case of small toughness. The role played by the different parameters of the problem was

identified.

What thus emerges is that the existing scholarly work developed for the isotropic case

acan be applied to the anisotropic case provided that the right elastic parameters (identified

in the previous Chapter) are employed. In addition, the simulator developed for the fluid-

driven crack propagation problem is a viable (i.e. efficient) alternative to those already

existing in industry.
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Figure 4-9: Effective pressure distribution along the crack (0 corresponds to the injection
point and 1 to the crack-tip) for different fracture toughnesses Kmc (in solid blue: KIc = 1
MPa.m- 1/ 2 , in dashed red: KIc = 10 MPa.mi/ 2 ). The elastic coefficient was taken equal to
0.012 GPa-1 and the dynamic viscosity to 0.8 Pa.s 1 .
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Figure 4-10: Crack half-length and crack opening at the injection point as functions of time
for different viscosities rq (in solid blue: r7 = 0.8 Pa.s-', in dashed red: r/ = 0.08 Pa.s- 1).
The elastic coefficient was taken equal to 0.012 GPa- 1 and the fracture toughness to 1
MPa.m 2.
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Figure 4-11: Effective pressure distribution along the crack (0 corresponds to the injection
point and 1 to the crack-tip) for different viscosities q (in solid blue: 77 = 0.8 Pa.s- 1, in
dashed red: 77 = 0.08 Pa.s- 1 ). The elastic coefficient was taken equal to 0.012 GPa- 1 and
the fracture toughness to 1 MPa.m1 /2
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Chapter 5

On flat ellipsoidal cracks in

anisotropy and crack-shape

adaptability

So far, we focused on two-dimensional plane-strain cracks. This type of cracks is well suited

to model, for instance, magma-driven crack propagation such as in dykes (43]. However,

when considering the hydraulic fracturing problem, three-dimensional models are more rel-

evant. In this Chapter, we focus on elliptical cracks in a general anisotropic solid subjected

to a uniform internal pressure and possibly to a uniform shear stress. We specify the model

for the case of transverse isotropy. Finally, we study how cracks can adapt their shape to

the elastic anisotropy.

5.1 Elliptical cracks in general anisotropy

In this Section, the problem of an elliptical crack subjected to a uniform loading is addressed.

The parameterization of the problem is given in Section 5.1.1 and the solution from Hoenig

[26] is summarized in Section 5.1.2.

5.1.1 Problem statement

We consider elliptical cracks (see Fig. 5-1) of semi-major axis a (aligned with the direction

ex) and semi-minor axis b (aligned with the direction ey). Introduce the (inverse of the)
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Figure 5-1: Elliptical crack geometry.

Figure 5-2: Definition of the 6-angle for a penny-shaped crack. On the left, crack in the
bedding plane, in the middle, inclined crack, on the right, vertical crack.

aspect ratio -y = b/a < 1. If -y = 1, these cracks are often referred to as penny-shaped cracks

[40]. The crack-edge can be parameterized either by the polar angle #' (see Fig. 5-1) or by

the angle # satisfying tan ' = -y tan 4:

x = a cos# = R(#') cos #'

y = bsin# = R(#') sin#'

where R(#') is the distance from the origin to the crack edge (see Fig. 5-1).

The crack so-defined is lying in an anisotropic material (the canonical orthonormal basis

of the material is (l, f2, 3)) and the crack-plane makes an angle 6 with the plane (f 1 , f 2 )

(Fig. 5-2). In the case of an elliptical crack (-y < 1), we also have to define the angle

a = (flef) (Fig. 5-3). We then have:

cos a sin a cos 0 sin a sin 0 e,

e -sin a cos a cos 6 cos a sin 6 Ie2 (5.2)

fZ 0 -sinG 0 Cos 0 e3s

The crack is subjected to far-field stresses o;, and we want to find all the relevant quantities

of a fracture mechanics problem: crack opening displacement [], stress intensity factors Ki
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Figure 5-3: Definition of the a-angle for an elliptical vertical-crack (9 = 7r/2).

(i = I, II or III)1 and energy release rate g. These quantities will only depend on the

stresses ooz (6 = x, y or z) or in an equivalent manner, osy, (6 = x', y' or z', see Fig. 5-1).

For isotropic materials subjected to a Mode I loading (oaxy, = Ozfy, = 0), the solution

of this problem was presented by Irwin [30]; and for general anisotropy and possibly mixed-

mode loadings by Hoenig [26]. The following Section presents the main results from Hoenig.

To keep consistent with the notations from the previous Chapters, some notations from

Hoenig's original paper have been changed.

5.1.2 Main results from Hoenig [26]

Hoenig's solution is based on Eshelby's theorem [17] on ellipsoidal inclusions in anisotropic

media. From this theorem, the displacement discontinuity can be written as:

Ro](r, #') = 2#/' 1- (Rr F, , = X,y or z (5.3)

where r and #' are the polar coordinates (see Fig. 5-1), #6 some dimensionless coefficients

that are linked to the far-field stresses through a 3x3 matrix, [C], by means of the relationship:

3 = C-1iy, (5.4)

The main idea of Hoenig's solution is to consider that locally (see Fig. 5-4), each point

along the crack edge (parameterized by angle #) behaves as a point at the crack-tip of a

'Indeed, we deal here with a fully three-dimensional problem. We then have to account for all three
fracture modes.
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Figure 5-4: Zoom at the crack-tip.

crack in a plane anisotropic elastic body. The two-dimensional equivalent crack belongs to

the plane (e_,, ez,) such that e& = P6,ie (' = x', y' or z' and i = 1, 2 or 3) with:

cos (a + T) sin (a + ) cos (0) sin (a + F) sin (0)

= 0 - sin 6 cos 0 (5.5)

sin (a + T) - cos (a + %) cos (0) - cos (a + T) sin (0)

where tan4' = 1 tan#.
-y

The stiffness constants to be considered for the study of this two-dimensional crack are

defined in the orthonormal basis (ex,, e,,, ez,) as follows:

S,/ = (RC),,i SiJ (tRn)g, (5.6)

(see Section 2.1.2 and Appendix D).

We define a local energy release rate 0(#) that can be written in terms of the local stress

intensity factor vector {K4(4)} = [KI (4) KIIQ(#) KIr, (#)] as:

G4(#) = 7rt {K4(#)} . [H4(4)] . {K4 (#)} (5.7)

where [H4(#)] is the local three-dimensional Irwin matrix2 given in Appendix H, Eq. (H.5).

2 Again, the name Irwin matrix is not standard. However, since this matrix seems to play an important
role in any fracture mechanics problem, we found it convenient to give it a name.
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The local stress intensity factors can be deduced from the coefficients 36 through:

Ki(#) = ' (H4-1(#)) Tk Rkl ()3I (5.8)

where [TI is defined in Appendix H, Eq. (H.6), while [R] 1 is the inverse of the [R] matrix

defined as3

y cos# sing 0

[R(#)] = .0 0 sin 2 4 + 72 cos2 4 (5.9)
(/smn2 4 + 7y2 cos2 si o

Remark 21 Exactly as in the two-dimensional case, the near-tip displacement jump can be

written in terms of the stress intensity factors as:

[ ](e,#)=[ 4 )J ](e,#)~ 8 (2H (5.10)

where e = R(#) - r.

The global energy release rate defined as 4  = - 9 (where ' =rab is the crack

area) can be deduced from the local energy release rate:

1 2-rg = j-- 04()d#5 (5.11)
27r k=o

Remark 22 g is nothing else but the average of the local energy release rate 90(#) along

the crack edge. In the plane-strain case, we actually used in Eq. (3.69) the two-dimensional

analogous formula 9 = { (gleft + gright).

Combining Eq. (5.7)-(5.8)-(5.11), one can obtain a first expression for the energy release

rate. A second expression can be obtained from the displacement jump given by Eq. (5.3)

(this method is similar to what is presented in Appendix F for the two-dimensional case).

Equating the two5 , Hoenig found the following expression for the [C] matrix introduced in

3There is actually a misprint in the definition of [R] given in Hoenig's original paper [26].
4We consider here that when the crack propagates, it keeps its shape, that is to say that the ratio -y = b/a

and the angle a remain constant.
5The very same method (equating two expressions of the potential energy) was actually used by Irwin
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Eq. (5.4):
1 &2

1

[C] = '([T]. [R(#)J) . [H4(#)]~1 . ([T] . [R(#)]) do (5.13)87r f04=o

Remark 23 Fabrikant [181 studied the problem of a vertical elliptical crack in a vertically

transversely isotropic material using a completely different approach. While Hoenig solved

the problem by identifying two different expressions of the potential energy, Fabrikant used

the complex potential theory. Hoenig's and Fabrikant's solutions were compared for the case

of elliptical cracks subjected to a pure Mode I loading. Both solutions match.

5.2 Specification to isotropy and transverse isotropy

In this Section, we specify the solution presented in Section 5.1 for isotropic and transversely

isotropic (TI) media. We will first (Section 5.2.1) consider elliptical cracks in isotropy. We

will then (Section 5.2.2) focus on penny-shaped cracks in a TI material.

Before doing this, it is important to mention that for cracks belonging to a plane of

material symmetry, the local Irwin matrix [H4] is diagonal. Indeed, for such cracks, the

three fracture modes are (at least locally) separable: a normal displacement jump induces

only a Mode I stress intensity factor; and the same for Mode II or Mode III. For cracks

belonging to a plane of material symmetry, we then have:

_1

HF = 1 (5.14)

for i C {1, 2, 3}, all the other components H 1 being null.

5.2.1 The specific case of elliptical cracks in isotropic media

Let us first focus on cracks in isotropic media. Since the Irwin matrix [H4] is diagonal, the

[C] matrix defined by (5.13) is also diagonal.

[30] in the case of an isotropic material. The only difference comes that in isotropy, the Irwin matrix is
independent of 4:

1V2 0 0
[H]= 0 0 (5.12)

.0 0 1+

As in the case of plane-strain cracks, this is the limit case of a material having elastic constants such that
#1 = -E + i, [12 = E + i, [13 i, A1 = -a - i,3, A2 = a - if3, A3 = -i-y with (c,a,,3 ,y) E p4 and
{E,a,,3,y} -+ {0,0,0,0}.
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Remark 24 The fact that both [HO] and [C] are diagonal has important consequences. Far-

field stresses of the form:

=9= -zzfz 9z (5.15)

induce neither Mode II nor Mode III stress intensity factors (K11 = K 111 = 0); while

far-field stresses of the form:

17 = g-xz(fx 0 ez + Pz @9 e) + o-yz(ey @9 fz + fz 0 ey) (5.16)

induce no Mode I stress intensity factor (K1 = 0).

If the crack is subjected to a pure Mode I loading (o-,r,' = -,/, = 0), only the coefficient

C 33 is of interest, and is equal to:

1 7rE
C33 = 4E(e) (5.17)

8 7rV'f 1 - v

where e = V/1 - y2 is the eccentricity of the ellipse and E(k) = f,1 /1 - k2 sin 2 #d# is the

complete elliptic integral of the second kind, that has to be numerically computed.

Remark 25 The complete elliptic integral of the second kind is actually proportional to the

circumference, c, of the crack: c = 4aE(e). C3 3 can then be written in terms of the crack

area r = irab and the crack circumference c as :

= c 7rE (5.18)
8v/3 1 -V2

We then deduce that the Mode I stress intensity factor of an elliptical crack subjected

to a uniform normal far-field stress ogy, = o-zz is equal to:

K1(#) = sin 2 # + 72 cos 2 # a ry (5.19)

Remark 26 Just as in the plane-strain case, the Mode I stress intensity factor is indepen-

dent of the elastic properties of the material. In the particular case of a penny-shaped crack

= 1), it is constant along the crack tip and equal to:

Kenny-shaPed = 2 a Klane-strain(l - a) (5.20)7r 7
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Figure 5-5: Dimensionless Mode I stress intensity factor as a function of #' for an elliptical
crack such that y = 1/2 in an isotropic medium.
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Figure 5-6: Dimensionless local energy release rate as a function of #' for an elliptical crack
such that y = 1/2 in an isotropic medium.

For an elliptical crack characterized by -y = 1/2, the dimensionless Mode I stress intensity

factor and local energy release rate are plotted as functions of the angle #' (see Fig. 5-1) in

Fig. 5-5 and 5-6.

5.2.2 The specific case of penny-shaped cracks in transverse isotropy

We saw in the previous Section that in isotropy, a penny-shaped crack subjected to a normal

far-field stress a = z 0 e2 has three properties:

* The Mode I stress intensity factor does not vary along the crack front.
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* Mode II and Mode III stress intensity factors are zero.

* The Mode I stress intensity factor is independent of the (isotropic) elastic properties

of the material.

When considering anisotropic media, we will see that - unless for some specific crack orien-

tations - none of these properties shall be true anymore.

We introduce the dimensionless stress intensity factors, Irwin matrix, energy release rate

and displacement jumps defined as:

[R = 2H Ki

(IZ4] =I- [HO|
ad = t{fRol [-h] .{k4 (5.21)

n

Study of inclined penny-shaped cracks in a transversely isotropic medium

We consider here penny-shaped cracks in a TI medium. The crack-plane makes an angle 9

with respect to the plane of isotropy of the material (see Fig. 5-2) and the crack front is

parameterized by angle # = #' (see Fig. 5-1). This crack is subjected to a uniform far-field

stress g = o-ZZeZ @ eZ-

Figures 5-7, 5-9 and 5-8, 5-10 show how respectively the Mode I stress intensity factor

and the energy release rate evolve along the crack front for different crack orientations

(9 E [0, 7r/2]) for different materials. They highlight the fact that for any crack orientation

other than for cracks in the bedding-plane (9 = 0), both the stress intensity factor and the

energy release rate vary along the crack front. In isotropic media, this was the case only for

crack parameters y strictly lower than 1, while we find this here for penny-shaped cracks

(y = 1) in TI materials.

For the clay model and for the reference TI material (see Appendix C), when considering

vertical cracks (9 = ir/2), both the Mode I stress intensity factor Kr and the local energy

release rate 0 reach a maximum for # = ±i7r/2 and # = 0, respectively6 .

6 was taken equal to 7r/2 and y = 1.
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7r /2 -... ........ r...../ 24

Figure 5-7: Dimensionless Mode I stress intensity factor K1 (O, 4) for a penny-shaped crack

subjected to a normal far-field stress (for the clay model (see Appendix C)).

Figures 5-11 and 5-12 show that the three (dimensionless) stress intensity factors and

their associated displacement jump evolve along the crack front for different crack orienta-

tions and for different materials. It is interesting to notice that, contrary to the isotropic

case, there exists a Mode II and a Mode III stress intensity factor, as well as a tangential

and an out-of-plane displacement jump even if the loading is purely normal to the original

crack surface g = azzez 9 f-. However, these two non-normal displacement jumps van-

ish when the crack belongs to a plane of material symmetry (6 = 0 [7r/2]), just as in the

plane-strain case. As mentioned in Remark 24, this is due to the fact that the [C] matrix

is diagonal for 0 = 0 [7r/2]. When KJJ and k 1 l1 exist, they are both of similar order of

magnitude, and about one order of magnitude smaller than kJ. Contrary to the isotropic

case (see Remark 26), the stress intensity factors are no more independent of the elasticity.

Study of penny-shaped cracks belonging to a plane of material symmetry

We focus on two specific cases, 6 = 0 and 0 = 7r/2; that is, the cases for which the crack

belongs to a plane of material symmetry.

For 6 = 0 (crack in the bedding-plane), the crack does not feel any anisotropy: the

compliance matrix [S'] (see Eq. (5.6)) intervening in the calculation of the Irwin matrix,

[H4], is the same for every angle 4, so that [H4] is constant along the crack front. The
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0 0 7r/2 -7r/2 0 r/2

Figure 5-8: Dimensionless energy release rate grp""n(0, #) for a penny-shaped crack sub-

jected to a normal far-field stress (for the clay model (see Appendix C)).

Mode I stress intensity factor is then also constant and independent of the elastic properties

(see Remark 26). The energy release rate is constant along the crack front and equal to

9Penny(6 = 0) = 7ri(K, where 'hi = (Ho),, was introduced by Eq. (3.45). According

to Eq. (3.49), it can be written in terms of the vertical indentation modulus M 3 in the

following form:

grenny(0 = 0) = 4azz (5.22)
rM 3

In return, for 0 = 7r/2 (vertical crack), the crack fully feels the anisotropy of the TI

material. Indeed, the compliance [S'] now depends on # so that the coefficient (He)1 1 =H

(the only coefficient that is relevant to this crack orientation and this type of loadings) varies

along the crack front. For # = 0, it is obviously equal to the coefficient 712 introduced in

Eq. (3.45); and for # = ± 7r/2, it is equal to coefficient 'H3 also introduced in Eq. (3.45).

While the exact expression for (H4(#))11 = N(#) can be found in Eq. (3.37) - provided

that the compliance matrix from Section 2.1.3 is used7 - there is no easy formula for N(#).

However, a satisfactory approximation having the wanted 7r-periodicity was proposed by

Delafargue et al. [14]:

W(#) ~ H2 cos2 # + H3 sin2 # (5.23)

An even more satisfactory approximation (notably for materials such as shale, see Table

7 The 0 in Section 2.1.3 then corresponds to the 4 in this Section.
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Figure 5-9: Dimensionless Mode I stress intensity factor K 1 (9, #) for a penny-shaped crack
subjected to a normal far-field stress (for a reference TI medium (see Appendix C)).

C.1) is suggested here:

( sin ) (5.24)
712 W3

Comparisons of approximations (5.23) and (5.24) with the real values of W(#) given by

Eq. (H.5) in Appendix H are given on Fig. 5-13, 5-14 and 5-15 for different materials.

Except for Apatite, approximation (5.24) and (5.23) seem pretty good. The same type of

comparison was made for different shale materials and was also found to be satisfactory.

Given the quality of the approximations, one can explicitly estimate the coefficient C33 =

17r2d~
= O 4 (where we implicitly used Eq. (5.14)). Using approximation (5.23), one obtains:

1
C33 1 (5.25)

while the use of approximation (5.24) yields:

C33 ~ - -+(5.26)C3-8 (W2 + W3

The global energy release rate for a vertical penny-shaped crack can then be estimated

using Eq. (5.25) or (5.26). Using (5.25) yields:

gPenY(8 = 7r/2) ~ 4aozz / 2' 3 (5.27)
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Figure 5-10: Dimensionless energy release rate 0 "(0,#) for a penny-shaped crack sub-

jected to a normal far-field stress (for a reference TI medium (see Appendix C)).

while using (5.26) entails:

gpeny( = 7r/2) ~ 4aoz 1 2 (5.28)
79 +W3

Remark 27 According to [141, the coefficient C33 can actually be written in terms of the

indentation modulus in the horizontal direction M1:

1 1
C33 - - (5.29)

4 TrM1

so that the global energy release rate can also be approximated in terms of M1:

gpe"ly"(0 = 7r/2) 4aozz (5.30)
,7rM1

The ratio of the global energy release rate of a vertical crack over the energy release rate of

a horizontal crack is then found to be approximately equal to the ratio of the indentation

moduli:
gpen"y(6 = 7r/2) M 3  (5.31)

gpenny (0 = 0) M1

Another approximation than the one developed here was given in Ref. [33]:

gpeny( = 7r/2) 4(1 - (5.32)
_ 7rE 1
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The three approximations of the global energy release rate are compared for different

materials and the results are summarized in Table 5.1. The approximations (5.27) and (5.28)

are satisfactory for most of the materials considered, especially for shale; which is not the

case for approximation (5.32) showing a poor performance.

Approximation of the global energy release rate for inclined penny-shaped cracks

Consider now crack orientations 0 E [0, 7r/2]. Due to the symmetries of TI materials, one

knows that function gpe""y has to be 7r-periodic. Possible approximations for the global

energy release rate should be of the form:

gPenny(9) ~ gP""fY(0) cos 2 9 + gPenny(7r/2) sin2 9 (5.33)

or:

( cos2 o sin 2 9 -1
(0) ~ gpenn(0) + Penny(7r/2)(.

The true dimensionless global energy release rate and its approximations based on Eq.

(5.33) and (5.34) (using approximation (5.28) for the estimated value of gPen"y(7r/2)) are

plotted for different materials in Fig. 5-16 and 5-17. For the clay model and shale in general,

the approximation (5.33) gives satisfactory results.

5.2.3 The specific case of vertical elliptical cracks

Consider now vertical elliptical cracks. Taking advantage of Eq. (5.14), we write the local

energy release rate as follows:

g4((0= 7r/2; -y, #) = 4aoz zsin 2 0 ± _y2 cos 2  (5.35)
16H 11 (#) (i 2 Nsin2  4+_y2 cOs 2  4 d

81rfi 4=0 Hii1(4)

and the global energy release rate as:

g(0 = 7r/2; 7) = 4ao 2  27ry (5.36)ZZ 2~ yc~~d
2r /sin2 0+, 2 cos2 4 dob4=0 Hii1(4)

118



5.3 On crack-shape adaptability

Except for crack kinking, the crack-shape of two-dimensional cracks (studied in Chapters

3 and 4) after unloading is entirely determined by its half-length 1. In contrast, for three-

dimensional cracks, an infinity of possibilities of shapes is conceivable. However, depending

on the loading, some shapes may be more favorable than others. Due to the restrictions of

the model introduced in Section 5.1, we will look for the most favorable crack-shape only

among the possible elliptical shapes. We will introduce three possible criteria for crack shape

adaptability in isotropy and in anisotropy.

5.3.1 Crack-shape adaptability in isotropy

As we saw in Section 5.2.1, except for -y = 1 (i.e. for penny-shaped cracks), the Mode I local

stress intensity factor K1 and the local energy release rate Go vary along the crack front.

Interestingly, they reach a maximum for 4 = 4' = 7r/2 (see Figs 5-5 and 5-6). Based on this

observation, Irwin deduced that: '[...] with increase of tension on a flat elliptical crack, the

crack-extension, barring anisotropy, tend to produce a circular crack-boundary shape' [30].

This reasoning is valid whether one opts for a crack-propagation criterion based on frac-

ture toughness and stress intensity factors - KI Krc - or on fracture energy and energy

release rate - g ge - (see Section 2.3).

Furthermore, one can show that the global energy release rate g (see Eq. (5.11)) of an

elliptical crack (of crack parameter y = b/a) subjected to a pure Mode I is equal to:

g(-y) = ao , ^ (5.37)
E( /1 -- y2)

where N =H = .The function is plotted in Fig. 5-18. Interestingly, the

global energy release rate reaches a maximum for y = 1; that is, for a penny-shaped crack.

Irwin deduced that the favored crack shape was a circular shape. He based his reasoning

on the fact that only this shape ensures constant Mode I stress intensity factor K1 and

local energy release rate g4 along the crack front. An alternative to Irwin's reasoning could

be based on the fact that this shape is the one that dissipates the more energy when it

propagates (at constant crack parameter y).
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Furthermore, in the case of mixed-modes II and III loading conditions (due to the

crack geometry, one of these two modes cannot be separated from the other), irrespective

of the crack parameter -y, neither the stress intensity factors K11 (#) and KIII(#), nor the

local energy release rate 0(0) along the crack front will be constant. In fact, the ratio
gshear7 0=7r/2 2s equalto
9shear(7,4=0)

9shear (-Y, 7r/2) 1
9shear (, 0) 7(1 - V)

It cannot be equal to unity since y < 1 (at least with positive Poisson's ratios, v). It reaches

a maximum for y = 1.

Under this type of loadings, the maximum local energy release rate occurs (again) for

# = ' = ir/2, and the maximum global energy release rate is obtained for 7 = 1 (see Fig.

5-19). This suggests that the favored crack-shape under mixed-mode conditions would also

be of circular shape.

5.3.2 Crack-shape adaptability in anisotropy

Things are somewhat different when it comes to anisotropic solids. We saw previously (Sec-

tion 5.2.2) that cracks belonging to the bedding plane behaved exactly as cracks in isotropy.

Everything derived in Section 5.3.1 is then still valid, provided that the right elastic coef-

ficients are used. We will now consider vertical elliptical cracks (9 = 7r/2); that is, cracks

belonging to the other plane of material symmetry, the plane (ei, e). Then, we can play

with the two parameters determining the crack shape. The first one is the ratio Y = b/a

and the second one is the angle a between the semi-major axis of the ellipse and direction

f, (see Fig. 5-3).

We propose here three criteria for the crack-shape adaptability. The first one is based

on the global energy release rate, the second one on the Mode I stress intensity factor while

the third one is based on the local energy release rate.

Global energy release rate based crack-shape adaptability criterion

A possible criterion for crack-shape adaptability can be based on the global energy release

rate. It considers that the optimal crack-shape is the shape that maximizes the global energy
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release rate and thus the dissipation (see Section 2.3). The optimal crack parameters (a, -y)

are then determined by solving the maximization problem:

(a, Y) = arg max g (a, y) (5.39)
(aaY)

under the constraint that (a, -y) E [0, 7r/2] x (0, 1].

Figures 5-20 and 5-21 show for respectively the clay model and the reference TI material

the global energy release rate in function of the crack-shape parameters a and -y. The

Maximum Global Energy Release Rate Criterion predicts that, for a crack subjected to a

pure pressure loading, the optimal crack shape would always be obtained for -y = 1 (and

thus for any a).

One can also remark that at fixed aspect ratio -y, the global energy release rate is a

decreasing (respectively increasing) function of a for the clay model (respectively for the

reference TI material). The main difference between the two is that W2 is greater than R3

for the first, and it is the inverse for the second.

However, as shown in Fig. 5-9 and 5-10, a vertical penny-shaped crack has varying

Mode I stress intensity factor and local energy release rate along the crack front. Following

Irwin's reasoning, one would then expect the crack to propagate in the direction of the

maximum stress intensity factor or the maximum local energy release rate. This motivates

the consideration of other crack-shape adaptability criteria.

Stress intensity based crack-shape adaptability criterion

If one considers Irwin's crack propagation criterion based on the Mode I stress intensity

factor (see Section 2.3.2), the favored crack-shape should be such that K(4) is equal, at

each point along the crack front, to the fracture toughness Ke(#). If KIc is isotropic, the

crack shape that ensures a constant Mode I stress intensity factor along the crack, is the

most favorable.

Such a constraint is, however, usually impossible to be satisfied if we restrict ourselves to

elliptical cracks. Still, we can try to minimize the magnitude of the variations of the stress

intensity factor. The parameters (aly) of the favored crack-shape are then determined by

solving the minimization problem:
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(a, y) = arg min max K1 (a, 2 0) -K 1 (a, -y, 0) (5.40)
(aY) 4 Kr (a, ,#J0)

under the constraint that (a, 7) E [0, 7r/2} x (0,1].

Using the approximation (5.24) for W(#), we then find that the preferred crack shape

using the Constant Stress Intensity Factor Criterion was entirely determined by the ratio

72/13, where 742 and W3 are given by Eq. (3.45). That is, the crack shape adapts to the

elastic content. Specifically, if we remind ourselves that the ratio -3/2 can be written

in terms of the first Thomsen parameter and the indentation moduli in the horizontal and

vertical direction:

= (1 + 2) (3) (5.41)
742 M1

If -2/73 < 1, the Constant Stress Intensity Factor Criterion predicts that the preferred

crack shape is such that:
(,,)2{ a(5.42)

Otherwise, if 712/W3 > 1,

(,,)2(2 (5.43)
a =0

Table 5.2 gives the preferred crack shapes for different TI crystals and shale using the

Constant Stress Intensity Factor Criterion. They also give a measure of the amplitude of the

variations of the local Mode I stress intensity factor along the crack front for the preferred

shape.

One can notice that for all the shale materials considered, the preferred crack shape has

always an a equal to zero: the crack propagates in a horizontal direction.

Local energy release rate based crack-shape adaptability criterion

If now, one considers Griffith's crack propagation criterion based on the energy release rate

(see Section 2.3.2), the favored crack-shape should be such that 0(#) is equal, at each

point along the crack front, to the fracture energy 9e(#). If the fracture energy is assumed

to be constant along the crack-front, one should consider that the crack shape that ensures
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a constant local energy release rate !0 along the crack-front is the most favorable.

Again, such a constraint is usually impossible to be satisfied if we restrict ourselves to

elliptical cracks. However, we can try to minimize the amplitude of the variations of local

energy release rate. The parameters (a, Y) of the favored crack-shape are then determined

by solving the minimization problem:

(a, ) = arg min max 0 (5.44)
(aa-) 4 4(,y 0 0)

under the constraint that (a, )) E 0, 7r/2] x (0, 1].

Using the approximation (5.24) for W(#), we found out that the preferred crack shape

using the Constant Local Energy Release Rate Criterion is also entirely determined by the

ratio 7 2 /W 3.

However, in contrast to the constant stress intensity factor criterion, the crack shape

scales linearly with 'N2/H 3 , not quadratic. That is, if N2/N3 < 1:

W3 (5.45)

Otherwise, if 742 /W 3 > 1,

Wi2  (5.46)
=0

Table 5.3 gives the preferred crack shapes for different TI crystals and shale using the

Constant Local Energy Release Rate Criterion. They also give a measure of the amplitude

of the variations of the local energy release rate along the crack front for the preferred crack

shape.

One can notice that for all materials considered, the (dimensionless) magnitude of the

variations of the local energy release rate using this criterion is lower than the (dimension-

less) magnitude of the variations of the Mode I stress intensity factor using the Constant

Local Energy Release Rate Criterion. Again, for shale, the angle a is always equal to 0.

Using Eq. (5.35), one can see that for the local energy release rate to be constant,

we must have H 1 (#) oc V/sin 2 # +y2 cos2#. For a = 0, we must have H,1(0) = N3 and
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H11 (ir/2) = W2 so that for the preferred crack shape,

0(6 = 7r/2, y = W3 /71 2 ; 4$) ~ g( = 7r/2, y = W 3/n 2) ~ 4ao-2z- 3  (5.47)

As for a = 7r/2, we must have Hu1(0) = 'H2 and Hii(7r/2) = W3 so that for the preferred

crack shape,

0(6= 7r/2, 7 = 742/H3; #) ~ g(6 = 7r/2, = /3) 4aozz 2  (5.48)

5.4 Chapter summary

In this Chapter, we studied three-dimensional cracks subjected to uniform loading condi-

tions. We restricted ourselves to flat ellipsoidal cracks, making extensive use of Hoenig's

work.

In order to keep consistency with the developments in previous Chapters, we introduced

the three-dimensional Irwin matrix having the same role as in the case of two-dimensional

cracks.

We identified two specificities of cracks in anisotropic media. The first one is that, except

for cracks belonging to a plane of material symmetry, there exists a Mode II and a Mode

III stress intensity factor even for pure pressure loadings. The second one is that the local

stress intensity factors and the local energy release rate can vary along the crack front of

penny-shaped cracks.

We introduced several criteria to predict how an initially penny-shaped crack could adapt

its shape to the elasticity. An appealing criterion based on Griffith's crack-propagation

criterion predicts that an initially penny-shaped crack subjected to a pure pressure loading

should first reach an optimal elliptical shape and then grow self-similarly, keeping constant

its aspect ratio. In a first approximation this crack shape scales as a power function of the

elasticity constant, the power exponent being somewhat between one and two.
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see Appendix C).
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crack subjected to a normal far-field stress (for the clay model,
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Figure 5-12: Dimensionless stress intensity factors and displacement jumps as functions of
0 and # for a penny-shaped crack subjected to a normal far-field stress (for a reference TI
medium, see Appendix C).
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Figure 5-13: Comparison of the dimensionless 'H(#) (blue solid line), its approximation

(5.23) (green dashed) and its approximation (5.24) (red dash-dotted) for the Zinc material

studied in [14].
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Figure 5-14: Comparison of the dimensionless 7W(4) (blue solid line), its approximation

(5.23) (green dashed) and its approximation (5.24) (red dash-dotted) for the clay model (see

Appendix C).
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Figure 5-15: Comparison of the dimensionless 7(#) (blue
(green dashed) and approximation (5.24) (red dash-dotted)
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Figure 5-16: Dimensionless global energy release rate OPen"fY() (blue solid line) and its
approximations based on Eq. (5.33) (green dashed) and Eq. (5.34) (red dash-dotted) for

the clay model (see Appendix C).
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Approximation
from Eq (5.27)

Approximation
from Eq (5.28)

Approximation
from Eq (5.32)

Isotropic 0.00 % 0.00 % 0.00 %

Magnesium 0.44 % 0.45 % 0.05 %
Rhenium 0.77 % 0.78 % 0.38 %
Apatite 0.83 % 0.96 % 1.41 %

Yttrium 0.48 % 0.49 % 0.54 %

Ice 0.84 % 0.84 % 1.30 %
Hafnium 0.25 % 0.29 % 1.62 %
Cadmium 1.69 % 0.01 % 2.77 %

Zinc 1.36 % 0.04 % 2.89 %
Baryllium 0.27 % 0.23 % 3.40 %

Cobalt 1.39 % 1.60 % 3.63 %
Beryl 0.52 % 0.62 % 4.61 %

Titanium 0.31 % 0.84 % 8.23 %

Composite2 2.41 % 0.86 % 20.43 %
Compositel 1.35 % 1.32 % 25.48 %

Thallium 3.69 % 5.83 % 45.10 %

Reference TI 0.62 % 0.43 % 6.48 %

Woodford56 0.38 % 0.29 % 3.87 %
Woodford40 0.23 % 0.47 % 4.69 %

Woodford47 0.37 % 0.12 % 4.51 %
Woodford5l 0.48 % 0.30 % 5.85 %
Woodford53 0.53 % 0.38 % 8.22 %

Kimmeridge clay 0.96 % 0.75 % 9.27 %

Muderong shale 0.87 % 0.84 % 10.33 %
Cretaceous shale 0.41 % 0.55 % 10.08 %
Clay model 137] 2.57 % 1.00 % 14.47 %

Table 5.1: Relative error for the
imations made from Eq. (5.27),

global energy release
(5.28) and (5.32).

rate Ngg for9 the different approx-
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Figure 5-17: Dimensionless global energy release rate Pen"y(6) (blue solid line) and its
approximations based on Eq. (5.33) (green dashed) and Eq. (5.34) (red dash-dotted) for
the reference TI medium (see Appendix C).
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Figure 5-18: Dimensionless energy release rate as a function of the crack parameter -y for a
pure Mode I loading.
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Figure 5-19: Dimensionless energy release rate as a function of the crack parameter 'y for a
mixed-mode II and III loading.
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Figure 5-20: Dimensionless global energy release rate as a function of -y = b/a and the angle
a for a crack subjected to a pure pressure loading, for the clay model (see Appendix C).
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Figure 5-21: Dimensionless global energy release rate as a
angle a for a crack subjected to a pure pressure loading, for
Appendix C).

I1.6

0.4

1

function of y b/a and the
the reference TI material (see

Isotropic 1 1.00 1r/2 j 0%
Magnesium 0.95 -r/2 0.9 %

Rhenium 0.94 r/2 1.6 %
Apatite 0.81 0 2.6 %
Yttrium 0.95 7r/2 1 %

Ice 0.97 7r/2 1.7 %
Hafnium 0.89 7r/2 0.7 %
Cadmium 0.48 0 5.0 %

Zinc 0.51 0 4.6 %
Beryllium 0.88 7r/2 0.31 %

Cobalt 0.76 -r/2 3.8 %
Beryl 0.84 0 1.5 %

Titanium 0.66 7r/2 3.2 %
Woodford56 0.63 0 2.5 %
Woodford40 0.62 0 2.9 %
Woodford47 0.67 0 1.6 %
Woodford5l 0.61 0 2.9 %
Woodford53 0.58 0 3.3 %

Kimmeridge clay 0.48 0 6.0 %
Muderong shale 0.48 0 6.4 %
Cretaceous shale 0.58 0 3.6 %
Clay model [371 0.34 0 10.8 %

Table 5.2: Preffered crack shape (a and y) and measure of the maximum amplitude of the
Mode I stress intensity factor along the crack front (Maxp (K 1( 0 )) for some TI
crystals and shale materials using the Constant Stress Intensity Factor Criterion.
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Isotropic 1.00 7r/2 0 %

Magnesium 0.98 7r/2 0.9 %
Rhenium 0.97 7r/2 1.5%
Apatite 0.90 0 2.3 %
Yttrium 0.98 r/2 1 %

Ice 0.98 7r/2 1.7 %
Hafnium 0.94 7r/2 0.6 %
Cadmium 0.69 0 1.8 %

Zinc 0.72 0 2 %
Beryllium 0.94 7r/2 0.4 %

Cobalt 0.88 7r/2 3.4 %
Beryl 0.91 0 1.3 %

Titanium 0.81 7r/2 2.2 %

Woodford56 0.79 0 1.2 %
Woodford40 0.79 0 1.5 %
Woodford47 0.82 0 0.6 %
Woodford5l 0.78 0 1.4 %
Woodford53 0.76 0 1.5 %

Kimmeridge clay 0.69 0 2.9 %
Muderong shale 0.69 0 3.3 %
Cretaceous shale 0.76 0 1.8 %
Clay model [371 0.59 0 4.9 %

Table 5.3: Preffered crack shape (a and y) and measure of the maximum amplitude of the

local energy release rate along the crack front (Maxo (I)(go(O)l)) for some TI crystals

and shale materials using the Constant Local Energy Release Rate Criterion.
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Chapter 6

Conclusion

6.1 Summary and main findings

We studied in this thesis how cracks propagate in anisotropic media. The problem was

formulated for the case of general anisotropy, and specified for transversely isotropic media.

This type of anisotropy is often used to model rock-like materials.

We first focused on cracks belonging to a plane of material symmetry which, in the

case of transverse isotropy, reduces to three crack orientations: cracks in the bedding plane

(horizontal cracks), cracks normal to the bedding plane (vertical cracks) and orthogonal

cracks. Three elastic constants quantifying the compliance felt by the crack were iden-

tified. Interestingly, these elasticity constants play a role of the same importance in the

indentation problem. They can be related to the indentation moduli in the vertical and

horizontal directions and to the first Thomsen parameter, accessible e.g. through ultrasonic

measurements.

We looked for the preferred crack orientation in the case of transverse isotropy, to answer

the question in which direction is it easier to propagate an already existing crack. In isotropy,

it is readily known that a crack should propagate in the direction normal to the minimum far-

field stress. In anisotropy, we identified a critical crack-length below which the favored crack-

orientation should be in the direction of the minimal stiffness felt by the crack. However,

in the case of deep cracks in shale rocks, this critical crack-length is usually very small.

Moreover, a stability analysis using the maximum energy release rate criterion as a kinking

criterion revealed that vertical cracks were not stable for shale-like materials. This could

mean that even if vertical cracks are more likely to be seen in the field, their surfaces should
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exhibit a pronounced roughness.

The fluid/solid coupled crack-propagation problem was rewritten for the anisotropic case.

We also accounted for the possibility of having some shear acting on the crack. This shear is

due to the far-field stress anisotropy (the vertical far-field stress is usually greater in absolute

value than the horizontal one). It was shown that, provided that the right elastic coefficients

are used, one could take advantage of the work done on fluid-driven crack propagation in

isotropic media.

We finally focused on three-dimensional cracks. We identified the relevant elastic con-

stants for the study of a pressurized crack. These parameters are directly related to the

indentation moduli in the horizontal and vertical directions. We introduced the concept of

crack-shape adaptability: the ability of cracks to shape with the elasticity. An appealing cri-

terion based on Griffith's crack propagation criterion revealed that, contrary to the isotropic

case, the penny-shape might not be the preferred shape in a transversely isotropic medium.

Instead, the crack shape scales linearly to quadratically with the elasticity content.

6.2 Limitations and possible future perspectives

When considering two-dimensional cracks, we saw that the work done in isotropic LEFM

could be used, provided that the right elastic parameters were used. However, we did not

consider at all the anisotropy of the fracture properties, that is, the variation of the fracture

energy (or fracture toughness) along the crack front. We did not account for this type of

anisotropy that should definitely play an important role, in addition to the elastic anisotropy.

A new way to evaluate fracture toughness at the scale of the constituents by means of

molecular simulations was proposed by Brochard et al. in [8]. This approach might be a

good start to assess the importance of this fracture anisotropy. Of course, more conven-

tional experiments such a three-point bending tests could be used to investigate the fracture

properties of materials depending on crack orientation, provided that large enough samples

can be tested.

When considering three-dimensional cracks, the limitation of the model used in this

thesis is that, contrary to the two-dimensional case, we cannot account for varying pressure

on the crack-surface. Though, this is usually the case when considering a crack propagation
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driven by a Newtonian fluid. Another limitation is that we can only study flat ellipsoidal

cracks. These restrictions are due to the fact that Eshelby's theorem has been derived only

for ellipsoidal inclusions subjected to uniform loadings. This theorem allows us to deduce

how the crack displacement jump evolves on the crack surface. An extension to arbitrary

crack-shapes could be of interest in order to apply more rigorously the three criteria ruling

the crack-shape adaptability in anisotropy. Indeed, when considering elliptical cracks, we

were not able to impose an exactly constant local energy release rate or stress intensity

factor along the crack front.

A possible way to fix these drawbacks would be the use of the boundary element method.

Lin et al. [33] provides relevant equations for the study of vertical cracks in a transversely

isotropic material. This method does not have any restriction on the pressure distribution

on the crack surface, nor restriction on the crack shape. Still, the boundary element method

would not be able to give directly an estimation of the local energy release rate nor of the

stress intensity factors. However, since it is recognized to give a pretty accurate measure

of the displacements jumps, by using an Irwin matrix similar to the one introduced in this

thesis, one should be able to estimate both the local energy release rate and the local stress

intensity factors in terms of the displacement jumps.

Finally, it would also be of high interest to perform experiments on transversely isotropic

materials to validate, if possible, the ability of cracks to shape with the elasticity.
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Appendix A

Nomenclature

Symbol

(e , e-2, f3)

(e-., Iey, ez)

v) = vi(x)ei

t x)= ti W(x)ei 0

t(x) = tik(X)fi 0 o 0 k ® l

[P]

[R],[RE],[RO.]

(x O (e, o 
div t(_) = (x)ej

I if i = j

0 if i 7 j

I s.t. l i = 6gj

Units

[V]

[t]
[t]

[v].m1

[t].m-1

Description

Canonical orthonormal basis of the mate-

rial

Orthonormal basis relevant to the problem

considered

Local crack-tip orthonormal basis when

considering elliptical cracks

Vector field

Second order tensor field

Fourth order tensor field

First order tensor transformation matrix

Second order tensor transformation matri-

ces

Gradient of a vector field

Divergence of a second order tensor field

Kronecker delta

Identity matrix
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Inverse of [M]

[M]~1 .[M] = [M] . [M]- 1 = 1

I[M]

[X]() = X(x+) - X(x-)

[Mil

[Xi]

R = ]-oo, +oo[

C

z

i e C s.t. i 2  1

i[R

Re[z = a + ib] = a E R

Im[z = a + ib] = b E [R

[z]

[z]

m
E(_z 2 V I V
g~z_) = i (x)~ +±_V(())

{W} - [Ex, Eyy, 2Exy]

{or'} = t [x, o, oxy]

Ss.t. 6 = S g

Sii

Os.t. o = C:

Cii

C31 = vC11C33 C13$

Ei

Gi

Pa

Pa

Pa
1

Pa-1

Pa-1

Pa

Pa

Pa

Pa

Pa

Transpose of [M]

Jump of the field X on a plane of disconti-

nuity

Set of real numbers

Set of imaginary numbers

Set of integers

Imaginary unit

Set of purely imaginary numbers

Real part of z

Imaginary part of z

Infinitesimally small number

Displacement field

Strain field tensor

Plane-strain strain vector

Stress field tensor

Plane-strain stress vector

Compliance tensor

Compliance constants using Voigt nota-

tion

Plane-strain compliance matrix

Stiffness tensor

Stiffness constants using Voigt notation

Definition of a reduced stiffness constant

Young's moduli

Shear moduli
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vii

E, 6 and y

IF

K1 , K 1 1 , K1 1 1

{K} = I [KI, K11 (, K111 )]

Kic

Kc

Ks, K'

IE,

geJ

[H]I

Qi, Ti and <bi

p = Wi

q = W2

Fi

Gi

fi, gi

Di

Pi

pi, qi

[a]

[3] = [Im{a}]f

X, /C, Z, , X', Z', '

m2

m

Pa.m1/ 2

Pa.m1/2

Pa.m1/2

Pa.m1/2

Pa.m1/2

J

J.m- 2

J.m-2

J.m-2

Pa 1

Pa.m

Pa

Pa

Pa.m

Pa

Pa

m

Pa-1

Pa

Pa- 1

Pa-1

A, B, C, D

V

Poisson's ratios

Thomsen's parameters

Crack area

Half-length of a plane-strain crack

Mode I, II and III stress intensity factors

Stress intensity factors vector

Fracture toughness in Mode I

Generalized fracture toughness

Scratch toughness

Potential energy

Energy release rate

J-integral

Fracture energy

The Irwin matrix defined in Eq. (2.39)

Complex potentials

Normal stress

Shear stress

Stress function defined in Eq. (3.14)

Stress function defined in Eq. (3.14)

Even and odd parts of wi

Displacement jump imposed in direction i

Roots of the polynomial P[f] (X) defined in

Eq. (2.25)

Elastic constants defined in Eq. (2.28)

Matrix of elastic constants defined in Eq.

(3.25)

Inverse of the imaginary part of the [a] ma-

trix

Elastic constants defined in Eq. (3.37) and

(3.42)

Constants defined in Eq. (3.53)

Plane-strain crack volume
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- Angle defining the crack orientation

v Branching angle

K Pa.m1/ 2  Kinked crack stress intensity factors

Fi (v) Kinked crack stress intensity factors trans-

formation matrix

pf Pa Fluid pressure

r7 Pa.s Dynamic viscosity

w m Crack opening

Q m2 .s Flow in the crack

01, c3  Pa Horizontal and vertical far-field stresses

gn Pa Normal far-field stress

-r Pa Shear far-field stress

A = 2 Degree of transverse isotropy

a3c Pa Critical stress

c m Critical crack length

kc Pa.mi/ 2  Reduced fracture toughness

NN - Number of nodes

NG - Number of Gauss points

PNG(X) NG-th Legendre's polynomial

yi - i-th root of PNG

Wi -- Gauss weight at yj

#(X) - Hat function of node k

Ila,b] (X) - Indicator function of the segment [a, b]

[M] - Matrix linking the dimensionless crack

opening and the dimensionless pressure

[A] - Matrix linking the dimensionless stress in-

tensity factor and the dimensionless pres-

sure

[J] - Jacobian matrix

[Dx] - Space differentiation matrix

*- Term-by-term multiplication operator
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a, b m Semi-major and semi-minor axes

y = b/a - Inverse of the ellipse's aspect ratio

#, #' - Angles parameterizing the crack front

R(#) m Distance from the origin to the crack front

a- Angle defining the orientation of the semi-

major axis

e = /1 - 2- Ellipse's eccentricity

c m Ellipse's circumference

- Dimensionless measure of the crack-

opening displacement

[R] - Transformation matrix defined in Eq.

(5.9)

[T] - Transformation matrix defined in Eq.

(H.6)

[C] Pa Matrix linking the #i to the loading

0 J.m- 2  Local energy release rate

[H4] Pa- 1  The local Irwin matrix

E(k) - Complete elliptic integral of the second

kind
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Appendix B

Elastic constants

The elastic properties of a transversely isotropic material can be fully described by means

of five constants. Depending on the problem considered, it will be easier to use the five

compliance constants Sij or the five stiffness constants Cij. When considering uniaxial

problems, the most relevant elastic constants are the transverse Young's modulus: E1 = E2,

the longitudinal Young's modulus: E3 , the Poisson ratio for loading along the direction

3: V13 = v23, the out of plane shear modulus G 13 = G 23 and the inplane shear modulus

G12 = 2(1+V12.

The following sections give the relationships between the different sets of constants

{S1I,S 12 ,S 13 ,S 33 ,S 44}, {C11,C12,C13,33,C44} and {E1,E 3,)v12,zis, G 13}.

B. 1 Compliance constants Sij

e11 S11 S12 S13  0 0 0 n711

622 S12 S11 S13  0 0 0 922

E33 S13  S13 S 33  0 0 0 033.1)

2623 0 0 0 S44 0 0 (723

2E13 0 0 0 0 S44 0 0-13

2612 0 0 0 0 0 2(Su1 -S 12) \l12

145



1Sn1 =

S33 = 1

S12 = -" (B.2)

S13 = -"

1
S44 = 23

C11C33 -C1 3
1 (C11-C 12)(C33(C11 +C 12)-2C23)

S33 = C11+C12
C33 (Cll+Cl2 )-2C'13

<S12 = C123 C12C33 (B.3)(C11-C1 2 )(C33 (C11+C 12 )-2C 3)
S _ _ C1

S13 = C1313~C33(Cul+Cl2)-2C'13

S44 = 1

B.2 Stiffness constants Cj

nii Cn C12 C13 0 0 0 Eli

022 C12 C C13 0 0 0 C22

033 C13 C13 C33 0 0 0 33(B.4)

023 0 0 0 C44 0 0 2E23

0'13 0 0 0 0 C44 0 2E13

\12 0 0 0 0 0 Cn 2C'- 2e12/

E1(Ei v2-E3)

11 (1vn)(Ei v3~E3(1-V12))

C33 = E3(1-v12 )
E3(1-Vn2)-2EiV23

C12 = E1(E3Vn+Eiva (B.5)
(1+v12)(E3(1-u2)--2Eiva3

C = EjE3v13
C13 E3(1-V12)-2Eiv2301313

C44 = G23

C0 =SuS33-313
(Sn1-S2)(S33(Sn1+S12)-2S13)

C33 S11+S12
3--S33(Snl+Sl2)-2S23

S23 -S12 533
012 = (S 11-S 12)(S33 (S11 S12)-2S(B.6)

C13 S13
03433(S4+Sl)-2S3

C44 =-i
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B.3 Elastic constants E, vij and G

El_ 1

E1 =
E3 -- S3 3

1/12 = -S (B.7)

V13 -S1
S 33

G23 = 1
S44

E = (C11 -C1 2 )((C 1 1 +C 1 2 )C 33 -2C' 3 )
C 1 1 C 33 -C 3

E = (Cul+Cl 2 )C 33 -2C2E3 = Cu1+Cn21

212 =C13-CC33 (B.8)
C1'3-Cu C33

1 33 1 3 3

13 -C11±C12

G23 = C44

B.4 Thomsen parameters c, 3 and -y

The level of anisotropy of a transversely isotropic material can be measured through the

three Thomsen parameters introduced in Ref. [44}.

Their expressions in terms of the stiffness constants are:

__ C11-C33
2C33

6_(C13+C44)2 -(C33-C44 )2 (B.9)
2C33(C33-C44)

C66-C447 ~ 2C44
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Appendix C

Some transversely isotropic materials'

constants

C.1 Elastic constants for some shale materials

Ortega gave in Ref. [371, p.131, the macroscopic stiffness constants of some shale specimens

measured by acoustic emissions (Table C.1). From these five elastic constants, we computed

the compliance constants (Table C.1), the Young's moduli, Poisson ratios, shear modulus,

Thomsen parameters (Table C.2) and the plane-strain elastic constants introduced in Eq.

(3.45) (Table C.3).

C.2 Elastic constants for some transversely isotropic crystals

Lin et al. gave in Ref. [33] the stiffness constants of some crystals gathered from the lit-

terature (see Table C.4). From these five elastic constants, we computed the compliance

constants (Table C.4), the Young's moduli, Poisson ratios, shear modulus, Thomsen pa-

rameters (Table C.5) and the plane-strain elastic constants introduced in Eq. (3.45) (Table

C.6).
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Isotropic 2.67 0.67 0.67 2.67 1.00 0.42 -0.08 -0.08 0.42 1.00
Woodford56 21.20 6.30 7.90 13.80 4.90 0.06 -0.01 -0.03 0.11 0.20
Woodford40 23.10 6.90 8.80 15.70 5.20 0.06 -0.01 -0.03 0.09 0.19
Woodford47 25.60 6.10 7.70 16.00 6.60 0.05 -0.01 -0.02 0.08 0.15
Woodford5l 23.80 6.20 7.80 14.90 5.30 0.05 -0.01 -0.02 0.09 0.19
Woodford53 28.00 7.50 8.30 17.30 5.60 0.04 -0.01 -0.02 0.07 0.18
Kimmeridge 48.40 14.40 16.40 27.30 7.80 0.03 0.00 -0.01 0.05 0.13
clay
Muderong 20.00 6.80 7.60 13.00 3.00 0.07 -0.01 -0.03 0.12 0.33
shale
Cretaceous 34.30 13.10 10.70 22.70 5.40 0.04 -0.01 -0.01 0.06 0.19
shale
Clay model 44.90 21.70 18.10 24.20 3.70 0.03 -0.01 -0.02 0.07 0.27
[37] _1 1 1 1 1_1_1

Table C. 1: Stiffness and compliance constants in GPa and GPa- 1 , respectively, for some
shale [37].

6 6
Isotropic 2.40 2.40 0.20 0.20 1.00 0.00 0.00 0.00

Woodford56 16.49 9.26 0.11 0.29 4.90 0.27 0.34 0.26
Woodford40 17.95 10.54 0.11 0.29 5.20 0.24 0.26 0.28
Woodford47 21.63 12.26 0.11 0.24 6.60 0.30 0.39 0.24
Woodford5l 19.49 10.84 0.11 0.26 5.30 0.30 0.28 0.33
Woodford53 23.50 13.42 0.15 0.23 5.60 0.31 0.14 0.42

Kimmeridge clay 38.01 18.73 0.12 0.26 7.80 0.39 0.19 0.59
Muderong shale 15.20 8.69 0.15 0.28 3.00 0.27 0.05 0.60
Cretaceous shale 27.04 17.87 0.28 0.23 5.40 0.26 -0.05 0.48
Clay model [37] 29.24 14.36 0.26 0.27 3.70 0.43 0.06 1.07

Table C.2: Elastic constants constants in GPa (for Ei, E 3 and G23 ) and Thomsen parameters
for some shale [37].
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Isotropic 0.127 0.127 0.127 0.080 0.080 0.048 0.048

Woodford56 0.026 0.021 0.016 0.017 0.011 0.006 0.006

Woodford40 0.023 0.019 0.015 0.016 0.010 0.006 0.005

Woodford47 0.020 0.016 0.013 0.013 0.008 0.006 0.005

Woodford5l 0.023 0.018 0.014 0.014 0.009 0.006 0.005

Woodford53 0.020 0.016 0.012 0.012 0.008 0.005 0.004

Kimmeridge clay 0.014 0.010 0.007 0.008 0.005 0.003 0.003
Muderong shale 0.032 0.026 0.018 0.019 0.012 0.007 0.006

Cretaceous shale 0.018 0.014 0.011 0.009 0.008 0.004 0.003

Clay model [371 0.022 0.016 0.009 0.011 0.007 0.003 0.002

Table C.3: Plane-strain elastic constants constants in GPa-1 for some shale [37].

' 'S' 3 84
C33C13Cn1

Isotropic 2.67 0.67 0.67 2.67 1.00 0.42 -0.08 -0.08 0.42 1.00

Magnesium 5.92 2.57 2.14 6.14 1.64 0.22 -0.08 -0.05 0.20 0.61

Rhenium 61.20 27.00 20.60 68.30 16.20 0.02 -0.01 0.00 0.02 0.06

Apatite 16.70 1.31 6.60 14.00 6.63 0.07 0.01 -0.04 0.11 0.15

Yttrium 7.79 2.92 2.00 7.69 2.43 0.15 -0.05 -0.03 0.14 0.41

Ice 1.35 0.65 0.52 1.45 0.32 1.02 -0.41 -0.22 0.85 3.15

Hafnium 18.10 7.70 6.60 19.70 5.57 0.07 -0.02 -0.02 0.06 0.18

Cadmium 11.60 4.23 4.14 5.10 1.95 0.12 -0.01 -0.09 0.34 0.51

Zinc 16.50 3.10 5.00 6.20 3.96 0.08 0.01 -0.07 0.27 0.25

Beryllium 29.20 2.67 1.40 33.60 16.20 0.03 0.00 0.00 0.03 0.06

Cobalt 30.70 16.50 10.40 35.80 7.55 0.05 -0.02 -0.01 0.03 0.13

Beryl 28.20 9.94 6.95 24.80 6.86 0.04 -0.01 -0.01 0.04 0.15

Titanium 16.20 9.20 6.90 18.10 4.67 0.10 -0.05 -0.02 0.07 0.21

Thallium 4.08 3.54 2.90 5.28 0.73 1.04 -0.81 -0.12 0.33 1.38

Reference TI 1.10 0.10 0.48 2.38 1.00 1.00 0.00 -0.20 0.50 1.00

Table C.4: Stiffness and compliance constants in GPa and GPa-1, respectively, for some

transversely isotropic crystals [33].
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Isotropic 2.40 2.40 0.20 0.20 1.00 0.00 0.00 0.00
Magnesium 4.53 5.06 0.35 0.25 1.64 -0.02 -0.11 0.01

Rhenium 47.13 58.68 0.38 0.23 16.20 -0.05 -0.19 0.03
Apatite 13.35 9.16 -0.13 0.37 6.63 0.10 0.58 0.08
Yttrium 6.48 6.94 0.33 0.19 2.43 0.01 -0.10 0.00

Ice 0.98 1.18 0.40 0.26 0.32 -0.03 -0.18 0.05
Hafnium 13.99 16.32 0.35 0.26 5.57 -0.04 -0.09 -0.03
Cadmium 8.15 2.93 0.11 0.26 1.95 0.64 0.85 0.44

Zinc 12.40 3.65 -0.07 0.26 3.96 0.83 2.71 0.35
Beryllium 28.91 33.48 0.09 0.04 16.20 -0.07 0.01 -0.09

Cobalt 21.11 31.22 0.49 0.22 7.55 -0.07 -0.24 -0.03
Beryl 23.82 22.27 0.30 0.18 6.86 0.07 -0.15 0.17

Titanium 10.39 14.35 0.48 0.27 4.67 -0.05 -0.10 -0.13
Thallium 0.96 3.07 0.78 0.38 0.73 -0.11 -0.16 -0.31

Reference TI 1.00 2.00 0.00 0.40 1.00 -0.27 0.04 -0.25

Table C.5: Elastic constants constants in GPa (for E1 , E 3 and G23 ) and Thomsen parameters
for some transversely isotropic crystals 1331.

Ri
Isotropic 0.127 0.127 0.127 0.080 0.080 0.048 0.048

Magnesium 0.064 0.065 0.066 0.041 0.048 0.019 0.019
Rhenium 0.006 0.006 0.006 0.004 0.005 0.002 0.002
Apatite 0.023 0.021 0.019 0.018 0.010 0.007 0.009
Yttrium 0.047 0.046 0.048 0.028 0.033 0.016 0.015

Ice 0.292 0.302 0.307 0.181 0.227 0.083 0.080
Hafnium 0.019 0.020 0.021 0.013 0.015 0.006 0.006
Cadmium 0.069 0.046 0.032 0.045 0.022 0.013 0.010

Zinc 0.046 0.028 0.020 0.031 0.012 0.011 0.008
Beryllium 0.010 0.010 0.011 0.005 0.006 0.005 0.005

Cobalt 0.012 0.013 0.015 0.007 0.011 0.004 0.003
Beryl 0.015 0.014 0.013 0.008 0.009 0.005 0.004

Titanium 0.022 0.024 0.029 0.016 0.023 0.007 0.006
Thallium 0.114 0.129 0.316 0.091 0.295 0.021 0.021

Reference TI 0.151 0.223 0.293 0.140 0.159 0.076 0.134

Table C.6: Plane-strain elastic constants constants in GPa- 1 for some transversely isotropic
crystals [331.
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Appendix D

On the rotation of tensors

Consider two orthonormal bases (i, e2, -3) and (e_, ey, ez). From now on, roman subscripts

(i, j) will refer to the first basis while Greek subscripts (a, #) will refer to the second one.

Define P the 3x3 transformation (rotation) matrix such that e = Pae. Since P is a rota-

tion matrix, P- 1 = 'P and ei = a .

In this Appendix, we will see how to get the expression of first, second and fourth-order ten-

sors (in a matrix form) in the basis (e,, e_, ez) from their expression in the basis (e 1, 2,3

D.1 Rotation of a first-order tensor

Let v be a first-order tensor: v = viej. It can be expressed in the basis (e,,fyez) as

v = v'ea where:

v' Paivi (D.1)

Proof:

v = viei

= oi' e= Paiviec,

V/ ve (D.2)
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D.2 Rotation of a symmetric second-order tensor

Let t be a symmetric second-order tensor: t = tijej 0 ej. It can be expressed in the basis

(f., f, _,) as t = ta/e-a e, 3 with:

t VfxX tyy tzz tyz txz tyzl = I t [t11 t22 t33 t23 t13 t23] (D.3)

and where R is defined as:

(P1 1 )
2  (P 12 )

2  (P13 )
2  

2P 12 P 13  2P 1 1P1 3  2P11P12

(P 21 )
2  (P2 2 )

2  
(P 23 )

2  
2P 22 P 23  2P 2 1P 2 3  2P 2 1 P22

(P31 )
2  

(P32)
2  

(P 3 3 )
2  

2P 3 2 P 3 3  2P 3 1 P 3 3  2P 3 1 P 32  (D.4)
P 2 1 P3 1 P 22 P 3 2 P 23 P 3 3 P 2 2 P3 3 + P 23 P 32 P 21 P 33 + P 23 P 3 1 P 2 1 P 32 + P 22 P 3 1

P11P 3 1 P 12 P 32 P 13 P 3 3 P 12 P3 3 + P 13 P 32 PiiP 33 + P 13 P 3 1 P11P 32 + P 12 P 3 1

P11P 2 1 P12P 22 P13 P23 P 12P 2 3 + P1 3 P 22 PiiP23 + P13 P 2 1 P11P 22 + P12P 2 1

Proof:

t tijfi (9 i

1<i<3 1<i<j 3

-S ii Pcie-a( E 'iea
1<i<3 1<a<3 1<)3<3

± E tj E 'Pai 0S E -P33 e 3 + E T"%jfa 0 5 P3if,")
1 i<j<3 (1<a<3 1<353 1<a<3 1 #/3

1<i<3 1<a<3 1<3 3

+ S S S ti3 (aP'8P13 + PajP13i) f" ®9 f'8
1 i<j 3 1<a<3 1<#83

~~ ii3ai[i + 1i 1< 3Baj ± PaiP13)1a (9 e, (D.5)
1<a<31<0!53 1<i<3 1<i<j<3

Using the engineering notation, the stresses in the basis (e,l, ez) can be written as

S a = [1l {}e2,e3 and the strains as = [R] {e where [1Z,] = {Z]
and [RE] is defined as:
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P 12P 13

P22P23

'P32P33

P22P33 + P23P32

P12P33 + P13P32

P12P23 + P13 P22

P11P 13

P 2 1P 2 3

P31 P33

P21P33 + P23P31

P11P 33 + P1 3 P 3 1

PiiP23 + P 13 P 2 1

P11P 12

P21P22

P 3 1P 32

P21P32 + P22P31

P11P32 + P12P 31

P11P 22 + P12P21

Moreover, these matrices satisfy: [R7Z]~ = [Re].

Proof: We know from Eq. (D.3) that:

{Ia} ,= [R(P)] {l}

so that:

{lea} = [R(P)]~1 {l}

But, since e. = tP.e, we also have:

{} = [Z(tP)] {} x4,ez

or:

L(et)] = xr(m)]- I

Let us decompose the 6x6 matrix R.(P) in four 3x3 matrices RZi, 1 i < 4 as:

[JZ(P)] = [
or:

[Re(P)] = 1

2O3

On can notice that R(tP) satisfies:

t R2

Ri 2R 2

R3 7Z4

R2]

R4

(D.13)
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[RdE

(P 11 )2

(P2 1 )
2

(P 3 1 )
2

2P 2 1 P31

2P11P31

2P 1 1P 2 1

(P 12 )
2

(P 22 )
2

(P 3 2)
2

2P 22 P 32

2P 12 P 32

2P 12 P 22

(P 13 )
2

(P 23 )
2

(P 33 )
2

2P 23 P 33

2P 13 P 33

2P 13 P 23

(D.6)

(D.7)

(D.8)

(D.9)

(D.10)

(D.11)

(D.12)



Since [R( tP)] = [R(P) 1 , one deduces that:

[1() = = [RE (P)] (D.14)
27Z3 1?4

D.3 Rotation of the (fourth-order) compliance tensor

In the orthonormal basis (e1, e2, 63), the generalized Hooke's law can be written as =ij

Siklukl or, using the engineering notation, Eq = Sijcr. In the rotated basis (, e, ez), it

can be written as e, = where:

[S'] = [RE] [8] .1 [Rd] (D.15)

Proof:

ea = (ZE)aj Ei

= (RZe)a Sijoj

=(Rc)ai Sij (X)o 0',

= (zE)Ci Si (1Z) E

= (D.16)
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Appendix E

Proof that si + P2

for a crack belong

E iR and Pip2

ing to

material symmetry

We have:

P(X) = fi X4 - 2 f3X3 + (2 f12 + f33) x2
f il J11

- 2 3X + f22
fil filIi

P(X) = f(X - p1)(X - p2)(X - Pi)(X - P2)

= fu [X 4 - 2 Re [pi + p 2] X 3 + (|p212 + 4 Re [pi] Re [P2] + 1 |i2 ) X 2

-2 (Re [pi]| p2| 2 + Re [P2|I, 12) X + 1/p11|121 2]

Let's write pi = ai + ibi with (ai, bi) E gRxP+. Accounting for the fact that for a crack

belonging to a plane of material symmetry, f13 = f23 = 0, we have:

Re [pi + p21 = 0

or,

Re [P1 1p212 + Re [P21 |I12

ai+a2 = 0

ai (b2 - b2) = 0

= 0

(E.5)
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a plane of

in addition,

so that:

(E.1)

P(X)

(E.2)

(E.3)

(
(E.4)



This can also be written as:

al = a 2 = 0

ai = -a 2  (E.6)
or

I b1 = b2

We showed that Re [pi + p2] = 0 so that /1 + P2 E iOR.

We now want to proove that p1p2 C lR:

p1p2 = (a1+ibi)(-a1+ib2 )

= -(a2 + bi b2) + iai(b2 - bi) (E.7)

Since ai = 0 or bi = b2, we always have Im [/1p21 = 0 so that 1ip2 E R.
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Appendix F

Computation of the energy release

rate

Clapeyron's formula [45] gives:

(1)
fx-1

+ (x+).(x)dx + I i
-'1 fp(x) (x)d+q(x)t(x))dx

87rHj w (x) F 2(t) 2 (t)dx (F.1)

where we used Einstein summation convention and where H11 = 7, H 12 = H 2 1 = -/C,

H 22 ='W', w1 = p and w2 = q.

One should remark that P'(x) = f
1 Ft=dt is an even function and that Ix(x) = t-d

is an odd function so that:

= 87r Hif

= 167rHij

(fi(x) + gi(x)) (Pj(x) + §Ij(x)) dx

fi(x)Pj(x) + gi(x)Ij (x)) dx (F.2)

Let's write EJ1,ij (1) = 27r f 1 fi(x)P (x)dx and E2,ij (l) = 27r f _0 gi(x)Ij(x)dx.
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We then have for the first term in (F.2) 1 :

E i (l + dl) -&Epi (l)

dl
- - +dl f,(x)1? +dl(x)dx - j fi(x)Jj(x)dx
dl (f' (X )

27 (x ~ () 1 _ (x) dx
dl oX0A() i _p

- 1 1+l t

dI jx=0 J X t=l t _-- 2

f (u)du dtdx

ju=0 7t 2 -_u 2

= 1 fJ L1+dlj1 tfi(x)fj(u)dudtdx
dl Jx=0 Jt=, Jn=0 Vf2 _ X2V2 _ U2

f (x)dx

jx=0 t 2
- X2 Ju=0

f (u)du dti
/t 2-U

2

As for the second term in (F.2), we have:

E_,j (1 + dl) - E (1)
dl

27r L
d x=0

+l
(X)_ +dl (x) - g

+dl _X f X

-1 1_x 1 gju(u)du dtdx
d1' Ix=0 Jt=, Vt 2 _- x2 ju=0 tV/t2 _ U2

1 1+dl fI xugj(x)gj(u)dudtdx

dl Jx=0 Jt= Ju=O t Vt 2 x 2 t 2-u 2

-1 [I+dl {p xg(x)dx
dl \ x=o - (J 

1 ugj (u)du

t2- U2

dt

t
(F.4)

Taking the limit as dl goes to 0 and using the following property:

1 fX+E
lim - I _ f(t)dt = f(x)
e-+0 6 t=x

(F.5)

one obtains from (F.3):

.m E (1 + dl) - £1 (1)
dI-*o dl

fi(u)du

2 _ U2

( .

Z=0

fj (u)du

V12 _JU2
(F.6)

and from (F.4):

lim i + dl) - E,2j(1)
dl-+0 dl 11 ugi(U)du (J ugj(u)dul j=0 Vj2 _U2 j=0 V/l2 _ U2

(F.7)

'We here use twice the fact that p = q = 0 for x E ]l, 1 + dl[ (if the crack is filled with a fluid, the fluid
does not propagate as the crack does). However, this expression is also valid if p(x) and q(x) are uniform
on ]l,l +dl[.
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(JU=0



Finally, putting together Eq. (F.2), (F.6) and (F.7), we have the following expression

for the energy release rate:

fi(u)du)
/l2 _72

f2(u)du 2
,,/l 2 __ 2

fi(u)du
Vj/2 _ ,2 J_

1 ug1(u)du 21
+ \Iu=0 V/l 2 2

f2(u)du
/0 _ o2

ug2(u)du 2]

± U 2 2

+11 ug1
1 2 =

(u)du
_U2

[ ug2(u)du

JU= 2J 2
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9(l) 11
= 4 {W

(I 1u=O

S(Ju=0 (F.8)

}
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Appendix G

Near-tip displacement jump

Equation (3.44) can be written as a function of r = 1 - x as:

( )I(r) = -167r
- IC

where F and Gi are given by:

{Fi(t)
Gi(t)

t fto f(u)du
2-ir u= 7t 2 

=

S- f=0 Ug(u)du
= rt f,'_o "t:-

Using the following property:

1 fX

lim- ]t=x f(t)dt = f(x)
6--+0 F_ t=x-E

one gets:

1 Fit) +( - -)Gi(t)
r-+O r Jt=l-r t2_(X _r2

t Jt fi(u)du 1 - r ft ugi(u)du d
2,r Ju=0 7t2 7_ 2 27rt Ju=0 7t2 _ ,2 )

1 (i 1 fi(u)du
j2 _(1 _r)

2  2-r JU=o -12 _u
2

-r f' ugi(u)du

2rlJ= 2 _ 2

so that we have:

lim- f Fi (t)+ (1 - r)Gi(t)dt
r t=l-r Vt

2
- (x -r )2 r-+0

1 -1 f fi(u)du

42/~ ( 2r u=0 /12 _ U
2
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i F1 (t) + (1 - r)G1(t) dt
-(I- r) 2 F2 (t) + (I - r)G 2 (t) )

(G.1)

(G.2)

(G.3)

= r-+O rj r

1

-~ (1 -_)

(G.4)

(G.5)

(n
gi

1 'ugi (u) du
2,r 1=0 7,2 _ 2)



Injecting Eq. (G.5) in (G.1), one deduces that:

](r ~-16r H] ET n0 2n n0 l i(du 1 ug1 (u)du\

r- -0 2 v( f f2(u)du 1 ug2(u)duIII ]Jr) - 6I[I u= If2 ~ u=O VV/j==2==U
2 JU=0 7 ~ 2=rvu u=0 12

~u /

r-*O 8 F#[H].{K} (G.6)
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Appendix H

The three-dimensional Irwin matrix

Let [S'] be the compliance matrix (using Voigt notation) in the system of coordinates

,, , e,,). We introduce the new compliance matrix [M) such that:

S a,3 g, (H.1)
33

Contrary to what is stated in Hoenig's original paper [26], this new compliance matrix is the

one to be used when using the plane-strain condition e'z, = 0. Indeed, the M 3, coefficients

are null so that it ensures that ez'z = = M3aO-a = 0.

We introduce the Lekhnitskii's polynomials:

L2(X) = M 22 X 2 -2M 45X + M 44

43(X) = M 15 X 3 - (M 14 + M 56 )X 2 + (M 25 + M4 6 )X - M 24 (H.2)

L4 (X) = M 11X 4 - 2M 16X 3 + (2M 12 + M 6 6 )X 2 - 2M 26X + M 22

L6(X) = L 4 (X)L 2 (X) - (43(X)) 2

Lekhnitskii prooved [32] that the roots of the polynomial L6 (X) are imaginaries. We then

introduce si (i = 1, 2 or 3) the roots of L6 with positive imaginary part and Ai = - .

Define [p] the 3x3 matrix such that:

Pi = M11p + M 12 - M16 1i + A (Mlspi - M 14 )

p2i = M12pi + M - M 26 + Ai (M 25 - M24 ) (H.3)

p i = M14pi + - M46 + Ai M45 - M4
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and [N] the 3x3 matrix defined as:

1 1 11
[N] 1 - 2 -A3

-A 1 -A 2 -A 3

(H.4)

Hoenig indirectly prooved in Ref. [27] that the Irwin matrix [H] such that 0 =

7r {K}. [H] . {K} was equal to:

[H] = - 1[T]. Im {[p]. [N~1] (H.5)

with:

0 1 0

[T] =1 0 0

0 0 1

(H.6)

If two pi are equal, the inverse of [N] is no more defined so that in this specific case,

the methodology presented here should not apply. However, just as in the two-dimensional

plane-strain case, this drawback can be overcome. For instance, for isotropic media where

A1 = 2= #3 = i, one can compute the Irwin matrix by doing pi +- A1 = e + i and

p2 + A2 = -E + i and by letting c go to zero.

'Hoenig did not write Irwin's formula in a matrix form. However, we found it convenient to introduce
the [H] matrix just as in the two-dimensional plane-strain case.
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