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Abstract

Structural optimization is largely unused as a practical design tool, despite an extensive
academic literature which demonstrates its potential to dramatically improve design pro-
cesses and outcomes. Many factors inhibit optimization’s application. Among them is
the requirement for engineers—who generally lack the requisite expertise—to choosc an
optimization algorithm for a given problem. A suitable choice of algorithm improves the
resulting design and reduces computational cost, yet the field of optimization does little
to guide engineers in selecting from an overwhelming number of options. The goal of this
dissertation is to aid, and ultimately to automate, algorithm selection. thus cnhancing
optimization’s applicability in real-world design.

The initial chapters examine the extent of the problem by reviewing relevant literature
and by performing a short, empirical study of algorithm performance variation. We then
specify hundreds of bridge design problems by methodically varying problem characteris-
tics, and solve each of them with eight commonly-used nonlinear optimization algorithms.
The resulting, extensive data set is used to address the algorithm selection problem.

The results are first interpreted from an engineering perspective to ensure their validity as
solutions to realistic problems. Algorithm performance trends are then analyzed, showing
that no single algorithm outperforms the others on every problem. Those that achieve the
best solutions are often computationally expensive, and those that converge quickly often
arrive at poor solutions. Some problem features, such as the numbers of design variables
and constraints, the structural type, and the nature of the objective function, correlate
with algorithm performance.

This knowledge and the gencrated data set are then used to develop techniques for auto-
matic selection of optimization algorithms, based on a range supervised learning methods.
Compared to a set of current, manual selection strategies, these techniques select the best



algorithm almost twice as often, lead to better-quality solutions and reduced compu-
tational cost, and—on a randomly-chosen set of mass minimization problems—reduce
average material use by 9.4%.

The dissertation concludes by outlining future research on algorithm selection, on inte-
grating these techniques in design software, and on adapting structural optimization to
the realities of design.
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Chapter 1

Introduction

Structural optimization uses algorithms to seek an optimal solution to a mathematical
representation of an engineering design problem. The field has been widely studied for
decades, and the resulting, rich academic literature shows its potential to dramatically im-
prove design processes and outcomes. It has seen considerable application in the aircraft
and automotive design industries, with leading companies retaining expert optimization
groups. By automating the cumbersome and time-consuming process of relatively late-
stage design exploration, optimization allows engineers to focus on high-level design issues
and to deal with complex systems whose design spaces exceed the limits of human cogni-
tion. By methodically searching a wide range of designs, optimization can lead to lighter,
cheaper, and more efficient design outcomes.

Despite this demonstrated potential, extensive study, and application in certain domains,
structural optimization has had little impact in civil engineering design. There are strik-
ingly few examples of buildings, bridges, and other infrastructure designed using opti-
mization, even though eflicient and cost-effective design of such resource-intensive and
expensive projects is of great importance to society.

Many of the reasons for this lack of application stem from the optimization community’s
failure to sufficiently address realitics of practice; a lack of understanding of optimization’s
true capabilities and a scarceness of design engineers capable of implementing optimization
techniques also contribute. A major issue is the requirement for engineers to choose, from
a wide and disparate range, an algorithm to solve the design problem at hand. This
choice, as the dissertation shows, significantly affects the computational expense of the
optimization process and the quality of its results. Lacking the necessary expertise and
expericnce, and in the absence of suitable guidance from the optimization community,
engineers are unlikely to gain the benefits of good algorithm selection. Although they
possess a well-populated optimization toolbox, engineers have no way of reliably knowing
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CHAPTER 1. INTRODUCTION

which tool to use for the design problem at hand.

This dissertation has three distinct goals, all of which aim to narrow the gap between
academic optimization and practical structural design. The first is to investigate how
well a range of algorithms solve a representative set of design problems, presenting a
clearer picture of optimization’s capabilities than exists in the contemporary literature
and demonstrating the importance of choosing algorithms appropriately. The second goal
is to explore and understand the relationship between features of design problems and
performance of optimization algorithms (either computational cost or solution quality),
enabling the development of broad guidelines on algorithm use. Finally, we aim to de-
velop automatic algorithm selection techniques, enhancing the applicability of structural
optimization in real-world design.

This chapter presents the problem in greater detail, motivating these research goals. §1.1
discusses the potential of optimization to impact structural design—emphasizing the au-
thor’s previous work on interactive optimization software—and the primary barriers to
optimization’s application. To test the assumption that algorithm performance varies
across problems (and, hence, that the algorithm selection problem is an important one),
§1.2 presents the results of a short study empirical study. After summarizing in the form
of a clear problem statement and a set of precise research questions, §1.3 concludes by
outlining the remainder of the dissertation.

1.1 Optimization’s promise and limitations

1.1.1 Potential to improve design outcomes and processes

Structural optimization’s rich academic tradition spans more than a century, from
Michell’s seminal work on material efficiency to the more sophisticated theory of recent
decades [Michell, 1904; Rozvany and Prager, 1989; Hajela and Lee, 1995]. The literature,
examined in Chapter 2, consists of thousands of journal papers and hundreds of books
detailing methods and applications, and many review articles have analyzed progress and
identified future research directions [Venkayya, 1978; Topping, 1983; Haftka and Giirdal,
1992; Rozvany, 2009]. This wealth of information supports optimization’s long-envisaged
potential to significantly improve design outcomes for virtually all structural types, lead-
ing to structures that require less material, energy, and money to build and operate.

Optimization can also improve the effectiveness and efficiency of the design process, with
algorithms evaluating many more alternatives than humans in a given period of time
[Flager et al., 2009]. Modern computational design techniques are cumbersome and time-
consuming; engineers transfer data across a set of disparate software applications, and

12



1.1. OPTIMIZATION’S PROMISE AND LIMITATIONS

even minor changes to a large-scale structural model can take many hours to implement
and evaluate [Clune et al., 2012]. By automating much of this process, optimization allows
engineers to increase their focus on higher-level tasks such as structural system selection,
integration of other technical disciplines, and improvement of constructability.

In recent years, optimization researchers have dealt with increasingly realistic representa-
tions of structures. The two-dimensional trusses and frames commonly studied throughout
the field’s history have, with increasingly frequency, been replaced by three-dimensional
real-world examples and by multi-physics representations (Fig. 1.1).

(b)

Figure 1.1 - The two-dimensional trusses and frames studied during structural optimiza-
tion’s early years have, in many cases, been replaced by (a) realistic three-dimensional
structures and (b) multi-physics representations of buildings. (Images from (a) Smith
et al. [2002] and (b) Flager et al. [2009].)

The development of interactive software is another recent advance. In particular, Clune
et al.’s [2012] work demonstrates how the appropriate integration of optimization in the
design workflow allows engineers to combine their intuition and experience with opti-
mization’s search power. The two-dimensional truss software developed in that work
embeds sizing and geometry optimization capabilities in a real-time analysis environment
(Fig. 1.2). Designers control problem formulations graphically, run algorithms at their
discretion, modify start and end points in response to real-time evaluations, and intervene
in the optimization process.

The extension of this approach to structural types beyond trusses and the integration of
sufficiently robust optimization components for practical use, however, create challenges.
One such challenge is the unpredictability of algorithm performance. An algorithm that
works well for the two-dimensional trusses in the cited work often fails to make similar
progress with, for example, bending-governed beam structures. Even within the chosen
domain of trusses, slight perturbations to the problem formulation or to the starting point
dramatically affect optimization algorithm performance. Addressing these, and other,

13



CHAPTER 1. INTRODUCTION
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Figure 1.2 - Interactive optimization software can overcome key limitations of the field.
(Image from Clune et al. [2012].)

challenges would move optimization closer to fulfilling its long-held potential. The work
presented in this dissertation, therefore, is part of a broader effort to make interactive
structural optimization practically useful in the design of a diverse range of realistic
structural types.

Assuming the existence of an appropriately-formulated problem, a suitably-chosen and
tuned algorithm, and a designer capable of setting everything up, optimization has signif-
icant potential to produce better structures while consuming less of engineers’ time. As
suggested in the opening paragraphs, however, these assumptions are almost certain not
to hold, creating a barrier between optimization and the design industry. The following
section outlines the most significant factors responsible for this.

1.1.2 Practical limitations

Despite a body of literature containing over 5000 journal papers, optimization has played
a role in the design of very few structures. Researchers have proposed many reasons for
this lack of application; we examine the following important ones:

a) Problem statements do not capture the full richness of a system.
b) Optimization does not sufficiently account for engineering judgment and intuition.

c) Academia and practice have fundamentally different approaches to optimization-
driven design.

14



1.1. OPTIMIZATION’S PROMISE AND LIMITATIONS

d) Optimization’s true capabilities have not been sufficiently demonstrated.

e) Engineers are not optimization experts.

a) Problem statements do not capture the full richness of a system

Cohn [1994] points to the widening gap between professional designers and optimiza-
tion researchers, emphasizing the “irrelevance of many optimization approaches and the
conflicting opinions of experts on various approaches to problem-solving.” That paper
highlights the difficulty of accurately representing the complexity of an entire engineer-
ing system as a major barrier between academia and practice. Optimization techniques
then pursue the globally-optimal solution to a problem statement that does not repre-
sent many of the important realities of the underlying problem. These realities include
aspects of physical behavior that lie outside the scope of the chosen modeling platform,
design considerations from other engineering disciplines, and implications for construction
sequencing.

The contemporary literature, reviewed in Chapter 2, has begun to address this challenge,
but it remains a barrier to real-world application.

b) Optimization does not sufficiently account for engineering judgment and
intuition

A number of researchers, such as Vanderplaats [1984] and Haftka and Giirdal [1992],
have challenged the role of numerical optimization as a stand-alone problem-solver. The
latter reference notes optimization’s inability to account for the inherent uncertainty and
subjectivity of real-world design, and advocates the inclusion of engineering judgment:
“...no general method of optimization, no matter how robust and powerful, can be used
as a substitute for good engineering intuition. The best strategqy is one that emphasizes
both as complements of each other.”

Others have addressed this limitation by developing interactive human-computer opti-
mization tools such as the one described briefly in §1.1.1 {Von Buelow, 2008; Clune et al.,
2011, 2012]. These approaches, rather than developing new optimization algorithms, seck
to alter the nature of the interaction between the user and the algorithm, giving the
user greater control over optimization. By seamlessly embedding optimization in the de-
sign process, with easily-modifiable start and end points; by allowing designers to control
problem formulation in a graphical and intuitive manner; and by communicating informa-
tion on the algorithm’s progress and allowing users to interrupt and interfere, they aim
to inject designers’ intuition and judgment into an optimization-driven design process,
accounting for the uncertainty and subjectivity inherent in structural design.



CHAPTER 1. INTRODUCTION

The cited research demonstrates the benefits and promise of interactive optimization, but
the approach is not yet widely used by engineers.

c) Academia and practice have fundamentally different approaches to
optimization-driven design

Perhaps the most important limiting factor is the fundamental difference in the approaches
of academia and of professional practice. Researchers in the field have described this
difference, and the author has often encountered it in practice and in conversation with
engineers [Cohn, 1994].

Academic researchers seek to develop and improve mathematical algorithms; proof of
success involves demonstrating strong algorithm performance on a small number of case
studies, which the researcher is usually free to choose. Structural designers, by contrast,
start with a design problem and look for a solution method. Before optimizing, a de-
signer must formulate a mathematical problem statement—including design variables,
constraints, and objective functions—which encapsulates the most relevant aspects of the
design problem, and must then select an algorithm to search the design space for the
optimum.

Academic optimization is, in this sense, a solution-seeks-problem approach, where the
goal is to develop novel algorithms, and identifying problems for them to solve is an af-
terthought. This approach is evident throughout the literature, with several researchers
criticizing how the community evaluates new techniques [Gent et al., 1997; Eiben and
Jelasity, 2002]. Practical design, on the other hand, is driven by a problem-seeks-solution
approach [Cohn, 1994]. Using optimization in this setting requires a set of actions which
structural designers lack the expert-level insight and knowledge to perform. These actions,
namely the translation of a design problem—with all its complexity and uncertainty—to
a tractable mathematical optimization problem, and the selection and setup of an appro-
priate algorithm, demand an unrealistic level of expertise from practicing engineers.

This is a pressing and insufficiently-addressed challenge for the field of structural opti-
mization, and a strong general motivation for this dissertation.

d) Optimization’s true capabilities have not been sufficiently demonstrated

Papers in the structural optimization literature typically conclude a presentation of an
optimization algorithm with a few case studies to demonstrate success. There are a few
established benchmark problems [e.g., Rozvany, 1998, although researchers are usually
free to choose and formulate any case study. The literature contains thousands of these
successful case studies, but researchers rarely publish cases where their techniques failed to
produce high-quality designs. Nor do most researchers comment on the effect of algorithm
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1.1. OPTIMIZATION’S PROMISE AND LIMITATIONS

tuning parameters and of slight code adjustments on the results, or on the extent to which
the optimization algorithm is tuned to match a particular case study.

This has created a situation where the discerning engineer cannot tell, from the literature,
how reliably optimization can be used as an ‘off-the-shelf” generator of solutions to realistic
problems without requiring expert intervention or significant trial and error. In making
the case for increased usage of optimization in design, this limitation of the field needs to
be addressed.

e) Engineers are not optimization experts

If its techniques are to fulfill their potential to impact the design industry, the optimization
community must address the disconnect between academia and practice created by their
differing approaches. Doing so requires researchers to address a number of challenges,
with the goal of facilitating the use of optimization techniques by non-expert engineers.
Helping engineers to suitably formulate problem statements that capture their design
intent and the essential features of the structural system is one such challenge. So too are
choosing an algorithm to solve the formulated problem and communicating the algorithm’s
progress and difficulties to the user.

Rather than seeking to integrate optimization techniques in engineering curricula or trying
to convince engineering firms to hire optimization experts, we believe the optimization
community’s best chance to impact the design of large-scale civil infrastructure is to adapt
its techniques to enable their use by non-experts. This dissertation addresses an important
element of this: helping engineers to choose an algorithm for a given design problem.

To reinvigorate itself, structural optimization needs to refocus

These five factors reflect, in one way or another, the optimization community’s failure to
address key realities of a problem domain to which its techniques have much to contribute.
As algorithmic development and refinement continue to outpace steps towards addressing
reality, structural optimization remains a predominantly academic exercise. Rather than
continuing to develop and refine algorithms, the optimization community should refocus a
significant part of its efforts on addressing these limitations and on adapting its techniques
to practice.

In describing the limitations above, particularly the differing approaches of the two fields
and the need to guide algorithm selection, this chapter assumed that algorithms perform
differently on different design problems. Rather than simply examining the literature
and claiming algorithm selection as an important problem with a significant impact on
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optimization-based design, this importance should be investigated empirically. The follow-
ing section, therefore, studies the influence of algorithm selection on the solution quality
and on the computational cost of structural optimization.

1.2 Variation in algorithm performance and the im-
portance of algorithm selection

The preceding sections of this chapter, in motivating algorithm selection as an important
problem, implicitly assumed variation in algorithm performance across design problems
to be substantial. After all, if algorithms performed more or less similarly on all problems,
the choice of algorithm would be of little importance, obviating the need to address the
problem.

Although the implications of Woplert and Macready’s No Free Lunch Theorems® [Wolpert
and Macready, 1997] and an examination of the optimization literature (see Chapter 2)
provide theoretical and anecdotal support, an original, investigation to demonstrate the
importance of appropriate algorithm selection is warranted.

This section presents a short empirical test of the variable performance assumption, whose
validity is crucial to the development of a precise problem statement and to the identifi-
cation of suitable research questions. We solve three realistic design problems with eight
widely-used optimization algorithms, and explore how two chosen performance measures
vary across algorithms and problems. In the interest of brevity, this section briefly summa-
rizes the problems and algorithms; §3.2.1 discusses the algorithms further, and Appendix
A provides details of the problems and full results.

1.2.1 Selected design problems, algorithms, and performance
measures

Design problems: The goal of the three design problems is to determine the minimum
mass for a bridge subject to standard loading and design criteria, following the Ameri-
can Institute of Steel Construction’s Load and Resistance Factored Design (LRFD) code
[American Institute of Steel Construction, 2011]. The GSA structural analysis environ-
ment is used to analyze the structures [Oasys, 2012].

I"The No Free Lunch Theorems state that, averaged over the theoretical set of all possible optimiza-
tion problems, all algorithms have the same expected performance, and an algorithm’s relatively strong
performance on one problem is offset by relatively poor performance on another.

18
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In designing two of the bridges—a 30.5 m steel arch bridge and an 800 m suspension bridge
(Figs. 1.3a and 1.3c)-—the algorithms vary the geometry of the superstructure and the
size of the structural elements. Design solutions for the third bridge—a concrete foot-
bridge with a 35.8 m main span (Fig. 1.3b)—vary only in the cross-sectional dimensions
of the concrete beams. The problems also differ in terms of the number and type of de-
sign variables and constraints. For each problem, we formulate a continuous, non-linear,
constrained optimization problem, and manually generate a feasible starting point, as

(a) The first problem is a mass minimization of 30.5m steel basket-handle arch bridge,
intended for pedestrian use.

272m : 347 m . 205m

(b) The concrete footbridge, shown here in plan view, has constant geometry, making its
mass minimization a sizing optimization problem.

(c) The suspension bridge used for the third problem is much longer that the other two
bridges, and its structural behavior is more sensitive to slight changes in geometry.

Figure 1.3 — The three structures on which the design problems are based: (a) a steel
arch bridge, (b) a concrete footbridge, and (c) a suspension bridge

19



CHAPTER 1. INTRODUCTION

Appendix A details.

Algorithms: Eight algorithms, shown in Table 1.1, are chosen from the NLopt non-
linear optimization library [Johnson, 2012]. They include local algorithms, which termi-
nate when they converge on a locally-optimal value of the objective function, and global
algorithms, which broadly search the design space for a prescribed period of time, and are
more likely to find the globally-optimal solution to a problem. Deterministic and stochas-
tic methods, and methods based on sequential approximations of the design space, are
used, representing the major classes of derivative-free nonlinear solvers.

Some algorithms solve only unconstrained optimization problems. In these cases we com-
bine the objective and constraint functions in a single Augmented Lagrangian formulation
[Conn et al., 1991]. Since these algorithms also generate the dissertation’s main results,
a more detailed description is deferred to Chapter 3, §3.2.1.

Table 1.1 — Eight derivative-free, nonlinecar algorithms are used to solve each design
problem.

Constrained Optimization by Linear Approximation-COBYLA [Powell, 1994]

Bounded Optimization by Quadratic Approximation-BOBYQA [Powell, 2009]

Local | elder-Mead Simplex— NEL-MEAD [Nelder and Mead, 1965
Subplex - SUBPLEX [Rowan, 1990] )
Principal Axis Method—PR-A4 XIS [Brent, 2002
Dividing Rectangles Method—DIRFEC'l' [Jones et al., 1993]

Global

Controlled Random Search—CRS [Kaelo and Ali, 2006]

Improved Stochastic Ranking Evolution Strategy—ISRFES [Runarsson and Yao, 2005]

Performance measures: An algorithm’s performance in solving the design problems
can be evaluated using a wide variety of measures, which fall in one of two categories:
those related to the result of the optimization process and those related to the process
itself, such as the time or computational resources required to converge on an answer.
This work uses the final value of the objective function and the number of calls made to
the GSA analysis software as performance measures. Since the algorithms seek minima
of the objective functions in each of the problems, an algorithm outperforms another if it
attains a lower objective value or requires fewer analysis calls.

In practical optimization problems, most of the computational cost is associated with
structural analyses. Reducing the number of calls to the analysis software, therefore,
proportionally reduces the time required to get an answer—an important consideration
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for practicing engineers.

Comparison of algorithms across problems requires normalization to account for the differ-
ences in the minimum attainable objective between problems and for the different number
of analysis calls required to optimize over different mathematical functions. A relatively
straightforward expression of the normalized performance, g, ;, of algorithm a on problem
J is:

foj = maxd “Paj e g j=1.3;  0< pay <1 (1.1)
pmax,j - pmin,j

where p, ; is the obscrved performance of algorithm a on problem j, and pmax; and pmin,;
are the worst and best observed performances among all algorithms on the same problem
j, and A is the set of algorithms in Table 1.1. Normalized performance is calculated
separately for each of the three design problems. The same normalization strategy is used
for both chosen performance measures, so p and p could refer to either the number of
analysis calls or the objective value.

1.2.2 Results and discussion

The right-hand plots in Fig. 1.4 (colored blue, or darker in grayscale) show the number
of analysis calls required by each algorithm to converge on an answer for each of the
three design problems. There is much variation in this measure of algorithm performance
within each problem, with some algorithms outperforming others by orders of magnitude.
The left-hand side of the figure shows the performance of the same set of algorithms on
the three problems, now measured in terms of objective value attained. Since these are
minimization problems, lower objective values always indicate better performance. Ap-
pendix A gives the values of the design variables at convergence and specifies performance
measures precisely.

Fig. 1.5 directly compares algorithm performance across the three design problems, using
the normalized measures of algorithm performance (Eq. 1.1). In both cases, lower values
represent better normalized performance.

A clear relationship between algorithm selection and performance does not emerge from
the data, but some broad trends are apparent. The three global algorithms (DIRECT,
CRS, and ISRES) generally require many analysis software calls to accommodate their
evaluation-intensive approaches. On the suspension bridge design problem, where the
steep local gradients that characterize the mathematical space are likely to cause difficul-
ties for some algorithms, NEL-MEAD and SUBPLEX produce the best solutions, although
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they require relatively many analysis calls. COBYLA and NEL-MEAD consistently per-
form well in terms of objective value attained, although both are often outperformed in
terms of the number of analysis calls required to achieve similar designs.

In comparing the normalized performance of each algorithm across the design problems,
Fig. 1.5 demonstrates significant variation, indicating that an algorithm that performs
well on one design problem may perform quite poorly on another. Some algorithms
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in terms of both solution quality (left hand side) and computational cost (right hand side).
Algorithms that perform well on one problem do not necessarily perform well on another
and different algorithms achieve very different results for each problem.

Figure 1.4 - The eight algorithms perform very differently on the three design problems

bl
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Figure 1.5 — Comparing normalized performance measures across all three design prob-
lems shows significant variation; algorithms perform well on some problems and poorly on
others.

demonstrate less variation in performance than others, and many algorithms which exhibit
low variation on one performance measure show high variation on the other. The results
are consistent with the No Free Lunch Theorems’ important conclusion that no single
algorithm outperforms all others.

We could have invested more effort in tailoring problem formulations to match individual
algorithm characteristics and in tuning algorithm parameters to improve performance.
This, however, would not have represented the reality of using optimization in practice.
Unlike optimization researchers, professional designers rarely have the expert knowledge
required to perfect the mathematical problem statement or the time to repeatedly solve
problems in search of the best tuning parameter values.
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1.2.3 Significance

Most importantly, this study demonstrates that the choice of optimization algorithm non-
linearly influences solution quality and computational cost on a set of realistic structural
design problems. This provides empirical support for the previously theoretical and bib-
liographic case for studying the algorithm selection problem, and further motivates the
stated research goals.

1.3 Problem statement and dissertation outline

Structural optimization, as evidenced by its rich academic literature and application in
certain domains, has the potential to dramatically improve design process and outcomes in
civil engineering. Despite this promise, optimization is virtually unused in contemporary
structural design. This dissertation addresses two of the key barriers to optimization’s
successful application identified in the chapter: the insufficient demonstration of opti-
mization’s true off-the-shelf capabilities and the lack of guidance for engineers in selecting
among the many available algorithms. This leads to the following three research questions.

Question 1: How do different optimization algorithms perform on a representative set
of realistic structural design problems?

Structural optimization papers usually include a few successful applications of their
proposed techniques to engineering design problems. Researchers rarely report,
however, any failed attempts that preceded the successful published ones, or the
extent to which algorithm tuning parameters are adjusted to deliver good results.

To address this, and to present a clear, honest picture of optimization’s capabil-
ities in design, Chapters 4 and 5 examine the performance of eight optimization
algorithms on hundreds of long-span bridge design problems, laid out in Chapter 3.
The results show consistent patterns of design improvement and design outcomes,
but performance varies dramatically depending on the chosen algorithm and the
problem at hand.

Question 2: Do correlations exist between problem features and algorithm performance?

As the empirical study in §1.2 shows, selecting the right optimization algorithm
leads to better design outcomes and reduced computational requirements; this is
confirmed with much more extensive data in Chapter 5. Practicing structural en-
gineers, however, are unlikely to have the requisite expert knowledge to choose
algorithms advantageously, and the optimization literature does little to help them.
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Chapter 5, specifically §5.3, examines the data generated in Chapter 3 in search of
statistically significant correlations between design problem features and the per-
formance of each algorithm. These correlations are used to make a set of recom-
mendations about when certain algorithms should be used, tangibly improving the
real-world practicality of optimization.

Question 3: Can we create a system to automatically select good optimization algo-
rithms for design problems?

The guidelines produced in response to the previous question are a useful, but po-
tentially insufficient, solution to the problem of helping engineers select algorithms
based on the design problem at hand. A guideline-based approach simplifies what is
likely to be a complex problem, characterized by nonlinear and interdependent rela-
tionships between problem features and algorithm performance. Such an approach
also requires carcful study by engineers before it can impact design.

In response to these concerns, Chapter 6 presents a set of machine learning-based
computational techniques to automatically select algorithms based on features of
design problems. These ‘black box’ techniques complement the selection guidelines,
and could be easily integrated into existing optimization software.

Dissertation outline

Chapter 2 examines the relevant literature, beginning with a broad overview of structural
optimization. This supports §1.1's and §1.2’s characterization of the field as predomi-
nantly focused on developing and improving algorithms, with little consensus or guidance
on which algorithms to use in a given problem domain. The second half of Chapter 2
reviews the algorithm selection literature, drawing from optimization and other computa-
tional fields. Besides identifying useful precedents for this work, the chapter demonstrates
a clear lack of research on algorithm selection techniques for structural engineering prob-
lems.

To understand the nature of the problem and to build selection techniques, we first pro-
duce and study an extensive set of algorithm performance data. Chapter 3 details the
data generation method, which involves solving hundreds of realistic and varied bridge
design problems using eight algorithms representing the major types available in prac-
tice. Chapters 4 and 5 present the disscrtation’s main results. Chapter 4 analyzes the
thousands of designs in the generated data set, to verify that they are, in fact, realis-
tic solutions to realistic problems. Chapter 5 explores how algorithms’ solution quality
and computational cost vary across problems, seeking associations between characteristic
problem features and performance measures. The chapter concludes with a summary of
each algorithm’s observed strengths and weaknesses. Building on that knowledge and in-

25



CHAPTER 1. INTRODUCTION

sight, Chapter 6 develops and evaluates techniques for automatically selecting algorithms
based on features of design problems.

Chapter 7 discusses the dissertation and its contributions to solving the algorithm selection
problem, locating our work in the broader context of adapting structural optimization to
the practical realities of design and identifying important future research areas.
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Chapter 2

Literature review

This chapter contains two main sections. The first, §2.1, analyzes the structural opti-
mization literature at a high level. This provides appropriate context for the rest of the
dissertation and, importantly, shows that many algorithms have seen successful applica-
tion in several domains. The second, §2.2, analyzes the algorithm selection literature,
highlighting a range of techniques from other fields and a relative lack of research for
engineering optimization problems.

2.1 Structural optimization

This section’s goal is not to infer the appropriate algorithm(s) for a design problem from
the past literature. Rather, by demonstrating the variation in successful algorithm ap-
plication, it builds on the conclusions of §1.2’s empirical study, further emphasizing the
need for a system to select appropriately from the wide variety of available algorithms.

Types of optimization methods

Researchers generally credit Michell [1904] with initiating structural optimization as a
formal field of study [Rozvany and Prager, 1989]. His minimum-weight Michell trusses
are still in use today as benchmarks for research on topology optimization of framed
structures [Rozvany, 1998]. Fig. 2.1 shows two such solutions from Michell’s paper.

Despite notable exceptions such as Heyman'’s seminal work on Linear Programming-based
plastic design of frames and Chan’s graphical techniques for optimization using appro-
priate strain fields, the field remained mostly dormant for the first half of the twentieth
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(a) (b)

Figure 2.1 — Michell’s minimum-weight solutions for (a) a point-loaded cantilever with
a circular support and (b) a space frame subjected to two equal but opposite couples.
(Images from Michell [1904].)

century [Heyman, 1959; Chan, 1960).

Structural optimization research then intensified and broadened in scope from the late
1960s, with the increasing availability of computing power and numerical methods. Taking
inspiration from Michell’s work, Prager and Rozvany [1977] developed an analogous theory
for the optimum design of grillages. Hemp [1973] and Dorn et al. [1964], on the other hand,
pioneered the use of pin-jointed ground structures to overcome limitations in Michell’s
theory; much of the research in the following decades has been an extension of their
approach.

By the mid-1990s, researchers had published an estimated 2,500 papers and 150 books on
structural optimization, and the volume of published work has since grown steadily. Sev-
eral notable monographs describe the field’s history and document its methods and appli-
cations [Fox, 1971; Carmichael, 1981; Siddall, 1982; Banichuk, 1983; Farkas and Pavlovic,
1984; Vanderplaats, 1984; Haftka and Giirdal, 1992; Kirsch, 1993; Adeli, 1994; Spillers
and MacBain, 2009; Arora, 2011].

Structural optimization methods can be loosely classified as either mathematical program-
ming, optimality criteria, or stochastic search. Mathematical programming algorithms
(e.g., Powell’s Conjugate Gradient Descent method and Nelder and Mead’s simplex-based
method [Powell, 1964; Nelder and Mead, 1965]) sequentially update a design based on the
value of the objective function and constraints [Borkowski et al., 1990]. Optimality criteria
methods start by assuming some characteristic of an optimum structure and iterate until
that condition is achieved [Save et al., 1985; Rozvany and Prager, 1989]. (E.g., the Fully
Stressed Design method assumes the optimal solution to a sizing problem is reached when
all elements are at their stress limits.) Stochastic search methods, such as Genetic Algo-
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rithms (GAs) and Simulated Annealing (SA), update a population of solutions based on
a combination of some governing criteria and random chance [Holland, 1975; Kirkpatrick
and Vecchi, 1983].

Optimization methods find optima by searching either the original design space or some
approximation of it. Approzimation methods are often useful when the design space
exhibits complexity or noisy behavior in excess of what an algorithm can handle, or when
function evaluations are too expensive to achieve convergence in a reasonable period of
time,

Barthelemy and Haftka [1993] provide a useful review of approximation meth-
ods. Comparing two of them—Ilinear approximation and differential equation-based
approximation—Fig. 2.2 shows the errors in estimating the fundamental modal frequency
of a point-loaded cantilever beam as a function of the perturbation from an initial design.
The divergence in errors demonstrates the importance of carefully selecting and execut-
ing an approximation method, as the underlying design space’s behavior may be quite
different.

Figure 2.2 — The error in using two approx-
imation methods to determine a modal fre-
quency for a point-loaded cantilever beam in-

0.50

Q ®  creases with perturbation from the original
n.oo:- i Aalite o design. (Image from Barthelemy and Haftka
Linear Approximation (1993].)
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Addressing the realities of design

Some approaches to structural optimization, especially those from the field’s early years,
rely on analytic mathematical representations to predict structural behavior. To treat the
realities and complexities of design, however, most recent research uses numerical analysis
software—typically a commercial Finite Element Method solver. This leads to black box
or simulation-based problem solving, where nothing is known about the objective and
constraint functions apart from their values at a finite number of design points. Additional
useful information, especially gradient values, is estimated using methods such as finite
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difference approximation. From a practical point of view, the trade-off for this loss of
information is the ability to work with realistic representations of structures.

In response to the literature’s previous failure to address realistic design problems, recent
years have seen an increase in the level of research addressing practical considerations.
These efforts draw from diverse sub-fields, including human-computer interaction, multi-
objective optimization, and multi-modal optimization.

Real structural engineering problems involve more than one objective. A ubiquitous
example is the requirement to balance the goal of minimum material weight or, perhaps,
structural cost with the need to limit motion of the structure. To address such trade-offs,
Jendo and Marks [1986], Rao [1987], and Fu and Frangopol [1988] developed some of the
earliest multi-objective structural optimization techniques (e.g., Fig. 2.3).

Given structural engineers’ frequent interaction with other design disciplines, diverse per-
formance measures and design requirements should be accounted for. Flager et al. [2009]
present a multi-disciplinary approach to building design (Fig. 2.4). Their approach in-
cludes structural cost and life-cycle (including energy) cost as objectives, and accounts
for relevant constraints on structural performance, on the level of day-lighting, and on
the available floor space.
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Figure 2.3 — In an early multi-objective frame example ([a]), Jendo and Marks [1986]
plot iso-volume surfaces in a three-dimensional failure space ([b]), visualizing the trade-
offs between four objectives: (i) minimizing volume, and minimizing the probabilities of
(1) excessive deformation, (iii) collapse, and (iv) material yielding. (Images from Jendo
and Marks [1986].)
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Lifecycle Energy Costs (S/30 years)
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Figure 2.4 - Multi-disciplinary, multi-objective optimization of a classroom ([a]), demon-
strating the trade-off between structural and life-cycle energy costs ([b]). (Images from
Flager et al. [2009].)

The generation of multiple candidate solutions to a problem is another reality of the
structural design profession. Although these solutions can be distinguished by quanti-
tative performance measures, engineers often select among them based on subjective or
ill-defined criteria. Multi-modal optimization techniques, which seek multiple, diverse
local optima within a design space, are naturally suited to addressing this aspect of de-
sign. Several researchers, including Martini [2011] (Fig. 2.10) and Balling et al. [2006],
have proposed multi-modal techniques to mirror this important facet of structural design
[Mahfoud, 1995].

Reacting to the inability of traditional numerical optimization to address the subjec-
tivity and fuzziness of design—which often stems from considerations of aesthetics or
constructability —Clune et al. [2011] (Fig. 1.2) and Von Buelow [2008] developed inter-
active optimization techniques for structural optimization’. (Colgan et al. [1995] gives a
useful, general-purpose introduction to the concept of interactive optimization.) These al-
low designers to exercise control over the optimization process, leveraging their experience
and intuition to offset a limitation of traditional optimization.

As the overall goal of this research is to enable algorithm selection for different design
problems, §2.1.1 examines the types of structures regularly featured in structural op-
timization, identifying the most commonly-used algorithms within each structural do-
main. Researchers rarely publish instances of algorithm failure, so we can assume that all

L An alternative to accounting for subjective factors such as aesthetics by human input is to use shape
grammars or other formal expressions capable of representing abstract concepts. Some of the important
early work in this area was conducted by Shea and Cagan [1999].
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algorithm-problem pairings presented in the literature are successful ones.

2.1.1 Successful application domains

Optimization methods address various combinations of a structure’s topology (connectiv-
ity), geometry (shape), or sizing (material distribution) (Fig. 2.5). Applications in the
literature range from small-scale individual components to large-scale civil structures.
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Figure 2.5 — In sizing optimization, (a), the goal is to distribute material for a defined
geometry and topology. Geometry optimization, (b), seeks the optimum geometry of
a structure whose topology is defined. Topology optimization problems, (c), require a
technique to define element connectivity.

Cohn and Dinovitzer [1994] review the first few decades of computational structural op-
timization, cataloging over 500 published optimization examples by structural type and
algorithm. Their work demonstrates some interesting trends. The problems solved most
extensively in the literature, for example, are far from the ones faced by practicing engi-
neers in terms of the realism of the structure, load conditions, and limit states. In fact,
deterministic optimization of simple trusses and frames accounted for 55% of all prob-
lems encountered. Examining the literature since then shows the same tendency to test
algorithms on well-understood truss and frame problems.

Despite the prevalence of truss and frame examples, however, researchers have optimized
many more structural types; we examine a subset of them—trusses and frames; bridges;
and beams, columns, plates, and composites—below.

Trusses and frames

Topping [1983] reviews the important early work on geometry and sizing optimization
(otherwise known as configuration optimization), where the geometry of a truss’s nodes
and the cross-sectional areas of its members are treated as continuous variables. He traces
the problem’s history from Schmit and Kicher’s early treatment of the three-bar truss
to Imai and Schmit’s important Taylor expansion-based multiplier method for complex
trusses (Fig. 2.6) [Schmit and Kicher, 1962; Imai and Schmit, 1981].
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(a) (b)

Figure 2.6 — Imai and Schmit [1981], and others, extended truss geometry optimization

from simple structures,(a), to more complex ones, (b), using a multiplier method. (Images
from Imai and Schmit [1981].)

Considering only topology optimization, the various techniques fall into one of two major
categories: discrete topology optimization, based on removing elements from a densely-
populated ground structure; and continuous topology optimization, where material is
removed from a discretization of an initially-continuous design space. Ohsaki and Swan
[2002] provide a comprehensive review of the theory and applications of both.

Rozvany [2009] reviews the established continuum-based techniques, with a particular fo-
cus on Solid Isotropic Microstructure with Penalization (SIMP) and Ewvolutionary Struc-
tural Optimization (ESO) [Bendsse, 1989; Xie and Steven, 1993]. Rozvany recognizes
a variety of other techniques, but notes that their industrial application has not been
extensive. Fig. 2.7 shows an early solution, generated by SIMP, to the often-studied
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Figure 2.7 - (a) An early SIMP-generated solution to the benchmark MBB beam prob-
lem, and (b) an ESO-generated solution to the design of an engine mount. (Images from
Rozvany [2009] and Pedersen and Allinger [2006].)
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Figure 2.8 — Typical ground structures for discrete ! |
topology optimization. Elements are usually removed A B

when an algorithm sets their cross-sectional areas below
a certain threshold. (Images from Bendsge et al. [1994]).
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MBB beam problem, and a contemporary solution to an engine mount design problem,
generated using ESO [Rozvany, 2009; Pedersen and Allinger, 2006].

Bendsge et al. [1994] review discrete (ground structure-based) truss topology optimization
techniques (Fig. 2.8). Their comprehensive study notes that the performance of algorithms
within a given structural type depends strongly on problem formulation. An algorithm
that is not well-suited to a certain weight-minimization problem, for example, may solve
a minor reformulation of the same problem quite effectively.

Since trusses have long been a standard case study in optimization papers, virtually all
algorithm types have been applied to them. Evolutionary search techniques, however—
especially Genetic Algorithms—make up much of the recent discrete topology optimiza-
tion literature. Hajela and Lee [1995] propose a two-level approach, first using singular
value decomposition to eliminate the structurally unstable designs that frequently arise
when using GAs for topology optimization. Rajeev and Krishnamoorthy [1997] emphasize
the usefulness of GAs in handling practical issues that arise in real-world design.

Considerations of structural dynamics, usually in the form of lower-bound constraints
on modal frequencies, have appeared in the truss and frame literature since they were
treated in a Kuhn-Tucker approach by Lin et al. [1982] and in an unconstrained minimiza-
tion formulation by Kapoor and Kumarasamy [1981]. Such constraint-based formulations
continue to appear in contemporary literature [e.g., Lingyun et al., 2005; Gomes, 2011].

Bridges

Many of the truss and frame studies referenced previously, especially the longer-span ones,
can be thought of as bridge design problems. In this section, we focus on the literature
that explicitly sets out to address bridge optimization and the real-world challenges that
arise in this domain.

One of these challenges is the selection of a structural type. Working in the domain of
precast concrete bridges, Lounis and Cohn [1995] present a compromise programming-
based system for choosing among optimal designs from various types (e.g., reinforced
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Figure 2.9 - Lounis and Cohn [1995] use compromise programming to select from different
structural systems: [a] slab on precast I-beams; [b] one-cell box girder; [c] two-cell box
girder; [d] voided slab; and [e] solid slab) for a precast concrete bridge. (Image from
Lounis and Cohn [1995].)

concrete slabs, box girders, or solid slabs [Fig. 2.9]) [Duckstein, 1981].

For practical reasons, however, most research is restricted to a single structural type. For
example, Guo et al. [2007a; 2007b] use various algorithms to optimize different suspen-
sion bridge topology formulations, but do not consider types such as cable-stayed bridges,

(b)

Figure 2.10 - Harmony Search is used to find multiple solutions to a simultaneous
geometry and sizing design problem for a steel arch bridge. (Images from Martini [2011].)
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arches, or girder bridges. Within the domain of arches, Martini [2011] uses stochastic Har-
mony Search to generate multiple diverse designs for a basket-handle steel arch (Fig. 2.10),
addressing overall geometry and element sizing.

A notable exception to the trend of searching within a single structural type is Guan et
al.’s [2003] work on topology optimization of arch, cable-stayed, and suspension bridges.
The authors vary the setup of the ESO algorithm and the geometric constraints on the
design space to push solutions towards certain structural types. (Fig. 2.11 shows one of
their examples.)

The recent trend towards incorporating realities of design is also evident in bridge opti-
mization. Further pursuing practical considerations, Rahmatalla and Swan’s SIMP-type
approach to the design of long-span bridges accounts for buckling, which is of particular
importance to long-span structures with compression members [Rahmatalla and Swan,
2003]. Guan et al. [2003] include lower-bound constraints on bridges’ fundamental fre-
quencies in their topology optimization work.
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Figure 2.11 - Constraining the initial design space ([a]) of an ESO topology optimization
problem leads to the result in (b). Constraints on the presence of material at certain
locations in the material, and tweaks in the algorithm that encourage compression- or
tension-dominated solutions, drive the divergence in structural types. (Images from Guan
et al. [2003].)

Beams, columns, plates, and composites

Beam elements have long been a studied domain in structural optimization; Sheu and
Prager [1968] and Chern and Prager [1970], for example, conducted some of the earliest
studies on optimality criteria-based optimization of simply-supported sandwich beams.
Beam and column examples appeared in 21% and 7% of the early (pre-1992) determin-
istic and probabilistic literature [Cohn and Dinovitzer, 1994]. Researchers have since
used virtually all available methods to optimize beams, with genetic algorithms being
increasingly used in recent decades [e.g., Deb, 1991; Kathiravan and Ganguli, 2007

Plates are another structural domain whose optimization has been studied since the late
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1960s, starting with the early optimality criteria approaches of Hubka [1968|, Brotchie
[1969], and Masur [1970]. The importance of plate design to the aeronautical and astro-
nautical industries has largely driven this research.

Although not part of the typical civil engineer’s design domain, composites are a major
topic of interest in the structural optimization literature, and many of the aeronautical
engineering community’s developed techniques are broadly applicable beyond composite
design.

Awad et al. [2012] (Fig. 2.12) review the most important and widely-studied composite
optimization methods, beginning with the well-established and successful Design Sensitiv-
ity Analysis and Response Surface Approzimation techniques. Researchers have also used
GAs, although their population-based approach limits them to relatively small problems.
Simulated Annealing performs somewhat more efficiently, and Particle Swarm Optimiza-
tion and Ant Colony Optimization also show promise. The scope of the field has extended
significantly since its initiation, and multi-objective and stochastic reliability problems are
now reasonably common.

(b)

Figure 2.12 - Two types of composites commonly encountered in the literature: (a)
a composite laminate, where the angles of orientation, @, of each layer become design
variables; and (b) a fiber-reinforced polymer beam with a central layer of rubber. (Images
from Awad et al. [2012])

2.1.2 Summary

The existing literature contains a wealth successful applications of algorithms across many
engineering domains, demonstrating optimization’s potential to influence the design pro-
cess. Although various algorithms have been more frequently applied than others in
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certain structural domains, few identifiable patterns emerge.

As Chapter 1 noted, this potential remains unrealized due to various limitations. An
important one of these is the inability of non-experts to suitably choose from among
the available and successfully-demonstrated algorithms. The way in which structural
optimization developed—with researchers developing algorithms and then seeking case
studies on which to demonstrate those algorithms’ ability—has created a situation where
a designer has no methodical or reliable means to select an algorithm to solve a given
problem.

Another important, limitation of the literature, evident in virtually all of the referenced
work, is a general tendency to report successful algorithm performance on a small number
of case studies. Researchers do not typically mention the extent to which algorithms were
tuned to match a particular case study, or whether the algorithm would perform as well
on a large set of similar problems. This leaves the discerning engineer with an unclear
picture of the field’s true potential to impact design, and motivates our investigation of
the performance of algorithms—with the same, default tuning parameters and setup—on
a wide range of related problems later in the dissertation.

To enhance its real-world applicability, the field of optimization needs to adapt itself to
the realities of the design. This dissertation takes one of many important steps towards
this by addressing the algorithm selection problem.

2.2 Algorithm selection

Most algorithm selection research has focused on choosing algorithms for problems such
as linear systems, partial differential equations, and data mining. The approaches taken
in this literature, however, can inform the development of an optimization algorithm
selection system, justifying its review here. In addition, some canonical papers, outlining
general-purpose approaches to the algorithm selection problem, are identified.

Few researchers have worked on algorithm selection for optimization, however. To the
best of our knowledge, no work to date has focused on selecting algorithms for structural
design problems in civil engineering,.

§2.2.1 presents general approaches to algorithm selection. An examination of the non-
optimization literature follows in §2.2.2, and §2.2.3 concludes the chapter by looking
specifically at the algorithm selection literature for optimization, identifying a gap in the
development of such systems for structural engineering problems.
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2.2.1 The algorithm selection problem

Rice [1976] provided the earliest formal definition of the gencral algorithm sclection prob-
lem, presenting it as an exercise in fitting a function to map algorithms to problem
instances based on a chosen set of problem features.

Fig. 2.13 highlights each of the key steps in the algorithm selection process. The first
is the extraction of a set of characteristic features from the problem space. This featurc
set must be capable of representing the problems’ mathematical structures and varying
complexitics while allowing algorithms’ advantages and disadvantages to be exposed. The
mapping S(f(z)) from this feature space to the algorithm space is the core of the algorithm
selection system; its goal is to select the algorithm whose performance p is, in some sense,
best. Smith-Miles [2008] described how the development of a selection mapping S(f(x))
became recognized as a meta-learning task by researchers in diverse fields of application.

Rice’s high-level structure (Fig. 2.13) is a useful one to apply when thinking about algo-
rithm selection; most, if not all, of the literature follows this general approach.

A subsequent paper by Rice {1979] expanded on the general problem definition by pro-
viding a concrete methodology for choosing an algorithm to solve numerical integration
and partial differential equation problems.

This lead to the more sophisticated PYTHIA-II system [Houstis et al., 2000}, whose
system architecture is shown in Fig. 2.14. The system aims to handle the highly complex
“algorithmic discovery of knowledge from performance data and the management of these
data.” Many of the features of PYTHIA-II, such as knowledge discovery in databases and
the approach to constructing recommender systems, are useful precedents for the design

xeP

Problem
space

Feature f(x)

extraction

f(x)eF| S(fx) | aed | pax) | peR”

Feature Selection Algorithm Performance Performance
space mapping space mapping space

Figure 2.13 — Rice’s original representation of the algorithm selection problem has formed
the basis of most research in the field. (Adapted from Rice [1976].)
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of a similar system for structural optimization.
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Figure 2.14 - The System architecture of the PYTHIA-II software recommendation
system, which constructs algorithm selection rules by mining software performance data,

reflects much of Rice’s [1976] original framing of the problem. (Image from Houstis et al.
[2000].)

2.2.2 Non-optimization algorithm selection

Substantial variation in algorithm performance across problems is by no means limited to
optimization. Such variation, and the associated need for algorithm selection strategies,
arises in many disciplines throughout computer science and mathematics [Smith-Miles,
2008]; the following highlights notable research in some of those disciplines.

Linear solvers and differential equations

The wide availability of multiple solvers, the relatively short times required to solve most
problems, and the ease of determining suitable classification features for well-understood

problem spaces make linear systems and partial differential equations (PDEs) natural
candidates for algorithm selection schemes.

Many researchers have worked in this area. The system developed by Weerawarana et al.
[1996], for example, incorporates user preferences regarding accuracy and solution time
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to select the algorithm it expects to perform best. It does so by matching new PDEs to
a population of previously-solved ones, based on a chosen set of problem characteristics.

Eijkhout and Fuentes [2010] formulate the problem as one of classification. Their approach
defines a method as the combination of a pre-conditioner and an iterative solver, greatly
increasing the solution space cardinality. Bhowmick et al. [2009] present a set of techniques
to speed up the algorithm selection process for linear solvers by discarding low-information
and redundant characteristic features.

Other researchers have contributed to this sub-field of study, and various elements of their
approaches inform the development of an algorithm selection scheme for different classes
of problems [Arnold et al., 2000; Dongarra et al., 2006; Fucntes, 2007].

Simulation systems

Many techniques are often available to solve a given simulation problem; Ewald et al.
[2008] seek to take advantage of their varying performance levels by developing a system to
choose from the library of simulation techniques in their existing JAMES II system. The
authors emphasize the need for online learning, where the system improves its mappings
with each additional observed instance, and they successfully demonstrate a decision tree-
based algorithm selection scheme. The overall computational framework closely matches
Rice’s problem structure [1976].

Although not limited to simulation systems, Wilson et al. [2000] describe the use of
case-based reasoning techniques for selecting components in general problem-solving en-
vironments. This contrasts with most of the literature, which uses inference methods to
generalize beyond a given set of examples.

Data-mining algorithms

Focusing on data-mining applications, Hilario et al. [2009] extend Rice’s framework to
account for characteristic features of the algorithms themselves. By relying on an ontology
of data-mining algorithms, this approach allows the authors’ algorithm selection methods
to generalize in the algorithm space, instead of the problem space-only generalization
usually encountered in the literature.
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2.2.3 Algorithm selection for optimization

The proliferation of optimization methods available to solve different problems, and their
varying performance (supported by the No Free Lunch theorems and observed empirically
in §1.2 and elsewhere) have lead some researchers to address the problem of optimization
algorithm selection.

The first thorough approach to the problem was an effort by Mittelmann and Spellucci
[1998] to build the Decision Tree for Optimization Software, an online repository which
catalogs optimization algorithms by the types of problem to which they are suited, provid-
ing links to related technical literature and resources. This approach assumes users have
sufficient domain and mathematical expertise to characterize their optimization problems.

The next step beyond cataloging is automatic extraction of useful features from problem
instances, to serve as the basis for a selection system. The Dr. Ampl system does this
for optimization problems expressed in the AMPL programming language [Fourer and
Orban, 2012; Fourer et al., 2002]. Dr. Ampl can serve as a stand-alone feature extractor
or can interface with the library of algorithms stored and executed on the NEOS server
[Czyzyk et al., 1998].

Hough and Williams [2006] outline the use of boosted binary decision trees and support
vector machines to select algorithms for generic optimization problems. Many of the
problem features they use, however, relate to the mathematical structure of optimiza-
tion problem instances. Computing these features for the simulation-based problems in
structural engineering would require an unreasonable amount of time and computational
resources. Leveraging domain-specific knowledge, on the other hand, should allow re-
searchers to determine a set of easily-computable features that could serve in place of
mathematical ones.

Fukunaga et al. [1997], as part of their broader effort to develop the OASIS spacecraft
design environment, present steps towards an optimization algorithm selection system.
After exploring a typical design space, the authors discuss the integration of domain-
dependent and domain-independent knowledge to infer (using Bayesian networks) the
appropriate algorithm and its tuning parameters to solve the problem at hand. They
assume that stochastic algorithms work best for their class of problems, and restrict their
range of algorithms to GAs, SA, or hybrids of the two.

Ong and Keane [2002] present another domain-specific approach, evaluating a set of classi-
fication techniques that select optimization algorithms for simulation-based aircraft wing
design. The similarity of all the problems solved in that work, however, limit its direct
applicability to structural engineering, where the relative variation in problems is greater.

Many researchers in the field emphasize the frequency with which their techniques select

42



2.3. SUMMARY

the best optimization algorithms, at the expense of evaluating the quality of the resulting
physical designs. Any efforts to develop selection techniques for civil engineering problems
should explicitly focus on maximizing the overall quality of solutions produced by the
selected algorithms.

2.3 Summary

The existing literature supports structural optimization’s potential to improve design
processes and outcomes, although a tendency to report algorithmic performance on a small
number of specific case studies somewhat undermines the case for using optimization in
general-purpose engineering design, where many different problem types are encountered.

Insufficient adaptation to the realities of design, described in §1.1.2, continues to inhibit
the field’s practical application. A solution-seeks-problem approach—where researchers
focus primarily on developing and improving algorithms—is evident in the literature.
Many algorithms have been successfully used in many domains, but there is no easily-
discernible pattern to this and no reliable means for the optimization non-expert to choose
an algorithm for a given problem. As part of a move towards addressing the realities of
using optimization in design, there is a pressing need to move beyond development and
demonstration of algorithms to engage with the broader issue of enabling designers to
choose algorithms suitably. This is a primary goal of this dissertation.

The algorithm selection literature, in other numerical fields and—more recently—in some
areas of optimization, provides useful precedents for addressing the problem. Algorithm
selection has been most successfully approached with supervised machine learning.

To date, however, no researcher has developed an algorithm selection system for structural
engineering problems. The wide range of problems encountered in practical structural
design (explored in the first half of this chapter) limit the direct applicability of the
techniques developed for other fields, and motivate a solution of the algorithm selection
problem from structural engineering’s unique perspective.
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Chapter 3

Method for generating optimization
data

The simulation-based nature of modern structural optimization and the many factors that
characterize structural design problems make the algorithm selection problem a complex
one. Faced with such complexity, we choose a statistical approach, deriving insights by
examining how algorithms perform when solving structural optimization problems.

The first step in this approach is the identification of a suitable dataset. The subject
of this chapter is the generation of such a dataset by solving a range of optimization
problems with a diverse set of algorithms. The data should cover an interesting range
of structures and should be large enough to enable statistically significant conclusions.
On the other hand, practical considerations—especially the considerable computational
cost of simulation-based optimization—limit the amount of data that can reasonably be
generated. Recognizing this tradeoff, the study is limited to bridge design problems only.

§3.1, following a discussion of relevant design criteria and codes, presents 474 bridge op-
timization problems based on six bridge types. These are solved by the same eight opti-
mization algorithms used in Chapter 1’s empirical study (revisited in §3.2); this generates
3792 algorithm-problem pairings, each with a set of algorithm performance measures and
a resulting structural design.

The second half of the chapter—§3.3 and §3.4  describes the computational infrastructure
that writes and solves the problems and that stores and manipulates the resulting data.
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3.1 Structural optimization problems

The 474 optimization problems used to generate the dataset are presented here. They
represent realistic design scenarios which engineers encounter in practice, and are formu-
lated using relevant aspects of modern structural design codes. We begin by presenting
design considerations and computational techniques that apply to all problems. Two sub-
sequent sections, §3.1.2 and §3.1.3, describe the problems and the structural models on
which those problems are based. Further details of both appear in Appendix B.

3.1.1 Common elements of structural design

All the design problems rely on certain physical properties, rules from the American
Institute of Steel Construction’s (AISC) steel design code, and custom computational
approaches to traditionally manual exercises. To minimize repetition and to keep §3.1.3’s
presentation of the design problems suitably concise, the following paragraphs describe
these shared elements.

Design codes

The design problems use the Load and Resistance Factor Design (LRFD) philosophy (also
known as Limit State Design), which compares the load that a structural component must
carry—its required strength——to its actual strength. This work uses the 14 edition of
the AISC’s LRFD-based Steel Construction Manual (SCM) [American Institute of Steel
Construction, 2011].

To reflect a range of possible uncertainties, LRFD applies scaling factors to increase
required strength. All load cases are multiplied by suitable ¢ factors (Table 3.1), and
each element’s actual strength, measured as the yield stress of its material (Table 3.2) is
evaluated under a combination of live and dead loads.

The SCM mandates the consideration of various live loading patterns; a bridge’s maximum
vertical displacement due to any of these unfactored (¢ factors omitted) load patterns

should not exceed ?3%6 of the bridge’s span.

Physical properties

All the bridges carry the same applied loading (Table 3.1). We do not explicitly model the
bridges’ road surfaces; their presence is instead represented by a uniformly-applied dead
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Table 3.1 — Each bridge is required to support the same dead and live loads.

Source Ma‘(f;;‘)‘de LRFD ¢ factor
Dead Load | Weight of bridge superstructure -varies- 1.2
Dead Load | Road deck 3.80 1.2
Live Load | Four lanes of trafhc 4.10 1.6

load of 3.80kPa. This eliminates the need for two-dimensional finite clement modeling,
significantly reducing model run times and allowing consideration of more optimization
problems. The downside is that models underestimate the bridge decks’ stiffness and
structural mass.

In addition to the dead load due to self-weight and road finishes, each bridge is subjected
to a uniformly-distributed live load of 4.10kPa across its 20 m-wide deck, representing
four lanes of trafhic. The design problems consider two live load patterns when evaluating
the displacement caused by traffic: uniform load along the entire bridge span and uniform
load along one half of the span. The latter case is generally the more onerous, especially
for long-span structures.

Steel and concrete are the only materials used in the study. Table 3.2 gives their relevant
material properties.

Table 3.2 — All structures have the same material properties.

Yield Strength Young’s Modulus Density Poisson’s
(MPa) (GPa) (kg/m?) Ratio
Steel 300 200 7,850 0.3
Concrete 40 20 2,400 0.2

Continuous approximation to discrete element sizing

The design variables for all optimization problems control either the geometry of a bridge
or the size of its individual steel elements. In manual structural design, sizing of steel ele-
ments is an inherently discrete process. Engineers choose a cross-section for each element
from the AISC’s catalog of shapes, and then check its performance against code require-
ments [American Institute of Steel Construction, 2011]. The set of feasible cross-sections
for every structural element is therefore finite and discrete.

Most of the widely-used nonlinear optimization algorithms, however, use only continuous
variables and cannot handle discrete selection problems. To adapt these algorithms to
real-world design problems, we formulate a continuous approximation to the discrete sizing
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problem. A continuous variable set by the algorithm maps to a cross-section which has
similar structural properties to a cross-section in the AISC catalog.

To make this problem manageable, it is assumed that all structural elements in this work—
apart from cables—are wide-flanged I-beams, known as W-sections (Fig. 3.1). Other
commonly-used steel cross-sections, such as rectangular and circular hollow sections, T-
beams, and channels, are omitted. W-sections are categorized by the approximate heights
of their cross-sections (H in Fig. 3.1); all W16s are approximately 16 inches high, W30s
measure 30 inches in height, etc. As the cross-sectional area increases within a category
of W-sections, most of the additional material appears in the section’s flanges rather than
its web.

Adding material to the flanges (increasing T') does not change either H or B, so the
relationships between A and the section’s other relevant properties—Iq;5, Ingj, J —are
close to being linear within a single category of W-sections (Eq. 3.1).

pT+H? 1 1

Ipoi(A) = Lpgi (T) =1 + ZBT?) + —tH?
;(A) AT) = T(B— SBT?) + —tH
1.3 1 3 3.1

J(A) = J(T)=2BT* + H#®

i
Top flange / [ T
|
— i fe—
ot
i
i
1
Figure 3.1 - Within‘ a ‘category of W-section shapes, Major neatral ] H H
most additional material is added to the flanges, increas- axis !
ing T. i Web
i
!
i
1
i

Minor neutral axis

B
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where I,,q; and I, are a W-section’s area moment of inertia about its major and minor

neutral axes, J is its torsional moment of inertia, and the other variables are as shown in
Fig. 3.1.

This linearity is exploited to fit linear models between cross-sectional area and each of
the three moments of inertia within all W-section categories. Cross-sectional area is
then chosen as the independent, continuous design variable to be determined by the
optimization algorithms, and the linear model for the W-section category that maximizes
Lina; is used to determine the now-dependent variables I,.;, Iinin, and J.

The details of this model fitting and an evaluation of the linearity assumption’s validity
arc given in Appendix B.1.

Measuring overall structural stiffness

The optimization problems all have either mass or structural stiffness as their objective
function. Evaluating a bridge’s mass is conceptually straightforward, but using stiffness
as an objective function requires more careful consideration.

A stiffness objective function should return a single scalar evaluation of every point in
the design spacce. To do so, it post-processes the structural responses from the analysis
software to arrive at a single value representing overall stiffness. Many measures could
be used, such as the first modal frequency or the average nodal displacement under a
particular load case. This study, however, chooses the difference between the absolute
maximum displacement and its upper bound—under unfactored live load applied along
the entire structural span—as the objective function (Eq. 3.2).

}‘(f) = IA(meax — Ajimit (32)

where Apmie is the allowable upper bound on displacements, |A(Z)|max 18 the magnitude
of the maximum structural displacement, and f(Z) is the amount by which the maximum
structural deflection exceeds its upper bound for a design point Z'. As will be seen
in §3.1.3, all the stiffness optimization problems set an upper bound on the allowable
structural mass. The goal of these problems is, therefore, to find the stiffest possible

structure using a fixed amount of material.

We recognize that other stiffness evaluations will produce objective functions with dif-
ferent mathematical characteristics to ours, and that this may limit the dissertation’s
conclusions about algorithm selection for structural stiffness optimization to problems

'Ajimis being a constant, this is of course equivalent to simply minimizing |A(Z)|max-
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that have Eq. 3.2 as their objective function. Nevertheless, the lack of previous research
in this area necessitates such limitations; exploring the effect of variation in stiffness
objective formulation is a future research task.

3.1.2 Bridge models

Six steel bridge types—basket-handle arches, trussed arches, cable-stayed bridges, girder
bridges, suspension bridges, and Warren trusses—and a few suitable span lengths combine
to give fourteen distinct bridge structures (Table 3.3).

The following sections presents each of these types in turn, identifying the variables that
control sizing and geometry design and specifying the relevant mathematical relationships
used to determine geometry. The sections examine a single model from each type; the
additional ones referenced in Table 3.3 are in Appendix B.2.

In each case, we use engineering experience and rationale to determine a feasible starting
point. The section specifies these starting points, along with upper and lower bounds on
each design variable.

Table 3.3 - The chosen bridge types and spans yield fourteen different structures.

Bridge type Chosen spans Figure Table
Basket-handle arch  50m, 200m, 300m | 3.4 3.4
Trussed arch 200 m, 300m 3.5 3.5
Cable-stayed 300m, 500m, 800m | 3.6 3.6
Girder 50 m 3.7 3.7
Suspension 500 m, 800 m 3.8 3.8
Warren truss 50m, 200m, 300m | 3.9 3.9

Road decks

Before presenting the full bridge models, the following paragraphs describe their road
decks, which are sufficiently similar to warrant collective discussion.

Each road deck follows one of two design concepts. The first is a single layer of regularly-
spaced beams, used for structures with short spans or rigid superstructures; the second is
a more rigid two-layer trussed deck, used for the long-span cable-stayed and suspension
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l2m (= L/100)
L=200m
(20@10m)
W =20m |
Q@1om) | |
(a) Isometric projection (b) Side elevation and plan

Figure 3.2 — The design of the 200 m single-layer road deck is controlled by three sizing
variables: the cross-sectional areas of the outer longitudinal beams (A;), of the inner
longitudinal beam (As;), and of the evenly-spaced transverse beams (Az). These design
variables are used by all models that have this deck configuration.

bridges, and for two of the basket-handle arches (Figs. 3.2 and 3.3). In every model, the
decks have the same width (20m) and transverse beam spacing (10m).

The single-layer deck is composed of three continuous, longitudinal beams running be-
tween the deck’s support locations. These beams are simply-supported: one end is pinned,
preventing displacement but allowing rotation; the other is roller-supported, allowing ro-
tation and horizontal displacement. The deck’s element sizing is controlled by three
continuous variables—A; and A, are the cross-sectional areas of the outer and inner lon-
gitudinal beams, and Aj is the transverse beams’ cross-sectional area. The additional
sectional properties required for analysis are determined using the element sizing proce-
dure in the previous section. This deck is used by all the trussed arch, girder, and Warren
truss bridges, as well as the 50 m basket-handle arch bridge.

The second, trussed deck design is used for the longer-span cable-stayed, suspension, and
arch bridges. It consists of two single-layer decks separated by a vertical distance of 5m
and connected with diagonal elements (Fig. 3.3). The longitudinal beams are simply-
supported in the same manner as the single-layer deck’s beams. The sizing of this deck is
controlled by the same three variables as the single-layer deck, plus an additional variable,
A,—the cross-sectional area of the diagonal connecting elements.

Each of the bridge decks, which support distributed traffic loading and additional dead
load representing road finishes (Table 3.1), has a precambered span-to-rise ratio of 100 : 1,
rising parabolically from the end supports to midspan. The height of a deck spanning
300m, for example, rises to a midspan maximum of 3m above its supports.
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(a) Isometric projection
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(b) Side elevation and plan

Figure 3.3 — A 500m simply-supported trussed (i.e., double-layer) road deck model.
In addition to the same three sizing variables as the single-layer deck (Fig. 3.2), the
trussed decks have a fourth sizing variable, A4, which controls the size of the diagonal web
elements.

Basket-handle arch bridges

The first bridge type is the steel basket-handle arch (Fig. 3.4); the geometry of the
arches is controlled by the independent design variables -,—the arches’ span-to-height
ratio—and ~y,—their inward lean-to-span ratio (Egs. 3.3). In addition to the deck sizing
variables, the other design variables are the cross-sectional areas of the main arch ribs
(A4), of the hangers connecting the ribs to the deck (As), and of the struts connecting
the two arches (Asg).

_ Ly
2(3:172) - éﬂ(:l _2:)7:)
! (3.3)
Ay(za')fy) = %Z
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where x and z are the z- and z-coordinates of points along the arch (both measured from
the left-hand intersection of the arch and the deck), L is the span of the arch (either 50 m,
200m, or 300m), W is the width of the deck (20m in all cases), and Ay is the magnitude
of the inward lean of the arch at a given height z.

Table 3.4 gives the starting values of the design variables for the three basket-handle arch
models (spanning 50 m, 200 m, and 300m).

Avizy)

|
|
| |
—

L=200m W= 20m
(b) Side elevations

Figure 3.4 — 200 m steel basket-handle arch. In addition to the design variables controlling
deck element sizing, the design vector includes the cross-sectional areas of the arch ribs
(A4), the deck hangers (As), and the struts connecting the ribs (Ag), as well as the span-
to-height and span-to-inward-lean ratio of the arches (v, and ~y,).
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Table 3.4 - Starting values and bounds for the basket-handle arch bridge design variables

50m 200m 300 m
LB Value UB LB  Value UB LB Value UB
A1(m2) | Outer long. 0.001 0.5 10.00 | 0.001 0.1  10.00 | 0.001 0.30  10.00
deck beams
Ag(m?) | ‘nner long. 0.001 005 10.00 | 0.001 0.11  10.00 | 0.001 0.30  10.00
deck beams
Ag(m?) | Lransverse 0.001 005 10.00 | 0.001 0.10 10.00 | 0.001 0.10  10.00
deck beams
Ap(m2) | Deck truss 0001 080 10.00 | 0.001 0.20  10.00
diagonals
A4(m?) | Arch ribs 0.001 0.10 20.00 | 0.001 080 20.00 | 0.001 2.00  20.00

As(m?) | Deck Hangers 0.001 0.05 10.00 | 0.001 0.10 10.00 | 0.001 0.10 10.00

Ag(m?) | Lateral braces | 0.001 0.01 10.00 | 0.001 0.05 10.00 | 0.001 0.05 10.00

¥z Span-to-rise 3.0 50 200 | 30 50 20.0 3.0 5.0 20.0
ratio of arch

Span-to-inward 6.0 10.0

300.0 { 21.0 80.0 1000.0 | 21.0 80.0  1000.0
lean of arch

Yy

Trussed arch bridges

Egs. 3.4 and 3.5 define the geometry of the trussed arch bridge models (Fig. 3.5).

(.’17 - hm)2
Zinner(T) = —————— 3.4
) = (3.4)

where z and z are the 2- and z-coordinates of points along the inner parabolic chord of
the arch, which has crown height h;, and span L. The geometry of the outer (upper)
chord of the arches varies polynomially according to Eq. 3.5.

Zouter = Co + C1z + Cyz® + Csa® + Cyz? (3.5)

where x and z are the x- and z-coordinates of points along the outer parabolic chord of
the arch. The constants C; are determined by fitting a fourth-order polynomial through
five known points: the ends of the curved outer chord and the points at quarter, half, and
three-quarters of the distance along the chord’s span. The height of the inner chord at
midspan, h,, and the vertical distance between the inner and outer chords at midspan—
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the truss’s depth, d,,;4——are the two geometric design variables used in optimization. The
remaining heights used to fit Eq. 3.5 are given by:

hout.mz‘d - hm + dmid

(3.6)
hout,quarter = haut.mid = Oghm

Table 3.5 shows the starting values and bounds for the 200m and 300 m trussed arches.

The models’ highly interconnected nature and their multiple elements require more sizing

variables than the other bridge types.

.

20m

70m 200m 70m
(b) Side elevations

Figure 3.5 — Structural model of the 200 m steel trussed arch bridge. The design variables
hin and hout miqa control the geometry, and nine additional sizing variables determine the
superstructure’s element sizes. (Table 3.5 shows the design variables’ starting values and

bounds.)
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Table 3.5 — Starting values and bounds for the trussed arch models’ design variables

200 m 300 m
LB Value UB LB Value UB
A1{m?) | Outer longitudinal deck beams | 0.001 0.05 10.00 | 0.00 0.05 10.00
Aa(m?) | Inner longitudinal deck beams | 0.001 0.05 10.00 | 0.00 0.05 10.00
Az(m?) | Transverse deck beams 0.001 0.15 10.00 | 0.00 0.80 10.00
A4(m?) | Inner arch ribs 0.001 010 10.00 | 0.00 025 10.00
As(m?) | Outer arch ribs 0.001 0.05 10.00 | 0.00 0.05 10.00
Ag(m?) | 'Truss verticals 0.001 0.10 10.00 | 0.00 0.50 10.00
A7{m?) | Truss diagonal below deck 0.001 001 10001 0.00 0.10 10.00
Ag(m?) | Truss diagonal above deck 0.001 010 10.00 | 0.00 0.50 10.00
Ag(m?) | Truss bottom chord 0.001 001 10.00 | 0.00 0.10 10.00
Ajg(m?) | Lateral trasverse braces 0.001 001 10.00 | 0.00 0.01 10.00
A11(m?) | Deck tension hangers 0.001 005 10.00 | 0.00 0.10 10.00
Aiz(m?) | Lateral diagonal braces 0.001 0.01 10.00 | 0.00 0.01 10.00
hin(m) | Rise of inner arch 20.0 5.0 100.0 | 30.0 90.0 120.0
dmiq(m) | Midspan vertical arch spacing 5.0 10.0  30.0 5.0 10.0 20.0

Cable-stayed bridges

Cable-stayed bridges, although occasionally encountered as aesthetically-pleasing short-
span footbridges, are most commonly used in long-span traffic-carrying situations. In this
work, the three cable-stayed bridges—spanning 300 m, 500 m, and 800 m—are configured
in a fan pattern, where all the cables run from the deck to the top of the towers.

The height of the towers, h, is the only geometric design variable. In addition to the
deck sizing variables, two additional parameters, As and Ag, determine the size of the
cables and the towers. The cables elements do not use the sizing procedure from §3.1.1.
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Instead, they are assumed to have no bending rigidity, with Ip,q;, Imin, and J set to zero.
The only other elements in the study that use this sizing procedure are the suspension
bridges’ primary cables and hangers.

Fig. 3.8 shows the 300 m cable-stayed model, and Table 3.6 shows the design variables’
starting values and bounds. The analysis of these bridges accounts for geometric nonlin-
earity, later described in §3.3.1.

(a) Isometric projection

150m 300m 150m W = 20m

(b) Side elevations

Figure 3.6 — In geometry optimization problems, the 300 m cable-stayed bridge model’s
geometry is controlled by h, the height of its towers. In addition to the deck element sizing
variables, two design variables controlling the cross-sectional area of the tower elements
(As) and the cables (Ag) are used.
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Table 3.6 — Starting values and bounds for the three cable-stayed bridge models’ design
variables

300m 500 m 800 m
LB Value UB | LB Value UB | LB Value UB

Ap(m2) | Quterlong. 503 004 1000 |0.05 006 2000 | 010 0.10 20.00
deck beams

Ap(mz) | Iomerlong. | g 03 a3 1000 [0.05 006 2000 | 010 010  20.00
deck beams

Ag(m?2) | Tramsverse |03 666 1000 | 0.05 006 2000 | 0.0 0.0  20.00
deck beams

Ag(m2) | Decktruss | g0 004 1000 [ 001 003 2000 | 0.03 003  20.00
diagonals

Aq(m?) | Towers 500 7.00 100.00 | 5.00 7.00 100.00 | 5.00 8.00  100.00

As(m?) | Cables 0.03 003 1000 | 0.05 006 20.00 | 0.10 0.0  20.00

h(m) | Tower height | 30.0 90.0  150.0 | 50.0 150.0 250.0 | 160.0 240.0  280.0

Girder bridges

The 50m girder bridge (Fig. 3.7) is basically a cambered deck without any additional
superstructure. Its design is therefore determined by the three deck sizing variables—
Ay, As, and Az (Table 3.7)—and its geometry does not vary.

Figure 3.7 - The 50m girder bridge model is a deck without additional superstructure.
Accordingly, problems based on this model only use the three sizing variables that control
deck design.
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Table 3.7 — Starting values and bounds for the girder bridge model’s design variables

50m
LB Value UB
A1{(m?) | Outer longitudinal deck beams | 0.001 2.80  10.00
A>(m?) | Inner longitudinal deck beams | 0.001 1.00  10.00
Aa(m?) | Transverse deck beams 0.001 1.00 10.00

Suspension bridges

The two suspension bridges, spanning 500 m and 800 m, are modeled in the same way
as the suspension bridge in Chapter 1’s preliminary study.

The cable geometry varies according to Eq. 3.7, and the presence of the back spans and
the bridge towers is represented by fully restraining the nodes at the top of the cables.
The analysis includes the effects of geometric nonlinearity, as discussed in §3.3.1.

(z - 5)

z(z,p) = (3.7)

where x and z are the x- and z-coordinates the suspension cables, L is the bridge span,

Table 3.8 — Starting values and bounds for the 500 m and 800 m suspension bridge models’
design variables

500 m 300 m
LB  Value UB LB  Value UB
A;(m?) | Outer longitudinal deck beams 0.001 010 10.00 | 0001 0.10 10.00
Az(m?) | Inner longitudinal deck beams 0.001 0©.10 10.00 | 0.001 0.10 10.00
A3(m?) | Transverse deck beams 0.001 0.10 10.00 | 0.001 0.10 10.00
Ag(m?) | Deck truss diagonals 0.001 0.40 10.00 | 0.001  0.40 10.00
Ag(m?) | Primary cables 0.001 0.10 10.00 | 0.001 0.10 10.00
As(m?) | Hangers 0.001 0.10 10.00 | 0.001  0.10 10.00
p(m) Parametric parameter. See Eq.3.7. | 100.0 250.0 1000.0 | 100.0 400.0 1000.0
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and p is a geometric design variable that controls the depth of the parabola.

Table 3.8 gives the starting values and design variables for the 500 m and 800 m suspension
bridge models, the former of which is shown in Fig. 3.8.

(a) Isometric projection

L =500m W =20m
(b) Side elevations

Figure 3.8 — The 500 m suspension bridge, with cable geometry defined by Eq. 3.7, is
analyzed accounting for geometric nonlinearities.

Warren truss bridges

Bridges of the final type—Warren truss bridges—have a top and bottom truss chord,
both of which, like the road decks, have a parabolic precamber with a maximum span-to-
rise ratio of 100 : 1. The chords are linked by diagonal web elements (Fig. 3.9).

The distance between the top and bottom chords, h, is only the geometric design vari-
able. Additional sizing variables—A4, A5, and Ag—determine the size of the trusses’ top
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chords, the struts that brace those chords, and the diagonal elements that connect them
to the deck (Table 3.9).

1_

L= 200m W =20m
(20@10m)

(b) Side elevations

Figure 3.9 — Views of the 200m Warren truss bridge show the single geometric design
variable h. Additional sizing variables A4, A5, and Ag control the size of top truss chords,
the struts that brace them, and the diagonal connectors.

3.1.3 Range of optimization problems: experimental design

The fourteen structures in §3.1.2 form the basis of 474 optimization problems. Different
problems are formulated for a given structure by varying the objective function, the
number and type of constraints, the nature of the design variables and, in the case of sizing
problems (where geometry remains constant), the height-to-span ratio of the starting
design.

A number of other features distinguish problems, including the degree of constraint
and other mathematical characteristics of the design space. These secondary problem
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Table 3.9 — Starting values and bounds for the three Warren truss models’ design variables

50m 200m 300 m
LB  Value UB LB Value UB LB Value UB

Ar(m2) | Outerlong 1g601 902 1000 | 0.000 050 10.00 | 0.001 0.80  10.00
deck beams

Ap(m2) | 1PPerlong. o001 902 1000|0001 050 10.00 | 0.001 050  10.00
deck beams

Ag(m2) | [TBUSVETSe g 001 002 10.00 | 0.001 020 10.00 | 0.001 020  10.00
deck beams

A4(m?2) Clg(‘)‘fg;‘)p 0.001 002 10.00 | 0.001 040 10.00 | 0.001 0.80  10.00

Ag(m?) | Lateral 1uss | o001 009 1000 | 0001 020 10.00 | 0.001 0.20 1000
bracing

Ag(m?) | Truss 0.001 0.02 10.00 | 0.001 0.20 10.00 | 0.001 0.20 10.00
diagonals

h(m) | Truss height | 50  10.0 200 | 50 150 400 | 80 200 60.0

features—so-called because any variation in them from problem to problem is a side ef-
fect of intentional variation in the primary characteristics—are also used to characterize
problems later in the dissertation.

The experimental design is full factorial, using every feasible combination of the problem
features’ levels. This is enabled by having a discrete and manageable set of levels for each
feature. For example, bridge span—a feature which, in reality, varies continuously—is
restricted to the discrete set of values in Table 3.3.

The primary problem features and their selected levels are:

¢ Structural type: Each problem is based on one of the six structural types described
in the preceding section.

e Span: A few appropriate spans for each structural type are chosen (Table 3.3).

e Problem type: The study covers two of the three main types of optimization
problems defined in §2.1: sizing and geometry optimization. Topology problems are
beyond the scope of this study, but are an interesting area for future investigation.

— Sizing: In sizing problems, algorithms vary only the size of the structural
elements. The goal is to distribute material, and overall geometry remains
constant.

— Simultaneous geometry and sizing: In these problems, design variables that
control structural models’ geometry are included, and algorithms vary both
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geometry and element sizes in search of the best solution. Girders are the only
bridges for which geometry never varies.

¢ Objective function

— Minimum mass: When minimizing mass, the goal is to find the lightest feasible
design. The mass model accounts only for the mass of the superstructure and
the deck beams; it does not include the mass of the bridge decking and roadway
finishes.

— Mazximum stiffness: The stiffness objective function is set according to Eq. 3.2
in §3.1.1.

e Constraints: In each problem, some aspect of structural behavior is constrained.

— Displacements: For displacement-constrained problems, the absolute displace-
ment of all nodes along a bridge’s deck due to unfactored live load (applied to

either all or half of the roadway) must not exceed ﬁ of the bridge’s span.

— Stresses: When stress constraints are included, the maximum stress in every
structural element is checked against the material’s yield stress (Table 3.2).

These constraints are evaluated when combined, factored live and dead loads
(Table 3.1)..

— Mass: Although displacement and stress can be constrained for any problem,
it is only feasible to constrain mass when it has not already been chosen as
the objective function. In these cases—i.e., when maximum stiffness is the
objective—an appropriate upper-bound constraint on overall mass is set.

¢ Height-to-span ratio: For problems where the geometry does not vary, charac-
teristics of the initial geometry become suitable problem features, and the height-
to-span ratio is the most intuitive to use. We establish upper and lower bounds
on height-to-span for each bridge (shown in Tables 3.4 through 3.9), and generate
optimization problems at each of five evenly-spaced values in that range.

As Appendix B.3 explains in detail, certain levels of the primary problem features cannot
be combined (c.g., mass cannot be constrained when it is also the objective), leading to
a 474-problem experimental design that falls just short of full factorial.

To generate the dataset on which the dissertation’s results are based, eight different opti-
mization algorithms solve each of the 474 problems, resulting in 3792 problem-algorithm
combinations. The following section describes those algorithms.
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3.2 Optimization algorithms

The design problems are solved using eight algorithms from the NLopt non-linear opti-
mization library [Johnson, 2012] (Table 3.10). The algorithms represent the major classes
of derivative-free? nonlinear solvers, including linear and quadratic approximations, sim-
plex methods, directional search, and stochastic evolutionary methods. Each algorithm
has a unique approach to progressing through the design space.

They are categorized into local algorithms, which are designed to converge on a region of
the design space where no improvement can be made by slight design perturbations in
any direction, and global algorithms, which perform a broader search of the design space
to locate the overall global optimum. Some algorithms naturally solve only unconstrained
optimization problems; in these cases the objective and constraint functions are combined
in a single Augmented Lagrangian formulation, allowing all algorithms to address all
problems [Conn et al., 1991].

Table 3.10 — The same eight algorithms used in Chapter 1 solve each optimization prob-
lem.

Constrained Optimization by Linear Approximation—-COBYLA [Powell, 1994]

Bounded Optimization by Quadratic Approximation-BOBYQA [Powell, 2009]

Local
Nelder-Mead Simplex—NEL-MFEAD [Nelder and Mead, 1965]

Subplex—SUBPLEX [Rowan, 1990]

Principal Axis Method—PR-AXIS [Brent, 2002]

Dividing Rectangles Method—DIRECT [Jones et al., 1993]

Global | Gontrolled Random Search—CRS [Kaelo and Ali, 2006]

Improved Stochastic Ranking Evolution Strategy—ISRES {Runarsson and Yao, 2005]

3.2.1 Description of algorithms

The remainder of the dissertation refers to each of the algorithms using either the abbre-
viation or the acronym of their full name specified in the table above.

2Despite the presence of gradient-based algorithms in the structural optimization literature, we omit
them because of the computational expense of approximating gradients using commercial analysis soft-
ware. These methods could of course be evaluated in future studies, especially if open-source structural
analysis software from which gradients can be directly extracted is available.
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Constrained Optimization by Linear Approximation—COBYLA

COBYLA is a derivative-free algorithm which constructs successive linear approximations
of the objective and constraint functions via a simplex of size n+ 1 (where n is the number

of design variables) and optimizes over these approximations in a trust region [Powell,
1994].

COBYLA converges quickly for convex or near-convex problems. Although its approxima-
tion strategy makes it reasonably insensitive to local noise in the objective and constraint
functions, it may become stuck in a local optimum.

Bounded Optimization by Quadratic Approximation—BOBYQA

The BOBYQA algorithm performs bound-constrained optimization on an iteratively con-
structed quadratic approximation of the objective function [Powell, 2009]. Its perfor-
mance should be relatively similar to COBYLA's, although quadratic approximation may
be problematic when the design space is far from being twice-differentiable.

Nelder-Mead Simplex—NEL-MEAD

NEL-MEAD constructs a simplex of n 4+ 1 design points and updates that simplex by
reflecting, expanding, or contracting its vertices [Nelder and Mead, 1965]. The NLopt
implementation of the algorithm accounts for bound constraints on the design variables
using the method described in Box [1965].

We expect relatively strong performance on noisy objective and constraint functions. Al-
though the algorithm may become stuck in local optima, the strategy of simplex reflection
and expansion increases the likelihood of escaping local optima and reaching the global
optimum.

Subplex—SUBPLEX

This subspace-searching simplex algorithm, like the Nelder-Mead method that it general-
izes, works well with noisy objective functions [Rowan, 1990]. By searching subspaces, the
number of function evaluations required for convergence usually increases linearly with
the problem size.

For most problems, Subplex combines the advantages of Nelder-Mead with improved
efficiency, and should converge on a similar answer with fewer simulation calls.
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Principal Axis Method—PR-AXIS

PR-AXIS is a refinement of Powells well-known Conjugate Gradient Descent method
[Powell, 1964], which minimizes a function by a series of binomial searches along prescribed
vectors [Brent, 2002].

It should perform well on complex objective functions, although it is likely to struggle
when faced with many local optima in the search space.

Dividing Rectangles Method—DIRECT

This deterministic global optimization algorithm systematically divides a hyper-cube rep-
resentation of the search space into progressively smaller hyper-rectangles, eventually
converging on the global optimum [Jones et al., 1993].

It should find the global optimum, but is likely to require many simulation calls. This may
prove problematic on the cable-stayed and suspension bridges, whose nonlinear analysis
is computationally expensive.

Controlled Random Search—CRS

The CRS family of stochastic algorithms are similar to Genetic Algorithms (GAs). They
start with a randomly-generated population of solutions and evolve these solutions using
heuristics, though these heuristics are closer to the spirit of Nelder-Mead that the mutation
and crossover operations of traditional GAs [Kaelo and Ali, 2006].

CRS should find the global optimum regardless of the mathematical characteristics of
the search space. Its population-based approach, however, requires many objective and
constraint evaluations and many calls to the analysis software.

Improved Stochastic Ranking Evolution Strategy—ISRES

This stochastic algorithm generates a population of solutions using the NLopt library’s
default population size of 20(n + 1) [Runarsson and Yao, 2005]. The algorithm evolves
these solutions using a combination of a GA-style mutation rule and differential variation,
and ranks solutions in the population using the stochastic scheme proposed by Runarsson
and Yao. It should perform similarly to CRS.
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Algorithm convergence criteria

The local algorithms terminate when the objective function converges within a relative
tolerance of 1 x 107%. This convergence criterion makes little sense for the three global
algorithms; we instead set these to terminate after six hours. Although it could be argued
that, for simulation-based problems, six hours is an unfairly-short time constraint to
impose on such algorithms, it is a realistic upper bound to the amount of time for which
a practicing engincer could reasonably await a solution.

3.2.2 Evaluating algorithm performance

As noted in §1.2, there are many ways to evaluate algorithm performance. Furthermore,
the choice of performance measure can significantly influence perceptions of relative per-
formance levels. The computational setup (described next in §3.3 and §3.4) measures and
records the following performance data:

e Final design evaluation: The value of the final objective function, and the filepath
to the final version of the structural model to enable more extensive evaluation.

e Counters: The software records integer counts of the number of calls made to the
analysis software, to the objective function, and to the constraint functions.

e Design vector values: The value of the design vector £ when the algorithm
terminates, and all intermediate values of Z, to allow tracking of how soon the
algorithm approaches its final answer.

e Clock time: The elapsed time between starting the algorithm (after all initializa-
tion takes place) and convergence.

Normalizing performance measures

The stated goals of this work necessitate comparisons of algorithm performance across
different optimization problems, which have different degrees of difficulty and different
‘best” answers. A relatively well-designed and light 500 m suspension bridge, for instance,
may weigh twice as much as a similarly well-designed 300 m suspension bridge, making
direct comparison between the quality of an algorithm’s solution for both problems in-
appropriate. Or a stiffness objective function for a bridge could be considerably more
complex than the same bridge’s mass objective function, requiring an algorithm to make
more function calls and making direct comparison of computational efficiency similarly
inappropriate.
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To enable inter-problem comparison of algorithm performance, we scale an algorithm’s
performance on a problem between the best and worst observed performances among all
algorithms on that problem, resulting in the normalized performance measures 7 (nor-
malized objective value) and ¢ (normalized computational cost); 0 < y,¢ <1 (Eq. 3.8).

Yij = Ymaxg ~ Vi i € {All algorithms}; j=1..d
Ymax,j — Ymin,j

&,y = Cmax,l,j = Cj ! € {Local algorithms}; j=1.d (3.8)

Cmax,l,j - Cmin,l,j

Cmax,g,j — Cg,j

Cgj = g € {Global algorithms}; j =1..d

Cmax,g,j — Cmin,g,j

where y; ; is the observed performance of algorithm ¢ on problem j, and Ymin; and Ymax,;
are the best and worst observed performances among all algorithms on the same problem
j. The computational cost measure, ¢, is normalized in the same way, except that local
and global algorithms’ measures are normalized among only algorithms of the same type.
This accounts for the very different numbers of analysis software calls—often several orders
of magnitude—made by local and global algorithms. The normalized measures all lie in
the range [0, 1], with higher values indicating better performance.

3.3 Software

Running the optimization problems described in the previous section requires three main
software components: a structural analysis engine to evaluate design performance, an
optimization library which implements the chosen algorithms, and a data management
system to store and manipulate the extensive results. This section describes all three.

3.3.1 Structural analysis software
Oasys’s General Structural Analysis (GSA)

All structural modeling, analysis, and visualization is performed using version 8.6 of
Oasys’s General Structural Analysis (GSA) Suite [Oasys, 2012]. Despite individual vari-
ations across some implementation details, the models all conform to the specifications of
§3.1.1, including loading patterns and material properties (Tables 3.1 and 3.2).
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Four of the six bridge types—basket-handle arches, trussed arches, girders, and Warren
trusses—are analyzed linearly using GSS, GSA’s Direct Stiffness Method solver. We use a
sparse matrix solver for the resulting system of linear equations by setting GSS’s Matrix
Solver option to “Sparse Direct”, which uses the Approzimate Minimum Degree algorithm
to order degrees of freedom and the LDL Sparse algorithm for matrix factorizing [Davis,
2005; Amestoy et al., 2004].

The analysis of the remaining bridge types—cable-stayed and suspension—accounts for
geometric nonlinearity using GSA’s dynamic relaxation solver, GsRelaz. A dynamic re-
laxation solver applies loads, causing an initial set of displacements, and iterates until
all internal forces are in equilibrium. GsRelax uses viscous damping material damping,
and checks force and moment residuals for convergence to within 0.001% after every ten
analysis cycles, up to a maximum of 100,000 cycles.

Custom wrapper around GSA

GSA provides a Common Object Model (COM) Application Programming Interface (APT)
which allows model manipulation and results evaluation by passing text strings to and
from the program?®.

To integrate GSA with the the rest of the software, a wrapper around this COM API
provides a set of methods to generate and manipulate models, set up and run structural
analyses, and retrieve results. The wrapper is written in the C# language to enable
easy integration of GSA in software projects developed with Microsoft’s .NET environ-
ment, and is available online at https://github. com/roryclune/GSADotNet [Microsoft,
2013b].

The wrapper methods are called within a .NET project using a set of user-specified
arguments, which the methods use to generate and interpret text strings sent to and
received from the COM API. These methods are the key to integrating GSA with the rest
of the software used in this work.

Having established a means of modeling and analyzing structures programmatically, the
next requircment in building the software infrastructure is a library of optimization algo-
rithms and a means of integrating them in the .NE'T environment.

3The syntax of these strings and the functionality they expose are described in GSA 8.6’s man-
ual, available online at http://www.oasys-software.com/media/Manuals/Latest_Manuals/gsa8.6_
manual .pdf
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3.3.2 Optimization library
NLopt nonlinear optimization library

We use the implementation of the eight optimization algorithms from version 2.2.3 of
the NLopt nonlinear optimization library, available for public use under the GNU Lesser
General Public License (Table 3.10) [Johnson, 2012].

The library is originally written in C code for computers running UNIX operating sys-
tems, but its developer also provides a dynamic linked library (DLL) for use on Win-
dows®, wrapping the original functions in a set of C++ functions. This DLL, however,
is written for use in unmanaged code environments, whereas the NET environment used
here requires managed code libraries. (See Heege [2007] for a discussion of managed and
unmanaged code.)

An additional wrapper around the original C++ wrapper enables the use of the unman-
aged NLopt library. It is written, as part of this work, using C++/CLI-—a language
designed by Microsoft for bridging the gap between managed and unmanaged environ-
ments [ECMA International, 2013].

C++/CLI wrapper around NLopt

In terms of functionality, the C+4/CLI wrapper around the original C++ wrapper simply
allows the latter’s methods to be called in a managed code environment. The principal
challenges are the casting between managed and unmanaged data types and the tracking
of memory locations on the unmanaged heap.

The wrapper, along with instructions for its use in .NET, is available online at https:
//github.com/roryclune/NLoptDotNet.

3.3.3 Data management

Solving so many optimization problems with multiple algorithms generates large volumes
of data, which are not easily managed ad-hoc. A unique contribution of this dissertation
is its comprehensive strategy for representing and queuing problems, for storing results
and algorithm performance measures, and for enabling easy data manipulation and inter-
pretation during the results chapters.

The relational data model is an important contribution of this research (Fig. 3.10). It
embodies a strategy for organizing and extracting information from multiple structural
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optimization problems, which makes it useful both for future researchers in this field
and for developers of optimization systems for use in the structural design industry. The
schema also provides a single clear representation of the information that can later be used
to develop an algorithm selection system. This importance motivates a full description of
its entities and relationships, and of their origins in the underlying problem.

The fully-normalized model is implemented in the SQL Server® 2008 R2 relational
database management system [Microsoft Technet, 2013]. (See Kent [1983] for a discussion
of the five normal databasc forms.) The Ling-to-SQL extension to the C# programming
language is used throughout to retrieve queued optimization problems and write their
results [Microsoft, 2013al.

In the model, each of the 474 optimization problems from §3.1.3 is represented by a unique
Problem Instance entity. Each Problem Instance has a Structure parent entity; each of
the fourteen Structures (§3.1.2) can be an attribute of multiple Problem Instances, reflect-
ing the fact that many optimization problems are formulated for each bridge structure.
Structure is, in turn, a super-type of many different types of structures and bridges, each
of which has its own descriptive attributes.

Problem Instances are further described by their many-to-many relationships with Prob-
lem Type and Objective entities, which describe the nature of the design variables and the
target of the objective function.

The attributes of these entities collectively store the characteristic problem features enu-
merated in §3.1.3.

The representation of optimization algorithms centers on the Solver entity, which can
have many Algorithms as attributes. This reflects the fact that algorithms can be hy-
brids, usually of two algorithms. In this study, for example, the Augmented Lagrangian
formulation—whose usefulness in solving constrained problems with algorithms intended
for unconstrained problems is outlined in §3.2—is treated as a hybrid of an Augmented
Lagrangian algorithm, which brings the constraints into the objective function, and a
sccondary algorithm which solves the resulting unconstrained problem.

A Solver also has a number of Parameter entities as attributes; these store the values of
termination criteria and any relevant tuning parameters, such as the initial population
size for a population-based stochastic algorithm.

Every algorithm is used to solve every problem once, and each of these exhaustive
algorithm-problem pairings is represented by a unique Solver-Problem Instance entity.
The attributes of this entity -apart from its Design Variable children, which record the
start, end, and intcrmediate design points—store the algorithm performance data. The
Solver-Problem Instance entities also store the location of relevant structural model files.
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Figure 3.10 — The data model, shown here in a UML entity-relationship diagram, em-
bodies a strategy for organizing and extracting information from multiple structural opti-
mization problems.
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3.4 Hardware and operating system

All computation takes place on a server running the 64-bit version of Windows Server®
2008 R2 Enterprise (upgraded to Service Pack 1). The server’s Tyan® S7025AGM2NR
motherboard is fitted with two Intel® Xeon® E5520 2.27 GHz quad-core CPUs, each
having eight threads, 8 MB of Intel® Smart Cache, and a bus/core ratio of 17.

Each CPU is connected to four 4 GB DDR3-SDRAM modules, for a total installed mem-
ory of 32 GB. File are written to and read from a 640 GB Western Digital® WD6400AAKS
Serial ATA hard drive with 16 MB cache, a 7200 RPM rotation speed, and a 3.0 Gb/s in-
terface speed.

Summary

This chapter presents the computational method used to generate optimization data,
including the optimization problems, the algorithms used to solve them, and the compu-
tational infrastructure that runs problem-algorithm pairs and manages data. The data
generated with the presented method is used in the rest of the dissertation to understand
and address the algorithm selection problem identified in Chapters 1 and 2.

This chapter introduced a number of novel contributions to the field, including a con-
tinuous approximation to discrete element sizing, a specification of a stiffness objective
function, the .NET wrappers around the GSA analysis software and NLopt optimization
library, and a data model to represent problems and algorithms and to record data on
their performance.

The next chapter cvaluates the generated results an engineering point of view. Its
purpose—apart from helping us to better understand the generated data set and the
range of solutions produced by different algorithms—is to demonstrate the engineering
rationale and feasibility of the solutions. This roots our later work on algorithm per-
formance trends and automated selection techniques (Chapters 5 and 6) in the world of
structural engineering, strengthening the practical applicability of the research.
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Chapter 4

Results: engineering verification of
data

It is tempting, given the dissertation’s goal of addressing algorithm selection, to imme-
diately begin using the data generated in Chapter 3 to explore the relationship between
algorithms’ performance and features of the problems they solve. The strength of conclu-
sions derived from such an exploration, however, depends on the integrity of the optimiza-
tion outcomes, and investigating the various solutions produced by algorithms furthers
our understanding of the problem. These two considerations warrant a close inspection
of the data from an engineering perspective.

This chapter, therefore, examines the results generated by Chapter 3’s computational
method, verifying the optimization results without regard to which algorithms produced
them. A demonstration of the results’ validity as solutions to real structural engineering
problems would enhance the applicability of the dissertation’s findings to real-world design
scenarios.

To achieve this, §4.1 looks at overall trends across the dataset; §4.2 then selects and
evaluates representative solutions for each bridge type. The data contain hundreds of
designs for each bridge structure!. This latter section therefore uses clustering to produce
a manageable. representative subset of designs which can feasibly be evaluated one by
one.

IThe experimental design—=83.1— generates tens of optimization problems from each of fourteen bridge
structures. all of which are solved by eight optimization algorithms.
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4.1 Overall structural performance

A useful quantity which allows engineers to quickly evaluate a bridge’s structural efficiency
is the mass per unit area of road deck. This metric enables comparison across all bridge
types and against existing, real-world structures.

Fig. 4.1 plots mass per unit deck area against span for the fourteen bridge models. Since
the purpose of this plot is to broadly visualize material use, it uses only a single value of
mass per unit area to represent the hundreds of available designs for each model. This
single value is the mass of the lightest design produced for a mass minimization problem
with LRFD-compliant constraints on all element stresses and nodal displacements under
multiple load cases (§3.1.1). This ensures the chosen designs are as close to reality as
possible.

Before plotting, the data are modified to account for unmodeled aspects of the structures
which would be present in reality (see §3.1.2 for modeling details).

e To account for the presence of road decks, represented in the models by an imposed

dead load of 3.80kN/m?, each model’s mass per unit area is increased by 280x1000 —
388kg/m?, the mass per unit area required to generate this dead load (assuming

acceleration due to gravity of 9.8 m/s?).

e To include the mass of the suspension bridges’ towers, their required cross-sectional
area is computed by dividing a force equal to half the weight of the main span
(which a tower would have supported), plus the live and dead load supported by
that span, by the yield stress of steel (300 N/m?). This area is then multiplied by
the tower height (which is dependent on the main cables’ sag) and by the density
of steel (7850kg/m?) to estimate the towers’ mass.

e The two back-spans of the suspension bridge—the sections which extend from the
towers to the outer supports—are not explicitly modeled. To compensate, the sus-
pension bridges’ mass is multiplied by 1.5. Although a crude approximation, this is
based on a series of reasonable assumptions: that each back-span has a length equal
to a quarter of the main span, that back-spans have the same deck configuration as
the main span, and that the cables supporting each back span weigh a quarter as
much as each main cable.

e In response to large local displacements and resulting numerical instabilities ob-
served during the geometrically nonlinear structural analyses of cable-stayed bridges
in the study’s early stages, we impose artificially-high lower bounds on the
deck beam sections in the cable-stayed formulations (Table 3.6). This leads to
optimization-generated designs which are unnecessarily heavy, but which can be
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manually modified without unduly affecting overall displacements or stresses. Be-
fore plotting, we remove all excess material from the cable-stayed decks; this mostly
consists of reducing the size of lateral bracing elements, which has little effect on
the overall behavior.

Mass/Area ' ' - T

T . T .
(kg /m2) 2000 L Oakland Bay Bridge

1500 +

1000 | /ﬂ} d

——— Arch
/ —~—— Basket-handle arch
500 —&— Cable-stayed -
' —&— Girder

——%—— Suspension
—+— Warren truss
0 1 1 1 1 1 1 1

0 100 200 300 400 500 600 700 800

Span (m)

Figure 4.1 — Plotting mass per unit deck area against span shows an approximately linear
trend, with values comparable to real bridges.

These data modifications are used only for plotting Fig. 4.1, and are discarded for the
remainder of the dissertation.

The material per unit area generally increases with span-—an intuitively sensible trend
from an engineering perspective. The cable-stayed bridges require relatively more material
than other systems. An examination of the data show that much of their mass is used
to stiffen the towers against bending under asymmetric live load on the main span only.
Our simplified representation of the towers is likely responsible for this.

The values of mass per unit area are comparable to existing structures. The superstructure
and deck elements of the Sydney Harbour arch bridge in Australia, for example, weigh
39 x 10°kg (neglecting the weight of the bridge’s backspans and towers). Considering
its main span of 503m, and its deck width of 49 m, this gives the Sydney bridge a mass
per unit area of 1580kg/m? [Pylon Lookout, 2003]. This places the bridge between the
cable-stayed and suspension bridge curves, and approximately along a continuation of the
arch bridge curve, in Fig. 4.1.

The self-anchored suspension bridge constructed in 2013 to replace part of the Oakland-
to-San Francisco Bay Bridge uses 67 x 10° kg of steel in its superstructure and has a main
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span of length 624 m and width 50 m, leading to a mass per unit deck area of 2147 kg/m?
[California Department of Transport, 2012]. This is approximately in the region of the
cable-stayed and suspension curves in Fig. 4.1. The extra superstructure weight is to be
expected in a self-anchored bridge; lighter foundations would offset this weight gain in a
broader-ranging analysis.

4.2 Examination of representative designs

Analyzing overall trends is a useful way to understand results at a high level, but is limited
by its lack of granularity. The previous section’s material usage plot considers only the
lightest design for each bridge model, offering no insight into the range of solutions reached
by various algorithms. This section explores those ranges.

Engineering optimization papers usually examine their results from the perspective of
the application domain; validation of results in this way tests their rationality and the
rationality of the problem formulation, as well as demonstrating the practical applicability
of the optimization method. The large number of distinct designs in this work, however,
makes individual examination of each one impractical, and necessitates the reduction of
the data to a manageable subset. We accordingly use k-means clustering to partition the
data into a few groups of similar designs, from which representative designs are selected
and examined.

The goals of this exercise are to understand of the range of designs in the data and,
through this, to build a general picture of the character of the design spaces and the
differences among algorithms’ solutions to identical or very similar problems.

4.2.1 Clustering methodology

Clustering groups bridge designs such that those in each cluster are similar, while the clus-
ters themselves are widely spaced. Halkidi et al. [2001] give an overview of the clustering
concepts and terms used here.

The first requirements for any clustering methodology are a set of design-identifying fea-
tures and a measure of the distance between designs. Having chosen and run a clustering
algorithm, its output can then be evaluated using one of the many proposed validation
techniques.

Since this exercise seeks to group physically similar structures, the design variables (§3.1.2)
are used as identifying features, and a separate clustering is carried out for each of the
study’s fourteen models. So that design variables contribute approximately equally to the
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identification of a design, we normalize across designs for a given structure such that each
variable has zero mean and unit standard deviation.

The clustering outcome is unpredictably sensitive to the measurement of distance between
designs. All clustering operations are therefore repeated with four different measures of
inter-design distance—Squared Euclidean, City Block, Cosine, and Correlation—and the
best from among the four resulting groupings is used.

As is well-established in the literature, the choice of clustering algorithm has a major
cffect on the outcome, and different algorithms are better suited to different tasks. We
choose the partitional k-means algorithm for its computational efficiency and robustness

[MacQueen, 1967]. The algorithm is essentially an iterative minimization of the quantity
F (Eq. 4.1).

k
E=Y"> " d(Zm) (4.1)

i=1 xzeC,;

where k is the pre-specified number of clusters, m; is the center of cluster C;, and d(#, m;)
is the distance between the design ¥ and m;. The algorithm begins with a set of k
randomly-generated cluster centers, assigns each point to its closest center, and then
recomputes the centers. It terminates when the centers stop changing. The algorithm
runs twenty times, each with a different randomly-generated initial set of cluster centers,
and chooses the results that minimize E.

The remaining input parameters are the number of clusters, &, and the distance measure,
d. The clustering is repeated using all four previously-mentioned distance measures, and
for all values of k between 2 and 6, resulting in twenty possible groupings of designs. The
best grouping is determined using one of many available clustering validation methods,
which can either be external or internal.

External clustering validation requires a set of labels, typically generated by expert users,
which identify each design as a member of a particular class. The assignment of these
labels would, in this case, be prohibitively time-consuming and subjective; we look instead
to internal validation metrics.

Under internal validation, a good solution has high intra-cluster density (the members of
each cluster are close to cach other) and low inter-cluster density (the clusters themselves
are far apart). A number of metrics can evaluate these characteristics; this work uses the
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Silhouette index S(k,d) (Eq. 4.2) [Liu et al., 2010].

1 k 1 ba(Z) — aq(Z)
S(k,d) = % [; (nz é max(bd(f)ﬂd(f))] (4.2)

[k*,d"] = argmax S(k,d)

where k is the number of clusters; d represents the method used to measure distance
between designs; n; is the number of designs in the i*® cluster Cj; aq(¥) is the mean
distance from each design & to the other points in the same cluster, and b,(Z) is the
minimum mean distance from & to points in a different cluster, minimized over clusters.

The k-means algorithm is run for all combinations of k¥ = 2...6 and d € {Squared
Euclidean, City Block, Cosine, Correlation} to determine the S-maximizing k* and d*,
and their associated grouping of the designs for a given bridge model.

4.2.2 Representative designs

Having found the best grouping of designs using the iterative k-means scheme, a single
design is selected at random from each cluster using a uniform probability distribution,
forming a representative subset.

Table 4.1 summarizes the clustering output for each of the fourteen structures, specifying
the number of clusters k*, the distance metric d*, and the silhouette index S. The table’s
rightmost column references the figures that display the selected designs, and the following
sections describe each design in turn.

These designs, it should be noted, are not all solutions to the same problem. The clustering
scheme groups all designs for each structural type, regardless of whether they emerged
from tightly- or loosely-constrained problems, or from mass or stiffness optimizations.
A lighter representative solution is not, therefore, necessarily better than a heavier one,
since the latter may be an answer to a more onerous problem.

A note on visual and numerical representation

The design variable values for each representative design are shown alongside an isometric
projection of the model generated using the GSA software. The physical parameters
controlled by these variables are noted in a table at the start of each section. Chapter 3
provides sufficient details to reproduce these GSA models from the design variable values.
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Table 4.1 — Summary of clustering output, showing the final number of clusters k*, the
distance metric d*, and the silhouette value S. The k* selected designs for each structure
are shown in the referenced figures.

Structure " " S N

Type Span k d S(k*,d*) | See Fig. :
200m | 2 Sq. Euclidean 0.84 4.2

Tr

ussed arch 300m | 6 Cosine  0.68 4.3
50m 5 Correlation 0.75 4.4
Basket-handle arch  200m | 6 Correlation 0.56 4.5
300m | 2 Cosine 0.61 4.6
300m | 3 Correlation 0.55 4.7
Cable-stayed 500m | 2 Sq. Euclidean 0.72 4.8
800m | 2 Correlation 0.66 4.9
Girder 500m | 4 Cosine 0.98 4.10
Suspension 500m | 6 Correlation 0.55 4.11
pens 800m | 5 Cosine  0.56 412
50m 2 Cosine 0.66 4.13
Warren truss 200m | 2 Correlation 0.75 4.14
300m | 4 Cosine 0.55 4.15

Each design is accompanied by a set of symbols denoting key attributes of the optimization
problem they solve. These sets contain three elements. The first denotes the optimization
problem’s objective (“M” for mass or “S” for stiffness); the second indicates the types
of constraints present (“Dg” and “DA” for displacement constraints under symmetric
and asymmetric loading, “S” for stress constraints on all elements, and “M” for mass
constraints); and the final symbol indicates whether the design variables control geometry
and sizing (“G”) or sizing only (“S”). For example, theset {M | Dg S | G} indicates
a mass minimization problem with displacement constraints under symmetric loading,
stress constraints on all elements, and variable geometry. This information provides useful
context for interpreting the results.

Trussed arches

Representative designs from the two classes of trussed arch are examined—one spanning
200m, shown in Fig. 4.2, and the other spanning 300m, shown in Fig. 4.3. Table 4.2
specifies the physical parameters which the design variables control in accordance with
Chapter 3.

The lighter of the two 200m trussed arches (Fig. 4.2a) has a much higher inner arch

81



CHAPTER 4. RESULTS: ENGINEERING VERIFICATION OF DATA

Ay 0.05m? Ay 0.15m?
Ag 0.05m? As 0.15m?
Az 0.15m? Aj 0.49 m?
Ay 0.18 m? Ay 0.38 m?
As 0.05m? As 0.18m?
Ag 0.10 m? Ag 0.28 m?2
Az 0.01 m? Ar 0.03m?
Asg 0.10m? As 0.11m?
Ag 0.01 m? Ag 0.01 m?
Ao 0.01 m? Ao 0.01 m?
A1 0.05m? An 0.10m?
A1z 0.01 m?2 Aqz 0.01 m?
hin 50.0m hin 35.0m

d 10.0m d 5.0m
Mass | 4.67 x 105 kg Mass | 9.67 x 10 kg
S| MS| G S| M S | S

(a) (b)

Figure 4.2 — Design (a)’s higher arch rise, h;,, and greater separation between the inner
and outer arches,d, allows it to have smaller arch rib and deck sections (44 and As).

rise, h;,, and a greater separation between the inner and outer arches, d. Thanks to the
stiffness it derives from this geometry, its structural elements, especially the outer arch
ribs and the transverse deck beams (A3 and Ay), are considerably smaller in cross-section.
The heavier design is a solution to a sizing optimization problem, meaning its geometric
design variables (h;, and d) are fixed at 35.0m and 5.0 m.

The six representative 300 m trussed arches (Fig. 4.3) can be loosely classified by overall
geometry into three deep arches (on the left of the figure) and three shallow arches (on

Table 4.2 — Trussed arch design variables, used to specify the representative designs in
Figs. 4.2 and 4.3.

Ay | Outer longitudinal beams
As | Inner longitudinal beams Deck
Az | Transverse beams

Ay | Inner arch ribs
As | Outer arch ribs
Ag | Truss verticals
Az | Truss diagonals below deck
Ag | Truss diagonals above deck
Ag | Truss bottom chord Superstructure
Ayp | Lateral transverse braces
Ay | Deck tension hangers
Ays | Lateral diagonal braces
hin | Rise of inner arch
d | Midspan vertical spacing between arches
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(a)

(c)

(e)

G

A1l 0.07 m?
Asg 0.02 m?
Aj 0.27 m2
Ay 0.65 m?
As 0.09 m?
Ag 0.01 m?2
Ay 0.03 m?
Ag 0.09 m*?
Ag 0.08 m2
Arg 0.01 m?
A 0.03m?
A1z 0.01 m?
hin 99.3m
d 9.1m
Mass 1.00 x 107 kg
S| Do Ds S M |
Ay 0.05m?
Ao 0.05 m?
Az 0.80 m?
Ay 0.25m?2
Asg 0.05m?
Ag 0.02m?
Ar 0.10m?
Ag 0.45m?
Ag 0.10m?
Ao 0.01 m?
A 0.10 m?
Aja 0.01m?
Hin 120.0m
d 10.0m
Mass 1.97 x 107 kg
M| Dy Ds S | S
Ay 0.02m?
As 0.03 m?
Az 0.60 m?
Aq 0.10m?
As 0.02 m?
Ag 0.42 m?
Az 0.01 m?
Ag 0.34 m?
Ag 0.02m?
Aro 0.00 m?
Aqy 0.01 m?
Az 0.00 m?
Hiwi 78.2m
d 5.7m
Mass | 1.69x 107 kg
M | Da Ds S ‘ G

(d)

(f)

Ay 0.03m?
As 0.04m?
Az 0.02m?
Ay 0.191m?
As 0.04m?
Ag 0.01 m?
Az 0.04 m?
Ag 0.01 m?
Ag 0.09m?
A1 0.01 m?
A1 0.04m?
Aya 0.01 m?
hin 52.5m
d 10.0m
Mass 3.52 x 108 kg
M| Dy Ds S | S
Ay 0.00 m?
Aoz 2.37m?
As 0.00 m?
Ay 0.00m?
.45 0.00 m2
Ag 0.00 m?
Az 0.07 m?
Ag 0.00 m?
Ag 0.00 m?
Ao 0.00 m?
A1 0.00 m2
Al 0.00 m?
hin 52.5m
d 10.0m
Mass | 1.00 x 107 kg
S| M| 8
Ay 0.01 m?
Ag 0.00 m?
Az 0.66 m?
Ay 0.15m?
As 0.02 m?
Ag 0.43m?
Az 0.01m?
Ag 0.21m?
Ag 0.03 m?
Ao 0.00 m?
Anp 0.01 m?
Aqa 0.00 m?
hin 52.5m
d 10.0m
Mass | 1.47 x 107 kg
S| M S | S

Figure 4.3 — Each of the six representative 300 m trussed arches is, in its own way a
rational design. The shallower arches on the right of the figure are, on average, lighter
than the deeper ones, and the material distribution is different in each case.
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the right of the figure). The lightest design (Fig. 4.3b) balances its material distribution
between the arch superstructure and the deck, while the other two heavier, shallow arches
(Figs. 4.3d and 4.3e) concentrate material in the deck. The lightest of the deep arches
(Fig. 4.3a) has a large inner arch cross-section, while the other two place more material
in the truss diagonals and verticals (Ag and Ag).

Each of these has a different design intent and is, in its own way, a rational outcome.
Different designs emerge as solutions to relatively similar problems, likely indicating a
design space with various local optima and optimization algorithms that are inclined to
converge on those local optima.

Basket-handle arches

The selected designs for the three basket-handle arch types (50 m, 200 m, and 300 m) are
shown in Figs. 4.4, 4.5, and 4.6; Table 4.3 identifies their design variables.

Three of the five selected 50m arch bridges have the same span-to-rise ratio of 5.0, but
different material distributions (Figs. 4.4b, 4.4d, and 4.4d). The lightest of these three
(Fig. 4.4b) balances its material between arch ribs and deck elements, while the heavier
two tilt the material distribution strongly towards either the arch or the deck.

The other two designs have very different span-to-rise ratios: a shallow v, = 20.0
(Fig. 4.4a) and a deep v, = 4.0 (Fig. 4.4c). The lighter, and deeper, of the two has
relatively light structural elements (Fig. 4.4c), whereas the heavier, shallow one has very
heavy elements to compensate for the lack of stiffness derived from its geometry. These
designs, despite being quite different in character, are locally-optimal solutions to very
similar design problems. (The additional stress constraints imposed on the heavier design
are all inactive at convergence.) The existence of multiple locally-optimal solutions with

Table 4.3 - The basket-handle arch design variables are used to specify designs in
Figs. 4.4, 4.5, and 4.3, following Chapter 3’s specifications.

A; | Outer longitudinal beams
Ao | Inner longitudinal beams
Az | Transverse beams

A7 | Deck diagonal beams

Ay | Arch ribs

As | Deck hangers
Ag | Lateral braces Superstructure
v. | Span-to-rise ratio of arch

vy | Span-to-inward lean ratio of arch

Deck
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very different masses indicates the complexity of the design space, and the downside of
being unable to escape local optima.

The six naturally-emerging clusters of 200 m basket-handle arch designs can be further
split into two groups based on geometry: the representative designs in Figs. 4.5a through
4.5¢ with high arch rises (v, = 4.0), and those in Figs. 4.5d through 4.5f, which are much
shallower.

The lightest of the designs (Fig. 4.5a) is an intuitively rational solution to a displacement-
constrained mass minimization. In response to the requirement to resist asymmetric live
loading, more material is concentrated in the deck elements (A;, A, A3, and A7) than
in the main arch (A4, As, and Ag). The other two deep arches emerge as solutions to
mass-constrained stiffness minimization problems (Figs. 4.5b and 4.5¢). Unsurprisingly,

Ay 0.19 m? Ay 0.14m?
A 0.00 m? _ Az 0.00 m?
Ag 0.06 m? : Az 0.16 m?
Ay 0.18 m? Ay 0.15m?
As 0.02m? As 0.02 m?
Ag 0.01 m?2 Ag 0.00m?
Yz 20.0 Yz 5.0
Ty 10.0 Yy 10.0
Mass 3.91 x 10° kg Mass 5.00 x 10% kg
M| Dy Dg S | 8 S| Da Ds M | S
(b)
A 0.03m? Ay 0.06 m?2
As 0.07m? As 0.05m?
Aa 0.03m? Az 0.10 m?
Ay 0.02m? Ay 0.10m?
As 0.00m? As 0.05m?
Ag 0.00m? Ag 0.01m?
Yz 4.0 Yz 5.0
Ty 10.0 Ty 10.0
Mass | 1.21 x 10%kg Mass | 3.61 x 10% kg
M| Dy Ds | S S| M S | S
(c) (d)
Ay 0.35m?
Ag 0.00 m?
As 0.06 m?
Ayg 0.08 m?
As 0.06 m?
Ag 0.01 m?
Yz 5.0
Yy 10.0
Mass | 4.99 x 10° kg
S| M | 8

Figure 4.4 — The deepest of the selected basket-handle arches, (c), is also the lightest.
Three designs that have the same v,—(b), (c), and (e)—have very different material
distributions.
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they are heavier than the light design in Fig. 4.5b. The latter of these two, despite the
presence of additional displacement constraints, is heavier than the former, needlessly
concentrating material in the arch bracing and hangers (A5 and Ag).

Ay 0.21 m? Ay 1.10 m?
A 0.11 m? Ag 1.82m?
As 0.06 m? As 0.70 m?
Ay 0.11 m? Ay 4.65m?2
As 0.01 m? As 0.63m?
Ag 0.14m? Ag 1.77m?
Az 0.07 m? A7 2.09m?
+z 4.0 Yz 4.0
Yy 40.0 Yy 40.0
Mass | 3.10 x 10% kg Mass | 5.29 x 107 kg
M| Dy Dg | S S| M S | S
(a) (b)
Ay 1.22m? Ay 2.00 m?
Ag 0.26 m? As 0.11m?
As 0.89 m? As 0.58 m?
Ayg 3.13m? Ay 3.65m?
Ag 0.31 m? As 0.14 m?
Ag 0.08 m?2 Ag 0.01 m?
Az 0.34 m? A7 0.26 m?
vz 4.0 Y2 20.0
Ty 40.0 Ty 13.3
Mass 3.00 x 107 kg Mass 2.99 x 107 kg
S| Dy Ds M S | § S| Da Ds M | S
(c) (d)
Ay 0.24 m? Ay 2.33m?2
Az 0.18 m? As 2.16 m?
Az 0.05m?2 Az 0.10m?
Ay 0.31 m? Ay 1.00 m?
As 0.02 m? As 0.10 m?
Asg 0.03m? Ag 0.05m?
A7 0.57 m? Az 0.80 m?
Yz 12.5 Yz 12.5
Yy 13.3 Ty 13.3
Mass 6.30 x 10% kg Mass | 2.97 x 107 kg
S| Da Ds M S | § S| M | S
(e) ()

Figure 4.5 — The first three representative 200 m basket-handle arches have the same
geometry, but very different material distributions. The last three structures have shallow
arches and heavy elements.

The 300m arch designs form two clusters (Fig. 4.6). The first is a light, deep bridge,
with most of the material concentrated in the deck to resist asymmetric lateral loads.
The design representing the second cluster solves a stiffness maximization problem and
is, accordingly, much heavier.

86



4.2. EXAMINATION OF REPRESENTATIVE DESIGNS

Ap 0.28m? Ay 4.81 m?
Ay 0.00m? Az 1.59 m?
Aj 0.05m? As 2.58 m?
Ayg 0.15m? Ay 6.96 m?
As 0.01m? As 0.68 m?
Ag 0.02m? Ag 0.14 m?
Az 0.09m? Az 2.88 m?
Yz 34 Yz 4.0
Yy 51.0 Yy 80.0
Mass | 4.74 x 108 kg Mass | 1.45 x 108 kg
M| Dy Ds | G S| M S | S
(a) (b)

Figure 4.6 — The 300 m basket-handle arches are generally quite deep. Some use light
elements ([a]), but others are much heavier ([b]).

Cable-stayed bridges

Selected designs for the three cable-stayed bridge types are shown in Figs. 4.7, 4.8, and
4.9. The physical parameters controlled by the design variables are noted in Table 4.4.

The three selected designs for the 300 m cable-stayed bridges are most naturally catego-
rized by height. The tallest of them (Fig. 4.7a) is the lightest, and also has the smallest
cable area. This makes good engineering sense; the increased truss height means a ca-
ble of a given cross-section is vertically stiffer, requiring less cable material. The next
tallest bridge (Fig. 4.7b) has much thicker cables supporting the deck. The least tall
bridge (Fig. 4.7c), interestingly, has quite small cables, but a much stiffer deck. This,
again, is physically rational. The vertical stiffness gained by adding material to such
near-horizontal cables makes this an ineffective system when the towers are so short, and
it is better to instead stiffen the deck.

The two selected 500m bridges have almost the exact same weight, though they achieve
it in different ways. The taller bridge (Fig. 4.8a) has slender vertically-oriented cables
and light deck elements. The forces in these cables, however, require large tower cross-
sections to resist bending in the towers under asymmetric loads. The shorter bridge has
substantially bigger deck elements (especially the longitudinal deck beams, A, and A,)
to compensate for its cables lack of vertical stiffness.

The grouping of the 800 m cable-stayed bridges presents a similar picture: a taller struc-
ture with lighter elements and a shorter structure with heavier elements—in this case
both the deck and cable elements—to compensate.
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Table 4.4 - Cable-stayed bridge design variables, used to specify designs in Figs. 4.7, 4.8,
and 4.9. :

A; | Outer longitudinal beams
As | Inner longitudinal beams Deck
As | Transverse beams
Ag | Deck truss diagonals
Ay | Cables
As | Towers posts Superstructure
h | Tower height
Ay 0.05m? Ay 0.06 m?
Ay 0.03 m? Az 0.03m?
Az 0.05 m? A3 0.06 m?
Aa 0.02 m? Ay 0.57m?2
As 5.00 m? As 7.00m?
Ag 0.03 m? Ag 0.03m?
h 90.0m h 60.0 m
Mass | 2.33 x 107 kg Mass | 5.00 x 107 kg
M| Dy Dg | S S| M | S
(a) (b)
Ay 0.18 m?
Ay 0.09 m?
As 0.03m?
Ay 0.07m?
As 7.73m?2
Ag 0.05m?
h 30.0m
Mass | 2.41 x 107 kg

M| Dy Ds S | S
(c)
Figure 4.7 — The three representative 300 m cable-stayed bridges are very different. The

tallest, and lightest, of them—(a)—has thin, efficient cables, while the less tall bridges
compensate with stiffer decks or thicker cables.

Ay 0.12m? Ay 1.28 m?
As 0.09 m? Az 1.10 m?
Az 0.11 m? As 0.06 m?
Ay 0.05 m? Ag 0.03m?
As 9.52 m? As 5.00m?
Ag 0.12 m? Ag 0.40 m?

h 200.0m h 100.0 m
Mass | 1.00 x 108 kg : Mass | 1.00 x 108 kg
S| Da Ds M | 8§ S| M | S

(a) (b)

Figure 4.8 — The two 500 m cable-stayed designs achieve the same mass in different ways.
(a) has tall towers, vertically-oriented slender cables, and light deck elements, while (b)
has shorter towers and heavy deck elements to compensate.
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Ay 0.10m?
Ay 0.10m?
As 0.10m?
Ay 0.03m?
As 5.00m?2
Ag 0.10m?

h 240.0m

Mass | 7.64 x 107 kg

M| Da Dg | S

(a)

Ay 1.71m?
Ag 0.10m?
Aj 0.10m?
Ag 0.32m?
As 5.00 m?
Ag 0.23m?
h 200.0m
Mass 2.61 x 108 kg

S | Do Ds M S | S

Figure 4.9 — The 800 m cable-stayed designs, like the 500 m ones, group into tall bridges
with light elements ([a]) and shorter bridges with heavier elements ([b]).

Steel girder bridges

The four selected designs for the 50 m steel girder bridge, whose design variables are named
in Table 4.5, are shown in Fig. 4.10. The lightest of them (Fig. 4.10b) is likely a solution
to a highly-unconstrained problem. The other three have similar masses, but achieve it
by stiffening either one of the longitudinal beams more than the other (Figs.4.10a and

4.10d) or by a more balanced approach (Fig. 4.10c).

Table 4.5 - Girder bridge design variables, used to specify designs in Fig. 4.10.

Ay | Outer longitudinal beams
As | Inner longitudinal beams
Asz | Transverse beams

Deck

Ay 3.18m?
Ay 6.37m?
As 0.00m?
Mass | 5.00 x 10% kg
S| M | S
(a)
A 3.12m?
Ao 1.36 m?
As 1.42 m?

Mass 4.98 x 109kg
S | D Ds M | 8

(c)

39

Ay 0.67m?
Ag 1.28 m?
Az 0.00 m?

Mass | 1.03 x 10kg
M | Do Dg | S

(b)
Ay 5.14 m?
Ay 0.94 m?
As 0.42 m?
Mass | 5.00 x 10% kg
S| M | S

(d)

Figure 4.10 - Selected 50m steel girder bridge designs.
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Suspension bridges

The six selected 500 m suspension bridges show dramatic geometric and sizing variation.
The lightest design is also the shallowest (Fig. 4.11a). The two deepest designs (Figs. 4.11a

and 4.11b) distribute material towards the diagonal deck elements (Ag) and the primary
cables (Ay), respectively.

Four of the 800 m suspension bridges (Fig. 4.12) have remarkably similar mass, to within
a few hundredths of a percent, although their designs are quite distinct. This indicates
a design space with many similarly-good local optima. Fig. 4.12¢’s design, for example,
has the tallest towers and therefore gets the most stiffness from each unit of material in
its primary cables. Fig. 4.12e’s, on the other hand, has shorter towers and derives its
stiffness from deck elements, especially the deck diagonals (Ag).

Ay 0.06 m? Ay 0.10m?
Ay 0.06 m? Ag 0.10 m?
Az 0.06 m? Az 0.10m?
Ay 0.06 m? Ay 0.40 m?
Ag 0.02 m? As 0.10m?
Ag 9.94 m? As 0.10m?
P 100.0 m P 100.0m
Mass | 5.30 x 10%kg Mass | 1.34 x 107 kg

M| Dy Dg | S M| Dy Dsg | S

A 0.88 m? Ay 0.03 m?

Ay 0.62 m? Ao 0.00m?

As 0.10 m?2 As 0.22m?

Ay 1.12m? Ay 0.77m?

As 1.31 m? As 0.12m?

Ag 1.53 m2 Ag 0.10m?

P 1000.0 m P 175.0m
Mass | 4.20 x 107 kg Mass | 1.50 x 107 kg
M| Do Ds S | S S| M | S

Ay 0.00 m? Ay 0.07 m?

Ag 0.00 m? A 0.06 m?

Az 0.00 m? A3 0.06 m2

Agq 0.00 m? Ay 1.23 m?

As 0.00 m? As 0.09 m?

Ag 0.09 m? Ag 0.10 m2

p 1000.0m P 400.0m
Mass | 1.37 x 106 kg Mass 1.50 x 107 kg
M| Dy Dg S | S S| Da Dg S M | S

(e) (F)

Figure 4.11 — The six selected 500m suspension bridge designs vary widely in their
material distribution and geometry.
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Ay 0.47 m? Ai 0.05m?
Az 0.17m? Ao 0.06 m?
Az 1.92m? Aj 0.08 m?
Ay 1.13m? Ay 1.34m?
As 0.46 m? As 0.03 m?
_ Ag 7.82m? Ag 0.07 m?
||\li\ i P 335.1m ‘l‘"“p : » 400.0m
Mass 1.04 x 108 kg ﬂ"“ Mass 2.50 x 107 kg
S| Da Ds S M | 8 S| Da Dg S M | S8
A 0.02 m? Ay 0.24 m?
As 0.01 m2 As 0.19m?
Ag 0.15m?2 Az 0.18 m?
Ag 0.72m? Ag 0.47 m?
As 0.03 m? As 0.17m?
Ag 0.14 m? Ag 0.01 m?

D 100.0m P 1000.0m
Mass 2.50 x 107 kg Mass | 2.50 x 107 kg
S| Do Ds M | 8 S| M | 8

(d)

Ay 0.09 m?

Az 0.06 m?

Az 0.10m?

Ay 1.26 m?

As 0.00 m?

_, Ag 4.34 m?

||||uui‘“"' P 281.8m

Mass 2.50 x 107 kg

S| D Ds S M | G

Figure 4.12 — Four of the selected 800 m suspension bridge designs have remarkably
similar mass, despite having distinet design characteristics.

Table 4.6 — Suspension bridge design variables, used to specify designs in Figs. 4.11 and
4.12.

A; | Outer longitudinal beams
As | Inner longitudinal beams
Az | Transverse beams

Ag | Deck truss diagonals

Ay | Main cables
As | Deck hangers Superstructure
p | Cable parabola focus (Eq. 3.7)

Deck

g1
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Warren truss bridges

Two of the Warren truss categories—50m and 200 m—are grouped into deep structures
with slender elements and shorter structures with thick elements (Figs. 4.13 and 4.14).
Both are rational design approaches, but the deeper structures are dramatically lighter
in both cases. The 300m designs, like the 800 m suspension bridges, have very similar
mass despite having quite different designs. The deeper trusses have, overall, much more
slender elements.

Table 4.7 — Warren truss design variables, used to specify designs in Figs. 4.13, 4.14, and
4.15.

A | Outer longitudinal beams
Ay | Inner longitudinal beams Deck
Az | Transverse beams

Ay | Truss top chord
As | Truss diagonals

Superstructure
Ag | Lateral braces P
h | Inter-chord height

Ay 0.02 m? Ay 0.72m?2
As 0.02 m? Ao 0.03m?
As 0.02 m? Asz 0.38 m?
Ag 0.02 m? Ay 0.84 m?
As 0.02m? As 0.32m?
Ag 0.02 m? Ag 0.00 m?
h 20.0m h 5.0m

Mass | 1.45 x 10° kg Mass | 2.00 x 10° kg
M| Dy Ds | S S| M | S

(a) (b)

Figure 4.13 — The 50 m Warren truss designs are grouped into (a) deep, light structures
with slender elements and (b) shallow, heavy structures with thicker elements.

A 10.00 m? Ay 0.50 m?
Ay 10.00m? Ay 0.50 m?
Az 9.99 m? As 0.20m?
Ay 10.00m? Ay 0.40 m?
As 0.01 m? Ag 0.20 m?
Ag 0.01 m? Ag 0.20m?

h 5.0m h 40.0m
Mass | 1.07 x 108 kg ¥ Mass | 9.92 x 108 kg
M| Da Dg | S S| S M| 8§

(a) (b)

Figure 4.14 — The 200 m Warren truss designs are grouped, similarly to the 50 m ones in
Fig. 4.13, into deep, light structures and shallow, heavy ones.
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A 2.23m? Ay 1.07m?
Ag 0.26 m? Az 0.38m?
Az 0.14 m? Az 0.43m?
Ay 2.13m? Ay 1.01 m?
As 0.30m? As 0.30 m?
Ag 0.19m? Ag 0.16 m?

h 8.0m h 40.0m
Mass 2.50 x 107 kg Mass 2.48 x 107 kg
S| Do Ds S M | 8 S| Da Ds M | S

Ay 1.22 m? Ay 1.21m?

Ap 0.00 m? As 0.80m?

As 0.34 m? Az 0.37m?

Ay 1.25 m? Ay 1.11 m?

As 0.39m? As 0.42m?

Ag 0.00 m? Ag 0.53m?

h 321m h 20.0m
Mass 2.50 x 107 kg Mass | 2.50 x 107 kg
S| Do Dg M | G S| M | S

(c) (d)

Figure 4.15 — Selected 300 m Warren truss designs

4.3 Discussion

We draw three main conclusions from this chapter’s engineering exploration of the results.
First, the studied design spaces are complex and variable; they appear to have multiple
local optima, which themselves are sensitive to problem formulation. Second, different
algorithms converge on different solutions for similar or identical problems. Finally, and
most importantly, the data which will be used in the next chapters to study algorithm per-
formance and develop selection techniques are based on valid solutions to real engineering
problems.

Within many of the fourteen structure types, different representative designs emerge as
solutions to identically- or similarly-posed optimization problems. The non-convexity of
simulation-based design spaces in this work, suggested by the observed patterns of repre-
sentative designs, is not surprising. The nature of this non-convexity, however, is difficult
to predict in advance. Some design space’s local optima are similarly-valid solutions to
the problem; many of the structural types have very different representative designs which
use similar amounts of material. Others have representative designs which vary greatly
in their material use.

The range of observed solutions also informs our understanding of the algorithms. Using
different algorithms to solve the same, or very similar, problems yields vastly different
results. The following chapter examines individual algorithm performance closely, but it
is safe to assume that some types of algorithm are better suited to certain design spaces
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than others and that some algorithms have difficulty escaping local optima.

The broader goal of this dissertation, of course, is to address the algorithm selection prob-
lem. In this context, perhaps the most important contribution of this chapter is to verify
the resulting designs as valid solutions to realistic structural engineering problems. Given
our stated intent of adapting optimization to the realities of practice, this demonstration
is particularly important. The next chapter examines trends in algorithm performance,
and the following one develops and evaluates automated selection systems. Their results
and findings are founded on the underlying engineering validity of the data, enhancing
the dissertation’s relevance to practical design.
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Chapter 5

Results: exploration of algorithm
performance

The previous chapter, having verified the optimization-generated designs as rational solu-
tions to real structural engineering problems, ensures that subsequent results and conclu-
sions in the domain of algorithm performance are applicable to practical design scenarios.
This chapter examines the data from an algorithm performance perspective, demonstrat-
ing solution quality and computational cost trends across the design problems (§5.2) and
identifying associations between features of these problems and performance measures for
each of the algorithms (§5.3).

§5.2 and §5.3 each answer one of the first two research questions posed at the end of
Chapter 1. They improve the general understanding of optimization’s true potential and
of the importance of the algorithm selection problem, and enable us to broadly recommend
situation-specific use of algorithms. Before they do so, §5.1 makes a few notes on the
nature of the data and the methods of exploration.

5.1 Preliminary considerations

We use the normalized measures of algorithm performance (§3.2.2) throughout §5.3, to
enable inter-problem comparison. Both measures—objective value (quality of the solu-
tion) and number of analysis calls (computational efficiency) -lie in the range [0, 1], with
values closer to 1 indicating either a better result or a lower computational cost.
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5.1.1 Visualization

Where applicable, plots of objective value data are colored orange (lighter when viewed in
grayscale) throughout, and computational cost plots are colored blue (darker in grayscale).

A useful tool graphical tool for visualizing ranges of data is the bozplot. In this work,
boxplots represent a range of numbers with a vertical black line indicating the median,
a colored box with outer limits at the range’s 25" and 75" percentiles (denoted g, and
gs), and two thin horizontal whiskers extend to 4¢q; — 3g3 and 4¢3 — 3¢;. Outlying values
beyond the whiskers’ range are shown as black dots (Fig. 5.1).

(q1) - (q3)

44,-3q, median 44:-3q,
Figure 5.1 -~ The boxplot is used to visually rep- 25" 5%
resent a range of numbers. A vertical black line ! ! l ! !
denotes the median of the range, the box itself
stretches from the 25" to the 75" percentiles, and <o oo

outlying values beyond the black whiskers are shown
as black dots.

5.1.2 Patterns of data distribution

Since each problem must have a best-performing and a worst performing algorithm, the
distributions of normalized performance have expected peaks at 1 and 0 (Fig. 5.2). When
normalized algorithm performance is the dependent variable, as will generally be the
case in this chapter and the next, these non-normal distributions preclude the use of
many parametric methods for testing association between variables and for predicting
outcomes.

2000 2000

Figure 5.2 — The distribution of both nor-

malized performance measures shows ex- 1000 i 1000

pected concentrations close to values of 0 §

and 1. These non-normal distributions pre- 0 ;__m__‘__ﬂmmmig ' ——
clude the use of many parametric tests of 0 0.5 1 0 0.5 1
association and difference. Normalized objective ﬁggﬁf;‘;f;zig'“f

In Chapter 6, which uses the data presented here to build predictive systems for algo-
rithm selection, it will sometimes be possible to work with the original, non-normalized
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5.1. PRELIMINARY CONSIDERATIONS

performance data (i.e., the actual values of objective functions and the number of anal-
ysis calls). Fig. 5.3 shows their distributions. When problems are split into mass and
stiffness optimizations, the natural logarithm of performance measures for all algorithms
and problems shows an approximately normal distribution.'

800 300 . 300 800
600 600 it 600 ) 500
100 400 gt 400 400
B
200 4 200 ‘ & 200 200
T ERE
—-’§1§a5§ﬁ21:1a 0 s ,.Lz_-sgrg.':“."i.gza!i o B8 HEEE 0 _Ill III III'I.'.
12 14 16 18 20 -2 0 2 -0.5 ] 0.5 4 6 8 10
log,. (objective value) log, (objective value + 1) Objective value log, (# analysis calls)
for mass problems only stiffness problems only stiffness probs., no outliers

Figure 5.3 - The logarithms of (non-normalized) objective have approximately normal
occurrence distributions when split into mass and stiffness problems.!

5.1.3 Statistical tests

In §5.3, we seek associations between predictive factors and algorithm performance, or
examine differences between mean performance values when problems are grouped in
certain ways. Although these associations and differences are shown graphically, it is
useful to accompany visualizations with suitable parametric tests. The observed non-
normal distributions of performance data promote the use of non-parametric test methods.

To test the hypothesis that groups of data are drawn from samples with significantly
different means—useful when evaluating the importance of categorical problem features
such as structural type or the nature of design variables—we use the Kruskal- Wallis One-
Way Analysis of Variance by Ranks test [Kruskal and Wallis, 1952]. The null hypothesis of
equal sample means is rejected—and the presence of a statistically significant association
is confirmed—when the test’s p-value, denoted pg,, is less than 0.05.

When evaluating association between a continuous problem feature and algorithm per-
formance, standard scatterplots are accompanied by Spearman’s Rank Correlation Coeffi-
cient, ¢, [Spearman, 1904]. A value of ¢, equal to —1 or +1 indicates perfectly negative or
positive monotonicity, and an associated p-value, p,, shows that the association between
problem features and algorithm performance is statistically different from zero (i.e., that
significant correlation exists) if it is less than 0.05.

When drawing conclusions from this chapter’s data analysis, we remember that correlation
between an algorithm’s performance and a problem feature does not mean that this feature

IMany stiffness objective values fall in the range [—1,0]; shifting these by 1 enables the calculation of
logarithms.
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alone is causing the variation. The relationships between algorithm performance and the
specified problem features are likely to be nonlinear and dependent on interactions.

5.1.4 Denoting algorithms

Optimization algorithms are referred to by their designated acronyms rather than their
full names. These acronyms are repeated for the reader’s reference in Table 5.1.

The algorithms fall into two broad categories—local algorithms, which converge when their
evaluation of the objective function converges within a tolerance of 1 x 10™*, possibly on
a locally-optimal but globally-suboptimal design; and global algorithms, which search the
design space broadly for six hours, return the best feasible design found in that time, and
are more likely to find the global optimum.

Table 5.1 — Reminder of the eight algorithms’ acronyms

Constrained Optimization by Linear Approximation-COBYLA [Powell, 1994]

Bounded Optimization by Quadratic Approximation-BOBYQA [Powell, 2009)

Local
Nelder-Mead Simplex—NEL-MEAD [Nelder and Mead, 1965

Subplex—SUBPLEX [Rowan, 1990]

Principal Axis Method—PR-AXIS [Brent, 2002]

Dividing Rectangles Method—DIRECT [Jones et al., 1993]

Global Controlled Random Search—CRS [Kaelo and Ali, 2006]

Improved Stochastic Ranking Evolution Strategy—ISRES [Runarsson and Yao, 2005]

5.2 Overall performance of algorithms

The first research question posed in Chapter 1 is: “How do different optimization algo-
rithms perform on a representative set of realistic structural design problems?” Chapters
1 and 2 described how the optimization research community’s approach to design au-
tomation has led to a situation where practical examples are included in the literature
as ad-hoc case studies. By neglecting to document how often algorithms produced sub-
optimal designs or required extensive tweaking before achieving successful results, the
field leaves design engineers with an insufficiently-clear picture of the true potential of
optimization as a robust generator of high-quality designs.
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5.2. OVERALL PERFORMANCE OF ALGORITHMS

This section, in answering the first research question, begins to address this limitation of
the field by documenting how often each algorithm performs best on a design problem,
by examining the overall quality of algorithms’ solutions across many problems, and by
exploring trade-offs between solution quality and computational cost. This examination
of the data is structured around the following three questions, each of which examines a
different aspect of overall performance and is answered in its own sub-section.

e How often does each algorithm perform best? (§5.2.1)
e How does the quality of each algorithm’s solutions vary? (§5.2.2)

e Are there obscrvable trade-offs between solution quality and computational cost?
(85.2.3)

5.2.1 How often does each algorithm perform best?

Under the two chosen performance measures, an algorithm is the best-performing on a
given problem if it either produces the solution with the lowest objective value or consumes
the fewest computational resources to arrive at that solution. Fig. 5.4 shows the number
of times each algorithm performs best under both measures. Since multiple algorithms
can perform identically on a problem (i.e., achieve the same objective value or make the
same number of analysis calls), the sum of the numbers in the plots exceeds 100%.

No single algorithm comes close to outperforming all others on every problem. CRS
finds the best solution most often, although its population-based approach requires many
analysis calls to do so, leading it to never be ranked best in terms of computational cost.
COBYLA follows next in terms of solution quality, but is the quickest to converge on 21%
of problems. BOBYQA's light computational burden (it is most frequently the algorithm
that makes the fewest analysis calls) is offset by its rare convergence on the best solution.

Closer inspection of the data underlying Fig. 5.4, however, shows that algorithms’ victories
are often narrow. The lightest bridge sometimes weighs only a few kilograms less than the
next lightest, and the second-fastest algorithm sometimes requires only a handful more
analysis calls to converge. It is therefore useful to relax the measure of ‘best’ and to count
how often an algorithm comes within 5% of the strongest performer. For each of the 474
problems, we determine the set of algorithms a* such that:

a; € {(L | Paj < 105(pmmg)} (51)

where p,; is the a'® algorithm’s (non-normalized) performance on problem j, and pmin,;
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is the best observed performance on problem j. Fig. 5.5 shows how often each algorithm
appears in such a set, revealing a more balanced picture of performance.

# times finding # times making
best solution fewest analysis calls
69%

Figure 5.4 — Across all 474 optimization problems, no single algorithm outperforms all
others on either measure of algorithm performance—solution quality (objective value) or
computational cost (number of analysis calls).

# times within 5% of # times within 5% of
best solution fewest analysis calls
78%

i 70%

Figure 5.5 - Relaxing the requirement that an algorithm be strictly the best-performing
gives a more balanced view of overall performance.

Algorithms that rarely find the highest-quality solution, such as NEL-MEAD or SUB-
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PLEX, often find a solution that is almost as good. In 78% of problems, COBYLA finds
a solution that is reasonably close to the best observed answer, and is still fairly often
among the quickest to converge. The three global algorithms (DIRECT, CRS, and IS-
RES), of course, make so many morc analysis calls than the local ones that they still
never come within 5% of being the computationally-lightest.

Counting how often an algorithm is ranked best in this manner is a useful preliminary
exploration of the data, showing us that no single algorithm is the best across all prob-
lems, and that choosing the correct algorithm for a given design problem is of some
benefit. These counts tell us little, however, about the quality of solutions relative to the
manually-generated starting points or relative to the best observed solution to a problem—
considerations which are of greater interest to engineers, and which are accounted for next.

5.2.2 How does the quality of each algorithm’s solutions vary?

Algorithms begin their exploration of each design space from a manually-generated initial
solution to a design problem (Chapter 3). A useful and intuitive measure of an algorithm’s
final solution quality, allowing for comparison across a range of very different problems,
is the percentage improvement in the objective function over this starting point. This
measure is considered for both the mass minimization problems and the stiffness maxi-
mization problems (§3.1). Fig. 5.6 uses boxplots (§5.1) to visualize the range of design
improvement achieved by each algorithm on the 158 design problems, where the objec-
tive is to minimize mass subject to constraints on displacement and, possibly, on stress.
The remaining 316 problems seek to minimize the exceedance of allowable displacement
(and, hence, to maximize stiffness) subject to constraints on mass; the ranges of design
improvement for these problems are shown in Fig. 5.72. Both sets of boxplots show only
the range [—100%, 100%)].

Fig. 5.6 shows a relatively consistent pattern of design improvement on the mass mini-
mization problems. Most algorithms reduce material usage by, on average, between 10%
and 30%. As suggested by the frequency with which it produces a near-best solution
(Fig. 5.5), COBYLA produces the best range of mass reduction across the 158 problems.
On the other hand, three algorithms—PR-AXIS, CRS, and ISRES- - produce, on average,
solutions that are no lighter than the starting designs, although each one’s range of solu-
tions does include some improved designs. The remaining four algorithms are much more
likely to improve designs, although they do so to differing extents, indicated by the wide
ranges of solution quality. Closer inspection of the data (presented later in §5.3) show that

2The goal of the stiffness problems is to minimize |A(&)|max — Alimit (Eq. 3.2). This quantity can take
on negative values, however, making percentage improvement calculations meaningless. We instead use
|A(Z)|max, the maximum deck displacement magnitude, to measure starting point and solution quality
when plotting Fig. 5.7.

101



CHAPTER 5. RESULTS: EXPLORATION OF ALGORITHM PERFORMANCE

COBYLA AR
BOBYQA _—
NEL-MEAD —_— e
—_
o}

SUBPLEX
PR-AXIS
DIRECT
CRS
ISRES

—100 =50 0 50 100

Change in material used compared
to manually-generated solution

Figure 5.6 - Overall, algorithms show a fairly consistent pattern of improvement over the
manually-generated starting solutions to the 158 mass minimization problems, although
all algorithms produce some solutions that are worse than the starting points. Some
algorithms show a more consistent pattern of improvement than others, and almost all of
them exhibit wide ranges of solution quality.

intra-algorithm variation in solution quality across types of problems is also significant.
Algorithms do not achieve their best success on the same subset of the mass minimization
problems; rather, an algorithm’s performance depends strongly on the problem at hand.®.

COBYLA —_—
BOBYQA ST DLl
NEL-MEAD | — s
SUBPLEX _
PR-AXIS _
DIRECT _
CRS

ISRES

50 100
Change in maximum displacement compared
to manually-generated solution

Figure 5.7 — Across the 316 stiffness maximization problems, algorithms consistently find
solutions with lower maximum displacement values than the manually-generated starting
designs. The wide ranges of improvement for each algorithm differ from the mass mini-
mization problems (Fig. 5.6).

Fig. 5.7 shows a more consistent pattern of design improvement on the 316 stiffness op-
timization problems. Since most of the manually-generated starting points use less than
the allowable amount of material (i.e., since the upper-bound constraints on mass were

3These design improvement plots show many cases where an algorithm produces a solution that is
worse than the starting point. In practice, an algorithm encountering this difficulty would simply return
the starting point with a comment that it was unable to improve the design. As part of the overall
assessment of algorithm quality, we opt for the lee favorable representation shown here.
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not active at the starting point), this is to be expected. COBYLA and CRS produce
better ranges of stiffness solutions than the other algorithms, although both are often
outperformed. The high frequency with which CRS produces the best solution (Fig. 5.4)
is attributable to its strong performance on these 316 stiffness problems, since its per-
formance on the mass minimization problems is so poor (Fig. 5.6). The broad message
of Fig. 5.7 is the same as for the mass minimization problems: a range of representative
optimization algorithms demonstrate a consistent pattern of improvement across many
design problems, but inter- and intra-algorithm variation in solution quality is substantial.

Although useful in evaluating design improvement and, hence, solution quality, these
visualizations are limited by the fact that they compare solution quality only to the
manually-generated starting points; different starting points produced by different engi-
neers could alter the results significantly. In theory, a comparison of solutions to the
true optima is desirable. For the simulation-based non-benchmark problems studied here,
however, these true optima are unknown. The remainder of this section instead uses the
best among all determined solutions (including the starting points) to a given problem as
a substitute. Each solution to a problem j in the data is then assigned a gain value G;
according to Eq. 5.2.

Gilys(a)) =1 — 2710 (M> g <1 (5.2)

Yj,min

where y;(a) is the objective value attained by algorithm a on the j** optimization problem,
and Yjmin is the minimum observed objective value (i.e., the best solution) for the gt
problem. y;min substitutes for the true, unknown optimum solution to the problem.
G;(y;(a)) has a value of 1.0 when algorithms a’s solution is the best observed (i.e., y;(a) =
Yimin), and decreases with a growing rate of decline as solutions become progressively

worse than the best. Solutions that are 200% worse than best have a gain of zero.

Fig. 5.8 shows the summation of each algorithm’s gain values across all 474 problems—a
single measure of overall solution quality. Any solutions over 200% worse than the best
solution (which have negative gain values) are discarded before taking this summation.
Engineers can usually approximate the optimal solution’s objective value in advance,
using, for example, expected trends in material usage such as those shown in Fig. 4.1.
Solutions that are 200% worse than the optimum should, therefore, be easily identified
and discarded by engineers as sub-optimal, justifying their omission from the cumulative
gain measure. The number of these discards is, however, noted for each algorithm.

Fig. 5.8 shows that COBYLA produces—in the sense defined by Eq. 5.2 and by the
decision to discard designs over 200% worse than the lightest or stiffest solutions—the
best overall set of solutions to the design problems. This is not to say that COBYLA is
always best; Fig. 5.4 and the deeper examinations of the data in §5.3 prove otherwise.
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474
Zj gj
412.3
B 362.7
Solution
Gain, G;
- (Eq. 5.2)
B | 0.5
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Figure 5.8 — Summing the range of gain values (Eq. 5.2, plotted on the figure’s right)
across the 474 design problems gives a single measure of overall solution quality for all
algorithms, and demonstrates the importance of looking beyond how often each algorithm
is ranked best (Fig. 5.4). Each algorithm finds, with varying frequency, a solution which
is over 200% worse than the best observed solution; these outliers are discarded before
calculating 2;74 G;.

CRS, the algorithm which most frequently produces the best solution, has an overall gain
measure which is significantly lower than COBYLA's and NEL-MEAD’s. CRS’s score is
closer to that of PR-AXIS, an algorithm which finds the best solution less than 10% as
often as CRS does. This demonstrates the problem with simply considering the number
of times an algorithm is best; an algorithm’s performance on those problems where it is
not the best—the extent of its downside—1is an important part of the picture.

5.2.3 Are there observable trade-offs between solution quality
and computational cost?

The previous section considered distributions only in algorithms’ solution quality, with-
out regard to the computational cost associated with producing those solutions. As a
final component in the analysis of overall performance, this section concurrently explores
variations in solution quality and computational cost.

104



5.2. OVERALL PERFORMANCE OF ALGORITHMS

COBYLA  |e= e = —————
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Figure 5.9 — (a) Solution quality. The overall range of normalized solution quality
(Eq. 3.8) varies widely across all algorithms other than NEL-MEAD and COBYLA; any
algorithm may produce relatively good or relatively poor solutions, depending on the
problem at hand. (b) Computational cost. Normalized separately among local and
global algorithms, the computational cost data vary widely. In both cases, higher numbers
indicate better performance.

Using the normalization strategy presented in Chapter 3 (Eq. 3.8), which assigns values
between 0 and 1 to the algorithms for each problem, Fig. 5.9 provides some insight into
overall trends. Most algorithms have a wide range of normalized objective values (solution
quality) and normalized number of analysis calls (computational cost)*.

Among the local optimization algorithms, which terminate when the objective value con-
verges within 1 x 10~* and which are much computationally lighter than the three global
algorithms, BOBYQA is most frequently the fastest to converge across all problems, fol-
lowed by COBYLA. Their successive approximations of the design space likely allow them
to progress quickly. The global algorithms—DIRECT, CRS, and ISRES-—make as many
calls as possible within their imposed six-hour time limit. DIRECT’s and ISRES’s lower
normalized values actually indicate that they make more analysis calls in a fixed period
and are, in a narrow sense, more efficient. Despite considering more design iterations,
however, they produce solutions of lower average quality than CRS.

Fig. 5.10 plots each algorithm’s normalized objective value against its normalized number

1As discussed in §3.2.2, normalized computational cost is determined separately for local and global
algorithms. Although we do not explicitly examine computation times, most local algorithms take ap-
proximately 5 to 15 minutes to converge—at least two orders of magnitude less than the global algorithms,
which always take 6 hours. Some local algorithms converge in less than a minute, however, and others
(especially SUBPLEX) can take over an hour.
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Figure 5.10 — Each plot shows a single algorithm’s normalized (Eq. 3.8) solution quality
achieved and the computational cost incurred on the 474 problems. Darker-shaded quad-
rants contain more points, and captions note the Spearman Rank Correlation coefficients
between the two measures, cs, and their associated p-values, ps (§5.1).

of analysis calls for all 474 design problems; the background of each plot is split into four
quadrants, with darker colors assigned to quadrants containing more points. Although
the measures are not strongly correlated for all algorithms (p, < 0.05 for only three of
them), certain trends do emerge.

All five local algorithms (COBYLA through PR-AXIS) apart from SUBPLEX rarely take
a long time to reach poor solutions (their lower left quadrants contain relatively points).
In cases where they make many analysis calls, they arrive at relatively good solutions.
SUBPLEX, by contrast, on those occasions where it takes longer to converge, is more likely
than the other other algorithms to do so on a poor-quality design. The top left quadrants
of BOBYQA’s and PR-AXIS’s plots shows that both algorithms often converge quickly
to a bad solution, suggesting a propensity to getting stuck early in local optima.

Of the global algorithms (DIRECT, CRS, and ISRES), only ISRES shows a statistically
significant association (indicated by a p, value less than 0.05); its solution quality increases
as it makes more analysis software calls. DIRECT and ISRES, as evidenced by the large
number of points in their plots’ bottom right-hand quadrants, are more likely to produce
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good solutions when they make relatively many analysis calls. CRS demonstrates the
opposite trend, achieving better results on problems where it makes fewer analysis calls
than the other global algorithms.

Summary

This section, by demonstrating how a set of algorithms performs on a wide range of
realistic problems, answers the dissertation’s first research question and takes a step to-
wards resolving a key identified limitation of the optimization literature—the insufficient
demonstration of structural optimization’s true potential. By running all algorithms ’off-
the-shelf’, with their various tuning parameters set to default values (Chapter 3), and by
presenting the entire range of resulting outcomes—including instances where algorithms
fail to improve on the initial design—the data offer a clearer, more honest picture of
optimization’s promising, but variable, performance than the contemporary literature.

§5.2.2 demonstrates the importance of looking beyond counts of how often an algorithm
is best to the quality of its solutions. Although CRS most frequently produces the best
solution, for example, it exhibits significant downside on those occasions where it does
not do so. COBYLA produces the best overall range of solutions under the defined
evaluation metrics, although there are many occasions where it is outperformed. §5.2.3
considers overall computational cost trends in addition to those in solution quality, further
demonstrating the complexity of the problem.

The section also reaffirms the findings of the short performance variation study in the
dissertation’s first chapter (§1.2), although now with far more data across a broader range
of structural types. There is much variation in algorithmic performance across different
problems, and no single algorithm outperforms all others. Algorithms that frequently find
the best solution are often the most computationally expensive, and often have significant
downsides in the cases where they don’t find the best answer.

All of this confirms our initial assertions regarding the importance of the algorithm se-
lection problem, and implicitly proposes a strategy for comprehensive evaluation of algo-
rithms on a wide range of realistic problems. As a first step towards guiding algorithm
selection, the remainder of this chapter delves deeper into the data in search of rela-
tionships between characteristic features of design problems and the performance of each
algorithm in solving those problems.
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5.3 Association between problem features and algo-
rithm performance

The second question posed in the dissertation’s introduction is: “Do correlations exist
between problem features and algorithm performance?” This section explores the rela-
tionship between performance—both solution quality and computational cost—and key
features of the structural optimization problems. The investigation is organized around
the following questions, and §5.3.6 concludes by making broad recommendations about
when each algorithm should be used.

Does algorithm performance vary with the nature of the design variables? (§5.3.1)

Does algorithm performance vary with the type of objective function? (§5.3.2)

How does algorithm performance vary with the number of design variables? (§5.3.3)

Does the degree of constraint affect algorithm performance? (§5.3.4)

Do algorithms perform differently across different structural types? (§5.3.5)

5.3.1 Does algorithm performance vary with the nature of the
design variables?

Every optimization problem in the study can be classified as either a sizing problem
or a joint sizing and geometry (hereafter referred to as geometry) problem, depending
on whether the design variables control overall structural geometry. Fig. 5.11 shows the

Median normalized
solution quality

COBYLA 0.99

NEL-MEAD 0.96
CRS 0.87

1.00 COBYLA
0.98 CRS
0.91 NEL-MEAD

BOBYQA 0.61 0.54 DIRECT

median normalized objective value (i.e., their 0.54 BOBYQA

median solution decreases in quality) on sizing DIRECT 0.41
problems (Eq. 3.8).

) _ PR-AXIS 069 f " PG ECRPLER
Figure 5.11 — Four algorithms have a lower SUBPLEX 0.68 > 0.67 PR-AXIS

ISRESO24 e | o oo

Geometry Sizing
Problem type
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algorithms’ median normalized objective value (a single measure of overall solution quality,
calculated as the median of the data resulting from Eq. 3.8) for problems of each type.
Higher numbers indicate better solution quality.

Four algorithms—COBYLA, SUBPLEX, DIRECT and CRS—produce relatively better
solutions, on average, when solving sizing problems. Among these four, however, the
Kruskal-Wallis test gives pr, < 0.05 only for COBYLA and DIRECT; the difference
in performance for the other two algorithms is deemed statistically insignificant. NEL-
MEAD and BOBYQA both generate significantly better solutions for geometry problems
(prw = 0.014 and 0.029, respectively).

The figure shows only median performance values, and is therefore a low-information
representation of the underlying data ranges. §C.2 in Appendix C plots the full ranges
behind these median data for this and for the following sections®. These additional plots
enhance understanding of the variation in performance. In this case, they show that
NEL-MEAD, PR-AXIS, and CRS, have significantly more downside for sizing problems
than they do for geometry problems, while the opposite is true of COBYLA (Fig. C.3).

Median # Median #
analysis calls analysis calls
BOBYQA 1.00 1.00 BOBYQA

COBYLA 1.00 | ® ®11.00 COBYLA

PR-AXIS0.8l fe——— o1 0.79 PR-AXIS
NEL-MEAD 0.73 .——____. 0.70 NEL-MEAD

CRSO24fe— |, .0 CRs

DIRECT 0.00 0.00 ISRES

SUBPLEX 0.00 | e——e{ 0.00 SUBPLEX ISRES 0.00 L&=———®| 000 DIRECT
Geometry Sizing Geometry Sizing
Problem type Problem type
(a) Local algorithms (b) Global algorithms

Figure 5.12 — The median normalized number of simulation calls (a measure of average
computational cost) does not vary greatly across these problem types. Fig. C.3 shows the
ranges of values behind these medians. Higher numbers indicate fewer calls to the analysis
software (better computational cost), following the normalization strategy of Eq. 3.8.

Fig. 5.12 shows that the nature of the design variables is not an important predictor
of computational cost—these plots, and hypothesis testing (pi, > 0.05 in all cases),
show insufficient evidence to reject the null hypothesis that problem type and normalized
number of analysis calls are not associated.

5Distributions around median values, however, are considered here as part of the Kruskal-Wallis
hypothesis testing.
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In summary, the quality of solutions produced by algorithms varies somewhat with the
nature of design variables, but the incurred computational cost does not. We should take
care to remember, of course, that any identified associations tell us little about the true
causes of performance variation; changes in any number of other problem features may
be responsible for the observed effects.

5.3.2 Does algorithm performance vary with the type of objec-
tive function?

This analysis is similar to the previous one, except problems are now binarily classified by
the nature of the objective function. As discussed in Chapter 3, all problems seek either
the lightest or the stiffest solution; their respective objective types are denoted ‘mass’ or
‘stiffness’ here.

The variation in median normalized performance measures is more dramatic than that
observed in the previous section. Fig. 5.13 shows that all algorithms apart from CRS
have worse median normalized outcomes for stiffness problems than they do for mass
problems. Kruskal-Wallis tests show sufficient evidence to support the visual trends in

median objective value; the hypothesis of different average values is rejected only for
COBYLA, PR-AXIS, and ISRES®.

Median normalized
solution quality

COBYLA 1.00
NEL-MEAD 0197 [2 #1100 COBYLA
SUBETEX 822 0.90 NEL-MEAD
PR-AXIS 084
DIRECT 0.80 |
. ; 10.61 PR-AXIS
Figure 5.13 - All algorithms other than CRS pro- S L *1 0.56 SUBPLEX
duce worse median solutions for stiffness maximiza- 0.47 DIRECT
‘ v ISRES 0.43 | = 0.42 BOBYQA
tion problems than for mass minimization ones.
0.17 ISRES
Mass Stiffness

Objective type

Several algorithms have significantly different median computational costs across these
problem categories (Fig. 5.14). Global algorithms make relatively more analysis software
calls in their six hour time limit on stiffness problems than on mass problems. The analysis

6Although the differences in PR-AXIS’s and ISRES’s median normalized objective values are large,
the sizeable variation in the underlying data prevents the statistical test from showing a significant effect
(Appendix C, Fig. C.4).
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software-based objective and constraint functions in the stiffness problems are, in general,
computationally lighter than those on the mass problems, especially when problems rely
on geometrically nonlinear analyses which tend to converge quicker as displacements de-
crease. This allows the global algorithms to make relatively more analysis calls in a fixed
period of time. The local algorithms (except for SUBPLEX) converge more quickly on
stiffness problems.

Median # Median #
analysis calls analysis calls
BOBYQA 1.00 | &——a{ 1.00 BOBYQA
COBYLA 1.00 1.00 COBYLA
0.88 PR-AXIS

0.76 NEL-MEAD

NEL-MEAD 0.56

PR-AXIS 0.50 CRS 0.47
- 0.01 CRS
SUBPLEX 0.05 fe— DIRECT 0.03 i
I . 0.00 ISRES
0.00 SUBPLEX SRES 0.01 0.00 DIRECT
Mass Stiffness Mass Stiffness
Objective type Objective type
(a) Local algorithms (b) Global algorithms

Figure 5.14 — All local algorithms other than SUBPLEX show a relative decrease in
incurred computational cost. The less expensive structural analyses used in stiffness prob-
lems allows the global algorithms to make relatively more analysis software calls. The
benefit in solution quality is realized only by CRS, however (Fig. 5.13).

In summary, the type of objective function is an important predictor of solution quality
for five of the eight algorithms, and of computational cost for many algorithms. As with
the previous section, the ranges of performance values behind these medians are shown
in Appendix C (Fig. C.4).

5.3.3 How does algorithm performance vary with the number
of design variables?

The number of design variables is often used in optimization texts and studies as a char-
acteristic for selecting algorithms, motivating an investigation of its role here even though
it is not one of the primary problem features (§3.1).

The number of design variables per problem, however, does not vary greatly in this study;
observed values instead fall into a small, finite set. Recognizing this, Figs. 5.15 and C.1
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eschew the standard scatterplot used to examine correlations of this nature, and instead
plot only an algorithm’s median performance across all problems with a given number of
design variables, with error bars extending to the 25" and 75" quantiles. The Spearman
correlation coefficients (cs) and pg-values shown in the sub-captions are calculated over
the entire range of each algorithm’s performance measures—not over the median values
alone.

The plots and Spearman values show statistically significant, although far from perfectly
monotone, correlations. As the number of design variables increases, all the local algo-
rithms, apart from NEL-MEAD and SUBPLEX (ps; < 0.05), produce better solutions.
Two of the global algorithms—DIRECT and CRS—by contrast, produce progressively
worse solutions when dealing with more design variables. Given the exhaustive manner
in which the global algorithms search the design space, and their known difficulty in
maintaining performance as problem dimensionality increases, this is not surprising,.
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Figure 5.15 — All algorithms, apart from NEL-MEAD, SUBPLEX, and ISRES, show
a statistically significant association between median solution quality and the number of
design variables. The local algorithms (especially COBYLA, BOBQYA, and PR-AXIS)
perform relatively better as the number of design variables increases; the global algo-
rithms perform relatively worse. ¢; values indicate the direction and the strength of rank
correlation, and pg tests the hypothesis that ¢ is significantly different from zero.

112



5.3. ASSOCIATION BETWEEN PROBLEM FEATURES AND ALGORITHM
PERFORMANCE

Correlations between normalized computational cost and the number of design variables
are not as strong; they are significant for only two of the eight algorithms. The relevant
visualizations and statistical measures are shown in Appendix C, Fig. C.1.

5.3.4 Does the degree of constraint affect algorithm perfor-
mance”?

The degree of constraint is another mathematical feature likely to play an important
role in determining algorithm performance. It is, however, a difficult attribute to define
concretely, since different constraints may have quite distinct effects on the mathematical
nature of the design space. To address this, we propose two measures of a problem’s degree
of constraint, and look for algorithm performance trends across both. These measures
are: the integer number of constraints, without regard to their type, and the categories
of constraint present.

(a) The integer number of constraints, without regard to their type

Figs. 5.16 and 5.17 plot normalized algorithm performance against the number of con-
straints for each algorithm; captions note the Spearman rank correlation coeflicients and
p-values. As in the previous section, the figures show median performance for a given num-
ber of constraints, with bars extending to the 25" and 75% percentiles of performance
ranges.

Considering the relationship between the integer number of constraints and algorithm
performance, the five local algorithms appear to find relatively better solutions for less-
constrained problems (Fig. 5.16). Spearman rank correlation testing, however, rejects
these associations for all algorithms other than SUBPLEX (which generally performs
better on more-constrained problems. The global algorithms, on the other hand, have
negative c, values, suggesting that their solutions become worse as problems become more
constrained. Again, p, values reject this hypothesis for DIRECT and CRS; only ISRES
(ce = —0.23, ps = 0.002) has a supportable trend of worse solutions for constrained
problems.

Strong associations emerge more often in the plots of normalized number of analysis calls
against the number of constraints (Fig. 5.17), as confirmed by p,-values of less than 0.05
for all algorithms except BOBYQA and NEL-MEAD.

The local algorithms—especially COBYLA and PR-AXIS—require relatively more anal-
ysis software calls to converge as problems become increasingly constrained, perhaps due
to increased problem complexity. (SUBPLEX, however, shows the opposite trend.) The
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Figure 5.16 — The number of constraints is not significantly correlated with normalized
objective value for any algorithm except SUBPLEX (whose solution quality improves with

the number of constraints) and ISRES (which displays the opposite trend).

global algorithms all make fewer analysis calls in a fixed time period as the degree of
constraint increases. The most likely cause of this is the increased computational cost per
design iteration of evaluating more constraints.

(b) The types of constraint present

The experimental design contains three types of constraint, defined by the physical prop-
erty being constrained—stiffness (.9), displacement (D), and mass (M). The experimental
design constrains each problem with one of six possible combinations of these types—D
only; D and S; M only; M and S; M and D; and M, S, and D. Figs. 5.18 and 5.19
examine how algorithm performance varies across problems constrained in each of these
six ways. When evaluating performance trends, one should note that problems with the
categories D and D+ S (plotted on the extreme left of Figs. 5.18 and 5.19) have minimum
mass as their objective, and problems in the other four constraint categories have maxi-
mumn stiffness as their objective. These plots, therefore, simultaneously show performance
variation across constraint categories and across objective types.
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Figure 5.17 — The number of constraints correlates with normalized computational cost
for all algorithms except BOBYQA and NEL-MEAD. Local algorithms make more analysis
calls on increasingly-constrained problems, and global algorithms can make fewer analysis
calls in a fixed period as the number of constraints and, hence, the computational cost of
a design iteration increases.

The variation in normalized objective attained across constraint categories is statistically
significant (pg, < 0.05) for all algorithms apart from COBYLA, which performs well, on
average, regardless of the categories of constraint. SUBPLEX is the only algorithm that
shows dramatically better performance as constraint categories are added, and ISRES is
the only one to strongly show the opposite trend; both of these interpretations match our
expectations given the similar associations between the number of constraints and these
algorithms’ performance.

The plots of median computational cost across constraint categories show statistically
significant variation for all algorithms (Fig. 5.18), largely due to low variation around the
observed medians (shown in Fig. C.5’s plots of the underlying data ranges).

In summary, the degree of constraint—whether measured as the integer number of con-
straints or the constraint categories present—is a more significant predictor of computa-
tional cost than of solution quality. All algorithms, apart from CRS and ISRES (although
the latter’s trends are not always statistically significant), require more analysis calls to
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converge on highly-constrained problems. The higher computational cost is likely due to
the complexity of increasingly-constrained design spaces.
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Figure 5.18 - Comparing median normalized objective values across problems categorized
by the types of constraints present shows significant performance variation for some algo-
rithms. Others perform consistently regardless of the constraint types present. Figs. C.6
and C.5 expose the data ranges behind these medians.

Median norm # Median norm #
analysis calls analysis calls
BOBYQA
COBYLA o u
PR-AXIS / 7\
NEL-MEAD \
\ ro
\ 1o\
\ / \
v \
v ! \
\ ! \
A \{ ISRES
i . CRS
0 \Q_ —¢ — ¢ - 4 _q SUBPLEX @ ¥ -HDIRECT
Q & P S < Q > Q Q
N ¥ AN S
& &
Types of constraint present Types of constraint present
(a) Local algorithms (b) Global algorithms

Figure 5.19 - Comparing median normalized analysis software calls across problems
categorized by the types of constraints present shows significant performance variation for
some algorithms. Others perform consistently, regardless of the constraint types present.
Figs. C.6 and C.5 expose the data ranges behind these median values.
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5.3.5 Do algorithms perform differently across different struc-
tural types?

Each optimization problem is based on a structure which falls into one of six categories—
trussed arches, basket-handle arches, cable-stayed bridges, girder bridges, suspension
bridges, and Warren trusses. This section explores algorithms’ solution quality on prob-
lems across these six structural types. Fig. 5.20 plots the algorithms’ median normalized
solution quality. Appendix C.1 does the same for performance measured in terms of com-
putational cost (Fig. C.2), and Appendix C.2 show data ranges behind these medians
(Figs. C.7 and C.8).

Solution quality varies widely across structural types, with only CRS, NEL-MEAD, and
COBYLA performing relatively consistently (Fig. 5.20). The median number of analysis
calls made by algorithms in solving problems of each structural type varies less (Fig. C.2).
Prw < 0.05 for all algorithms on both performance measures, indicating that structural
type is strongly associated with an algorithm’s average performance.
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Figure 5.20 - The median normalized solution quality for each algorithm varies across
the six structural types, and all algorithms have at least one type for which their median
performance is unusually poor. COBYLA, NEL-MEAD, and CRS are the most consistent.
(See Fig. C.7 for numerical ranges behind these medians.)

The major performance trends, arranged by structural type, are:

Trussed arches There is a dramatic difference between the local and the global algo-
rithms on the trussed arch problems. The global algorithms, especially DIRECT
and ISRES, find poor solutions on average—much worse than even the worst of the
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local algorithms. In light of the trends observed in previous sections, this makes
sense. The trussed arches have the greatest number of design variables and—due to
their large numbers of elements—the most stress constraints of any structural type.
Global algorithms appear to perform poorly on problems with many variables and
high-dimensional, extensive search spaces; their population-based approach requires
very many analysis software calls to successfully search these larger design spaces,
which they are unable to do in the allotted six hours.

Basket-handle arches The basket-handle arch problems have relatively few design vari-
ables and reasonably well-behaved design spaces. The fairly consistent solution
quality across many algorithms is therefore unsurprising”. Although DIRECT ap-
pears to encounter difficulty, the other two global algorithms perform well in these
relatively small design spaces, where their population-based approaches are effective.

Cable-stayed bridges A primary characteristic of the cable-stayed bridges is the
computationally-expensive, geometrically nonlinear structural analyses that must
be run for each design iteration. This creates difficulty for the global algorithms,
which accordingly make fewer analysis software calls in their allotted time and attain
lower-quality solutions. This is particularly true of ISRES.

Girder bridges The girder bridges are an unusual group of problems in terms of their
performance trends. Local algorithms that otherwise generate good solutions, in-
cluding COBYLA and NEL-MEAD, fail to do so here. Instead, the global algorithms
all achieve the best median solutions, although they require very many analysis calls
to produce them. The girder bridges, despite their physical simplicity, have rela-
tively complex design spaces with many local optima. These local optima are the
most likely cause of difficulty for the local algorithms, but they pose less of a prob-
lem for the global algorithms. Given the small size of the design space (the problems
have only three sizing variables) and light computational load during analysis, the
global algorithms can explore very many solutions in their six hour time limit.

Suspension bridges As with cable-stayed bridge problems, ISRES is by far the worst
performer here. CRS and COBYLA produce the best average results, although CRS
requires many more analysis calls to do so. SUBPLEX and NEL-MEAD produce a
range of designs likely to be acceptable in many scenarios, and consume relatively
few resources in doing so.

Warren trusses The overall variation in the range of solution qualities is very large for
the 118 Warren truss-based optimization problems; only NEL-MEAD and COBYLA
have reasonably restricted ranges of solution quality. Although CRS has the best

"BOBYQA’s and PR-AXIS’s poor solution quality is likely due to a propensity to converge quickly
on low-quality local optima (Fig. C.2). SUBPLEX, which takes much longer to converge, produces good
solutions on average
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median solution quality, it shows significant downside by otherwise producing sub-
optimal designs.

In summary, there is a strong association between structural type and the quality of
solutions; every algorithm’s median objective values vary significantly. Although some
algorithms are more consistent than others, they all find unusually poor solutions within
at least one of the structural types. The median number of analysis calls is less variable
(Fig. C.2), but the investigations show that structural typc is still an important predictor
of computational cost.

5.3.6 Summary and discussion of observed trends

This section set out to answer the dissertation’s second research question: “Do correlations
exist between problem features and algorithm performance?” In doing so, the previous five
sections present a set of important trends in algorithm performance, showing that some
problem features are more closely associated with performance than others.

Although the nature of the design variables shows some association with algorithms’
solution quality, the type of objective function turns out to be a much more significant
high-level predictor of both solution quality and computational cost (§5.3.1 and §5.3.2).
Algorithm performance also varies significantly across structural type, with even the best-
performing algorithms exhibiting markedly poor performance on at least one structural

type (§5.3.5).

Increasing numbers of design variables are generally associated with relatively better
solutions for local algorithms, and with relatively worse solutions for global algorithms
(85.3.3). The problems’ degree of constraint does not show such close association with
solution quality, although increasingly-constrained problems require all but one of the local
algorithms to consume more computational resources, and limit the number of analysis
calls which global algorithms can make (§5.3.4).

Overall, however, it is clear that there are no independent, linear correlations between
these important featurcs and algorithm performance. Although the trends stated in the
chapter are supported by rigorous statistical testing, the somewhat low correlation factors
and the large variations around many of the median values (Appendix C.2) means that
any recommendations based on these trends are approximate. In reality, the relationships
between features of design problems and the performance of algorithms are likely to be
nonlinear, complex, and interdependent. Manually exploring all possible nonlinearities
and combinations of features in the style adopted here is infeasible, and the problem
should be addressed with more complex predictive methods. This is the approach taken
in Chapter 6.
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Nevertheless, the data investigations in this section are an important first step to under-
standing the trends in the data and to addressing the algorithm selection problem. We
conclude the chapter by summarizing the major trends in performance for each algorithm;
these summaries can be used to broadly guide engineers’ choice of algorithms in practice.

1. COBYLA

Constrained Optimization by Linear Approximation [Powell, 199/]

COBYLA fits linear approximations via a simplex of size n+1 to the n-dimensional design
space, optimizes over these approximations within a trust region, and then successively
refits the approximation based on the observed error. This strategy allows the algorithm
to progress quickly through the design space, but may lead it to converge on local optima
in non-convex design spaces.

It is the most consistent performer in solving the optimization problems in this study;,
finding the best solution to over a third of the problems, and a solution within 5% of
the best answer in 78% of cases. It is less frequently the quickest to converge, but its

number of analysis software calls is close to being the lowest in roughly a quarter of cases
(Figs. 5.4 and 5.5).

That said, closer inspection of the data demonstrates that COBYLA is not always the
best choice. It is outperformed on several classes of problem, most clearly on the girder
bridges, whose design spaces contain many poor-quality, locally-optimal solutions. Its
performance in solving the problems based on Warren truss and suspension bridges is
also variable (Figs. C.7 and C.8). On those problems where COBYLA performs poorly, it
often makes relatively few analysis calls. This may indicate a tendency to quickly converge
on locally optimal, but globally sub-optimal, answers (Fig. 5.10a).

2. BOBYQA

Bounded Optimization by Quadratic Approzimation [Powell, 2009]

BOBYQA has a similar strategy to COBYLA, a key difference being the quadratic nature
of its successive design space approximations. These quadratic approximations can, of
course, lead to large approximation errors in cases where the design space is not twice-
differentiable.

Its most notable performance feature is its frequent light use of computational resources;
it makes the fewest analysis calls among all algorithms in 70% of cases. The price of
choosing an algorithm with such fast convergence times for these problems, however, is
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the poor quality of its solutions. BOBYQA'’s design is within 5% of the best only 10% of
the time (Figs. 5.4 and 5.5). Indeed, BOBYQA very frequently converges quickly on local
optima which represent poor solutions to the posed problems (Fig. 5.10b). BOBYQA is,
in a a scnse, a very high-risk choice. On certain problems, such as the trussed arches or
suspension bridges, it delivers high-quality outcomes while making very few analysis calls.
Much more often, however, it produces poor ones.

The difference in BOBYQA’s solution quality distribution is significant when comparing
mass minimization to stiffness maximization and geometry optimization to sizing; the
algorithm’s range of outcomes is significantly better for mass minimization problems and
for geometry optimization (Figs. 5.11 and 5.13). Despite these occasional positive trends,
BOBYQA does not dominate other algorithms on any of the groupings of problems ex-
amined in the chapter.

3. NEL-MEAD

Nelder-Mead Simplex [Nelder and Mead, 1965]

NEL-MEAD progresses by moving a simplex of size n+1 through the n-dimensional design
space via a series of reflections, expansions, and contractions. This is a slower process
than the previous two algorithms, but one that is less likely to fall victim to sub-optimal
local peaks in non-convex design spaces.

Although rarely the very best algorithm in terms of solution quality or computational
cost, NEL-MEAD performs consistently well across problems; its overall range of solution
quality is, arguably, second only to COBYLA’s and it usually makes relatively few analysis
calls (Figs. 5.8 and 5.9). It finds solutions within 5% of the best for 60% of the the
problems, and its ranges of outcomes are among the best for trussed arch problems,
Warren truss problems, and, to a lesser extent, basket-handle arch problems (Figs. 5.5

and C.7).

Relative to COBYLA and BOBYQA, NEL-MEAD often takes longer to converge on
problems where it finds particularly good solutions than on problems where it finds bad
ones (5.10c¢), which may be a result of the simplex strategy’s ability to avoid local optima.
An engineer’s patience when using NEL-MEAD is therefore more likely to be rewarded
with a high-quality solution.

4. SUBPLEX

Subplez algorithm [Rowan, 1990]
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SUBPLEX is similar to NEL-MEAD, implementing the original NEL-MEAD approach on
a sequence of subspaces. Despite a priori expectations, SUBPLEX does not, on average,
converge more quickly than NEL-MEAD. In fact, the study showed SUBPLEX to be
almost always the slowest of the local algorithms to converge. Furthermore, the range of
results it produces is worse than NEL-MEAD’s, although it does, on occasion, find the
best solution among all algorithms (Figs. 5.5 and 5.9).

SUBPLEX generally produces better solutions for mass minimization problems than for
stiffness maximization problems (Fig. C.4a) and, when problems are segmented by the
underlying structural type, SUBPLEX exhibits notably good performance on basket-
handle arch and, to a lesser extent, suspension bridge problems. It makes relatively fewer
analysis calls for trussed arch and suspension bridge problems, and finds better solutions
to increasingly-constrained problems. On many of the problems where SUBPEX does not
perform well, it also takes a long time to converge (Fig. 5.10d).

5. PR-AXIS

Principal Azis method [Brent, 2002]

PR-AXIS is, essentially, an adaptation of the well-known Conjugate Gradient Descent
method. Like SUBPLEX, PR-AXIS frequently makes very many analysis calls to arrive
at a relatively poor solution (Fig. 5.10e).

It exhibits a middling overall performance in terms of the quality of its design outcomes,
although it is fairly often close to the best solution for mass minimization problems. It
generally performs much worse on the stiffness maximization problems, however (Figs. 5.5
and 5.11). When problems are segmented by the underlying structural type, PR-AXIS is
relatively strong on Warren truss problems, and notably weak on girder bridge problems.

6. DIRECT

Dividing Rectangles Method [Jones et al., 1995]

Overall, DIRECT is one of the least effective, and among the least efficient, of the algo-
rithms (Figs. 5.5 and 5.9). It comes very close to finding the best solution for all girder
bridge problems (Fig. C.7), however, and its range of performance measures on the other
problems includes some occasional good solutions. Its quality on sizing problems exceeds
that on geometry problems.

A challenge for an algorithm selection scheme using DIRECT would be to identify prob-
lems that correspond to the 9% of these problems where DIRECT comes within 5% of
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the best answer.

7. CRS

Controlled Random Search [Kaelo and Ali, 2006]

CRS is a variant on the classic genetic algorithm. It most frequently finds the best solution
and could, in this way, be considered a better algorithm than COBYLA. But its frequent
strong performance is accompanied by a downside: on those problems where it is not the
best, CRS is not within the top 5% of performers nearly as often as COBYLA, and its
population-based approach requires many more analysis calls to produce such good results
(Figs. 5.4 and 5.5). CRS is, in a sense, a high-risk choice. Using it all the time may lead
to a set of designs containing the greatest number of ‘optimal’ solutions, but the downside
associated with those instances where CRS is not the best algorithm is significant.

Interestingly, CRS performs much better, on average, on stiffness maximization problems
than on mass minimization ones (Figs. 5.11 and C.3a). Among these mass minimiza-
tion problems, CRS performs very badly on problems that have constraints on nodal
displacement only. When stress constraints on every element are introduced, CRS’s
performance appears to improve. On problems with low-dimensional design spaces and
computationally-inexpensive structural analyses, such as girders and basket-handle arches,
CRS produces the best range of solutions (Fig. C.7).

8. ISRES

Improved Stochastic Ranking Evolution Strategy [Runarsson and Yao, 2005]

ISRES has a similar (population-based) computational strategy to CRS, and accordingly
makes very many analysis calls. The average quality of its solutions is not as good as
CRS’s, although there are plenty of occasions when it does outperform CRS and the other
algorithms (Fig. 5.9).

Like DIRECT, ISRES finds unusually good solutions for girder bridge problems; its solu-
tions to the Warren truss and trussed arch problems are also, on average, of high quality

(Fig. C.7).
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5.4 Chapter summary

Using data visualizations and statistical tests, this chapter first presents overall trends in
algorithm performance across problems, and then characterizes the association between
important problem features and performance. The chapter’s latter sections, §5.2 and §5.3,
each answer one of the dissertation’s principal research questions.

§5.2 confirms the assertions made in the first chapter regarding the importance of the
algorithm selection problem. No single algorithm outperforms all others, performance
varies significantly across types of problems and across algorithms, and there is significant
benefit, in terms of solution quality and required computational cost, to choosing the
right algorithm. This section also improves upon a key limitation of much of the existing
literature. By showing the performance of algorithms with their default parameters on
a wide range of problems, we present a clear picture of optimization’s promising, but
variable, potential to improve design outcomes and processes.

§5.3 examines correlations between features of the design problems and each algorithm’s
performance on those problems, and summarizes the major trends. This understanding of
performance variation across realistic design problems is an important first step in guiding
engineers’ choice of algorithms, fulfilling an identified need in bringing optimization closer
to practical design. The relationships between features and performance are complex and
interdependent, however, motivating the next chapter’s study of automated algorithm
selection using sophisticated statistical techniques.
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Chapter 6

Techniques for automatic selection of
algorithms

Chapter 5's exploration of algorithm performance trends builds intuition and understand-
ing, but is limited in a number ways. Although a useful step in providing guidance to
engineers using optimization in design, its approach requires designers to carefully as-
similate its lessons before it can beneficially impact the field; this may be an unrealistic
expectation. Furthermore, the previous two chapters showed the complexity of the al-
gorithm selection problem. Design spaces are complicated, different algorithms producc
very different solutions, and the associations between problem features and algorithm
performance are nonlinear, interdependent, and not easily reduced to a simple set of
guidelines.

These considerations motivate this chapter’s research goal: the development of com-
putational techniques to automatically select the best algorithm for a given structural
optimization problem. The chapter answers the dissertation’s third, and final research
question: “Can we create a system to automatically select good optimization algorithms
for design problems?”

Chapter 2 reviewed the algorithm selection literature from optimization and from other
computational fields, noting that the problem is usually approached with machine
learning-based classification. The work we present is developed with those precedents
in mind, but is uniquely adapted to the problem at hand. §2.2.3 identified a tendency in
the literature to evaluate selection systems based only on intermediate results such as the
frequency with which a system selects the best algorithm. We therefore take care to go
beyond such measures and examine the impact on the design process in terms of solution
quality and computational cost.

§6.1 describes two distinct formulations of the problem, and the machine learning methods
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used to implement them. All the algorithm selection techniques are built using Chapter
3’s data set; they draw on trends and insights from Chapter 5 and on precedents from
the literature. §6.2 evaluates the selection techniques, first in terms of how often they
select the best algorithm, and then in terms of their impact on design outcomes and
computation times. The former is, ultimately, more important to designers in practice.

Compared to the previous chapter, the focus of the work now shifts from understanding
and explaining why algorithm performance varies towards developing reliable techniques
to automatically recommend algorithms, regardless of the transparency of their decision
methodology. As long as their predictive power is strong, algorithm selection techniques
will not be penalized for opacity.

6.1 Algorithm selection methods

Algorithm selection is formulated as both a pattern classification problem and a regres-
sion one, described separately in §6.1.1 and §6.1.2. In both approaches, the goal is to
recommend the algorithm a; that is, in some sense, best for the j*" optimization problem.

This section presents the two general formulations, the specifics of the statistical methods
used to implement them, and some data pre-processing operations. Several methods of
evaluation and a presentation of results appear in §6.2.

We first identify a few relevant terms and concepts.

Terminology and notation

Each optimization problem is characterized by a vector of explanatory variables, Z, consist-
ing of the primary features in §3.1’s experimental design—structural type, span, height-to-
span ratio, objective type, and nature of the design variables—and some of the secondary
features identified in the same section—number of design variables, number of stress con-
straints, number of displacement constraints, and number of mass constraints.

The dependent quantity being predicted is termed the response variable. The ultimate
goal is always to predict the best algorithm for a given problem, so the response variable
must be an element of the set A = {COBYLA, BOBYQA, NEL-MEAD, SUBPLEX,
PR-AXIS, DIRECT, CRS, ISRES}. The true best algorithm for problem j is denoted aj,
while the predicted best algorithm is denoted aj.

The second of the two problem formulations uses nonlinear regression to predict an al-
gorithm’s performance on a problem, and uses these intermediate predictions to choose
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the best algorithm. Under this formulation, the intermediate response variable—the pre-
dicted performance of algorithm a on problem j—is denoted g(a);, and is compared to
the true performance of algorithm a on problem j, y(a);. y can refer to either solution
quality or computational cost, and subscripts distinguish the two performance measures
where necessary—y, for solution quality (objective value) and y,. for computational cost
(number of analysis software calls).

The data, in which each optimization problem is represented by a vector of explanatory
variables and a response variable, are split into training and test sets. The training data
are used to build and tune algorithm selection techniques, and the test data are used to
evaluate the techniques’ predictive power.

The bias-variance tradeoff

All predictive statistical modeling of this nature should strike a balance between two po-
tential sources of error: bias and variance. The least complex methods of prediction, often
based on linear models, generally have high bias, with large differences between expected
response predictions and true responses across the training data. Such models, however,
have low variance, and make similar predictions for new data points across different re-
alizations of the model. Highly complex models may closely capture the structure of the
data on which they are trained, minimizing bias error, but exhibit high variance on new
test data. A good statistical model balances the two sources of error.

These somewhat abstract statistical concepts hold important lessons for the fitting of
predictive models. It is generally possible to closely, even perfectly, fit a model to the
training data by arbitrarily increasing the model’s complexity. Such low-bias models,
however, over-fit the data, have very high variance, and do not generalize well to new

o High Bias Low Bias
Prediction e High Variance
Error «— >

Figure 6.1 - Visualization
Test samgle of the bias-variance tradeoff

and the concept of over-fitting
(adapted from Hastie et al.
[2005]).

Training sample

Low High
Model Complexity
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data instances (Fig. 6.1). Strong performance on training data is no guarantee of future
performance and should not be exclusively pursued or used to promote a certain method.

All the methods used in the study are tuned to minimize test set error; a method’s
performance on training data is noted to ensure it does not become excessive, but does
not receive significant attention.

6.1.1 Classification formulation

Drawing on the experience of algorithm selection researchers in many other fields, the
problem is first formulated as one of pattern classification [Hastie et al., 2005; Smith-
Miles, 2008]. Pattern classification’s purpose is to develop a predictive method which can
assign new data observations (optimization problems) to one of a fixed set of classes.

A number of common machine learning classification algorithms, described below, are
used. All of them require data points to belong to a one class only. The eight algorithms
(83.2.1, listed in the set A above) are defined as the possible classes, and each of the 474
optimization problems is assigned to the algorithm that performs best when solving that
problem. In situations where two algorithms either produce the same solution or make
the same number of analysis calls, the other performance measure is used to break the
tie. There are no instances in the data of two algorithms producing the same solution
while making the same number of analysis calls.

A pattern classifier’s task is, therefore, to produce a mapping f: R™ ~ A, from the
training data, which predicts a single class label, or algorithm, for an optimization problem

(Eq. 6.1).

& =f(F); acdA FeR™ (6.1)

where aj is the predicted best algorithm for the 4" optimization problem, whose charac-
teristic features form the m-length vector of explanatory variables Z;.

Supervised machine learning methods for classification

The pattern classification problem is solved with six different supervised machine learning
algorithms: Binary Decision Tress, Ensemble Binary Trees, K-Nearest Neighbor Classifi-
cation, Artificial Neural Networks, Support Vector Classification, and Naive Bayes Clas-
sification. Hastie et al. [2005] provide a thorough review of their underlying theory and
of relevant statistical concepts.
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Unless otherwise stated, MATLAB®’s [2012] implementations of the machine learning
methods are used. Their output is sensitive to certain tuning parameters and inputs;
these are set manually, using a combination of literature recommendations, intuition, and
trial-and-error. The goal in doing so is always to improve predictive performance on the
test data; strong predictive performance on the training data usually follows. Details and
parameter values are noted in each method’s description below.

(a) Binary Decision Trees. We use Breiman et al.’s [1984] CART binary decision tree
algorithm to assign labels to problems. CART proceeds by identifying the value of
a single explanatory variable which binarily splits the training data into maximally-
dissimilar subsets based on assigned class labels, and recursively applies the same
procedure to these two subsets until the data can be split no further. Each node in
a CART tree contains a single rule which splits the data in two based on the value of
one explanatory variable. Terminal nodes are known as leaves; every optimization
problem lies in one leaf only, and every leaf is defined by a unique path—a set of
rules—through the tree. The resulting rules are then used to assign algorithms to
new problems.

Trees are grown using the Gini-Simpson diversity index to identify splits in the
explanatory variables [Caso and Angeles gil, 1988]. No lower bounds are enforced on
the number of observations in each leaf, resulting in deep, complex trees. To avoid
over-fitting, regions of these complex trees with comparatively poor classification
power are pruned (two child nodes are collapsed into their parents) to the level that
minimizes 10-fold cross-validation error on the training data [Hastie et al., 2005].

(b) Ensemble Binary Decision Trees. Ensemble methods, by aggregating the pre-
dictions of many individual classifiers, have been shown to improve classification
quality, especially in the case of decision trees. Two such methods of aggregation
are used here: Boosting, with the AdaBoost. M2 algorithm [Freund and Schapire,
1996), and Bootstrap Aggregating in the form of Breiman’s [2001] Random Forests
algorithm.

The implementation of AdaBoost.M2 first generates 100 binary decision trees in a
manner identical to the single tree described above, except that each leaf is forced
to contain at least five training observations. This increases cach tree’s bias, but
decreascs overall variance. The algorithm weights each tree’s predictions based
on mis-classifications during training, starting with all weights set to 1.0 and re-
weighting based on a tree’s success after each iteration.

The implementation of the Random Forests algorithm, which we expect to have
lower variance error and better predictive power than a single decision tree, combines
the predictions of 150 binary decision trees. Each tree is trained on a set of data
randomly sampled with replacement from the training set, using twelve randomly-
selected explanatory variables. The trees in this aggregation are trained in the same
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way as the single decision tree, with no restrictions on the number of observations
in a leaf.

(c) K-Nearest Neighbor Classification. K-Nearest Neighbor (KNN) classification is
one of the most easily-understood classification algorithms. A new observation is
classified in the same way as the majority of the K points closest to it in the train-
ing set. Ties in this majority vote are broken by random selection among equally-
supported candidates. The standard Euclidean measure is used to exhaustively
evaluate distances between observations (with MATLAB’s Ezhaustive Searcher al-
gorithm). To minimize the mis-classification of test data, K is set equal to 5 through
trial and error.

(d) Feed-Forward Artificial Neural Networks. We use a Feed-Forward Artificial
Neural Network (NN) with two hidden layers containing 20 neurons each. The
explanatory variables are first normalized and converted to their principal compo-
nent representation, later described in §6.1.3. Every neuron then applies a sigmoid
transfer function to each observation in the training data, and a weighted combina-
tion of each neuron’s output forms the input to the next neuron layer, in the case
of the first hidden layer, or forms the output layer, in the case of the second hidden
layer. The output layer has eight nodes, representing the eight possible algorithm
labels; new observations are classified according to the largest value among these
nodes.

The NN is trained on scaled and PCA-transformed data (detailed in §6.1.3) by
adjusting each neuron’s output weight and sigmoid function bias with Levenberg-
Marquardt backpropagation [Hagan and Menhaj, 1994]. The backpropagation’s
target is set as zero mean-squared error between predicted and true class labels.
We set a limit of 1000 on the number of epochs (iterations), a maximum allowable
number of validation failures (on the 15% of training data set aside for validation)
of 6, an initial p factor of 0.001 (with increase and decrease factors of 0.1 and

10 depending on whether each iteration improves or worsens performance), and
fhmaz =10 x 1010,

(e) Support Vector Classification. Support Vector Machines (SVMs), which can be
used for regression or classification, construct a series of maximally-separating hy-
perplanes between training observations. Support Vector Classifiers (SVCs) can
only make predictions of a binary nature, so the LIBSVM library’s implementa-
tion of the C-SVC one-against-all algorithm is used to train eight different binary
classifiers, each of which predicts whether the new observations belong to a given
class in A or not [Chang and Lin, 2011]. The class label with the strongest positive
prediction among the eight classifiers is assigned to a new observation.

Before constructing hyperplanes, a radial basis kernel of the form e~71&-?" maps the
vectors ¥ and ¥ away from the original variable space, increasing the likelihood of
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strong separation. Trial-and-error, with the goal of minimizing cross-validated test
error, suggests the setting of v = 0.125 in the kernel function and C = 2 in C-SVC’s
cost function.

All support vector machines are trained on scaled and PCA-transformed data

(§6.1.3).

(f) Naive Bayes classification. Naive Bayes classification uses Bayes’s theorem to
compute the posterior probability that an observation belongs to a given class.
The prior probabilities are computed as the sample frequency of each class in the
training set, and the likelihood is decomposed into a product of terms with a single
term for each explanatory variable.

This decomposition relies on the very strong assumption that explanatory vari-
ables are statistically independent within each class, which is almost certainly not
true in this case. Nonetheless, the empirically-demonstrated strong performance of
Naive Bayes in many situations with interdependent explanatory variables justify
the method’s inclusion here.

Given the explanatory variables’ often non-normal distributions, we use separate
kernel density estimates to model each one’s distribution. MATLAB assigns a nor-
mal kernel to each feature automatically, and computes kernel widths for features
internally.

6.1.2 Regression-based formulation

The classification approach presented in the previous section has an important limitation:
by considering a single ‘best’ algorithm for each optimization problem, it neglects the
reality that any problem can solve any algorithm. Algorithms do not simply succeed
or fail at solving a problem, and the difference between the best and the second-best
algorithm may be very small. Strict pattern classification discards a large amount of
available information in favor of a simplistic identification of the single best algorithm.

A selection technique which takes advantage of this additional information can predict
how cach algorithm will perform, and then select the best one. Although this may lead to
more recommendations of sub-optimal algorithms, the downside of such recommendations
should, intuitively, be reduced.

To achieve this, we fit a single regression to the natural logarithm of non-normalized
algorithm performance data, log(y), and include the algorithm itself as a categorical ex-
planatory variable a. Chapter 5 showed that log(y) has approximately normal distribution
for both solution quality and computational cost, which should make it casier to regress
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to than y. Using this approach, the a'® algorithm’s performance on the j* problem is
then predicted by (Eq. 6.2).

?)j = 9(E5.a) (6.2)

where g(Z;, a) is the mapping produced by regressing explanatory variables on log(y) with
one of the regression methods presented below. As previously noted, ¢ is an intermediate
response variable which can be used to predict the ultimate response, a*. The predicted
best algorithm for problem j, a}, is the one with the lowest g; (Eq. 6.3).

a; = arg(llrnin g5, a) (6.3)

Alternatively, this regression-based formulation can be used to recommend the set of
algorithms df* whose predicted performance on problem j lies within R% of the algorithm
with the best predicted performance (Eq. 6.4).

~ Rx “ RN . _ .,
€ fal iy o) < (1450 0.0 (6.4)

Regression methods

(a) Feed-Forward Artificial Neural Networks. The NN used for regression is sim-
ilar to the pattern classification one (§6.1.1), except that it contains only a single
hidden layer of 18 neurons and an output layer with one node, since the response
variable is, in this case, the single logarithm of algorithm performance rather than
eight class labels.

The same version of Levenberg-Marquardt backpropagation with the same tuning
parameters is used to minimize the network’s mean-squared prediction error, and
15% of the training data are used to validate performance.

(b) Support Vector Regression. The LIBSVM library’s implementation of Vapnik’s
e-Support Vector Regression (e-SVR) is also used to regress log(y) on the explana-
tory variables [Chang and Lin, 2011; Vapnik, 1999].

€-SVR, in this case, uses a radial basis kernel with v = 0.125 to transform the input
points, and aims to bound a prediction of log(y) to within a tolerance, ¢, of 0.1,
with as flat a function as possible. The cost parameter, C, is set by trial and error
to 2.0 in order to minimize mean-squared test error under 5-fold cross validation.
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(c) Generalized Linear Model. Generalized Linear Models (GLM) extend the con-
cept of standard linear regression by fitting a linear model to a transformation of
the response variable, transformed via a link function. GLMs also allow for assumed
probability distributions other than normal.

MATLAB’s Backward Feature Selection algorithm is used to progressively remove
terms from a full quadratic model, assuming a normal distribution for log(y).

(d) Regression Tree. Regression Trees operate similarly to the classification trees used
in the previous formulation. They recursively split the design space into maximally-
dissimilar regions, except dissimilarity is now measured in terms of the continuous
response variable rather than class labels. The implementation used here fits a
constant model to log(y) at each node.

6.1.3 Data pre-processing

Many of the machine learning algorithms used in both of these formulations do signifi-
cantly better when trained on pre-processed data. Three pre-processing operations are
used: dummy variable encoding of categorical variables, variable scaling, and explanatory
variable selection.

Dummy-variable encoding is used in all cases; the categorical nature of several explana-
tory variables (e.g., structural type, nature of design variables, and objective type, all of
which are inherently discrete), requires such encoding before the methods can be correctly
applied. The cases where variable scaling and feature selection are used, already detailed
in §6.1.1 and §6.1.2, are repeated in their descriptions below.

Dummy variable encoding

Three of the explanatory variables—structural type, objective type, and nature of the
design variables- are categorical (qualitative), taking on values in a fixed set. For ex-
ample, structural type, a six-level categorical variable, always takes a valuc in the set
{Trussed Arch, Basket-Handle Arch, Cable-Stayed Bridge, Girder, Suspension Bridge,
Warren Truss}.

Dummy variables are the most commonly-used encoding strategy for variables of this
nature [Hastie et al., 2005]. They represent a K-level categorical variable by a vector
of (K — 1) binary variables. Setting the i** variable to 1 means the categorical variable
takes on the i possible discrete value, and setting all variables to 0 means the categorical
variable takes on the K™ value. No more than onc dummy variable is set to 1 at a time.
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Applying dummy variable encoding to a K-level categorical variable therefore increases
the number of explanatory variables in the problem by (K — 2).

The encoding is applied to all categorical variables for all algorithm selection techniques,
leading to a vector of explanatory variables Z containing fourteen elements, the first eight
of which are binary (Eq. 6.5).

¥ = (Type=TrussedArch, Type=BasketHandleArch, Type=CableStayed, Type=Girder
Type=Suspension, Design Variables=Geometric, Objective=Stiffness, Span,
Height/Span, #design variables, #displacement constraints, #stress constraints,

#mass constraints)

(6.5)

Scaling of variables

The explanatory variables have very different numerical ranges. Observed values of bridge
span, for example, range from 50 m to 800 m, while the number of design variables never
exceeds 14. Such discrepancies can cause numerically-larger variables to dominate when
using certain methods. To avoid this, each explanatory variable, x, can be normalized to
have zero mean and unit variance according to Eq. 6.6.

Tip=—% Tk —1...N; k=1...e (6.6)

where py and oy are the mean and standard deviation of the k™ explanatory variable
calculated across all of N problems.

When using a system trained on scaled data to make predictions, the problem’s explana-
tory variables must first be scaled by the same uy and o4 used to scale the training data.
This is an important consideration in properly testing a selection technique’s performance
by cross-validation, described later in §6.2.

The data are normalized when using Neural Networks or Support Vector Machines in
either of the two problem formulations, and when using Generalized Linear Regression
for the regression-based formulation.
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Explanatory variable selection

Variable selection is the identification of the subset of explanatory variables which best
predict the response. This is achieved by successively removing low-information or con-
fusing explanatory variables, or by converting variables to a reduced form.

The latter approach, in the form of Principal Component Analysis (PCA), is adopted
before training Neural Networks and Support Vector Machines. PCA, although techni-
cally a transformation of the explanatory variables, nonethecless satisfies the same pur-
pose as straightforward variable selection. It converts the original variables into a set of
linearly-uncorrelated ones, ordered by their variance. This usually reduces the number of
variables, and it is not uncommon to then remove low-variance ones after transformation
[Jolliffe, 2002]. Even when the number of variables remains constant, PCA is effective in
transforming low-information explanatory variables to more useful ones.

As with normalization of variables, new problems’ explanatory variables must be trans-
formed by the same PCA operations used on the training data before any predictions are
made. When data are pre-processed using both variable scaling and PCA, normalization
is always performed first.

MATLAB’s processpca function is used to apply PCA, removing variables whose variance
is less than 0.01 after transformation.

The only other instance of programmatic feature selection is when fitting generalized linear
models {(GLMs) in the regression-based formulation. This approach, using MATLAB’s
Backward Feature Selection algorithm, was noted in the GLM section above (§6.1.2).

6.2 Evaluation and results

We first evaluate the results with the standard binary measure, where a selected algorithm
is deemed either a success or a failure depending on whether it is the true best. This is
the method most commonly used in classification theory, and is a useful intermediate
evaluation of the developed techniques. A custom solution gain measure is next used to
evaluate results, quantifying the overall decrease in algorithm performance compared to
an idealized perfect selector, which always chooses the best algorithm (§6.2.1).

§6.2.2 then directly quantifies the impact of the selection techniques on design outcomes,
evaluating the potential material and cost savings compared to traditional optimization.
In all cases, the developed selection techniques are compared to several manual algorithm
strategies which a designer might use.
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6.2.1 Success rates and solution gain

This section details the evaluation of binary success rates and of overall solution gain.
For each technique, we evaluate how well it generalizes to independent data using 10-fold
cross-validation [Hastie et al., 2005]. One round of K-fold cross-validation uses (100— K)%
of the data to train the selection technique, and tests how often this trained technique
selects the best algorithm for the remaining K% of the data. This is repeated K times
with different partitions, and the test data success rates for each are averaged.

For completeness, each selection technique’s training success rate—the rate at which it
selects the best algorithm for problems on which it is trained—is also reported, although
this measure is less important than cross-validated test success rate. As mentioned in §6.1,
high test success rates are easily achieved by arbitrarily increasing model complexity.

Binary success rates are widely reported in statistical research of this nature, and are
the dominant means of evaluation in the algorithm selection literature (Chapter 2). One
of the major limitations of a black-and-white measure of success, however, is the inabil-
ity to distinguish between algorithms that are narrowly outperformed and those whose
performance lags far behind the best. An algorithm selection system that infrequently
selects the best algorithm but is less likely to recommend a badly-performing one may be
preferred to a system with greater downside.

To address this limitation, we first express the performance of the chosen algorithm,
y;(a;), as a proportion of the true best algorithm’s performance on the ;™ problem,

y;(a}) (Eq. 6.7)".

y;(a;) — y;(aj)

=T @)

(6.7)

Higher values of C(a;) represent worse performance, in the form of worse solution quality
(less stiff or heavier designs) or more analysis software calls. These values are used in
calculating a cumulative gain measure G over the N4 test problems Eq. 6.8.

Niest

G = Z — 27150 (a,)1?) (6.8)

Because of the power term C(a;)! in the gain function, algorithms whose performance is
close to best contribute similarly to overall gain, and the minimum possible gain gradually

! As in the previous chapter, stiffness objective values (Eq. 3.2) are converted to maximum displacement
to enable meaningful calculation of magnitude relative to the best design.
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moves towards a lower bound of zero. As in the previous chapter (§5.2), any time an
algorithm’s performance is more than 200% worse than the best algorithm, the solution
is discarded. This is equivalent to placing an upper bound of 2.0 on the proportional
performance C(a;), limiting the incurred penalty for selecting a bad algorithm. Some
algorithms have solution qualities and computational costs which are orders of magnitude
worse than the best algorithm; removing outliers prevents their selection from dominating
the gain measure. Besides, engineers can generally predict the best solution quality within
an integer multiple or so (using material use plots such as Fig. 4.1}, so there is little point
in continuing to penalize a solution that uses over 200% more material than the best
answer and will almost certainly be discarded.

The gain function has little direct physical significance, and should be primarily used for
relative evaluation of algorithm selection techniques. A perfect technique, which always
finds the best-performing algorithm, has G = Nges. A technique whose selected algorithm
is always 10% worse than the best algorithm over Ni.s test problems has G = Nyeg x (1 —
2718 % 1.11%) = 0.592N;es, and the minimum possible gain over Nies problems is zero.

Baseline for evaluation: manual algorithm selection strategies

Understanding the real impact of this work requires a quantification of the current state
of algorithm selection in structural design. We define two ‘manual’ sclection strategies,
both representative of how a designer might choose an algorithm to solve a given problem,
and use their success rates and gain measures as baselines against which to compare the
developed selection techniques.

These two strategies are: constant use of a single algorithm, and choosing algorithms at
random based on a uniform probability distribution. For the first strategy, we use both
CRS (the most frequently top-ranked algorithm) and COBYLA (the most consistent
algorithm) for comparison when attempting to select the algorithm with the best solution
quality, and BOBYQA when selecting the computationally-lightest algorithm. This could
be argued as an unfairly-difficult baseline, since it makes use of posterior knowledge
from Chapter 5’s explorations, which a designer would not have conducted in advance.
Convincingly outperforming this strategy, therefore, should be ample evidence of success.

Results: success rates and gain measures

Table 6.1 shows each selection technique’s binary success rate (100% means the best-
performing algorithm is always selected) and gain measure, G (Eq. 6.8).

The left-hand data columns contain test results from 10-fold cross validation. Test suc-
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cess rates are averaged over the ten cross-validation sets, and test G-values are summed
over the same sets. Each test gain measure is therefore the sum of Ny, = 474 compo-
nents, each of which contributes no more than 1.0 to overall gain, for an upper bound of
Omaz = 474. Training results, shown in the right-hand column, reflect how well the tech-
niques fit the data on which they were trained, and are therefore less useful in evaluating
predictive power. They are included in Table 6.1 for completeness, but the remainder of
this discussion refers to test results only.

As expected, ‘manually’ selecting algorithms at random delivers the best-quality algorithm
in % = 12.5% of cases. (There are eight algorithms in the set of possible algorithms, A.)
Choosing the algorithm most frequently ranked best on all the problems—CRS—gives the
best solution in 40.0% of cases, and choosing the most consistent performer—COBYLA—
gives the best solution in 36.0% of cases. These values agree with the counts shown in
Fig. 5.4.

Table 6.1 — When seeking the algorithm that generates the best solution, the best de-
veloped technique is successful more than twice as often as manual selection strategies on
independent test data, and has a substantially higher cumulative gain value G.

Cross-validated

test data Training data

Algorithm selection technique

Binary Gain, G Binary Gain, G
success (%) (Eq. 6.8) || success (%) (Eq. 6.8)

Manual selection

Manual - random choice 12.5 275.2 12.5 292.4
Manual - always COBYLA 36.0 412.3 36.0 98.5
Manual - always CRS 40.0 322.4 40.0 277.7
Pattern Classification formulation

{a) Binary decision tree 73.2 434.3 79.3 442.6
{b) Boosted decision tree 71.1 435.0 99.8 461.8
(b) Random Forest 74.7 436.9 100.0 461.8
(c) K-nearest neighbor 70.6 433.1 77.5 440.7
(d) Artificial neural network 64.6 420.0 44.9 415.7
(e) Support vector classification 67.6 429.9 82.9 444.1
(f) Naive Bayes 61.4 422.8 62.9 429.4
Regression-based formulation

(a) Artificial neural network 22.7 160.9 32.0 167.8
(b) Support vector regression 54.2 3329 58.9 384.2
(c) Regression 'lree 63.9 413.1 84.2 420.2
(d) Generalized linear model 28.5 160.4 28.3 161.4
Best observed value 74.7 436.9 100.0 461.8
Improvement over manual selection 34.7 24.6 60.0 169.4
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Choosing COBYLA leads to dramatically higher solution gain G across the test data,
meaning that COBYLA’s solutions are, on average, closer to the best solution than CRS’s
or than the solutions generated by randomly-chosen algorithms. These values are the
baselines to which the selection techniques’ results should be compared.

Most pattern classification techniques comfortably outperform the manual selection
strategies; some choose the best algorithm almost twice as frequently. The explicit goal
of these techniques is to maximize this success rate, and such strong performance is wel-
come evidence of an exploitable mathematical relationship between the features of an
optimization problem and the identity of its best algorithm.

Of greater importance, of course, is the overall quality of the solutions, measure by G.
All the pattern classification techniques have higher solution gains than the best manual
strategy?, although some outperform it by relatively narrow margins. Naive Bayes clas-
sification, for example, selects the best algorithm much more often than the best manual
strategies, yet its overall solution gain is only slightly better. In the cases where it does
not select the best algorithm, therefore, Naive Bayes must be choosing algorithms which
produce quite poor solutions.

On the whole, however, the results indicate that algorithm selection using pattern classifi-
cation leads to better-quality solutions than manual strategies that represent the state of
optimization in practice today. These results are also a useful indicator of the disconnect
between frequently choosing the best algorithm and frequently producing good designs. A
selection technique’s usefulness is in part governed by the performance of its sub-optimal
choices.

Most of the regression-based approaches are much less impressive than the pattern clas-
sification ones in terms of binary success rate and solution gain. Their immediate goal,
of course, is to predict performance, so the lower binary success rates alone should not be
too alarming. Indeed, despite predicting the best algorithm only 63.9% of the time (much
less frequently than the pattern classification methods), the best of the regression-based
methods—the Regression Tree —still has substantially better solution gain G than man-
ual strategiecs. The downside-minimizing approach of the regression-based formulation
means that, on the frequent occasions when the Regression Tree does not select the best
algorithm, it selects one whose performance is not too far behind.

The other regression-based methods, however, perform much worse—in terms of the fre-
quency with which they select the best algorithm and the quality of the solutions those
algorithms produce—than simply using COBYLA or CRS for all problems. Despite this
poor performance, the highly promising results of the Regression Tree show the value of
approaching the algorithm problem with the proposed regression-based formulation.

2Kach problem’s contribution to G lies in the range [0, 1], so we can safely assume these measures
reflect overall solution quality and are not dominated by a single problem.
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All of the preceding discussion dealt only with selecting the algorithm that produces the
best solution, neglecting selection of the computationally-lightest algorithm. We consider
the speed of an algorithm to be less important than the quality of its output, and do not
examine these results in the same level of detail. They are instead tabulated in Appendix
D (Table D.1), and show comparable binary success rates to the design quality results
presented here. Table D.1 also shows how often a technique chooses an algorithm whose
required number of analysis calls is within 10% of the fastest algorithm.

6.2.2 Impact on bridge design quality

The gain measure G used to evaluate selection techniques in the previous section gives a
sense of the improvement in solution quality that results from replacing current manual
selection strategies with the developed selection techniques. This measure, however, is
somewhat arbitrarily defined and does not sufficiently quantify the design improvements
that result from using automated algorithm selection. This shortcoming occurs often in
the algorithm selection literature; researchers generally quantify how often their system
selects the best algorithm, but do not translate this to a tangible improvement in the
design process.

Here, we compare the solutions generated by automatically-selected algorithms to those
generated by ‘manually’-selected algorithms. To enhance the comparison’s relevance to
engineers, we now address the mass minimization problems only, to determine how much
material could be saved by using the developed techniques.

The outcomes for one of the best automated selection techniques—Boosted Binary De-
cision Trees—are compared to those for the best manual selection strategy of using
COBYLA every time. The 474 problems are randomly split into a 374-problem train-
ing set and a 100-problem test set. The boosted decision tree classifier is trained on
the training set and used to select the best algorithm for the 100 test problems. 35 of
these problems have mass as their objective function; Fig. 6.2 shows the reduction in
material used compared to the manually-generated starting points for both the predicted
algorithms and for COBYLA alone across the 35 problems. '

In twelve of the 35 cases, the classifier chooses an algorithm that produces a design of
the exact same mass as COBYLA. (The classifier is, of course, free to choose COBYLA.)
In five cases, the classifier’s chosen algorithm produces a worse solution than COBYLA,
using over twice as much material in one instance. (This instance, however, is an outlier;
on the four other occasions where COBYLA outperforms the classifier’s chosen algo-
rithm, COBYLA saves between 2% and 30% more material.) For the remaining eighteen
problems, the classifier chooses an algorithm that uses substantially less material than
COBYLA, and an average material reduction of 9.4% is observed (Fig. 6.2).

140



6.3. DISCUSSION

COBYLA only R
Algorithm selectio! TS
—100 —50 0 50 100

Change in material used
compared to starting design

Figure 6.2 — The amount of material used when algorithms are automatically chosen
decreases, on average, by 9.4%.

Using the developed classifier to select algorithms instead of the best-performing manual
strategy results in lighter solutions in a majority of cases, with average material savings

of 9.4%.

6.3 Discussion

The automatic algorithm selection techniques presented in this chapter achieve the stated
goal of outperforming manual algorithm selection, generating better solutions and reduc-
ing computation times. This directly addresses the need, motivated in the dissertation’s
first two chapters, to adapt optimization to the reality of practice by allowing non-experts
to reliably choose an appropriate algorithm for a given problem.

Even when evaluated against manual selection strategies based on posterior knowledge of
the dataset, the most promising of these techniques nearly doubles the rate at which the
absolute best algorithm was selected and substantially reduces a custom cumulative gain
measure across a range of optimization problems.

Considering only the mass minimization problems, one of the developed techniques re-
duces mass in over half the cases, and causes no increase in material use in a further 35% of
cases. In the remaining 15% of mass minimization problems, the selection system results
in a worse solution, but the average additional material reduction across the problems is
still 9.4%. This may seem small compared to some of the large inter-algorithm variations
observed in the dissertation. Consider, however, a 1000 m bridge design project, where
superstructure material costs could total $10M. A 9.4% material reduction in this case
translates to a saving of $940,000M, achieved through a process which frees engineers
from tedious, low-level design iterations.

Fully-automated algorithm selection based on machine learning, in contrast to the ped-
agogical approach of Chapter 5, is largely opaque. The machine learning methods are,
from the perspective of a typical system user, ‘black boxes’ which specify an algorithm
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without providing any domain-specific logic for doing so. Although this does not dimin-
ish the demonstrated results, it does warrant a consideration of the context in which an
automated selection system would be used. A designer encountering a poorly-performing
algorithm is likely to be far more frustrated if the algorithm was recommended by a
predictive system than if she chose it herself.

The results show that this is an entirely possible occurrence; even the best among the
selection techniques occasionally chooses an algorithm that produces a very poor solu-
tion. The techniques have been shown here to objectively outperform manual algorithm
selection but, in promoting them, we should remember that their reception among design
engineers will be based, in large part, on subjective assessments. This motivates future
investigation of methods to reduce their downside.
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Chapter 7

Conclusion

7.1 Review

The dissertation’s first chapters, having shown the potential of optimization to improve
design processes and outcomes, identify the choice of algorithm as an important part of
a structural optimization process. Chapter 2’s literature review shows the availability
of many algorithms for a wide variety of problems, and the dramatic effect of algorithm
selection on solution quality and computation time is demonstrated in an empirical study.
Despite its importance, the problem of appropriately selecting algorithms has received
little attention, reflecting a broader failure to adapt academically-developed optimization
methods to the realities of practical design. This situation motivates the dissertation’s
research goals, expressed in three clear questions:

¢ How do different optimization algorithms perform on a representative set of realistic
structural design problems?

e Do correlations exist between problem features and algorithm performance?

e Can we create a system to automatically select good optimization algorithms for

design problems?

Chapter 3 then describes the development of a computational method to specify, solve,
and record hundreds of structural optimization problems with a representative set of
algorithms; the scale of this task leads to the development of several novel computational
elements.

In answering the first two research questions, the generated data are explored in Chapters
4 and 5. The first of these shows the optimization results to be rational solutions to
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real-world problems, enhancing the practical applicability of the remainder of the work.
The second exposes high-level trends in algorithm performance, building comprehension
of the problem. Algorithms display a consistent pattern of design improvement, although
solution quality and computational cost depend strongly on the choice of algorithm and
on the problem at hand. Chapter 5 then identifies major correlations between problem
features and both solution quality and computational cost. The results section concludes
by recommending the problem categories on which particular types of algorithm should
be used.

In response to the third question, and to the perceived limitations of this recommendation-
based approach, the focus shifts in Chapter 6 from understanding performance trends to
developing black-box techniques to select algorithms. This allows sophisticated methods
to handle the demonstrated complexity of algorithm selection, and provides a practical
solution for immediate use in optimization-driven design. The developed techniques con-
vincingly outperform the current manual approaches to the problem, selecting the correct
algorithm much more frequently, improving structural designs, and reducing computation
times.

This final chapter specifies the key findings of the presented research and enumerates the
major contributions to the field (§7.2). It then progresses to discuss the work’s general
implications, noting its major advantages and limitations (§7.3). Finally, §7.4 outlines
future research that should be undertaken, focusing first on direct extensions of this
work, and then extending in scope to describe pressing challenges to widespread adoption
of optimization and the path towards next-generation software for structural design.

7.2 Key findings and contributions

7.2.1 Findings
Algorithm performance exploration

Chapter 5’s approach to algorithm selection is, in a sense, an educational one. To help
address the problem, it explores the major trends in performance, building intuition and
expertise about which algorithm should be used for a given class of problems. The chapter
identified several discernible trends, reviewed in its concluding paragraphs (§5.3.6).

No single algorithm is best across all problems, even when the criteria for success is relaxed
to performing within 5% of the best algorithm. There is, in short, no ‘silver bullet’
which works best in all cases. Algorithms generally improve on the starting designs,
although the extent to which each one does so depends on the problem being solved.
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Those that frequently produce the best solution sometimes produce the worst, and vice-
versa. Interpreted alongside the designs examined in Chapter 4, whose solution quality
can vary by orders of magnitude, this further underscores the need to choose algorithms
appropriately. In contrast to the general optimization literature, our results justify a more
cautious endorsement of the use of optimization in structural design.

The exploration of performance exposes scveral statistically significant and useful corre-
lations between algorithms’ performance and problem characteristics. Local algorithms,
for instance, achieve relatively better solutions than global ones as the number of design
variables increascs, although the computational cost of achieving these results becomes
higher. The presence of geometric design variables does not dramatically affect relative
algorithm performance, unlike the objective function type (mass or stiffness), which in-
fluences solution quality and computational cost.

Structural type is also strongly associated with solution quality and computation time;
each algorithm has at least one category of structure on which it performs dramatically
worse than the others. Most algorithms take relatively longer to converge as the num-
ber of constraints increases; this is probably due to the complexity of the increasingly-
constrained design spaces overwhelming their decreasing size. The degree of constraint,
however, does not correlate significantly with solution quality.

The studied range of problems—mass and stiffness optimization of six different bridge
superstructurcs—is a subset of those encountered in structural engineering, and the main
findings strictly apply to this subset only. Wolpert and Macready’s No Free Lunch theo-
rems for optimization, however, tell us that the strong performance of, say, COBYLA and
CRS on these problems will be balanced by relatively poor performance on some other set
of problems. There is every reason to believe that further investigations across different
types of structure will show different performance variations, supporting the conclusion
that no singe algorithm is always best.

Algorithm selection techniques

Chapter 6 successfully demonstrates automated algorithm selection for structural opti-
mization, achieving one of the dissertation’s key research goals. The chapter, after for-
mulating and implementing two approaches to the problem, shows that it is possible to
significantly outperform the best strategies for manual selection of algorithms. The de-
veloped techniques nearly double the frequency with which the best algorithm is selected,
dramatically improve a cumulative solution gain measure across test problems, and reduce
average material use by 9.4% on a set of mass-minimization problems. The system is also
capable of selecting the fastest algorithm, reducing computation times.

These results demonstrate the impact of the developed algorithm selection system on
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the practice of design. The system directly addresses a key barrier to optimization’s
use, providing an off-the-shelf solution to the algorithm selection problem that brings
engineering a step closer to improved, optimization-driven design.

The nature of structural design spaces

Chapter 4 examines the 3792 designs that result from solving 474 problems with eight
optimization algorithms. The amount of material used by the best solutions is in line
with existing structures, and most representative solutions chosen from clustered subsets
are rational. This verification of the results shows that the dissertation’s results are based
on realistic problems, and also gives insights into the nature of the studied design spaces.

Many of these design spaces have multiple local optima (solutions which cannot be im-
proved by very small design perturbations in any direction). Such non-convexity is to
be expected, given the nonlinear interactions between design variables and the resulting
physical behavior. Of greater interest is the difference in quality among these local op-
tima. In some cases, design spaces have very different locally-optimal solutions which
nonetheless use similar amounts of material. In other cases, however, two locally-optimal
designs may use very different amounts of material.

Local optimization methods, in the absence of certain modifications, do not distinguish
between local optima, converging on the first one they find. The results show that the
potential negative consequences of such convergence vary by problem. Although not the
primary purpose of the dissertation, this provides a useful cautionary note regarding the
use of local algorithms for structural optimization.

7.2.2 Contributions

The dissertation makes a number of novel contributions to the fields of structural opti-
mization and algorithm selection:

Trends in algorithm performance. The conclusions of Chapter 5 regarding overall
performance trends and correlations between problem features and performance
contribute important knowledge to the field of structural optimization. They impart
several high-level messages and identify a set of important predictors of algorithm
performance, reviewed in the previous section and supported in detail in the chapter
itself.

These conclusions, as well as contributing to a clearer understanding of optimiza-
tion’s potential to impact design, allow engineers to make more informed decisions
about which types of algorithms to use for a given problem.
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Automated selection techniques. The developed algorithm selection techniques are
the technical core of an off-the-shelf system for automatically recommending algo-
rithms for the studied class of problems. They can be used to reliably select an
appropriate algorithm, leading to improved solution quality and reduced computa-
tion times. This is a tangible step towards addressing the limitations of optimization
outlined in the dissertation’s introduction.

Chapter 6, in evaluating these selection techniques, explicitly focused on their de-
sign impact rather than on intermediate statistical results alone, improving on a
limitation found in much of the algorithm selection literature.

Computational infrastructure. The computational infrastructure presented in Chap-
ter 3—consisting of an optimization library, a structural analysis engine, a database
system, and thousands of lines of code integrating them in the solution of thousands
of algorithm problem pairings——contains several elements which are unique to the

field.

One of these is the relational model for storing and retrieving optimization data,
shown in Fig. 3.10. This is a unique, extensible strategy for representing structural
optimization problems and algorithms, for storing results and other relevant infor-
mation on algorithm performance, and for facilitating post-processing of very large
data sets. As well as providing a model for future large-scale optimization research
in this domain and others (the domain-specific aspects of the data model are local-
ized and replaceable), the model could form the backbone of a practical structural
optimization system which records performance data to improve future algorithm
predictions and knowledge discovery.

The software wrappers around the NLOpt optimization library and the GSA struc-
tural analysis package are published online as open-source repositories, with URL
addresses specified in the text. These give researchers access to a set of analysis and
optimization capabilities sufficient to address many of the future research questions
in structural optimization, and are therefore useful contributions to the field.

7.3 Discussion

The second half of the dissertation, which used the generated data to cxamine algorithm
performance trends and develop automatic selection techniques, contains two very dif-
ferent approaches to the algorithm sclection problem. In Chapters 4 and 5, the goal
is to develop understanding and intuition by exploring results, whereas Chapter 6 aims
to develop black-box selection systems, with little attention paid to transparency. Both
contribute to the same goal of enabling engincers to select suitable algorithms, but their
different philosophies have certain strengths and weaknesses.
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The former, explanatory approach develops understanding of the problem and of related
issues, but requires engineers to carefully read and assimilate its lessons before it can be
of use. The latter, opaque approach reliably deals with complexities of the problem that
cannot be reduced to a simple set of guidelines, and is shown in Chapter 6 to improve
outcomes and reduce computation times. Its lack of transparency and manual input,
however, may disproportionately frustrate designers on those occasions where it performs
poorly.

Ultimately, both are useful. Explaining the major trends at play is an important part
of educating engineers about what works in optimization, and of making the case to re-
searchers that the variable performance of algorithms must be accounted for in adapting
their work to practice. To actively address the problem and reduce the identified limi-
tations of optimization research, the development of automated selection techniques is a
more pragmatic short-term goal.

To place these findings and contributions in context, we next address some of the work’s
limitations, evaluating their significance and explaining why they arise.

Limitations

When discussing this work with optimization researchers, a commonly-encountered con-
cern is the failure to repeatedly tune an algorithm’s parameters (e.g., initial step size,
trust region, or population size) to each individual problem, as is typically done in the
optimization literature.

The first reason for not doing so is, admittedly, the infeasibility of repeatedly solving
all 3792 algorithm-problem pairings while manually adjusting tuning parameters. Some
problems take hours to run, and such an exhaustive exercise would have reduced the
scope of the work dramatically. The most important reason for not adjusting parameters,
however, lies in the reality of how optimization algorithms are used in practice. Design
engineers, lacking the expertise of optimization researchers, are unlikely to repeatedly run
an algorithm while modifying its parameters. In practice, algorithms are used as off-the-
shelf solvers with their default settings. We use recommended settings available in the
literature for all problems, which provides a more realistic representation of the real-world
problem being addressed. An interesting future extension of this work, described below,
is the inclusion of tuning parameters as outputs to be determined by a selection system.

Another limitation is the choice of a single starting point for each problem (Chapter 3).
Some algorithms might perform better than observed here if they had started searching
from many different initial designs. Again, this is partly an issue of feasibility. The
computational cost of generating the data set used in this work is substantial, and using
enough start points to justifiably explore their effect would have increased that already-
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burdensome cost by at least an order of magnitude.

For each problem, the start point is manually generated based on rules of thumb and the
author’s structural design experience. Each start point is, therefore, a reasonable first
attempt at solving the design problem, and is likely similar to the start point that most
engineers would send to an optimization algorithm. Another factor mitigating this limi-
tation is the averaging effect over hundreds of problems. An algorithm that encounters a
start point which presents it with difficulty on one problem is likely to encounter a rela-
tively favorable start point on another, and algorithms that perform consistently poorly
here could perform as poorly with multiple restarts.

One last important limitation is that all the characteristic features identifying optimiza-
tion problems apart from the number of design variables and the degree of constraint—Ilie
in the physical engineering domain. In reality, mathematical characteristics such as the
complexity of the objective function or the steepness of its gradients are more likely to
govern algorithm performance and may be better explanatory variables for the selection
problem.

Mathematical features, although likely to work well as performance predictors, are gener-
ally costly to compute for simulation-based optimization of this nature. Physical features
such as span or structural type are instead used in the hope that they serve as proxies for
the true mathematical behavior. The advantage to using physical features, of course, is
that they are easily computed or easily assigned by a human operator, greatly facilitating
their use as explanatory variables in a practical algorithm selection system.

7.4 Future work

We conclude by motivating future research tasks, ordered by increasing generality from
direct extensions of this work to next-generation, optimization-driven, creative design
tools.

7.4.1 Algorithm selection for structural optimization

This work addresses only a subset of the optimization problems encountered in structural
engineering, and its impact is accordingly limited. To broaden this impact, there is a
need to explore other structural types where optimization can be of benefit, such as long-
span roofs, shell and spatial structures, and tall buildings. The subtleties of each of these
sub-domains will likely require modifications to the techniques presented here. The effect
of different objective functions (such as cost and alternative measures of stiffness) and
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of additional constraints (especially on local and global buckling of structures and on
dynamic frequencies) on algorithm performance should also be explored.

The work could also be extended in response to any of the limitations described in §7.3.
Problems could be re-run with multiple starting points to ensure algorithms are judged
fairly, the effect of algorithm tuning parameters could be accounted for, and the design
space could be characterized mathematically as well as physically.

Although the set of chosen algorithms is broadly representative of those available, there
are others that could be considered. Notably, none of the presented algorithms calculate
gradients of the objective and constraint functions. Furthermore, algorithms could be
characterized by their features (for example, whether they use a population of solutions,
whether they approximate the design space, or whether they use gradients), allowing for
generalization in the algorithm space as well as in the problem space.

Finally, we believe the regression-based formulation of the algorithm selection problem de-
serves further attention. As the first study of its kind to use the approach in this domain,
§6.1.2 is a useful proof of concept, but there are many alternatives and potential refine-
ments which may improve the results. The formulation’s overall approach of predicting
performance instead of directly choosing the ‘best’ algorithm seems inherently sensible
and, when fully developed, likely to minimize the downside of an automated selection
system in those instances where it does not select the best algorithm.

7.4.2 Adapting optimization to reality

Chapter 1 identified a set of factors limiting optimization’s widespread application
(81.1.2). The dissertation addressed one of them, but, for optimization to truly bene-
fit the design industry, future research should tackle several remaining limitations.

Recent developments in structural optimization have extended methods towards the
real complexities of a structural engineering system. Multi-physics implementations of
multiple-objective problems, sophisticated structural modeling and analysis, and the de-
velopment of realistic cost and feasibility models have contributed greatly to the field’s
practicality, but still have some way to go before sufficiently representing the richness of
a structural system. With the increasingly ubiquitous concentration of information in
Building Information Modeling (BIM) representations, digital representations are becom-
ing more complex. This presents challenges for human designers, whose cognitive limits
can be quickly overwhelmed by multi-layered, extensive models, but creates opportunities
for optimization-driven design to leverage the newly-available information.

By continuing to pursue full design automation, however, optimization will almost cer-
tainly encounter a problem faced in the past: some issues, especially those of aesthetics
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and practicality, will, for the foreseeable future, be better handled with human input. The
next section briefly revisits the author’s previous work on design software that combines
optimization with designers’ input, and shows how robust solutions to the algorithm se-
lection problem and others like it are essential for this approach to scale to realistic and
varied design problems.

7.4.3 Future design software

The author’s previous work on structural optimization, and other interactive approaches,
show the benefits that accrue from using optimization in a flexible, interactive way
[Von Buelow, 2008; Clune et al., 2012, 2011].

Fig. 7.1a shows the result of using one of these tools to solve the mass minimization of
a two-dimensional truss. Users can graphically modify the problem statement and can
easily modify the resulting solution in an environment that provides real-time feedback
on structural behavior and performance. Optimization reduces material usage by over
25% in this case, but is easily overriden by the designer’s commands [Clune et al., 2012].
This approach follows the Cockpit Metaphor, which draws an analogy between autopilot
systems and optimization algorithms, and is suggestive of a future for optimization-driven,
but ultimately user-controlled, design [Colgan et al., 1995].

A change in the problem formulation, however (in this case, restraining the elements’ end
releases, which changes the structural type from a truss to a frame) can cause the same
optimization algorithm to converge on a highly irrational solution (Fig. 7.1b). Indeed,
experiences of this nature were an early source of motivation for working on the algorithm
selection problem. Repeated experimentation with this prototype design tool lead to
similar outcomes. It would often behave very well, enabling impressive demonstrations,
but would frequently, and unpredictably, fail to perform well on certain problems. This

(a) (b)

Figure 7.1 — Interactive, optimization-driven software previously developed by the au-
thor often leads to rational solutions (e.g., [a]); slight modifications to the optimization
problem, however, can lead to irrational outcomes (e.g., [b]) [Clune et al., 2012].
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is representative of how algorithms perform on much more complex problems. Good
results can be achieved, but generally require tuning of a few different algorithms using a
combination of experience and luck.

Flexible and interactive use of optimization embedded in real-time simulation environ-
ments is highly desirable, and would directly address some of optimization’s most fun-
damental limitations. In the absence of further research such as that presented in this
dissertation, however, significant obstacles exist to developing such software.

We believe optimization can play a major role in design, but not before the field addresses
issues that have received little attention to date. There almost certainly exist other
barriers to adapting optimization to the realities of design, but addressing those outlined
here would bring structural optimization much closer to making the positive impact of
which it is capable.
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Appendix A

Details of performance variation
study

This appendix provides additional details of the structural design problems, results, and
computational setup from §1.2’s empirical investigation of algorithm performance. A full
description of the algorithms is given in Chapter 3, §3.2.1.

A.1 Design problems

Before describing each design problems in detail, this section presents a few design criteria
common to all three.

They all use Load and Resistance Factor Design criteria [American Institute of Steel
Construction, 2011]. We evaluate all stress constraints on structural elements using a load
combination of 1.2 times dead load plus 1.6 times live load, and evaluate displacement
constraints using only un-factored live loads. Load magnitudes are specified for each
problem in the following sections. We assume material densities of 7850kg/m?® for steel
and 2400kg/m? for concrete throughout.

To simplify the problem of element sizing, element cross-sectional areas are chosen as
continuous optimization design variables. Major, minor, and torsional moments of in-
ertia depend on cross-sectional area according to Eq. A.1, the result of fitting linear
least-squares regressions (through zero) between each of these sectional properties and
the cross-sectional areas over all wide-flange sections in the American Institute of Steel
Construction’s steel tables [American Institute of Steel Construction, 2011]. This is a
simplification of the piece-wise linear relationships in Chapter 3, but is sufficient for the
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purposes of this initial investigation.

Imaj(A) = 1.249 x 107" A
Inin(A) = 7.496 x 1073 A (A1)

J(A) =7.891 x 1074

where I,,4;(A), Inin(A), and J(A) are the major, minor, and torsional moments of inertia,
expressed as linear functions of the cross-sectional area, A.

Mass minimization of a steel arch bridge by varying member
sizing and geometry

The first design problem is the structural mass minimization of a simply-supported steel
arch bridge which spans 30.5m (Fig. A.1). The bridge, in addition to its own weight,
supports a dead load of 3.80 kN/m? and a pedestrian load of 4.10kN/m?, both distributed
uniformly along the deck.

The design variables are the cross-sectional areas of the longitudinal deck beams (A4;),
the transverse deck beams (A,), the hangers (As), the main arch ribs (A4), and the struts
that link the two arches (As). The major, minor, and torsional moments of inertia are set
according to Eq. A.1. The span-to-height ratio of the parabolic arches, v, is a geometric

30.5m 2.5m

Figure A.1 - The starting point for steel arch bridge design, with a span-to-height ratio,
v, of 8.20
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design variable, controlling overall structural geometry according to Egs. A.2 and A.3.

( )_ﬂ (A.2)
z(x,y _L(%—%) .
Ay(zjv)=z% (A.3)

where z and z are the z- and z-coordinates of points along the arch (both measured from
the left-hand intersection of the arch and the deck), L is the span of the arch (30.5m),
W is the width of the deck (2.5m), and Ay is the magnitude of the inward lean of the
arch at a given height z. Table A.1 shows the initial values of all design variables, along
with their upper and lower bounds.

All nodal displacements have an upper bound of 0.04m, the stress in deck and hanger

elements is limited to 290 MN/m?, and stresses in the main arch are bounded above by
310 MN/m?.

Table A.1 — Design variable initial values and bounds for the steel arch bridge

Design variable (units) | Lower bound | Initial value | Upper bound
Ay (1072 m?) 0.65 1.29 12.90
Az (1072 m?) 0.80 1.59 15.90
Az (1072 m?) 0.70 1.39 13.90
Ay (1073 m?) 2.81 5.61 56.10
As (m?) 0.29 1.15 11.50
Y 4.0 8.2 12.0
72m MTm 205m 3@ 225m
y j ty L
S s — — — — —
DU
Lo

(a) (b)

Figure A.2 — Concrete footbridge (a) in plan and (b) in section, showing the four sizing
design variables, t1, to, t3, and t4
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Mass minimization of concrete footbridge

The bridge shown in Fig. A.2 is composed of four longitudinal concrete T-beams which
support a one-way spanning concrete deck and are themselves simply supported at loca-
tions shown by triangles. The design loads are the weight of the bridge and a uniformly-
distributed pedestrian live load of 4.10 kN/m?.

The four design variables are the overall depth and web thickness of the T-beams, t;
and ¢, the flange thickness of the identically-sized T-beams, t5, and the thickness of the
concrete slab, ¢4 (Table A.2 shows their initial values and bounds.) Nodal displacements
are constrained to be less than 0.052 m, element stresses are constrained to be less than
25 MN/m?, and the objective function for optimization is the structural mass.

Initial investigations show the design space to be reasonably smooth and well-behaved,
although this absence of noise and steep local gradients does not prohibit the existence
of other features — such as multiple local optima - which may cause difficulty for some
algorithms.

Table A.2 — Design variable initial values and bounds for concrete footbridge

Design variable (units) | Lower bound | Initial value | Upper bound
t1 (m) 0.50 2.00 4.00
to (m) 0.10 0.50 1.00
t3 (m) 0.10 0.75 1.00
ts (m) 0.10 0.10 1.00

Mass minimization of suspension bridge

This design problem seeks the minimum structural mass of the central 800 m span of a
suspension bridge, shown in Fig. A.3. The presence of the back-spans and bridge towers is
represented by fully restraining all displacements and rotations at the ends of the cables.
The simply-supported bridge deck carries a dead load of 3.2kN/m? in addition to its self
weight. The deck supports four lanes of traffic, represented as a uniformly-distributed
live load of 3.6 kN/m?.

The sizing design variables are the cross-sectional areas of the outer and inner longitudinal
deck beams (A; and Ay), the transverse deck beams (A3), the hangers (A4), and the cables
(As). The location of the deck remains fixed in space, with a constant distance of 3m
between the neutral axis of the longitudinal deck beams and the vertex of the parabola
that defines the cable geometry. We include the distance from the parabolas vertex to its
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focus, p, as a geometric design variable which controls geometry according to Eq. A 4.

(&7

z(z,p) = +3 (A.4)

where z and z are the z- and z-coordinates of a cable node (both measured from the end
of the deck), and L is the bridge span.

800 m 20m
X

Figure A.3 — The structural behavior of the central span of a suspension bridge is sensitive
to small changes in geometry.

All nodal displacements are constrained to be less than 1.0m, and element stresses to
be less than 300 MN/m?. To accurately predict the structural behavior of the long-span
cables, the bridge model accounts for material and geometric nonlinearities. This behavior
and the associated values of the objective and constraint functions are highly sensitive to
changes in geometry, leading to steep local gradients which may cause difficulty for some
algorithms. Table A.3 shows initial values of, and bounds on, the design variables.

Table A.3 — Design variable initial values and bounds for suspension bridge

Design variable (units) | Lower bound | Initial value | Upper bound
Ay (m?) 0.01 0.50 5.00
Ay (m?) 0.01 0.10 5.00
As (m?) 0.01 0.50 5.00
Ay (m?) 0.05 0.80 5.00
As (m?) 0.01 0.05 5.00
p (m) 200 540 1000
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A.2 Software and hardware specifications

Structural analyses, both linear and non-linear, are performed using a custom applica-
tion programming interface (described in Chapter 3) to the Oasys GSA structural analysis
package [Oasys, 2012]. We use version 2.2.3 of the NLopt optimization library, wrapped for
the .NET environment as described in §3.3.2 [Johnson, 2012]. Source code for this wrap-
per, and the underlying NLopt library, are available at https://github.com/roryclune/
NLoptDotNet. All relevant data is stored using the schema described in §3.3.3.

Computation occurs on a Dell PowerEdge® server running the 32-bit version of Windows
Server® Web 2007. The server is equipped with two Intel® X eon' " 3.20 GHz CPUs and
6.00 GB of memory.

A.3 Detailed results

Tables A.4, A.5, and A.6 show the design variable values on which each of the algorithms
converge when solving the design problems, the mass of the resulting bridge designs,
and the required number of calls to the analysis software. Figs. A4, A.5, and A.6 show
the best designs—in terms of minimum objective value—attained for each of the three
problems.

Fig. A.4 shows the best quality (lowest mass) design achieved for the design of the
steel arch bridge. COBYLA and SUBPLEX performed best in terms of design qual-

30.5m 25m

Figure A.4 - COBYLA and SUBPLEX achieved the lowest structural mass for the arch
bridge, substantially reducing its depth.

168



A.3. DETAILED RESULTS

Table A.4 - Final design variables and performance measures for all algorithms for the
steel arch bridge problem

v Al Ag A3 A4 As Analysis Mass
Algorithm | o412y (10-4m2)  (10%m?) (10~*m®) (10~*m2) 7 calls  (10%kg)
COBYLA 6.45 7.95 6.95 2.81 575 1200 | 143 3.94
BOBYQA 6.45 7.95 6.95 2.81 575 1136 16 3.95
CRS 6.85 7.95 6.95 3.02 737 1004 | 45 4.02
SUBPLEX | 6.45 7.95 6.95 2.81 575 1200 | 57 3.94
PR-AXIS 6.52 11.70 1.17 3.00 5.76 8.95 60 6.48
DIRECT 6.88 10.91 6.98 3.42 8.22 8.87 | 3,422 5.73
CRS 6.92 7.95 5.95 3.35 8.42 9.95 | 3441 4.15
ISRES 6.98 13.00 8.52 3.04 741 1002 | 2,783 4.85
StEIE 12.90 15.90 13.90 0.56 1150 820 | NJ/A 8.09
point

ity, with both converging on the maximum possible span-to-height ratio (i.e., the lowest
arch height) of 12.

BOBYQA performed almost as well as COBYLA and SUBPLEX in terms of design
quality, but required dramatically fewer analysis software calls. All algorithms converged
to answers that improve on the starting point, although quality of these answers is quite
diverse (Table A.4).

Fig. A.5 shows a cross-sectional view of the lightest design for the concrete footbridge,
achieved by both NEL-MEAD and CRS, with NEL-MEAD making an order of magnitude
fewer analysis calls. These algorithms converged on a design with greater web depth in
the concrete T-sections than the starting point (Table A.5), which is a more efficient use
of material in bending than in many of the other resulting designs.

The non-linear structural analyses of the suspension bridge take a relatively long time to

3@225m

—

4@2.25m

Figure A.5 - CRS and NEL-MEAD, followed closely by four others, produced the lightest
concrete bridges.
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Table A.5 — Final design variables and performance measures for all algorithms on the
concrete footbridge problem

Algorithm ty (m) {2 (m) ¢3 (m) ¢4 (m) AI;ZR;SIS (ll\élﬁaisg)
COBYLA 2464  0.153  0.100 0.118 54 0.82
BOBYQA 2.029 0430  0.402 0.101 23 1.87
NEL-MEAD 2930 0.100  0.100 0.123 230 0.76
SUBPLEX 2,132 0.215  0.100 0.100 505 0.84
PR-AXIS 1.554 0.570 0.101 0.115 179 1.22
DIRECT 2.833 0.111  0.100 0.133 10,226 0.8
CRS 2926 0100 0.100 0.123 2,938 0.76
ISRES 2941  0.131 0.113 0.121 2,952 0.86
Starting point | 2.000  0.500  0.750  0.100 N/A 2.49

run, especially in the case of intermediate designs which undergo large displacements. Be-
cause of this, algorithms cannot evaluate as many designs as in the previous two problems
within the six hour time limit.

NEL-MEAD again achieves the result with the lowest mass (Fig. A.6), although it requires
very many function evaluations to do so. With reference to Eq. A.4, the height-to-span
ratio of the cable in this case is 0.17. This is the deepest of any of the eight cable designs,

137.1m

—>
800 m 20m

Figure A.6 — Despite requiring many analysis calls to converge, Nelder-Mead (algorithm
3) outperformed all other algorithms in terms of objective value
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but the increased cable stiffness allows for less material per unit length in the structural
elements, ultimately resulting in a lighter design.

As discussed in Chapter 1, these results demonstrate substantial variation in the perfor-
mance of algorithms, and the pattern of this performance varies from problem to problem.
They demonstrate clear benefit, both in terms of design quality and computational cost,
to selecting the appropriate algorithm, and further motivate the development of schemes
to aid and to automate this selection.

Table A.6 — Final design variables and performance measures for all algorithms on the
suspension bridge problem

Algorithm A (m?) Ay (m?) Az (n?) Ag (m?) As (m?) p (m) AI;ZE’:IS (11\0/1787;)
COBYLA 0.01 0.02 0.63 0.44 0.03 411.1 56 1.06
BOBYQA 0.47 0.09 0.02 0.74 0.05 499.1 31 1.43
NEL-MEAD 0.01 0.06 0.01 0.23 0.01 291.7 300 0.43
SUBPLEX 0.01 0.01 0.01 0.41 0.01 553.3 174 0.57
PR-AXIS 0.08 0.01 0.35 0.73 0.03 659.4 106 1.24
DIRECT 0.84 0.29 0.84 1.98 0.29 600.0 370 4.31
CRS 0.01 0.01 0.01 0.93 0.01 944.9 333 1.21
ISRES 0.50 0.10 0.50 0.80 0.05 540.0 319 1.83
Starting point 0.50 0.10 0.50 0.80 0.05 540.0 N/A 1.83
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Appendix B

Details of data generation method

This appendix provides supplementary details of Chapter 3’s data generation method.
§B.1 details the linear regressions used in §3.1.1’s continuous approximation to the discrete
clement sizing problem, and further supports the assumption of approximate linearity that
underpins it. §B.2 provides additional details of the structural models on which the design
problems are based, and §B.3 concludes the appendix by expanding on the range of the
experimental design.

B.1 Continuous approximation to discrete element
sizing

§3.1.1 described a piecewise-linear (and, hence, piecewise-continuous) approximation to
the discrete element sizing process prevalent in AISC code-based steel design [American
Institute of Steel Construction, 2011]. In code-based design, engineers select a steel section
with fixed sectional properties from a finite catalog and evaluate its physical performance.
Our piecewise approximation allows optimization algorithms to size elements with a single
continuous design variable, representing cross-sectional area; the other relevant sectional
properties—major, minor, and torsional moments of inertia —become dependent variables.

The core of this approximation is a series of regressions between cross-sectional area
and the three dependent sectional properties. Within each category of AISC-defined W-
sections (grouped by their approximate height), these relationships are approximately
linear, as explained in §3.1.1.
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cWia4  sW40 aW3I6 <W33 W30 eW27 w24 -WwW2i
“WI8 ewl6 ®W|2 «WI0 W8 Woé W5 W4

Imaj (m4) 0.025

Imin (m4)

J (m*)

Figure B.1 — Plots of cross-sectional area against major, minor, and torsional area mo-
ments of inertia (Imaj, Imin,and J) for each AISC W-section category show the approxi-
mately linear relationships within section categories on which the continuous sizing method
relies. Solid black lines show least-squares linear regressions through the origin for each

category.
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Taking advantage of this linearity, we fit least-squares linear regressions between area
and each of major, minor, and torsional moments of inertia (Imaj, Imin, and J) for all W-
section categories, using data from version 14 of the AISC shape catalog (Fig. B.1). To
prevent dependent properties from taking on infeasible negative values for positive cross-
sectional areas, each regression is forced to pass through the origin. The approximately
linear relationships in the underlying data arc evident in Fig. B.1.

The linear model coefficients from these regressions are used to size elements in optimiza-
tion. An algorithm sets a value of cross-sectional area, and the chosen linear model is the
one that maximizes Iimqj; Imin and J are determined according to their linear models for
the same W-section category. The regression coefficients are shown in Table B.1. (Since
all models pass through the origin, they are defined by a single coefficient.)

Table B.1 - The linear model coefficients (Fig. B.1) area used to determine major, minor,
and torsional moments of inertia (Imqj, Imin, and J) from the cross-sectional area, A.

Regression coeflicients
. Imaj Imin J
W-section VI 4 1
category
(x10%2 m?) (x10° m?) (x10° m?)

W44 20.23 7.78 38.10
W40 17.29 7.19 82.31
W36 15.73 9.15 98.79
W33 13.14 8.16 51.55
W30 10.99 7.66 58.25
W27 9.47 7.48 99.38
W24 7.43 6.20 68.25
W21 5.39 4.96 25.52
W18 4.51 5.04 71.49
W16 3.09 3.25 10.89
W12 2.34 7.04 92.84
W10 1.31 4.11 17.42
WS 0.83 2.56 9.93
W6 0.44 1.18 2.81
W5 0.30 1.05 3.23
W4 0.19 0.65 0.51
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B.2 Remaining structural models

Chapter 3’s experimental design is based on fourteen structural models of six different
types—trussed arch, basket-handle arch, cable-stayed, girder, suspension, and Warren
truss bridges. Within each type, the primary difference between models is their span
length. The dissertation’s main body presented a single example of each type; to aid
reproduction of the study, this section presents details on the remaining eight bridge
models. In all cases, these additional models’ geometry is controlled by the same equations
used in Chapter 3, referenced here for clarity. The starting values of their design variables
are indicated in Tables 3.4 through 3.9.

The first structural type is the basket-handle arch, first introduced in §3.1.2. In addi-
tion to the previously-introduced model spanning 200 m, the experimental design (§3.1)
contains models with 50 m and 300 m spans (Fig. B.2). Their arch geometry is controlled
by Eq. 3.3, and they have the same element configuration as the 200 m model, apart from

L=50m W=20m

T
% ! ! 1[ 1 tF» Zmax

L=300m W=20m
(b)

Figure B.2 — In addition to the 200 m steel backet-handle arch shown in the dissertation’s
main body (Fig. 3.4), the experimental design includes two other basket-handle arches of
span lengths (a) 50m and (b) 300m. Each of these model’s arch geometry is defined by
Eq. 3.3. The 50m arch bridge uses the single-layer deck instead of the double-layer truss
deck used by the other two (see §3.1.2)
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the 50 m version’s use of a single-layer road deck (§3.1.2).

The additional trussed arch model has a clear span of 300m (Fig. B.3); the geometry of
its inner and outer arches in controlled by Eq. 3.4 and 3.5, and it uses the same element
types and configuration as the 200 m version introduced in Chapter 3.

Zouter(X)
:im(x) . e i M . .
gy | |}
28.8m] ] 4 [hm = hour, quaner out, mid E
T ‘2_631'“
90m 300m 90m

Figure B.3 - The geometry of the 300m trussed arch bridge is defined by zinner()
and zZouter(x) in accordance with Egs. 3.4 and 3.5. It is composed of the same types of
structural elements as the 200 m trussed arch presented in §3.1.2.

Two extra cable-stayed bridge models, spanning 500m and 800m, also have a single
geometric design variable, h (Fig. B.4). Both are analyzed using the same geometrically-
nonlinear simulation techniques used for the 300 m version, described in Chapter 3.

The 800 m-long suspension bridge model (Fig. B.5) behaves similarly to the 500 m
version in Chapter 3. Its parabolic cable geometry is also controlled by Eq. 3.7.

The final category of bridges—the Warren trusses—consist of the 200 m-long model in
Chapter 3 and the 50 m- and 300 m- long versions shown in Fig. B.6. All three use the
same element types (Table 3.9) and have a single geometric design variable, h.
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250m 500m 250m W =20m
(a)
h Eae—
10.5}:
38m N
400m 800m 400m W = 20m

(b)

Figure B.4 — As in the case of the 300 m cable-stayed bridge in the dissertation’s main
body, the additional (a) 500 m and (b) 800 m models have a single geometric sizing vari-
able, h, which determines the height of the towers.

||
Ty o ‘/z(x.p} ; |
L =800m R

Figure B.5 — The geometry of the 800 msuspension bridge model is, like the 500 m model,
controlled by Eq. 3.7.
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L=50m W=20m
(5@10m)

| i
L=300m W=20m
(30@10m)
(b)

Figure B.6 — The additional Warren truss models span (a) 50m and (b) 300m. Both
have the same parabolic variation in their top and bottom chords as the 200m model
shown in Chapter 3, and both have a single geometric sizing variable, h.

B.3 Experimental design: infeasible feature combi-
nations

£3.1.3 described the experimental design, which specifies the set of optimization problems
to be solved, as full factorial, indicating that we use all combinations of feature levels to
generate problems. Strictly speaking, there are a few infeasible level combinations, and
the design accordingly falls just short of full factorial. These infeasibilities stem from the
following realities of structural design.

Each structural type is best suited to a limited range of spans. Not all struc-
tural types work well with the entire range of commonly-encountered bridge spans.
Cable-stayed and suspension bridges, for example, are better suited to longer-span
bridges, typically in excess of 300 m. The span of steel girder bridges, on the other
hand, generally does not exceed 100m or so. Table 3.3 shows the feasible combina-
tions of the structural type and span factors used in the experimental design.
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Mass cannot be constrained for mass minimization problems. “Mass” is a pos-
sible level of both the objective type and constraint type features. It does not make
practical sense, however, to constrain mass when its minimization is already the
objective of a problem.

Mass constraints cannot be omitted for stiffness optimization problems. The
chosen formulation of the stiffness optimization problems (Eq. 3.2) asks algorithms
to find the stiffest structure using a given amount of material. This upper-bound
constraint on structural mass is necessary to prevent algorithms from simply adding
large amounts of material in pursuit of a maximally stiff structure, and must
therefore be present.

The geometry of girder bridges does not vary. The “combined geometry and siz-
ing” level for the problem type factor does not make sense for girder bridge problems,
since their geometry remains constant.

The stresses in cable-stayed bridges’ towers must always be constrained. To
ensure numerical stability of the structural models, we found it necessary to always
constrain the stresses in the cable-stayed bridges’ towers, in addition to constraining
these bridges’ deck displacements.
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Additional results visualizations

This appendix contains additional visualizations of the relationships between design prob-
lem features and algorithm performance. §C.1 plots variations in incurred computational
cost against the number of design variables in each problem and against structural type,
and §C.2 shows the ranges of values behind the median-only plots used throughout Chap-
ter b.

C.1 Computational cost visualizations

We generally consider algorithms’ solution quality to be of greater importance than their
computational cost. Chapter 5, when exploring associations between problem features
and algorithm performance, therefore deferred several of the computational cost plots to
this appendix.

Fig. C.1 shows how each algorithm’s performance varies with the number of design vari-
ables, complementing Fig. 5.15 in §5.3.3. Only CRS and ISRES display statistically
significant (p; < 0.05) associations; CRS makes fewer analysis calls as the problem size
increases, and ISRES makes relatively more. The other six algorithms do not show strong
trends. As with the computational cost plots in Chapter 5, local and global algorithms
are normalized separately following Eq. 3.8.

Fig. C.2 is the computational cost version of Fig. 5.20 in §5.3.5. Only NEL-MEAD, PR-
AXIS, and CRS demonstrate substantial variation in their median computational cost
(the ranges behind these medians are shown in Fig. C.8) across the six structural types;
under this measure, the other five algorithms are less affected.
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Figure C.1 - The median computational cost exhibits a statistically significant correlation
with the number of design variables only for CRS and ISRES.
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C.2. PERFORMANCE RANGES BEHIND MEDIAN VALUES

C.2 Performance ranges behind median values

Many of the data visualizations used to explore associations in §5.3 showed median values
of algorithm performance across categories of problems. This section uses boxplots to show
ranges of data behind these median values, providing additional information. Although
these ranges do not explicitly appear in the Chapter 5, they are reflected in the Kruskal-
Wallis coefficients used to test for statistically significant differences between groups.

A more complicated picture of algorithm performance across geometry and sizing problems
emerges from Fig. C.3. Based on median values alone, we may conclude that ISRES should

Geometry problems Sizing problems
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Figure C.3 — The range of data behind the median values shown in Figs. 5.11 and 5.12
present a more complicated picture of performance variation across geometry and sizing
problems. Some algorithms, such as ISRES and DIRECT, which have relatively poor
median objective values, often produce some of the best solutions, especially on sizing
problems.
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never be used to solve geometry problems. The additional information here, however,
shows that ISRES often produces high-quality solutions to geometry problems and even,
on occasion, finds the best solution.

Fig. C.4 shows algorithm performance ranges for problems with mass and stiffness as
their objectives. Although CRS has a dramatically better median outcome on stiffness
problems, its range of normalized objective values is widely spread. PR-AXIS has a worse
median normalized objective value on stiffness problems, but its range—and the amount
of relatively bad solutions it finds—is narrower than for mass problems, indicating less
potential for downside.
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Figure C.4 — The ranges of data behind the median values shown in Figs. 5.13 and 5.14
show much more variation. Many algorithms, especially the global ones, exhibit a wide
range of performance values around their medians.

Figs. C.7 and C.8 show the performance ranges when problems are split by structural

type, and Figs. C.5 and C.6 show the same information when problems are split by the
categories of constraint present. Both show additional variation beyond the median-only
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plots in the main body of the chapter.
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Figure C.5 — The observed range of solution quality achieved by each algorithm varies
under the presence of various constraints, much more so than Fig. 5.18 indicates.
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Figure C.6 — The observed range of computational cost incurred by each algorithm varies
under the presence of various types of constraint. (Fig. 5.18 showed the median values

only.)
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Figure C.7 — The range of data behind Fig. 5.20’s median values shows additional vari-
ation in solution quality across the six structural types
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Figure C.8 — The range of data behind Fig. C.2’s median values shows additional variation
in computational cost across the six structural types
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Appendix D

Automatically selecting the fastest
algorithm

Chapter 6 presents computational techniques intended to select algorithms that produce
the best solution for a given design problem. The same techniques—using the pattern
classification and the regression-based approaches (§6.1)—are now used to select the algo-
rithm which makes the fewest analysis software calls in converging on a solution, without
regard to the quality of that solution.

Table D.1 shows how often each of the algorithmn selection techniques chooses the
computationally-lightest algorithm and how often each one chooses an algorithm whose
number of analysis calls is within 10% of the lowest. This relaxed evaluation criterion
still leads to a binary evaluation of success; the selected algorithm either lies within the
specified percentage of the true best-performing algorithm or it does not. As in Chapter 6,
the results are compared to two manual algorithm selection strategies: choosing a single
algorithm (BOBYQA, in this case) for all problems and randomly choosing algorithms
based on a uniform probability distribution.

All bar one of the developed techniques outperform the manual selection strategies on
cross-validated test sets, by up to 11.2% on the strict evaluation criteria (where the
relaxation factor R = 0%) and by slightly less on the relaxed evaluation (R = 10%), due
to BOBYQA’s proportionally greater improvement under the relaxed measure.

In future work, the two algorithm performance measures—solution quality and compu-
tational cost—could be weighted, and selection techniques could be used to choose an
algorithm that satisfies a user-specified combination of high solution quality and low com-
putational cost. In the carly stages of design, for example, a selection technique could be
adjusted to favor algorithms with lower computational cost, producing solutions quickly
and allowing for quick iteration on design concepts. In later-stage design, an engineer
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using this system could adjust the weighting in favor of algorithms that produce high-
quality solutions. The additional computational expense that would likely accompany
this shift would be less burdensome during late-stage design.

Table D.1 - Binary success rates for selecting the fastest algorithm

Cross-validated
Algorithm selection technique test data

R=0% R=10% | R=0% R=10%

Training data

Manual selection

Manual - always BOBYQA 69.0 73.0 69.0 73.0

Manual - random choice 12.0 67.8 11.9 67.9

Pattern Classification formulation

(a) Binary decision tree 76.1 77.6 81.7 82.7

(b) Boosted decision tree 80.2 81.0 97.4 98.1

(b) Random Forest 80.2 81.5 100.0 100.0
(c) K-nearest neighbor 77.4 78.7 83.4 84.4

(d) Artificial neural network 74.6 79.2 84.9 91.0

(e) Support vector classification 73.6 75.1 80.0 83.9

(f) Naive Bayes 65.5 66.1 65.7 66.3

Regression-based formulation

(a) Artificial neural network 74.7 75.5 78.0 83.8

(b) Support vector regression 76.8 78.7 80.2 82.3

{c) Regression Tree 78.2 81.1 79.3 85.2

{d) Generalized linear model 68.0 72.1 69.3 74.5

Best observed value 80.2 81.5 100.0 100.0
Improvement over manual selection 11.2 8.5 31.0 27.0
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