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ABSTRACT

Pushover analysis is a nonlinear static analysis tool widely used in practice to predict and
evaluate seismic performance of structures. Since only the fundamental mode is considered
and the inelastic theorem is imperfect for the conventional pushover analysis, a modified
Modal Pushover Analysis (MPA) is proposed by researchers. In this thesis, the theories of
dynamics for single-degree-of-freedom (SDOF) and multiple-degree-of-freedom (MDOF) are
introduced, including elastic analysis and inelastic analysis. The procedures and equations for
time history analysis, modal analysis, pushover analysis and modal pushover analysis are
discussed in detail. Then an 8-story height model and a 16-story height model are established
for analysis. The pushover analysis is conducted for each equivalent SDOF system, and by
combination of the distribution of 1 mode, 2 modes and 3 modes, the responses of modal
pushover analysis are obtained. The results of pushover analysis and modal pushover analysis
are compared with those of time history analysis. The results of the analysis show that the
conventional pushover analysis is mostly limited to low- and medium-rise structures in which
only the first mode is considered and where the mode shape is constant. The modal pushover
analysis is shown to have a superior accuracy in evaluation of seismic demands for higher
buildings, especially for story drift ratios and column shears. With this in mind, some design
recommendations and areas of future work are proposed in the conclusion.

Thesis Supervisor: Jerome J. Connor
Title: Professor of Civil and Environmental Engineering
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1. INTRODUCTION

1.1. Performance Based Design

The concept of performance based design was first put forward in 1976. In the following two
decades, the American and Japanese scholars led the research on this area. Today,
performance based design is widely learned and discussed around the world. It is the modern
approach to earthquake resistant design. Rather than being based on prescriptive mostly
empirical code formulations, performance based design is an attempt to predict buildings with

predictable seismic performance (Naeim, Bhatia, & Lobo).

Performance based design is the subset of activities of performance based engineering that
focus on the design process. Therefore, it includes identification of seismic hazards, selection
of the performance levels and performance design objectives, determination of site suitability,
conceptual design, numerical preliminary design, final design, acceptability checks during
design, design review, specification of quality assurance during the construction and of
monitoring of the maintenance and occupancy (function) during the life of the building
(Bertero & Bertero, 2002). As opposed to the traditional strength based design, the
performance based design is a new engineering technology and concept focusing on the
object of a building asset, in order to prescribe results instead of the procedures to design
structures. Based on the importance and usage of buildings, different levels of seismic design
are proposed according to their target performance, such that buildings can reach their
anticipated functions and largely decrease the damage when subjected to earthquakes

(http://en.wikipedia.org/wiki/Performance-based_building design).

What makes performance based design better is that different performance targets will be
determined based on various seismic levels and structural systems, resulting in different
construction materials, sequences and structural design methods. By governing these
parameters and process, the least economic cost in earthquakes can be reached. In addition,
contractors, owners, and designers may put forward their own design requirements.
Performance based design is a more flexible design concept to meet the requirements

according to individuals and society.

1.2. Time History Analysis
Time history analysis is a rigorous numerical method by integrating differential equation of

motion directly. The dynamic responses of displacement, velocity, and acceleration can be
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determined by the time history analysis, thus the structural internal forces are obtained in each
time step. For a rarely met earthquake and deformation demands for a structure, the nonlinear
time history is necessary to analyze the structural performance and weak part for seismic
design. The current numerical procedure includes Newmark Method, Wilson Method,
Collocation Method, Hiber-Hugher-Taylor Method and Chung and Hulbert Method. Based on
structural systems, force distributions, computer performance and required accuracy, three
types of nonlinear model are selected for the time history analysis: the floor model, the bar

model and the finite element model.

However, the nonlinear time history analysis is a complicated process requiring a high
performance computing facility and a long computation time. There are also issues when it
comes to the input of the earthquake waves and the selection of restoring forces. The current
research could only be conducted for 2-D models of critical structures, and the 3-D model is
far from mature, so this method is not widely applied. Based on the situation, the scholars in
earthquake engineering switched their focus to an easily applicable and approximate manner
for seismic performance estimation in practice, the equivalent nonlinear static analysis, or

pushover analysis.

1.3. Pushover Analysis and Modal Pushover Analysis

Static pushover analysis is becoming a popular performance based design tool for seismic
performance evaluation of existing and new structures. It is expected that pushover analysis
will provide adequate information on seismic demands induced by the design ground motion
on the structural systems and its components. The purpose of pushover analysis is to estimate
the expected performance of a structural system by evaluating its strength and deformation
demands under seismic loads by means of a static nonlinear analysis, and comparing these

demands to available capacities at the targeted performance levels.

The evaluation is based on an assessment of important performance parameters, including
floor displacements, inter-story drift ratios, column shears, inelastic element deformations
(either absolute or normalized with respect to a yield value), deformations between elements,
and element and connection forces. The inelastic static pushover analysis is regarded as an
effective method for predicting seismic forces and deformation demands, which
approximately accounts for the redistribution of internal forces that occurs when the structure
is subjected to inertia forces that can no longer be resisted within the elastic range of

structural behavior (Krawinkler & Seneviratna, 1998).
9



For the elastic analysis, a multiple-degree-of-freedom (MDOF) system can be decomposed to
several singe-degree-of-freedom (SDOF) systems, each of which corresponds to one mode of
the MDOF system. The earthquake force distribution is expanded as a summation of modal
inertia force distributions, and each modal force component excites the responses of its
corresponding mode. The total response can be superimposed by the contribution of each
mode (Chopra A. K., Dynamics of Sturctures: Theory and Application to Earthquake
Engineering, 2001). Typically the total response is dominated by the fundamental mode. For
simplicity, the conventional pushover analysis focuses on the first mode and assumes that the
mode shape does not change after the structure yields. It is a powerful tool for its nonlinear
analysis, but it has little rigorous theoretical background (Krawinkler & Seneviratna, 1998).
In reality, each mode contributes to the total structural response, and the mode shapes will not
be constant throughout the inelastic stage. In addition, with the yielding of the structure and

the increase of the structural height, the contributions of the higher modes cannot be ignored.

Based on the dynamic theories, A.K Chopra with his research group came up with a new
Modal Pushover Analysis (MPA) considering the effect of higher modes on the structural
performance. It is an improved pushover analysis by the combination of the responses of each
mode with a constant lateral load pattern. The total response is determined from the response
of each mode by a certain rule (e.g., SRSS, CQC) (Chopra & Goel, A Modal pushover
analysis procedure to estimate seismic demands for buildings: theory and preliminary
evaluation, 2001). Since the higher modes are taken into consideration, the modal pushover
analysis has a superior accuracy and fits the actual solution better. The response spectrum
analysis (RSA) is also introduced in this thesis which is shown to be equivalent to the modal
pushover analysis for elastic systems (Chopra A. K., Earthquake Dynamics of Structures,
2005). The advantage of modal pushover analysis lies in its accuracy and simplicity for
nonlinear analysis. Nevertheless, the lateral load patterns for MPA are assumed to be constant
after yielding, an approximation similar to the pushover analysis, which induces issues that

must be solved in the future (Mao, Xie, & Zhai, 2006).

10



2. SINGLE DEGREE OF FREEDOM SYSTEMS

The equations, figures and some comments in part 2 and part 3 are cited from the following
materials: (Chopra A. K., Dynamics of Sturctures: Theory and Application to Earthquake
Engineering, 2001), (Chopra & Goel, A Modal pushover analysis procedure to estimate
seismic demands for buildings: theory and preliminary evaluation, 2001), (Chopra A. K.,

Earthquake Dynamics of Structures, 2005)

We start the fundamental theory by introducing simple structures, the single degree of free
systems. Based on damping ratios, two different categories of structures are divided. the

elastic systems and the inelastic systems.

2.1. Elastic Systems

2.1.1. Equation of Motion

The following idealized one-story structure is shown in Figure 2.1, consisting of a lumped
mass at the top, a massless frame providing lateral stiffness k to the system, and a linear

viscous damper with its damping coefficient c.

Mass I_lf;l "

Massless < b |
frame da |
i Y Y L o o o o o o e o e

® o %

Figure2.1 Single-degree-of-freedom system: (a) applied force p(t); (b) earthquake induced ground motion.

=

In earthquake areas, the primary issue on dynamics that structural engineers concern about is
the structural response under seismic loads. Here the ground displacement is denoted with u,,
the total mass displacement is denoted with u', the relative displacement between mass and

ground is denoted with u. At each moment the following equation holds:
u' (1) = u(t) +u, (1) 21
Figure 2.2 shows the response of an idealized one story system under earthquake excitation,

where f| is the inertia force, fp the damping resisting force and fs the elastic resisting force,

yielding to the dynamic equation of equilibrium:
Si+fp+f=0 )50

11



Where
f=mii', f,, =cu, f, =ku 94
Substituting 2.1.2, 2.1.3 into 2.1.1 yields:

mii+cu + ku = —mii, (1) 24

S o~-—
O~ Vi
) -Z
@ Fe 4y (b}

Figure2.2 Forces on a SDOF system

Dividing equation 2.1.3 by m gives the equation of motion in terms of two-system

parameters:

ii+ 28w 3+ yu =—ii (1)

fk
a)” == —-,é = 5
m 2maw, 2.6

Where

2.1.2. Response History

Ground motion varies irregularly so that structures respond irregularly during the earthquake.
For a given ground motion 1iiy(t), the displacement u(t) of a single-degree-of-freedom system
relies on the natural period and damping ratio. Figure 2.3 shows the deformation response of

three different systems to earthquake excitation at EI Centro.
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Figure2.3 Deformation response of SDF system to El Centro ground motion

The deformation response history u(t) could be calculated by numerical methods illustrated in
the following part, thus the internal forces of the structure can be figured out by static analysis,
which forms a theoretical foundation for pushover analysis and modal pushover analysis. In

earthquake engineering, the concept of equivalent static force fs (Figure 2.4) is proposed.

— s

—

A | |

- Vi(D
\‘"-"'Mb(‘)

Figure2.4 Equivalent static force

f; is defined by:
S5 (@) = ku(r) = mayu(t) = mA(r) 5 7

where
A(r) = @ u(r) )8
13



Noted that A(t) is the pseudo acceleration, not the absolute acceleration i'(t). A(t) can be
determined by displacement u(t) easily. Then the base shear Vi(t) and base overturning

moment My(t) are obtained:

V()= f(0) = mA(1) M, (0) = hfy(0) = hV, (1) 56

1.24 Tn=0.9sec, {=0.02

U
-
~

1.09¢

1.2, Ta=1lsec, (=002

] 0.610g

e
t

Pscudo-acceleration A, g
(o]

1.2- Ta=2sec,{=0.02

07
0.191g

20 30

10 2
Time, sec

Figure2.5 Pseudo-acceleration response of SDF system to EI Centro ground motion

2.2. Inelastic Systems

2.2.1. Parameters of Inelastic Systems

The normalized yield strength /y for elastoplastic systems is defined as

7oty

Jo U 2.10
where fo and ug are earthquake induced peak values of resisting force and deformation for

corresponding elastic systems.

The yield strength reduction factor R, is defined as

Lo 2.11

The ground motion induced peak value of deformation for an elastoplastic system is denoted

by um. then and yield deformation is normalized as a dimensionless ratio called ductility

factor
14



e 2.12
Combining 2.10~2.12 yields to
u f—
m — # 3 :Rﬁ
Yo 2.13
fS i
| fsy o
, Corresponding linear system
£ - . /
’ | Jo
!
; )| FHlastoplastic system
Y
“
uﬂ'l
—»- U
iy 4, Un
(a) (b)

Figure2.6 (a) Elastoplastic force-deformation relation; (b)Elastoplastic system and its corresponding linear

system

2.2.2. Equation of Motion
The governing equation 2.4 for inelastic system is repeated here with

mii +cti+ f(u, ) = —mii (1) 2.14

where fs (u.1t) is the resisting force for inelastic systems
For given iiy(t), u(t) depends on three parameters w, § and uy of the system and the

force-deformation relation. Diving equation 2.14 by m yields to

ii+2§a)"z'¢+a):uyfq(u,d)=#iig(t) 215

where

Y LR /1 L))
wn = J;*é 2ma)” "'fﬂ‘ (uv u) ‘f‘

The above equation can be solved by the numerical methods illustrated in part 2.3, special

2.16

attention should be given in determining of time instants for numerical procedures to ensure

enough accuracy. The models analyzed in this thesis apply a time step At = 0.01s.
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(®)

Figure2.7 Force-deformation relations in normalized form

2.3. Introduction to Numerical Methods for Dynamic Response

Under the arbitrary loaded force p(t) or ground acceleration iiy(t), or for a nonlinear system.,

the analytical solution for a SDOF system is typically not possible to obtain. Numerical

time-stepping methods for integration of differential equations are employed to solve these

problems. In the subject of mathematics, there exist a lot of different numerical methods

among which the most discussed were their accuracy, convergence, stability properties and
computer implementation. In this thesis, only a few of them which are widely used in

dynamic analysis for SDOF are introduced, since it is adequate for application and research.

2.3.1. Time-Stepping Methods
For an inelastic system, the equation of motion for numerical methods is

mii +cu+ fi(u,1) = p(t) or —mii, (1) 217

Subject to the initial conditions

u, =u( 0 uy=u( 0
The linear viscous damping is assumed for the system, the external force p(t) will be given by
a set of discrete values: pi=p(t;), i=0 to N (Figure 2.8). The time interval

Atf :IH-]_II 2‘[8
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Figure2.8 Notation for time-stepping methods

is usually taken as a constant, although not necessary. In every discrete moment t;, the
structural response is determined for a SDOF, the displacement, velocity and acceleration are
denoted as u;, 1 and ii;. Assuming that these values are given, the following equation holds
at time i

mii, +cu, +(fg), = p, 219
where (fs); is the resisting force at time i for linear systems, (f;)i=ku;, but depends on the prior
displacement and velocity history at time i, if the system is nonlinear. The numerical methods
to be presented will enable us to determine the response values uj.i, @i+, and i, i.e., at
time i,

mii,,, + i, +(fs)ia = Pia 2.20
For i = 0, 1, 2, 3.... by applying time-stepping method successively, the response at any
moment when i = 0, 1, 2, 3... will be obtained. The given initial conditions provide the

necessary information to start the procedure.

The time-stepping for i to i+1 is not an accuracy process, so the three vital requirements for
the numerical methods are the convergence, stability and accuracy. For the time-stepping
method, we typically have three types: methods based on interpolation of the excitation
function, methods based on finite difference expressions of velocity and acceleration and
methods based on assumed variation of acceleration. Their detail will not be discussed in this

thesis.
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3. MULTIPLE DEGREE OF FREEDOM SYSTEMS

3.1. Elastic Systems

3.1.1. Equation of Motion

Under the earthquake induced loading, the governing equation for MDOF system is as
follows

mii + cu +ku = -mui, (t) 31

Where u is the vector of N lateral floor displacement relative to ground, m, ¢, k are the mass,
classical damping, and lateral stiffness matrices of the system. t is the influence factor. The
right side of the equation can be interpreted as effective earthquake forces:

P (1) = -nuuii, (t) 39

The spatial distribution of the effective earthquake forces Peg(t) is determined by s = mu,

which can be expanded as a summation of modal inertia force distributions sy

N N
m = an = Zand)n
n=1

n=1 3.3
where
L T T
I =—",L =0 m,M, =0 mnd®_
M, 3.4

3.1.2. Modal Response History Analysis

The preceding equations provide a theoretical basis for the classical modal response history
analysis to calculate structural response with respect to time history function. Structural
response due to individual excitation terms Peg(t) is determined first for each n, and these N

modal responses are combined algebraically at each time instant to obtain the total response.

In equation 3.2, the displacement u for an N degree of freedom can be expressed by the

superposition of each mode:

u(®) =) @4,
o 3.5

where the modal coordinate q,(t) is governed by
‘q.ﬂ + zfna)nq.n + a):qn = _rnﬁg (t) 3 6
By comparing equation 3.6 with the equation for nth order SDOF system, it is easy to get the

solution for gu(t), in which w, is the natural vibration frequency and &, is the damping ratio

for the nth mode. The equation above can be replaced with
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n""hn n

D, +2¢,0,D, + @} D, =i, (f) 3.7

where
q.()=T,D,®) 3.8

The solution for Dy(t) can be determined by the time-stepping procedure introduced in part

2.3, then the contribution of nth mode to joint displacement u(t) equals to

u,()=®,4q,0)=I,®,D,() 3.9

Based on u,(t), the internal forces of structural members can be determined by the equivalent

static method. The equivalent static force corresponding to the nth mode is

fn(t) = kun (t) = snAn (t) 3.1 0

where

An(t)za)an(t) 311

Then any response quantity r(t) --- floor displacement, story drifts, internal element force, etc.
--- can be expressed by static analysis under external force f,(t). if ™, denotes the modal static

response, namely the static value of r due to external forces s,, then

n@)=r"4,0) 3.12

Combining the contribution of each mode leads to the total response under ground motion, the
nodal displacement is

w® =2 u,(0)= 3T, ®.D,0)
= = 3.13

0= Y@= S A,0)

n=l n=1 3.14
This is the classical modal response history analysis procedure: equation 3.6 is the standard
modal equation governing qn(t), equations 3.9, 3.12 define the contribution of the nth-mode to
the response, equations 3.13 and 3.14 combine the response of all modes to obtain the total
response. This is the “Modal” method for time history analysis in SAP2000 which will be
applied as a benchmark. Modal expansion of the spatial distribution of the effective
earthquake forces will also be introduced providing a conceptual basis for modal pushover

analysis.
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Figure3.1 Conceptual explanation of modal response history analysis of elastic MDF systems

The first step for this dynamic analysis method is to calculate the vibration properties of the
structures (natural vibration frequency and modes), and then expand the force distribution
vector mt to modal components s, The contribution of nth mode to the dynamic response
can be obtained by multiplying the following two parts: (1) the static analysis under forces s;;
(2) the dynamic analysis for the nth mode SDOF system under 1ii,(t). By combining the static
response of these N sets of forces s, and dynamics response of these N different SDOF system.

the total seismic response will be obtained

3.1.3. Multistory Buildings with Symmetric Plan
Assuming that a multistory building has two orthogonal axes of symmetry, and the ground
motion is along one of them. The equation of motion now is repeated as:

mii +cu+ku =-mlii (t)

3.15
Floor
N ) o UN
D) i

J & o4

: © ”
2 ©
1 - © i)

I

Figure3.2 Dynamic degrees of freedom of a multistory frame: Internal displacements relative to the ground
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wherein each element of 1 is unity, substituting v = 1 into equations 3.3, 3.4 yields to the

modal expansion of the spatial distribution of effective earthquake forces:

where

Specifically, the lateral displacement of the jth floor is
O=r,®,,D, ()

u

in

3.16

3.17

3.18

The modal static response r", is determined by static analysis of under external forces s,

(Figure 3.3)
Story  Floor
SNa N INn
N ‘
VISR
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Figure3.3 Computation of modal static response of story forces from force vector s, : (a) base shear and

base overturning moment; (b) i th story shear i th floor overturning moment

Table 3.1 gives the six response quantities for modal static response: the i th floor shear V;,

the i th floor overturning moment M;, the base shear Vy, the base overturning moment My,

story displacement u;, and story drifts A
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Response r Modal static response r,," Response r Modal static response ™
V; 3 S Mb ) & y:] » *
I/in’=zsjn Mb;=Zhijn=rnLnEhnMn
M, o N u, ul, =T,/ o})®,
Minl :Z(hj_h:)sjn / ” ( " n) m
Jj=i
V ‘ A st
b v = Zsjn_r I'= j A% =T, | @} XD, —D,,,)

Table3.1 Modal static responses

3.1.4. Response Spectrum Analysis

The structural response r(t) obtained from response history analysis is the function of time,
but it takes longer time and is expensive for the program to run it. For the response spectrum
analysis, only the peak response values are obtained from the response spectrum without
carrying out the time-costing response history analysis. For a SDOF system, there is no
difference for the outcome of RSA and RHA; for a MDOF system, RSA usually cannot lead
to accurate results, compared with RHA. But the estimate is exact enough for engineering

application.

In such a response spectrum analysis, the peak value ry, of the nth mode contribution r,(t) to

response 1(t) is determined from

=r,'4, 3.19
where A, is the ordinate of the pseudo-acceleration response (or design) spectrum for the nth
mode SDOF system. There are two commonly used modal combination rules, the Complete
Quadratic Combination (CQC) or the Square-Root-of-Sum-of-Squares (SRSS) rules. The
SRSS rule, which is valid for structures with well-separated natural frequencies such as
multistory buildings with symmetric plan, provides an estimate of the peak value of the total

response:

n=1 3.20
In the following analysis for the models, the SRSS rule will be applied.

3.1.5. Modal Pushover Analysis for Elastic Systems
For an elastic system, the modal pushover analysis is consistent with RSA, since the static

analysis of the structure subjected to lateral forces
22



an = rnmq)n1471 3.21

provides the same values of ry,, the peak nth mode response in equation 3.19. Alternatively,
this response value can be obtained by static analysis of the structure subjected to the lateral
forces distributed over the building height according to

S, =m®, 3.22

and the structure is pushed to the roof displacement, um, the peak value of the roof

displacement due to the nth mode, which from equation 3.9 is

U, = l_‘n(:[)ml)n 3.23

where D,=A,/w,". D, and A, are available from the response (or design) spectrum,

The peak modal responses, 1, each determined by one pushover analysis, can be combined
according to SRSS rule to obtain an estimate of the peak value of r, of the total response. This
modal pushover analysis (MPA) for linear elastic systems is equivalent to the well-known

RSA procedure.

3.1.6. Summary
The response history of an N-story building with two orthogonal symmetric plan under
ground motion along x or y direction can be computed as the following steps:
1. Define the ground acceleration iiy(t) numerically at every time step At.
2. Define the structural properties:

a. Determine the mass and lateral stiffness matrices m and k.

b. Estimate the modal damping ratio &,
3. Determine the natural vibration frequency w, and natural modes of vibration &,
4, Determine the modal components s, of the effective force distribution.
5. Compute the response contribution of the nth mode by following steps, which are repeated
for all modes, n=1,2,3...N:

a. Perform static analysis of the building subjected to lateral forces s, to determine r,", the
modal static response for each desired response quantity r from table 3.1

b. Compute the pseudo acceleration A,(t) for nth mode SDOF system under ground motion
by applying time-stepping method introduced in part 2.3

¢. Determine ry(t) by Eq. 3.12

6. Combine the modal contributions ry(t) to determine the total response using Eq. 3.20.
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Typically only the lower order modes contribute significantly to the total response, so apply

steps 3, 4, 5 mainly to these steps.

3.2. Inelastic Systems

3.2.1. Equation of Motion

The modal pushover analysis becomes more attractive when it comes to the inelastic analysis.
As is discussed before, the nonlinear static analysis, or the pushover analysis is an effective
tool to predict seismic demands and estimate structural performance. The safety requirements

allows for a ductility deformation of the structure without collapse.

The relationship between lateral forces fs at the N floor levels and the ultimate lateral floor

displacements u is no longer linear, but depends on the history of displacements, thus,
f; =1£;(u, signa) 324
substituting 3.21 into equation 3.1 yields to

mii +ca + £ (u, sigmt) = -muii_(t) 395

This matrix equation contains N nonlinear differential equations for the N floor displacement
u;(t), j=1,2,3...N. The solution for these coupled equations is the exact nonlinear response

history analysis.

The classical modal analysis does not hold for inelastic analysis, because the theoretical basis
for the modal analysis is that the nth mode component of the effective earthquake forces
induces structural response only in its nth mode of vibration, but not any other modes. Still, it
is useful to expand the displacement of the inelastic system in terms of the natural vibration
modes of the corresponding linear system as follows:
N
w0 =2 2,4,(n)
n=1 326
Substituting equation 3.26 into equation 3.25, premultiplying by &', and using mass and
classical damping orthogonality property of modes gives
.. . F ..
q’l + zfnwnqn +l = _rnug (t)
M, 327

The resisting force

E, = F,(,.signd,) = ®'f,(u,.sign,) 3.28
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depends on all modal coordinates q,(t), implying coupling of modal coordinates because of
yielding of the structure. Equation 3.27 represent a set of coupled equations for inelastic
systems, neglecting the coupling of the N equations in modal coordinates in equation 3.27
leads to uncoupled modal response history analysis procedure. Expanding the spatial
distribution s of the effective earthquake forces into the modal contributions s, according to
equation 3.3, where ¢, are now the modes of the corresponding linear system. The equations
governing the response of the inelastic system is

mii +cu +f (u, signi) = -s i, (1) 399

The solution of equation 3.29 for inelastic systems will no longer be described by equation
3.5 because q,(t) will generally be nonzero for modes other than the nth mode, implying that
other modes will also contribute to the solution. For linear systems, however, qr(t)=0 for all
modes other than the nth mode; therefore, it is reasonable to expect that the nth mode should
be dominant even for inelastic systems. The governing equation for the nth-mode inelastic

SDOF system is

;s . F,
B, +2£,0,D, + = =—ii,t)

a n

n 3.30
and
F;'n = F:n ('Dn* SignD.n) = (D:'lf\ (Dn » SignD.n) 3 3 1
Forces
Sp
Unit mass
« Ap(t)

O S Fsn/ Ly

| 7 -
mr T T —= Ug(t)
(a) Static Analysis of (b) Dynamic Analysis of
Structure Inelastic SDF System

Figure3.4 Conceptual explanation of uncoupled modal response history analysis of inelastic MDOF

systems

3.2.2. Inelastic Modal Pushover Analysis
Summarized below are a series of steps used to estimate the peak inelastic response of a
symmetric-plan, multistory building about two orthogonal axes to earthquake ground motion

along an axis of symmetry using the MPA procedure developed by Chopra and Goel:
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1. Compute the natural frequencies, o, and modes ®,, for linearly elastic vibration of the
building.

2. For the nth-mode, develop the base shear-roof displacement, Vi, - ug, pushover curve for
force Distribution

s, =m®,

For the first mode, gravity loads, including those present on the interior (gravity) frames, were
applied prior to the pushover analysis. The resulting P-delta effects lead to negative
post-yielding stiffness of the pushover curve. The gravity loads were not included in the
higher mode pushover curves, which generally do not exhibit negative post-yielding stiffness.
3. Idealize the pushover curve as a bilinear curve. If the pushover curve exhibits negative
post-yielding stiffness, idealize the pushover curve as elastic-perfectly-plastic.

4. Convert the idealized pushover curve to the force-displacement, F, /L, - D, , relation for

the nth -“mode” inelastic SDF system by utilizing

F, Vbny urny

sn

L M, 7T,
in which My* is the effective modal mass, @y, is the value of @, at the roof.
5. Compute peak deformation D, of the nth-“mode” inelastic SDF system defined by the
force-deformation relation of and damping ratio &,. The elastic vibration period of the system
is
7, =2m(y

sy
For an SDF system with known T, and z,, D, can be computed by nonlinear response history
analysis (RHA) or from the inelastic design spectrum.
6. Calculate peak roof displacement urn associated with the nth-“mode” inelastic SDF system
from
u, =0.0,D,
7. From the pushover database, extract values of desired responses m: floor displacements,
story drifts, plastic hinge rotations, etc.
8. Repeat Steps 3-7 for as many modes as required for sufficient accuracy. Typically, the first
two or three “modes” will suffice.
9. Determine the total response (demand) by combining the peak “modal” responses using the
SRSS rule:

ra (ZrnZ)IIZ
n
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3.2.3. Nonlinear Time History Analysis
Time-history analysis provides for linear or nonlinear evaluation of dynamic structural
response under loading which may vary according to the specified time function. Dynamic

equilibrium equations, given by

du(t) d*u(t)
Ku(t)+C » +M e =r()

are solved using either modal or direct-integration methods. Initial conditions may be set by

continuing the structural state from the end of the previous analysis. Additional notes include:

* Step Size — Direct-integration methods are sensitive to time-step size, which should be
decreased until results are not affected.

* HHT Value — A slightly negative Hilber-Hughes-Taylor alpha value is also advised to
damp out higher frequency modes, and to encourage convergence of nonlinear
direct-integration solutions.

* Nonlinearity — Material and geometric nonlinearity, including P-delta and
large-displacement effects, may be simulated during nonlinear direct-integration
time-history analysis.

¢ Links — Link objects capture nonlinear behavior during modal (FNA) applications.

In the project, the implicit Hilber — Hughes — Taylor Method is adopted. The elastic forces are

taken here between t, and t,..

Uns1 = Up +hUp, + h2(1/2 = BYU, + (R*)BU 444
Un+1 = Un +h(1- Y)ﬂn + hYUn+1
Mi]n+1 + (1 + (XH)KUTI.+1 b aHKUn = Fn+1

The authors of this method do not give the range of application, mutual relation between
parameters oH, B and y and their influence on the stability condition. Numerical tests
performed by the author of the present paper proved that the change of the parameters should
be done with attention. The method can be considered as the alternative to the Bossak method.
However, since it contributes potential forces not clearly definite, applications to nonlinear

problems should be investigated.
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4. THE APPLICATION OF MODAL PUSHOVER
ANALYSIS IN HIGH-RISE BUILDINGS

4.1. Basic Information of the Models

With the assistant of computer program, the seismic analysis is more convenient to perform.
The University of California, Berkeley was an early base for computer-based seismic analysis
of structures, led by Professor Ray Clough (who coined the term finite element). Students
included Ed Wilson, who went on to write the program SAP in 1970, an early "Finite Element

Analysis" program. Today SAP2000 is a powerful tool in structural analysis.

For simplicity, two 2-D frame models are established for the analysis (Fig. 4.1) in SAP2000;
one is 8 stories and the other 16 stories. The two frames have the same materials made of steel,
and the same W sections. Both of the buildings are two bay frames with the same story height
3m and bay width 6m. The basements are restrained in all directions, and the models are set as
plane frames, that is to say, the external forces will be loaded in X direction and the structures

also move along this axis.

Figure4.1 Eight-story building and sixteen-story building models
In this thesis, we only consider the elastic stage of the structures, so a week ground motion
was selected: the S MONICA-1 time history function in X direction scaled down by a factor
of 0.5.
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Figure4.2 S MONICA-1 time history function

Next a new time history load case is defined. In the “Time History Type” option, the “Modal”
is the modal response history analysis, which is a linear method; while the “Direct Integration”
is the nonlinear procedure with a superior accuracy but spends more time for computing. Here
we check the former option “Modal”. The “Output Time Step Size” is the stepping time
introduced in part 2.3, we set it 0.01s, output time steps is 500. Lastly, the modal damping

ratio is set constant at 0.05.

4.2. Structural Properties

The first three vibration modes and their properties are listed in the table below:

8-floor StepNum Period Frequency CircFreq Eigenvalue
Text Unitless Sec Cyc/sec rad/sec rad2/sec2
Mode 1 1.242376 0.80491 5.0574 25.577
Mode 2 0.378316 2.6433 16.608 275.84
Mode 3 0.196117 5.099 32.038 1026.4

16-floor StepNum Period Frequency CircFreq Eigenvalue
Text Unitless Sec Cyc/sec rad/sec rad2/sec2
Mode 1 2.650 0.377 2:371 5.622
Mode 2 0.851 1.175 7.382 54.489
Mode 3 0.476 2.102 13.206 174.390

Table4.1 Structural properties for the two buildings
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Figure4.3 First three natural-vibration periods and modes of the 8-story building
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Figure4.4 First three natural-vibration periods and modes of the 16-story building

The point displacements representing the mode shapes can be obtained directly from
SAP2000, but they are only the original values. Dividing by the value of roof displacement,
the normalized mode shapes are obtained. By applying Eqgs. 3.17, we can determine the force
distributions. This matrix calculation process is performed by a set of MATLAB codes
attached in APPENDIX.
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Floor 0, 0, D5 sl s2 s3
0 0 0 0 0 0 0

1 0.0777 -0.2519 0.5110 0.101 0.114 0.156

2 0.2334 -0.6573 1.0151 0.304 0.298 0.310

3 0.4094 -0.9103 0.7523 0.533 0.413 0.230

4 0.5793 -0.8697 -0.1318 0.754 0.395 -0.040

5 0.7292 -0.5311 -0.8908 0.949 0.241 -0.272

6 0.8508 -0.0011 -0.8641 1.107 0.001 -0.264

7 0.9402 0.5548 -0.0424 1.224 -0.252 -0.013

8 1 1 1 1.302 -0.454 0.305

Table4.2 Normalized mode shape values of the 8-story building
51 52 5’3 .
e R E—— s eam
Figure4.5 Force distributions s, of the 8-story building

Floor @, 0, [0 sl s2 s3

0 0 0 0 0 0
1 0.0357 -0.1137 0.2009 0.046 0.052 0.061
2 0.1089 -0.3338 0.5516 0.141 0.152 0.166
3 0.1957 -0.5658 0.8356 0.254 0.258 0.252
4 0.2864 -0.7623 0.9401 0.372 0.347 0.283
5 0.3769 -0.8959 0.8251 0.490 0.408 0.248
6 0.4649 -0.9513 0.5133 0.604 0.433 0.155
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7 0.5490 -0.9223 0.0787 0.713 0.420 0.024
8 0.6282 -0.8109 -0.3739 0.816 0.369 -0.113
9 0.7015 -0.6270 -0.7350 0.911 0.285 -0.221
10 0.7682 -0.3866 -0.9171 0.998 0.176 -0.276
11 0.8275 -0.1110 -0.8759 1.075 0.051 -0.264
12 0.8787 0.1756 -0.6209 1.141 -0.080 -0.187
13 0.9216 0.4485 -0.2125 1.197 -0.204 -0.064
14 0.9558 0.6852 0.2548 1.241 -0.312 0.077
15 0.9815 0.8698 0.6803 1.275 -0.396 0.205
16 1 1 1 1.299 -0.455 0.301

Table4.3 Normalized mode shape values of the 16-story building
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Figure4.6 Force distributions s, of the 16-story building

4.3. Elastic Analysis
4.3.1. Modal Response History Analysis

The modal response history analysis is firstly performed as a benchmark, and its basis theory

has been discussed in part 3.1.2. In SAP2000, there are two different procedures for the time
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history analysis, “Modal” and “Direct Integration™, in which the modal method is actually the

linear analysis.

The time history function is applied to the whole building first as ground acceleration parallel
to X direction. The roof displacements and base shear forces including their peak values for
the two buildings are shown in Fig. 4.7 and Fig. 4.8. These figures contain the time history
responses for the top floor and the bottom floor, so the responses of the other floors can be
multiplied with the force distribution s, proportionally, since they are elastic systems.
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Figure4.7 Roof displacement and base shear history (all modes) for the 8-story building
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Figure4.8 Roof displacement and base shear history (all modes) for the 16-story building

The next stage will be the most critical analysis, since the responses mentioned above are the
combinations of all modes, but we still need to know the response of each mode under the
same ground motion excitation. In practical application, the peak values can be determined
directly for the response spectrum for an individual mode. In this thesis, the MDOF model is
switched to the equivalent SDOF systems for the first three modes. Based on Fig. 3.1 and the

formulas in Table 3.1, the models have the following corresponding relation:

8-Floor Building Mode 1 Mode 2 Mode 3
M 6.273m 0.759m 0.412m

h 5.689h -0.867h 1.731h

r, 1.3016 -0.4541 0.3055
16-Floor Building Mode 1 Mode 2 Mode 3
M 12.574m 1.503m 0.646m

I 10.873h -2.177h 3.018h

r 1.2989 -0.4551 0.3012

Table4.4 Effective modal mass and effective modal height of the two buildings

where m is the equivalent lumped mass for each floor, and h is the story height. T, is the

multiplying factor for the floor displacement in Eq. 3.13
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Mode 1 Mode 2 Mode 3
Figure4.9 Equivalent SDOF systems for the first three modes of the two buildings

In the new equivalent SDOF systems, the height is from Table 4.4 directly, and the lumped
mass is defined by the “mass source™ option in SAP2000 to make it equal to the values in
Table 4.4. The material properties, cross sections and the time history functions are all the
same in SDOF systems with those in MDOF systems. The figures below show the roof

displacements of each mode under the same ground motion:
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Figure4.10 Roof displacements due to the first three modes of the 8-story building
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Figure4.11 Roof displacements due to the first three modes of the 16-story building

4.3.2. Elastic Modal Pushover Analysis
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The modal pushover analysis is based on the superposition of the contribution of each mode,
so the pushover analysis is firstly conducted for the individual mode. The models are pushed
at the roof points to the target displacement determined from time history analysis, i.e.,
pushing the structure to 219.8mm, 16.7mm and 10.3mm for the 8-story building, and 446mm,
108mm and 37.5mm for the 16-story building, to the roof displacements. The pushover curve
should be a line with constant slope since the structure does not yield. The displacements of
other floors are strictly proportioned to the mode shapes in elastic systems. The shape vectors
@, are also taken as load patterns for modal pushover analysis, which has a superior accuracy
compared with the uniform load pattern or monotonic increased load pattern. For each
pushover analysis, the column shear of every story is also recorded. Once the floor
displacements, story drifts and column shears for each mode are obtained, we may conduct
the modal pushover analysis by utilizing the SRSS modal superposition rule to determine the
combined modal responses for 1 mode, 2 modes and three modes. The story drift ratios are
the peak values obtained from time history records. The results of the modal pushover
analysis are compared with the elastic time history analysis shown in Table 4.5~4.10 and
Fig.4.12~4.17.

Floor Displacement(mm)
Pushover Analysis Modal Pushover Analysis . .
Floof  Model  Mode2  Mode3  1Mode  2Modes al§ Modes esponse History Analysis

0 0 0 0 0 0 0 0

1 -17.1 -4.2 -5.3 17.1 17.6 18.4 19.2

2 -51.3 -11.0 -10.5 51.3 525 53.5 552

3 -90.0 -15.2 <17 90.0 91.3 91.6 94.8

4 -127.3 -14.5 1.4 127.3 128.2 128.2 131.5

5 -160.3 -8.9 9.2 160.3 160.5 160.8 166.7

6 -187.0 0.0 8.9 187.0 187.0 187.2 194.2

7 -206.6 9.3 0.4 206.6 206.9 206.9 216.7

8 -219.8 16.7 -10.3 219.8 220.4 220.7 233.3

Table4.5 Peak values of floor displacements for the 8-story building (elastic analysis)

Drift Ratio(%)
Pushover Analysis Modal Pushover Analysis . .
Floor — \odel  Mode2  Mode3  1Mode 2 Modes alé Modes Response History Analysis
0 0 0 0 0 0 0 0
1 0569 0140 -0.175 0.569 0.586 0.612 0.640
2 L140 0226 -01T3 1,140 1.162 1175 1.200
3 1289 0141 0.09 1.289 1.297 1,300 1.320
4 -1.245 0.023 0.304 1.245 1.246 1.282 1.223
5 -1.098 0.188 0261 1.098 1.114 1.144 1173
6 -0.891 0.295 20,009 0.891 0.938 0.938 0.917
7 -0.655 0.309 0282 0.655 0.724 0.777 0.750
8 0438 0248 -0.358 0.438 0.504 0.618 0.553

Table4.6 Peak values of story drift ratios for the 8-story building (elastic analysis)
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Column Shear (kN)
Pushover Analysis Modal Pushover Analysis

e Mode | Mode 2 Mode 3 1 Mode 2 Modes 3 Modes ReSpertSiierats
1 87.1 -26.3 425 87.1 91.0 100.4 1174
2 100.6 =255 275 100.6 103.8 107.4 112.4
3 99.9 -14.6 -10.2 99.9 101.0 101.5 105.6
-+ 92.0 1.3 -38.4 92.0 92.0 99.7 102.7
5 79.0 16.7 -333 79.0 80.7 873 91.4
6 62.6 26.2 0.5 62.6 67.9 67.9 70.9
7 42.8 26.1 325 42.8 50.1 59.7 60.0
8 27.1 19.8 39.6 27.1 33.6 51.9 53.2

Table4.7 Peak values of column shears for the 8-story building (elastic analysis)
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Figure4.12 Heightwise variation of floor displacements for the 8-story building (elastic analysis)
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Figure4.13 Heightwise variation of story drift ratios for the 8-story building (elastic analysis)
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Figure4.14 Heightwise variation of column shears for the 8-story building (elastic analysis)

Floor Displacement(mm)

]

Pushover Analysis Modal Pushover Analysis ; .

Or  Model  Mode2  Mode3  IMode 2Modes 3 Modes Rosponse History Analysis
0 0 0 0 0 0 0 0

1 15.9 -12.3 -1.5 15.9 20.1 21.5 25.5

2 48.6 -36.0 -20.7 48.6 60.5 63.9 67.7

3 87.3 -61.1 -31.3 87.3 106.5 111.0 115.6

4 127.7 -82.3 -35.3 127.7 152.0 156.0 159.0

5 168.1 -96.8 -30.9 168.1 194.0 196.4 199.2

6 207.3 -102.7 -19.2 207.3 2314 2322 236.5

T 2449 -99.6 -3.0 2449 264.4 264 4 270.5

8 280.2 -87.6 14.0 280.2 293.6 293.9 298.6

9 3129 -67.7 27.6 312.9 320.1 3213 3244

10 342.6 -41.7 34.4 342.6 345.1 346.8 3538

11 369.0 -12.0 32.8 369.0 369.2 370.7 374.3

12 391.9 19.0 23.3 391.9 3924 393.1 401.8

13 411.0 48.4 8.0 411.0 413.9 414.0 420.6

14 426.3 74.0 -9.6 426.3 432.6 432.8 441.8

15 437.7 93.9 -25.5 437.7 447.7 448.4 456.1

16 446.0 108.0 -37.5 446.0 458.9 460.4 470.5

Table4.8 Peak values of floor displacements for the 16-story building (elastic analysis)
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Drift Ratio(%)

Pushover sis Modal Pushover Analysis . .
Floor Mode 1 Mod?;aly Mode 3 1 Mode 2 Modes 3 Modes Response History Analysis

0 0 0 0 0 0 0 0

1 0.530 -0.409 -0.251 0.530 0.670 0.715 0.724
2 1.088 -0.792 ~0.438 1.088 1.346 1.416 1.432
3 1.290 -0.835 -0.355 1.290 1.537 1.578 1.597
4 1.349 -0.707 -0.131 1.349 1.523 1.529 1.525
5 1.345 0.481 0.144 1.345 1.429 1.436 1.452
6 1.308 -0.199 0.390 1.308 1.323 1.380 1.441
7 1.251 0.104 0.543 1.251 1.255 1.368 1.433
8 1.177 0.401 0.566 1.177 1.243 1.366 1.393
9 1.090 0.662 0.451 1.090 1.275 1.353 1.346
10 0.991 0.865 0.228 0.991 1.316 1.335 1.352
11 0.881 0.992 -0.051 0.881 1.327 1.328 1.365
12 0.763 1.032 -0.319 0.763 1.283 1.322 1.388
13 0.637 0.982 -0.511 0.637 1.171 1.277 1.292
14 0.508 0.852 -0.584 0.508 0.992 1.151 1.210
15 0.382 0.664 -0.532 0.382 0.766 0.933 1.025
16 0.276 0.469 -0.400 0.276 0.544 0.675 0.712

Table4.9 Peak values of story drift ratios for the 16-story building (elastic analysis)

Column Shear(kN)
Pushover Analysis Modal Pushover sis . .
Floor Mode 1 Mode 2 Mode 3 1 Mode 2 ModesAnabl; Modes Response History Analysis
1 78.1 69.2 45.8 78.1 104.3 114.0 113.9
2 93.2 79.0 47.8 93.2 122.2 131.2 135.5
3 972 74.3 347 97.2 122.3 1272 133.9
4 96.9 61.0 12.5 96.9 114.5 115.2 1259
5 94.3 41.7 -12.9 94.3 103.1 103.9 114.8
6 90.2 18.7 -35.2 90.2 92.1 98.6 108.0
7 85.0 -5.6 -49.0 85.0 85.2 98.3 106.2
8 79.0 <29.1 -50.9 79.0 84.2 98.4 105.7
9 72.1 -49.5 -40.7 72.1 87.5 96.5 108.6
10 64.5 -65.1 -20.9 64.5 91.6 94.0 109.7
11 56.3 -74.6 3.6 56.3 93.5 93.5 107.1
12 47.6 =771 26.8 47.6 90.6 94.5 104.2
13 385 -5 432 38.5 82.1 92.8 98.8
14 29.1 -61.5 49.0 29.1 68.0 83.8 823
15 19.3 -44.2 420 19.3 482 64.0 71.9
16 12.1 -28.8 29.8 12.1 312 432 58.6

Table4.10 Peak values of column shears for the 16-story building (elastic analysis)
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Figure4.15 Heightwise variation of floor displacements for the 16-story building (elastic analysis)
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Figure4.16 Heightwise variation of story drift ratios for the 16-story building (elastic analysis)
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Figure4.17 Heightwise variation of column shears for the 16-story building (elastic analysis)

The peak values mentioned above can also be determined from a response spectrum, which is
more popularly used in practice. The elastic modal time history analysis is proofed to be
equivalent with the response spectrum analysis. From the analysis we find that for
median-rise elastic buildings, the fundamental mode dominates the structural responses, there
is no apparent difference between the responses of 1 mode, 2 modes, 3 modes pushover

analysis and the time history analysis.

With the increase of the structural height, there is an increasingly participation ratio of the
higher modes to the structural response. This difference is not displayed significantly in the
floor displacements, but it is obvious in story drift ratios and column shears. We see that for
high-rise buildings, first mode is usually inadequate for predicting structural demands,
especially in story drift ratios and column shears, while 2 modes or 3 modes typically suffice.
Notice that the invariance of the story drift ratios in the medium stories, the combination of
higher modes could be more conservative though the response of 1 mode is very close to that

of time history analysis.

4.4. Inelastic Analysis

The numerical algorithm for time history analysis is now changed to the nonlinear “Direct
Integration”, which is the rigorous method. The time step is the same 0.01 with a total output
of 500. The time history function is now multiplied by a factor of 2, four times as large as that

for elastic analysis. The plastic hinges are assigned at two ends of the columns and beams.
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The equivalent SDOF models are again employed for the analysis, and the structures are
pushed to the target displacements similarly as before. Each floor is subjected to the lateral
forces distributed over the building height according to Eq 3.22. Lastly, the responses of each
mode are combined by SRSS and then compared with the nonlinear time history analysis.
However, for elastic systems, this procedure lacks theoretical foundation since the force
distribution s, may not be invariant in the inelastic range. The inelastic analysis is a complex
process with a number of influential factors and parameters, the methods introduced for
modal pushover analysis in this thesis is an approximate way turned out to be accurate enough.

For simplicity, only the final results and figures are shown here.

Floor Displacement(mm)
Pushover Analysis Modal Pushover Analysis

Floor  Mode!  Mode2  Mode3  1Mode  2Modes 3 Modes ReSPonse History Analysis

0 0 0 0 0 0 0 0.0

1 -60.5 359 244 60.5 70.4 7.5 93.1
2 1817 937 485 1817 204.4 210.1 235.2
3 3187 1297 359 3187 3441 346.0 3702
4 4511 123.9 6.3 4511 46738 46738 4908
5 -567.8 757 25 567.8 5728 5744 602.4
6 -662.4 02 43 662.4 662.4 6637 693.7
7 7320 9.1 20 732.0 736.3 7363 768.3
8 7786 -1425 478 778.6 791.5 793.0 833.6

Table4.11 Peak values of floor displacements for the 8-story building (inelastic analysis)

Drift Ratio(%)
Pushover Analysis Modal Pushover SIS . .
Floor  Model  Mode2 4 Mode3  1Mode 2 ModesAnal}; Modes esponse History Analysis
0 0 0 0 0 0 0 0
1 2017 1.197 0813 2017 2.345 2482 2582
2 4,040 1.926 -0.802 4,040 4475 4,546 4623
3 4.567 1.202 0.418 4.567 4723 4741 4781
4 4412 019 1.407 4412 4416 4,635 4724
5 3890  -1.608 1.208 3.89 4210 4,380 4336
6 3155 2517 -0.043 3.155 4,036 4,036 4145
7 230 264 -1308 2320 3515 3.750 3.828
8 553 2115 -1659 1.553 2,624 3.104 3.205

Table4.12 Peak values of story drift ratios for the 8-story building (inelastic analysis)

Column Shear (kN)

Pushover SIS Modal Pushover Analysis . .

Floor — Node 1 Mod?;my Mode3  1Mode 2 Modes ‘g Modes T esponse History Analysis
1 183.7 166.5 -236.2 183.7 247.9 3424 310.7
2 214.9 161.2 -180.2 214.9 268.6 323.5 3325
3 202.8 122.2 80.2 202.8 236.8 250.0 3127
4 190.7 -30.1 2183 190.7 193.1 291.4 282.4
5 171.6 -148.8 188.6 171.6 227.1 2952 2874
6 150.2 -164.1 -7.3 150.2 222.5 222.6 230.3
7 1174 -160.3 -136.2 117.4 198.7 240.9 231.5
8 86.5 -130.1 -154.7 86.5 156.2 219.9 2123
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Table4.13 Peak values of column shears for the 8-story building (inelastic analysis)
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Figure4.18 Heightwise variation of floor displacements for the 8-story building (inelastic analysis)
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Figure4.19 Heightwise variation of story drift ratios for the 8-story building (inelastic analysis)
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Figure4.20 Heightwise variation of column shears for the 8-story building (inelastic analysis)

Floor

14
15
16

Mode 1
0
45.6
139.3
250.3
366.4
4822
594.7
702.4
803.7
897.5
982.7
1058.6
1124.2
1179.0
1222.7
1255.6
1279.3

Floor Displacement(mm)

Pushover SIS Modal Pushover Analysis ; .
Mod:;a]y Mode3  1Mode  2Modes ah; Kiblles, rapUmSSRStOn: amabisR
0 0 0 0 0
50.8 -24.2 45.6 68.3 72.5 91.9
149.3 -66.5 139.3 204.2 214.7 239.7
253.0 -100.8 250.3 355.9 369.9 387.8
340.9 -113.4 366.4 500.5 513.1 529.6
400.7 99.5 482.2 626.9 634.7 673.3
4254 -61.9 594.7 731.2 733.9 788.8
412.5 9.5 702.4 814.5 814.6 870.2
362.7 45.1 803.7 881.7 882.9 940.5
280.4 88.6 897.5 940.2 944 4 1003.3
172.9 110.6 982.7 997.8 1003.9 1068.6
49.6 105.6 1058.6 1059.7 1065.0 1130.2
-78.5 74.9 1124.2 1126.9 11294 1207.4
-200.6 25.6 1179.0 1195.9 1196.2 1275.6
-306.4 -30.7 1222.7 1260.5 1260.9 1355.4
-389.0 -82.0 1255.6 1314.5 1317.0 1418.8
-447.2 -120.6 1279.3 1355.2 1360.6 1470.8

Table4.14 Peak values of floor displacements for the 16-story building (inelastic analysis)
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Drift Ratio(%)

Pushover sis Modal Pushover sis . .
Floor Mode | Modl:;ajy Mode 3 1 Mode 2 ModesAna]§ Modes Response History Analysis

0 0 0 0 0 0 0 0

1 1.521 1.694 -0.808 1.521 2.277 2.416 2.525
2 3.122 3.281 -1.410 3.122 4.529 4.743 5.124
3 3.701 3.459 -1.142 3.701 5.066 5.193 5.440
4 3.870 2.929 -0.420 3.870 4.853 4.871 4.793
5 3.858 1.992 0.463 3.858 4.342 4.367 4.462
6 3.753 0.826 1.253 3.753 3.843 4.042 4.205
7 3.588 -0.433 1.747 3.588 3.614 4.014 4,102
8 3.376 -1.660 1.819 3.376 3.762 4.179 4.410
9 3.126 -2.743 1.452 3.126 4.159 4.405 4.706
10 2.842 -3.583 0.732 2.842 4.574 4.632 5.030
11 2.528 -4.108 -0.166 2.528 4.824 4.826 5234
12 2.187 4272 -1.025 2.187 4.800 4.908 5.148
13 1.827 -4.067 -1.642 1.827 4.459 4.752 4.923
14 1.457 -3.529 -1.878 1.457 3.818 4.255 4,335
15 1.096 -2.751 -1.710 1.096 2.961 3.420 3.540
16 0.790 -1.942 -1.285 0.790 2.096 2.459 2.917

Table4.15 Peak values of story drift ratios s for the 16-story building (inelastic analysis)

Column Shear(kN)
Pushover Analysis Modal Pushover Analysis . .
Floor  \odel  Mode2  Mode3  IMode  2Modes 3 Modes RCSPONSe History Analysis
1 129.5 -147.2 163.2 129.5 196.1 255.1 271.6
2 153.9 -165.3 169.9 153.9 2259 282.6 295.3
3 153.5 -153.0 1229 153.5 216.7 249.1 288.9
4 153.9 -129.8 433 153.9 201.3 2059 253.0
S 150.7 -90.0 -52.2 150.7 175.5 183.1 2319
6 145.0 -39.3 -130.6 145.0 150.2 199.1 241.3
7 1374 13.9 -169.9 137.4 138.1 218.9 245.3
8 128.4 66.9 -174.4 128.4 144.8 226.7 238.8
9 118.7 111.3 -147.8 118.7 162.7 219.8 229.1
10 108.4 137.6 -81.0 108.4 175.2 193.0 212.6
11 93.7 151.8 12.8 93.7 178.4 178.8 2013
12 76.4 155.8 100.0 76.4 173.5 200.3 203.3
13 60.6 148.0 153.7 60.6 159.9 221.8 227.8
14 45.6 131.0 167.6 45.6 138.7 217.6 193.7
15 30.1 99.7 146.9 30.1 104.1 180.1 169.9
16 18.8 67.0 1145 18.8 69.6 134.0 106.6

Table4.16 Peak values of column shears for the 16-story building (inelastic analysis)
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Figure4.21 Heightwise variation of floor displacements for the l16-story building (inelastic analysis)
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Figure4.22 Heightwise variation of story drift ratios for the 16-story building (inelastic analysis)
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Figure4.23 Heightwise variation of column shears for the 16-story building (inelastic analysis)

By comparing nonlinear static pushover analysis with the nonlinear time history analysis and
the elastic analysis, we find that the 1-mode pushover analysis is not adequate for estimating
seismic demands, especially for high-rise buildings. The difference between the 1 mode
response, 2 modes response, 3 modes response and the time history analysis is larger for
inelastic analysis than those for elastic analysis. The errors of inelastic analysis are generally
larger than those of elastic analysis, since we take the assumption that the mode shapes keep
constant in nonlinear stage. In addition, for inelastic systems, the governing equation is
coupled, which means that the effective lateral force s, contributes to not only its
corresponding mode, but other modes. This contribution is small so that we do not take into

consideration.
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5. CONCLUSTIONS AND FUTURE WORK

By establishing two models and analyzing their elastic and inelastic behavior under seismic
loads, the results of 1 mode, 2 modes and 3 modes modal pushover analysis are compared

with the time history analysis, Table 5.1 shows the average etrors in each analysis case:

Floor Displacment Drift Ratio Column Shear
1 mode 2 modes 3 modes 1 mode 2 modes 3 modes 1 mode 2modes 3 modes
8-Elastic 594% 4.89% 3.97% 8.59% 3.60% 1.26% 28.66% 10.68% 5.09%
16-Elastic 31.53% 9.48% 5.67% 20.49% 4.83% 1.56% 33.39% 11.33% 6.31%
8-Inelastic 16.39% 9.93% 8.47% 33.55% 7.30% 2.18% 73.70% 26.24% 6.71%
16-Inelastic  57.53% 13.66% 10.00% 38.56% 7.39% 3.97% 79.08% 36.83% 16.27%

Table5.1 Average errors in each analysis case

Generally speaking, the higher the building, the more the higher order modes contribute to the
total response, and the more modes needed for accuracy. The conventional 1-mode pushover
analysis provides perfect seismic demands for low- and medium-rise buildings, especially
when structures are basically elastic. For inelastic systems, due to the assumption that the
mode shapes do not change during deformation and the other assumptions, at least 3 modes

should be employed for modal pushover analysis.

Compared with the 1-mode pushover analysis with single monotonic load pattern, the
improved modal pushover analysis combines the contribution of higher order modes, resulting
in a superior accuracy in evaluating seismic performance. It is demonstrated that the elastic
modal pushover analysis is essentially equivalent to the well-known elastic response spectrum
analysis, so the MPA becomes more attractive and effective when applied to inelastic systems
and high-rise buildings. Another important application of pushover analysis and modal
pushover analysis is to predict the failure mechanism for structures. The results of the
comparison between different height structures, pushover analysis and modal pushover

analysis are not performed in the thesis

Although the MPA is conceptually clear and applicable, it is ultimately an approximated
procedure. It would still be a huge amount of work if applied in application, especially when
the structure is complicated. In addition, the assumptions and imperfect inelastic theorems

mentioned above should be emphasized and solved in future work.
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APPENDICES

MATLAB codes for 8-story buildings:

phil=[0.077719174 0.233366532 0.409351222 0.57932963 0.729217301 0.850773451
0.940153231 17

phi2=[-0.25191314 -0.657303522 -0.910269543 -0.869711036 -0.531091255 -0.001137911
0.554777624 17';

phi3=[0.51104658 1.015142466 0.752330768 -0.131800945 -0.8908266 -0.864095536
-0.042402044 17"

L1=sum(phil);
M1=sum(phil."2);
gamal=L1/M1;
sl=gamal *phil;

L2=sum(phi2);
M2=sum(phi2."2);
gama2=1.2/M2;
s2=gama2*phi2;

L3=sum(phi3);
M3=sum(phi3.*2);
gama3=L3/M3;
s3=gama3*phi3;

s=[sl s2 s3];

MIl=sum(sl);
M2=sum(s2);
M3=sum(s3);
HI=[12345678]*s1/Ml;
H2=[1234567 8]*s2/M2,
H3=[1234567 8]*s3/M3;
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MATLAB codes for 16-story buildings:

phil=[0.035677908 0.108882495 0.195665497 0.286416877 0.376895223 0.464901359
0.549030309 0.628208237 0.701524506 0.768175318 0.827451345 0.878747796
0.921598886 0.955768543 0.981465657 1]';

phi2=[-0.113673384 -0.333759519 -0.565824696 -0.762280827 -0.895912847 -0.951319639
-0.922297285 -0.810946914 -0.626961889 -0.386566196 -0.110971593 0.175626497
0.448469615 0.685194937 0.869754767 11';

phi3=[0.200930814 0.551568238 0.835564866 0.940109811 0.825052628 0.513300101
0.0787401 -0.373857167 -0.734962872 -0.917060507 -0.875868911 -0.620885881
-0.212461866 0.254781671 0.680253455 1]';

L1=sum(phil);

M 1=sum(phil.*2);
gamal=L1/M1;
sl=gamal*phil;

L2=sum(phi2);
M2=sum(phi2."2),
gama2=12/M2;
s2=gama2*phi2;

L3=sum(phi3);
M3=sum(phi3.*2);
gama3=L3/M3;
s3=gama3*phi3;

s=[sl s2 s3];

Ml=sum(sl);
M2=sum(s2);
M3=sum(s3);
HI=[12345678910111213 1415 16]*s1/Ml;
H2=[12345678910111213 14 15 16]*s2/M2;
H3=[12345678910111213 14 15 16]*s3/M3;
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