Nonlinear Behavior of Reinforced Concrete Structures under Seismic Excitation

by

MATTHEW ANTHONY PIRES

Bachelor of Science in Civil Engineering Massachusetts Institute of Technology, 2010

Submitted to the Department of Civil and Environmental Engineering In Partial Fulfillment of the Requirements for the Degree of

MASTER OF ENGINEERING IN CIVIL AND ENVIRONMENTAL ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2013

©2013 Matthew Anthony Pires. All rights reserved

The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created.

Signature of Author					
-0	7	Departmer	nt of Civil and	d Environi	nental Engineering
	١	*			May 24, 2013
		~			
Certified by		k. 7			
					Jerome J. Connor
		Professo	or of Civil and	d Environi	nental Engineering
			.1	Λ	Thesis Supervisor
Accepted by		·····			
					Heidi Nepf, Chair
		Depar	rtmental Com	mittee for	Graduate Students

ARCHIVES

MAS	SSACHUSETTS INSTITUT OF TECHNOLOGY	E
	JUL 0 8 2013	
	LIBRARIES	-

Nonlinear Behavior of Reinforced Concrete Structures under Seismic Excitation

by

MATTHEW ANTHONY PIRES

Submitted to the Department of Civil and Environmental Engineering on May 24, 2013 in partial fulfillment of the requirements for the Degree of Master of Engineering in Civil and Environmental Engineering

ABSTRACT

Exploring nonlinear behavior of structures through structural analysis software can be time and computer processing intensive especially with complicated structural models. This paper will explore the nonlinear behavior of a reinforced concrete structure with varying damping conditions that will experience a number of earthquakes at varying intensities. In the effort to produce a more accurate representation of the structural behavior, the building will be designed based on modern design codes. Ultimately, this approach aims to define a range in which engineers can use a linear approximation to determine certain performance metrics like interstory drift and floor accelerations.

Thesis Supervisor: Jerome J. Connor Title: Professor of Civil and Environmental Engineering

Acknowledgements

Thank you to Professor Connor and Pierre Ghisbain for being supportive and instructive during the past year and during the development of this thesis.

Thank you to my family and friends for being there for me when I needed you and for being so understanding when the year got busy and I was not able to spend as much time with you.

Thank you to Professor Kocur and the Civil and Environmental Engineering Department for providing me the opportunity to serve as a teaching assistant. Teaching was the highlight of my year. I truly enjoyed my time with the students.

Thank you to the MEng Class of 2013 for making this year special.

Table of Contents

1	INT	RODUCTION 11
2	MC	DDEL 12
	2.1	MATERIAL
	2.2	SUPPORTS
	2.3	LOADING
	2.4	BEAM AND COLUMN DESIGN
	2.5	HINGES
3	AN	ALYSIS
	3.1	LINK
	3.2	TIME HISTORY DEFINITION
	3.3	TIME HISTORY LOAD CASES
	3.4	DYNAMIC APPROACH
4	RE	SULTS
5	CO	NCLUSIONS
	5.1	FURTHER CONSIDERATIONS
6	RE	FERENCES
7	AP	PENDIX
	7.1	EARTHQUAKE DATA
	7.2	BEAM CALCULATIONS
	7.3	COLUMN CALCULATIONS
	7.4	COLUMN SECTION
	7.5	LINK DEFORMATIONS SHEAR DEFORMATION PERCENTAGE
	7.6	NODE ACCELERATIONS

List of Figures

Figure 1 - 2-D Structure	. 12
Figure 2 - Load Combination Menu	. 14
Figure 3 - Frame Properties	. 18
Figure 4 - Beam Section	19
Figure 5 - Reinforcement Data - Beam	20
Figure 6 - Column Section	21
Figure 7 - Reinforcement Data - Column	22
Figure 8 - First three (3) mode shapes of the structure	23
Figure 9 - Frame Hinge Assignments	25
Figure 10 - Link/Support Property Data	26
Figure 11 - San Fernando Earthquake at Hollywood	27
Figure 12 - Time History Function Definition	28
Figure 13 - Load Data – Nonlinear Direct Integration History	29
Figure 14 - Mass and Stiffness Proportional Damping	30
Figure 15 - Nonlinear Shear Deformation for San Fernando at Hollywood, $\xi = 0.05$	31
Figure 16 - Linear Shear Deformations for San Fernando at Hollywood, $\xi = 0.05$	32
Figure 17 - Nonlinear Accelerations for San Fernando at Hollywood, $\xi = 0.05$	32
Figure 18 - Linear Acceleration for San Fernando at Hollywood, $\xi = 0.05$	33
Figure 19 - Nonlinear Shear Deformation until nonlinear response for San Fernando, $\xi = 0.05$.	34
Figure 20 - Nonlinear Accelerations until nonlinear response for San Fernando, $\xi = 0.05$	35
Figure 21 - Nonlinear Shear Deformations for San Fernando at Hollywood, $\xi = 0.03$	36
Figure 22 – Nonlinear Accelerations for San Fernando at Hollywood, $\xi = 0.03$	36

Figure 23 – Nonlinear Shear Deformations for San Fernando at Hollywood, $\xi = 0.01$
Figure 24 - Nonlinear Accelerations for San Fernando at Hollywood, $\xi = 0.01$
Figure 25 - Loma Prieta Earthquake at Anderson Dam
Figure 26 - Loma Prieta Earthquake at Coyote Lake Dam
Figure 27 - Nonlinear Shear Deformations for Loma Prieta at Anderson Dam
Figure 28 - Linear Shear Deformations for Loma Prieta at Anderson Dam
Figure 29 - Nonlinear Shear Deformations for Loma Prieta at Coyote Lake Dam 54
Figure 30 - Linear Shear Deformations for Loma Prieta at Coyote Lake Dam
Figure 31 - Nonlinear Shear Deformations for Loma Prieta at Anderson Dam, $\xi = 0.03$
Figure 32 - Nonlinear Shear Deformations for Loma Prieta at Coyote Lake Dam, $\xi = 0.03$ 55
Figure 33 - Nonlinear Shear Deformations for Loma Prieta at Anderson Dam, $\xi = 0.01$
Figure 34 - Nonlinear Shear Deformations for Loma Prieta at Coyote Lake Dam, $\xi = 0.01$ 56
Figure 35 - Nonlinear Accelerations for Loma Prieta at Anderson Dam, $\xi = 0.05$
Figure 36 - Linear Acceleration for Loma Prieta at Anderson Dam, $\xi = 0.05$
Figure 37 - Nonlinear Accelerations for Loma Prieta at Coyote Lake Dam, $\xi = 0.05$
Figure 38 - Linear Accelerations for Loma Prieta at Coyote Lake Dam, $\xi = 0.05$
Figure 40 - Nonlinear Accelerations for Loma Prieta at Anderson Dam, $\xi = 0.03$
Figure 41 - Nonlinear Accelerations for Loma Prieta at Coyote Lake Dam, $\xi = 0.03$
Figure 42 - Nonlinear Accelerations for Loma Prieta at Anderson Dam, $\xi = 0.01$
Figure 43 - Nonlinear Accelerations for Loma Prieta at Coyote Lake Dam, $\xi = 0.01$

List of Tables

Table 1 - Loads	14
Table 2 - Modal Information	23
Table 3 - Earthquake Data	27
Table 4 - Column Sizes	46
Table 5 - Link Deformations: San Fernando at Hollywood, $\xi = 0.05$	47
Table 6 - Link Deformations: Loma Prieta at Anderson Dam, $\xi = 0.05$	48
Table 7 - Link Deformations: Loma Prieta at Coyote Lake Dam, $\xi = 0.05$	48
Table 8 - Link Deformations: San Fernando at Hollywood, $\xi = 0.03$	49
Table 9 - Link Deformations: Loma Prieta at Anderson Dam, $\xi = 0.03$	50
Table 10 - Link Deformations: Loma Prieta at Coyote Lake Dam, $\xi = 0.03$	50
Table 11 - Link Deformations: San Fernando at Hollywood, $\xi = 0.01$	51
Table 12 - Link Deformations: Loma Prieta at Anderson Dam, $\xi = 0.01$	52
Table 13 - Link Deformations: Loma Prieta at Coyote Lake Dam, $\xi = 0.01$	52
Table 14 - Node Accelerations: San Fernando at Hollywood, $\xi = 0.05$	57
Table 15 - Node Accelerations: Loma Prieta at Anderson Dam, $\xi = 0.05$	58
Table 16 - Node Accelerations: Loma Prieta at Coyote Lake Dam, $\xi = 0.05$	58
Table 17 - Node Accelerations: San Fernando at Hollywood, $\xi = 0.03$	59
Table 18 - Node Accelerations: Loma Prieta at Anderson Dam, $\xi = 0.03$	60
Table 19 - Node Accelerations: Loma Prieta at Coyote Lake Dam, $\xi = 0.03$	60
Table 20 - Node Accelerations: San Fernando at Hollywood, $\xi = 0.01$	61
Table 21 - Node Accelerations: Loma Prieta at Anderson Dam, $\xi = 0.01$	62
Table 22 - Node Accelerations: Loma Prieta at Coyote Lake Dam, $\xi = 0.01$	62

1 Introduction

Exploring nonlinear behavior of structures through structural analysis software can be time and computer processing intensive especially with complicated structural models. Finding a way to increase the speed of analyzing large structures with thousands of elements with out losing the accuracy of quantifying the structural and dynamic performance will empower engineers and give them the ability to process more design considerations.

One process to explore is the nonlinear response of reinforced concrete structures during a seismic excitation. This paper will explore the nonlinear behavior of a reinforced concrete structure with varying damping conditions that will experience a number of earthquakes at varying intensities. This research aims to define a range in which engineers can use a linear approximation to determine certain performance metrics like interstory shear deformations and floor accelerations. These metrics can then be used in other analysis to determine lifetime structural costs associated with seismic excitation.

The structure used for analysis was designed according to American Building Code and aims to be an accurate representation of a building frame. The details of this structure have been outline in Chapter 2 of this paper. Providing varying member sizing will create a scenario where individual members will begin to form hinges and experience nonlinear behavior. Other modeling techniques that simplify the design of the structure have groups of structural elements that fail simultaneously and provide an inaccurate representation of building performance and resilience. This sophistication should provide an opportunity for load redistribution and more accurate representation of the load flow after hinge formation.

11

2 Model

In order to explore the linear and nonlinear behavior of a reinforced concrete structure, it was important to develop a model that would be appropriate for conducting multiple earthquake analyses. All models were analyzed using SAP2000 version 15. As an initial simplified approach to this problem, a 2-D model was explored.

Figure 1 - 2-D Structure

The structure is a moment resisting frame that is eight (8) stories tall and each story is 15 feet in height. The building has three (3) bays each spanning 30 feet. Thus, the overall dimensions of

the structure are 120 feet in height and 90 feet in width. The aspect ratio is 1.33. With such a relatively small aspect ratio, the building should behave as a shear beam rather than a bending beam. The following sections detail the individual components and properties used to characterize the structure and the technique used to appropriately size the members. An image of the structure is provided in Figure 1.

2.1 Material

The structure required the definition of materials - concrete and rebar. The compressive strength of the concrete is 4,000 pounds per square inch and the strength of the rebar is 60,000 pounds per square inch.

2.2 Supports

For the purpose of the analysis, geotechnical conditions were not considered and all earthquake loading was applied at the base of the structure. Support conditions were assumed to be fixed though it is understood that these conditions are difficult to deploy in the field.

2.3 Loading

The structure was designed for realistic dead and live loads for an office building located in a high- wind coastal region. The structure is a 2-D representation of a structure with 6 inch slabs. The gravity and lateral loads considered are noted in Table 1. These loads were used to define the static load patterns, which eventually were used to define the section properties.

Loads	Loading (psf)
Dead (Slabs)	75
Superimposed Dead Load	20
Live Load (Office Building)	100

Table 1 - Loads

It is important to note that the live load was separated into three (3) conditions, each representing the distributed loading on each structural bay. These patterns were assembled according to the load combinations guidelines of ASCE 7 – Minimum Design Loads of Buildings and Other Buildings. Though wind load is commonly considered in design for a structure of this height, the live load combinations governed the design. Figure 2 shows the load combinations applied to the structure. These load combinations were amalgamated into an envelope condition and ultimately used to determine the governing stress in the beams and columns. The beams were governed by the maximum moment and though the columns experience some moment, the axial load governed the design.

oad Combinations	Click to:
1.2 Dead + 1.6 Live1	Add New Combo
1.2 Dead + 1.6 Live2 1.2 Dead + 1.6 Live3 1.2 Dead + 1.6 Live1 + 1.6 Live2 1.2 Dead + 1.6 Live2 + 1.6 Live3 1.2 Dead + 1.6 Live1 + 1.6 Live3 Envelope	Add Copy of Combo
	Modify/Show Combo
	Delete Combo
	Add Default Design Combos
	Convert Combos to Nonlinear Cases.
	Cancel

Figure 2 - Load Combination Menu

2.4 Beam and Column Design

With the geometry, support conditions and loading, the structure was generated within the software. Once these design criteria were established, the beams and columns could be designed. For the beam, initial dimensions were selected and the concrete cover for the rebar was assumed to be 2.5 inches. The maximum moment, M_u , and the effective depth of the beam can be used to determine the area of steel required.

$$J_d = 0.875 * d - C_c$$

where,

- J_d , effective depth of the beam
- d, nominal depth of the beam
- C_c, concrete cover

The area of the steel can be determined with the equation below, which is applicable for load resistant factored design (LRFD).

$$a_{st} = \frac{M_u}{\phi * f_y * J_d}$$

where,

- a_{st}, area of steel
- M_u, factored moment (LRFD)
- f_y , yield strength of rebar
- J_d , effective depth of the beam
- ϕ , load resistance factor, 0.9 for LRFD

This value should be compared to the minimum steel requirement within ACI318. Once the amount of steel is calculated, a practical number of rebar needed in the beam can be determined. This amount of steel can then be used to determine the capacity of the beam. The height of the compression block needs to be calculated first using the equation below.

$$a = \frac{A_{st}b_w}{0.85f'_cf_v}$$

where,

- a, height of the compression block
- Ast, total area of non-prestressed longitudinal reinforcement
- b_w , beam width
- f'_c, specified compressive strength of concrete
- f_y, specified yield strength of reinforcement

The moment capacity of the beam can be defined using the height of the compression block. The equation below illustrates this relationship.

$$M_n = A_{st} f_y (h - C_c - \frac{a}{2})$$
$$M_u = \phi M_n$$

where,

- M_n, nominal moment capacity of the beam
- A_{st}, total area of non-prestressed longitudinal reinforcement
- f_y, specified yield strength of reinforcement
- h, nominal height of the beam
- C_c, concrete cover
- a, height of the compression block

M_u, ultimate moment capacity of the beam

 ϕ , load resistance factor, 0.9 for LRFD

The ultimate moment capacity of the beam must exceed the maximum moment experienced by the beam; otherwise the dimensions of the beam should be modified until this requirement is met.

The columns were designed for the maximum axial load since the maximum moment is small in comparison. The maximum axial load will define the maximum nominal load.

$$\phi P_n = P_u$$

where,

 P_n , nominal axial load

P_u, ultimate axial load

 ϕ , load resistance factor, 0.9 for LRFD

To define the required size of the column, an area of steel to area of gross area ratio should be prescribed. Using this ratio an estimation of the gross area can be established. The gross area can be calculated using the Equation 10-1 from Section 10.3.6.1 in ACI 318. In the case, the assumption is that the spiral reinforcement conforms to Section 7.10.4 of ACI 318

$$\phi P_{n,max} = 0.85\phi [0.85f_c'(A_g - A_{st}) + f_y A_{st}]$$

where,

P_{n,max}, maximum allowable nominal axial strength of cross section

- f'_c, specified compressive strength of concrete
- A_g, gross area of concrete section
- Ast, total area of nonprestressed longitudinal reinforcement

fy, specified yield strength of reinforcement

If the right side of the equation is multiplied by the unity of A_g, the resulting equation takes the following form:

$$\phi P_{n,max} = A_g 0.85 \phi \left[0.85 f_c' \left(\frac{A_g}{A_g} - \frac{A_{st}}{A_g} \right) + f_y \frac{A_{st}}{A_g} \right]$$

The equation can now be simplified and the variables can be rearranged in order to solve for Ag.

$$A_g = \frac{\phi P_{n,max}}{0.85\phi[0.85f_c'\left(1 - \frac{A_{st}}{A_g}\right) + f_y\frac{A_{st}}{A_g}]}$$

In this equation, A_{st} / A_{g} is a prescribed ratio. The gross area governs the dimensions of the column. The area of steel to gross area ratio will define the area of the steel needed in the column. As in the beam design, a practical number of rebar whose area exceeds the area determined from the previous calculation should be determined. In the design of the structure for this analysis, the columns were designed in groups characterized by location.

	Frame Properties
Properties Find this property:	Click to:
BEAM BEAM	Add New Property
EXT COL 34 EXT COL 56	Add Copy of Property
INT COL 12 INT COL 34	Modify/Show Property
INT COL 78	Delete Property
an a	
-	

Figure 3 - Frame Properties

The interior columns were designed as a separate column compared to the exterior columns. The columns were grouped every two floors to mimic the practical design of columns for buildings. It is typical that the column dimensions would be consistent for several stories at a time. The beam and column designs were defined as frame section and can be seen in the Figure 3. Each section property is governed by the loading and can be represented using the section creator. Figure 4 shows the section created for the beam elements. The only parameters changed were the depth and the width of the beam.

Section Name	BEAM	
Section Notes		Modify/Show Notes
Properties Section Properties	Property Modifiers Set Modifiers	Material + 4000Psi
Dimensions		
Depth (t3)	24.	
Width (t2)	24.	3-
		Display Color
Concrete Beinforcer	ment	

Figure 4 - Beam Section

The reinforcement data calculated in the previous section can be inputted using the "Concrete Reinforcement" menu. Longitudinal and Confinement Bars were assumed to be A615 Grade 60

Steel and the concrete cover was 2.5 inches. Figure 5 shows the reinforcement menu for beam elements.

Rebar Material		Service and the service of the servi		
Longitudinal Bars	+ A615	Gr60 🗾		
Confinement Bars	(Ties) + A615	es) + A615Gr60 -		
Design Type				
Column (P-M2	-M3 Design)			
🕫 Beam (M3De	sign Only)			
Concrete Cover to	Longitudinal Rebar Cen	ter		
Тор		2.5		
Bottom		2.5		
Reinforcement Ove	errides for Ductile Beam	s		
	Left	Right		
Тор	7.	7.		
Bottom	3.	3.		

Figure 5 - Reinforcement Data - Beam

The column sections were generated in a similar fashion. The only default parameter that needed to be altered in the section properties was the dimensions of the column. The reinforcement menu, though, required slightly different information to properly model the element.

Section Name	EXT CO	L 12
Section Notes		Modify/Show Notes
Properties	Property Modifiers	Material
Section Properties	Set Modifiers	+ 4000Psi 💌
Dimensions		
Depth (t3)	14.	
Width (t2)	14.	3
		Display Color
Concrete Reinforce	ment	

Figure 6 - Column Section

The column reinforcement used the same longitudinal and confinement bars as the beams. The concrete cover for the columns were considered to be 1.5 inches The number of longitudinal bars on the 2-dir or 3-dir face depended on the number of bars necessary to develop the full capacity of the column. The 2-dir and 3-dir faces are the local axes of the column and are visible in the cross-section image in Figure 6. The orientation of the bars can be seen in the Figure 6. This can be an iterative process. It is vital that the bars fit appropriately within the cross-sectional area. In order to solve crowding or sparse area issues, the bar quality should be adjusted and different size rebar should be considered. The confinement bars were always considered to be #4 bars at 6 inch spacing.

Reinforcer	nent Data
Rebar Material	
Longitudinal Bars	+ A615Gr60 -
Confinement Bars (Ties)	+ A615Gr60 -
Design Type	
Column (P-M2-M3 Design)	
C Beam (M3DesignOnly)	
Reinforcement Configuration	- Confinement Bars
🕫 Rectangular	Ties
Circular	🔿 Spiral
– Longitudinal Bars - Rectangular (Configuration
Clear Cover for Confinement Bar	s 1.5
Number of Longit Bars Along 3-c	fir Face 3
Number of Longit Bars Along 2-c	lir Face 4
Longitudinal Bar Size	+ #9 💌
Confinement Bars	新用 的
Confinement Bar Size	+ #4 👻
Longitudinal Spacing of Confine	ment Bars 6.
Number of Confinement Bars in 3	3-dir 3
Number of Confinement Bars in 2	2-dir 3
Check/Design	
C Reinforcement to be Checke	ed OK
Reinforcement to be Design	ed Cancel

Figure 7 - Reinforcement Data - Column

The beam and column sizes determined through these can be found in the Appendix. A modal analysis was conducted with these sections to determine the mode shapes and periods. These values were important when defining the load cases for the time history analysis. The periods of the structure are shown in Table 2.

Mode	Period (sec)	Frequency (Hz)	Modal Participation Factor
1	1.66	0.60	0.8566
2	0.70	1.44	0.9627
3	0.40	2.48	0.9885

Table 2 - Modal Information

The modal information can provide some insight into the damping ration of each mode based on the modal frequency and damping ratios used. The modes shapes of the structure can be seen in Figure 8.

Figure 8 - First three (3) mode shapes of the structure

Rayleigh equation can be very useful in this situation to determine the governing mode shape. The Rayleigh damping parameter can be defined in terms of the mass and stiffness of the structure.

$$c = 2\omega_i\xi_i = \alpha m + \beta k$$

where,

- c Rayleigh damping parameter
- α mass damping parameter

- m mass of the structure
- β stiffness damping parameter
- k stiffness of the structure
- ω_i frequency of mode i, also defined as the square root of k_i/m_i
- ξ_i damping ratio of mode i

The mass and stiffness damping parameters can be defined from the equations below.

$$\alpha = \frac{2\omega_i\omega_j}{\omega_j - \omega_i}(\omega_j\xi_i - \omega_i\xi_j)$$
$$\beta = \frac{2}{\omega_j^2 - \omega_i^2}(\omega_j\xi_j - \omega_i\xi_j)$$

Now taking the frequencies from the first and second mode and considering 5% for the structure, will generate the following values of α and β .

$$\alpha = \frac{2(0.60)(1.44)}{1.44 - 0.60} [(1.44)(0.05) - (0.60)(0.05)] = 0.086$$
$$\beta = \frac{2}{(1.44)^2 - (0.60)^2} [(1.44)(0.05) - (0.60)(0.05)] = 0.049$$

The initial equation can be written and the values of α and β can be assigned.

$$\xi_i = \frac{0.086}{2\omega_i} + \frac{0.049\omega_i}{2}$$

The Rayleigh damping ratios associated with the first three modes can be calculated with this equation and generates a damping ratio of 8.6% for the first mode, 6.5% for the second mode, and 7.8% for third mode. This indicates that second mode will experience the least amount of damping and will have the greatest effect on the performance of the structure.

2.5 Hinges

Each beam and column element requires hinge elements to properly analyze the nonlinear behavior of the structure. The hinge elements were assigned to either end of the column and beam elements. The menu can be seen in Figure 9. As the intensity of the earthquakes increases, the moment experienced within the beams and columns also increases. At some point, the moment experienced by these elements will exceed the capacity and a hinge will form, the load will shift, and the system will release energy due to the hysteretic moment rotation behavior assumed for plastic hinges.

Frame H	linge Assignments
 Frame Hinge Assignment Data – Hinge Property 	Relative Distance
Auto M3 Auto M3 Auto M3	0. 0. Add 1. Modify Delete
Auto Hinge Assignment Data Type: From Tables In FEMA 35 Table: Table 6-7 (Concrete Be DOF: M3 Modifu/Show A	56 ams - Flexure) Item i
	Cancel

Figure 9 - Frame Hinge Assignments

3 Analysis

3.1 Link

It is important to record the drift of each floor after the analysis cases run. Links that have no weight or stiffness were introduced along one face of the structure. The link deformation values can be easily exported using the SAP output tables. The links span from floor-to-floor so the percent drift for each story will be the local deformation of the link divided by the length of the link (or story). The details that describe the link are shown in Figure 10. The link will be linear and thus will measure the deformation in only one direction and not the resultant of several directional deformations.

спк/зирро	nt rype junear	and a second	
Property I	Name LINK1	Se	et Default Name
Property No	otes	N	lodify/Show
Total Mass /	and Weight		
Mass	0.	Rotational Inertia 1	0.
Weight	0.	Rotational Inertia 2	0.
		Batational Inaction 2	0
Factors For Property is I Property is I	Line, Area and Solid Defined for This Len Defined for This Are	Protestional inertia 3 Springs gth In a Line Spring a In Area and Solid Springs	0.9996
Factors For Property is I Property is I Directional F	Line, Area and Solid Defined for This Len Defined for This Are Properties	Protestional inertia 3 Springs gth In a Line Spring a In Area and Solid Springs	0.9996 0.9999 P-Delta Parameter
Factors For Property is I Property is I Directional F Direction	Line, Area and Solid Defined for This Len Defined for This Are Properties Fixed	Protectional inertia 3 Springs gth In a Line Spring a In Area and Solid Springs Properties	0.9996 0.9999 P-Delta Parameter Advanced
Factors For Property is I Property is I Directional F Direction	Line, Area and Solid Defined for This Len Defined for This Are Properties Fixed	Protectional inertia 3 Springs gth In a Line Spring a In Area and Solid Springs Properties Modify/Show for All	0.9996 0.9999 P-Delta Parameter Advanced
Factors For Property is I Property is I Directional F Direction U1 U1	Line, Area and Solid Defined for This Len Defined for This Are Properties Fixed Г	Protectional inertia 3 Springs gth In a Line Spring a In Area and Solid Springs Properties Modify/Show for All	0.9996 0.9999 P-Delta Parameter Advanced
Factors For Property is I Property is I Directional F Direction I U1 I U1 I U2 I U2 I U3	Line, Area and Solid Defined for This Len Defined for This Are Properties Fixed Fixed	Protectional inertia 3 Springs gth In a Line Spring a In Area and Solid Springs Properties Modify/Show for All	0.9996 0.9999 P-Delta Parameter Advanced
Factors For Property is I Directional F Direction U1 U1 U2 U2 U3 F U3	Line, Area and Solid Defined for This Len Defined for This Are Properties Fixed Fixed T	Protectional inertia 3 Springs gth In a Line Spring a In Area and Solid Springs Properties Modify/Show for All	0.9996 0.9993 - P-Delta Parameter Advanced
Factors For Property is I Directional F Direction U1 U1 U2 U2 U2 U2 R1 R1 R2	Line, Area and Solid Defined for This Len Defined for This Are Properties Fixed Fixed F	Protectional inertia 3 Springs gth In a Line Spring a In Area and Solid Springs Properties Modify/Show for All	0.9996 0.9999 P-Delta Parameter Advanced

Figure 10 - Link/Support Property Data

3.2 Time History Definition

The time history information was adopted from earthquake data acquired from the Pacific Earthquake Engineering Research Center Database. The frequency spectrum is normalized in terms of g and can be scaled to match any intensity desired. The earthquake information is provided in Table 3.

Table 3 - Earthquake Data

No.	Earthquake	Station	Time Step
068	SAN FERNANDO 02/09/71 14:00	LA HOLLYWOOD STOR LOT	0.01
985	LOMA PRIETA 10/18/89 00:05	ANDERSON DAM DOWNSTREAM	0.005
995	LOMA PRIETA 10/18/89 00:05	COYOTE LAKE DAM DOWNST	0.005

The information for each earthquake provides spectrum similar to that seen in the Error!

Reference source not found..

Figure 11 - San Fernando Earthquake at Hollywood

For each earthquake, intensities between 0.1g and 1.0g were considered. This information can be defined within the SAP's Time History Function Definition menu. An image of this menu is shown in Figure 12.

Function Name	NGA068		
nction File	Values are:		
File Name Browse	C Time and Function Values		
::\users\matt\dropbox\mit\m.eng 2012 -	Values at Equal Intervals of 0.01		
	Format Type		
eader Lines to Skip 0	Free Format		
refix Characters per Line to Skip	C Fixed Format		
	Characters per Item		
umber of Points per Line			
Convert to User Defined View File			
Display Graph	0.0,0.0		

Figure 12 - Time History Function Definition

3.3 Time History Load Cases

Once the time histories are properly defined within the SAP software, the load cases can be generated. In the load case menu, picture below, certain selections were made. Under the load case type drop time, a "Time History" approach should be selected. This will alter the "Loads Applied" section. The "Analysis Type" and "Time History Type" were nonlinear and direct integration respectively. The "Initial Condition" of the system was an unstressed state. Under the "Loads Applied" section the "Accel" type was selected for load in the local U1 direction. Depending on the earthquake, the function would change to match the appropriate function. The scale factor was used to meet the correct intensity needed. As previously mentioned, all earthquakes were normalized in terms of g. The maximum frequency within the earthquake data was scaled to meet the intensity requirement. The factors also need to match the units used throughout the model.

Load Case Name		Notes	Load Case Type	
068 0.1g	Set Def Name	Modify/Show	. Time History	✓ Design
Initial Conditions			Analysis Type	Time History Type
Zero Initial Conditions -	Start from Unstressed	State	⊂ Linear	Modal
C Continue from State at I	End of Nonlinear Case		 Nonlinear 	Direct Integration
Important Note: Loads	from this previous cas	se are included in th	e Geometric Nonli	nearity Parameters
culler	r case		None	
Modal Load Case			P-Delta	
Use Modes from Case		MODAL	🖆 🔿 P-Delta plu:	s Large Displacements
Loads Applied				
Load Type Load	Name Function	Scale Facto	N ²	
Accel 💌 U1	▼ NGA068	▼ 15.342		
Accel U1	NGA068	15.342	^ Add	
			Martin I	
			Modily	
1 1	1		Delete	
F Show Advanced Load	Parameters			
				Time History Motion Type
Time Step Data			50	 Transient
Time Step Data Number of Output Tim	e Steps	11	50	
Time Step Data Number of Output Tim	e Steps	11	1	C Periodic
Time Step Data Number of Output Tim Output Time Step Size	e Steps	۱۱ م	.1	C Periodic
Time Step Data Number of Output Tim Output Time Step Size Other Parameters	e Steps	1 0	.1	C Periodic
Time Step Data Number of Output Tim Output Time Step Size Other Parameters Damping	Proportional [ן ס Damping	.1 Modify/Show	C Periodic
Time Step Data Number of Output Tim Output Time Step Size Other Parameters Damping Time Integration	Proportional (Hilber-Hughe	Damping	.1 Modify/Show	C Periodic

Figure 13 - Load Data - Nonlinear Direct Integration History

Within the "Damping" menu, the damping coefficient was defined by the period of the structure. The periods of the first and second mode, as defined by the modal analysis, were used with 5% damping, which is a conservative estimate for concrete structures and allowed by building code. These values will automatically generate the "Mass Proportional Coefficient" and "Stiffness Proportional Coefficient" necessary for the nonlinear analysis.

Mass and Stiffness Proportional Damping								
Damping Coeff	icients							
			Mass Proportional Coefficient	Stiffness Proportional Coefficient				
C Direct S	pecification							
Specify E	Damping by Period	ł	0.3452	5.911E-03				
C Specify [Damping by Freque	ency	[
	Period	Frequency	Damping					
First	1.3		0.05	Recalculate				
Second	0.52		0.05	Coefficients				
Cancel								

Figure 14 - Mass and Stiffness Proportional Damping

3.4 Dynamic Approach

Based on a number of earthquake time histories, the building was hit with a number of intensities. For each intensity, a value of the maximum lateral deformation was record in each link. These values can be normalized to the story height to produce the interstory drift ratio. These values could then be compared to the linear analysis to determine where in the analysis the linear can accurately estimate the nonlinear performance of the structure. The acceleration for each floor was approached in a similar manner. These accelerations can be compared to the values for the linear case to determine where in the analysis the linear case can accurately estimate the nonlinear approached.

4 Results

Once the SAP2000 analysis has run, the output tables can be interpreted to provide further insight in the deformation of the links and acceleration of each story. The shear deformation of each link is normalized to the story height and can be plotted as shown in Figure 15. This figure shows the shear deformations observed on the nonlinear analysis for each link over a range of intensities.

Figure 15 - Nonlinear Shear Deformation for San Fernando at Hollywood, ξ =0.05

The same procedure can be performed with a linear analysis of the structure. The linear analysis was run with one (1) intensity and then these results were scaled for the remaining intensities. The linear shear deformations can be seen in Figure 16. The nonlinear and linear deformations are identical. The shear deformation plots for the remaining two (2) earthquakes can be found in the Appendix. These analyses garnered the same results. The linear and nonlinear deformations were identical.

Figure 16 - Linear Shear Deformations for San Fernando at Hollywood, ξ =0.05

The acceleration of each story can also be scaled using the 0.1g behaviors in order to compare the linear and nonlinear behavior. Figure 17 below shows the nonlinear accelerations due to the San Fernando earthquake.

Figure 17 - Nonlinear Accelerations for San Fernando at Hollywood, ξ =0.05

The nonlinear accelerations match the linear results shown in Figure 18.

Figure 18 - Linear Acceleration for San Fernando at Hollywood, $\xi = 0.05$

These results were unexpected. The hypothesis was that the structure would begin to experience nonlinear behavior before 1.0g, since this is considered a significant earthquake. The results show that based on these approximations and this 2-D representation that the interstory drift deformation and the floor accelerations can be approximated using a linear approach instead of a nonlinear approach.

These results sparked research into the behavior of the structure. There was some motivation to explore the intensity at which the structure would begin to experience nonlinear deformation. The intensity of the San Fernando earthquake was increased until nonlinear deformation was noticed. Figure 19 shows the behavior of the links between 0 and 5g. For clarity, only odd valued intensities are depicted in the graph. The nonlinear behavior begins at 3.2g and happens

primarily in link 7. Recall that the column size transitioned from link 6 to 7. Though sized appropriately, the columns on this floor developed hinges creating a mechanism and creating the nonlinear deformation in the link. The deformation in link 8 remained linear in this range.

Figure 19 - Nonlinear Shear Deformation until nonlinear response for San Fernando, $\xi = 0.05$

Knowing that the nonlinearity occurs in this range, the nodal accelerations can also be analyzed. Figure 20 shows the nonlinear behavior of the accelerations also occured at 3.2g. Only the odd valued intensities have been shown for clarity. The three (3) top nodes of these structure that coincide with the 7th floor, 8th floor and roofline experienced the nonlinearity and ultimately lead to the formation of hinges at the 7th floor.

Figure 20 - Nonlinear Accelerations until nonlinear response for San Fernando, $\xi = 0.05$ As mentioned prior, the typical damping ratio of reinforced concrete structures was 5%. In some cases, the reinforced concrete structures might have less damping and in order to quantify the linear and nonlinear effects two (2) additional damping ratios were considered, 1% and 3%.

Figure 21 shows the nonlinear shear deformations due to the San Fernando earthquake with the structure having 3% damping. The intensity was increased until nonlinear behavior occurred. The structure experienced nonlinear behavior at the same intensity as the initial structure with 5% damping. As in the initial model, the 7th link is the first section to experience this behavior.

Figure 21 - Nonlinear Shear Deformations for San Fernando at Hollywood, ξ =0.03

Figure 22 – Nonlinear Accelerations for San Fernando at Hollywood, $\xi = 0.03$

The acceleration shown in Figure 22 also experiences nonlinear behavior in the 3.3g intensity region. Despite this significant decrease in the damping ratio, the structure continues to behave linearly within below the 1.0g range.

Lastly, the structure was modeled using a 1% damping ratio. The structure begins to experience the nonlinear behavior at 2.9g, but not in the 7th link. In this case, the link 8th representing the columns on the 8th floor experience the nonlinear behavior. It is more apparent when observing the acceleration in Figure 24. The accelerations of node 8 and 9, which represent the 8th floor and roofline begin to deviate from linearity.

Figure 24 - Nonlinear Accelerations for San Fernando at Hollywood, ξ =0.01

As in the first two (2) approaches, the structure continues to perform linearly for earthquakes less than 1.0g.

5 Conclusions

This research has concluded based on the assumptions defined in Chapter 2 and Chapter 3 that shear deformations and floor accelerations for reinforced concrete structures can be approximated through linear analysis. The conclusion applies to structures designed according to modern code and is not necessarily applicable to structures built to previous standards, though these results may be applicable to existing structures that may have a similar damping ratio. This hypothesis can only be proven with further research. It is important to not that this model is not perfect and additional work must be done to produce a more accurate representation of reinforced concrete structures. Some of the additional work has been outlined in Section 5.1.

5.1 Further Considerations

This research requires further considerations and work. There is a potential to explore additional behaviors, a larger range of damping ratios, more complicated structural types and improvements to existing design techniques.

This research only explored a 2-dimension representation of potential reinforced concrete structure. Additional research can explore a 3-dimension moment resisting frame structure. The six (6) degrees of freedom would provide a more accurate depiction of how the structure would perform under these earthquake scenarios.

The software analysis used in this research, SAP2000, is quite sophisticated. Proper analysis can be difficult. An exploration into different reinforced concrete modeling or the use of different

analysis techniques could be noteworthy. Additionally, sensitivity analysis based on the assumptions stated previous in the paper could provide further insight into the accuracy of these results.

Based on this analysis, the weakest portion of the structure was the top tier of the structure where the columns transitioned in sizing. Though not explored, it would be interesting to explore how small design variations could affect the overall performance of the structure. Variations, such as increasing the strength of the top portion of the structure, could bring significant improvements to the structure or might result in more acceleration-induced damage.

This research has the ability to be coupled with the work performed by Pierre Ghisbain, a former doctoral student at the Massachusetts Institute of Technology. In his work, titled Seismic Performance Assessment for Structural Optimization, Ghisbain optimizes a buildings design and performance based on lifetime cost including initial construction costs and maintenance costs associated with earthquake related damage over the life of the structure. His work takes an excellent look at steel structures and leaves the opportunity open to perform the same analysis with reinforced concrete structures.

6 References

- (1) ACI Committee 318. "Building Code Requirements for Structureal Concrete (ACI318-11)."
 Farmington Hills: American Concrete Institute, 2011.
- (2) American Society of Civil Engineers. "Minimum Design Loads of Buildings and Other Buildings." Reston: American Society of Civil Engineers, 2010.
- (3) Ghisbain, Pierre. <u>Seismic Performance Assessment for Structural Optimization</u>. Cambridge:
 Pierre Ghisbain, 2013.

7 Appendix

7.1 Earthquake Data

Figure 25 - Loma Prieta Earthquake at Anderson Dam

Figure 26 - Loma Prieta Earthquake at Coyote Lake Dam

7.2 Beam Calculations

This is the beam design for ultimate negative moment that occurs at the beam supports

Material Propertie	es		
f _c '	4	ksi	
f_y	60	ksi	
Beam Dimension	5		
length, l	30	ft	
height, h	24	in	
width, w	24	in	
concrete cover, cc	2.5	in	
weight of beam	0.6	klf	= $(150\text{pcf*h*w}) / (144\text{in}^2/\text{ft}^2)$
Continuous Beam Max Moment	480	kip-ft	from SAP Model
J _d	18.81	in	=0.875*(h-cc)
Area Steel	5.67	in ²	= $(M_{max}*12in/ft) / (0.9*J_d*fy)$
Area of Steel, A_{st} height of compression block, a	7 5.15	in ² in	based on calculated steel area = $(A_{st}*f_y) / (0.85*f_c*w)$
Nominal Moment, M _n	662	kip-ft	$=A_{st}*f_{y}*(h-cc-(a/2)) / (12in/ft)$
Ultimate Moment, M _u	596	>	480

Beam can support load

This is the beam design for ultimate positive moment that occurs at the beam midspan

Material Propertie	s		
f _c '	4	ksi	
$\mathbf{f}_{\mathbf{y}}$	60	ksi	
Beam Dimensions			
length, l	30	ft	
height, h	24	in	
width, w	24	in	
concrete cover, cc	2.5	in	
weight of beam	0.6	klf	=(150pcf*h*w) / (144in ² /ft ²)
Continuous Beam Max Moment	240	kip-ft	from SAP Model
J _d	18.81	in	=0.875*(h-cc)
Area Steel	2.83	in ²	= $(M_{max}*12in/ft) / (0.9*J_d*fy)$
Area of Steel, A_{st} height of compression block, a	3	in ² in	based on calculated steel area = $(A_{st}^*f_y) / (0.85^*f_c^*w)$
Nominal Moment, M _n	306	kip-ft	$=A_{st}*f_{y}*(h-cc-(a/2)) / (12in/ft)$
Ultimate Moment, M _u	275	>	240

Beam can support load

7.3 Column Calculations

	M	aterial Pi	operties							
	f_c '	4000		psi						
	f_y	60000		psi						
	A_{st}/A_{g}	0.04		ratio						
		12 ext	34 ext	56 ext	78 ext	12 int	34 int	56 int	78 int	
	Pu (kips)	685	487	236	155	1515	1138	758	379	from SAP
р	$P_n = P_n / \Phi$	761	541	262	172	1683	1264	842	421	
	n vu/ v	/01	0.11		0.07		17-17-18-1			
	Ag (in ²)	158	112	54	36	350	263	175	87	ACI 10.3.6.1
Sa (Col Dim									
0 q . ((in)	12.6	10.6	7.4	6.0	18.7	16.2	13.2	9.4	=sqrt(A _g)
Dimen	sion used (in)	14.0	12.0	10.0	8.0	20.0	18.0	16.0	12.0	
	A_{g}	196.0	144.0	100.0	64.0	400.0	324.0	256.0	144.0	
A _{bar}	A _{st}	7.84	5.76	4	2.56	16	12.96	10.24	5.76	
1.27	No.10	7	5	4	3	13	11	9	5	
1	No.9	8	6	4	3	16	13	11	6	
0.79	No.8	10	8	6	4	21	17	13	8	
0.6	No.7	14	10	7	5	27	22	18	10	
0.44	No.6	18	14	10	6	37	30	24	14	

7.4 Column Section

	-	Reinforcement		
	Dimensions	No. Bars	Bar Size	
EXT12	14 x 14	8	#9	
EXT34	12 x 12	6	#9	
EXT56	10 x 10	6	#8	
EXT78	8 x 8	6	#6	
INT12	20 x 20	16	#9	
INT34	18 x 18	14	#9	
INT56	16 x 16	14	#8	
INT78	12 x 12	8	#8	

Table 4 - Column Sizes

7.5 Link Deformations | Shear Deformation Percentage

	Link									
	1	2	3	4	5	6	7	8		
0.1	0.111%	0.072%	0.099%	0.102%	0.146%	0.129%	0.257%	0.149%		
0.2	0.222%	0.144%	0.199%	0.205%	0.292%	0.258%	0.514%	0.298%		
0.3	0.334%	0.216%	0.298%	0.307%	0.438%	0.386%	0.770%	0.447%		
0.4	0.445%	0.288%	0.398%	0.409%	0.585%	0.515%	1.027%	0.596%		
0.5	0.556%	0.359%	0.497%	0.512%	0.731%	0.644%	1.284%	0.744%		
0.6	0.667%	0.431%	0.597%	0.614%	0.877%	0.773%	1.541%	0.893%		
0.7	0.778%	0.503%	0.696%	0.717%	1.023%	0.901%	1.797%	1.042%		
0.8	0.889%	0.575%	0.795%	0.819%	1.169%	1.030%	2.054%	1.191%		
0.9	1.001%	0.647%	0.895%	0.921%	1.315%	1.159%	2.311%	1.340%		
1	1.112%	0.719%	0.994%	1.024%	1.462%	1.288%	2.568%	1.489%		
1.1	1.223%	0.791%	1.094%	1.126%	1.608%	1.416%	2.825%	1.638%		
1.2	1.334%	0.863%	1.193%	1.228%	1.754%	1.545%	3.081%	1.787%		
1.3	1.445%	0.935%	1.293%	1.331%	1.900%	1.674%	3.338%	1.935%		
1.4	1.557%	1.006%	1.392%	1.433%	2.046%	1.803%	3.595%	2.084%		
1.5	1.668%	1.078%	1.491%	1.536%	2.192%	1.932%	3.852%	2.233%		
1.6	1.779%	1.150%	1.591%	1.638%	2.338%	2.060%	4.109%	2.382%		
1.7	1.890%	1.222%	1.690%	1.740%	2.485%	2.189%	4.365%	2.531%		
1.8	2.001%	1.294%	1.790%	1.843%	2.631%	2.318%	4.622%	2.680%		
1.9	2.112%	1.366%	1.889%	1.945%	2.777%	2.447%	4.879%	2.829%		
2.0	2.224%	1.438%	1.989%	2.047%	2.923%	2.575%	5.136%	2.978%		
2.1	2.335%	1.510%	2.088%	2.150%	3.069%	2.704%	5.392%	3.126%		
2.2	2.446%	1.582%	2.187%	2.252%	3.215%	2.833%	5.649%	3.275%		
2.3	2.557%	1.653%	2.287%	2.354%	3.362%	2.962%	5.906%	3.424%		
2.4	2.668%	1.725%	2.386%	2.457%	3.508%	3.091%	6.163%	3.573%		
2.5	2.780%	1.797%	2.486%	2.559%	3.654%	3.219%	6.420%	3.722%		
2.6	2.891%	1.869%	2.585%	2.662%	3.800%	3.348%	6.676%	3.871%		
2.7	3.002%	1.941%	2.685%	2.764%	3.946%	3.477%	6.933%	4.020%		
2.8	3.113%	2.013%	2.784%	2.866%	4.092%	3.606%	7.190%	4.169%		
2.9	3.224%	2.085%	2.883%	2.969%	4.238%	3.734%	7.447%	4.317%		
3.0	3.335%	2.157%	2.983%	3.071%	4.385%	3.863%	7.703%	4.466%		
3.1	3.447%	2.229%	3.082%	3.173%	4.525%	3.982%	7.960%	4.615%		
3.2	3.558%	2.300%	3.181%	3.268%	4.642%	4.071%	8.218%	4.756%		
3.3	3.669%	2.372%	3.278%	3.358%	4.762%	4.146%	8.490%	4.887%		
3.4	3.781%	2.444%	3.372%	3.441%	4.906%	4.206%	8.905%	5.010%		
3.5	3.892%	2.515%	3.465%	3.520%	5.050%	4.301%	9.599%	5.125%		
3.6	4.005%	2.586%	3.555%	3.594%	5.194%	4.388%	10.362%	5.232%		
3.7	4.124%	2.659%	3.645%	3.666%	5.339%	4.470%	11.253%	5.329%		
3.8	4.245%	2.733%	3.734%	3.735%	5.483%	4.545%	12.235%	5.416%		
3.9	4.376%	2.826%	3.811%	3.798%	5.627%	4.655%	13.297%	5.490%		
4.0	4.516%	2.925%	3.883%	3.885%	5.772%	4.775%	14.455%	5.554%		
4.1	4.662%	3.025%	3.977%	3.987%	5.916%	4.894%	15.695%	5.611%		
4.2	4.811%	3.126%	4.072%	4.086%	6.060%	5.013%	17.011%	5.652%		

Table 5 - Link Deformations: San Fernando at Hollywood, $\xi = 0.05$

4.3	4.965%	3.231%	4.170%	4.187%	6.199%	5.130%	18.367%	5.693%
4.4	5.122%	3.336%	4.269%	4.286%	6.335%	5.245%	19.794%	5.719%
4.5	5.277%	3.444%	4.369%	4.385%	6.471%	5.358%	21.215%	5.748%
4.6	5.425%	3.548%	4.467%	4.481%	6.606%	5.470%	22.594%	5.772%
4.7	5.502%	3.658%	4.564%	4.575%	6.742%	5.578%	23.929%	5.798%
4.8	5.503%	3.784%	4.658%	4.668%	6.877%	5.684%	25.256%	5.825%
4.9	5.504%	3.900%	4.745%	4.757%	7.012%	5.787%	26.544%	5.854%
5.0	5.504%	4.022%	4.831%	4.848%	7.140%	5.879%	30.117%	88.523%

Table 6 - Link Deformations: Loma Prieta at Anderson Dam, ξ =0.05

			Link									
		1	2	3	4	5	6	7	8			
0	0.1	0.104%	0.064%	0.081%	0.079%	0.117%	0.111%	0.222%	0.122%			
Э В	0.2	0.208%	0.127%	0.162%	0.159%	0.233%	0.222%	0.443%	0.243%			
sity	0.3	0.311%	0.191%	0.243%	0.238%	0.350%	0.333%	0.665%	0.365%			
ten	0.4	0.415%	0.255%	0.325%	0.318%	0.466%	0.443%	0.887%	0.486%			
III	0.5	0.519%	0.318%	0.406%	0.397%	0.583%	0.554%	1.109%	0.608%			
ake	0.6	0.623%	0.382%	0.487%	0.477%	0.699%	0.665%	1.330%	0.729%			
3nb	0.7	0.726%	0.445%	0.568%	0.556%	0.816%	0.776%	1.552%	0.851%			
ŧ	0.8	0.830%	0.509%	0.649%	0.635%	0.932%	0.887%	1.774%	0.972%			
Ear	0.9	0.934%	0.573%	0.730%	0.715%	1.049%	0.998%	1.996%	1.094%			
	1	1.038%	0.636%	0.812%	0.794%	1.165%	1.109%	2.217%	1.215%			

Table 7 - Link Deformations: Loma Prieta at Coyote Lake Dam, ξ =0.05

		Link									
		1	2	3	4	5	6	7	8		
	0.1	0.231%	0.130%	0.168%	0.165%	0.242%	0.221%	0.426%	0.228%		
39	0.2	0.462%	0.260%	0.336%	0.329%	0.484%	0.443%	0.852%	0.456%		
	0.3	0.694%	0.391%	0.504%	0.494%	0.726%	0.664%	1.277%	0.684%		
Iell	0.4	0.925%	0.521%	0.672%	0.659%	0.968%	0.885%	1.703%	0.912%		
	0.5	1.156%	0.651%	0.840%	0.824%	1.211%	1.107%	2.129%	1.140%		
alke	0.6	1.387%	0.781%	1.007%	0.988%	1.453%	1.328%	2.555%	1.368%		
'nĥ	0.7	1.619%	0.912%	1.175%	1.153%	1.695%	1.549%	2.981%	1.596%		
2	0.8	1.850%	1.042%	1.343%	1.318%	1.937%	1.771%	3.406%	1.824%		
R L	0.9	2.081%	1.172%	1.511%	1.483%	2.179%	1.992%	3.832%	2.052%		
	1	2.312%	1.302%	1.679%	1.647%	2.421%	2.213%	4.258%	2.280%		

48

Table 8 - Link Deformations: San Fernando at Hollywood, ξ =0.03

	Link									
	1	2	3	4	5	6	7	8		
0.1	0.121%	0.075%	0.105%	0.109%	0.164%	0.136%	0.255%	0.149%		
0.2	0.243%	0.150%	0.211%	0.218%	0.328%	0.273%	0.510%	0.299%		
0.3	0.364%	0.225%	0.316%	0.328%	0.493%	0.409%	0.765%	0.448%		
0.4	0.485%	0.300%	0.421%	0.437%	0.657%	0.545%	1.021%	0.598%		
0.5	0.606%	0.375%	0.527%	0.546%	0.821%	0.681%	1.276%	0.747%		
0.6	0.728%	0.450%	0.632%	0.655%	0.985%	0.818%	1.531%	0.897%		
0.7	0.849%	0.525%	0.737%	0.765%	1.150%	0.954%	1.786%	1.046%		
0.8	0.970%	0.600%	0.843%	0.874%	1.314%	1.090%	2.041%	1.196%		
0.9	1.091%	0.675%	0.948%	0.983%	1.478%	1.226%	2.296%	1.345%		
1.0	1.213%	0.750%	1.053%	1.092%	1.642%	1.363%	2.551%	1.495%		
1.1	1.334%	0.825%	1.159%	1.202%	1.807%	1.499%	2.806%	1.644%		
1.2	1.455%	0.899%	1.264%	1.311%	1.971%	1.635%	3.062%	1.794%		
1.3	1.576%	0.974%	1.370%	1.420%	2.135%	1.771%	3.317%	1.943%		
1.4	1.698%	1.049%	1.475%	1.529%	2.299%	1.908%	3.572%	2.093%		
1.5	1.819%	1.124%	1.580%	1.638%	2.464%	2.044%	3.827%	2.242%		
1.6	1.940%	1.199%	1.686%	1.748%	2.628%	2.180%	4.082%	2.392%		
1.7	2.061%	1.274%	1.791%	1.857%	2.792%	2.317%	4.337%	2.541%		
1.8	2.183%	1.349%	1.896%	1.966%	2.956%	2.453%	4.592%	2.691%		
1.9	2.304%	1.424%	2.002%	2.075%	3.121%	2.589%	4.847%	2.840%		
2.0	2.425%	1.499%	2.107%	2.185%	3.285%	2.725%	5.103%	2.990%		
2.1	2.546%	1.574%	2.212%	2.294%	3.449%	2.862%	5.358%	3.139%		
2.2	2.668%	1.649%	2.318%	2.403%	3.613%	2.998%	5.613%	3.288%		
2.3	2.789%	1.724%	2.423%	2.512%	3.778%	3.134%	5.868%	3.438%		
2.4	2.910%	1.799%	2.528%	2.622%	3.942%	3.270%	6.123%	3.587%		
2.5	3.031%	1.874%	2.634%	2.731%	4.106%	3.407%	6.378%	3.737%		
2.6	3.153%	1.949%	2.739%	2.840%	4.270%	3.543%	6.633%	3.886%		
2.7	3.274%	2.024%	2.844%	2.949%	4.434%	3.679%	6.888%	4.036%		
2.8	3.395%	2.099%	2.950%	3.059%	4.599%	3.815%	7.144%	4.185%		
2.9	3.516%	2.174%	3.055%	3.168%	4.763%	3.952%	7.399%	4.335%		
3.0	3.638%	2.249%	3.160%	3.277%	4.927%	4.088%	7.654%	4.484%		
3.1	3.759%	2.324%	3.266%	3.386%	5.091%	4.206%	7.909%	4.634%		
3.2	3.881%	2.399%	3.371%	3.495%	5.256%	4.291%	8.173%	4.778%		
3.3	4.009%	2.479%	3.480%	3.605%	5.420%	4.360%	8.678%	4.919%		
3.4	4.140%	2.561%	3.589%	3.714%	5.584%	4.463%	9.520%	5.069%		
3.5	4.270%	2.646%	3.698%	3.823%	5.748%	4.594%	10.478%	5.212%		
3.6	4.407%	2.732%	3.806%	3.932%	5.913%	4.725%	11.564%	5.343%		
3.7	4.552%	2.829%	3.909%	4.042%	6.077%	4.856%	12.757%	5.460%		
3.8	4.700%	2.947%	3.997%	4.151%	6.241%	4.988%	14.040%	5.561%		
3.9	4.850%	3.067%	4.082%	4.260%	6.405%	5.119%	15.425%	5.646%		
4.0	4.999%	3.188%	4.165%	4.366%	6.565%	5.248%	16.863%	5.717%		

Table 9 - Link Deformations: Loma Prieta at Anderson Dam, ξ =0.03

			Link										
		1	2	3	4	5	6	7	8				
	0.1	0.122%	0.066%	0.085%	0.085%	0.122%	0.111%	0.228%	0.131%				
, (g	0.2	0.245%	0.132%	0.170%	0.170%	0.243%	0.223%	0.457%	0.263%				
sity	0.3	0.367%	0.198%	0.255%	0.255%	0.365%	0.334%	0.685%	0.394%				
ten	0.4	0.490%	0.264%	0.339%	0.340%	0.487%	0.446%	0.914%	0.526%				
ike Int	0.5	0.612%	0.330%	0.424%	0.425%	0.609%	0.557%	1.142%	0.657%				
	0.6	0.734%	0.396%	0.509%	0.510%	0.730%	0.668%	1.371%	0.788%				
ant	0.7	0.857%	0.462%	0.594%	0.595%	0.852%	0.780%	1.599%	0.920%				
ţ.	0.8	0.979%	0.528%	0.679%	0.680%	0.974%	0.891%	1.828%	1.051%				
Ear	0.9	1.102%	0.594%	0.764%	0.765%	1.095%	1.002%	2.056%	1.183%				
—	1	1.224%	0.660%	0.848%	0.850%	1.217%	1.114%	2.285%	1.314%				

Table 10 - Link Deformations: Loma Prieta at Coyote Lake Dam, ξ =0.03

	Link										
	1	2	3	4	5	6	7	8			
0.1	0.302%	0.171%	0.205%	0.208%	0.309%	0.287%	0.571%	0.314%			
0.2	0.604%	0.342%	0.411%	0.416%	0.618%	0.575%	1.142%	0.629%			
0.3	0.907%	0.513%	0.616%	0.623%	0.927%	0.863%	1.712%	0.943%			
0.4	1.209%	0.684%	0.822%	0.831%	1.236%	1.150%	2.283%	1.257%			
0.5	1.511%	0.855%	1.027%	1.039%	1.545%	1.438%	2.854%	1.571%			
0.6	1.813%	1.026%	1.232%	1.247%	1.854%	1.725%	3.425%	1.886%			
0.7	2.115%	1.197%	1.438%	1.455%	2.163%	2.013%	3.995%	2.200%			
0.8	2.417%	1.368%	1.643%	1.663%	2.471%	2.300%	4.566%	2.514%			
0.9	2.720%	1.539%	1.848%	1.871%	2.780%	2.588%	5.137%	2.829%			
1	3.022%	1.710%	2.054%	2.078%	3.089%	2.875%	5.708%	3.143%			

Table 11 - Link Deformations: San Fernando at Hollywood, ξ =0.01

	Link									
	1	2	3	4	5	6	7	8		
0.1	0.139%	0.080%	0.118%	0.132%	0.196%	0.147%	0.278%	0.226%		
0.2	0.278%	0.159%	0.236%	0.264%	0.392%	0.295%	0.556%	0.451%		
0.3	0.417%	0.239%	0.353%	0.396%	0.587%	0.442%	0.835%	0.677%		
0.4	0.556%	0.319%	0.471%	0.528%	0.783%	0.590%	1.113%	0.902%		
0.5	0.695%	0.399%	0.589%	0.660%	0.979%	0.737%	1.391%	1.128%		
0.6	0.834%	0.478%	0.707%	0.792%	1.175%	0.884%	1.669%	1.354%		
0.7	0.973%	0.558%	0.825%	0.924%	1.371%	1.032%	1.948%	1.579%		
0.8	1.112%	0.638%	0.942%	1.056%	1.566%	1.179%	2.226%	1.805%		
0.9	1.251%	0.717%	1.060%	1.188%	1.762%	1.326%	2.504%	2.031%		
1.0	1.390%	0.797%	1.178%	1.320%	1.958%	1.474%	2.782%	2.256%		
1.1	1.529%	0.877%	1.296%	1.452%	2.154%	1.621%	3.060%	2.482%		
1.2	1.668%	0.956%	1.414%	1.585%	2.349%	1.769%	3.339%	2.707%		
1.3	1.807%	1.036%	1.531%	1.717%	2.545%	1.916%	3.617%	2.933%		
1.4	1.946%	1.116%	1.649%	1.849%	2.741%	2.063%	3.895%	3.159%		
1.5	2.085%	1.196%	1.767%	1.981%	2.937%	2.211%	4.173%	3.384%		
1.6	2.225%	1.275%	1.885%	2.113%	3.133%	2.358%	4.451%	3.610%		
1.7	2.364%	1.355%	2.003%	2.245%	3.328%	2.506%	4.730%	3.835%		
1.8	2.503%	1.435%	2.120%	2.377%	3.524%	2.653%	5.008%	4.061%		
1.9	2.642%	1.514%	2.238%	2.509%	3.720%	2.800%	5.286%	4.287%		
2.0	2.781%	1.594%	2.356%	2.641%	3.916%	2.948%	5.564%	4.512%		
2.1	2.920%	1.674%	2.474%	2.773%	4.112%	3.095%	5.843%	4.738%		
2.2	3.059%	1.753%	2.592%	2.905%	4.307%	3.243%	6.121%	4.963%		
2.3	3.198%	1.833%	2.709%	3.037%	4.503%	3.390%	6.399%	5.189%		
2.4	3.337%	1.913%	2.827%	3.169%	4.699%	3.537%	6.677%	5.415%		
2.5	3.476%	1.993%	2.945%	3.301%	4.895%	3.685%	6.955%	5.640%		
2.6	3.615%	2.072%	3.063%	3.433%	5.090%	3.832%	7.234%	5.866%		
2.7	3.754%	2.152%	3.181%	3.565%	5.286%	3.979%	7.512%	6.092%		
2.8	3.893%	2.232%	3.298%	3.697%	5.482%	4.127%	7.790%	6.317%		
2.9	4.001%	2.318%	3.421%	3.833%	5.678%	4.274%	8.067%	6.458%		
3.0	4.093%	2.407%	3.546%	3.971%	5.874%	4.422%	8.349%	6.555%		

			Link									
		1	2	3	4	5	6	7	8			
	0.1	0.157%	0.089%	0.110%	0.107%	0.157%	0.129%	0.312%	0.197%			
ر (g	0.2	0.315%	0.179%	0.221%	0.215%	0.313%	0.259%	0.624%	0.394%			
sity	0.3	0.472%	0.268%	0.331%	0.322%	0.470%	0.388%	0.935%	0.591%			
ten:	0.4	0.629%	0.357%	0.441%	0.429%	0.627%	0.518%	1.247%	0.789%			
In	0.5	0.787%	0.446%	0.551%	0.537%	0.783%	0.647%	1.559%	0.986%			
ıke	0.6	0.944%	0.536%	0.662%	0.644%	0.940%	0.777%	1.871%	1.183%			
3nb	0.7	1.101%	0.625%	0.772%	0.751%	1.097%	0.906%	2.182%	1.380%			
Ť	0.8	1.259%	0.714%	0.882%	0.859%	1.254%	1.036%	2.494%	1.577%			
Ear	0.9	1.416%	0.804%	0.993%	0.966%	1.410%	1.165%	2.806%	1.774%			
	1	1.573%	0.893%	1.103%	1.073%	1.567%	1.295%	3.118%	1.972%			

Table 12 - Link Deformations: Loma Prieta at Anderson Dam, ξ =0.01

Table 13 - Link Deformations: Loma Prieta at Coyote Lake Dam, ξ =0.01

			Link									
		1	2	3	4	5	6	7	8			
0	0.1	0.451%	0.262%	0.314%	0.292%	0.447%	0.434%	0.905%	0.516%			
9 0	0.2	0.902%	0.524%	0.628%	0.583%	0.894%	0.868%	1.810%	1.032%			
sity	0.3	1.353%	0.785%	0.942%	0.875%	1.340%	1.302%	2.715%	1.549%			
ten	0.4	1.805%	1.047%	1.257%	1.166%	1.787%	1.735%	3.621%	2.065%			
In	0.5	2.256%	1.309%	1.571%	1.458%	2.234%	2.169%	4.526%	2.581%			
ake	0.6	2.707%	1.571%	1.885%	1.750%	2.681%	2.603%	5.431%	3.097%			
duŝ	0.7	3.158%	1.832%	2.199%	2.041%	3.127%	3.037%	6.336%	3.613%			
Ţ	0.8	3.609%	2.094%	2.513%	2.333%	3.574%	3.471%	7.241%	4.130%			
Ea	0.9	4.032%	2.349%	2.827%	2.612%	4.018%	3.880%	8.201%	4.606%			
	1	4.283%	2.535%	3.095%	2.888%	4.404%	4.070%	9.782%	4.787%			

Figure 27 - Nonlinear Shear Deformations for Loma Prieta at Anderson Dam

Figure 28 - Linear Shear Deformations for Loma Prieta at Anderson Dam

Figure 29 - Nonlinear Shear Deformations for Loma Prieta at Coyote Lake Dam

Figure 30 - Linear Shear Deformations for Loma Prieta at Coyote Lake Dam

Figure 31 - Nonlinear Shear Deformations for Loma Prieta at Anderson Dam, $\xi = 0.03$

Figure 32 - Nonlinear Shear Deformations for Loma Prieta at Coyote Lake Dam, $\xi = 0.03$

Figure 33 - Nonlinear Shear Deformations for Loma Prieta at Anderson Dam, ξ =0.01

Figure 34 - Nonlinear Shear Deformations for Loma Prieta at Coyote Lake Dam, $\xi = 0.01$

7.6 Node Accelerations

	Link										
	I	2	3	4	5	6	7	8	9		
0.1	2.715	1.732	1.799	1.652	1.561	1.952	2.758	2.892	4.237		
0.2	5.430	3.465	3.599	3.305	3.122	3.905	5.516	5.785	8.475		
0.3	8.144	5.197	5.398	4.957	4.683	5.857	8.274	8.678	12.712		
0.4	10.859	6.929	7.197	6.609	6.244	7.810	11.032	11.570	16.950		
0.5	13.574	8.662	8.997	8.261	7.805	9.762	13.790	14.463	21.187		
0.6	16.289	10.394	10.796	9.914	9.366	11.714	16.548	17.355	25.425		
0.7	19.004	12.126	12.595	11.566	10.927	13.667	19.307	20.248	29.662		
0.8	21.718	13.859	14.394	13.218	12.488	15.619	22.065	23.140	33.900		
0.9	24.433	15.591	16.194	14.871	14.049	17.571	24.823	26.033	38.138		
1.0	27.148	17.324	17.993	16.523	15.610	19.524	27.581	28.925	42.375		
1.1	29.863	19.056	19.792	18.175	17.171	21.476	30.339	31.818	46.612		
1.2	32.577	20.788	21.592	19.827	18.732	23.428	33.097	34.710	50.850		
1.3	35.292	22.521	23.391	21.480	20.292	25.381	35.855	37.603	55.087		
1.4	38.007	24.253	25.190	23.132	21.853	27.333	38.613	40.496	59.325		
1.5	40.722	25.985	26.990	24.784	23.414	29.286	41.371	43.388	63.562		
1.6	43.437	27.718	28.789	26.437	24.975	31.238	44.129	46.281	67.800		
1.7	46.151	29.450	30.588	28.089	26.536	33.190	46.887	49.173	72.037		
1.8	48.866	31.182	32.388	29.741	28.097	35.143	49.645	52.066	76.275		
1.9	51.581	32.915	34.187	31.394	29.658	37.095	52.403	54.958	80.512		
2.0	54.296	34.647	35.986	33.046	31.219	39.047	55.161	57.851	84.750		
2.1	57.011	36.379	37.786	34.698	32.780	41.000	57.920	60.743	88.987		
2.2	59.725	38.112	39.585	36.350	34.341	42.952	60.678	63.636	93.225		
2.3	62.440	39.844	41.384	38.003	35.902	44.905	63.436	66.528	97.462		
2.4	65.155	41.576	43.184	39.655	37.463	46.857	66.194	69.421	101.700		
2.5	67.870	43.309	44.983	41.307	39.024	48.809	68.952	72.313	105.937		
2.6	70.585	45.041	46.782	42.960	40.585	50.762	71.710	75.206	110.175		
2.7	73.299	46.773	48.581	44.612	42.146	52.714	74.468	78.099	114.412		
2.8	76.014	48.506	50.381	46.264	43.707	54.666	77.226	80.991	118.650		
2.9	78.729	50.238	52.180	47.916	45.268	56.619	79.984	83.884	122.887		
3.0	81.444	51.971	53.979	49.569	46.829	58.571	82.742	86.776	127.125		
3.1	84.159	53.703	55.779	51.221	48.390	60.524	85.500	89.539	131.366		
3.2	86.873	55.435	57.578	52.873	49.951	62.476	88.258	94.701	135.640		
3.3	89.588	57.168	59.377	54.526	51.512	64.428	91.016	100.877	139.573		
3.4	92.303	58.900	61.177	56.178	53.073	66.381	93.775	107.274	143.098		
3.5	95.018	60.632	62.976	57.830	54.634	68.333	96.533	113.342	146.209		
3.6	97.732	62.365	64.775	59.482	56.195	70.285	99.291	118.500	148.983		
3.7	100.447	64.097	66.575	61.135	57.756	72.238	102.049	122.848	151.436		
3.8	103.162	65.829	68.374	62.787	59.317	74.190	104.807	126.252	153.565		
3.9	105.877	67.562	70.173	64.439	60.877	76.142	107.565	129.585	155.300		
4.0	108.592	69.294	71.973	66.092	62.438	78.095	110.323	133.078	156.694		
4.1	111.306	71.026	73.772	67.744	63.999	80.047	113.081	135.914	157.918		
4.2	114.021	72.759	75.571	69.396	65.560	82.000	115.839	139.253	158.697		

Table 14 -	Node A	ccelerations:	San	Fernando a	at Hollywoo	d. ε =0.05
	1 touc 1 to	ceciei acions.	Jan	i ci nanuo a	at mony woo	u, 5 0.05

4.3	116.736	74.491	77.371	71.048	66.996	83.952	118.522	141.961	159.444
4.4	119.451	76.223	79.170	72.701	68.255	85.904	123.141	144.742	159.784
4.5	122.166	77.956	80.969	74.353	69.446	87.857	128.204	147.661	160.201
4.6	124.880	79.688	82.768	76.005	70.607	89.809	133.587	150.415	160.315
4.7	127.595	81.421	84.568	77.658	71.774	91.761	139.145	153.129	160.481
4.8	130.310	83.251	86.065	79.318	72.955	93.714	144.959	155.798	160.625
4.9	133.025	85.296	86.907	80.995	74.167	95.666	151.066	158.407	160.980
5.0	135.740	87.314	87.493	82.599	75.408	117.923	155.892	3050.864	165.347

Table 15 - Node Accelerations: Loma Prieta at Anderson Dam, ξ =0.05

						Link				
		1	2	3	4	5	6	7	8	9
	0.1	3.220	1.471	1.811	1.857	1.659	1.740	2.088	2.576	3.508
<u>.</u>	0.2	6.440	2.943	3.623	3.714	3.318	3.480	4.176	5.152	7.017
sity	0.3	9.660	4.414	5.434	5.571	4.977	5.220	6.263	7.728	10.526
en	0.4	12.880	5.885	7.246	7.428	6.636	6.961	8.351	10.304	14.034
Ē	0.5	16.100	7.356	9.057	9.285	8.295	8.701	10.439	12.880	17.543
ike	0.6	19.320	8.828	10.869	11.142	9.954	10.441	12.527	15.455	21.051
lua	0.7	22.540	10.299	12.680	12.999	11.613	12.181	14.615	18.031	24.560
ţþ	0.8	25.760	11.770	14.492	14.856	13.272	13.921	16.703	20.607	28.068
Ear	0.9	28.980	13.242	16.303	16.712	14.931	15.661	18.790	23.183	31.577
	1.0	32.200	14.713	18.115	18.570	16.590	17.401	20.878	25.759	35.085

Table 16 - Node Accelerations: Loma Prieta at Coyote Lake Dam, ξ =0.05

						Link				
		1	2	3	4	5	6	7	8	9
	0.1	3.149	2.419	3.171	3.593	3.750	3.568	3.339	5.100	6.315
ensity (g	0.2	6.298	4.839	6.341	7.186	7.501	7.137	6.678	10.200	12.631
	0.3	9.447	7.258	9.512	10.778	11.251	10.705	10.018	15.300	18.946
	0.4	12.596	9.677	12.683	14.371	15.002	14.273	13.357	20.400	25.261
Int	0.5	15.745	12.096	15.853	17.964	18.752	17.841	16.696	25.500	31.576
ike	0.6	18.894	14.516	19.024	21.556	22.502	21.410	20.035	30.599	37.891
Iua	0.7	22.043	16.935	22.194	25.149	26.253	24.978	23.374	35.699	44.207
ţ	0.8	25.192	19.354	25.365	28.742	30.003	28.546	26.714	40.799	50.522
Ear	0.9	28.341	21.774	28.536	32.335	33.753	32.115	30.053	45.899	56.837
	1.0	31.490	24.193	31.706	35.927	37.504	35.683	33.392	50.999	63.152

Table 17 - Node Accelerations: San Fernando at Hollywood, ξ =0.03

					Node				
-	1	2	3	4	5	6	7	8	9
0.1	2.715	2.220	2.265	2.032	1.880	2.564	3.593	3.428	4.232
0.2	5.430	4.439	4.531	4.064	3.759	5.128	7.187	6.856	8.464
0.3	8.144	6.659	6.796	6.096	5.639	7.692	10.781	10.284	12.695
0.4	10.859	8.878	9.061	8.128	7.518	10.257	14.374	13.712	16.927
0.5	13.574	11.098	11.327	10.160	9.398	12.821	17.968	17.140	21.159
0.6	16.289	13.318	13.592	12.192	11.278	15.385	21.561	20.567	25.390
0.7	19.004	15.537	15.857	14.225	13.157	17.949	25.155	23.996	29.622
0.8	21.718	17.757	18.122	16.257	15.037	20.513	28.749	27.423	33.854
0.9	24.433	19.976	20.388	18.289	16.916	23.077	32.342	30.851	38.086
1.0	27.148	22.196	22.653	20.321	18.796	25.641	35.936	34.279	42.317
1.1	29.863	24.416	24.918	22.353	20.676	28.205	39.529	37.707	46.549
1.2	32.577	26.635	27.184	24.385	22.555	30.770	43.123	41.135	50.781
1.3	35.292	28.855	29.449	26.417	24.435	33.334	46.717	44.563	55.012
1.4	38.007	31.074	31.714	28.449	26.314	35.898	50.310	47.991	59.244
1.5	40.722	33.294	33.980	30.481	28.194	38.462	53.904	51.419	63.476
1.6	43.437	35.514	36.245	32.513	30.074	41.026	57.497	54.847	67.708
1.7	46.151	37.733	38.510	34.545	31.953	43.590	61.091	58.275	71.939
1.8	48.866	39.953	40.775	36.577	33.833	46.154	64.685	61.703	76.171
1.9	51.581	42.172	43.041	38.609	35.712	48.719	68.278	65.131	80.403
2.0	54.296	44.392	45.306	40.641	37.592	51.283	71.872	68.559	84.635
2.1	57.011	46.612	47.571	42.674	39.472	53.847	75.465	71.986	88.866
2.2	59.725	48.831	49.837	44.706	41.351	56.411	79.059	75.414	93.098
2.3	62.440	51.051	52.102	46.738	43.231	58.975	82.652	78.842	97.330
2.4	65.155	53.270	54.367	48.770	45.110	61.539	86.246	82.270	101.561
2.5	67.870	55.490	56.633	50.802	46.990	64.103	89.840	85.698	105.793
2.6	70.585	57.710	58.898	52.834	48.869	66.667	93.433	89.126	110.025
2.7	73.299	59.929	61.163	54.866	50.749	69.232	97.027	92.554	114.257
2.8	76.014	62.149	63.428	56.898	52.629	71.796	100.620	95.982	118.488
2.9	78.729	64.368	65.694	58.930	54.508	74.360	104.214	99.410	122.720
3.0	81.444	66.588	67.959	60.962	56.388	76.924	107.808	102.838	126.952
3.1	84.159	68.808	70.224	62.994	58.267	79.488	111.401	106.266	131.184
3.2	86.873	71.027	72.490	65.026	60.147	82.052	114.995	109.475	135.520
3.3	89.588	73.247	74.755	67.058	62.027	84.616	118.588	109.413	139.963
3.4	92.303	75.466	77.020	69.090	63.906	87.181	122.182	115.172	144.210
3.5	95.018	77.686	79.286	71.123	65.786	89.745	125.775	121.063	148.116
3.6	97.732	79.906	81.551	73.155	67.665	92.309	129.369	126.207	151.594
3.7	100.447	82.125	83.816	75.187	69.545	94.873	132.963	130.664	154.623
3.8	103.162	84.345	86.081	77.219	71.425	97.437	136.556	135.164	157.167
3.9	105.877	86.564	88.347	79.251	73.304	100.001	140.150	139.612	159.217
4.0	108.592	88.784	90.612	81.283	75.108	102.565	143.634	144.082	160.868

Table 18 - Node Accelerations: Loma Prieta at Anderson Dam, ξ =0.03

						Node				
		1	2	3	4	5	6	7	8	9
	0.1	3.220	1.808	2.272	2.192	1.908	2.438	2.699	2.641	3.657
g)	0.2	6.440	3.616	4.545	4.383	3.816	4.876	5.398	5.282	7.315
sity	0.3	9.660	5.424	6.817	6.575	5.724	7.313	8.097	7.923	10.972
ten	0.4	12.880	7.232	9.089	8.767	7.632	9.751	10.796	10.564	14.630
Int	0.5	16.100	9.040	11.362	10.958	9.540	12.189	13.495	13.205	18.287
ıke	0.6	19.320	10.848	13.634	13.150	11.448	14.626	16.194	15.846	21.945
anf	0.7	22.540	12.657	15.907	15.342	13.357	17.064	18.893	18.488	25.602
the	0.8	25.760	14.465	18.179	17.533	15.265	19.502	21.591	21.129	29.260
Ear	0.9	28.980	16.273	20.451	19.725	17.173	21.940	24.290	23.770	32.917
-	1.0	32.200	18.081	22.724	21.917	19.081	24.377	26.989	26.411	36.575

Table 19 - Node Accelerations: Loma Prieta at Coyote Lake Dam, ξ =0.03

						Node				
		1	2	3	4	5	6	7	8	9
<u> </u>	0.1	3.149	3.133	4.055	4.655	4.76	4.702	4.311	6.671	8.7
(g	0.2	6.298	6.266	8.11	9.311	9.519	9.405	8.623	13.343	17.401
sity	0.3	9.447	9.399	12.165	13.967	14.279	14.107	12.934	20.015	26.101
ten	0.4	12.596	12.532	16.22	18.623	19.039	18.81	17.246	26.687	34.802
In	0.5	15.745	15.666	20.275	23.278	23.798	23.512	21.558	33.358	43.502
ıke	0.6	18.894	18.799	24.33	27.934	28.558	28.214	25.869	40.03	52.202
anf	0.7	22.043	21.932	28.385	32.589	33.318	32.917	30.181	46.702	60.903
ţħ	0.8	25.192	25.065	32.44	37.245	38.077	37.619	34.492	53.373	69.603
Ear	0.9	28.341	28.198	36.496	41.901	42.837	42.322	38.804	60.045	78.304
-	1.0	31.49	31.331	40.55	46.556	47.597	47.024	43.115	66.717	87.004

Table 20 - Node Accelerations: San Fernando at Hollywood, ξ =0.01

	Link											
-	1 2 3 4 5 6 7 8 9											
0.1	2.715	3.214	3.269	2.869	2.508	3.620	5.321	4.639	6.356			
0.2	5.430	6.428	6.537	5.738	5.017	7.240	10.643	9.279	12.713			
0.3	8.144	9.641	9.806	8.608	7.526	10.860	15.964	13.918	19.069			
0.4	10.859	12.855	13.075	11.477	10.034	14.480	21.285	18.558	25.425			
0.5	13.574	16.069	16.343	14.346	12.543	18.099	26.606	23.197	31.781			
0.6	16.289	19.282	19.612	17.215	15.051	21.719	31.927	27.836	38.137			
0.7	19.004	22.496	22.880	20.084	17.560	25.339	37.249	32.476	44.494			
0.8	21.718	25.710	26.149	22.953	20.068	28.959	42.570	37.115	50.850			
0.9	24.433	28.924	29.418	25.823	22.577	32.579	47.891	41.754	57.206			
1.0	27.148	32.137	32.686	28.692	25.085	36.199	53.212	46.394	63.562			
1.1	29.863	35.351	35.955	31.561	27.594	39.819	58.533	51.033	69.919			
1.2	32.577	38.565	39.223	34.430	30.103	43.438	63.855	55.672	76.275			
1.3	35.292	41.779	42.492	37.299	32.611	47.058	69.176	60.312	82.631			
1.4	38.007	44.992	45.761	40.169	35.120	50.678	74.497	64.951	88.987			
1.5	40.722	48.206	49.029	43.038	37.628	54.298	79.818	69.590	95.343			
1.6	43.437	51.420	52.298	45.907	40.137	57.918	85.140	74.230	101.700			
1.7	46.151	54.634	55.567	48.776	42.645	61.538	90.461	78.869	108.056			
1.8	48.866	57.847	58.835	51.645	45.154	65.158	95.782	83.509	114.412			
1.9	51.581	61.061	62.104	54.514	47.662	68.777	101.103	88.148	120.768			
2.0	54.296	64.275	65.372	57.384	50.171	72.397	106.425	92.787	127.125			
2.1	57.011	67.489	68.641	60.253	52.68	76.017	111.746	97.427	133.481			
2.2	59.725	70.702	71.91	63.122	55.188	79.637	117.067	102.066	139.837			
2.3	62.44	73.916	75.178	65.991	57.697	83.257	122.388	106.705	146.193			
2.4	65.155	77.13	78.447	68.86	60.205	86.877	127.709	111.345	152.55			
2.5	67.87	80.344	81.716	71.729	62.714	90.497	133.031	115.984	158.906			
2.6	70.585	83.557	84.984	74.599	65.222	94.116	138.352	120.623	165.262			
2.7	73.299	86.771	88.253	77.468	67.731	97.736	143.673	125.263	171.618			
2.8	76.014	89.985	91.521	80.337	70.239	101.356	148.994	129.902	177.975			
2.9	78.729	91.442	94.79	83.206	72.748	105.524	154.316	131.745	182.185			
3.0	81.444	91.884	98.059	86.075	75.256	110.222	159.637	131.167	185.143			

Table 21 - Node Accelerations: Loma Prieta at Anderson Dam, ξ =0.01

					Li	nk				
		1	2	3	4	5	6	7	8	9
	0.1	3.220	3.137	3.269	2.871	2.898	3.753	4.028	3.278	5.603
<u>8</u>	0.2	6.440	6.273	6.538	5.742	5.797	7.507	8.056	6.557	11.206
sity	0.3	9.660	9.410	9.808	8.612	8.695	11.260	12.083	9.835	16.808
ten:	0.4	12.880	12.547	13.077	11.483	11.594	15.014	16.111	13.114	22.411
In	0.5	16.100	15.683	16.346	14.354	14.492	18.767	20.139	16.393	28.014
ike	0.6	19.320	18.820	19.615	17.225	17.391	22.520	24.166	19.671	33.617
lua	0.7	22.540	21.956	22.885	20.096	20.289	26.274	28.194	22.950	39.220
the	0.8	25.760	25.093	26.154	22.966	23.188	30.027	32.222	26.228	44.822
Ear	0.9	28.980	28.229	29.423	25.837	26.086	33.781	36.250	29.506	50.425
—	1.0	32.200	31.366	32.692	28.708	28.985	37.534	40.277	32.785	56.028

	Link											
		1	2	3	4	5	6	7	8	9		
	0.1	3.149	4.358	5.766	6.956	7.551	7.259	6.719	10.147	14.346		
ò	0.2	6.298	8.716	11.533	13.913	15.102	14.518	13.439	20.295	28.693		
	0.3	9.447	13.073	17.299	20.869	22.653	21.777	20.159	30.443	43.039		
	0.4	12.596	17.431	23.066	27.826	30.204	29.036	26.879	40.591	57.386		
	0.5	15.745	21.789	28.832	34.782	37.755	36.295	33.598	50.738	71.731		
	0.6	18.894	26.147	34.598	41.739	45.306	43.553	40.317	60.886	86.077		
5	0.7	22.043	30.505	40.365	48.695	52.857	50.813	47.037	71.034	100.424		
	0.8	25.192	34.863	46.131	55.652	60.408	58.071	53.757	81.181	114.770		
5	0.9	28.341	39.221	51.456	62.766	68.786	65.483	60.392	89.953	128.369		
-	1.0	31.490	43.630	57.076	70.015	79.788	71.334	67.718	96.181	133.413		

Figure 35 - Nonlinear Accelerations for Loma Prieta at Anderson Dam, ξ =0.05

Figure 36 - Linear Acceleration for Loma Prieta at Anderson Dam, $\xi = 0.05$

Figure 37 - Nonlinear Accelerations for Loma Prieta at Coyote Lake Dam, ξ =0.05

Figure 38 - Linear Accelerations for Loma Prieta at Coyote Lake Dam, $\xi = 0.05$

Figure 39 - Nonlinear Accelerations for Loma Prieta at Anderson Dam, $\xi = 0.03$

Figure 40 - Nonlinear Accelerations for Loma Prieta at Coyote Lake Dam, $\xi = 0.03$

Figure 41 - Nonlinear Accelerations for Loma Prieta at Anderson Dam, $\xi = 0.01$

Figure 42 - Nonlinear Accelerations for Loma Prieta at Coyote Lake Dam, ξ =0.01