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Abstract

Traditional satellite constellation design has focused on optimizing global or zonal

coverage with a minimum number of satellites. The number and size of individual
satellites determines the overall constellation capacity. In some instances, it is desir-

able to deploy a constellation in stages to gradually expand capacity. This requires
launching additional satellites and reconfiguring on-orbit satellites. A methodology

for optimizing orbital reconfiguration of satellite constellations is thus presented in

this thesis. The purpose of the project was to find a technical way for transforming an

initial constellation with low capacity into a new constellation with higher capacity.

The general framework was applied to LEO constellations of communication satel-

lites. The modules implemented allow prediction of time and cost to reconfigure a

fixed initial constellation A into a final constellation B. Due to the complexity of the

problem and consequently to the inevitable approximations, the simulation provides

estimates. The main step are to assign on-orbit satellites from A to occupy slots of

B. The other issue is to plan launches and transfers. From the plannings, the simu-

lation returns reconfiguration time and cost, and coverage capacity during transfers.
Although some interesting tendencies seem clearly to come out from the results, this

thesis is prinpally focused on concepts and ideas. As a consequence, the methodology
and simulation tool will be useful as a foundation for future works on that field.

Thesis Supervisor: Olivier L. de Weck
Title: Robert N. Noyce Assistant Professor of Aeronautics and Astronautics and

Engineering Systems
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Globalstar and Iridium History

Technical successes but economic failures, the two first "big" Low Earth Orbit constel-

lations of satellites, IRIDIUM and GLOBALSTAR, have revealed the problems result-

ing from demand uncertainty of large capacity systems. Operational since November

1998, the IRIDIUM constellation constituted of 66 satellites placed in polar orbits

(Figure 1-1) had to declare bankruptcy only thirteen months after its launch. During

the design process at the beginning of the 1990's, the company whose target was

the global business traveler, imagined it could attract 3 million customers. However,

by the time IRIDIUM was deployed, the marketplace had been transformed by the

development of terrestrial cellular networks. That is why one year after its launch,

IRIDIUM had attracted only 50,000 customers, ultimately leading to bankruptcy. In

2000, although with different technical characteristics, the GLOBALSTAR constella-

tion had to file for Chapter 11 protection for the same reasons. Those two examples

show the high economic risks encountered by developers of commercial space systems.

Ten years can indeed separate conceptual design from deployment. An alternative ap-

proach to deal with uncertainty in future demand in the case of satellite constellations

is represented by a "staged deployment" strategy [CHAI03].
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Figure 1-1: IRIDIUM constellation. Picture from [LUTOO]

1.1.2 Staged Deployment and Economic Opportunity

It is possible to reduce the economic risks, by initially deploying a smaller constella-

tion with low capacity that can be increased when the market conditions are good.

The work done by Mathieu Chaize [CHAI03] has revealed the economic opportunity

"staged deployment" represents for LEO constellations of communication satellites.

The "staged deployment" strategy would imply to design a flexible system that

can adapt to highly uncertain market conditions. This approach is opposed to the

traditional way of designing satellite constellation with fixed capacity from a specific

set of requirements. The flexibility has to be specified prior to the deployment of

the system. "Real options" to achieve the changes in capacity have to be found.

In the present study, the "real option" considered is the extra-fuel carried by each

satellite to achieve the orbital reconfiguration. Real options would not be necessarily

utilized after the launch of the constellation. This new approach could trouble many

designers and decision makers. They will need to understand the value of investing

in such flexibility. For this, Chaize [CHAI03] has evaluated the economic opportunity

for "staged deployment" when the size of the market targeted is close to the one

Iridium originally expected.

The results are quite encouraging. Defining the value of flexibility as the money

potentially saved by staged deployment compared to a fixed architecture, Chaize

22



shows that a decrease in the life cycle costs between 20 % and 45 % could be reached

by this strategy when overaging over a range of future, uncertain demand scenarios.

In addition to reducing the economic risk associated with the deployment of a large

capacity system, this strategy could allow to reduce the costs as well. This decrease

in the costs is, however, sensitive to the value of the discount rate. The higher

the discount rate is, the more the costs are reduced. As a consequence, flexibility

represents a real challenge for designers and a new way of thinking. Indeed, the best

architectures for staged deployment are not necessarily the ones on the Pareto Front of

"Life Cycle Cost" versus "Constellation Capacity" but the ones that give maximum

flexibility such that future capacities can be changed "on-demand". However, an

estimation of the extra costs associated with reconfiguration is needed to determine

the price to pay for flexibility. If the cost to reconfigure the constellation is smaller

than the price we are willing to pay for it, it would be economically advantageous

to undertake the reconfiguration. In other words, the reconfiguration is relevant

if and only if its price appears to be lower than the a priori value of flexibility.

The purpose of this thesis is notably to estimate the additional cost required by

an orbital reconfiguration (see Section 1.4) and is a complement of the work done

by Chaize. Due to the inevitable assumptions required by such a complex system,

the reconfiguration costs will be approximated to a good order of magnitude. If the

economic opportunity revealed is 20-45 % of LCC, taking the example of Iridium with

a LCC of approximately 5.5 B$, the economic opportunity will be in the range of

1.1-2.5 B$. So, to be sufficiently precise the cost estimate must be within 2-5% of the

LCC. In other words, the reconfiguration cost must be known to within t100 - 250

M$ in the case of an Iridium-like configuration.
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1.2 Literature Review

1.2.1 Review of previous Work on Satellite Constellation Re-

configuration

First, we will mention as a reference some work on "static" optimization of satellite

constellations. After this, a short review of previous work on constellation reconfigu-

rations will be presented.

"Static" optimization of satellite constellations has been extensively studied over

the past fifteen years, since constellations of satellites are the only way to achieve

global coverage. These studies were principally demanded by the space communi-

cations systems manufacturers. However, they represent interesting applications for

military purposes as well. The goal was actually to achieve global coverage while

minimizing the necessary number of satellites. Two methods were proposed to solve

this issue. The first one organizes the satellites into inclined circular orbital planes.

This type of constellations was named "Walker constellation" with reference to the

author of this method [Wal77]. The other method is based on the utilization of polar

orbits and is due to Adams and Rider [AR87]. Adams and Lang [AL98] compared

those two types of constellations. Depending of the fold of coverage (multiplicity n),

the coverage requirement, the launch vehicle capability or the sparing strategy, they

explain what type of constellations is more efficient. A table of the optimal constella-

tions achieving global coverage is provided. In the case of zonal coverage, other types

of constellations have been proposed including elliptical orbits. Crossley [CROSSO3}

used Genetic Algorithms (GA) to optimize constellations for zonal coverage.

Contrary to "static" optimization of satellite constellations, very few studies exist

on optimization of satellite constellation reconfiguration. The past studies on "con-

stellation reconfiguration" have principally focused on the constellation maintenance

problem. No studies have considered reconfigurations to increase the constellation

capacity. However, the literature on reconfiguration for maintenance has described

some interesting concepts, applicable in our case. Seroi et al. [Ser02] pointed out the
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complexity of space systems such as satellite constellations. The authors discussed

the difficulty to optimize maintenance. In order to replace failed satellites or satellites

at EOL ("End of Life"), they advise to launch new satellites by the means of launch

vehicles with variable capacity. One contribution of this article is the utilization of an

optimization technique called Dynamic Programming with Reinforcement Learning.

The Dynamic Programming whose purpose is to optimize a decision sequence is a

mathematical model of an agent that adapts his decision with respect to time. The

Reinforcement Learning allows to push back the limits of this method which would

otherwise require very high computation capacity. With Reinforcement Learning, the

data are not stored during the process. The solution obtained is thus not the optimal

one, however it is very close to the optimum.

In the same field, Ahn and Spencer [AS02] studied the optimal reconfiguration

for formations of satellites after a failure of one of the satellites. The constellation

considered was a formation flying satellite constellation. The goal was to find the

maneuver cost that minimizes the total fuel usage among the individual satellites

that remain operational. Their strategy was to prevent any unbalanced propellant

usage. Depleting the propellant of one constellation member while not using any

propellant from the other constellation members can cause early failure of another

formation member and would necessitate to add other replacement satellites to the

constellation, which is costly.

Techsat2l, an Air Force Research Laboratory program is a good example of or-

bital reconfiguration. Saleh, Hastings and Newman [JHSN01] have briefly described

this program. Focused on lightweight and low-cost clusters of micro-satellites, this

program intends to reconfigure the geometry of the different clusters of a space based

radar system. The purpose is to change the system's capability by geometry mod-

ification, from a radar mode whose resolution is 500 meters to a geo-location mode

with a resolution of 5 km.
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1.2.2 Applications of Constellation Reconfiguration

Section 1.1.2 pointed out the economic opportunity represented by "staged deploy-

ment" and "orbital reconfiguration" for commercial satellite constellations. However,

there are also non-commercial applications. Saleh et al. [JHSN01) explained that de-

fense oriented space systems could be a field of application for flexibility in design. In

defense systems, the development times are of the order of 5 to 10 years, and changes

in system usage are very probable. Below are two examples for military applica-

tions. The military applications consist primarily of tracking targets or monitoring

particular regions of the globe.

The next generation of radars will allow the Pentagon to track moving targets in

uncrowded areas (see [Sin03]). A program for Space Based Radar satellites will be

deployed in a staged manner. The Pentagon plans to begin launching a first con-

stellation into Low Earth orbit in 2012. This constellation will have small gaps in

its coverage early in the deployment. The initial constellation will indeed consist of

between 9 and 12 satellites, which will lead to coverage gaps as long as 5 minutes.

The capacity will be improved in 2015 with the launch of a second set of satellites.

This program is thus a good example of "staged deployment". However the on-orbit

satellites will not be reconfigured to form a constellation with the launched satellites.

The launched satellites will rather occupy the remaining free spots of the initial con-

stellation not fully populated. We can notice that there is no orbital reconfiguration

in this example. There is also no continuous global coverage requirement. This ex-

ample points out the differences in requirements between military and commercial

applications.

An example of orbital reconfiguration for military purposes is given by Henry and

Sedwick [HS01). Henry and Sedwick explain that orbital planes can drift using small

variations of the satellites altitudes. This drifting would allow the constellation to be

reconfigured in order to focus the capacity on a particular region. Repeating ground

tracks (resonant orbits) in LEO are crucial in achieving higher coverage in some areas

at the expense of coverage in other areas. This strategy would be very interesting
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with radar constellations or optical reconnaissance satellites when a conflict arises in

a particular region of the globe.

1.3 Orbital Reconfiguration Definition

As explained in the last section, the term "reconfiguration" for constellations of satel-

lites has been principally used to designate the set of necessary maneuvers to recover

service after the failure of a satellite. In this thesis, the term reconfiguration will be

employed in a more ambitious way since it requires the motion of an entire constel-

lation. Subsection 1.3.1 will present a generic definition for Satellite Constellation

Reconfiguration, whereas the Subsection 1.3.2 will describe a particular type of Re-

configuration. Only this type of Reconfiguration will be studied in the thesis.

1.3.1 Generic Definition

A possible definition for Satellite Constellation Reconfiguration is: deliberate change

of the relative arrangements of satellites in a constellation by addition or substraction

of satellites and orbital maneuvering in order to achieve desired changes in coverage,

performance or capacity.

1.3.2 Particular Case

This subsection describes the particular case of Satellite Constellation Reconfigura-

tion, studied in this thesis. Firstly, this thesis will focus on constellations with a single

global coverage requirement (Iridium and Globalstar type). This requirement adds

difficulties compared to the examples described in the literature review. Moreover,

the goal of the reconfiguration will be to increase the capacity of a constellation after

its initial deployment. Satellites need to be added in stages. The on-orbit satellites

are then "reconfigured" to form a new constellation with the additional satellites in-

corporated. In other words, they are transferred from their initial orbit into a new

trajectory, lower in altitude.
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Constellation A Constellation B

Orbital /
transfer N(B)

N(A) satellites
satellites}

Laun

N(B)-N(A) satellites on
the ground

Figure 1-2: Schema of a Constellation Reconfiguration.
N(A) =number of satellites in configuration A.
N(B) =number of satellites in configuration B.
N(B) > N(A).

The reconfiguration consists thus of repositioning on-orbit satellites into another

configuration with higher capacity and of launching new satellites for completing the

spots of the new constellation. Figure 1-2 summarizes the reconfiguration process.

1.4 Thesis Purpose and Organization

The purpose of this thesis is to study in detail the technical way to achieve a recon-

figuration in the sense explained in the previous section. The "staged deployment"

strategy itself is not the topic of this thesis. The thesis is only focused on the study

of one reconfiguration and proposes an optimal set of maneuvers to reconfigure an

initial constellation into a bigger one with more satellites and thus higher capacity.

This thesis consists of six chapters. Chapter 2 will describe the formal problem.

The different questions raised by the reconfiguration maneuvers are presented, and a

baseline scenario for the reconfiguration is proposed.

Chapter 3 consists of the Solution Framework. The Block Diagram of the entire
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optimization procedure ("framework") is presented, and the objective vector, design

vector and fixed parameters are described. This chapter shows that four separate op-

timizations could be required in the proposed method to solve the various assignment,

maneuver and timing problems of reconfiguration.

Chapter 4 describes in detail the different modules implemented to run the frame-

work. The assumptions and limitations of each module are discussed carefully.

In Chapter 5, the procedure is executed and interesting results are presented. This

chapter will first discuss the interest in terms of fuel consumption to reconfigure a

constellation depending on its type (Walker or Polar), inclination, altitude and of the

type, inclination and altitude of the final configuration. For this purpose, reconfig-

urations in three regions (LEO, MEO and GEO) will be studied. Reconfigurations

between these three regions will also be discussed. After this, the entire simulator will

be run for a sample of reconfigurations of Polar constellations in Low Earth Orbit.

This limitation to LEO Polar constellations does not alter the general scope of the

methodology. Different scenarios and strategies will be commented in this case. At

the end of this chapter, the economic opportunity of different paths of reconfigura-

tions proposed by Chaize [CHAI03] will be discussed and a discussion will be made

on High Fidelity Simulation. The simple framework will be compared with a High

Fidelity Simulation Framework and several questions will be answered. How can such

a simulation be built? What assumptions should be removed from the simple frame-

work? What tools could be used and how do the high fidelity results compare with

the simple model?

Finally, Chapter 6 summarizes the findings and sets recommendations for future

studies in this field. In particular the issue of deploying a satellite constellation in

several layers of different altitudes should be studied as an alternative or comple-

ment to orbital reconfiguration. Chapter 6 will also point out the limitations of the

framework and all the improvements that could be made in a more detailed study.
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Chapter 2

Problem Description and

Background

The purpose of this thesis is to describe concepts and ideas that could be applied

in an orbital reconfiguration of satellite constellations. Due to the complexity of the

problem, some assumptions have to be made. As described briefly in Section 1.3, new

satellites have to be launched in order to increase the capacity of the constellation.

It will be assumed that all satellites, the on-orbit satellites and the satellites on the

ground, are built and equipped the same, except for their fuel load. The dry mass md

would be identical, but not the wet mass, rn. This assumption is not obvious since

if the altitude of the satellites is changed, the hardware requires some modifications.

Indeed, to produce a particular beam pattern on the ground, the characteristics of

the antenna depends on the altitude of the satellites. Reconfiguration within the

satellites themselves therefore also needs to be achieved. However, this problem will

not be considered in the present thesis. The satellites considered in this thesis will

have characteristics close to Iridium satellites. Particularly the dry mass will be the

same: 700 kg. The extra-mass of fuel necessary to achieve eventual transfers is not

taken into account in these 700 kg. The choice of small satellites is judicious. Indeed

the extra fuel mass needed on a satellite is driven by its dry mass. The higher the

dry mass is, the higher the fuel mass necessary to achieve the maneuver.

In the following section, the different issues raised by an orbital reconfiguration
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are outlined. Then Section 2.2 will introduce a scenario in two distinct phases: the

launch of new satellites followed by the transfer of the on-orbit satellites.

2.1 Issues Raised by the Reconfiguration

Below is a list of questions that this thesis intends to answer. First of all, some

notations must be specified. As explained in Chapter 1, a reconfiguration is a set

of orbital maneuvers to evolve from a constellation A to a constellation B. The

number of satellites in the initial and final constellation will be called, Nsats(A) and

Nats(B) respectively. As reconfigurations we consider only an increase capacity, we

have Nsats(B) > Nsat,(A). The number of satellites to be launched is thus Nsats(B) -

Nsats(A). In a first approach, spare satellites are not considered.

" The first question to be answered is to determine the optimal maneuvers for

transferring the Nsats(A) on-orbit satellites into slots of the constellation B.

Those maneuvers will have to minimize the total Delta V noted AVttai for the

entire reconfiguration summed over all on-orbit satellites.

N.ats (A)

A Vtotal = E AVtthsatettite (2-1
k=1

Each satellite of the initial constellation will be assigned to a slot of the new

constellation in order to minimize this AVtotal. Knowing the propulsion system

utilized for the transfer (particularly the Isp), the value AVkatsatellite will allow to

compute the additional mass of fuel necessary to achieve the transfer of the kth

satellite of the constellation A. Alternative objective functions for optimizing

the reconfiguration are discussed in Chapter 6. Instead of minimizing the total

AV, we could have chosen to minimize the difference in AV between satellites.

" Another problem is set by the assignment of the satellites on the ground. All

the satellites of each launch have to be assigned to the same orbital plane. This

strategy allows to prevent a costly non-coplanar repositioning in terms of fuel.
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The launcher delivers its on-board satellites to the plane they are assigned to.

The capacity of the chosen launcher is a parameter that has to be taken into

account during the assignment process. This constraint makes the assignment

process more difficult. There are actually two overlapping assignments: the as-

signment of the launched satellites and the assignment of the on-orbit satellites.

The second assignment is dependent on the first one.

" To maneuver the on-orbit satellites, several possibilities are available. The satel-

lites can utilize their own propulsion system or be transported by a Space Tug.

Currently, no universal space tug exists. Only Orbital Transfer Vehicle (OTV)

that add a preprogrammed amount of AV beyond LEO exist [SMAD99]. This

solution is currently being studied in the Space Systems Laboratory. Neverthe-

less, due to the impossibility to use a database of prices to estimate the cost

of this solution, this option was not considered. The study is limited to extra

fuel carried by the satellites at the time of the initial launch. The question

is to determine what kind of propulsion systems should be utilized for doing

the transfer. Two different types of systems are considered: electric propulsion

and chemical propulsion. In electric propulsion, some different thrusters will be

studied: Arcjet, Resistojet, Plasma Thruster, Hall Thruster and Ion Engines.

The advantage of chemical propulsion is a priori the speed for achieving the

transfers. But due to the low Isp, the extra mass of fuel will be high. In elec-

tric propulsion, the high Isp will entail a lower mass of fuel but the time for

transferring the on-orbit satellites will be higher leading to outage costs. An

achievement of this thesis will be to determine to which effect the reconfigura-

tion cost is more sensitive. A tradeoff is thus expected.

* A launch strategy has to be found for the satellites on the ground. Two types

of difficulties have to be solved. First of all, a launcher (or several launchers)

should be selected. The choice of the launcher(s) depends obviously on the

satellite characteristics such as mass and size and on the orbital destination.

For instance to launch into a Polar orbit (inclination ~ 90 deg.), some launch-
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ers, depending on the launch site, are better suited. The other problem is to

determine a launch planning. The required time for launching all the satellites

on the ground, is a limiting factor for the reconfiguration. To estimate this time

is a difficult task. The launch market is not easily modeled: the interactions

between the customers, the satellites manufacturers and the launch companies

are very complex in practice.

" During the transfers of the on-orbit satellites, the constellation will not be 100 %

operational. There will obviously obviously some holes in the coverage entailing

service outages. The lost revenue due to these outages has to be quantified. It

is a part of the total reconfiguration cost. The order of magnitude of this cost

has to be compared notably with the other chunks of the total cost.

" The on-orbit satellites can not be transferred randomly to their new positions in

the constellation B. The service outages depend directly on these transfers. The

idea is to find an optimal transfer schedule allowing to maximize the coverage

capability of the constellation during the transfer.

The project is not a classic Multidisciplinary System Design Optimization (MSDO)

problem. The purpose is not to find a best design, but more to find an optimal way

to move a constellation A into a constellation B. Constellation A is given a-priori.

It is "Design" in the sense that some possibilities exist to do this maneuver and that

the methodology will allow to determine the optimal one, in terms of time, energy

(AV), cost or partial coverage. However, the project deals clearly with a system

(i.e. a constellation of satellites) and will require some optimizations that will be

presented further in this thesis. The multidisciplinary aspect of the project is lastly

obvious, since it requires notions of astrodynamics, propulsion, cost modelling, launch

modelling and operations research.
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2.2 A Two-Phased-Reconfiguration Scenario

As explained previously, a reconfiguration consists of two types of maneuvers: the

orbital transfer of Nats(A) on-orbit satellites to slots of constellation B and the

launch of Nat,(B) - Nat,(A) satellites to occupy the remaining slots of B. It was

decided that the transfer phase occurs only after the ground satellite launch phase.

This strategy allows to minimize the risk of service interruption. Indeed if the two

phases are realized at the same time (or if the launch phase occurs later) and if

unfortunately one launch fails, the delay for replacing the lost satellites in the failed

launch will entail a period of longer service outage. Indeed the constellation A is no

longer at full capacity and the final one is not complete in such a scenario. With

this two-phased-scenario (launch first, then transfer), a launch failure will just entail

to postpone the beginning of the transfer phase, the constellation A remaining 100%

operational during this delay. Figures 2-1 and 2-2 summarize this scenario in two

distinct phases. Figure 2-1 shows the launch of the new satellites. During this phase,

the on-orbit satellites remain in their initial orbits (in other words, in the initial

configuration A). The new satellites are directly sent to their final orbits and slots in

B. Figure 2-2 indicates the transfer of the on-orbit satellites of A to the remaining

slots of the configuration B. Those slots are represented with dashed lines.

2.3 Formal Mathematical Problem Definition

The formal mathematical problem definition could be written as:

min Cost(A -* B) (2.2)

s.t. ISPmin . Isp < Ispax

L.V.max payload volume

200 < ha < hb : hGEO

given constellation A,B

Mat (dry)
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Figure 2-1: The first phase: the launch phase of new satellites.

Second phase:
transfer of the on-
orbit satellites

Final slot

Figure 2-2: The second phase: the transfer phase of the on-orbit satellites.
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CHAPTER 2 SUMMARY

This chapter dealt with the descriptions of the problem and background. The

different questions raised by the Reconfiguration were described in detail which allow

the reader to have a global understanding of the problem. Those questions will be

answered at least partially in the next chapters. Lastly, the end of this chapter

explained why a two-phased scenario was chosen.

37



38



Chapter 3

Project Framework: Satellite

Constellation Reconfiguration

This Chapter will develop a framework to study the orbital reconfiguration problem.

In the first section, design variables, parameters, constraints and objectives will be

identified. A version of the block diagram (Figure 3-2) utilized for this project will be

commented. The second section will point out the four optimization methods needed

in this model.

3.1 Framework Development

3.1.1 Objectives

The overall objectives for the solution to the orbital reconfiguration problem are:

" the minimization of the Energy necessary to execute the transfers or, in other

words the minimization of the total Delta V for transferring all the on-orbit

satellites: AVtotai.

" the minimization of the total time, Tt, required for reconfiguration. This time

is, as the two phases are separated the sum of the launch phase time and of the

transfer phase time: Totai Taunch + Transfers .
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" the minimization of the total cost, Ctot of reconfiguration including the produc-

tion cost of new satellites, the cost for launching these new satellites, the cost of

the fuel necessary for the on-orbit satellite transfers and the cost due to service

outages: Ctotal Cprod + Claunchs + Cf5ei + Coutage. The cost of the ground seg-

ment is not included (impossibility to obtain even rough estimations). Moreover

it is not totally relevant in this case.

" the mean value in % of the constellation coverage during the transfer operations

COVmean should be maximized. This mean coverage could be computed as an

integrated metric over time:

COVmean = cov(t) dt. (3.1)
Transfers 0

where cov(t) represents the coverage value with respect to time. It will be

explained in Chapter 4 how Equation 3.1 is computed in detail.

The objector vector J is summarized in Equation 3.2.

AVotal Total Delta V [m/sec]

Total Total Time [s] (3.2)

Ctotai Total Cost [B$]

COVmean _ _ Mean Coverage [%]

The relationships between these objectives are too complex to determine a-priori.

However, some trends are expected. The minimization of the Energy necessary to

execute the transfers will also minimize the cost of extra-fuel. Nevertheless, the AV

has no impact on the other chunks of the cost and on the two other objectives: time

and coverage. The Time is minimized in the sense that the best strategy allowing to

compress the launch schedule of new satellites could be chosen. The time to launch

the new satellites, Taunch, is however independent of the other objectives. The time

to execute the transfers, Transfers will have an influence on the cost of service outage

Coutage and on the mean coverage COVmean. But it is difficult to determine the effect

on both objectives. This is explained in more detail in Section 3.1.5.
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3.1.2 Parameters

The parameters represent fixed quantities that are not changeable during the constel-

lation reconfiguration process. Satellite characteristics such as dry mass (~ 700Kg)

are among these parameters. The constellation studied will only insure single cover-

age (i.e. n = 1) on the Earth's surface. Both the initial and final constellation will

satisfy this. The initial constellation will be considered as a constant, except for the

study in Chapter 5 of different possible reconfigurations depending on the altitude

(LEO, MEO, GEO) and on the type of constellation (Polar or Walker). The param-

eters characterizing a satellite constellation are: the type (Ca for the constellation

A) the altitude (he. for A) and the minimum elevation angle (c, for A). Figure 3-1

shows these parameters. However it is assumed that A was designed and optimized

separately. The design phase of A is not the purpose of this study.

In this chapter, the constellation reconfiguration framework is set up in general.

However for applications, particular values for A will be picked in a later chapter.

For the constellation A, the baseline parameters will be fixed respectively to:

" C ='polar'

" ha = 2000km

e Ea =5deg.

This initial constellation will be studied because its low capacity could be reasonably

improved by a reconfiguration: only 21 satellites are needed in this particular constel-

lation, to be compared with the 66 satellites of the IRIDIUM constellation (h = 780

km, e = 8 deg). This constellation A represents the initial deployment.

3.1.3 Design Variables

The design variables are the propulsion system chosen for the on-orbit satellite trans-

fer, P,, and the final constellation characteristics: the altitude hb and the elevation eb.

There are two methods to increase the capacity of a constellation: either the altitude

is decreased or the min elevation angle is increased. This condition implies natural
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Figure 3-1: Constellation Design Variables. The design variables that can be modified

to increase the capacity after the deployment are the altitude (h) and the elevation

angle (E). This drives the number of satellites, since global coverage has to be main-

tained.

bounds for hb and Eb: hb < h, and Eb Ea. The design vector, x, embodies the

architectural design decisions and is subject to the bounds or discrete choices shown

in Table 3.1. The constellation B was included in the Design Vector, because B is not

Table 3.1: Simulator Design Vector x

Symbol Variable XLB XUB unit

Cb const. type Polar Walker [
hb altitude 200 36000 [km]

Eb min elevation 5 35 [deg]

Pr Propulsion System Isp - 200 Isp = 10000 [s]

fixed like the constellation A which is given initially and a-priori. Chaize [CHAI03]

has shown that several paths of reconfiguration exist depending on the value of the

discount rate and also on the market opportunities. The constellation B is thus not

known initially. Some constellation candidates exist potentially, hence this choice to

put the parameters of B in the Design Vector.
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Figure 3-2: Orbital Constellation Reconfiguration Block Diagram

3.1.4 Constraints

Due to the particularity of the project, no constraints have been imposed. A con-

straint on the Total Time could have been chosen, for instance limiting the opera-

tions duration to 400 days. But the uncertainty about the launch schedule and the

consequent approximations concerning the planning render the imposition of such a

constraint impractical.
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3.1.5 Block and N 2 Diagrams

As shown in Figure 3-2, The Block Diagram of the framework is complex. The

different modules are inter-connected. The N 2 matrix (see Figure 3-3) allows a better

understanding of the connections between the different modules. Seven modules are

implemented in the framework:

" The constellation module (on the left of the diagram) determines from the alti-

tudes and elevations, the characteristics of the constellation A and B: number

of satellites, number of planes, angle between ascending line nodes called, a,

and inclination i [Wal77], [AL98], [AR87].

* From the characteristics and altitudes of both constellations, the astrodynamics

module computes two transition matrices that will be explained further in detail

in this thesis. These transition matrices return time and AV of each possible

transfer for each satellite.

" On the top are represented the assignment modules. This pair of modules allows

the optimal assignment of both the on-orbit satellites and the satellites on the

ground. The inputs are the transition matrix and the characteristics of the

selected launcher. These modules return one of the objectives: the optimal

Delta V for transferring all the on-orbit satellites AVrtatl.

" The Launch module in the diagram center selects the best launcher for this

problem, for the N(B) - N(A) satellites only.

* At the bottom, are represented the schedule modules (for the launches and

transfers). They allow to determine another objective: the total time for recon-

figuration Ttotai.

" From the schedule, the partial coverage module calculates the coverage capacity

during the process for both initial and final constellation. It allows to find the

fourth objective: the average coverage value in % maintained by the constella-

tion coverage during the operations, Covmean.
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201

Figure 3-3: Project matrix N2 . See the Master Table (Table 3.2) for the explanation
of the indexes.

9 Lastly on the right is represented the cost module. The second objective: the

total cost Ctota is estimated by this module.

We will now describe briefly how the tradeoffs between these four objectives will

be resolved. Two factors will influence the results: the type of propulsion system

(actually the value of the Ip of this system) and the way of transferring the on-orbit

satellites. Cost and Time will vary with the In,. Obviously the Time required for

transfers increase with the Isp, since thrust levels and accelerations decrease. The

impact on the cost is more difficult to determine. Two parts of the total cost are

dependent on the I,,: the cost of service outage and the fuel cost. The cost of service

outage will probably increase with increasing transfer time and also with the Isp.

The higher the Isp will be, the longer the transfers will be and thus the higher the

cost of service interruption will be. On the other hand, the fuel cost depending on

the extra-fuel mass, the fuel cost will surely decrease with increasing Isp. Indeed the

higher the Isp is, the lower the mass necessary to achieve the transfers is. Figure 3-4
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Table 3.2: Master Table
description unitsindex

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
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symbol

Ca

Cb

ha
hb

Ea

Eb

Pr
Na

Nb

Pa

Pb

fa

ib

aa

ab

tii
Ass

Caplauncher

AVmodif

Assmodif

Namelauncher

COStlauncher
Timetransger

St
S,
CoV

A Vtotal

Total

COVmean

Ctotal

constellation type of A
constellation type of B

altitude of A
altitude of B

min elevation angle of A
min elevation angle of B

propulsion system
number of satellites in A
number of satellites in B
number of planes in A
number of planes in B

inclination of A
inclination of B

angle between ascending nodes A
angle between ascending nodes B

transition matrix for energy
transition matrix for time

Assignment of the satellites into slots of B
Capacity of the launcher selected

transition matrix modified by the reassignment
New Assignment

Name of the launcher selected
Cost of the launcher selected

Transfer time for all the satellites
Transfer schedule
Launch schedule
Coverage matrix

Total AV for transferring all the satellites
Total Time to reconfigure A

Mean coverage during the operations
Total Cost to reconfigure A

[-]
[-]

km
km
deg
deg

[-]
[-]
[-]
[-]
[-]

deg
deg
deg
deg

[Nb x Nb] km/s
[Nb x Nb] s

[Nb X 1]
of sats

[Nb x Nb] km/s
[Nb X 1]

[-]
[-]

[Nb X 1] S

[Nb x 3] s
s

km/s
s

B$
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Figure 3-4: Expected variation of the service outage cost and of the fuel cost with
respect of the Isp

summarizes this issue. If the cost of outage and the fuel cost are of the same order

of magnitude which is assumed on this figure, an optimal Isp minimizing the total

cost will exist. Nevertheless if the costs have not the same order of magnitude, this

tradeoff does not exist anymore. In commercial applications, we can guess that the

cost of the service outage will be much higher than in military applications. The

military systems have no requirement to insure the service, except during conflicts,

contrary to commercial systems which have customers on a continuous basis. Slow

reconfiguration might be more acceptable to the military during regeneration phases

between major conflicts. One of the contributions of this thesis will be to determine

in which situation the commercial systems are: in the situation depicted by Figure 3-4

or in the situation where the cost of service outage is much higher than the fuel cost.

The way of transferring the satellites will influence the cost, but also the cover-

age. If the transfer schedule is compressed, the cost of service outage will surely be

different than if the schedule is staggered. It is difficult to say a priori which case

will entail a lower cost. Moreover a compressed schedule will entail a very low cover-
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age during the operations, whereas a staggered schedule will entail a higher coverage

during the transfers. If a requirement concerning coverage and time is required by

the manufacturer, a tradeoff has to be found concerning the schedule. Indeed the

schedule must be sufficiently compressed to respect the timing requirement but not

too much in order to insure the coverage requirement.

3.2 Four Optimizations for One Problem

Four optimizations would be required ideally to solve the overall problem. The com-

plete assignment of the satellites in the constellation B utilizes two methods in series

(see the Subsection 3.2.1 and 3.2.2). The Launch Selection Process would require an

optimization technique to determine the best launcher to launch the ground satellites.

An optimization loop (see the loop at the bottom of the Block Diagram-Figure 3-2)

is lastly required to determine the optimal transfer schedule.

3.2.1 Assignment Problem and Auction Algorithm

The problem of putting N(B) satellites (Nats(A) from the initial constellation and

the rest from the ground) in N(B) slots can be represented as an assignment problem

where the necessary total Delta V to achieve the transfers has to be minimized. The

flow Network in Figure 3-5 distinguishes the arcs coming from the on-orbit satellites

and the arcs coming from the launched satellites. This distinction is due to the

approximation that the Delta V necessary to reposition the ground satellites in their

respective orbits is negligible. So, AVlaunched satellite ~ 0. Obviously the AV from

the ground (~ 7.5 km/s) is not included. This AV is part of the Launch Process,

since this impulse is given by the Launcher upper stages and has not to be taken

into account for the satellites themselves (it is taken into account in the launch cost,

however).

The flow network can be interpreted if we consider that there are N(B) persons

and N(B) projects. We wish to assign a different person to each project while min-

imizing a linear cost function of the form Ei y_=1 cjBfi,j where fi,j 1 if the
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Figure 3-5: Assignment problem for a reconfiguration between constellation A with
Nsats(A) satellites and constellation B with Nsat,(B) satellites.

ith person is assigned to the jth project, and fi,j = 0 otherwise. In the example

studied, the coefficient ci,j represents the delta V for transferring the i th satellite of

the constellation A to the jth slot of B: this value will be called AVi,j in the rest of

the thesis.

Bertsimas and Tsitsiklis [BERT97) explain that a very efficient method for solving

this flow network problem exists: "the auction algorithm". The idea is to represent

the situation as a bidding mechanism whereby persons bid for the most profitable

projects. It can be visualized by thinking about a set of contractors who compete for

the same projects and therefore keep lowering the price they are willing to accept for

any given project. The auction algorithm is described below:

" A typical iteration starts with a set of prices pi,... p, for the different projects,

a set S of assigned persons, and a project ji assigned to each person i of S. At

the beginning of the algorithm, the set S is empty.

" Each unassigned person finds a best project ki by maximizing the profit Pk - ci ,k
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Table 3.3: Costs table for the simple case

Project A Project B

Person 1 5,000 $ 10,000 $
Person 2 5,000 $ 1,000 $

over all k. Let k' be a second best project, that is,

Pk - Cilk/ Pk - Cik for all k k ki (3.3)

Let

Ak= (Pk - ci,k) - (Pk; - ci,k ) (3.4)

Person i "bids" Pk, - Aki - e for project ki.

* Every project for which there is at least one bid is assigned to a lowest bidder;

the old holder of the project (if any) becomes unassigned. The new price pi of

each project that has received at least one bid is set to the value of the lowest

bid.

The auction algorithm terminates after a finite number of stages with a feasible

assignment. Moreover if the cost coefficients ci,j are integer and if 0 < e < -, the auc-

tion algorithm terminates with an optimal solution [BERT97]. E is an intermediate of

calculation. Without e, the algorithm would often be deadlocked. In terms of time of

calculation, the auction algorithm is very efficient since it runs in time O(n 4 max ci,).

To illustrate this method, the algorithm will be applied on a simple case that could

be solved by hand. Two persons 1 and 2, and two projects A and B are considered.

The purpose is to assign each person to a project, knowing the cost that each project

will imply for 1 and 2. Table 3.3 indicates these costs. The obvious assignment

minimizing the total cost would be to assign project A to 1 and project B to 2. We

will check that the algorithm returns the same result. First of all, a set of prices for

the different projects must be chosen. Arbitrarily 10,000 and 20,000 $ were chosen

for PA and PB, respectively. e was chosen equal to 0 in this example, since E has

no influence on the solution. In the first iteration, each person finds a best project
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maximizing the profit. For person 1, the profit of project A is PA - CiA = 5,000$

and the profit of project B is PB - c1,B = 10, 000$. So, 1 will bid for project B.

The value of the bid is PA - A = 20,000 - 5,000 = 15,000$ where A represents the

difference between the profit of the two projects. For the second person the situation

is as follows: PA - C2,A = 5,000$ and PB- C2,B = 19,000$. 2 will bid for B also.

The value of the bid is 20,000 - 14,000 6,000$. There are two bids for B and

zero for A. B is assigned to the lowest bid, so to 2. The new price of B is the

value of the bid of 2: podif = 6 000$. For the second iteration, only 1 is considered.

The profit of project A is still 5,000$ for 1, whereas the profit of B is now equal to

6, 000 - 10, 000 = -4, 000$. Logically 1 chooses the project A and is assigned to this

project. The auction algorithm works well on this simple example.

3.2.2 Loop for assigning the Ground Satellites

By imposing AVlaunched satellite = 0 in the flow network depicted in Figure 3-5, the

auction algorithm proceeds by assigning first the on-orbit satellites into slots of the

constellation B. The launched satellites go then to the remaining slots. Although

the Delta V is minimized with this method, this approach is not satisfactory. Recall

that there is a strong constraint concerning the ground satellites. In other words

the satellites of the same launch have to be assigned to the same plane in order to

prevent a costly repositioning. The assignment returned by the auction algorithm

will not necessarily satisfy this constraint. That is why the implementation of a

loop for assigning the ground satellites (on top of the Block Diagram-Figure 3-2) was

necessary. The goal of this loop is to refine the assignment returned by the auction

algorithm so that the new assignment satisfies the launch constraint. The loop will

be described in detail in Chapter 4 and an assignment process will be discussed in

Chapter 5. However, the assignment refinement can penalize some on-orbit satellites

in terms of AV by changing their final slots, the transfer to the new reassigned slot

being too costly. Indeed after the reassignment, some satellites may need such a

high quantity of extra-fuel that the transfer could become technically infeasible. A

tolerable limit concerning the extra-mass of fuel has to be chosen. If the satellite needs
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a mass of extra-fuel above this limit, the manufacturer could decide to abandon this

satellite (this satellite becoming effectively a spare satellite) and to launch a new one

instead. All these conceptual problems will be discussed further.

3.2.3 Launch Vehicle Selection Process

The Launch Selection Process should in theory find the optimal subset of launch

vehicles that can deploy all the satellites on the ground at minimum cost, time or

even risk depending of the objective defined by the manufacturer. However in the

simulator, parallel launches will not be considered, as they are not supported by

the existing launch infrastructure at the present time. This simplification leads to a

significant increase of the time to deploy the ground satellites. But it gives a realistic

order of magnitude for this deployment time.

3.2.4 The Optimal Transfer Schedule

The optimal transfer schedule is the schedule minimizing the cost of service interrup-

tion. The idea would be to find a feedback link between the transfer schedule module

and the module computing the cost of service outage. As explained previously, it is

difficult to predict which strategy between a compressed schedule and a staggered

schedule will imply low cost of service outage. Intuitively, the cost of service outage

will depend on the partial coverage maintained during the transfer phase and on the

duration of this transfer phase. We can suppose that the higher the transfer time will

be, the higher this cost will be. Also, the lower the coverage will be during this phase,

the higher the cost will be. Nevertheless those two effects are opposed. Indeed if the

schedule is compressed, the time needed to achieve all the transfers will be short,

but the coverage during this period will be low since many satellites are moving at

once (the assumption is that the satellites are not operational during the transfers).

In the case of a staggered schedule, the time needed to achieve the transfers will be

higher since few satellites are moving at once. Logically the coverage will be higher

in this case. The purpose of the loop would be to determine to which effect the cost
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of service outage is more sensitive: coverage or time. If the two effects have roughly

the same influence on the cost a tradeoff between staggered and compressed schedule

would have to be found. In this case, the loop would return an intermediate schedule

between staggered and compressed. However, due to the difficulty to find a feedback

between the transfer schedule module and the module computing the cost of service

outage, the loop was not implemented in the present framework. This concept should

be considered during future studies. Nevertheless, in order to show the influence of the

way of transferring the satellites, some different schedules (staggered or compressed)

were implemented. In Chapter 4, those scenarios will be briefly described. The type

of scenario was thus added to the Design Vector. An additional complication would

be added if the geographic non-uniformity of the demand were taken into account.

This thesis assumes that demand is uniformly distributed around the globe.

Another issue should be considered concerning the transfer schedule: the capacity

of the mission control center to be able to monitor/command several transfers simul-

taneously. A user-specified capacity should be theoretically found. Can we monitor

and command all the satellites simultaneously, only three, only two? It is difficult to

say in a generic solution of this problem.
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CHAPTER 3 SUMMARY

The purpose of this chapter was to develop a framework to study the orbital

reconfiguration problem. The Block Diagram is the key figure of this chapter since

it points out the complexity of this problem. Let's describe briefly this Diagram.

First, the type, altitude and min elevation angle are used to obtain the constellation

parameters: number of satellites, planes, inclination. Next the assignment problem

is solved. This assignment puts each satellite into a slot of the final configuration in

order to minimize the total AV. The characteristics of the launcher selected allow

to deduce the launch schedule. Then the best transfer schedule is deduced from a

loop allowing to minimize the cost of service outage. From the two schedules, the

total time of reconfiguration is deduced, the coverage during the operations as well.

Finally, the cost is determined from the number of new satellites to be built and

launched, from the amount of fuel necessary to achieve the transfer and from the

value of the outage cost.

This framework was kept as general as possible. This framework could be thus ap-

plied to every type of reconfiguration (LEO, MEO or GEO for altitude, polar, Walker

or even geosynchronous for the type) and for every type of applications (military or

commercial). In the following chapters, the framework will be applied to particular

cases.
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Chapter 4

Detailed Description of the

Reconfiguration Framework

Modules

In this chapter, the different modules implemented for the framework are described in

detail. Inputs, outputs and functions are presented for each module. Since the focus

of this thesis is to develop a framework applicable to a deeper study of constellation

reconfiguration, the theory on which the modules are based is carefully described. The

assumptions and limitations are also pointed out. The Block Diagram 3-2, presented

in Chapter 3 depicts how these modules are connected.

4.1 Constellation Module

INPUTS C, h, => OUTPUTS T, P, ai

4.1.1 Presentation of Polar and Walker constellations

Two methods have been developed to generate optimal constellations of large number

of satellites for continuous coverage: the Walker method and the Streets of Coverage

method. Adams and Lang [AL98] explain the differences between these two methods.
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The constellations generated by these two methods are respectively called Walker

constellations [Wal77] and polar constellations (Rider is often credited for the Irid-

ium design [Rid85]). The Walker method proposes to organize the satellites using

inclined circular orbital planes, whereas the Streets of Coverage method utilizes po-

lar orbits. The Walker constellations are characterized by an uniform distribution of

the ascending nodes (RAAN) for the different planes. This is not the case for polar

constellations that are optimally phased between co-rotating interfaces. RAAN's are

uniformly spaced for polar constellations with arbitrary inter-plane phasing. More-

over the polar constellations need many satellites per plane and the best coverage is

obtained at poles, while Walker constellations have few satellites per plane and a best

coverage at mid-latitude close to the inclination of orbits. However in both case, the

number of satellites per plane depends on altitude. It decreases when the altitude

increases in order to maintain global coverage.

The parameters necessary to describe a Walker constellation are the total number

of satellites in constellation T (N alternate nomenclature), the number of commonly

inclined orbital planes P, the relative phasing parameter F and the common incli-

nation for all satellites i. The parameters necessary to describe a Polar constellation

are T and P as well. But a, the angular separation between ascending nodes needs

to be known, since in this case a is different from 180/P deg in the case of optimal

phasing. However, the inclination, i, for polar constellations is close to 90 deg.

Adams and Rider [AR87] have given a condition for global coverage for polar

constellations:

7r = (P - 1).(a) +# (4.1)

where P is the number of planes, a the angle between co-rotating orbits (also called

angular separation between ascending nodes) and # the angle between counter-rotating

orbits. For Walker optimization, no closed form is known and we resort to heuristic

optimization.
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Figure 4-1: Iridium coverage simulated Figure 4-2: Globalstar coverage simu-
by the module. lated by the module.

4.1.2 Module Utilization

The "constellation module" was implemented by de Weck1 and Chang2. From the

characteristics of the constellation, type (Walker or Polar), altitude (h), elevation(e)

and multiplicity of coverage (n, n was limited to 1 for the project), the module returns

the parameters defined in the previous section: T, P, i and a.

To benchmark this module the characteristics of Iridium and Globalstar were

utilized. Iridium is a polar constellation with an altitude of 780 km, and an eleva-

tion e of 8.2 deg. With these inputs, the module returns values for T, P, i and a

of 66 satellites, 6 planes, 90 deg and 30 deg. These values correspond to the real

characteristics of the Iridium constellation. Figure 4-1 depicts the coverage of this

constellation. An asterisk indicates subsatellite point (Nadir point) for each satellite

in the constellation. Lines indicate the coverage area.

Globalstar is a Walker constellation, with an altitude of 1400 km and an elevation

angle of 10 deg. The module returned in this case T=50 sats, P=5 planes, i=90

deg and a=89.4 deg (see Figure 4-2), whereas the real Globalstar constellation has

T = 48.

'Assistant Professor, Department of Aeronautics and Astronautics-MIT
2 Graduate Student, Department of Aeronautics and Astronautics-MIT
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The results returned by the module being trustworthy, the module was applied in

the framework. It is a key module linking the design vector and the parameters to

the other modules.

4.2 Astrodynamics Module

INPUTS Pr, T, P, i, a, h = OUTPUTS AVi,, tiy

4.2.1 Background

An orbital slot in a constellation is defined by 6 orbital elements (a, e, i, Q, W, v).

The inclination i with respect to the equator and the longitude of the ascending node

Q define the orbital plane of the satellite, Q representing the angle from the vernal

equinox to the ascending node. The ascending node is the point where the satellite

passes through the equatorial plane moving from south to north. The semi-major axis

a describes the size of the elliptic orbit, whereas the eccentricity e describes the shape.

The argument of perigee w is the angle from the ascending node to the eccentricity

vector. It allows to find the position of the perigee of the ellipse in the orbital plane

and thus gives the orientation of the ellipse. Finally, the true anomaly v gives the

position of the satellite on the ellipse with respect to the perigee. The true anomaly is

the only orbital element depending on time. Thus, in order to determine the position

of a satellite unambiguously, a time reference (=Epoch) needs to be defined. The

other 5 elements are constant. Figure 4-3 summarizes this.

However, the orbits considered in this thesis are circular. This assumption simpli-

fies the orbital elements since e = 0 in a circular orbit and a = Rearth + h, where Rearth

is the mean radius of the Earth and h the altitude of the orbit. In addition, it is no

longer possible to define a perigee because all the points of the orbit have the same

altitude. w and v are replaced by 0 which represents the angle between the satellite

and the line of nodes. As a consequence, only 4 orbital elements are necessary to

determine the exact position of a slot in the case of circular orbits: the altitude h,

the inclination i, the longitude of the ascending node Q and the true anomaly 0.
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S line of nodes

Figure 4-3: Definition of the orbital elements. Extracted from [LUTOO] and slightly
modified.

A transfer for reconfiguration will imply changes to those 4 parameters. The

change of Q and i will allow to put the satellite in the right orbital plane and the

change of altitude h will place the satellite in the right orbit. However, once these

first maneuvers are achieved, the satellite and the final slot may have different true

anomaly 0. The satellite may thus need to be repositioned into the final orbit (phas-

ing). Different strategies exists for this rendezvous maneuver. One strategy will be

described briefly in the case of chemical propulsion in Section 4.2.3. The module im-

plemented to compute the transfer time and AV will not consider explicitly the prob-

lem of true anomaly phasing. Typically the AV for phasing is significantly smaller

than for changing i, Q and h. The true anomaly, 0, should be taken into account dur-

ing an eventual high fidelity simulation (explained in Section 5.6). The AV returned

by the module for each satellite to each slot will thus depend only on the initial and

final altitudes ha and hb, on the initial and final inclinations i, and ib and on the initial

and final longitudes of ascending node Q, and Ob. In other words, the AV depends
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of the characteristics of the initial and final planes: AV = f(ia, ib, ha, hb, Qa, Qb). An

allowance is made for "worst-case" phasing AV for each satellite. This assumption

neglect the effect of true anomaly and simplifies the assignment problem. Indeed in

this case, we do not need to maintain a one-to-one assignment from N(A) to N(B).

A many-to-one assignment to the appropriate orbital plane of B is sufficient.

4.2.2 Astrodynamics Module Inputs and Outputs

Recall that this module computes AV and transfer time from each position on the ini-

tial constellation A to each slot in constellation B. It returns two transition matrices:

AVij and tij. The inputs are the propulsion system (represented by its Ip,) and the

characteristics of the constellations A and B: altitude h, number of satellites N and

planes P, inclination, i and angle a between ascending nodes of neighboring planes.

In Figure 4-4, the typical form of a transition matrix is depicted. We obtain block

matrices, since all the satellites of a same plane need the same AV to be transferred

into a plane of the final constellation.

N(B) slots in constellation B

plane Bi plane Bpb

plane Ai

N(A) sat.<

AV Al->B1 I AV AB-p,

Lplane Ap. AV Ap.->B1 AV AP.->Bpb

Launched I
Satellites AV=O

Figure 4-4: Transition matrix AViJ

Now we will add a specific example of a transition matrix AVi/j for the reconfigu-

ration from the polar constellation A with altitude ha = 36, 000 km and min elevation
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angle ca = 2 deg. to the Walker constellation B with altitude hb = 30, 000 km and

min elevation angle Eb = 2 deg. A has 4 satellites (2 planes of 2) and B has 6 satellites

(2 planes of 3). The inclination Zb of B is 52.2 deg. The values are in km/s.

2.6 2.6 2.6 4.9 4.9 4.9

2.6 2.6 2.6 4.9 4.9 4.9

4.9 4.9 4.9 2.6 2.6 2.6

4.9 4.9 4.9 2.6 2.6 2.6

0 0 0 0 0 0

0 0 0 0 0 0

We obtain a block matrix. All the satellites of plane 1 of A need a AV of 2.6

km/s to go to plane 1 of B and a AV of 4.9 km/s to go to plane 2. As well, all the

satellites of plane 2 of A need a AV of 2.6 km/s to go to plane 2 of B and a AV of

4.9 km/s to go to plane 1. The two ground satellites are assigned a transfer AV of

zero.

Two types of propulsion were chosen to do the transfers: chemical propulsion or

electric propulsion. Each type of transfer will now be briefly described. Figure 4-5

summarizes the differences between these transfers.

In chemical propulsion, the transfer trajectory is a semi-ellipse. In electric propul-

sion, the satellite spirals between its initial and final position.

4.2.3 Chemical Propulsion Scenario.

The chemical thruster selected for the transfers is an OF2 and B 2H6 Bipropellant

with an Ip of 430 sec.

Two strategies were considered for the transfers in chemical propulsion. The first

one consists of three different phases:

e a Hohmann transfer for altitude combined with either the inclination change or

the node line change

e a simple plane change (before or after the Hohmann transfer depending on
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Eectn Propusion,

Figure 4-5: Trajectories in electric and chemical propulsion. Figure modified from
[SMAD99], Fig 7.9 page 185

which strategy minimizes the AV required) to change the parameter that was

held constant during the Hohmann transfer (longitude of ascending node Q or

inclination i)

e the repositioning in the new orbit consisting of a true anomaly phasing

This strategy was chosen primarily because simple expressions exist for the angular

changes when only Q or i are changed. When only i varies, the angle between the

initial and final planes is: Ai = i2 - ii. When Q varies, the angle is: AQ.sin(i) with

AQ = Q2 - Q 1.

In the case of a simple plane change, the expression utilized to compute the AV

is

AV = 2Vsin(A/2) (4.2)

where Vi is the initial velocity and A is the angle increment required.

In the case of the plane change combined with Hohmann transfer, the expression

is

AV = (V 2 + V2 - 24 Vf cos(A)) 1/ 2 (4.3)

where V is the initial velocity, Vf is the final velocity and A is the angle change
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required.

The second strategy consists of changing the inclination and the longitude of the

ascending node at the same time. At the nodal crossing point of the two orbital

planes (initial and final), a maneuver is performed that changes both the inclination

and right ascension of the ascending node. This maneuver is illustrated in Figure 4-6.

The plane change is also combined with a Hohmann transfer, allowing the change

of altitude. Actually this second strategy combines the two first phases of the first

strategy. As for the first strategy, the second one ends with a repositioning phase for

true anomaly, 0 in the new orbit.

Orbit 1

Orbit 2

Crossing point of the
two orbital planes

Figure 4-6: Change of orbital plane.
node are changed.

Both inclination and right ascension of ascending

The difficult part of this strategy is to estimate the angle between the two orbital

planes. In this case, there is no simple analytical expression for this angle. In the

coordinates defined in Figure 4-7, the normal vector of the orbital plane n is equal to

(4.4)

sin(i~sin(Q)

= -sin(i)cos(Q)

cos(i)

If we define n, and rib the normal vector of respectively the initial and final orbit

63



z

X

Figure 4-7: Representation of an orbital plane.

planes, the angle a between the two planes can be obtained from the expression

cos(a) = a.f5b = sin(ia)sin(Qa)sin(ib)SZn(Qb)+sin (ia)os(Qa)sin(ib)COS(Qb)+COS(ia)COS(ib)

(4.5)

Now a comparison between the two strategies will be made. Table 4.1 summarizes

the results obtained with both strategies for four different transfers. AV1 is the AV

computed with the first strategy, AV2 the AV computed with the second one. The

angles are in degrees, AV is in km/s.

Table 4.1: Comparison of

Qa ia ha Qb ib

the two strategies

hb AV 1 AV 2

10 0 1000 20 45 1000 5.6 5.6
0 10 1000 45 20 1000 2.3 1.9
10 0 2000 20 45 1000 5.4 5.4
0 10 2000 45 20 1000 2.4 2

The second strategy seems to be more cost efficient in terms of AV. Moreover the

transfer is shorter with the second option, since the time spent between the Hohmann

transfer and the simple plane change is suppressed. In the first strategy, the satellite

should wait on its trajectory until its current orbit intersects the desired plane. It

is not the case anymore with the second strategy, since the simple plane change is
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suppressed.

However, even in the second strategy, the time to do the entire transfer is roughly

approximated because of the difficulty to know the exact satellite position dur-

ing the maneuver, since these calculations are carried out independent of the true

anomaly 6. The discussion of high fidelity simulation will consider true anomaly,

thus anchoring the reconfiguration to a particular time (Epoch) reference. We have

Transfer = THohmann + Tphasing. The duration of the repositioning phase is very

complex to determine. Indeed this stage depends obviously on the satellites already

arrived in the orbit in constellation B and on their positions on this orbit (i.e. the

value of their respective true anomaly). An extreme value corresponding to the worst

case was chosen to estimate the phasing duration. It is assumed that the AV re-

quired to reposition the satellite is reasonably small with respect to the AV needed

for the first phase. The goal is to find a value for the AVphasing allowing a transfer

in a reasonable time, without consuming an important part of the extra mass. From

the work done by Chaize on time vs AV for phasing maneuvers in the Appendix of

[CHAI03], the following value was chosen arbitrarily and applied in the framework:

AVphasing = 0.5km/s (4.6)

This value corresponds to a consumption of approximately 90 kg of fuel for the I,

of 430 s and a S/C mass of 700 kg. A repositioning with high thrust will actually

consist of doing a Hohmann transfer to a slightly lower orbit, then drifting at higher

speed and finally doing a reverse Hohmann transfer in order to rendezvous with the

final slot. The AV required for this repositioning is a function of the time At to

do the transfer. Assume the satellite has to be moved forward by an angle AE, the

expression between time and AVphasing is given by3 :

AV ~ 2 A (4.7)
3 At - 'T

where R is the orbit radius and w the orbit rotation speed.

3 Rocket Propulsion course 16.512 -Professor Martinez-Sanchez MIT
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The worst case corresponds to a value of AE = ir. This value was applied in the

module in order to estimate the time of phasing and also the total time of transfer.

To conclude this section, the AV computed for chemical propulsion is reasonably

precise and the transfer time a good approximation. In this model, both AV and

transfer time do not depend on the chemical thruster utilized. Time and AV are thus

constants with respect of the type of chemical thrusters. This can be explained, since

both represent impulsive transfers, i.e. the burn time is very small compared to the

transfer time: Tburn < Transfer.

4.2.4 Electric Propulsion Scenario.

Contrary to chemical propulsion, the transfer with electric propulsion consists of only

one stage with continuous thrust. The AV does not depend on the propulsion system.

Indeed, AV is given by the expression 4 :

AV = (V+V - 2VVfcos(I A))1 (4.8)

where V is the initial velocity, Vj is the final velocity and A is the angle change

required. This expression is very close to the expression obtained in an Hohmann

transfer in chemical propulsion. The main difference is the 7r/2 inside the cosine. For

the angles A considered (between 0 and ir/2), the AV in electric propulsion will be

higher than the AV required for impulsive transfers. Indeed cos(jA) <; cos(A). So,

AVeiectric > AVimpuisive.

Table 4.2 summarizes the characteristics of the electric propulsion systems studied.

The order of magnitude of the efficiencies, rj and of the input power come from

[SMAD99]-Chapter 17. The Powers were also chosen, knowing that the satellites

considered have a transmitter power of 1 kW.

Now the transfer time will be estimated. The acceleration during the electric

transfer is assumed to be constant. The transfer Delta V, AVtransger is obtained from

the expression: AV = a.Transger where a is the acceleration of the spacecraft and

4Space Propulsion course 16.522-Professor Martinez-Sanchez MIT
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Table 4

Name

Resistojet
Arejet
Plasma Thruster (PPT)
Hall Thruster
Ion Engine

.2: Electric

Isp(sec)

500
580
1200
1600
3280

propulsion systems

Power(kW)
2 1
2 0.34

1.5 0.094
1.5 0.43
2.5 0.66

Manufacturer

N 2H 4-Primex
Teflon-Primex
Xenon-Loral

Xenon-NASA

Ttransjer the time to achieve the transfer. Moreover a

approximation the satellite dry mass and F the thrust.

is given by the following expression:

F 2 P
Isg

= where M is in a first

From [SMAD99], the thrust

(4.9)

where P is the power and q the propulsive efficiency. The transfer time is thus given

by:
MgI8 ,AV

Ttransfer = 27P (4.10)

Contrary to the AV, the transfer time varies with the type of electric propulsion

system. Moreover it was assumed that the satellite arrives directly in its final slot.

That is why a phasing step is not considered for electric propulsion.

4.3 Assignment Modules

INPUTS AVj => OUTPUTS Ass

4.3.1 Assignment Methodology

The matrix AVi'j is utilized by the auction algorithm to determine the best assign-

ment in terms of fuel consumption. However as explained previously, the assignment

returned by the algorithm does not match necessarily with the launch vehicle(s) capac-

ity. This problem explained the necessity to implement a loop to assign the launched

satellites after the auction algorithm module. The idea is to refine the assignment,
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so that it could match with the vehicle capacity. First of all, from the assignment

returned, the number of slots occupied by the ground satellites is obtained for each

plane of B. If the repartition of the ground satellites does not correspond to the

launcher capacity, one or several position(s) occupied by the satellites of A are set

free in the plane considered in order to permit a launch to this plane. The method

corresponds to a reassignment for the satellites on the ground. The initial matrix

AVjj is modified to take into account this reassignment. When a satellite (say the

pth) is assigned to a slot of constellation B (say the jth), we prevent the other satel-

lites to go to this position by setting AVjj = 2000 for all i = p. Once all the satellites

on the ground are reassigned, the auction algorithm is run another time with the

modified transition matrix AVThdif. The method is very efficient in terms of time of

calculation since the auction algorithm is run only twice.

This reassignment process is explained in detail in Chapter 5 with a case study.

4.3.2 Efficiency of the Auction Algorithm

In this subsection, the efficiency of the auction algorithm is discussed. During the

implementation of the framework, this study was led to prove the interest and relia-

bility of the auction algorithm compared to other methods. The values given in this

subsection are not universal, since the framework was not completely implemented

but the purpose of this study was only to test different methods of assignment. The

auction algorithm was first compared to assignments randomly generated. After this,

an interesting comparison with the heuristic technique called simulated annealing

(SA) was performed. The reconfiguration considered for this part was the reconfig-

uration from the polar constellation A with ha = 2000 km and ea = 5 deg. to the

polar constellation B with altitude hb = 1000 km and elevation 6b = 5 deg. The loop

for assigning the ground satellites was not be taken into account: only the initial as-

signment returned by the auction algorithm was considered. The auction algorithm

returned, according to Equation ( 2.1), an optimal value of AVtotai = 26.5 km/s

which corresponds to an average value per satellite of 1.25 km/s. To ensure that the

algorithm works well, seven random assignments were generated. From the matrix
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Table 4.3: Random assignment results

Experiments AVotai (km/s) AVvg per satellite (km/s)

1 144.8 6.9
2 156.7 7.5
3 140.2 6.7
4 111.8 5.3
5 142.6 6.8
6 122.7 5.8
7 147.5 7.0

AVijJ the AVtotai in each case is computed. The results are compiled in Table 4.3.

The results given by the auction algorithm seem to be very good compared to a

non-optimized assignment. The auction algorithm returns only one of the optimal

assignment. Indeed, the best assignment is non unique, since only assigning to the

correct plane of constellation B really matters. Knowing that 21 satellites had to be

assigned into 40 slots, the size of the full-factorial solution space is C2~ 1.31 x 10".

Of these C"4 possibilities, only (C-) 3 = 512 assignments would return the optimal

value of 26.5 km/s. The constellation A is constituted of 3 planes of 7 and the

constellation B of 5 planes of 8. Changing the slot of one satellite in the same

plane would not change the AVct. These considerations explain why (C7) 3 optimal

assignments exist. If timing (true anomaly) and exact phasing between A and B were

taken into account, this would change, since then the AV for true anomaly rephasing

in one orbital plane of B would distinguish between satellites within one orbital plane,

rather than assigning them all the same AV,ase. This is explored further in Section

5.6. In that case, a single optimal assignment can exist. It would be very sensitive to

the exact transfer schedule.

The comparison with SA will also prove the efficiency of the auction algorithm.

Kirkpatrick et al.[KIRK83) described the different steps in order to utilize a Simulated

Annealing Algorithm. The steps are explained below.

* Step 1: Choice of the Initial Design Vector X0 . First of all, the assignment was

chosen in the form of a vector whose size is the size of the final constellation:
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Nsats(B). The ith coordinate indicates in which slot the ith satellite of A, will

go. The initial design vector (or assignment) was chosen arbitrarily: the ith

satellite of A goes to the ith slot of B. (in other words, Xo(i) = i) Why this

choice? Because this initial assignment would imply a AVotal of 128.7 km/s to

do the maneuver. It is far from the optimal value of AVotal = 26.5 km/s. The

initial assignment could thus be easily-improved.

" Step 2: Perturb Xi to obtain a neighboring assignment Xi+1

Xi+1 is a neighbor of Xi if Xi+1 is obtained from a modification of Xi. The

perturbation chosen was to determine randomly two positions of Xi and to

invert these two positions for obtaining Xi+1 .

" Step 3: Choice of the initial system temperature.

It was chosen to first take an initial temperature on the order of magnitude of

the expected range of the objective function. The range of the AVlt/ is around

100 km/s. After several attempts inconclusive with an initial temperature of

100 km/s for different cooling schedules, an initial temperature of 1 km/s was

finally chosen.

" Step 4: Choice of the cooling schedule.

There are two most common cooling schedules. The first one is to explore

several perturbations at a given temperature, then reduce the temperature to

a predetermined value, and repeat. The second is to reduce the temperature

between each perturbation, but by a smaller amount. The second approach was

selected. At each iteration the temperature were reduced by 0.001 km/s.

" Step 5: Terminating the SA algorithm.

The algorithm is terminated when T reaches the value 0, i.e. after 1000 itera-

tions in this case.

The auction algorithm returns a AV of 26.5 km/s in a CPU time of around 1.2

sec. The SA algorithm was run several times with the cooling schedule and initial
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Table 4.4: SA results
Experiment AVIota (km/s) CPU time (s)
1 27.9 2.09
2 27.9 1.97
3 31.8 1.97
4 36.0 2.03
5 31.8 2.09
6 29.3 2.03
7 26.5 2.19
8 30.5 2.09
9 27.9 2.31
10 30.4 2.42

temperature explained above. The results are summarized in Table 4.4. The CPU

time is obtained for a particular computer5 .

For each try, the initial assignment was well-improved (recall that the initial as-

signment corresponded to a AVt of 128.7 km/s). The SA algorithm returns a good

assignment in terms of AV but it returns very rarely the best one (the same than the

auction algorithm). In 10 attempts, the best one was obtained only once (Trial 7 in

Table 4.4). Moreover, the time of CPU calculation is a little bit higher for SA. This

study seems to support the reliability and speed of the auction algorithm compared

to simulated annealing, at least empirically. SA is too dependent on the different

parameters such as initial temperature and cooling schedule for being a competitive

method in this context.

4.3.3 Sensitivity of the Assignment to the relative Phasing

of the two Constellations

The relative phasing of the two constellations is the angle between the first plane

of the initial constellation A and the first plane of the final constellation B. In

order to quantify the sensitivity of the assignment with respect of this angle, the

AV total (after optimal assignment) was computed for different values of this angle.

5 Specifications of the computer utilized: Laptop Samsung VM7000 Series. Processor: Pentium

11 400MHz. 64 MB RAM.
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The reconfiguration considered is the reconfiguration from A with ha = 2000 km and

Ea = 5 deg to B with hb = 1200 km and tb = 5 deg. Three graphs were drawn

depending on the Launch Vehicle capacity. Figure 4-8 represents the variation in AV

versus relative phasing angle when the reassignment loop is not considered. This case

is applicable when the Launch Vehicle can only carry 1 satellite per launch or when a

series of launch vehicles with variable capacity is available. The relative phasing that

minimizes the AVet~ corresponds to an angle of 0 deg. In other words, the first plane

of both constellations must be the same in order to minimize the fuel consumption.

Figures 4-9 and 4-10 were drawn for a launch capacity of three and five satellites

respectively. In both cases, the phasing minimizing the fuel consumption is no longer

0 deg. The best relative phasing is thus sensitive to the launch vehicle capacity.

However, since the best AV obtained is very close to the AV obtained when the

phasing angle is equal to 0, we decided to utilize this angle of 0 for the project.

100

90.

80-

70-

60-

50-

40
4 5 10 15 20 25 30 35 40 45 50

relative phasing (deg.)

Figure 4-8: AVtt versus angle of relative phasing. No reassignment loop in this case.
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Figure 4-9: AVet~ versus angle of relative phasing. Launch Vehicle Capacity of 3
satellites.

4.4 Launch Module and Launch Schedule

Launch Module: INPUTS ib, Nb - Na, mdry -> OUTPUTS Caplauncher, COStlauncher

Launch Schedule Module: INPUTS Caplauncher, Nb - Na => OUTPUTS S,

This section describes the launch strategy chosen for the project implementation.

Two modules of the Block Diagram (see Figure 3-2) are necessary to determine the

launch strategy. The Launch Module returns the name and the cost of the Launch

Vehicle considered, whereas the "Launch Schedule Module" returns a plan to launch

the satellites from the ground. In Subsection 4.4.1, the deployment of the IRIDIUM

constellation is carefully described. This example allows to determine an order of

magnitude for the deployment time and launch vehicle capacity required in the case

of LEO satellite constellations. In 4.4.2, two Launch Selection Processes 6 will be

briefly described. By comparison with the data of the IRIDIUM deployment, one

simulation will be retained (Subsection 4.4.3). Finally, the problems posed by the

launch planning will be discussed in Subsection 4.4.4.

6available in the Space Systems Laboratory at MIT
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relative phasing (deg.)

Figure 4-10: AVet~ versus angle of relative phasing. Launch Vehicle Capacity of 5
satellites.

4.4.1 Iridium Constellation Deployment

As shown in Table 4.5, the IRIDIUM constellation was deployed in just twelve months

from three countries: Russia, USA and China. This deployment strategy proves that

it is possible to launch 72 satellites into LEO in just one year with the current launch

infrastructure.

The launch vehicles utilized and their respective capacity represent the other in-

teresting data in this table. Seven satellites were launched with the Russian rocket

Proton, five with the US Delta II and two with the Chinese Long March. Wertz and

Larson [SMAD99] give the payload accommodation for the three Launch Vehicles.

Proton with a diameter of 4.1 m and a length of 15.6 m has a payload accommoda-

tion of 206 m 3
, whereas Delta II has a payload accommodation of 56 m 3 (diameter of

2.9 m and length of 8.5 m). It is remarkable to see that with a payload accommoda-

tions almost four times higher than Delta II, Proton only carried 7 satellites compared

to the 5 satellites carried by Delta II. It is not due to a payload mass limitation, since

Proton can carry 20 tons of payload to LEO [SMAD99]. The manufacturer must have

considered that it was too risky to put more than 7 satellites per launch vehicle. This

study gives orders of magnitude for the launcher capacity and the maximum number
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May 5, 1997 5 satellites launched on Delta II
June 18 7 satellites launched on Proton
July 9 5 satellites launched on Delta II
August 20 5 satellites launched on Delta II
September 13 7 satellites launched on Proton
September 26 5 satellites launched on Delta II
November 8 5 satellites launched on Delta II
December 8 2 satellites launched on Long March
December 20 5 satellites launched on Delta II
February 18, 1998 5 satellites launched on Delta II
March 25 2 satellites launched on Long March
March 29 5 satellites launched on Delta II
April 6 7 satellites launched on Proton
May 2 2 satellites launched on Long March
May 17 5 satellites launched on Delta II

Table 4.5: Deployment of the Iridium constellation.

of satellites that can be put in one launch. This data will allow to benchmark the two

simulations available and to keep the more reliable one. The order of magnitude for

the deployment duration will allow to implement a realistic launch schedule module.

4.4.2 Description of the two Simulations available

One of the launch simulations available was coded in 2002 by Adam Ross7 . This

simulation is based on an optimization approach to the launch vehicle selection pro-

cess for satellite constellations proposed by Jilla and Munson [JilOO]. The selection

problem is based on finding the optimal subset of launch vehicles that can deploy all

of the satellites in a constellation at minimum cost and/or risk; while adhering to a

set of satellite, political and availability constraint. The tool consists of a database

containing information on all of the operational launch vehicles. The information

of this database is then combined with the properties of the constellation to create

a mathematical formulation of the launch vehicle selection problem as an integer

program (IP). The optimization is solved via a branch-and-bound algorithm. This

method is a priori attractive due to the impressive number of launch vehicles present

in the database. Moreover the simulation is not limited to launch to Low Earth Orbit

7graduate student-Space Systems Laboratory/MIT
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(LEO).

The other simulation is part of the constellation simulator developed by de Weck

and Chang [OLdW02]. This program takes mass and volume of an individual satellite,

satellite altitude, and inclination as inputs, and returns a suggestion to the user on

the types of launch vehicles to use, the launch sites and the cost. This program is

limited to LEO constellations and only 6 launch vehicles are considered: Atlas IIIA,

Delta II 7920, H-II A 202, Long March 2C, Pegasus XL and Ariane 5.

4.4.3 Choice of one Simulation

In order to determine the method that will be implemented in the simulator, the

best way is to benchmark the results returned by both methods. The deployment of

IRIDIUM was chosen as a reference: altitude of 780 km, mass of 700 kg, volume of 7

m3 per satellite, inclination of 89 degrees and 72 satellites to be deployed. With these

inputs, the method based on Jilla's approach [JilOO advices the launch vehicle Delta

IV-M with a capacity of two satellites per launch. Knowing that 5 satellites were

carried by the launch vehicle Delta II during the IRIDIUM deployment, the results

returned by this simulation are surprising. Indeed Delta IV-M although bigger than

Delta II has according to the module a lower capacity. These results seem to compro-

mise the utilization of this module in the simulator to study orbital reconfiguration.

In addition to this, the price to launch a Delta IV-M rocket is not realistic: 255 M$.

Although less ambitious with a small database and limited to LEO study, the

module of de Weck and Chang returns results that are more realistic in this context.

With the characteristics of Iridium satellites, the module returns Ariane 5 with a

capacity of 18 satellites per launch and a cost of 150 M$. The capacity of 18 satellites

can be surprising, but knowing that Ariane 5 can carry 18 tons to LEO [SMAD99),

it should be possible to put 18 Iridium satellites in one launch vehicle. Obviously a

manufacturer would likely not consider to launch such an amount of satellites in the

same launch, due to risk considerations. For the same reasons that Proton in the real

deployment of Iridium (Section 4.4.1) was not used at full capacity, such a strategy

would be too risky. The simulator implemented will take this into account by limiting
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the number of satellites per Launch Vehicle:

Nsats per vehicle = min(LauncherCapacity, Nsats per plane,6)

The limit of 6 satellites for one launch vehicle is inspired by Section 4.4.1. This

limit aims to limit the risk of losing a high number of satellites in the case of a launcher

failure. This number can be changed by the user depending on his risk tolerance level.

To summarize, the second method was incorporated into the simulator for con-

stellation reconfiguration. This method is less ambitious, but the results are realistic.

4.4.4 Problems posed by the Launch Planning

This subsection describes briefly how the "Launch Schedule Module" works. The

module takes as inputs the name of the Launcher and the number of launches to send

in orbit all the N(B) - N(A) satellites on the ground. It returns in matrix form a

plan for the different launches:

( ti Nats (launch 1)

t2 Nat, (launch 2)

tn Nats (launch n)

This planning allows to compute the duration of the launch phase.

During the initial implementation of the "Launch Schedule module", a sophisti-

cated model was applied to determine the schedule. The first step was to compute

the availability of the launcher selected. From [SMAD99], this availability is given by

the expression

Av = 1 - [L(1 - Re)Td/(1 - 1/S)] (4.11)

where Av is the availability in %, Re the vehicle reliability, L the launch rate in

units of flights per year, Td the stand-down time following a failure in units of years

and S the surge-rate capacity. Typical values for S are between 1.15 and 1.5 in the
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Table 4.6: Time between two successive launches.
Launcher Country Time between 2 launches

Ariane 5 Europe 80 days
Atlas IIIA USA 65 days
Delta II 7920 USA 42 days
H-II A202 Japan 100 days
Long March 2C China 60 days
Pegasus XL USA 60 days

United-States. From the availability and the number of flight per year, the length

between two successive launches was calculated and hence also the launch schedule.

This method was not retained in the final version of the framework because the

expression often returns negative availabilities. In addition to this, this model could be

acceptable in a situation where the demand is much higher than the supply. However

in the current launcher market, supply is generally higher than the demand. Ariane 5

has been launched only 14 times since 1996 and the inaugural launch. This is due not

only to technical failures, but also to the absence of customers. Recall that Ariane

4 could be launched 14 times in just one year. There are not enough customers

compared to the high number of Launch Systems. If a manufacturer decided to

undertake a constellation reconfiguration, he would have no problem to find a Launch

System available and to launch all the "new satellites" in a rapid manner. It is thus

assumed that the availability of all the Launch System is equal to 1.

In order to determine a schedule, the time between two successive launches has

to be estimated. As explained in the last section, the launch module incorporated

in the simulator has a database limited to 6 launch vehicles. The time between two

successive launches was extrapolated from the Iridium deployment for Delta II and

Long March 2C. For Pegasus XL' and Atlas III A, the records available on the Internet

were utilized to deduce an estimation of this time. For Ariane 5 and H-II A202, the

time between two successive launches was assumed. There are not sufficient records

for these two launchers to give a statistically significant approximation of this time.

Table 4.6 summarizes this.

8 www.astronautix.com/lvs/pegsusxl.html
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4.5 Transfer Schedule

INPUTS ti,, s = OUTPUTS St

As explained in Chapter 3, the transfer schedule should be determined by an

optimization loop whose objective would be to minimize the service outage cost. In

view of the difficulty to find a feedback between the "Transfer Schedule Module" and

the module computing the cost of service outage, it was finally decided to generate

four possible scenarios for the satellite transfer phase. The goal is to show the influence

of the timing of transferring the constellation A. The four scenarios are described

below.

o Scenario 1:

The first scenario consists of first transferring half of the satellites. Once this

first stage is accomplished, the remaining half are transferred into their new

positions. The first wave of transfers coincides with the last launch.

* Scenario 2:

All the satellites begin their transfers at the same time. As for scenario 1, the

transfer begins once the last launch is achieved.

e Scenario 3:

The satellites are transferred sequentially. Once a satellite has reached its final

slot, the transfer of the following can begin.

o Scenario 4:

All the satellites finish their transfers at the same time. This scenario is re-

dundant with Scenario 2 in chemical propulsion, since all the satellites have the

same transfer time in our model, but not in electric propulsion.

In a High Fidelity Simulation, the satellites can not begin or finish their transfer

exactly at the same time in chemical propulsion, since the transfer start must occur
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when the S/C is on the crossing point between its original trajectory and final plane

Thus, all the satellites will not be obviously on their respective crossing point at the

same time. However, due to the fact that true anomaly is not considered in our

simple framework, the approximation consisting of considering transfers at the same

time is understandable. Indeed, the purpose was to compare the effect of a staggered

schedule (scenario 3) with a compressed schedule (scenario 2 and 4) on the outage

cost (the scenario 1 is an intermediate situation between 2 and 3). That is why, these

scenarios were implemented in the present framework.

Knowing the transfer time necessary for all the satellites, the module returns a

transfer planning depending of the scenario selected. The output is a matrix called

St.

satellite n Tbeginning-transfer Tend-transfer

1 t1 t1i +Ttransfer(1)

St 2 t2 t2 + Ttransfer(2)

N(A) tN(A) tN(A) ± Ttransfer(N(A))

The total transfer time is: tN(A) + Ttransfer(N(A)) - ti.

4.6 Coverage Module

INPUTS Si, St => OUTPUTS Cov

4.6.1 Determination of the Partial Coverage during the Re-

configuration

A key issue of this module is to find a metric allowing to quantify the partial cover-

age, in other words the percentage of coverage available during operations. Due to

the multiple intersection between the coverage surface of the different satellites of a

constellation(see Figure 4-11), it is very difficult to quantify the impact of the absence
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of one satellite on the total coverage, as it varies over time for both Walker and Polar

constellations. Since the constellations considered in this thesis ensure only single

a it

Figure 4-11: Intersection between the coverage surfaces of two satellites. Area of
double coverage.

coverage on all of the Earth's surface (i.e. single global coverage), it was assumed

that the partial coverage could be measured by the percentage of operational satel-

lites, the satellites in transfer not being taken into account. This assumption is valid

only in the case of single coverage over the Earth's surface. Indeed, assume that the

constellation has a double coverage on all the Earth surface. If one satellite is trans-

ferred, there will be no hole in the coverage since another satellite in the constellation

covers the same areas (consequence of the "double global coverage"). In the case of

single global coverage, the transfer of one satellite will entail obviously one hole in

the coverage. However, the assumption estimating the partial coverage by the per-

centage of operational satellites represents a rough simplification, because even in the

case of single global coverage some areas are covered with double or triple coverage.

Figure 4-12 depicts the regions of single, double and triple coverage in the case of

polar constellations. The polar constellation always concentrates the higher folds of

coverage at the poles. Walker constellations usually have these higher folds near the

latitude corresponding to the orbital inclination (see Figure 4-13 and [AL98]).
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Figure 4-12: Coverage distribution in Figure 4-13: Coverage distribution

the case of Polar constellations. 28 in the case of Walker constellations.

satellites, h = 1600 km, i=90 deg Walker 28/7/2, h = 1600 km, i=59 deg

As a consequence of this, a constellation with 80% of operational satellites will

surely have a partial coverage higher than 80%. Nevertheless, this assumption repre-

sents a good order of magnitude of the partial coverage.

4.6.2 Inputs/Outputs of Coverage Module

The inputs of this module are the launch and transfer schedules S and St. From

the plan to launch the ground satellites and the plan to transfer the satellites of

the constellation A, the module returns the coverage capacity of the initial and final

constellation during the entire process. The output is a matrix called Cov.

Date of operations (s) coverage of A in % coverage of B in %

ti 100% 0%

Cov =t2

tfinal 0% 100%

The dates of operations represent either the launch dates, or the dates of transfer

start, or the dates of transfer end.
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4.6.3 Start of Operations for Constellation B

It was decided that constellation B starts operations once its coverage capacity ex-

ceeds the coverage capacity of A. Once B has initiated service, A ends operations.

In this scenario, A and B are not in service at the same time. Another possible al-

ternative would have been to consider that A and B could be operational in parallel.

A simple case will illustrate this option. Consider a constellation A with 4 satellites

and a constellation B with 8 slots, in other words Nat,(A) = 4 and Nat,(B) = 8. In

order to simplify, it is considered that the coverage areas of all satellites are rectan-

gular. Figure 4-14 represents the coverage of both constellations once two satellites

of A have been transferred to B. 4 ground satellites had been launched earlier. So,

in this phase of the process, A has two satellites in service and B has six satellites in

service. The partial coverage of A (in light shading in the Figure) is 50 %, whereas

the partial coverage of B is 75 % (in dark shading in the Figure). In the legend of

Figure 4-14, the coverage surface of one satellite of A is the double of the coverage

surface of one satellite of B, satellites of A being higher in altitude than satellites of

B.

m

Figure 4-14: Coverage surfaces of A and B. SIMPLE CASE

If the model chosen for the simulator were applied to this simple case, the service

would be insured by constellation B. However Figure 4-14 shows that if the coverages
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of A and B were added (case where the constellations are in service in parallel), there

would have been 100% coverage.

From this simple case, it can be concluded that if A and B were utilized at the

same time, the partial coverage would be higher. However this alternative raises a

lot of issues, concerning its feasibility (coordinated operation of two partial constella-

tions with a subset of transitioning satellites). During the reconfiguration, the entire

constellation would consist of two layers at different altitudes. The question is to

know if it would be feasible technologically to connect two layers. This simple case

of "hybrid constellations" needs to be studied in detail. For instance, if inter satellite

links (ISL) are used, links between the layers need to be created which is a very

challenging problem. For these reasons, the assumption consisting of utilizing only

one constellation at the same time was upheld.

4.7 Cost Module

The total cost is the sum of four different costs: Ctotal = Claunch + Ctransfer + Coutage +

Cproduction. If the reconfiguration extends over more than one year, the costs need to

be discounted to a particular fiscal year (FY).

4.7.1 Launch Cost

The launch cost Claunch is given by the Launch Module. It is obviously equal to the

number of launches times the price of one launch. Launch integration cost, insurance

costs or costs arising from launch failures are neglected, but could be included in the

future.

4.7.2 Transfer Cost

INPUTS AM, -> OUTPUTS Cfuel

The transfers of the on-orbit satellites of constellation A will imply costs for the
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constellation manufacturer/operator. This cost should include the cost of the propul-

sion systems (it is assumed particularly for chemical transfer that the satellite own

propulsion systems is not sufficient to achieve the transfers, hence the necessity to add

a chemical thruster) and the cost to launch the extra-fuel necessary for the transfers.

The "real option" considered in this thesis being the fuel necessary to achieve the

transfers, a propulsion systems is necessary to utilize this fuel. If the "real option"

considered had been the utilization of a Space Tug, the satellites to be transferred

would not have needed a propulsion systems but perhaps would have needed to be

outfitted with a compatible docking mechanism. The cost of the propulsion systems

would have been replaced by the Space Tug utilization cost.

In the present case (fuel as "real option"), it was impossible to obtain prices of the

propulsion systems or even a rough approximation. Indeed, costs are a very sensitive

information in the aerospace industry. However assuming that this cost is negligible

with respect to the cost to launch the extra-fuel, it was decided to focus only on this

cost. So,

Ctransfers Cfuel = Ckg of payload.AM (4.12)

where the cost coefficient Ckg of payload is the cost to launch a kg of payload to

LEO. A mean value of Ckg of payload for different launchers (SMAD page 802 table

20-14 on "Launch Vehicles Costs") was utilized: C "of payload 13K$/kg. AM

was obtained from AV thanks to the Rocket equation:

AM = Mg[e I - 1] (4.13)

4.7.3 Cost of Service Outage

INPUTS Cov -> OUTPUTS Coutage

The third cost is the cost due to service outage: Coutage. It corresponds to the

loss of revenue entailed by the on-orbit satellite transfers. During transfer opera-

tions, the satellites are indeed no longer operational, which implies a decrease in the
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constellation capacity and therefore a temporarily reduced revenue.

The utilization of the constellation yields for the manufacturer a revenue per user

called service charge: S.C. in US$/min. An empirical expression of the lower limit

for this charge is given by Lutz and Werner[LUT00):

I (1 +_k)T
service charge = (36 +46)T (4.14)

(365.24.60)TC,U,

where I is the net investment for the system including the costs of development,

production, installation and initial system operation; k is the internal annual interest

rate (Typical values are k = 5... 30%); T is the period of time until amortization

(Typical values are T = 3... 8 years); C, is the global system capacity and U, is the

global system utilization (U, = 5. . 15%).

The expression C8 .U, = ND allows to compute the quantity C8 .U,. N" is the

number of users (subscribers) in the system and Da the average user activity in

minutes per month(= 100 ... 150 min/month).

For the project purpose, k was chosen equal to 15%, T equal to 5 years and Da

120 min/month. Moreover, I was assumed to be equal to the Life Cycle Cost, since

operations costs of the constellation are typically significantly smaller than I. This

assumption must be revisited in the future.

The revenue entailed by the constellation utilization is then approximated by

the product of the service charge times the constellation's utilized capacity. So,

R = S.C. x C8 U,. It was assumed that during operations, the service charge of one

configuration A or B is a constant, equal to the service charge when the configuration

is fully operational (S.C.A and S.C-B) and that the global system capacity varies with

respect to time. C,(t) decreases when a satellite of A leaves its position in the initial

configuration and increases when this satellite reaches its final slot in constellation

B. Figure 4-15 summarizes this.

From these assumptions, the cost of service outage can be computed as the dif-
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Figure 4-15: C, versus time. The capacity of A reduces gradually after tA and
the capacity of B increases gradually. Once the capacity of B exceeds that of A

(crossover), service is switched over.

ference of revenue entailed by the transfers:

Coutage tC (RA - R(t))dt + ( RB - R(t))dt (4.15)
tA Ic

where tA represents the start of transfers, tB the time when B is completed and tc

the date when the configuration B initiates service. The first part of the outage cost

between tA and tc is a direct loss of revenue entailed by the transfer and the fact

that A is no longer fully operational. The second part is more a missed economic

opportunity due to the fact that B is not fully operational yet. Equation 4.15 can be

also expressed as:

Cotage = S.C.A(C,A - C(t))Usdt + J S.C.A(C,A - Cs(t))Usdt (4.16)

In the case of partial coverage, the number of users and also the global system

87



capacity is obviously lower. In order to compute the global system capacity C, during

the transfers, it was assumed that C,(CV = X%) = CS,A/B.X% where Cs,A/B represents

the global capacity of either configuration A or B when the constellation is 100%

operational and x is the partial coverage. The distribution of users is assumed thus

to be homogeneous. This assumption is valid as well if it is considered that the holes

in the coverage appear equally over very populated regions as well as over desert

regions.

Coutage was computed in its discrete form for the project purpose:

t tB

Coutage = Z(S.C.A)Cs,Us.Time(X%)(1 - x) + ((S.C.B)C,BUs.Time(x%)(1 - x)
tA tC

(4.17)

where x represents the partial coverage in % and Time(X%) the length of this

period of coverage.

The investment I and the number of users Nu are obtained from the simulator

implemented by de Weck and Chang [OLdW02]. This constellation simulator has

been used to generate 1800 different architectures for the particular case of LEO

personal communications systems. These 1800 architectures represent only polar

constellations. The Design Vector of the simulator consists of the constellation type,

C, the altitude, h, the minimum elevation angle, E, the satellite transmitter power,

Pt, the satellite antenna size, DA, the per-channel bandwidth, Afc and the satellite

lifetime, Tsat. The last input is ISL, the inter satellite links: ISL = 1 if intersatellite

links are implemented and 0 otherwise. From these inputs, the simulator returns some

outputs such as the Average Delay, the number of users (Nu), the Lifetime capacity

(in min) and the Lifecycle Cost (in B$). The values utilized for running the baseline

simulation are:

" C=polar

e Pt = 1000W

" DA= 2.5m

" Afe = 40kHz

88



* ISL = 1

" Tsat = 15 years

4.7.4 Cost to Produce new Satellites

The production of new satellites entails a cost. This cost is called Cp,,oction. A

learning curve model was applied to determine this cost. The total production cost

for N units (ie N satellites) is given by the expression [SMAD99]:

production cost = TFU.NB (4.18)

where B = 1 - ln((100%)/S)
1n2

TFU is the theoretical first unit cost and S is the learning curve slope in percent.

For less than 10 units produced, a 95% learning curve is generally applied. Between

10 and 50 units, a 90% learning curve and 85% for over 50 units is appropriate. The

cost in terms of production induced by the reconfiguration can be estimated thus

with:

Cproduction = TFU.(Nsats(B)Bb - Nsats(A)Ba) (4.19)

It is the cost to produce the additional satellites to be launched. The cost of the first

unit TFU was obtained from the website of NASA Johnson Spaceflight Center9 . For

a dry mass of 700 kg, the model returned a first unit cost of 29.89 millions US$ FY99.

This value was applied to the simulator. In theory, the N(B) - N(A) satellites will

be produced when needed and thus several months or years after the first wave of

production. This thesis assumes that it would be economically too risky to produce

these satellites together with the N(A) first ones and to put them in storage. If the

market conditions are too bad to undertake a reconfiguration, these satellites would

be lost.
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Another expression to compute the production cost could be:

Cproduction = TFU.(Nsats(B) - Nsats(A))'a-, (4.20)

This expression assumes that the production line was restart from the beginning and

that all learning was lost since the initial production run. Even if the production line

will be stopped several months, the technology is not lost. So, the production cost

should be lower than the cost given by Equation ( 4.20). However the production cost

is surely higher than in Equation( 4.19), because while technology and methodology

are acquired, the personal must be trained again and this will entail additional cost,

not captured in our model. In reality, the production cost is expected to be between

these two situations.
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CHAPTER 4 SUMMARY

In this chapter, the different modules implemented were presented in detail. For

each module, concepts, assumptions and mathematical formulations were explained.

This thesis intends to be a foundation for future work in the field of satellite con-

stellation reconfiguration. For this, the assumptions and limits of each module were

carefully pointed out. The framework could be thus easily improved. If the con-

stellation module is trustworthy thanks to the benchmarking with the Iridium and

Globalstar constellations, the other modules would need some refinements. The as-

trodynamics module seems to be acceptable for computing the AV using chemical

propulsion. In electric propulsion, a lot of approximations were made. Thus, this

module can not be considered completely trustworthy. The assignment modules work

well. However, since we want all the on-orbit satellites to be exactly the same, it

could be judicious to replace the criteria consisting of minimizing the total Delta V

with another criteria allowing to minimize the difference in AV between satellites.

Concerning the launch module, as explained previously, the database is too small.

The coverage module is fine if the study is limited to single coverage. Lastly, the cost

module is not sufficiently precise. All the submodules could be improved in a future

study.
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Chapter 5

Results

In this Chapter, the total energy necessary for different types of reconfigurations will

first be discussed (Section 5.1). A "constellation reconfiguration map" of altitude ver-

sus inclination is depicted. After this, the study will be limited to the reconfiguration

of LEO polar constellations. A case study will be presented and the results returned

by the assignment modules will be studied in detail (Section 5.2). The impact of the

propulsion system and of the transfer scenario is the subject of Section 5.3. Then,

an exploration of the trade space of "outage cost versus fuel cost" is made in Section

5.4. Fixing the initial constellation A, outage cost and fuel cost will be computed

for different final constellations (B), and different propulsion systems and scenarios.

In Section 5.5, the predicted reconfiguration costs will be computed for the optimal

paths of reconfigurations identified in Chaize's thesis [CHAI03]. The purpose is to

determine if the reconfiguration cost is smaller or larger than the ~ 20-30 % "op-

portunity" in the LCC revealed by Chaize. Finally, Section 5.6 will focus on High

Fidelity Simulation. This section will explain how a High Fidelity Simulation can be

built and what tools or software can be used for this.
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5.1 Total Reconfiguration Energy Requirements

5.1.1 Section Purpose

The purpose of this section is to estimate the amount of energy needed to undertake

a reconfiguration. Depending of the type of reconfiguration, the average quantity of

AV (per satellite) necessary to achieve the maneuvers of the on-orbit satellites can

be very different. Different types of reconfigurations are thus considered: reconfigu-

rations in altitude, reconfigurations in inclination or reconfigurations coupling change

in altitude and inclination. Reconfiguration in RAAN is not explored explicitly, but

is an implicit function of the number of orbital planes in A and B. Reconfiguration in

altitude means that the type of constellation (Polar or Walker) is conserved during the

reconfiguration, only the altitude varies. An example of reconfiguration in altitude

is the reconfiguration from a GEO polar constellation into a MEO polar constella-

tion. Inversely, a reconfiguration in inclination means that the altitude is conserved

whereas the constellation type is changed. If the inclination change is large enough,

the reconfiguration from a LEO Polar constellation into a LEO Walker constellation

is a case of reconfiguration in inclination.

To capture the impact of the reconfiguration type on the energy consumption,

the average AV per satellite is taken into account. Another possible criteria would

have been to consider the maximum AV for reconfiguration in any satellite. The

type of propulsion system considered is chemical propulsion. The results would be

similar for electric propulsion. Moreover, only the top part of the Block Diagram

(constellation module, astrodynamics module and auction algorithm), see Figure 3-

2 is run in this section. The loop to assign the ground satellites is not taken into

account. The purpose is indeed to show trends and orders of magnitude. What are

the reconfigurations requiring high fuel consumption? The reconfigurations requiring

reasonable fuel consumption? These are the questions answered by this section.
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Figure 5-1: "Constellation Reconfiguration Map". Diagram of inclination versus
altitude. "eps" represents the minimum elevation of the constellation. The values

T/P/F are also indicated close to the asterisk representing each constellation.
0 < AV < 2 km/s: cheap reconfiguration.
2 < AV < 3 km/s: medium expense reconfiguration.
AV > 3 km/s: expensive reconfiguration.

5.1.2 Diagram of Altitude versus Inclination "Roadmap"

A diagram of altitude versus inclination was drawn in order to point out the influence

of the reconfiguration type on fuel consumption. Figure 5-1 depicts this diagram.

The asterisks represent the positions on the diagram of the constellations, the arrows

representing the direction of reconfiguration. The middle of the arrow indicates the

average AV per satellite required for this reconfiguration. We can think of this
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Diagram as a "Reconfiguration Map".

From the rocket equation applied for an I,, of 430 s, an extra-fuel mass of 700

kg corresponds to a AV of 2.9 km/s. Recall that the satellite dry mass is of 700

kg, such an extra-mass of fuel represents a high quantity of fuel for a single satellite.

From this statement, it was considered that a reconfiguration needing an average

AV above 3 km/s was an expensive one in terms of fuel consumption. Similarly,

a reconfiguration requiring an average AV below 2 km/s could be considered as a

"cheap" reconfiguration, since 2 km/s of AV represents a fuel mass of ~ 400 kg.

5.1.3 Comments

The diagram of altitude versus inclination indicates a very interesting tendency. First,

the reconfigurations from polar-polar seem to be reasonable on average except for the

reconfiguration from MEO to LEO. The AV required is around 1.8-1.9 km/s per

satellite. The same tendency appears for the Walker-Walker reconfigurations. The

consumption of energy is even lower. It can reach values below 1.5 km/s. The most

expensive reconfigurations are the reconfigurations requiring a high angle inclination

change, in other words the reconfigurations Walker-Polar or Polar-Walker. An excep-

tion is GEO where the AV required is relatively low, the other polar-walker reconfig-

urations considered are quite expensive. The reconfigurations in MEO or from GEO

to MEO are, however, a little bit less expensive (between 2.7 km/s and 3.2 km/s)

than the reconfigurations in LEO or from MEO to LEO which require AV's above

3.5 km/s. The most expensive reconfiguration appeared to be the reconfiguration

from a MEO Walker constellation with the following characteristics T/P/F, 16/8/5

to a LEO polar constellation with the characteristics 36/4/0. This reconfiguration

requires indeed an average AV per satellite of almost 4.5 km/s. This corresponds

to an extra-fuel mass of 1.3 tons. Reconfigurations coupling change of altitude and

change of inclination are, not surprisingly, very expensive.

To conduct reconfigurations in altitude seems to be reasonable. Inclination changes

imply plane change, which are very expensive in LEO. These results can be explained

because a polar constellation generally has fewer planes than a Walker one. To recon-
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figure a polar into a Walker constellation or vice-versa will thus imply several plane

changes with high angle increments.

5.2 Case Study

In this section, the framework developed to study reconfiguration of constellations is

applied to a particular case. The reconfiguration of the LEO polar constellation A

with altitude ha = 2000 km and min elevation angle E, = 5 deg to the LEO polar

constellation B (altitude hb of 1200 km and min elevation angle Eb of 5 deg). The

study is limited to chemical propulsion and the transfer scenario 1 (i.e. two transfer

waves) selected for the transfers. The purpose of this section is to demonstrate the

assignment of the N(A) satellites into the slots of the constellation B. This includes

the loop to assign the ground satellites (Section 5.2.1). After this, two strategies to

deal with the on-orbit satellites penalized by the reassignment will be presented and

compared in Section 5.2.2 and 5.2.3. Finally, conclusions will be presented in Section

5.2.4.

5.2.1 Assignment Modules Results

Given the parameters defined above, the constellation module returns that A contains

21 satellites in 3 planes of seven satellites and B has 32 slots (4 planes of 8 satellites).

Thus, 11 satellites need to be launched. A first run of the auction algorithm was

achieved without taking into account the loop for assigning the satellites on the

ground. Table 5.1 shows the assignment returned by the algorithm. Note that Pa(4)

indicates the 4 th satellite in the 1st plane of A. This assignment represents a total

Delta V of 40.5 km/s. A remarkable point is that all the satellites of a plane of A go

to the same plane of B. It sounds logical, since the AV depends only of the initial

and final plane characteristics.

As explained in Chapter 3, the auction algorithm proceeds by assigning first the

on-orbit satellites, the launched satellites going then to the remaining spots. In this

case study, the launch vehicle selected can carry two satellites per launch. Six launches
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Table 5.1: Assignment for chemical propulsion. Reconfiguration of the constellation

A to B with hb = 1200km and eb = 5deg
Initial Position in A Final Slot in B AV (km/s)

Pfa(1) P?(8) 0.85
Pl(2) P (7) 0.85
Pl(3) Plb(6) 0.85
Pl (4) Plb(5) 0.85
Pf (5) Pjb(4) 0.85
Pl(6) P (3) 0.85
Pfl(7) Pjb(2) 0.85

Pa(1) Pb(8) 2.5
Pa(2) Pb(7) 2.5
Pa(3) Pb(6) 2.5
Pa(4) Pb(5) 2.5
Pa(5) Pb(4) 2.5
Pa(6) Pb(3) 2.5
Pa(7) Pb(2) 2.5

P a(1) P4(8) 2.5
Pa(2) Pb(7) 2.5
Pa(3) P4(6) 2.5
Pa(4) Pb(5) 2.5
Pa(5) Pb(4) 2.5
Pa(6) Pb(3) 2.5
Pa(7) Pb(2) 2.5
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Figure 5-2: Representation of the initial assignment.

would be necessary: 5 launches of 2 satellites and 1 launch of 1 satellite. Considering

the distribution of the ground satellites in the first assignment (see Table 5.2), it

can be deduced that this repartition does not match with the launcher capacity.

A reassignment is thus necessary. Figure 5-2 depicts this first assignment and the

problem raised by the capacity of the launch vehicles. The loop for assigning the

Table 5.2: Number of ground satellites assigned in each plane after the first run.

Plane Number of ground satellites

1 1
2 1
3 8
4 1

satellites on the ground will be thus considered and the process of ground satellites

assignment detailed. Plane 3 contains no satellites of A, the four first launches will

therefore go to plane 3 of B. Figure 5-3 summarizes this. However, the fifth launch

requires to free one slot in plane 1,2 or 4 in order to allow a launch of two satellites.

There is indeed in these planes only one slot each reserved for ground satellites. The
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Figure 5-3: Assignment of ground satellites process. The first four launches go to
plane 3 and fill that plane entirely.

loop finally chooses to free a slot in plane 4. The satellites of the fifth launch are thus

put in the plane 4 (see Figure 5-4). The module had the choice to put the satellites

of the fifth launch also to plane 1 and plane 2. But since it is better to penalize a

satellite with high AV required to achieve the transfer, it was chosen to free a slot

in plane 4. Planes 2 and 4 have a AV of 2.5 km/s per satellite. Plane 1 has a AV

of 0.85 km/s per satellite. A fifth launch into this plane was prevented. Why choose

the plane where the average AV is higher? Because it allows to reduce the gain in

AV after the reassignment of the satellites of A.

Once the reassignment is done, the auction algorithm is run a second time with

the matrix AV7,dif. The new assignment is summarized in Table 5.3. The Delta

V of 50.5 km/s obtained with this second run points out the influence of the loop

for assigning the launched satellites. This influence is higher if the launch vehicle

has a high capacity, which is not the case in this example. Indeed, only one on-orbit

satellite is penalized by this reassignment. But this satellite is severely penalized with

a AV of almost 12.5 km/s which represents a mass of extra fuel of 12.8 tons.
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Table 5.3: Final Assignment for chemical propulsion. Reconfiguration of the constel-
lation A to B with hb = 1200km and eb = 5deg. In bold are represented the changes
due to the reassignment of the ground satellites.

Initial Position in A Final Slot in B AV

Pa(1) P'(8) 0.85
Pla(2) P (7) 0.85
Pfl(3) Plb(6) 0.85
Pf(4) Pf(5) 0.85
Pf'(5) P (4) 0.85
Pl(6) Pf(3) 0.85
Pf'(7) P (2) 0.85
Pf(1) Pb(2) 2.5
Pfa(2) Pfb(6) 2.5
Pfa(3) Pfb(5) 2.5
Pfa(4) Pfb(7) 2.5
Pj(5) P2(8) 2.5
Pf'(6) Pf'(4) 2.5
Pfa(7) Pfb(3) 2.5

P (1) Pfb( 7) 2.5
Pfa(2) Pfb(6) 2.5
Pfa(3) P4(8) 2.5
Pfa(4) Pfb(1) 12.5
Pga(5) Pfb(4) 2.5
P3"(6) P4(3) 2.5
Pga(7) Pfb(5) 2.5
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Fifth launch.

Penalization of one on-orbit satellite.

5.2.2 Comparison of two Strategies for Chemical Propulsion

In view of such an extra-mass of fuel, two options are conceivable depending on the

feasibility to add to a satellite with a 700 kg dry mass an extra-mass of almost 13

tons. From the data available for the different launch systems, we know that it is

possible to launch such a mass in LEO. Ariane 5 has indeed a capacity of 18 tons

into LEO. Nevertheless we can doubt the technical and economical feasibility for a

single satellite to transport such an extra mass. Wertz and Larson [SMAD99] provide

data on Orbital Transfer Vehicles. From this source, we can estimate an order of

magnitude for the ratio B
4

sZo""al. For the Orbital Transfer Vehicles called IUS

manufactured by Boeing, we obtain a ratio around 13. In the case of the satellite

penalized, the ratio obtained is 18. It is a little bit higher than the previous case.

No study indicates the infeasibility of such a ratio. Nevertheless, for such high ratios,

the rocket equation dictates that most of the fuel would be used to push fuel around,

rather than useful mass.

In this section, two strategies will be thus described with respect to this penalized
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Figure 5-5: Sixth launch.

satellite. The first strategy will consist of assuming that this satellite can transport

the necessary fuel to achieve its transfer. The simulator will be run and results

returned. The second strategy consists of assuming that it is impossible technically.

The option is thus to abandon this satellite and to replace it with a new launched

satellite. The abandoned satellite becomes in this strategy a spare satellite in the

new constellation B but might not be able to be used in all planes of B. The impact

of this strategy on cost, time, AV and coverage will be described.

If we run the simulator without taking into account the problem raised by this

satellite, the following results are obtained:

" AVtorta = 50.5382 km/s (which represents a AM of 21.2 tons)

* Totai = 300 days (only 21 hours of this for the transfer phase)

e Ctotal = 0.5659 B$

" COVmean = 59%

Table 5.4 provides the cost breakdown. It is interesting to notice that the chunks have
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the same order of magnitude except for the cost of outage. It can be explained, if we

consider that with all satellites from A transferring simultaneously, most of the 300

days are consumed by launches which do not result in service outage of constellation

A.

Table 5.4: Cost breakdown obtained with the first strategy.

Cost Cost in B$ percentage

Outage 0.0009 0.1%
Fuel 0.2753 48.6%
Production 0.1696 29.9%
Launch 0.1201 21.2%
Total 0.5659 100%

The second strategy consisting of abandoning the penalized satellite and to launch

another one, we can a priori guess some tendencies. The AVtotai will obviously de-

crease, since the 13 tons of fuel to transfer the satellite are no longer necessary. The

time to do the operations will increase due to the delay to launch another satellite.

Concerning the cost, the Launch and production costs will obviously increase, the fuel

cost should decrease. It is more difficult to imagine the impact of this abandonment

on the cost of service outage. However, this impact will surely be slight. Practically,

to estimate these objectives in this second strategy, the launch and transfer sched-

ules S, and St have been modified. The matrix line corresponding to the penalized

satellites was suppressed in St and a line corresponding to the launch of the replacing

satellite was added in S1. The following results were obtained:

* AVtotal = 38.0572 km/s (AM = 21.2 - 12.8 = 8.4 tons)

" Ttotal = 360 days

e Ctotai = 0.4336 B$

" COVmean = 60.575%

As for the first strategy, a cost breakdown was done. Table 5.5 summarizes this. As

forecast, the fuel cost decreases a lot in this second strategy, whereas the launch and
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Table 5.5: Cost breakdown obtained with the second strategy. 6 means that the cost
is negligible.

Cost Cost in B$ percentage

Outage f 0%
Fuel 0.109 25%
Production 0.1846 42.4%
Launch 0.14 32.3%
Total 0.4336 100%

production cost increase slightly. The outage cost is almost the same and remain

negligible. The total cost obtained is of the same order of magnitude but, lower

than for the first strategy. The difference for the case considered is 130M$ in favor

of abandonment. And the abandonment strategy has the advantage of having an

on-orbit spare in constellation B, albeit not for all slots of B.

5.2.3 Comparison for Electric Propulsion

Now the same comparison will be done with an electric propulsion system. Resistojet

(Isp = 500 sec.) was selected for this purpose.

If we run the simulator without considering the problem posed by the penalized

satellite, we obtain:

" AVtotai = 54.45 km/s (which represents a AM of 19.5 tons. The penalized

satellite must carry 11.7 tons of fuel.)

" Tttai = 580.5 days (300 days for the launch phase and ~ 280 days for the

transfer phase)

" Cotai = 0.6217 B$

* COVmean= 59%

The cost breakdown is summarized in Table 5.6.

Contrary to chemical propulsion, the transfer time is a function of the AV re-

quired to achieve this transfer. Abandoning the penalized satellite will thus decrease
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Table 5.6: Cost breakdown obtained with the first strategy with resistojet.

Cost Value in B$ percentage

Outage 0.078 12.5%
Fuel 0.254 40.8%
Production 0.1696 27%
Launch 0.12 19.3%
Total 0.6217 100%

relatively the total time of reconfiguration. The

are:

results given by the second strategy

" AVtotai = 40.35 km/s

" Tttai = 300 days (launch phase) +60 days (launch of a replacement satellite)

+168.5 days (transfer phase)= 529 days

" Ctotai = 0.487 B$

" Covmean = 63.63%

The second strategy seems thus to be less expensive and quicker in electric propul-

sion. Concerning the different chunks of the total cost, the comments are the same

as for chemical propulsion. The difference is also of 130M$ in favor of abandonment.

However, in this case there is a gain of around 50 days in favor of abandonment. The

abandonment strategy is thus very interesting in electric propulsion in the case where

a spacecraft is severely penalized by the reassignment.

Table 5.7: Cost breakdown obt

Cost

Outage
Fuel
Production
Launch
Total

ained with the
Value in B$

0.0624
0.10

0.1846
0.14

0.487

second strategy with resistojet.

percentage

12.8%
20%
38%

28.7%
100%
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5.2.4 Conclusion

The second strategy is a conceivable and interesting alternative. If further study

shows that a limit exists for the extra-mass of fuel, this method, consisting of aban-

doning those satellites heavily penalized by the reassignment and of launching new

ones in their place, is applicable. The cost is of the same order of magnitude and

even lower. Obviously, there is a delay due to the extension of the launch phase. In

electric propulsion, this delay is compensated by the abandon of the "slowest" satel-

lite. In chemical, this delay could entail loss of economical opportunity, since the final

configuration with higher revenue is postponed. Thus in chemical, the manufacturer

could have the choice between a quicker but more expensive strategy (penalization

strategy) or a longer but less expensive strategy (abandonment strategy).

However, for the end of this chapter, it will be assumed that the first strategy is

technologically feasible. Only this strategy will be applied further.

5.3 Impact of the Scenario and of the Propulsion

System

In this section, the framework is run for the same reconfiguration than considered in

the last section: reconfiguration to the constellation B with altitude hb = 1200 km

and elevation Eb = 5 deg. However, the purpose of this section is to determine the

influence on the overall results, notably cost and time of the 6 different propulsion

systems (chemical, arcjet, resistojet, plasma thruster, hall thruster and ion engine)

and of the four scenarios for the transfers of the on-orbit satellites. The propulsion

systems and the scenarios were presented in Chapter 4. Subsection 5.3.1 will focus on

the impact of the scenarios, whereas the Subsection 5.3.2 will deal with the different

propulsion systems. Subsection 5.3.3, based on the observations done in the two

previous subsections, will recommend a scenario and a propulsion system to solve

this particular reconfiguration problem.
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5.3.1 Scenario Impact

In order to determine the influence of the scenarios selected for the transfers, the

propulsion system was fixed. The propulsion system utilized for this purpose was

chemical. The framework was run for the 4 scenarios presented in the previous chap-

ter. Table 5.8 summarizes the results returned by the simulator for the four scenarios.

Some comments can be made about this. First of all, scenarios 2 and 4 return exactly

the same results. It is not surprising since those scenarios consist of transferring all

satellites at the same time. The satellites begin their transfers together in the second

scenario, whereas they finish their transfers at once in the fourth scenario. Appar-

ently, this distinction has little influence given our assumptions. For now, only the

second scenario will be considered. Scenario 2 seems to be the most interesting one

in terms of cost and time compared to the first and third ones: approximately 11

hours to achieve the transfers and a cost of service outage of 0.88 M$. Scenario 1

leads to similar results: 21 hours for the transfer phase and a cost of service outage

of 0.95 M$. Scenario 3, consisting of transferring all the satellites sequentially is less

advantageous with a transfer phase of around 9 days and a cost of service outage

slightly higher with 5.6 M$ (however in this example the service outage cost is quite

negligible compared to the other costs, assuming that no customer will permanently

be lost due to the 9 day service interruption). Moving many satellites at once (all

or half) seems to be the right strategy. It allows to compress the schedule and to

reduce the service interruption. Nevertheless, moving many satellites at once is also

high risk, since all satellites need to be tracked and controlled simultaneously from

the ground. Knowing that in chemical the burns must occur at precise instants, it is

unlikely to happen that way in real life. The size of the qualified personnel necessary

to track and control all satellites would be too high. For this, only the third scenario

(moving the satellites sequentially) is realistic in chemical and only this scenario will

be considered later. Maybe an intermediate scenario between the second and the third

would be technically feasible: moving two, three or four satellites at once. In elec-

trical propulsion, the transfer phase does not require such attention since this phase
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Table 5.8: Impact of the transfer scenarios using chemical propulsion
Scenario Pr Ttranfer (hours) COVmean (%) Cot (B$) Coutage (M$)
1-two waves Chemical 21.4 59 0.5659 0.95
2-begin together Chemical 10.8 34.375 0.5658 0.88
3-staggered Chemical 224.7 ~ 9.3 days 78.29 0.5705 5.6
4-end together Chemical 10.8 34.375 0.5658 0.88

is much longer and there are no single impulsive burns. We will thus assume that

Scenario 2 is feasible in electric propulsion. To conclude this subsection, scenario

2 appears least costly in terms of service outage. It seems that the cost of service

outage is much more sensitive to the length of the transfer time than to the coverage

capability. Although the mean coverage maintained during the operations is 34.375%

for scenario 2 to be compared with the 78.29% of scenario 3, the compressed scenario

entails the least loss of revenue.

5.3.2 Impact of the Propulsion Systems

The purpose of this section is to show the influence of the propulsion systems on the

cost and time.

Firstly, we will show the sensitivity of the cost with respect of the scenario for the

six propulsion systems considered in this thesis. The difference of the cost obtained

with scenario 3 with the cost obtained with scenario 2 is computed. This difference

is written as AC = C3 - C2. Table 5.9 shows the results. A graph of AC versus

Isp/(rP) is drawn in Figure 5-6. The points are on a straight line. This can be

interpreted by assuming that in electric propulsion, the other costs are negligible

with respect of the cost of service outage. Knowing that the cost of service outage

depends linearly of the transfer time and that the time is linear with Isp/(rP), we

can explain this.

Thus, we can deduce that, the higher the transfer time is, the larger the gap in

terms of total cost between the compressed and staggered scenarios is. In chemi-

cal propulsion, this gap is slight. In electric propulsion, the gap increases almost

proportionally to I,.
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Table 5.9: Sensitivity of t

Propulsion

Chemical
Resistojet
Arcjet
PPT
Hall Thruster
Ion Engine

C

he total cost

C3 (in B$)

0.5705
0.8812
1.6246
11.8377
3.6781
2.99

with respect

C2 (in B$)

0.5658
0.595
0.6473
2.086
0.835
0.713

Isp/(eta.P)

to the propulsion system.

AC (in B$)

0.0047
0.2862
0.9773
9.7517
2.8431
2.277

9000

Figure 5-6: AC versus Isp/(r/P) drawn for the five electric propulsion systems.

Now, only the 5 electric propulsion systems will be considered. The scenario con-

sidered is scenario 2 which is assumed to be technically realizable in electric propul-

sion as explained in the last section. Table 5.10 summarizes the results obtained. We

notice the following:

* 1) Cost and Time are very sensitive to the propulsion systems chosen. The

transfer times are very high for electric propulsion. We should notice that it is

due in part to the penalized satellite whose transfer time is very high.

* 2) The times for completing the transfers Transfers are too high with Ion En-

gine, Hall Thruster and Plasma thruster: from 1115 days (around three years)

with Ion Engine for the second scenario to 4775 days (13 years) with Plasma

thrusters. These values indicate that these propulsion systems are not viable in
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Table 5.10: Impact of the propulsion systems
Propulsion Ctotal (in B$) Cfuel (in B$) Coutage (in B$) Transfers(days)

Resistojet 0.595 0.2540 0.0511 140
Arcjet 0.6473 0.1832 0.1744 478
PPT 2.086 0.0563 1.74 4775
Hall Thruster 0.835 0.0389 0.5072 1391
Ion Engine 0.713 0.0169 0.4064 1115

this context.

* 3) Resistojet and Arcjet utilization, even if a little bit more expensive than

chemical (0.595 and 0.6473 billions dollars respectively) and much longer (around

140 days for transfers with resistojet and one and a half years with arcjet) re-

main possible options.

* 4) The fuel cost decreases as the Isp increases. This fuel cost is an impor-

tant portion of the total cost in chemical propulsion (around 50%), whereas in

electric propulsion the fuel cost is negligible except for resistojets and arcjets.

Figure 5-7 depicts this. From this figure, we conclude that in this example of

reconfiguration the costs of fuel and outage are not of the same order of magni-

tude from an Ip. of 700 s. In Chapter 3, we were expecting a tradeoff between

those two costs, with an optimal Ip. The figure depicts an optimum for an I,

around 430 sec. This optimum is obtained for a chemical thruster. The points

obtained in the chemical propulsion field (Isp below 430 sec) were generated

with scenario 3. The points obtained in electric propulsion (Is, above 430 sec.)

were generated with scenario 2. From this picture, the best option in terms of

cost seems to be the chemical thruster with the highest Ip.

5.3.3 Recommendation

In this subsection, the results obtained with chemical propulsion and staggered sched-

ule (scenario 3) will be compared with the results obtained with the most advanta-

geous electric propulsion systems in a compressed schedule (scenario 2). From the
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Figure 5-7: Fuel Cost and Service Outage Cost function of Ip.

results obtained in the last subsection, the best electric systems both in terms of

Time and Cost is Resistojet: 140 days of transfer and a total cost Ctosta of 0.595

B$. Recall that the transfers last around 9 days and that the total cost is 0.57 B$

for chemical propulsion for the scenario 3. From this, we would advise to a man-

ufacturer to utilize chemical propulsion even with a staggered schedule. The costs

are of the same order of magnitude, but the reconfiguration time is less, by far, in

chemical propulsion. Scenario 3 corresponding to a sequential schedule where the

satellites move one by one, can be improved by compressing a little bit the schedule:

moving two or three satellites at once will surely decrease the cost of outage (but

very slightly) and the transfer time. Chemical propulsion is thus the best option at

the present time. Indeed, this recommendation might change in the future if high-

Isp, high-thrust propulsion devices are developed. Moreover, this recommendation is

made for a particular reconfiguration A to B. For another reconfiguration, the costs
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Table 5.11: Reconfiguration Trade Space. s is the transfer scenario.
Symbol values unit

Cb 'Polar' [-]
hb 800,1200,1600 [km]
Eb 5,20 [deg]
P, Ch, Res, Arc, PPT, Hall, Ion [-]
s 1,2,3,4 [-]

could be lower in electric than in chemical. However, the time of reconfiguration will

be always lower in chemical. The next section will show that the recommendation

given in this subsection should be interpreted carefully.

5.4 Tradespace Exploration

In this subsection, a tradespace of service outage vs fuel cost is explored. The purpose

of this subsection is to confirm that chemical transfers are characterized by high

fuel cost and low cost of service outage and that in electrical transfer, the fuel cost

decreases and the service outage cost increases with increasing Isp. Recall that

the design vector is made up of the altitude and minimum elevation angle of the

constellation B (hb and eb ) and of the propulsion systems. For this trade space

exploration, we add to the design vector the transfer scenario (1, 2, 3 or 4). The

reassignment loop was not considered for this study. First the continuous elements

are discretized (altitude and minimum elevation). 3 altitudes are chosen (800, 1200

and 1600) and two min elevation angles (5 and 20 degrees). Table 5.11 summarizes the

trade space. This results in a total of 144 possibilities. This trade space is represented

in Figure 5-8 with corresponding legend in Figure 5-9: service outage vs fuel cost.

A Pareto Front appears clearly in this tradespace. The chemical transfers are at the

bottom on the right of the tradespace, characterizing high fuel cost and low outage

cost. Each propulsion system is characterized by a zone on this diagram. For the

electric transfers, the higher the Ip, is, the more to the top-left of the tradespace the

points are. The fuel cost dominates all the reconfigurations in chemical and most

of the reconfigurations with Resistojet (except with scenario 3). The outage cost
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Figure 5-8: Fuel cost versus service outage cost.
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Figure 5-9: Legend

dominates all the reconfigurations in Ion Engine, Plasma Thruster and Hall Thruster.

The reconfigurations with Arcjet are on the limit characterized by the straight line

on the figure.

There are on the figure, 5 Pareto-optimal reconfigurations. Table 5.12 provides
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Table 5.12: Pareto Optimal Reconfigurations
numero hb Eb scenario Pr Cfuel Coutage

[] [km) [deg] [-) [-] [M$] [M$]
1 800 20 2 chemical 54 0.26
2 1600 20 2 chemical 32 0.4
3 1600 20 2 Resistojet 6.8 1.46
4 1600 20 2 Arcjet 5.8 5
5 1600 20 2 Ion Engine 1 11.6

a listing of these points. All the pareto-optimal reconfigurations are done with the

second scenario (compressed schedule) proving that this scenario minimizes the cost

of service outage. Moreover, except for the first one, all the points concern the

reconfiguration to the constellation B with an altitude of 1600 km and an elevation

angle of 20 deg. This particular configuration is very close in altitude to the initial

one, which can explain why the fuel consumption, and so the fuel cost is lower than

for the other reconfigurations. This configuration B has also a large number of slots,

because of the elevation angle of 20 deg (Nats(B) = 60). A large number of slots in

the final constellation provides more possibilities for the assignment of the on-orbit

satellites. This can explain also why the fuel cost is low. Which is surprising in

these points, compared to the last section is the fact that electric propulsion seems

less expensive than chemical propulsion. If we add outage and fuel costs, we obtain

32M$ for chemical propulsion, 8M$ for resistojet, 11M$ for arcjet and 13M$ for Ion

Engine. We can explain this while considering that for this particular reconfiguration,

the transfer times are not very high even in electric propulsion. Consequently, the

outage cost are not very high, explaining the costs obtained for the different propulsion

system. In addition to this, knowing that the reassignment loop was not implemented

for this tradespace, no satellite were penalized, preventing from higher outage cost

and fuel cost (see the case study Section 5.2).
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5.5 Economic Opportunity of Multiple Reconfigu-

rations Path

Chaize has shown that optimal paths of reconfigurations exist for the staged deploy-

ment depending of the value of the discount rate r [CHAI03]. He describes 5 paths.

Table 5.13 summarizes these 5 paths.

Table 5.13: The 5 paths of reconfiguration

Path r Arch. 1 Arch. 2 Arch. 3 Arch. 4 Arch. 5

1 0% 800km, 5deg 400km, 5deg
2 5% 2000km, 5deg 800km, 5deg 400km, 5deg

3 10-30% 2000km, 5deg 1600km, 5deg 1200km, 5deg 800km, 5deg 400km, 5deg

4 35% 2000km, 5deg 1600km, 5deg 1200km, 5deg 800km, 5deg 400km, 5deg

5 40-100 % 1600km, 5deg 1200km, 5deg 800km, 5deg 400km, 5deg 400km, 20deg

Each path entails a gain on the Life Cycle Cost LCC. However, Chaize when

computing the Life Cycle Cost of the staged deployment LCCOuaged has not taken

into account the cost of reconfigurations, in other words the cost of the fuel necessary

to achieve the transfers and the cost of the service outage. For path 1, 2 and 3, we

will thus compare the gain in the LCC with the cost of the different reconfigurations

added and determine if the staged deployment strategy still represents an economic

interest.

Table 5.14: Gain on the LCC
Path LCCstaged in B$ LCCrad in B$ gain in B$

1 1.6 2 0.4
2 1.5 2 0.5
3 1.3 1.95 0.65
4 1.25 1.95 0.7
5 1.05 1.9 0.85

Path 1 only requires one reconfiguration. Utilizing the simulator developed during

the project, we obtain that the fuel cost for this reconfiguration Cfuel is equal to

0.25B$ whereas the cost of outage Coutage is around 8 M$. There is thus the

possibility to save 0.4 - 0.25 = 0.15 B$ with this path compared to a traditional
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Figure 5-10: Economic opportunity of the Path 1.

fixed deployment. Figure 5-10 summarizes this. This represents a savings of 150M$

(~ 7.5% of LCC). Whether this potential (average) savings is worthwhile, given

the technical risks involved and other uncertainties is a managerial decision. The

framework was able to quantify the problem and provide a decision basis.

Path 2 requires two reconfigurations. The reconfiguration from the architecture 1

to the architecture 2 entails a fuel cost Cfuel of 0.2 B$ and a service outage cost of 3

M$. The reconfiguration from architecture 2 to architecture 3 represents a fuel cost

of 0.25 B$. We can thus save with this path 0.5 - 0.2 - 0.25 = 0.05 B$. Figure 5-11

summarizes this.

Path 3 requires 4 reconfigurations. The gain entailed by this path is around

0.65B$ (see Table 5.14). The total reconfiguration cost for these 4 reconfigurations is

estimated to 0.825B$. With our model, there is no economic opportunity in this case.

Nevertheless, a more detailed study of the reconfiguration from the Architecture 2 to

the Architecture 3 shows that a satellite is penalized by the reassignment (analogous

case than in Section 5.2). The case study Section 5.2 has shown that abandoning the

penalized satellite and launching a new one can reduce the cost of more than 100 M$,

allowing perhaps an economic opportunity. However due to the approximations, it is

difficult to have a precise conclusion for this path. The gain in LCC is of the same
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Figure 5-11: Economic opportunity of the Path 2.

order of magnitude than the reconfiguration costs. But we can not conclude if the

staged strategy will be less or more expensive than the traditional strategy.

To conclude this section, the higher the number of reconfigurations required for a

path is, less interesting the economic opportunity seems to be.

5.6 High Fidelity Reconfiguration Simulation

The purpose of the Reconfiguration Framework developed in this thesis was to return

on order of magnitude for the cost and time of reconfiguration. This framework allows

for optimization and rough planning of the reconfiguration maneuvers. Nevertheless,

the modules implemented do not allow for virtual execution of the reconfiguration,

notably for a reconfiguration visualization. Indeed, due to the approximations re-

tained, we are not capable to determine the exact position of all the satellites with

respect of the time, and so, to visualize the motion of the satellites during operations.

This section will explain how the current framework could be modified in order to

obtain High Fidelity Reconfiguration Simulation, allowing a virtual execution of the

reconfiguration.
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5.6.1 Structure of a High Fidelity Constellation Reconfigu-

ration Simulation

As explained in Chapter 4, the assignment process does not distinguish between

satellites in the same plane. The satellites are assigned to the right plane, in order

to minimize the total Delta V, AV, but the assignment to the right slot within

a plane is not considered explicitly in our model. The High Fidelity Constellation

Reconfiguration Simulation should be thus capable of distinguishing the different slots

in a same plane. As a consequence of our simplifications, the transfer time was roughly

and conservatively approximated for each satellite. A High Fidelity Simulation would

allow to determine the exact position of each spacecraft and the exact time of transfer.

Particularly, in chemical propulsion, once the satellite has executed the semi-ellipse

of the Hohmann transfer, this satellite is on the right orbit, but not necessarily in the

right position (or slot) on this orbit. Hence, the necessity to rephase this satellite.

A High Fidelity Simulation would allow to know the exact position of the satellite

on this orbit and the exact position of the other satellites already-present on this

orbit. The knowledge of the relative position of the satellite with respect of the other

satellites already-present in the orbit, would allow to deduce by which angle AE8,

the satellite has to be moved in order to reach its final slot. From Equation ( 4.7)

explained in Chapter 4, we would be capable to deduce the exact time of transfer for

this satellite. Recall that in the actual simulation, we approximate AO arbitrarily by

7r (worst-case situation). The High Fidelity Simulation would therefore yield a lower

transfer time.

The explanations given in this subsection are valid only for chemical propulsion.

In electric propulsion, the trajectories are different. We have for now not enough

knowledge of the transfer in electric propulsion, except that the trajectory is a spiral.

Thus, it is difficult for instance to say, where the S/C arrives on the right orbit after

the transfer. Since a LEO orbit is on the order of 100 min, one degree of true anomaly

corresponds to 16.7 sec, which is small compared to the total "spiral" transfer time of

40-300 days. We have assumed previousiy that the spacecraft arrives directly on the
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right slot, neglecting a repositioning phase. This assumption is not obvious and would

need further studies. For all these reasons, this chapter on High Fidelity Simulation

will only focus on chemical transfers.

5.6.2 Removal of Simplifying Assumptions

In order to know the exact trajectory of each satellite, we need a time reference or

Epoch. At this time reference, the true anomaly of the different satellites on their

respective orbits need to be known for configuration A. So, the actual simulation has

to be modified in order to take into account the true anomaly 0. Figure 5-12 depicts

a possible Framework for the High Fidelity Simulation. Let's consider the satellite i

of A. Its true anomaly at t = 0 is 0 = 64 (very important information).

Satellite i

Time t=o
reference -= i
(Epoch)

4, Assignment
to the right
plane I

Date arrival
on the orbit

True anomaly

INPUTS

True
anomaly of
sat. i and of
the satellites
already
present

module

OUTPUTS

Slot final

Transfer time

Figure 5-12: High Fidelity Simulation Framework

The actual framework is very useful since it allows to know to which plane of B,
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the satellite i will be transferred (top part of Figure 5-12). But it is not sufficient

to determine the exact slot in this final plane. The knowledge of the final plane will

allow also to determine the true anomaly of the crossing point of the initial orbit and

final plane. Let's call 0
crossing this true anomaly. From this true anomaly and from

the transfer scenario selected, the Hi Fi Simulation will be capable to determine when

the satellite can begin its transfer. tstart corresponds to the beginning of the Hohmann

transfer. tstart has to correspond to an instant when the satellite is on the crossing

point, since tstart is the time of the first burn. After this, the simulation determines

the time and true anomaly of arrival in the final orbit, tarial and ,arrival It should

be easy to compute, since we used the Hohmann strategy. If the S/C transferred is

the first satellite arrived in the final orbit, this S/C will not need to be rephased in

the orbit and will be a reference for the other satellites in that plane. However, if

the S/C is not the first arrived, it will need to be repositioned. The phasing module

will allow this. The Inputs to this module would be the true anomaly of the satellite

considered for the repositioning, here the ith and the true anomalies of the satellites

already present. From this, the module will deduce which slots are free and to which

of these slots the satellite i must be assigned. The module will choose the slot the

closest to the satellite, in order to minimize the repositioning phase. The Outputs of

this module are the time when the transfer is achieved, tend and the final slot for the

satellite i. Figure 5-13 summarizes this. Various uncertainties could be included in

the future.

5.6.3 Tools for a High Fidelity Simulation

Matlab and the Spacecraft Control Toolbox1 should be sufficient to simulate the

reconfiguration process and allow a visualization. However, a convenient way to code

the High Fidelity Simulation has to be found. The process explained in the last

section, has to be applied to a large number of satellites, the Nsats(A) satellites of

constellation A, sometimes in parallel depending on the transfer scenario selected. A

very high number of parameters are thus necessary. Once the different parameters

'Product of Princeton Satellite Systems
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Figure 5-13: Hi Fi Simulation Process
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(initial true anomaly O6, start transfer time ttime, position of the crossing point Ocro.sin ,

arrival on the new orbit time tarrival, end of transfer time tend and final slot in B)

for the different satellites are determined, a visualization would be possible, thanks

to the Spacecraft Control Toolbox. Three functions from this toolbox would be very

useful:

* The function "RV2El" allows to compute the six orbital elements, defined in

Chapter 4 of a new trajectory. For instance, at the crossing point where the burn

occurs, knowing the cartesian coordinates of this point and the final velocity

obtained after the increment of velocity (Vaftee Vbefo, + AV), the function

"RV2E" returns the orbital elements of the new trajectory (in our case, the

orbital elements of the transfer ellipse). It is very useful, since these elements

are difficult to compute manually.

" The function "RVFromKepler" allows to deduce the position and speed of a

S/C with respect of the time. The inputs are the 6 orbital elements of the S/C

and the instants when we want to know its position and speed. This function

assumes that the orbital elements are given at t = 0. With this function, the

trajectory with respect to time is easily generated.

" The function "AnimationGUI" shows in 3D the satellite motions. The inputs

are the coordinates of the different S/C with respect to time.

These three functions could be used as follows. For instance, we know the 6

orbital elements of the initial orbit of the S/C. Knowing this and the time we want to

represent its initial orbit, we first use "RVFromKepler". At the crossing point where

the transfer begins, we use "RV2El" to determine the orbital elements of the transfer

ellipse. After this, from these new orbital elements, we can determine the position

of the satellite on this ellipse with respect to time by using again "RVFromKepler".

The process is the same for the other phases. In order to run the animation, we

concatenate the different trajectories (initial orbit, ellipse of transfer, final orbit and

repositioning phase) and utilize "AnimationGUI". The next section will show different
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results obtained with this method. The repositioning phase was not considered in our

preliminary study.

The utilization of a software like STK could be also considered for the visual-

ization. Graphically STK is superior to the Spacecraft Toolbox. However, it is not

compatible with the Matlab environment. A careful study of STK should be made

in a future study.

5.6.4 Visualization, Preliminary Study

With the tools described in the last subsection, a first attempt of static and animated

visualization was done for a single spacecraft. Figure 5-14 shows the results obtained

for the transfer in chemical propulsion of a S/C, initially in an equatorial orbit with

a radius of 30,000 km to an orbit at 25,000 km, inclined at 45 deg. We see clearly on

this figure that the transfer is coupled with a plane change. Using "AnimationGUI",

Transfer ellipse
Initial orbit

Plane change

Final orbit

2.5

2

1.5

104 1

0.5

0

2
1.5

0.5

Figure 5-14: Static Visualization of the transfer of a single S/C.

we can obtain an animation of this transfer.

After this first conclusive attempt, a more ambitious visualization was undertaken:
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the reconfiguration of the polar constellation A constituted of two planes of 2 satellites

(orbit radius of 42,000 km) to the Walker constellation B (2 planes of 3 satellites,

orbit radius of 36,000 km and inclination of 52.2 deg). The first planes of A and B

have the same longitude of the ascending node: Q1 = 0 deg. Also, the planes 2 of A

and B have the same longitude of the ascending node: Q2 = 90 deg.

The first step was to run the astrodynamics module and the auction algorithm

to determine, which assignment minimizes the AVttai. The transition matrix of this

particular case was computed in Chapter 4 (see Section 4.2.2). The best assignment

is obviously to transfer the plane 1 of A into the plane 1 of B and the plane 2 of A

into the plane 2 of B. Once this first step done, the different start time of transfers

and arrival, tstart and tarrival were computed manually for the four satellites to be

transferred. It was assumed that the two launched satellites were already in the

final orbits (one on each final plane). After this, the functions defined in the last

section were applied to generate the different trajectory. Figure 5-15 represents the

ame Trajectory in Local Reference Frame
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Figure 5-15: Animated visualization of the reconfiguration. From "AnimationGUI".

The dots represent the satellites in motion.

environment in 3D generated by AnimationGUI.
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Figures 5-16 and 5-17 shows respectively the positions of the different satellite

before and after the transfers. These figures represent projections on the axis z = 0.

Before the transfers, we see clearly that the launched satellite are lower in altitude.

X 10Trajectory in Local Reference Frame

- -

-4@

4 2 0 -2 -4

y- along-track (km) 14

Figure 5-16: Position of the six satellites before the transfers. Projection on z 0.

On Figure 5-16, the planes of A and the orbits of B are represented.

Figure 5-17 shows the position of the satellites on their final orbit. The satellites

are on both orbits not uniformly distributed. This visualization underlines the ne-

cessity of a repositioning phase. For instance, on orbit 1, one satellite is chasing the

other.

5.6.5 Results comparison with simple (Epoch-independent)

Model

The advantage of the high fidelity simulation compared to the actual simulation is to

return precise times for the transfer time and exact AV for rephasing. The simple

framework is currently conservative in terms of transfer time. The objectives sen-

sitive in our model to the transfer times are the mean coverage and cost of service

outage (plus obviously the total time). However, the cost of service outage in chem-

ical propulsion is quite negligible. So, the high fidelity simulation will not have an
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Figure 5-17: Position of the six satellites after the transfer phase. There are 3 satellites
per orbit. However, repositioning is necessary.

important impact on the cost, at least in chemical propulsion. The impact on the

mean coverage is difficult to predict. The transfer time would be relatively reduced

in an High Fidelity Simulation and this would surely have an impact on the coverage.

To conclude, in a High Fidelity Simulation, we will obtain costs very close to

those obtained in the simple framework. There is no influence on the AVtt, except

for phasing. The transfer time would surely be relatively reduced, and thus, we can

predict a reduction of the total time.
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CHAPTER 5 SUMMARY:

This chapter yielded some very interesting results. First, the "reconfiguration

constellation map" could be a very useful tool for a manufacturer. Indeed, with this

map, the manufacturer can determine which types of reconfiguration are reasonable,

in terms of fuel consumption. This chapter describes also, for a particular case,

the problems posed by the satellite assignment to the slots of constellation B. The

launcher capacity constraint can entail penalization of on-orbit satellites resulting in

a very costly transfer. The abandonment strategy of penalized satellite could be very

judicious, particularly in electric propulsion. However, electric propulsion does not

seem to be the right choice. Indeed even in a staggered schedule, the transfers seem

quicker and less expensive in chemical propulsion. One achievement of this chapter

is the comparison of the LCC gain to the cost of reconfiguration for some optimal

paths. This study indicates that savings are possible when the path requires only 1

or 2 reconfigurations. However gain in LCC and reconfiguration costs have the same

order of magnitude. Finally, the last section explained the concept of High Fidelity

Simulation. Some visualizations of simple cases are presented.
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Chapter 6

Recommendations and Conclusions

6.1 Summary

The goal of this thesis was to develop a framework to study the orbital satellite

constellation reconfiguration problem and to apply it to a particular case of LEO

reconfiguration of polar constellations. This study allows to find an order of magni-

tude for the time and cost to achieve the set of maneuvers, as well as computing the

amount of extra fuel to place on the initial satellites. In Chapter 1, it was explained

that the failure of the traditional approach for designing LEO constellations entailed

the necessity to develop a new strategy called "staged deployment". To deploy a

constellation in a staged manner will require several orbital reconfigurations. The

goal of this thesis is to estimate the price induced by a reconfiguration from an initial

configuration A to a configuration B.

In Chapter 2, the different issues raised by the reconfiguration are carefully de-

scribed. This chapter presents the questions that this thesis answers, at least partially

and points out the difficulty implied by a reconfiguration both technically and eco-

nomically. Section 2.2 describes a scenario in two phases and explains why it was

decided to initially launch all the additional satellites before beginning the transfer

phase (risk reduction).

Chapter 3, where the Project Framework is developed and described is the key

chapter of this thesis. Applicable to every type of reconfiguration, this Framework is

129



as general as possible. In Section 3.1, the Orbital Constellation Reconfiguration Block

Diagram is presented and discussed. Section 3.2 discusses the four optimizations

necessary for this study. The Auction Algorithm described in detail in this section,

is one of those optimizations utilized and a very effective method.

Chapter 4 consists of a detailed description of the different modules. Inputs,

Outputs and functions are described. Moreover, the assumptions and limitations of

each module are shown. In view of the model complexity, some simplifications were

inevitable. The results obtained should be therefore be carefully commented, since

they represent only approximations.

Chapter 5 presents some interesting results. In Section 5.1, a "constellation recon-

figuration map" altitude versus inclination exposes the types of reconfiguration that

are most interesting in terms of fuel consumption. Section 5.2 consisting of a case

study explains, how the satellite assignment on the final slots of B works. Two strate-

gies dealing with the problem of penalized satellites are presented in this case study.

Section 5.3 indicates the impact of the different propulsion systems and scenarios on

the cost and time of reconfiguration. Section 5.4 consists of a trade space exploration

of cost outage versus fuel cost. Section 5.5 shows the economic opportunity of several

reconfiguration paths. Lastly, Section 5.6 explains in detail what would be needed to

construct an High Fidelity Simulation. A first attempt at visualization is shown at

the end of this section.

6.2 Conclusions

The results obtained seem to preconize the utilization of chemical thruster to transfer

the on-orbit satellites of the constellation A, particularly because of the low transfer

time. However for the total costs, some reconfigurations (depending on the altitude or

elevation angle of the final constellation) and/or strategy (penalized vs abandonment)

will be economically advantageous in electric (Hall Thruster and Plasma Thruster are

not retained). It will be the choice of the manufacturer to decide which propulsion

systems and strategy is better suited for its requirement. For instance, if the manu-
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facturer has a strong requirement concerning the reconfiguration time, he will choose

to utilize chemical transfer and to penalize some satellites if necessary. Nevertheless,

in chemical (and even in Resistojet) the mass of extra fuel necessary to do the transfer

could be relatively high compared to the satellite dry mass. The question is to know

if it is realistic to launch and to carry such an extra-mass of fuel.

Concerning the transfer scenario, the need for tracking and monitoring the satel-

lites precisely in a chemical transfer has implied the choice of a staggered schedule for

the transfers, the satellites moving sequentially. For electric transfer, a compressed

schedule could be utilized.

From the simulation, we could quantify the price to pay to reconfigure a con-

stellation and to determine if a "staged deployment" strategy remains economically

advantageous. Chaize [CHAI03] provides an estimation of the gain resulting from a

staged deployment strategy on the life cycle cost (LCC). The decrease in the life

cycle costs in his study is estimated between 20 and 45 %. The study in Chapter

5 of 3 different paths of reconfiguration has shown that a staged deployment strat-

egy could be economically advantageous, particularly for paths with a low number

of reconfiguration. There is a range of opportunity. However as explained in the

last section, the approximations retained for the simulation implementation entail to

interpret carefully the results. We are only sure that the traditional life cycle cost

LCCtrad is of the same order of magnitude that the sum LCCtaged plus cost of recon-

figuration. Moreover, the economic opportunity of 7.5% shown in Section 5.5 must be

carefully balanced with the technical risks of achieving the reconfiguration. Satellite

manufacturers are traditionally very reluctant to relocate or reconfigure assets that

are operational on-orbit. Further detailed analysis has to be performed to overcome

this barrier.

6.3 Recommendations for Future Work

Some refinements can improve the framework.

e The main limitation in the thesis is that the transfer time is roughly approxi-
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mated. For a precise study, one should consider true anomaly or Epoch for each

satellite. However such a method could be very costly in time of calculation

and difficult to implement. Section 5.6 has explained this issue.

Also, the actual computation of AV in electric propulsion is very approximate.

Indeed the S/C mass was assumed constant and equal to the dry mass md

during the transfer. It is obviously false, since the S/C mass varies from m. to

md during the transfer. The computation of the exact AV in electric propulsion

would require numerical analysis which is very costly.

" The metric adopted for the satellite assignment was to minimize the AVotai=

Ez'Lats(A) AVk. This metric is convenient, but since we want all satellites to

be the same for commonality, manufacturing and launch reasons, it would be

maybe more interesting to minimize the variance of the required AV in the
constellation. So, to minimize E Nats(A)(Ay a o )O2. The gap between

the satellites consumption will be lower, although the AVtotai could be higher.

" The Launch Module utilized for the thesis purpose should be improved in order

to consider more launch vehicles in its database. Moreover parallel launches

should be considered, inspired by the Iridium deployment. Another strategy

allowing to suppress the complex loop for assigning the ground satellites would

have to consider a set of launch vehicles with variable capacity. It would be

thus possible to respect the first assignment returned by the auction algorithm

without penalizing on-orbit satellites by a reassignment. This method could

unfortunately increase significantly the cost to launch the satellites from the

ground.

" The metric chosen to quantify the coverage capacity of the constellation during

the transfers, in other words the percentage of operational satellites is satisfying

only for single coverage. If a constellation with double or triple coverage is

studied, another metric would have to be found. Indeed in this case, we could

have several satellites in transfer and still have a global coverage of 100% over

the Earth's surface. The relative position of the satellites with their respective
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neighbors would have to be taken into account. Indeed if one satellite is in

transfer, its neighbors flying over the same region can insure coverage instead

of it. In the case of multiple coverage, the transfers should be organized so that

a region is not overly penalized by the transfers. For instance, two satellites

flying over the same region should not be transferred at the same time. So, the

transfer schedule has to be modified in order to distinguish the satellites and to

take into account their relative positions. Double or Triple coverage is a more

complex issue than single coverage.

* The cost module could be relatively improved in a future study. For instance,

the fuel cost was quantified thanks to an average for several launchers of the cost

to launch a kg of payload to LEO. It is not completely satisfying. A launch

planning for the on-orbit satellites should be determined, knowing the exact

amount of fuel carried by each satellite. From the total mass of the satellites,

we could determine exactly which launcher or series of launch vehicles could

be utilized for this first deployment and so, the exact price to launch these

satellites with their extra-fuel. After this, we could compare with the price to

launch these satellites empty. The difference of price would give the exact fuel

cost.

The production model could be also improved. Two models were proposed for

this cost (Equations 4.19 and 4.20). A future study could determine which

model is nearest the reality or propose another one. The price of a single S/C

production could be also checked and refined.

Lastly, the method for estimating the cost of service outage is rough. Maybe an-

other model would improve this estimation. A model where the non-uniformity

of the users distribution would be taken into account and potential, permanent

loss of paying customers due to service outage.

* This thesis deals mainly with a single reconfiguration from A to B. Multiple-

Reconfigurations A-+B--C would likely be very expensive or impossible by

carrying all the fuel onboard for 2-3 or more future reconfigurations. Already

133



for a single reconfiguration, the extra fuel mass per satellite of constellation A

is large, see Figure 5-1. It is unclear whether enough fuel could be carried

for multiple reconfigurations. This needs to be investigated further. More-

over due to the rocket equation, most of the fuel would be used to push fuel

around. An alternative to this problem would be the exploration of fuel depots

at strategic locations on orbit that could refuel satellites adaptively as needed.

It could be also judicious to consider the utilization of a Space Tug as a "real

option", instead of extra-fuel. The Space Tug would transport the satellite to

be transferred.

0 Also, an alternative to Re-Con might be staged deployment with multiple circu-

lar layers. Similar to an onion, the satellites of A would remain in their orbits.

The additional satellites would form a new orbital shell at a lower altitude.

Constellation B would thus contain two layers (or more) of satellites. This

would permit not to have to maneuver the satellites in A. Fuel is saved with

this strategy, but the difficulty is shifted over to the electronics, since one must

now provide Inter satellite links between satellites at different altitudes and the

precise phasing between satellites in the orbital shells must be tightly controlled

to avoid any holes in coverage. This would be more "staged deployment" than

reconfiguration.
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