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Abstract

This thesis constitutes the continuation of a line or work stemming from a joint project between
Snecma Moteurs, ENSAE, ECL and MIT aimed at the conception of an integrated design
methodology for enhanced compressor stability, motivated by the a posteriori treatment of compressor
stability in the traditional industrial practice. Previous work on the project was geared towards the
implementation of an existing reduced-order, modular dynamic compressor model to multi-stage
configurations, dissecting the dynamics associated to individual stages and their role in the overall
compression system. For the feasible development of an inverse design scheme, however, novel
metrics to ascertain the true dynamic stability and robustness of a compressor remain to be defined,
together with expedient methods for their practical evaluation in large-scale design processes.

The available dynamic model is extended using existing theory to analyse the temporal behaviour
of an energy-like quantity (the disturbance-kinetic energy, in incompressible flows) as a single-valued
indicator of dynamic stability. The discrete contribution of each blade-row to the system dynamics is
assessed through its emission power of this disturbance-energy. The dynamic consequences of inter-
blade-row gap length re-distribution, established by previous research, are re-visited from this
energetic standpoint. Elongation of the intra-stage gaps produces a uniform reduction in disturbance-
powers, stabilising the compressor, whereas longer inter-stage gaps lead to reduced dynamic
stability, mainly due to an increase in power of the blade-rows on the edge of the compressor.

In parallel, a new set of metrics for the degree of dynamic stability and its robustness to flow
changes is defined, based on the resonant amplification of disturbances under aerodynamic forcing.

With these tools, a unified relation is uncovered between the flow range to a given level of dynamic
stability and an equivalent measure of the performance characteristic curvature, which can be arrived
at through the flow-sensitivity of the pre-stall dynamics, characterised either by the growth rate of
perturbations or the disturbance-energy. The Equivalent Curvature relation is used as a stepping-
stone to formulate a framework that simultaneously links the concepts of stable flow range, dynamic
instability margin and dynamic robustness to flow changes. This has been proved valid for
incompressible machines, regardless of particular design features, so long as they are captured by the
formulation of the dynamic compressor model.

The new metrics and their unified Equivalent Curvature framework are used to define relevant
design requirements and cost functions for loading, dynamic stability and robustness to be applied
within a multi-objective optimisation. This process is demonstrated in a computationally efficient
manner for the integrated preliminary design of a 2-stage compressor. Expedient design changes
based on the disturbance-energy power distribution are suggested for a faster progression through
the design space. State-of-the-art multi-variable optimisation techniques remain to be incorporated
into the scheme, thus completing the effort to create the practical design tool envisioned at the onset.

Thesis Supervisor: Professor Zoltan Spakovszky
Title: C.R. Soderberg Assistant Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Technical Background

The issue of dynamic stability in axial flow compressors has been the subject of intensive study as
the use of gas turbine engine technology has become widespread. When the aerodynamic conditions
are such that instability develops in compression systems, severe performance, mechanical,
operational and economic penalties can be incurred.

Cumpsty [2] broadly classifies instabilities between stall and surge. Surge is essentially a 1-D
oscillating, engine-wide phenomenon in which the average mass flow through the system oscillates in
time, at a frequency that is typically between 3-10Hz, leading to large changes in performance (see
Greitzer [6]). The event can be so abrupt that, in some instances, flow reversal takes place and flow
from the hot engine sections can be expelled through the inlet. Surge can result in widespread
mechanical damage and/or catastrophic failure of the engine. To put this in perspective, Blanvillain
[1] estimated that a non-fatal in-flight surge event can generate $3.5M in costs to a typical airline.

Rotating stall, on the other hand, is a non-uniform, long-circumferential-wavelength oscillation
instigated by a region of the annulus that contains reduced flow. This region of low velocity, known
as the stall cell, rotates at a fraction of the rotor speed (20-50%) and one or more blades experience
stall as they pass through it. Depending on the spanwise extent of the stall cells, one or more of them
can be present, and it is not unusual for rotating stall to be a precursor of surge, in which case the
instability extends longitudinally along the whole machine.

It is crucial to understand the paths through which stall can be triggered. Camp and Day [2]
identified two distinct inception mechanisms: spike-like stalling of a particular blade-row, which can
lead to an overall compressor stall, and modal stall inception, caused by long-wavelength
circumferential modes of oscillation that extend through the entire compressor length. It is on the

latter that this work is focused.
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Extensive efforts over the past two decades have been directed towards the physical prediction of
the inception of surge and rotating stall, and the understanding of their underlying dynamics. In the
meantime, the common industrial design practice regarding compressor stability has been to use the
surge margin as a safety measure, limiting the pressure ratio to a fraction of its maximum value at a
particular flow condition. While this steady-state, conservative approach ensures safe operation of the
machine, it implies having to sacrifice potential aerodynamic performance and efficiency. On the
other hand, one cannot afford to lower the surge margin requirements without knowledge of the
actual system dynamics; according to Blanvillain [1], a reduced-stability fleet could entail annual
maintenance and management costs of $10M, a good proportion of the airline’s revenues.

As a result of all these present deficiencies, the motivation for accurate modelling of compressor

dynamics and their incorporation in the design process is thus established.

1.2 Previous Work

This thesis makes extensive use of a line of work started by Moore and Greitzer [10], who
analysed the behaviour of small disturbances in compressor flow fields, understood as natural modes
of resonance of the compression system. The time-evolution of these oscillations is linked to the mean
background flow, which governs the damping of the system. When this becomes negative, the
compressor becomes unstable, through either rotating stall or surge.

Spakovszky [12] further elaborated a modular application of the same low-order concept,
through which the dynamics of both blade-rows (considered as semi-actuator disks) and gaps/ducts
are cast in the form of transmission matrices, capturing their dynamic interaction effects. This more
evolved model renders far greater flexibility, allowing for the construction of a compressor consisting
of any combination of the previous elements. Because of its analytical nature, this model also lends
well to the treatment and physical understanding of the individual dynamic mechanisms involved in
the stall phenomenon. Such capability was exploited by Spakovszky [13] to explain, for the first time,
the existence of backward travelling rotating stall waves in centrifugal compressors. It is this model
that is used in this thesis as the primary tool for the analysis of dynamic stability.

Fréchette [4] pursued a further line of thinking based on the same modelling framework. He
started by proving that there exists a perturbation energy-like quantity that is conserved in any region
of a turbomachinery flow where blade-rows are absent. For incompressible flows, this quantity is the
kinetic energy of the fluid due to the disturbance-velocity field, characterised by the corresponding
modal oscillations. The compressor-wide variation of this energy in time can be used as an analogous
metric to ascertain whether the compressor is in a stable or unstable operating condition: it grows in

the first case and decays in the second.
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Furthermore, the conservation law for this disturbance-energy lends well to the application of a
control volume analysis, through which the individual blade-row disturbance powers can be found.
This provides a power distribution along the machine that relates to the stability-impact of each rotor
and stator.

In this thesis, attention is turned to the application of Fréchette’s energy-based analysis to
Spakovszky’s dynamic compressor model, with a view of benchmarking their stability predictions

and to apply the localised dynamic information within an integrated design process.

1.3 Thesis Framework

1.3.1 Joint Project

A joint effort between the French aerospace propulsion company Snecma Moteurs, the French
universities Ecole Nationale Supérieure de I’Aéronautique et de I'Espace (ENSAE) and Ecole Central
de Lyon (ECL), and the Massachusetts Institute of Technology (MIT) was initiated in 2001 in order to
put together a design framework for an advanced core compressor to be used in an unmanned air
vehicle (UAV). The details of this agreement and the delineation of the expertise contributed by each
of the parties are reviewed in Blanvillain [1].

Given the comprehensive expertise in compressor stability gained over the last two decades by
the Gas Turbine Laboratory (GTL), MIT’s key role is the practical implementation of the knowledge
base acquired over these years. Representing a departure from traditional industry procedures,

dynamic stability considerations are to be embedded in the design process from the onset.
Inverse Design for Stability

The architecture for the proposed inverse design for stability is shown below. The initial
aerodynamic design can be used to obtain the performance characteristics, which provide the mean
flow information for the evaluation of the dynamic behaviour through Spakovszky’s reduced order
model. Having obtained the eigenvalues for the flow modal oscillations, an objective set of metrics
should be used to assess the dynamic stability and robustness of the system at the required operating
condition. The shape of the loss buckets can then be altered in an inner optimisation loop until the
required stability margins have been satisfied.

The final task is the definition of a geometry that is capable of delivering the required loss
buckets. To this effect, a series of CFD studies should be carried out to establish what type of blade
profile changes modify the loss buckets in the desired manner.

The new blading can be fed to the mean flow solver and the dynamic compressor model,

repeating the iterative procedure until convergence in performance and stability has been achieved.
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Figure 1-1 Inverse Design for Stability — information flow

1.3.2 Past and Present Efforts within the Project

Blanvillain’s work [1] represented the first-year effort in the construction of the inverse design
scheme. Spakovszky’s reduced order model was systematically implemented, and its capabilities
used to analyse the stability characteristics of a candidate compressor for the Joint Project, Snecma’s
CREATE (Compresseur de Recherche pour I’'Etude des effets Aérodynamiques et TEchnologiques).

Preliminary design guidelines for stability were issued, stemming from a series of parametric
studies. In summary, it was found that increasing the inertia of a blade-row has a negligible effect on
the growth rate of the perturbation waves, and that increasing the separation between blade-rows in
the same stage enhanced stability, whereas enlarging the gaps between different stages had the

opposite effect.

The efforts of this research are centred on the inner optimisation loop shown in Figure 1-1. This
thesis deals with the development of a new set of stability metrics based on compressor dynamics,

and the demonstration of their use within an optimisation loop.
In parallel, Perrot [10] examines the design changes required to manipulate the shape of the loss

buckets, develops systematic ways to implement these alterations and explores the use of multi-

variable optimisation techniques for the inner loop.
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1.4

Objectives and Thesis Structure

This thesis deals with three successive objectives. Each chapter is devoted to one of these:

1.5

Applying the results from Spakovszky’s model to Fréchette’s disturbance-energy balance,
and benchmarking the relative merits of each method as an indicator of system stability.
Using the available dynamics information to derive a set of new physics-based metrics that
provide a true measure of the degree of stability and its robustness to changes in operating
condition.

Demonstrating the use of the new metrics within an integrated design scheme for stability in
a computationally efficient fashion, using dynamic compressor model outputs and standard
relations to derive the compliance of the machine with the pre-specified stability and

robustness margins.

Contributions

In summary, the three key contributions of the present work are:

The development of a simple relationship between stable flow range, compression system
damping and robustness to instability for low-speed axial compressors, denoted as the
equivalent curvature characteristic.

The application of the concept of equivalent curvature to derive a set of novel physics-based
metrics for dynamic stability and its robustness to flow variations.

The implementation of the novel metrics and the unified equivalent curvature relation to a
practical design architecture incorporating simultaneous performance and stability

requirements, together with the delineation of dynamically beneficial design guidelines.

25



Chapter 2

Analysis of Compressor Stability
through Energy-Based Considerations

21 Organisation of the Chapter

This chapter presents the sequence of steps required to determine the dynamic history of an axial
flow compressor, which is necessary for the systematic definition of the new stability metrics put
forward in Chapter 3. Only the essential theoretical scope is given in the overview of the various
models employed, with a fundamentally practical orientation, while the core of the derivations can be
found in the relevant Appendices. Additional insights are provided when specifically related to the
problem at hand, particularly in the areas of numerical cost and accuracy, central to the optimisation
task ahead.

The final aim of the procedural architecture described here is the assessment of the Disturbance-
Energy Balance (DEB) for the machine in question, a pivotal tool developed by Fréchette [4] that
provides a localised stability-performance distribution as well as the overall machine degree of
stability. Its key theoretical concepts are outlined at the onset. This is useful to identify the

information that must be produced beforehand and in which order:

o Background flow field — Mean line flow solver
o Characterisation of the fundamental aerodynamic oscillations — Dynamic model

o Velocity and pressure disturbance flow field — Perturbation modeshapes

[The work presented here stems from an incompressible formulation. However, a compressible dynamic

compressor model would entails the characterisation of an entropy wave, too.]

Each of these differentiated tasks is given a concise subsection, together with the associated

methods and implementation issues.
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The complete course of action is benchmarked against former stability studies performed by
Blanvillain [1], related to the effects of various gap spacings on the overall stability. The trends are
reproduced from a DEB standpoint and the work is taken a step further by analysing the
contributions of the different blade-rows to the stability gains/losses through the model’s extended

capabilities.

2.2 The Need for Compressor Dynamics and their Modelling through
Modal Oscillations and Disturbance-Energy Conservation

The stability of a compression system designed following the usual industry practice is
guaranteed through the use of the traditional surge margin concept, based on static stability
considerations (see Chapter 3 for a thorough discussion of its validity). This represents a conservative,
brute-force approach that sacrifices aerodynamic performance for alleged levels of safety.

Before discussing the different modelling approaches for compressor dynamics, their importance
must be highlighted through the concepts of static and dynamic stability in a compression system (see

Greitzer [6] for a more comprehensive overview).
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Figure 2-1 Schematic of static and dynamic stability

o Static instability is related to the departure from the operating point in a non-oscillatory
fashion. In order to avoid this behaviour, an increase in mass flow along the system
throttle line must always produce a greater increase in pressure ratio than if one
followed the compressor characteristic. Thus, if the slope m of the characteristic is greater
than that of the throttle line, the system is statically unstable.

o Dynamic stability, on the other hand, determines whether oscillations that grow in time
develop in the flow field. As the operating point oscillates about point D above, there is a

pressure ratio increase when the mass flow goes up, and vice-versa. Therefore, the two
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perturbations are in phase and the energy input (P &) into the system is positive, so
the disturbance has a positive growth rate in time. Conversely, when the characteristic
has a decreasing slope, as in point E, the pressure ratio goes down as the mass flow
through the machine increases. These two perturbations have a phase difference of one
half-cycle and there is no net energy being introduced into the flow field: the system is
damped.

The key issue about this discussion is that an operating point that is statically stable may well be
dynamically unstable. Static stability is necessary but not sufficient to ensure overall compressor
stability; dynamics must be considered, too. In fact, it is the dynamic stability requirement that tends
to be violated first

The dynamic compressor model used by Blanvillain [1] is the direct predecessor of this work and
was developed by Spakovszky [12] as an incompressible, modular extension of the small-disturbance
approach adopted by Moore and Greitzer [10]. Essentially, small disturbances in an incompressible
flow field — namely vorticity and pressure perturbations — are analysed on a system-wide basis,
considering their natural modes of oscillation within the compressor. The damping of these system
resonances is governed by the background mean flow, the conditions of which determine whether
perturbations grow or decay in time. This lends well to a standard eigenvalue problem formulation,
through which the different modes of oscillation can be analysed.

Fréchette [4] used this information to arrive at an alternative way to understand compressor
dynamics. Assuming small disturbances in density, velocity and entropy (for the compressible case)
within the Navier-Stokes transport equations, it was shown that an energy-like perturbation quantity
also obeys the Reynolds Transport Theorem in a flow field without blade-rows. In the incompressible
case, this quantity is simply the additional fluid kinetic energy due to the disturbance velocities, and
is referred to as Disturbance-Energy (DE). It will be shown, as was established by Fréchette, that both
the modal representation of the disturbances and the temporal behaviour of DE can be used to assess
the stability characteristics of a compression system: in the unstable regime, at least one natural flow
resonance exhibits positive damping, and at the same time, the DE contained within the entire
compressor is seen to grow in time; the opposite happens when the machine is in a stable operating
condition.

In the illustrative, incompressible examples provided throughout this thesis, it will always be
found that one particular, lightly-damped resonance mode is critical to dynamic stability. The rest of
the modes are assumed to be damped enough that their contributions to the perturbation fields are
negligible. Thus, DEB will be based only on the disturbance velocity associated with the critical mode.
However, in systems with multiple, lightly-damped modes of oscillation, DEB represents the

additional kinetic energy associated with all of them in conjunction. The beauty of this stability-metric
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is that it represents the dynamic state of the machine through only one number and avoids having to
deal with the growth rates of all the perturbation modes separately.

There is an additional advantage in the use of DEB as a pointer to stability. Because one is now
concerned with the transport of an additional kinetic energy in the flow field, it is possible to
determine how much DE is convected by the mean flow into and out of any arbitrary control volume.
If this control volume contains a blade-row, the difference in the DE that comes in and that which
goes out, per unit time, is not the same as its rate of change in that region. This is because blade-rows
are capable of introducing or removing disturbance-energy from the system, effectively acting as DE
source/sink terms, in the standard control volume terminology. It is the ability to determine the
individual blade powers that offers an advantage over the standard eigenvalue information: this
makes it possible to know the extent to which each independent blade-row impacts the overall
dynamics of the system.

Therefore, the motivation to incorporate Fréchette’s DE analysis into Spakovszky’s dynamic
compressor model is clear: to allow for the use and comparison of both concepts in the definition of

new stability metrics, and to apply the localised dynamic information in an integrated design process.

23 Analytical Development of the Disturbance-Energy Balance
Framework

2.3.1 Conservation Law for Disturbance-Energy

The physical definition of disturbance-energy can be arrived at by straightforward manipulations
of the Navier-Stokes equations, the details of which are summarised in Appendix A.

Through appropriate combination of the linearised transport equations for mass, momentum and
energy, Fréchette showed that for incompressible flow the quantity &= p(6V)? /2 obeys the following

conservation law

De +V.1=0
Dt (2.1
where: 1=6P6V (2.2)

Therefore, £is defined as Disturbance-Energy Density and has units of energy per unit volume. If

one carries out a similar compressible analysis, DE is found to possess an internal-energy-like term of
the form (&P)* / 2pa* . However, in the simplified incompressible case, DE is simply the additional
fluid kinetic energy per unit volume due to the perturbation velocities.

The flux term 1, known as the Disturbance-Energy Intensity, represents the time rate of change of

disturbance-pressure work per unit area exerted on a given cross-section of the compressor.
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Integral Disturbance-Energy Theorem

In view of an application of the DE transport concept in a control-volume analysis, the

conservation law is best viewed in integral form over a generic volume V, the final form of which is
d &= =)=
—{ffalV + gleV +1)ndA=0 2.3)
ot v v

The control volume analysis can be applied to discrete regions of the domain at will, in order to
assess the local contributions of the various terms to the Volumetric Rate of Increase in DE. From this
point onwards, this quantity will be referred to as Disturbance-Energy Balance (DEB),

(v

_ 3 i 9 (V)
DEB== j‘j:jaiv—at lip==—av 2.4

In an incompressible model, the sum of the net DE increase due to convection and the
disturbance-pressure work per unit time must be equal to the rate of change of disturbance-kinetic
energy inside any given control volume, which is analogous to DE. If compressible effects were taken
into account, then the net energy balance put into the system would be split between kinetic and

internal disturbance energy.

The boundaries on which the disturbance-intensity term, 1, acts are the annular cross-sections
that define the longitudinal limits of the control volume, i.e. the same surfaces through which the
convective term is calculated. Therefore, the term in the second integral in (2.3) can be thought of as
an overall DE flux 7, although strictly only the convective term really fits that description, being
transported by the mean flow velocity.

F= g(ex'hi)- fdA = §[pmt7+aP5VJ-ﬁdA (2.5)
v v 2

Both the mean and the perturbation velocities are parallel to the wall at the hub and case, so their
product with the normal vector at those two bounding surfaces is zero. Therefore, the inlet and exit
fluxes reduce to the integral over the respective annuli

2 2
F= F;'n _Fout = I.['(p (6‘;) Vx +&JWI JdA - H (p_(_é";_)vx +&)6Vx JdA (2.6)
Ail

Aout

2.3.2 Disturbance-Energy Balance in an Axial Flow Compressor

The equations presented so far are representative of flow fields without source or sink terms,
such as blade-rows. However, our control volume of interest is that of a standard axial-flow

compressor (see Figure 2-2).
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The DE conservation law only holds in the form presented in (2.2) within the various ducts.
However, when blade-rows are included inside the domain, their DE power /row must be accounted
for when calculating the overall energetic balance.

In the absence of source terms, the overall DEB in any arbitrary control volume must be equal to
the net flux, ¥ in — ¥ ou. When that is not the case, i.e. when a blade-row is present in the control

volume, the difference must be accounted for by a DE power, Z, defined as

p ——medv (*, -F,
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Figure 2-2 Control Volume definition for the DE analysis of a generic axial flow compressor

The growth rate of the modal oscillations is zero at neutral stability. Therefore, the perturbation
velocities remain constant in time and DE cannot possibly change. Any net flux across the entire
compressor must be accounted for by the cumulative power of all the blade-rows. Hence the
equivalence between instability prediction through eigenvalues and DE.

When analysing individual gaps or ducts, one finds that the net flux is not zero if the machine is
operating away from neutral stability. In that case, this non-zero effective flux must be balanced by
the rate of change of DE, since there is no physical mechanism for additional energy
creation/destruction without blade-rows being present, other than through unsteadiness.

As the system damping increases, the perturbation quantities start to decay in time, and
consequently there must be an overall decrease in disturbance-energy. The net flux, in this case, need
not be balanced only by the sum of all the blade-row powers, but also by the temporal evolution of

DE.
2.3.3 Compressor Dynamic Stability Prediction through Disturbance-Energy

In a more general form, the Integral DE Conservation Law for a Compressor can be written as

ﬁj LA ) dv + H[ (5‘;)2 V,+5P§Vx]dA—H[ (5‘2/)21/ + 8PSV, ]dA:Ng}?, (=4

Aout Ain
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Once the longitudinal and circumferential perturbation modeshapes have been determined, the
power of each of the individual blade-rows can be calculated, together with the local modular value
of DE growth. The details of this procedure are outlined in Section 2.4.3.

By means of these computations, DEB is found, as expected, to exhibit additive properties: the
sum of the net growth of DE of each individual compressor region amounts to the total system DEB.
This overall growth is linked to the growth rate of the stability-critical eigenvalue (the one reaching
zero-damping first as the machine is throttled down). Therefore, one must expect that the DEBs for
any control volume within the compressor will have the same sign. If the machine is in a stable
operating condition, the net growth of DE must be negative throughout the domain (regardless of the
portion of the machine enclosed by the boundaries of the control volume in question) and vice-versa.

On the other hand, the DE powers need not comply with any particular trend and will be shown
to be the true indicators of stability-related performance. One would hope to reduce the D levels for
all blade-rows, ideally reaching negative values for all of them. In that situation, all modules would

be acting as DE sinks.

Gysling [7]) and Fréchette {4] demonstrated that, for a Moore-Greitzer type compressor, the DE

conservation law could be used analogously to predict the onset of dynamic instability.

_ 2 _ e
Neutral Stability:  DEB=— J";Uaiv -0 o 55 =0 i 0= 0 2.9)
Stable Condition: ~ DEB=-2- H jaiV< 0 o i <0,ie d<0 (2.10)
. - at , a¢ s B E. .
Unstable Condition: DEB=-2- I Hmv >0 & CL A 2.11)
B = at 5 a¢ s LE. .

In other words, there is no net growth or decay of disturbance-kinetic energy in the control

volume at the onset of instability. Expansion of (2.9) gives the DEB Criterion for Neutral Stability

fi (P )y +opsv, )d“‘ - If (" &Ly, +oeav, )‘“ “Fu-Fu= 3P 212

Aout 2 Ain i=1
24  Practical Calculation of DEB for Axial Flow Compressors at

Specified Operating Conditions

The DEB control-volume analysis necessitates the resolved perturbation flow field. This, in turn,
can only be attempted when the mean background flow has been characterised. Therefore, the logical

sequence of steps leading to the determination of DEB is as follows:
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@) Calculation of the background flow quantities via, for instance, a 1-D mean line flow
solver. Inputs to the subsequent dynamic compressor model include the average velocity
& pressure fields and the loss-curve derivative at the operating point of interest.

(ii) Determination of the modal eigenvalues through, for example, Spakovszky’s [12]
incompressible dynamic model for compression systems. This enables a systematic
isolation of the critical eigenvalue, which is carried forward for the DEB analysis.

(iii) Development of the longitudinal and circumferential modeshapes for perturbation
pressure and velocities (both axial and angular).

(iv) Calculation of individual Pand  for each modular compressor element, following the
methodology established in 2.3.

W) Overall DE analysis and stability assessment according to the criterion set forth in 2.3.3.

Steps (i) through (iii) are discussed in detail in the following sections.

24.1 Compressible Mean Flow Model

A compressible mean line solver has been implemented to more accurately represent the
performance characteristic of any axial flow compressor, although the dynamic compressor model
devised by Spakovszky [12] is incompressible in nature.

The mean line tool handles compressors of any number of stages and generic loss and deviation
distributions, obtained either empirically, through CFD computations or by simple estimations. The
variations of loss and deviation with both blade incidence and relative Mach number are captured. As
well as a closer approximation to the performance levels, the analytical treatment of the loss surface

enables a direct calculation of the loss-sensitivity dL/df3; , which is to be fed to the aforementioned

dynamic compressor model. Deviation sensitivity is not incorporated in the dynamics.

The aforementioned compressible additions do not enhance the physics that can be captured by
Spakovszky’s analysis. However, the background flow dictates the dynamic behaviour of the
perturbation modeshapes, and the additional compressible considerations provide more accurate
mean velocity and mean pressure fields. In addition, the loss sensitivity is evaluated at the correct
Mach number plane. While there are no disturbance quantities linked to the degree of
compressibility, this additional degree of freedom enables the slope of the loss to vary as the blade-
rows undergo different operating speeds.

Given the extensive coverage of mean flow models in the literature, the detailed structure of the

mean line solver is only briefly discussed in Appendix C. Separately, Appendix D is dedicated to the
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three-dimensional analytical mapping of the loss and deviation buckets, and the extraction of the

required sensitivity from the former.

24.2 Dynamic Compressor Model

24.2.1 Theoretical Outline

The dynamic compressor model devised by Spakovszky [12] captures the compressor-wide
natural modes of flow oscillation that control the dynamic behaviour of the compression system. This
is achieved by suitable manipulation of the linearised flow equations leading to an eigenvalue
problem, assuming incompressible flow and a semi-actuator disk description of the blade-rows.

Separate dynamic analyses can be performed for ducts, rotor/stator blade-rows and inter-blade-
row gaps. For each of these entities, the unsteady, incompressible, small-perturbation governing
equations are solved exactly for the perturbation values of pressure, axial and angular velocities. The
spatial structure of the flow oscillations is broken down into spatial Fourier harmonics, each nth
spatial harmonic being dealt with separately, whereas the temporal behaviour is captured by
conversion of the equations to the frequency domain using a Laplace-transform. This solution can be
compacted into the so-called transmission matrix for the component in question (for a detailed

derivation, see Spakovszky[12]).

Transmission matrix for an axial duct

. A -
enx e ™ e{V, ’nV, Jx
., = s .V
-— x|
7; o= ]'enx _ ]'e-nx (__:s_]__',io;)e{vx Vx) 8’”0 (213)
’ v.an V.,
(-i_v -, )e"" (i-v iV )e 0
i n x ] 4 n x ] ] |
Transmission matrix for a rotor blade-row
1 0 0
Brotn = tan 3, 0 0le™® (2.14)
tan B, —tana, — 4, (s + jn) i .
dL, tan f, = -——k +V, 1
+ = -V, t s+ o
otan B, V(1415 -(s+jn)) 7 anf, otanf, V,(1+7, -5+ jn))
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Transmission matrix for a stator blade-row

1 0 0
Bian = tana, 0 0le™ (2.15)
aLS tan &, aLs 1 —

—Ass -V, tana, Ve 1

E S —_— — —
dtana, V (147, s) dtana, Vx(1+1'5-s)+

The axial duct transmission matrix relates inlet boundary conditions and perturbation values at

the exit of the duct, whereas the rotor and stator matrices relate perturbations across the blade-row in

question.
3 5 3 :
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Figure 2-3 2-stage compressor dynamic compressor model geometry and definitions

Larger compression systems consisting of arbitrary combinations of the previous modules can be
built by successive multiplication of their respective transmission matrices. Specification of suitable
inlet and exit boundary conditions suffices to finalise the eigenvalue problem formulation. These arise
from the necessity that, for infinitely long upstream and downstream ducts, potential waves decay
away from the compressor and the assumption of irrotational upstream flow. The closed system of

equations can be expressed as an eigenvalue problem

EC-X,,
det| "~ ™ |=0 (2.16)

where EC=[1 0 0] esld L 2 (2.17)
B “lo 0o 1 ‘

and Asys is the overall system transmission matrix.

In general, this is assembled as follows

KXsys = Tax,n (xlast stage,infs)_l : iﬁz [ﬁsm,i,n “Baap,2in Brotin '3gap,2i—1,n]'
i=2Nstages (2.18)

'gsta,l,n '3gap,2,n 'Brof,l,n 'Tax,n (xl,autrs)

35



For the 2-stage machine depicted above, this would become:
Xsys = 7-,;,(,,, (xS,in ;S)—1 ) stta,Z,n : ﬂgnpA,n ) ‘Brof,2,n ! ﬁgap,S,n ' ﬂsm,l,n ! Bgap,Z,n ' ﬂrol,l,n ' 7da.n:,n (xl,out ’S) (2' 19)

Analytical and numerical methods to solve for the eigenvalues arising from the eigenvalue
problem were proposed by Spakovszky [12]. Blanvillain [1] further explored the potential of
commercially available optimisation-based routines to find the various roots of the determinant. The
Nelder-Mead direct search algorithm, included as a standard Matlab function, proves efficient
enough, allowing for the calculation of all the roots for a given harmonic in a timescale of seconds, for
one stage, and a few minutes for two, three or four-stage machines, so long as one stays reasonably
close to the peak of the characteristic, which roughly coincides with the neutral stability condition.

The issue of computational expense is revisited later in the discussion.

Having specified the harmonic number that one wishes to study, (2.16) returns eigenvalues for all
the flow resonance modes
s=0,-jo, (2.20)

where o, and an are the growth and rotation rates of the wave, respectively.
Spatial Flow Field Resolution

An important constraint to 2-D compressor modelling is the spatial flow field resolution. The
question is how large the ratio of non-uniformity wavelength to blade pitch has to be to obtain a local
blade-row performance in non-uniform flow similar to that in uniform flow for the same local
conditions.

Longley [9] gives the following rough constraint as a guideline: a blade and its neighbours - i.e.
two pitches ~ have similar flow conditions, within a quarter wavelength, when the circumferential
lengthscale of the flow non-uniformity is large enough. In other terms,

1
4

where s is the blade pitch. In terms of the highest feasible harmonic, this criterion can also be

Z’non—unif_ >2s (221)

expressed as

N bits >~ 8 (2.22)
n

max
For a typical row of 50~60 blades, one should, at most, use the dynamic compressor model to

calculate up to around 6~7 harmonics.
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n=4 Sufficient spatial resolution
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Figure 2-4 Feasibility of various circumferential modeshapes to satisfy Longley’s spatial resolution requirement
Temporal Flow Field Resolution

An additional limit on the perturbation wavelength is imposed by the requirement that the
blades see quasi-steady conditions, so that the actuator disc description can be employed. In simple

terms, the flow change time due to the circumferential mode of oscillation must be larger than the
travel time of the flow along the passage. This effectively means that the reduced frequency Bis
below unity, in which case the blade-rows behave in a quasi-steady manner.

Considering a periodic oscillation of wavelength A upstream of a rotor blade row, as seen in

Figure 2-5, the radian frequency of the unsteadiness, as seen by the rotor, is

o= 2’?" (2.23)

On the other hand, the travel time of a fluid particle along the passage is
_L
T passage = E

(2.24)
The reduced frequency is obtained by comparison of these two timescales, i.e.
27QR-L
p=s
AU (2.25)
The tangential speed of the rotor Qr and the fluid velocity along the passage U are comparable

in many fluid devices, so the reduced frequency can be roughly expressed as
B= % (2.25)

However, it should be noted that the circumferential perturbations have an integer number of
lobes. Therefore, the reduced frequency can be viewed in terms of

BT (2.25)

This sets the value of the maximum harmonic that complies with the temporal resolution

requirement.
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Validity of the Model for Engine Transient Cycles

One of the aspects that will be investigated in Chapter 3 is the change in stability that the
compressor experiences during engine acceleration cycles, which take the operating point above the
running line until a steady mean flow condition is reached again at a higher speed.

This dynamic compressor model assumes steady-state, axi-symmetric performance
characteristics (i.e. with a steady 2D background flow). Therefore, when the operating point has to be
changed and a transient is undergone, one needs to ascertain that the mean flow change timescales
are sufficiently large, compared to the blade convection time.

For the full-compressor, the timescale that one must control is the characteristic acceleration time
Tace, which can be arrived at by considering the torque exerted by the fluid on the blading and the
overall polar inertia to be accelerated from a given speed.

Kerrebrock [8] expressed the characteristic acceleration time from speed N as

_ 4Ar’N*:L
e = cpTpatity (Tm%m)m,o

where ] is the rotor polar inertia and Ttz denotes the stagnation temperature at the compressor face.

(2.23)

This timescale is calculated for the repeating-stage compressor used for all studies henceforth ,

varying the number of stages (see 2.5.1 for a full description of the standard compressor).
The characteristic accel time is computed from a low speed of 3350rpm (Mretr1 < 0.2). The estimate

is in fact conservative, for only the blades and a cylindrical disk are taken into account in the

calculation of the polar inertia.
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The results for the machines of interest are summarised below:

Number of stages  Accel time, Tace Pace
1 6.668 5.908E-05
2 7.892 4.992E-05
3 9.116 4.321E-05
4 10.339 3.810E-05
5 11.563 3.407E-05

Table 2-1 Transient timescales for standard series of compressors

In conclusion, it is clear from inspection of the reduced frequency that the acceleration time is
different in order of magnitude from the flow travel time through the blade passages. As the engine
accelerates, the flow field responds more rapidly than the changes in mass flow and the instantaneous
conditions vary smoothly enough for the quasi-steady assumption to be valid even in transient

operation.
2422  Computational Cost in the Context of DEB

Having put in place all the necessary tools, one can attempt the calculation of the modal
eigenvalues at various harmonics. The issue of computational expense is of importance at this point,
since of the resulting eigenvalue map, only the least stable pole is taken forward to the DEB
calculation. A minimum of resources should be spent in the identification of such pole

In a simplified, Moore-Greitzer type model, where all blade-rows are lumped into a single semi-
actuator disk and the effects of unsteady loss-lags are neglected, one expects only one mode per
spatial harmonic. It can be shown that when the compressor is in stable operation, the first harmonic
leads all others, while the opposite is true in the unstable regime. As expected from this behaviour, all
harmonics align along the imaginary axis at the point of neutral stability. One can confidently neglect
higher order harmonics and track the first one only as it progresses towards instability.

When blade-rows are separated from each other, the gap dynamics are accounted for and the
unsteady time lags are incorporated into the analysis one finds two different modes of oscillation per
blade-row (see Spakovszky [12]). The eigenvalue map becomes more complicated if the number of
blade-rows is increased. Blanvillain [1] dissected the eigenvalue map of a multi-stage compressor and
grouped modes with similar dynamic characteristics into strings of eigenvalues.

The convergence of the currently available, reasonably efficient search routines for the solution of
the eigenvalue problem is highly dependent on the starting point of the iterative process. Once the
first harmonic of a particular mode has been found, this solution is used as the initial guess for the

iteration of the immediately higher harmonic, thus generating a string of eigenvalues.
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Figure 2-6 Moore-Greitzer eigenvalue map

However, it has been observed that an iteration starting with a harmonic solution from a given
string might well converge to the next harmonic of a different one. This is especially acute when two
different sets of eigenvalues intersect, but jumps have also been observed between strings lying in
well-differentiated regions of the complex plane. At present, no systematic method for the exact
calculation of all the harmonics of a given string of modes has been devised. One must therefore solve
for the entire set of eigenvalues and decide, by geometric concatenation of the various poles, the
topology and dynamics associated to each different string.

Fortunately, despite this proliferation of different strings of modes for one given machine, the
first harmonic in each set of eigenvalues is found to lead its own string, so long as one looks at the
stable operating region. The fundamental difference with the Moore-Greitzer map is that, since the
relative locus of each mode is unknown initially, one must find the first harmonic of all the families
before deciding which is the critical one.

Such an endeavour can be exceedingly expensive, particularly far away from neutral stability.
Convergence of the optimisation algorithm to a root of the determinant is largely sensitive to the
starting point of the gradient search. In many instances, one encounters that the initial guess is in a
flat region of the domain, where no progress towards the pole is possible, in which case the guess
must be updated and the process restarted.

However, as one restricts the analysis between o ~ -0.15 and ¢ = 0, the critical eigenvalue

becomes the main attractor and the Nelder-Mead algorithm converges towards it invariably from an

initial guess of (o,@) = (0,0). Consequently, it would be desirable to exploit the relatively cheap
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information from the vicinity of the vertical axis in the eigenvalue map and employ it to predict

dynamic behaviour away from this region.
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Figure 2-7 Eigenvalue map for a 1-stage compressor with 5% inter-
blade-row gap and long inlet & exit ducts, in stable operation

2423  Perturbation Modeshapes Calculation

The dynamic analysis described so far, leading to the growth rate and rotation rate of each of the
eigenvalues, is insufficient to proceed to the evaluation of DEB. With a view of employing the
velocity and pressure perturbations in integral expressions used to calculate the different terms in the
control-volume analysis, the compressor ducts and gaps can be subdivided into an arbitrary number
of points, at each of which &Vx, Vgand & must be evaluated. This discretisation is necessary for the
evaluation of the disturbance-energy balance, which requires these flow quantities at the various axial

positions in order to determine the local values of DE flux and DEB.

The transmission matrix for an infinite upstream duct is used to find the it perturbations in Duct 1

&V, 1
v, =T, .(sx.]0 (2.24)
P 0
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Once the edge of the first blade-row is reached, the perturbations at the first point of the
following gap are simply

v, oV,
5V9 = rot k,n ‘SVH (2 25)
op 1,1 j.Nint

Elemental gap transmission matrices can be assembled to relate perturbations across successive

points between any two blade-rows

x

&V =[7:x,ax(slxj,i+1)]'[Tn,ax(sij,i)]-l |V, (2.26)
oP oP

jAi+l ji
Typical modeshapes for a standard, repeating-stage 2-stage compressor with zero inlet and exit
swirl, 5% inter-blade-row gaps (Ax/R = 0.05) and long upstream and downstream ducts are shown in
the following page. For incompressible flow, potential waves, which decay away from the source,
propagate in all directions, whereas vortical disturbances are convected downstream by the mean
velocity. As a result, it is seen that all perturbations decay away from the compressor face in the inlet

duct. In this region, the axial and circumferential perturbation velocities are in quadrature.

In the exit duct, however, the effect of vorticity is patent. The pressure wave decays away from
the last blade-row because it is solely governed by potential effects. However, the perturbation
velocities exhibit changes in the exit duct, as the vorticity shed from the last blade-row is convected
downstream. At neutral stability, 6Vx remains constant, whereas in stable operation the wave is seen
to increase along the duct, following the vorticity wave, which also exhibits this behaviour. This
means that the magnitude of the perturbation decays in time, which is expected if the growth rate is
negative. The opposite is true for an unstable operating point.

The angular velocity perturbation, on the other hand, shows a smaller growth in time as the

machine is throttled along the speed line to higher mass flows, i.e. into the stable operating region.

It should be noted that in the illustrative plots, the blade-rows are identified by blocks of a finite
axial length due to the structure of the code; in fact, the actuator-disks should be infinitely short.
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2.4.3 Evaluation of the Disturbance-Energy Balance

The full derivation of the integrals involved in the calculation of the DE fluxes and unsteady term
is too cumbersome to describe here, and is developed in full detail in Appendix B. To preserve the
continuity of the argument, the final expressions for the terms involved in the DE Balance are
provided.

There are two physical mechanisms contributing to the DE flux: the disturbance-pressure work
exerted on the area under consideration and the disturbance-kinetic energy entering the control

volume across this surface through convection by the mean velocity. In summary,

A 1%
F=F,+F, = 7(|¢)P]|§Vx|cos((op —p, )+ 2 > x |5V,|2|5V9|2) (2.27)

The DEB term, i.e. the time rate of change of DE in the control volume, is shown to be

DEB =2 p(e)A(eYaV, (e |, (e 228

This is the quantity that is used as a stability metric analogous to the critical growth rate
stemming from the eigenvalue formulation. Clearly, the integral is always positive and its magnitude,
for incompressible flow and a fixed control volume, is governed by the magnitude of the perturbation
velocities in the flow field. The sign of DEB, therefore, is totally controlled by the growth rate of the
critical eigenvalue. Thus, when o reaches a value of zero, so will the DEB, as long as a single,
stability-critical eigenvalue is considered; hence their equal validity for the onset of instability.

As a matter of fact, if only the overall system stability were of concern, there would be no need to
evaluate flux terms, as enough information is available from the perturbation modeshapes to
establish the value of the DEB. The only reason to go over the additional step of the flux calculation,
under the assumption that the system dynamics are governed by a single eigenvalue, is to determine

the DE powers of each of the blade-rows. These issues are better viewed in the following section.

2,5 Application of DE Theory to Compression Systems

This section deals with the detailed application of the theory presented so far to specific axial
flow compressor configurations. This helps to elucidate some of the implementation issues, especially
on the numerical side, as well as depicting the physical behaviour of the different terms involved in
the DE conservation.

Further to this, multi-stage machines are analysed in order to assess, through DE considerations,

stability trends for varying inter-blade-row gaps previously pointed out by Blanvillain [1].



2.5.1 Moore-Greitzer Compressor Model

The most elemental model to examine the basic features of DEB is the Moore-Greitzer
compressor, in which:

o All blade-rows are lumped onto a single semi-actuator disk
o There exists no inlet or exit swirl
o Unsteady loss effects are neglected

A series of compressors has been created to carry out these analyses, the blade-rows of which can
simply be appended to each other to generate multi-stage machines. These will be referred to as the
standard machines. The stages are aerodynamically repeating and have 50% reaction, i.e. their velocity
triangles are the same throughout the compressor. For the M-G case, the 1-stage version of this
standard compressor is used, reducing the inter-blade-row gap to zero.

The DE balance is calculated at various mass flows along the 35% corrected speed line, where the
flow is markedly incompressible. The maximum relative Mach number seen by the first rotor varies
between 0.234 and 0.318 throughout the range of mass flows considered, among which the largest
overall static density ratio is only 1.035. The distortions introduced by higher speeds and mass flows
into the compressible mean line solver, which in turn feeds data to the incompressible dynamic
compressor model, are examined in later sections.

The direct correspondence between DE and the system dynamics set out in Section 2.3.3 is
demonstrated by tracking the two stability metrics along the speed line, as shown in Figure 2-10. The
Disturbance-Energy and the critical eigenvalue growth rate ¢ reach neutral stability at precisely the
same flow condition. It is interesting to note, however, that while the eigenvalue exhibits a
proportional evolution with flow coefficient, this is not the case for the disturbance-energy. This is
expected, since DEB is inherently an integral quantity related to the square of the velocity
perturbations, whereas C'is a system-wide growth rate of disturbances.

The local topology of DEB can be more clearly dissected using the detailed DE distribution
through the compression system. This is shown in Figure 2-11 for the three different dynamic
conditions, analogously to Fréchette [4]. At neutral stability the 7 distribution is completely flat,
which ensures that any arbitrary control volume in the ducts has a zero net flux, and therefore a
steady level of disturbance-kinetic energy. In this instance, the actuator-disk DE power is simply the
step change in 7 In the stable operating condition, however, there is always a net positive flux
leaving any control volume, which must be balanced precisely by the rate of increase of DE, thus
ensuring that the ducts or gaps do not possess a net DE power, for which no physical mechanism

exists. The opposite is observed when the compressor is dynamically unstable.
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Figure 2-11 Disturbance-Energy Flux distribution for the 1-stage repeating-stage compressor with zero gap length

From this argument, it follows that the gradient of the 7 curves is directly related to the
magnitude of the local rate of growth of DE. A stable compressor, therefore, experiences the largest
dissipation of DE in the final region of the exit duct, whereas an unstable machine has a localised area
of large DE growth immediately around the actuator-disk. The influence of the source power,
therefore, decays away from the blade-rows, whereas their sink influence is felt more intensely at
greater distances, as seen in Figure 2-12. As the number of elements becomes very large, the local DE
balance overlaps with the slope of the # distribution, which must always be the case.

Since V is tied to the local rate of change of DE, it must have the same sign over the entire
domain at any given operating point. This relates to the fact that the eigenvalue governs the growth

of disturbances on a system-wide scale and therefore DE must either grow, decay or remain steady

everywhere, albeit at different rates.
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Figure 2-12 Elemental DE balance showing zero source/sink powers for inlet and exit ducts

The condition that gaps and ducts must in no case contribute a net power to the DE balance can
be used as a convergence criterion for the numerical scheme used to calculate the elemental DEB, as
discussed in 2.3.3. At very coarse discretisations, the unsteady term does not follow the net elemental
flux well, and the ducts appear to have a net power. This is used as the error function,
nondimensionalised by the net flux, which is an analytically exact quantity that does not involve

longitudinal integration,

SV 2
.”jp%dv - (FNimmm!s Jduct F;,duct )
edmjr = p duct = duct
(FNintmls,durl - F;,duci )

The convergence of this error depends on the spatial resolution achieved by the discretisation of

(2.29)

the duct lengths. For the 1-stage standard compressor with long inlet and exit ducts, the parabolic
fitting of the perturbation modeshapes gives an error of under 2%, as one operates beyond the very

reasonable resolution of 25 intervals per duct/gap. It remains constant thereafter for finer spatial

subdivisions.
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Figure 2-13 DEB Unsteady-term numerical convergence for various spatial resolutions
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Figure 2-14 [a-d] Graphical representation of the elemental DE Balance convergence for 5, 10, 25 & 50 intervals per gap

2.5.2 Standard 1-stage Model with Inter-Blade-Row Gap & Unsteady Loss
Effects

2521  DEB Analysis

When the full capabilities of the dynamic compressor model are taken into consideration, some
further observations can be made with respect to the nature of the DE balance.

Because the perturbations are now resolved in the inter-blade-row gaps, the flux distribution is
known there as well. As expected, this follows the same trend as the inlet and exit ducts as far as the

sign of 97 /0x is concerned. However, the flux is found to be very steep in the gaps immediately after

a rotor. This is due to the large magnitude of the circumferential velocity perturbation, which
contributes greatly to the disturbance-kinetic energy.

The gaps located after stators, on the other hand, have a smoother behaviour. If the last stator
fails to extract all the swirl from the airflow, the flux in the exit duct is also seen to vary more steeply,

be it in the stable condition or otherwise.
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This behaviour is patent in Figure 2-15, where the high sensitivity of the post-rotor flux is
evident. The flux distribution is almost flat, but not exactly, despite the fact that the growth rate Tis
only significant in the fifth decimal place. This is enough for 6V, to be appreciable in this gap, thus

making the slope slightly positive, and becomes more pronounced at higher rotational speeds. At

precisely neutral stability, the flux distribution is exactly flat.
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Figure 2-15 Disturbance-Energy Flux distribution (1-stage repeating-stage compressor, 50% gap, 0 inlet and exit swirl)
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Figure 2-16 Elemental DE balance showing zero source/sink powers for inlet and exit
ducts (1-stage repeating-stage compressor, 50% gap, 0 inlet and exit swirl)
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Because of the more rapid variation of perturbation quantities in gaps with high amounts of
swirl, it is wise to assign more integration points to these inter-blade-row regions. The shallower
convergence rate for the inter-blade-row gap is obvious from the graph below. While the numerical
error settles below 1.5% using as few as 25~30 intervals for the inlet and exit duct, the effective inter-
blade-row gap power is still larger than 5% of its net flux, with 25 integration points (see Figure 2-17).

Settling of the error for gap 2 does not take place until one employs on the order of 100 integration

points.
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Figure 2-17 DEB Unsteady-term numerical convergence for various spatial resolutions (1-
stage repeating-stage compressor, 50% gap, 0 inlet and exit swirl)

2.5.22  Intra-Stage Gap Length Effects on Dynamic Behaviour

Spakovszky [12] studied the evolution of rotor and stator-related modes in a 1-stage compressor
as the inter-blade-row gap is increased from the Moore-Greitzer configuration up to essentially an
uncoupled rotor-stator system, with an infinitely long gap. In particular, the critical eigenvalue,
related to the stator, was found to follow a curved trajectory in this process, where the disturbances
can even follow the counter-blade rotation for a certain range of gap lengths. From a dynamic
standpoint, the growth rate becomes more negative, reaches a minimum (its most stable condition),
then increases again to a positive maximum (its least stable condition) and settles at a constant value
for very large gaps, when the two blade-rows are uncoupled.

This phenomenon was also observed in the 1-stage repeating-stage compressor, as seen in Figure
2-18. Indeed, until an elongation of Ax = 15% is reached, increasing the inter-blade-row gap has a
stabilising effect of up to 4o = -0.08. Intra-stage gaps, i.e. those separating a rotor and a stator
belonging to the same stage, were also identified as having this effect in a multi-stage environment by
Blanvillain [1], and the analysis will be repeated using DEB results in 2.5.3.1.

It is hardly imaginable that re-positioning of the compressor blades during the design process

with the object of improving stability would be allowed to increase the gap length beyond a few
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millimetres. As a result, one can say that small allowable extensions of the intra-stage gap in a given

design will generally have beneficial effects from a dynamic point of view.
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Figure 2-18 3-d-harmonic, critical mode dynamic evolution for a range of inter-blade-row spaces

The trend of DEB with varying gap length capture the evolution of the eigenvalue growth rate, as
well as the crossing of neutral stability at a gap length of just over 30%. However, as the eigenvalue
growth rate asymptotes towards a constant value of around 0.152, the overall disturbance-energy
growth rate in the system rapidly rises towards infinity, because the compressor length becomes
infinitely large. The critical growth rate, in this instance, is a more meaningful stability metric, as it
gives a true indication of the relative dynamic performance between compressors of different size.
However, this dependence on the individual components’ characteristics makes DEB attractive to
identify the relative dynamic importance of the various moduli.

Beyond a certain threshold (~75%), the growth rate of the perturbations does not vary for
additional extensions of the gap, as rotor and stator are uncoupled from here onwards. However, as
the compressor becomes longer, the total growth of disturbance-energy per unit time also becomes
larger, but purely because the length of the compressor has increased, and not because the growth
rate is altered. Therefore, it would be misleading to relate the absolute value of DEB to the actual
stability of the machine, because its value is influenced by both the dynamics and the overall length.

The difference between the geometric growth of gaps separating blade-rows in the same stage
and those separating adjacent stages is further enlightened in the next section, where the DEB

analysis is carried over to a multi-stage machine.

25.3 Standard 2-stage Model

The starting point for the analysis of the relative effect of inter- and intra-stage gaps is the 2-stage
repeating-stage compressor with long inlet and exit ducts {Gaps 1 & 5] and 5% inter-blade-row gaps
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[Gaps 2,3 & 4]. First of all, the intra-stage gaps [2 & 4] are enlarged whilst keeping the inter-stage gap

[4] at the benchmark dimension.
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Figure 2-19 Inter- and intra-stage gaps nomenclature

2.5.3.1  Intra-Stage Gap Size Effects in a Multi-Stage Environment

Starting with the baseline configuration at neutral stability, one can detect an improvement in the
growth rate of the least stable mode with larger intra-stage gap length, as long as this does not exceed
8% of the mean radius. This is about half the permissible gap size found in the 1-stage machine and
suggests that the elongation of these gaps may be additive. In other words, it is conjectured that
regardless of the number of stages, one appears to have to distribute a maximum extra compressor
length among the various intra-blade-row gaps. The extent to which this limits the geometric changes
on large multi-stage machines, and the relative impact of increasing the size of these gaps towards the
front or rear ends of the compressor are issues to be studied, and lie beyond the scope of this thesis.

The local effects of this gap elongation are better visualised in the form of DE powers. Rotors are
seen to act as sinks, whereas stators constitute sources of disturbance-energy. As the stabilising effect
of the increasing gap length becomes more pronounced, the sink terms become stronger and the
source powers of the stators diminish in magnitude. In relative terms [see Figure 2-20c], the increase
in rotor sink powers is more acute than the decrease in stator source intensity. On the other hand, the
second stage is seen to contribute much more to the compression system dynamics. This must be
related to the effective flux redistribution around the compressor, which itself is directly linked to the
changes in perturbation modeshapes. However, one cannot easily split the contribution of the
potential and vortical portions of the perturbations to the flux distribution; a more detailed analysis is
needed to understand the exact role of each of these interacting waves.

Blanvillain [1] carried out a similar analysis on a 4-stage compressor, in which the intra-stage
gaps were doubled from their initial dimensions, while the rest of the gaps were reduced to maintain
a constant compressor length. A maximum stability gain of 4.6% with respect to a stable, baseline
operating conditions was achieved. The maximisation of intra-stage gap lengths for enhanced

stability was established as a recommended design practice.
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The same conclusions can be reached from a disturbance-energy standpoint. In summary, for

small extensions, up to 8% for each intra-stage gap, the perturbation decay rate increases, up to a

maximum of 5.5% of the rotor frequency. These elongations have a system-wide effect on the

disturbance-energy re-distribution, all blade-rows having their DE powers reduced. The maximum

cumulative gap length for which a dynamic benefit is recorded, and the extent to which stability is

improved, are expected to vary across different compressors.
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Figure 2-20 [a-c] DEB and ¢ histories for 2-stage repeating-stage compressor with varying intra-stage blade-row gaps

2,582

Inter-Stage Gap Size Effects

The next parametric study must be carried out on the gap separating stages 1 and 2. Having fixed

gaps 2 and 4 to their baseline level, the size of the inter-stage gap is increased up to 40% of the mean

radius, maintaining a constant operating condition that contains the compressor in the stable

operating region throughout the whole analysis.
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Recalling that in a practical design situation one is unlikely to be able to vary the dimensions by
more than a few percents of the mean radius, it is reasonable to concern ourselves to the lower end of
Figure 2-21[a], before the extrema in dynamic behaviour.

In that region, extending the inter-stage gap produces a deterioration in perturbation decay rate.
This reaches a maximum of 5.6% in critical growth rate around a gap length of 16%, the same
cumulative maximum extension recorded for the intra-stage gaps in previous studies.

The redistribution of DE power seen in Figure 2-21 [b] shows that the blade-rows adjacent to the
gap in question actually experience a beneficial effect, their source powers being appreciably reduced.
However, the edge rows experience a relatively larger increase in DE emission, which brings down
the overall growth rate of the critical eigenvalue. The individual wave interactions leading to this
distinct behaviour between inner and outer rows cannot be isolated with the tools used for this

higher-level study.
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Figure 2-21 [a-b] Dynamic history for 2-stage repeating-stage compressor with varying inter-stage blade-row gaps

To sum up, the inter-stage gaps should be kept at minimal length in order to incur the lowest
penalty in perturbation growth rate. If other factors impose an extension of these gaps and design
changes are required to mitigate the loss in dynamic stability (change of blade profile, etc.),

modifications should be applied to the first and last blade-rows of the compressor.

2.6 Concluding Remarks on the Application of the DEB concept

The key conceptual issues and design implications that must be carried forward to the

exploration of new stability metrics can be briefly summarised as follows:
o DEB provides an assessment of compressor stability that coincides with that obtained

from the modal analysis of the flow perturbations. Both approaches have been shown to

predict the onset of instability identically. Under incompressible flow assumptions, the
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additional fluid kinetic energy due to the perturbation velocities in the entire compressor
grows when it is in the unstable regime and decays when the compressor is in a stable
condition.

The perturbation velocity and pressure fields are found by resolving the modeshape of
the stability-critical mode. At present, the mode with the smallest decay rate can only be
found, in a computationally efficient manner, for mass flows close to the point of
instability (]| o] < 0.15). New metrics for compressor stability and dynamic robustness
should rely on this information, if they are to be applied in a feasible design process.

The additional motivation for the use of DEB is the fact that disturbance-energy is
conserved in any duct that does not contain blade-rows. A control volume analysis can
be used to reveal the DE power of each individual rotor and stator, indicating the region
of the compressor that most contributes to the overall system dynamic instability.

The sensitivity analyses performed by Blanvillain [1] to determine the impact of inter-
and intra-stage gap dimensions on the dynamics have been carried out from DEB
considerations. For a repeating-stage compressor, it has been confirmed that extending
the gaps between rotors and stators belonging to the same stage leads to increased
dynamic stability, whereas the opposite is true if the gaps separating different stages are
elongated. An increase in intra-stage gaps is seen to reduce the DE powers of all blade-
rows uniformly, whereas the reduction in dynamic stability experienced with longer

inter-stage gaps can be attributed to an increase in DE power of the edge blade-rows.
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Chapter 3

Stability Metrics Definition and a New

Framework for Their Implementation

3.1 Motivation for a Unified Set of Dynamic Stability Metrics

A straightforward way to visualise the meaning of dynamic stability is to relate the temporal
behaviour of the perturbation waves to the shape of the non-dimensional compressor characteristic.

In simple terms, the growth rate of the critical eigenvalue is proportional to the slope of the pressure-

rise characteristic. As a matter of fact, in the Moore-Greitzer formulation, o o« 0¥ TS / o0¢.

By virtue of this concept, it is clear that compressors with more curved characteristics will exhibit
very different flow ranges between the surge point, which is known to be roughly around the peak of
the characteristic (exactly on the extremum, for the Moore-Greitzer case), and an operating point with

a given level of dynamic stability.

A

5

Shallow Compressor
e Neutral stability

O Operating points

(——)o with the same slope

Ay Steep Compressor

A¢,

¢

Figure 3-1 Relation between characteristic curvature, dynamic stability, stable flow range and surge margin
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Based on the above comparison, one can comment on the validity of the Surge Margin (SM),
which has slightly different definitions in the industry and NASA standards. The latter additionally

accounts for the flow range between the operating point and surge along a given speed line.

P Rsurge =B Ropemting| P Roperating s Meorr surge

SMind = PR SMNASA =1- PR = (3.1)
surge |ni1corr surge Meorr operating

PR Surge line Upper transients

T S /_) envelope
i - Running line

472 Lower transients

PRsurge envelope
PRopernrl'ng

Ty

_ g mcorr -
My = const AP."Z

Figure 3-2 Definition of surge margin

In any case, Figure 3.1 compares two compressors with characteristics of different curvature. The
operating points for both have the same dynamic stability. However, their surge margin, in either the
industry or NASA definition, is nowhere near the same: that of the steep compressor is much smaller,
although dynamically, the growth rate of the perturbations is the same as in the operating point for
the shallower compressor.

Specifying a stall margin limits the pressure ratio to a fraction of its maximum value at that
particular corrected mass flow. This ensures that the static stability requirement is always met (see
2.2), but one cannot ascertain whether operation at a given stall margin has the same dynamic
meaning at different speeds. Furthermore, the operating point deviates from the steady-state running
line as the machine undergoes accel/decel cycles. Common practice accommodates this by certain
permissible reductions in stall margin for the transient envelope, as shown in Figure 3-2, so that a
minimum safety threshold is never surpassed. However, there is no direct physical way to relate a
change in stall margin to a meaningful quantity that depicts the true dynamic state of the system,
such as DEB or g, the growth rate of the least stable eigenvalue.

Performance-wise, it is clear that one would want to operate as close to the maximum pressure-
rise as possible, if there was no penalty in dynamic stability. In that sense, the steeper compressor
would be desirable. However, because of its higher curvature, one is faced with a smaller dynamic

robustness to changes in the operating point: for the same flow variation, the change in slope is much
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larger than in the compressor with a shallow characteristic, and correspondingly, the rate at which
disturbances grow in time varies more sharply in the compressor with a steep characteristic.

In a practical design framework, it would be desirable to possess a relation between the stable
flow range for a given dynamic stability level and the sensitivity of the dynamics at neutral stability,
measured for instance by means of the DEB, which is essentially an equivalent measurement of the

curvature of the characteristic.

With this in mind, and given the lack of coherence of the current stability metrics paradigm — the

stall margin - the main objectives of this chapter are to:

1. Explore the relationship between some common, non-dimensional curvature of the
performance characteristic and the stable flow range to a certain level of dynamic stability.
2. Identify an unambiguous, non-machine specific metric that provides a measure of
absolute dynamic stability. This will be tackled by relating the dynamic compressor model
formulation to a forced oscillatory system and the concept of dynamic response at
resonance, much in the way that vibration problems are handled in structural mechanics.

3. Find a second metric to assess the robustness of the machine, in terms of dynamic
stability, to changes in mass flow at the design operating conditions.

4. Suggest a physical interpretation of these metrics and safety margins for each of them.

5. Derive a set of simple relationships to assess the compliance of a given compressor with

the dynamic stability and robustness requirements formulated using the new metrics.
These must enable straightforward conversion between dynamic compressor model results
in the neighbourhood of neutral stability and the relevant stability and robustness metrics
at the operating mass flow, thus minimising the use of computational resources.

6. Devise a framework that is useful to the designer in order to understand these metrics

in terms of conventional concepts.

3.2 Prediction of the Stable flow range to Stall from the Evolution of
System Dynamics

3.2.1 Physical Basis for a Unique Function to Predict the Stable flow range
As set out by the comparative reasoning above, the stable flow range to a certain level is to be
compared with an equivalent curvature of the performance characteristics for a range of compressors,

with a view of unveiling a common relation between the two that is fulfilled by all machines. The

sensitivity of the dynamics has been shown to be an analogue to such curvature.
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The asymptotic nature of this unique relation can be deduced a priori from simple arguments.
Compressors with a high rate of change of 0, i.e. large characteristic curvature, are expected to have a
smaller stable flow range. In the limiting cases, if one wanted to design a compressor with an infinite
Ag, the growth rate of the perturbations 0, and the slope do/d¢should be zero. Conversely, a

compressor with zero stable flow range should have a ¢=history that changed infinitely fast with flow

coefficient. Thus, these two limits must hold

tim 2% = lim K, = o lim 9% = lim K, = (3.2)
Ap—0 a¢ Ap—0

At this point, one has to decide the ¢-level with respect to which the stable flow range is

calculated. A value of 0= -0.5 will be used for the relation presented here. The physical significance
of the eigenvalue growth rate is discussed in section 3.3, where an analogy between the eigenvalue
locus in terms of 0'and @and the amplification of disturbances if formulated. In an industrial set-up,

the function should be derived for a range of ¢-levels, which would then be available in the design

process.

3.2.2 Development of the Equivalent Curvature Relation

To validate the above hypothesis, a battery of tests on compressors with systematic configuration
changes is performed, as laid out in Table 3-1. For each of them, the C-sensitivity at neutral stability

and the stable flow range to 0'= -0.5 are calculated, following the steps detailed in this section.

Study Stages Neor Mrelative,r1 Gap size Blade-Row Loss bucket

[%N corr.des] [% Rmean] Inertias Tbaseline=standard comp]

(a) 1 35% 0.230 1% 1x Baseline  1x,...,6x Baseline
(b) 1 35% 0.230 1% 2x Baseline 1x Baseline

(c) 1 35% 0.230 1% 1x Baseline  2x Rotor 1 losses
(d) 2 35% 0.230 1% ... 50% 1x Baseline 1x Baseline
(e} 1 35-100% 0.230 - ... - 0.860 1% 1x Baseline 1x Baseline
) 2 35-100% 0.276 - ... -0.822 1% 1x Baseline 1x Baseline
(g 3 20 -100% 0.171~...-0.858 1% 1x Baseline 1x Baseline
(h) 5 11 -100% 0.114-...-0.984 1% 1x Baseline 1x Baseline

Table 3-1 Compressors studied towards identification of the Equivalent Curvature relation

First of all, the performance characteristic at constant speed is calculated with the mean line

model. With this, one can guess the approximate position of the neutral stability mass flow: in the
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Moore-Greitzer scheme, it is located at the peak of the ¥7s vs ¢@ characteristic, whereas it can be
slightly to the left of the peak when all the extra modelling additions are made (non-zero inter-blade-

row gaps and unsteady loss effects). One can safely start some distance to the left of this peak, finding

that the system is just unstable, i.e. 0'is small and positive. Then, the mass flow can be increased

along the characteristic until the ¢limit is reached.

The disturbance-energy balance in the system is zero at the point of neutral stability, becoming
more negative as the compressor works at more stable conditions. While one could be tempied to
calculate the slope of the DEB vs ¢ curve, both of these quantities are machine-specific. The
disturbance-energy in the system depends on both the aerodynamic conditions and the size of the
compressor. The flow rate at which the compressor stalls varies with engine size, profile
characteristics, etc.

To avoid these issues and to bring all compressors to a common non-dimensional space, where
the sensitivity of their dynamics can be compared, the DEB history must be non-dimensionalised on
both axes. The flow coefficient is normalised by its value at neutral stability. DEB is zero at that

condition so, instead, one can choose as a normalisation quantity the DEB level when the eigenvalue

growth rate is at its specified limit. The normalised quantities are denoted as DEB and 4 .

Finally, an analytic curve is fitted to the non-dimensional DEB evolution and its slope at unity
aDEB/ og vs = KO, evaluated. Because the stable flow range A¢ arises from straightforward

examination of the performance characteristic, the coordinates of the particular compressor on the

Equivalent Curvature domain are thus established.

In parallel, the same procedure can be followed with the variation of the critical perturbation

growth rate along the characteristic. In this case, only the stable flow range needs to be non-

dimensionalised, and the sensitivity 80‘/8(‘5 ns constitutes the c"based measure for equivalent

- characteristic curvature at neutral stability, K, s .

Derivation of the Equivalent Curvature Power Law Relation

This analysis is carried out for all the compressors in Table 3-1. The general character of this
relation is most striking when one examines the resultant distribution of datapoints in logarithmic

space, all the incompressible points forming a distinct linear function, as shown in Figure 3-3.
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Figure 3-3 Logarithmic Equivalent Curvature relation for o= -0.5 using o as stability metric

The error appears to be directly related to the degree of compressibility, which is logical since the
range is measured from a characteristic produced from a compressible mean line model, whereas the

dynamics are solved from a purely incompressible formulation. The RMS errors for the different

Mach number ranges are broken down as follows:

Compressibility  Logarithmic slope RMS error

0<Mrer1<0.3 0.088
0.3 < Mretr1 < 0.5 0.110
0.5 <« Myerr1 < 0.75 0.221
0.75 < Mrerr1 <1 0.517

Table 3-2 Mach number dependency of Equivalent Curvature logarithmic errors

The final tool that should be provided to a designer is an analytical expression for the Equivalent
Curvature function, which is the solid line in Figure 3-4, in natural scales. It is noticed, once again,
that all the cases running well into the incompressible flow regime, regardless of the other variations

summarised in Table 3-1, are constrained to a very narrow band, asymptoting towards both axes, as

defined by the limits set forth in Equation 3.2.
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Figure 3-4 Equivalent Curvature relation for o= -0.5 using 0 as stability metric (dotted lines show the equivalent
curvature path of different compressors as they are throttled up their running line)

The analytical function for the Equivalent Curvature relation can be derived from the above
correlations by assuming the following functional behaviour, and discarding all points above the
compressibility threshold of Mre>0.30,

k,

K,=- (3.3)
e A¢K2

Defining a pair of new variables f=-K,, 8§ =A¢ and taking their logarithms, the above
expression is reduced to the linear dependency corresponding to the incompressible curve-fit shown
in Figure 3-3, from which the value of the constants can be extracted.

In(8) =1In(k, )-k, In(6) (3.4)

For the 0= -0.5 case, the Equivalent Curvature relation is

0.07
Ke = _—A¢_]'35-?% (35)

By repeating the entire analysis for the desired values of dlimit one can generate a succession of
hyperbolae which, when linked together, form the Equivalent Curvature Surface. In an industrial

design architecture, this data set would be available and a particular ¢=slice of it would be applied to
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each candidate compressor, depending on the required dynamic stability margin and the dynamic

characteristics of the machine, in particular the rotation rate of its critical disturbances.
3.2.3 Physical Interpretation of Equivalent Curvature K.

The rate at which the disturbance-energy approaches the zero-stability point when mass flow is
reduced is the crucial equivalent curvature that relates to the machine stable flow range. However, by
making DEB non-dimensional, one does away with the integral nature of this metric. In other words,
the non-dimensional DEB does not relate to the absolute magnitude of the perturbations in the
system any more. Instead, it represents an independent measure of overall dynamic stability, an
analogue to the disturbance growth rate characterised by o

We recall that, in the Moore-Greitzer model, the eigenvalue growth rate depends on the slope of

the total-to-static pressure rise characteristic, ie. o< B‘I‘TS /B¢. Therefore, the rate of change of

growth rate with flow 00/d¢ is truly a measure of 2%9TS / d¢? , the curvature of the characteristic.

To first order, we would expect the dynamic sensitivity to have a hyperbolic behaviour, of the form

_az - const.
0§  Ap?

(3.6)

The exponent of the power law has been found to be 1.25, which is of the same order and

reasonable, taking into account that the dynamic compressor model is a more evolved

characterisation of the compression system dynamics. By this argument, since DEB= (o), it

follows that a similar link between DEB and A¢ must exist, because the stable flow range is also a
description of the curvature of the non-dimensional performance characteristic. One cannot expect
the mapping to be exact for all compressors, because of the additional variables that affect the
evolution of the perturbation flow field, such as gap length or unsteady loss-lags, and overall size.
Divergences due to the latter are obliterated through the non-dimensionalisation of DEB, whereas

the other variations are responsible for the 8% scatter of the points in the Equivalent Curvature

relation.

3.24 Generation of an alternative Equivalent Curvature Relation from
Disturbance-Energy Information Only

Because of the equivalence between cand DEB, it is possible to reach a similar set of Equivalent

Curvature relations through examination of the DEB sensitivity with flow rate at neutral stability. If
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we concern ourselves with the relation between BDEB/ BEINS ,ie. KPFP ~s - and A¢, a hyperbola of the

same topology is uncovered, as seen in Figure 3-5.

Given that obtaining the DEB requires the additional control volume analysis, it is not advisable
to use this quantity for the calculation of the Equivalent Curvature Surface. This emphasises the point
that, when the overall system stability is to be assessed, the growth rate ¢ is a much more efficient
metric. DEB should be used in a component-by-component fashion, when the relative contributions
of each blade-row to the whole stability balance need to be determined.

This argument is only valid when the dynamics are governed mainly by one lightly damped
mode, all others being negligible. In systems with multiple critical modes of similar growth rate, or
acoustic modes in the case of compressible conditions, then the only way to obtain an equivalent

curvature is to represent the system dynamics through a single number by the use of DEB.
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Figure 3-5 Equivalent Curvature relation for Oumu = -0.5 generated from DEB information
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3.25 Parametric Deviations from the Equivalent Curvature Relation

This subsection points out the effects of the individual design changes — loss buckets, gap size
and compressibility — on the accuracy of the Equivalent Curvature relation. The insights gained from
these parametric studies are essential to decide which points should be used to find the coefficients of

the power law.

3.2.5.1 Loss Bucket Effects

A preliminary study that enables a wide spread in terms of range, whilst maintaining the
required low compressibility, is the progressive modification of the loss curves for all the profiles in
the compressor; the curvature of the characteristics is modified directly, without affecting the
operating speed. Starting from the baseline 1-stage standard compressor at 35% corrected speed, the
loss levels in the bucket are multiplied by integer factors, as detailed in Table 3-1, Study (a). As a
consequence, the peak performance decays accordingly and the characteristics become steeper, as
demonstrated in Figure 3-6. The non-dimensional DEB histories also change more steeply as the
losses are increased. All these compressors fall almost exactly on the Equivalent Curvature relation
(see Figure 3-7), with an average RMS error of 7.24%. Repeating this for multi-stage configurations of

different geometry returns errors within the incompressible bound shown in Table 3-2.
This implies that the generation of the rest of curves for different 0 limits can be sped up by

taking low-speed compressors and changing their loss characteristics to cover the flow-range domain.
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Figure 3-6 Nondimensional performance characteristics and DEB history for the 1-stage standard compressor

with 1% inter-blade-row gaps, at 35% corrected speed and with increasingly narrow loss buckets
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Figure 3-7 Position of compressors from the loss-factor parametric study on the Equivalent Curvature relation

3252  Compressibility effects

As one examines progressively higher mass flows along a constant-o running line, the
characteristics become steeper and so do the dynamic histories, as seen in Figure 3-9 for the 1-stage
standard compressor. A detailed view of the running line path on the Equivalent Curvature plot is
provided in Figure 3-8 for the 1-, 2-, 3- and 5-stage cases.

The performance characteristic becomes much narrower as the engine is throttled up, and
therefore the stable flow range as measured from the compressible characteristics is smaller than
what would be found through an incompressible flow analysis. Therefore, one would expect the
analysis to under-predict the range for a given DEB-slope.

The opposite is true, in fact, and all the compressor running-lines portray the same type of
departure from the power law at high speeds, over-predicting the DEB-slope at neutral stability. To
explain this, one must recall that compressible effects are not captured by the dynamic compressor
model, except for the Mach number dependency of the loss buckets.

At high speeds, in fact, it is possible that an acoustic-like compressible system mode becomes
critical to dynamic stability. It is unclear whether a fully compressible dynamic compressor model, in
which the DEB related to the acoustic modes should be derived, may offset this over-prediction in

range.

In conclusion, one is forced to stay within the prescribed speed range in order to use the

Equivalent Curvature relation with confidence.
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Figure 3-9 Nondimensional characteristics and DEB history for 1-stage standard
compressor with 1% inter-blade-row gap at different rotational speeds

32,53  Gap Length and Blade-Geometry Effects

The dynamic variation induced by increasing inter-blade-row gap dimensions does not affect the

validity of the Ke relation, to first order. Figure 3-8 shows the trace on the Equivalent Curvature map
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of the 1-stage standard compressor with increasing gap size. The position of the compressor on the Ke
map is found to be fairly constant for reasonable gap lengths of up to 15% of the mean radius for any
incompressible machine, as depicted by the error curve on Figure 3-10. In other words, the
incompressible error of the compressor at zero gap length is maintained up to a certain size. Beyond
this, the error changes rapidly as the blade-row spacing becomes larger. In the case presented below,
this means that the error actually becomes zero at a gap length of about 40%, but it increases
markedly after that. In summary, reasonable gap lengths of under 15% contain the compressor within

the incompressible error bounds.

Range prediction error

0 10 20 30 40 50 60
Interbladerow Gap Length [% Rmean]

Figure 3-10 Range prediction error for the 1-stage standard compressor with varying inter-blade-row gap

It should finally be said that isolated changes to individual rows, such as variations in the blade
dimensions or localised degradations of the loss buckets (see Table 3-1 (b) & (c)) do not produce
significantly larger errors in range prediction, as both features are well captured by the dynamic

compressor model. The locations of these two analyses are pointed out in the curve on Figure 3-5.

3.3 How much ois enough dynamic stability?
3.3.1 The Q-Factor Analogy for the Amplification of Disturbances

After successfully developing a common pointer between the compression system dynamics and
the stable flow range to a given degree of dynamic stability, the obvious issue that arises is the
meaning of any particular value of O This is the question tackled in this section. It is easier to
understand the reasonable dynamic safety margin that a compressor should comply with, if the
information from the usual eigenvalue maps, i.e. ¢ and @, is translated into a relevant quantity
related to the amplification of perturbations under aerodynamic forcing. The quantity used to that
end is the so-called Q-factor, which denotes the ratio of resonant to static disturbance amplitude.

First of all, an analogy between the compressor dynamics and a damped oscillator must be
formulated. The standard solution for a single-degree-of-freedom motion of an unforced, damped

harmonic system is found to be
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where 6=c/2m is the damping constant and is related to the commonly used damping ratio by

3.7)

& =48/w, . The damped frequency of the motionis @, = anz -8 = w"Jl—fz .

On the other hand, the general solution for the behaviour of velocity and pressure perturbations in

the compressor flow field is of the form

Spit) o< el7-ioX (3.8)

Here, the frequency o is the rotation rate of the perturbations, and must not be confused with the
natural or damped frequency of the system. As a matter of fact, the purpose of this analogy is
establishing a relationship between the natural frequency and damping, and the growth/rotation

rates obtained through the dynamic compressor model. The equivalence is
o=-0 (3.9
w=y02-8 o o,=Jo’+d’ (3.10)
é o
e —— (3.11)
D, 4 o’ +0?

One can now turn the attention to an oscillatory system under sinusoidal forcing of frequency @)
the rotational frequency of the disturbance waves. Using the relations above, the ratio of forced to
static amplitude can be shown to be a function of the damping and the frequency ratios (r = &¥ah),
which can be substituted by expressions involving the perturbations’ growth and rotation rates.

% _ 1 1+(g,)

= (3.12)

Roaic] Ji—r2F +2zrp Vi) +alo,f

The dependency is solely on the ratio 0/@, i.e. this analogy suggests that the amplification factor

is constant along any ray going through the origin of the complex eigenvalue plane.
Both the amplitude of the resonant motion and the frequency at which it happens depend on the
forcing and the natural frequency, as well as the damping. Differentiation of (3.12) enables one to find

the resonant frequency

., =41-282 (3.13)

Or, in dimensional form

0, =0, -28* =Y -o* (3.14)
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It is clear that amplification of the static displacement can only occur when the damping is below

a certain critical level. For the root in (3.13) to exist, then

:=:(%)=—\/1i+‘7_§;75 % = (o)< (.15

The resonant amplification can be arrived at by substitution of (3.13) in (3.12). This is the Q-factor

1 )
Q_T_.)z 77 +—-2— (3.16)

Therefore, if we permit a maximum amplification Q, the location of the limit stability point in the

complex plane in terms of the ¢~to- @ratio can be determined from

ﬂi/_m)t(%w)<Q = (@F-20)+1<0 = S =Q-VQ* -1 617

The regions of the complex plane where the allowed Q-factor will not be exceeded have been
successfully established. If no resonant amplification is allowed to exist (Q=1), then the growth rate of
the critical eigenvalue must be the same as its rotation rate (and of course, of opposite sign), which for
typical machines lies in the range of 30% to 80% of the rotor frequency. In a one-stage configuration,
for instance, the Moore-Greitzer solution is known to have a rotation rate of roughly @~ 0.5, so for

such compressor, a growth rate of &'~ -0.5 would guarantee that the perturbations do not exceed their

static values. On such grounds, this value was chosen as a ¢'limit for the derivation of the Equivalent

Curvature relation in the previous section.

Alternatively, one could deem acceptable an amplification of the disturbances of, say, 10% over
their static levels. In that case, the required -@ratio is smaller, so the required growth rate for the

least stable eigenvalue to satisfy the dynamic stability requirement is also lower, as long as @remains
constant.

While the concept of Q-factor is easily visualised in structural mechanics, experimental and/or
computational work should be aimed at determining plausible values of Q that can be expected from
the flow perturbations in an axial compressor. This lies beyond the scope of this work, which is aimed
at the conception of the design philosophy. For all subsequent illustrative purposes, disturbances will
only be allowed to grow an additional 10% from their steady values, i.e. a dynamic instability margin

of Q = 1.1 will be prescribed in all designs.

The analogy between Q and the system dynamics is illustrated in the following figure, which

shows the feasible regions where the critical eigenvalue must lie to satisfy various allowable Q-levels.
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Figure 3-11 Stability margin rule relating the maximum allowable Q-factor to its
cotresponding 6/ @contour on the complex eigenvalue map

3.3.2 Practical Application of the Analogy
In a practical design framework, it would be desirable to deal with the growth rate of the critical
eigenvalue instead of the Q-factor. As the amplification depends both on ¢ and @ one should in

principle track the relevant pole over the range of operating points as the mass flow is changed, if no

further simplification is made.
However, the rotation rate @ of the perturbations could be assumed constant, at least for the
initial phases of the design. If that approximation were reasonable, the direct examination of the root
locus around neutral stability could be used to extrapolate to the negative plane and determine the

necessary growth rate to fulfil the Q-factor requirement.
The Moore-Greitzer solution [10] predicts a constant rotation rate, depending on the harmonic

under study and the relative inertias of the various blade passage flows. This is found through
(3.18)

@, =
pt=

=

Nstages Co:
where: = R"z is the inertia parameter of the rotor
i1 Rp;cos” 7p;
Ceo;
54 is that of both rotors and stators.

Nstages CR ;
2
Rg;cos” ¥,

/[ =
is1 Rpg; cos’ Yri
Indeed, when the Moore-Greitzer configuration is examined the eigenvalues migrate towards

and

neutral stability at constant rotation rate. However, even when the blade-rows are separated from
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each other or unsteady losses are incorporated, one finds that this is also a very good approximation

for most realistic compressors, i.e. without excessively narrow loss buckets or large inter-blade-row

spacings.

This is shown in the parametric study summarised in Figure 3-12, where the first harmonic,

critical eigenvalue is tracked for various compressor configurations:

1.

The first plot shows the variation in rotation rates due to progressively narrower loss
buckets. Each new bucket is generated by multiplying the baseline loss levels by an integer
factor (the actual characteristics for each compressor can be found in Figure 3-6). All these
cases lie on a fairly constrained, flat region except for the 5x and 6x cases. It is unlikely that
the loss levels of an existing blade design would be changed by more than a few percents, in
an optimisation process.

The inter-blade-row spacing is found to have a greater impact on the rotation rate, which
increases drastically as the gap is lengthened beyond small fractions of the mean radius.
However, these differences take place below 0 = -0.5, where the growth rates are very low
and the compressor is operating far away from stability and its peak aerodynamic
performance. This trend is observed for compressors of any number of stages. Therefore, one
can conclude that in the region of interest of an optimisation process (| 0| < 0.5) the rotation
rate also remains essentially flat.

The third study (Figure 3-12 [c]) shows the variation in eigenvalue motion for different speed
lines. All the stability histories except the two most compressible cases are superimposed on
the same, constant rotation path. This is logical, since in the incompressible regime the
performance at the different speeds essentially collapses on a single non-dimensional
characteristic, which has one set of dynamic attributes. The two distinct speeds are
immediately before and after a relative blade Mach number of unity (0.96 and 1.03), a regime
in which the dynamic compressor model hereby presented cannot capture the acoustic
effects, despite the fact that the loss model can account for some compressibility changes.
Finally, the effect of blade sizing is explored by doubling the chords of both rotor and stator
in the 1-stage standard compressor. Because the first harmonic is being considered and f<<1

due to the small dimensions of the blades (10% Rmean), one would expect the rotation rate to
be roughly proportional to the sum of the rotor inertia parameters, i.e. @« A. This is indeed
the case, as the mean rotation rate increases by approximately 80% when the blade chords are
doubled. In both configurations, @ registers variations of under 10% for both blade
dimensions. As one moves to multi-stage configurations, the sensitivity to the blade-row

inertias becomes less acute.
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Figure 3-12 Rotation rate sensitivity studies

In summary, the Q-factor analogy can be used together with the assumption that the rotation rate
varies negligibly, as long as one starts from a known configuration with reasonable loss levels and
wishes to examine variations of the design within the incompressible speed range (Mrei < 0.3), while
allowing for moderate changes in gap elongations and blade profile. To first order, the required
growth rate of the least stable eigenvalue at the desired operating point must be of around the same

magnitude as its rotation rate.

3.4 Robustness of Dynamic Stability to Flow Changes

The dynamic instability margin and stable flow range metrics, derived so far, would be sufficient
to evaluate the compliance of candidate compressors with the dynamic stability requirements if it
were possible to always sustain operation along the running line. The issue of robustness arises when
excursions away from steady-state, typical of accel/decel operations, are taken into account.

The objective is to quantify the sensitivity of the perturbations with changes in flow along a given
speed line. Geometrically, this is related to the curvature of the performance characteristic at the
operating point.

The magnitude of interest is the percentage increase in quality factor Q due to a percentage

decrease in mass flow from the design operating point, i.e. dQ/0¢ . From the definition of resonant

amplification (3.16), this can be expressed as
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op.point

If one chooses to operate at Q = 1 (no resonance), where the magnitude of the growth rate is
equal to the rotational frequency, the sensitivity becomes zero. This is consistent, since from that
point onwards, there is no disturbance amplification.

Similarly, as the operating point moves towards the zero-damping axis, the rate of change of
amplification becomes higher, eventually becoming infinite as o/@ goes to zero.

In the low-amplification region where one is likely to operate ((Q ~1.1), it can be easily shown that
the sensitivity is of order O(101). Both the flow coefficient ¢ and the rotation rate @ are of order O(10-1).
The slope of the ray where the eigenvalue lies is close to unity, but also of order O(101), which makes
the term in brackets of order O(1). The sensitivity of the critical eigenvalue growth rate has been
conveniently nondimensionalised to be of order O(1). Depending on the location of the stall point and

the value of the rotation rate, the amplification sensitivity dQ/d¢ can take a range of values between
O(101) and O(102).

A reasonable robustness criterion would be a limit of 9Q/ 8¢|0p <10. This implies that for a

.point

1% change in mass flow, the disturbances are only amplified a further 10% from their static level.

It has been shown that the disturbance rotation rate can be taken to be invariant along a speed
line. The required growth rate o'to ensure sufficient dynamic stability can be worked out using the Q-
factor analogy. With these two quantities being fixed, and noticing that, in the resonant region
(| /@] < 1), the term in brackets is always positive, the robustness in amplification is governed by
the sensitivity of the critical eigenvalue growth rate with flow changes. This ties in precisely with the

geometric point made above: the robustness of dynamic stability to flow changes is largely determined by

the equivalent curvature K,” = 80'/ 3¢ of the performance characteristic at the operating point.
Computation of the Equivalent Curvature at the Operating Point

The sensitivity of at the design operating point must be calculated, but as with the analysis of
overall safety, it would not be desirable to resolve the dynamic history around the design point,
because of the increased calculation cost.

We can assume that, to first order, the o-sensitivity or equivalent curvature can be found through

the following Taylor series expansion
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In order to verify this hypothesis, the relation between the ¢Fsensitivity at the operating point
with respect to its curvature and sensitivity at neutral stability can be analysed for the series of
compressors used to derive the Equivalent Curvature relation. Various surfaces can then be fitted

through the dataset to determine the most accurate analytical representation of this sensitivity

relation.
Starting off by no a-priori assumptions on the form of this 3D relationship, the objective is to link

the Equivalent Curvature at the operating point to the shape of the characteristic at neutral stability
JoK?
cop = f[Kf NSI = (3.21)
o9 |ys
In an optimisation process, the required curvature sensitivity can be used as a parameter, and it

might be desirable to compare the values of the required and actual equivalent curvature sensitivity.

In that case, the useful relationship is actually

dK? - o
Té{ws =g( eNS’Ke OP) (3.22)

The analytic curves fitted to the ovs @ lines in order to produce the flow-range relations, can be

used again to calculate the curvature of oat surge and its slope at design point. Visualisation of those
same compressors on this 3-dimensional space shows that, as expected from the simple expansion

above, they lie in a confined planar region of space, through which a surface can be made to pass.

This surface must have a monotonic growth in both directions. For a fixed curvature K ,, at the
operating point, an increase in the curvature K, at neutral stability must result in a smaller
sensitivity 9K_ / 08 s Similarly, for a constant curvature K7, at stall, a larger sensitivity
oK? / 0 ,; must exist as the design point curvature K7, increases. In summary,

3loK? /63
ANK°

€ NS
Kfop

< 0 VK, K,,) (3.23)

oK? /03
AK®

e OP

< 0 V(K?\s,KSop) (3.24)

Kong
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An analytical formulation of this surface can be made by the least-squares technique outlined in
Appendix C for the loss model. Variations of the following second order surface of symmetric

curvature are explored to this end, with terms up to ks, ks, kq and ks, respectively.

2 2 2
a%:ku wk2% 4580 +k384‘f< ai‘ +k{a—q +k{a—‘f} (3.25)
a¢ a¢ NS a¢ oP a¢ NS a OP a¢ NS a¢ oP

The surface should pass through the origin, as an idle compressor with a flat DEB history at surge
and no C-curvature cannot have any sensitivity to flow changes — the engine would not be running.
Thus, the independent term can be ruled out (k, = 0).

The quadratic terms in the interpolated surface are bound to violate the limits set forth in (3.23)
and (3.24), as can be seen in Figure 3-14. As said before, this ¢-Sensitivity Surface should have an
almost planar character.

The RMS errors in curvature for the different polynomials, grouped into compressibility ranges,
are summarised in Figure 3-14. As with the flow-range relation, only the compressors running below

the 0.30 relative Mach number threshold are used to generate the analytical relation.
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Figure 3-13 Average curvature error with different degrees of compressibility for Gop = -0.3

The resulting error clearly increases with compressibility, as found with the flow-range curves.
The sharpest improvement in accuracy is registered with the addition of the cross-term over the basic
linear plane. While the error can be decreased further at the data-points region with the quadratic
terms, the function ceases to be physical, as it is not monotonic in both directions any more.

Just like any particular Equivalent Curvature relation is only valid for a certain &-limit, the same is
true for these surfaces. A four-dimensional hypersurface can thus be generated, from which only a

particular c=slice is used to assess any given compressor.
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Figure 3-14 Polynomial interpolation surfaces with 3 (a), 4 (b), 5 () and 6 (d) terms

The main outcome of this analysis, however, is the realisation that, even though the addition of

the first crossed term over the simple planar surface does yield smaller errors at the data points, the

use of a linear Taylor expansion to determine the Equivalent Operating Curvature Keop is a good,

simple approximation to the equivalent curvature variation along the characteristic.

3.5 Summary

Based on the lack of physical relevance of the currently established design practice, a set of
metrics related to dynamic stability and robustness has been defined:
o  The dynamic instability margin is understood by analogy with the concept of disturbance
amplifications at resonance, Q, which is related to both and @. The growth rate of the
perturbations does not define a degree of stability per se, but in conjunction with the

rotating frequency of the perturbations. A dynamic instability margin of Q <1.1 will be

used in subsequent designs, meaning that perturbations are only allowed to grow a

further 10% from their static values.
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The robustness of dynamic stability to flow changes at any operating point can be assessed
through the concept of amplification sensitivity, 0Q/d¢ . This quantity determines the
increase in amplification factor due to a decrease in mass flow. A plausible dynamic
robustness margin of 9Q/dp <10 will be taken from here onwards. This robustness
metric is mostly dominated by the equivalent curvature of the characteristic at the

operating point, Ke,op.

For a computationally efficient evaluation of these criteria, two standard relations have been

uncovered, from physical arguments and examination of the dynamic history of an extensive array of

machines.

o

The Equivalent Curvature Relation provides an expedient way to calculate the stable flow
range between the surge point and a particular level of dynamic stability, based on the
equivalent curvature of the performance characteristic at neutral stability, given by
either K¢’ (from eigenvalue information) or K¢PEB (from DEB analysis). The disturbance-
energy concept is shown to be too expensive to ascertain the overall dynamic state of a
compressor, which is just as well predicted by the eigenvalue alone (if, as in all the
illustrative examples hereby presented, the dynamics are truly governed by one stability-
critical mode, all others being highly damped). However, DEB is the only metric to
provide a discrete measure of stability contributions for different blade-rows. This will
be exploited in the design process described in Chapter 4.

The Equivalent Curvature at the operating point is essential for the evaluation of the

dynamic stability robustness at design. It can be determined through a quasi-planar
surface, which relates the K7, and 0K/ / 04 to the equivalent curvature at any given
dynamic stability level, K7 ,,. However, a linear Taylor expansion around the peak of

the characteristic is a much more straightforward method to calculate this curvature,

with an error of only 12.5%.

As they stand, both relations are only valid, to reasonable accuracy, for low speed machines

(Mret <0.3), because of the incompressible character of the dynamic compressor model and its inability

to foresee the potentially critical acoustic-like modes in the compression system.
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Chapter 4
Integrated Design Process for Stability

41 Introduction

4.1.1 The Need for an Integrated Design Methodology

The current industrial practice in axial compressor design tends to disregard stability as a prime
design variable. In the initial phases of the design process, current frameworks are clearly more
geared towards performance, efficiency, cost and operational issues than stability. It is true that, in
most design groups with vast experience in the field, some known trade-offs between aerodynamic
performance and stall margin are taken into account during the conception of a new compressor. By
and large, however, the stability of the machine is something that is taken care of a posteriori, and only
through the use of the stall margin, which has been arguably shown to have important deficiencies,
apart from being a performance-limiting constraint that ensures static stability on a steady-state basis.

With the more detailed knowledge of dynamic compressor behaviour acquired so far, the
development of systematic dynamic stability and robustness metrics, and expedient relations to
assess them, the creation of a practical design architecture that accounts for dynamic stability,
together with all the traditional aerodynamic requirements, is finally a feasible endeavour.

This Chapter deals with the conception of such methodology, the development of a unified
framework for the understanding of the key features governing the compression system dynamics

and the practical application of all these ideas to a real design exercise.

412 A Unified Framework for Compressor Dynamics

It is useful, before the mechanics of the design process are discussed, to step back and re-

formulate the principal ideas developed in Chapter 3. In summary, it is hypothesised that, given the
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pre-stall dynamics of any particular compressor are linked to the slope of its performance
characteristic, the curvature of such characteristic must determine the stable flow range to a certain
degree of dynamic stability. A pre-stall dynamics-based measure of a common, equivalent curvature
is calculated from both the standard eigenvalue results and the DEB analysis. Indeed, a simple

relation is found that closely determines the stable flow range to a particular Q-factor level (and hence

Olimit) from knowledge of this equivalent curvature, as long as the operating condition is within the

incompressible bounds established by the dynamic compressor model’s limitations.
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Figure 4-1 Logical path to the Equivalent Curvature relation
Expanding for various Q-levels, one can synthesise all the information that is physically relevant
to the designer in a single plot, shown below, which is powerful in its simplicity; it is a conceptual

summary of the relation between:
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Figure 42 Unified Equivalent Curvature Relation for various dynamic stability levels
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As said before, the non-dimensional dynamic history with flow changes is a measure of the
Equivalent Curvature Ke of the compressor characteristic. In fact, given that the curvature is
extrapolated linearly from neutral stability to the desired operating point, Kens is also a measure of
Ke,0p, which is basically the robustness of the compressor dynamic stability to flow changes.

In parallel, the significance of a particular growth rate for the critical eigenvalue was elucidated
through the Q-factor analogy. For any family of compressors, with a similar disturbance rotation rate
@, operating at different -limits is the same as changing the amplification factor Q of the
disturbances.

Having specified the level of dynamic stability at which one wants to operate (in terms of Q) the
equivalent curvature, measured at the neutral stability condition, can be used to directly obtain the
stable flow range between neutral stability and the aforementioned operating point.

Due to time constraints, the Equivalent Curvature relation has only been computed for the three
cases shown above, which are necessary for the practical design application described in 4.3.
However, this is enough to clarify the nature of the relation as the required degree of dynamic
stability increases: for the same curvature of the characteristic, choosing a design with a higher level
of dynamic stability (lower allowable Q) implies stable operation at a larger stable flow range from

the peak of the characteristic, and therefore a lower aerodynamic performance and efficiency.

This unified framework is the stepping stone by which the feasibility of various candidate

compressors within the design optimisation scheme will be quantified.

4.1.3 Organisation of the Chapter

1t is envisaged that the preliminary design process of an axial flow compressor will be embedded
in a multi-objective optimisation framework, where it will be possible to change geometric,
configuration and operational variables between iterations.

o First of all, the core of this scheme is the development of an appropriate cost function
that includes measures of loading, dynamic stability and robustness. This is tackled at
the onset, with the help of the unified framework discussed above. Once the objective
function has been defined, the full sequence of the iteration can be laid out.

o Secondly, a case study is carried out, where the feasibility of a 2-stage non-standard
compressor is benchmarked against a set of specified requirements. Design changes are
made to this configuration and the resulting improvements in the different constraints
are highlighted.

o Finally, an exploration of the use of DEB to systematically identify the blade-rows where

particular design changes are most effective is performed.
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4.2 Cost Function Definition

The convergence of the optimisation algorithm will be based on the minimisation of the

following cost function

2
AP Y (Ap) [AK,
C=C\y +CQ +CK2 =(ﬁ] +(7— + K_.e (41)
N
“Loading” “Dynamic “Robustness”
Stability”

The definition of each of these terms is dealt with in the following sections, having first discussed

the performance and stability constraints that the user must specify as design targets.

4.2.1 Design Requirements

A successful candidate in the optimisation process should satisfy the following constraints:

1. A certain performance level at a given speed, presumably to ensure operation along an
unknown running line or to achieve a certain aerodynamic load for a determined application. This
comes in the form of a required pressure rise ‘F'™S.q at a prescribed Operating Point, ¢op. Adiabatic
efficiency could also be incorporated into the optimisation procedure.

2. A dynamic instability margin, specified in terms of the maximum resonant disturbance
amplification at the operating condition, Qreq.

3. A minimum level of dynamic stability robustness to flow changes at design, ensured through

the sensitivity dQ/d¢_,_, analogous to the equivalent curvature of the characteristic, Ke,op.

req

While a minimum stable flow range could be asked for, this will be seen to limit the freedom in
the mapping of the design space. Fixing the stable flow range represents a crude way of imposing
some degree of robustness into the system, by ensuring that flow variations will not bring the
machine too close to the stall point. However, the Q-sensitivity constraint already ensures that the
system dynamics change within allowable margins when transients are undergone.

Therefore, one could realistically operate very close to the peak of the characteristic, while still
retaining a sufficient level of robustness, provided that the relevant dynamic parameters (DEB or 0)
behave in a shallow enough manner, or in other words, the curvature of the characteristic Ke is small
enough. Conversely, operating at a large distance away from the neutral stability condition is no

guarantee that the robustness will be above a certain threshold.
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The different logical paths to determine the feasibility of a design with fixed and free stable flow
range will be highlighted later, demonstrating that a minimum range requirement might constitute a

limitation when exploring different designs.

422 Loading Contribution to the Cost Function

The first task in the aerodynamic evaluation process is the generation of the performance
characteristic. One can find the pressure rise at the required operating mass flow and determine
whether the design meets the first constraint. The difference in actual and required pressure rise
coefficients is used to define the first term in the cost function.

One can choose to penalise under-performance only, thus striving for the highest possible
pressure rise. Clearly, a higher-than-required pressure ratio leads to a negative cost, which is
beneficial within the optimisation algorithm. In that case, the performance-related cost is

c - (P —WS)_(ATP‘“)
v PprS yTs

= (4.2)
On the other hand, if one argues that over-performance must come at extra expense or if

operation at this speed must go through a pre-defined running line, an excess in pressure rise must
also contribute to the cost function, in which case this must be quadratic.

APTS 2
Cy =[ 5T J (4.3)

The denominator contains a scaling factor that makes all the terms in the cost function of order
one. Otherwise, the optimisation would be biased towards regions in the design space where the
largest term in the objective function improves more markedly. It is logical to scale this performance-

related contribution by the order of magnitude of the expected variations in pressure rise coefficient.

4.2.3 Dynamic Stability Contribution to the Cost Function

Before an assessment of the stability characteristics can be made, the eigenvalue behaviour
around the peak of the characteristic must be resolved. This determines the location of the neutral-
stability point and also the non-dimensional slope and curvature of the ctrace around the
performance peak. For each of the points around neutral stability for which the eigenvalue is found,
the disturbance-energy balance is also calculated, thus also obtaining the slope and curvature of the
DEB-history, which are also analogues of the Equivalent Curvature Ke and its derivative dK, /d¢.

The unified Equivalent Curvature relation described in 4.1.2 is employed to find the stable flow
range between neutral stability and the point where the absolute dynamic stability reaches the

required dynamic instability margin, Qreq.
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However, one must first determine which eigenvalue growth rate yields the required Q-factor.
The rotation rate @ of the critical mode is known around the neutral stability condition, and assumed
constant throughout the characteristic. The Q-factor analogy gives the required value of the critical

growth rate at the operating point through

Olimit =u’(Q-VQ2 —1) (4.4)

Based on this value, one can choose a particular line in the unified Equivalent Curvature relation,
through which the stable flow range A¢ can be found uniquely. Naturally, one would use the power-
law form of the relation, instead of the linear function in logarithmic space, which is more useful for

illustration purposes.

Therefore, the flow at which the Q-factor reaches the required level is known.

K ]%

KeNs (4.5)

This provides an indirect route to determine whether the stability constraint is met, without

Potimit = PNs + [—

having to actually calculate the value of the quality factor Q at design -the key expensive step one
attempts to avoid with the use of equivalent relations. The indirect comparison between the limit-
stability flow and the operating point is illustrated in Figure 4-3.
In summary:
O Polimit > Por The resonant amplification at the design flow rate is larger than the
tolerable value and the design is not valid.
0 Potimit < Pop The compressor is more stable than required at the desired
operating point, but most importantly, the loading levels are too

conservative and more aggressive designs are possible.
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Figure 4-3 Comparison between A¢ computations for compressors with excessive (1),
insufficient (2) and correct (3) Q-factors at the operating point
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This benchmarking scheme can be used to define the stability contribution to the overall cost
function. As in the case of the loading, both excessive and insufficient performance must lead to an
increased objective function penalty. The form of the function is the same as before, but with @as the

control variable.

2 2
CQ =[¢op —;olimitj =(%J (4.6)

In this case, the order of magnitude of the required flow coefficient at design can be used as a

scaling parameter, making the difference of order one.
Stability Benchmarking with a Fixed Stable flow range

The schematic shown in the previous discussion emphasises that the disturbance amplification at
the design flow rate is not only dependent on the equivalent curvature K — through which the stable
flow range arises — but also on the location of the neutral stability point.

Therefore, different combinations resulting in the same degree of dynamic stability at the
operating point may be reached. On one hand, one could exploit compressors with aggressive o-
traces, i.e. highly curved characteristics, and a neutral stability point located very close to the
operating flow. In that case, the performance would be close to the peak of the characteristic. On the
other hand, a machine with a shallow variation in dynamic behaviour could be chosen, which would
imply a characteristic of low curvature. As a result, the stable flow range to stall would be higher, but
one would be operating far away from the maximum pressure rise and efficiency.

In light of this reasoning, which is an application of that put forward in 3.1, it is obvious that
prescribing a fixed stable flow range between design and neutral stability freezes the location of the
peak of the characteristic. Consequently, in order to achieve a certain degree of dynamic stability at
the operating point, which is geometrically the slope of the characteristic at that location, the
equivalent curvature at the peak is forced to have a concrete value. This implies that the behaviour of
the dynamics at neutral stability — either DEB or 0- is locked from the onset.

While one could probably attain the required safety margin at design with a fixed stable flow
range, it may sometimes not be possible to achieve the required robustness, characterised by the
curvature of the characteristic at design. If the stable flow range is floating, one can modify this
operating curvature by shifting the location of the neutral stability point and changing the shape of
the characteristic. If the stable flow range is fixed from the start, however, the behaviour of the

dynamic history is the only degree of freedom to satisfy the robustness requirement.
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In summary, specifying a fixed stable flow range is not a sound strategy, as it has no direct
physical impact on the dynamic stability and robustness, but still constrains the optimiser to search in

a narrow region of the design space.

424 Dynamic Robustness Contribution to the Cost Function

The final element of the objective function must reflect the robustness of the Q-factor to flow
changes around the design operating point. This sensitivity can only be calculated at the flow where
the Q-limit is reached. In most candidate compressors, this will not coincide with the design point,
where the system dynamics are unknown. This is not a problem, because the stability-related cost Cg
pulls the limit-safety point to the required operating flow condition, @op. Separately, the third
contribution to the cost function should decrease as the amplification sensitivity goes up.

Based on the simple algebraic expressions derived in 3.4, the necessary equivalent curvature at

the Q-limit point to achieve the required sensitivity dQ/d¢,, g €an be found through
oc 2050 0Q 4.7)
Ke,req == Y 3
4 req

98 | yimit _[ 1 _1J
VAS

The cost term must simply be a comparison between this value and the real equivalent curvature

at the Q-limit point, which can be reached by linear expansion from the neutral stability flow,

dK
Keguma =Kelys +=27 A8 (4.8)
? lns
The difference between the required and actual equivalent curvatures forms the basis of the
robustness-related cost term,

2 2

Cxe - Ke,QIimﬁ__Ke,req — A_Ke (4.9)
K? KE

The scaling factor in this case can be chosen to be the order of magnitude of the required

curvature. Due to the equivalent curvature being non-dimensional by definition, this tends to be O(1).

4.2.5 Overall Cost Function and Potential Errors

The sum of the loading, dynamic stability and robustness terms forms the overall cost function to

be minimised by the optimisation routine,

2
‘}‘TS —‘I‘TS A 2 K. e —K 2
C=Cy +Co +Cre =[ g __OP +("’OP Dolimit ] +( eAdim?__ered ] (4.10)

yTs ¢ K,
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The quadratic form ensures convergence to the exact constraints, which takes place when the
total cost vanishes. If the first order form is used, greater-than-required performance in any of the
three criteria returns a negative contribution and the absolute minimum may yield a design with
superior performance. However, the adiabatic efficiency, manufacturing bounds and the economics
of higher-performance machines should also be taken into account in that case.

Once the root of the cost function has been found, it would be advisable to calculate the full

dynamic history up to the design point. The standard relations used to assess Q and 9dQ/d¢ in the

optimisation are only approximate, and further refinements will surely be necessary.

The main sources of uncertainty are:
o The Equivalent Curvature relation error band for the estimation of the stable flow range.
o The inaccuracy due to the Taylor series expansion to calculate the equivalent curvature

at the Q-limit flow condition

4.3  Application of the Integrated Optimisation Scheme

The concepts presented so far are demonstrated with the preliminary design of a 2-stage
compressor. The succession of steps leading to the evaluation of the cost function for an arbitrary
candidate design, is summarised in Figure 4-4

The performance and stability constraints are outlined in Table 4-1. In principle, the wheel speed
and the inlet thermodynamic conditions are fixed, as well as the overall compressor dimensions. The
blade positioning, stage configuration, profile characteristics and loss buckets constitute the degrees
of freedom in the problem. The design variables for the initial and final configurations are
summarised in Table 4-2.

The full iterations for the both the starting design and the converged solution are gone over in
detail. In addition, the complete dynamic history is also calculated up to the design point for these
two cases, in order to assess the errors introduced by the indirect stability measurements made
during the optimisation, through the standard relations.

It should be noted that 3 independent changes have been made between the two configurations.
The individual performance variations induced by each of these steps are briefly reviewed at the end,

in section 4.3.3.

prs 0.9801

dop 0.2715

Q 1.1
9Q/op 10

Table 4-1 Design requirements summary of the 2-Stage compressor integrated optimisation for stability
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Figure 4-4 Outline of procedures in one optimisation iteration
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Unfeasible Candidate Converged Solution

Stages 2 2
Annulus Geometry Fixed Fixed
Wheelspeed [rpm] 4750 4750
Miueir1 0.286 0.286
Intra-stage gaps [%Rmean] 1% 1%
Inter-stage gap [%Rmean] 5% 1%
Loss bucket [x standard] 3x 1x
Rotor chord [%Rmean] 16.41% 12.29%
Stator chord [%Rmean] 10.65% 10.65%

Table 42 Design features before and after optimisation

4.3.1 Unfeasible Design Iteration
43.1.1 Performance Check

The performance characteristic for the first candidate design is shown below. The compressor is
within the unstable regime at the required operating flow. The neutral and limit-stability locations are
also shown on the speed line. We can immediately see that neither the pressure ratio nor the
minimum stability criteria are met at @,

The order of magnitude of the difference in pressure-rise coefficient is O(101), so the performance

cost is non-dimensionalised by 0.1, thus becoming:

G =(PR(¢0P )_—_PRoP,req Jz =(0.7060—0.9801)2 7513
PR 0.1
1 4 X
0.8
06 1

i 1 —— Performance characteristic

04 1 » oum operating point
1 X WSy
0.2 + o W TS(¢req)
1 & Neutral Stability
/) —/—m—m—mt———t——"t
0 0.1 0.2 0.3 0.4 0.5

¢

Figure 4-5 Loading check for unfeasible 2-stage compressor

Strictly, if a candidate configuration does not satisfy the expected performance, one could discard
it straight away and proceed to modified designs. However, it is advisable to carry out the full
dynamic analysis regardless of this, in order to evaluate the contribution to the cost function from the

stability constraints. This ensures that gradient-based techniques give rise to changes that enhance the
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overall quality of the design, instead of improving the pressure rise until the target is reached and

only then moving on to assess the compliance with the stability criteria.

43.1.2  Stability Check

Starting at a flow coefficient ¢ about 5% to the left of the peak of the characteristic, the critical

eigenvalue is computed up to a growth rate of roughly -0.1, the trace of which is shown below.

0.5

0.4 1

0.3 +
) ]
0.2 +

0.1 1

0 %?!
0.15 -0.1 -0.05 0 0.05 0.1
g

Figure 4-6 Eigenvalue history for unfeasible 2-stage compressor

The average rotation rate around neutral stability is found to be: @,y = 0.34877

From the required Q margin for dynamic stability, the growth rate at the limit-safety condition

must be:

Olimit = wAVE(Q - \/Q2 - 1) = (1.1 -v1.12- 1) =0.2238

This identifies the particular line in the unified Equivalent Curvature relation (Figure 4-1) that
applies to this compressor in question. The equivalent curvature at neutral stability must therefore be

worked out in order to calculate the stable flow range to the limit-stability flow.

0.15 1
0.10 &
0.05

© 0.00
-0.05 3
-0.10 1
0.15 -

0.96 0.98 1 1.02 1.04
#/p(NS)

Figure 47 Nondimensional c-history for unfeasible 2-stage compressor
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In fact, fitting a polynomial through the ¢-trace depicted on Figure 4-7 yields both the equivalent

curvature and its rate of change with flow:

2
K, ns = a—f‘ =-2.7054 K, | - afz’ =-7.253
9 NS a¢ INs d¢ NS

Through suitable processing of the same data used to generate the 0= -0.5 Equivalent Curvature
relation in Chapter 3, one can obtain the version corresponding to a ¢rlimit of -0.224, from which the

stable flow range can be read off by simply knowing Kens and Q. Instead of the linear logarithmic

form portrayed in Figure 4-1, its power-law is given by:

o ai‘ _ -0.050433
e,NS = = =
lys (Bo—o20a —Ons )7

Rearrangement of this expression gives the location of the limit-stability condition:

%.3079
Mj +@ns = 0.32816

Po=0224 =
Ke,NS
Since @, o4 — @y > 0, the compressor is not stable enough at the required flow coefficient. For

the present case, this is obvious by simple inspection of the characteristic, but when neutral stability

lies to the left of the design point, this test becomes indispensable.

This information is sufficient to calculate the stability-related cost. As @, is of order 0(10-1), the

scaling factor is chosen to be 0.1. Alternatively, one can choose @req as the scaling parameter and use a

weighting factor within the optimiser to ensure that this cost term is comparable to the others.

o _(for =P | =[o.32816—0.2715)2 03209
Q ¢ 0.1

Range prediction error

The full eigenvalue curve up to the limit-stability point has actually been generated to find the
error between the stable flow predicted through the Ke plot and the actual flow at which the Q-factor
reaches its safety value. According to the complete trace, shown below, the limit-stability stable flow
range is @ = 0.327. The stable flow range computed from the true dynamic history is therefore 4.19%

smaller than the predicted value within the iteration, as can be seen from the Equivalent Curvature

plot.

91



0.2 P
0.1 #Pns= 1073 = Ag=0.055 Computed flow
o -0.1 4 -
241 ,
0.2 o=-0224 K -4 ] Predicted flow range
0.3 . Ag=0.056
R 51
0.4 4 ) N ]
y =-7.2178x" + 18.027x" - 17.106x + 6.2973 ]
05 s
0.8 0.9 1 1.1 1.2 0 0.01 0.02 0.03 0.04 0.05 0.06
@/ Pns 4¢

Figure 4-8 Range prediction error for unfeasible 2-stage compressor

43.1.3 Robustness Check

Based on the Q-factor sensitivity specified by the robustness constraint, the required equivalent

curvature at the limit-stability flow can be easily computed using

Ke,req = 00 = 2¢N"‘"““""5w %Q' =-1.488
req

~

o¢ Qlimit 1 1
— -
)
This must be compared with the actual equivalent curvature at the ¢climit operating point, which

is obtained by linear extrapolation from neutral stability:

3K,

3 |y - AGNs—Qlimit =—2.875

Ke qiimit = Kele +

Thus, the robustness-related cost is:

2
c _(Ke,OP =Ko, 0P, req J _(—2.875+1.488
5= _ =

Ke,OP 1
In fact, sufficient information is available to calculate the actual value of the dynamic robustness

2
) =1.925

at the stability-limit condition:

oQ 1 1

-1 |2 1k =-19.32
50204 29Ns@ (%)2 )

o=-0.224

Therefore, even if one allowed the compressor to operate at the mass flow where the stability
limit is reached, the Q-sensitivity to flow changes is almost twice the allowed value, Qreq = 10; the

curvature of the characteristic is too high.
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Robustness Prediction Error

The only parameters that can introduce uncertainty into the calculation of the Q-sensitivity are
the eigenvalue rotation rate and the equivalent curvature. It is clear that the higher the rotation rate,
the worse the sensitivity, other variables remaining fixed. A larger equivalent curvature also

contributes to a larger sensitivity, which is expected from geometric considerations. These effects can

3 (| A (). a (o
e e o

The full eigenvalue migration has been resolved up to the Q-factor limit, revealing that there is a

be expressed as

slight increase in rotation rate as the mass flow goes up. In fact, the true rotation rate at the &-limit is
4.3% higher than the average of the points around neutral stability.

The real value of the equivalent curvature K at the stability limit can be calculated analytically
from the complete dynamic history shown in Figure 4-8. The prediction from the Taylor series is
found to be 14.4% smaller than the real value. Such error lies within the expected band of uncertainty
for compressors with Mrei < 0.3, as explained in 3.4.

These two inaccuracies produce errors of the same sign in robustness, so that the actual

sensitivity 0Q/d¢ is 17.18% larger than the value derived through approximations.

43.14  Overall Cost Function and Required Changes

The sum of the performance, stability and robustness contributions to the cost function gives:

C=Cy +Cp +Cg, =7.513+0.3209 +1.925 =9.759

This is the quantity to minimise. In order to do so, the following changes are implemented in the

next design iteration, which will be proved feasible:

o The loss bucket is reduced to the levels of the standard compressor.

o The inter-stage gap is reduced from 5% to 1%, as this is known to decrease the growth
rate of critical eigenvalue, thus stabilising the compression system.

o The chord of both rotors is decreased by about 4% of the mean radius, thus diminishing
the blade passage inertia and bringing down the rotation rate of the disturbances. By the
Q-factor analogy, this improves both the disturbance amplification and the robustness

for any fixed level of critical perturbations’ growth rate o
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4.3.2 Successful Design Iteration

For the improved design, it is not necessary to go over the detailed calculations for each of the
terms in the objective function. Instead, the key features are pointed out along the discussion.

Having reduced the loss levels, the new compressor characteristic satisfies the performance
requirement exactly, its peak being situated at a lower mass flow than design. The compressor
dynamics also behave in a more shallow fashion, as demonstrated by the larger stable flow range to

the stability limit, which in this converged design coincides with the operating point.
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Figure 4-9 Loading check for feasible 2-stage compressor
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The critical eigenvalue path around neutral stability shows that the rotation rate of the least
stable system mode is smaller than the one of the previous design, as depicted by Figure 4-10. For the
same disturbance amplification safety-factor Q, the growth rate of the critical eigenvalue must be
around two thirds of its rotation rate. Hence, a smaller value of O is required to satisfy the stability
constraint and the design mass flow can be closer to the peak performance. The ¢:limit is found to be
-0.184.

The rate at which the eigenvalue or the DEB approach neutral stability is clearly smaller for the
feasible design (see Figure 4-11). Geometrically, this is translated into a smaller curvature of the
characteristic, which is patent from the comparative plot above. The non-dimensional dynamic
history at zero-stability is shallower than on the first compressor. Thus, the Equivalent Curvature
relation for the new C:limit predicts a stable flow range that places the stability constraint exactly on
the design operating flow rate.

As far as the robustness margin is concerned, it must be pointed out that the curvature at neutral
stability is smaller than on the previous design. Because the C-limit is also lower than before, it

follows that the equivalent curvature at design must have been reduced, too.
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The linear expansion does predict an equivalent operating curvature Ke,op that is 70% smaller
than that of the first design. This, combined with a slower rotation rate, necessarily implies an
improved robustness. Indeed, the amplification sensitivity has been reduced to 10, the prescribed
margin for dQ/d¢ .

Having satisfied all three constraints exactly, the optimisation cost of the design is zero and the

process is terminated.

C=C\y +CQ +CKe =0

Benchmarking of the optimised design with a complete dynamic analysis, like the one hereby
presented, should always be carried out. Approximation inaccuracies are inevitable due to the use of
the standard relations to predict range and sensitivity, as well as the variation of the rotation
frequency away from neutral stability.

For this particular compressor, careful inspection of the actual cthistory reveals that the Ke
relation under-predicts the range by 6.1%, which makes the design point slightly less stable than
required.

Similarly, the equivalent curvature at design, calculated through the linear expansion, is 4.1%
smaller than in reality, whereas the rotation rate at the operating mass flow is 4%higher than around
neutral stability. These errors produce counteracting variations in Q-factor sensitivity, which is found

to be 2.64% higher than the predicted value.

Predicted from standard ~ Computed values from

relations pre-stall dynamics
PTS . 0.9801 0.9801
Q 11 1.1671
0Q/o¢ 10 10.264

Table 4-3 Predicted and computed performance values for optimised solution

If necessary, these discrepancies can be ironed out by final, small design variations based on the
DEB power distribution along the different blade-rows. The use of this localised information for this

purpose, and also for systematic decision-making within the optimisation process, is discussed in

section 4.4. 0.5
Feasible Design
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Figure 4-10 Comparison of eigenvalue migration paths
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Figure 4-11 Reduced and complete dynamic history for the 2-stage compressor before and after optimisation

4.3.3 Effects of Individual Changes in Intermediate Iterations

A full parametric study of the changes in design feasibility with different variables is beyond the

time constraints and scope of this thesis. First of all, the unified Equivalent Curvature relation is not

available for any arbitrary Q-limit, as the extension to cover the entire domain is a consuming task.

Secondly, the large dimensionality of this multi-variable optimisation means that the effects are

highly coupled, and therefore generalisations cannot be made without an extensive battery of design

explorations. The example shown here simply proves that the integrated algorithm can be applied

successfully, with high savings in computation time.

Despite these limitations, it is interesting to comment on the evolution of the design point, as the

modifications of the baseline configuration are implemented one at a time. Figure 4-12 shows a

summary of the convergence history.

Iteration 2 - Lower loss buckets to 1x standard level

The reduction in loss buckets for all blade-rows shifts the performance up towards the

required pressure ratio. The resulting characteristic actually produces the necessary pressure

ratio at the desired flow rate. The limit-stability flow is about 6% higher than the design value,

but the less aggressive dynamic history — due to the shallower loss buckets — brings the Q-

factor sensitivity down to only 15% above the robustness limit.

Tteration 3 — Rotor 1&2 chords reduced from 16.4% to 12.3% of the mean radius

The re-dimensioning of the blades does not produce variations in aerodynamic performance

in the simplified mean line solver. In reality, the reduced surface would lead to smaller profile

losses and the lower solidity would have an impact on the flow turning achieved through the

blade-row.
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The stability benefits due to the lower disturbance rotation rate, discussed in 4.3.3, contribute

to an improved Q-factor at design, but still above the required level. The actual o

improvement is unknown, because the dynamics are not solved for at the design point. The

robustness is practically the same as before.

o Iteration 4 — Inter-stage gap reduced from 5% to 1% of the mean radius

The stabilising effect described in 2.5.3.2 is exploited to achieve the last improvement in
dynamic stability. The rotation rate is unaffected with respect to the previous iteration, and
the eigenvalue growth rate oat a fixed flow is increased, reaching the required value at a flow
coefficient that is 4% lower than in the previous iteration. The equivalent curvature of the
characteristic is reduced enough to decrease the Q-factor sensitivity, indicative of the dynamic

robustness, to the prescribed margin.

1.1
\If[s 1 ] " Rotor chord — 12.3% Rmean
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Figure 4-12 Evolution of limit-stability point for successive optimisation steps

As the optimiser progresses towards the converged solution, the loading becomes more
aggressive for the same level of dynamic safety. The change in loss buckets has the largest effect in
this area, leading to almost a 50% improvement in loading. The rest of the changes do not affect the
performance characteristic, but enable safe operation closer to the peak, yielding an additional

increase in loading of about 4% from the second to the final iteration.
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44 Use of DE power distribution within the integrated scheme

In demonstrating the integrated optimisation process, it appears that the disturbance-energy
balance concept has lost all relevance, as the entire design can be assessed by examination of the
eigenvalue history only. The additional expense of carrying out the DE control-volume analysis
seems unjustified on this basis. As was said before, though, this only happens if the dynamics of the
system are governed by one single critical resonance mode, all others being markedly more damped.
When this assumption does not apply, or compressible acoustic mode become dominant, DEB is the
only quantity that encapsulates the dynamic state of the system in a single number.

In addition, the disturbance-energy power distribution is also the only metric that allows one to
identify the blade-rows that introduce more disturbance-kinetic energy into the system. When
iterating over a multi-stage configuration with tens of degrees of freedom, this information can be
used as an expedient way to direct design changes to the blade-rows with the highest DE power. The
refinement of the sample optimised solution presented in 4.3.2 is carried out following this criterion, a
technique that was already explored in Fréchette [4], along with a systematic examination of the DE

redistribution in a multi-stage environment when localised design modifications are applied.

The DE-Power distribution at the required operating point (see Figure 4-13 [a]) shows all blade-
rows acting as DE sinks, rotor-two being the weakest. One could erroneously identify this blade-row
as the stability-critical one. However, it is the power distribution at neutral stability that must be used
to decide which blade-row to act upon (see Figure 4-13[b}), because this gives the true contribution of
each blade-row to the pre-stall dynamics. Indeed, it reveals that the second rotor is the least sensitive
to flow changes and that, as the machine enters the unstable regime, rotors and stators act as

disturbance sinks and sources, respectively. The second stator is the largest contributor towards the

instability of the system.
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Figure 4-13 Disturbance-energy power distribution for unrefined solution at design and neutral stability mass flow
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In order to demonstrate that modifications to second stator lead to the most pronounced dynamic
benefit, the loss bucket of each blade-row in the compressor is reduced by 15% in turn, leaving the
others unaltered.

The performance characteristics of the initial optimiser solution and the four individual
enhancements are compared in Figure 4-14. The additional pressure ratio is more marked when
improving the stators’ loss buckets. This can be attributed to their higher inlet flow incidences, which

are 3.5 and 4 degrees higher than those of their respective rotor.
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Figure 4-14 Performance variation for individual blade-row enhancements from initial optimiser solution

In terms of pre-stall dynamics, the improved loss characteristics lead to a negligible variation in
disturbance rotation rate, of 0.7% in average. Therefore, any improvement in critical eigenvalue
growth rate at the design flow results in a reduction of resonant disturbance amplification, Q. The
dynamic evolution for each variant shows that the second stator, as conjectured, has the highest shift
in O(see Figure 4-15).

At the same time, the flow coefficient at neutral stability is reduced practically linearly with the
improvement in critical eigenvalue growth rate. As a result, the location of the design point on the

non-dimensional stability history is higher in the ¢/ ¢vs axis, which would deteriorate the robustness,
if the equivalent curvature 90/d@ did not change. However, the non-dimensional G:traces also

become shallower for the improved-stator 1 & 2 variants (see Figure 4-16). In conclusion, the
robustness is also most greatly enhanced by modification of stator two.

The relative improvements are more clearly pictured in Figure 4-17. The increased dynamic
stability and robustness bear a direct relationship with the highest DE powers. This demonstrates that

it is essential to use DE information to apply modifications to new iterations in the design process.
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The resulting power distribution with an improved second stator (Figure 4-18) registers a 160%
growth in sink power for this blade-row at design, while the others experience relatively minor
changes. At neutral stability, the blade-row only has about a quarter of its initial source intensity. The
peak in instability contribution is shifted to stator one, previously the second most powerful blade-

row, tripling its initial power.

The re-distribution of disturbance-energy after a particular design change is adopted was
attempted by Fréchette [4] through a preliminary dissection of the impact of various design

modifications on the DE power map.

The DE power of a blade-row depends on both the mean flow and the perturbation flow field. In
that sense, alterations that modify the background flow impact the DE powers of all the downstream
blade-rows. On the other hand, the variations in potential perturbation waves are felt throughout the
system, whereas vortical changes in the disturbance field are convected downstream only. The
systematic prediction of the DE power redistribution is therefore a highly coupled problem, which

lies beyond the scope and time constraints of this thesis.
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Figure 4-15 Dimensional C-histories for individual blade-row enhancements from initial optimiser solution
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4.5 Summary

A new philosophy that departs from the traditional compressor design methods applied in
industry has been developed and demonstrated in this Chapter.

o In aid of physical clarity, the unified framework relating the stable flow range, dynamic
stability and robustness metrics under the Equivalent Curvature relation, devised in
Chapter 3, has been re-formulated in a more user-friendly manner.

o Based on this, a cost function has been defined that captures the compliance of a
candidate design with the loading, stability and robustness requirements. The use of the
standard relations to evaluate each cost term has been delineated.

o The methodology has been successfully implemented in the preliminary design of a 2-
stage compressor, for which the full pre-stall dynamics have been calculated in order to
quantify the errors introduced by use of the standard relations to find the stable flow
range and equivalent curvature at the operating point. For the sample successful design

iteration, the Q-factor and the robustness dQ/d¢ are under-predicted by 6.1% and

2.64%, respectively, well within the incompressible uncertainty bands of the Equivalent
Curvature framework, defined in Chapter 3.

o Design modifications on particular blade-rows should be implemented on those
possessing the highest DE power. It has been shown that such strategy yields the highest

improvements in all three cost criteria — performance, stability and robustness.

In terms of design guidelines, the dynamic effects due to the resizing of the inter-blade-row gaps
pointed out in Chapter 2 have been exploited in the present design exercise. Apart from the obvious
performance and dynamic benefits of lower-magnitude, shallower loss buckets, one important
divergence with the recommendations issued by Blanvillain [1] concerns the impact of blade-row
inertia on the system stability. While it is true that the critical growth rate of the disturbances is not
greatly modified, their rotation rate is appreciably reduced, at least in compressors with few stages.
Together with the Q-factor analogy, this implies an improvement in dynamic stability for operation at

a fixed flow condition.

The computational savings of this new methodology have been clearly emphasised throughout
the discussion; resolving the dynamic history at the design point is no longer necessary to assess the
degree of stability. The scheme, however, also has some limitations, namely:

o Operation is restricted to low-speed, incompressible flow conditions.
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Even within the required relative Mach numbers, the use of the Equivalent Curvature
relation to find the stable flow range, and the linear prediction of Ke at the operating
point introduces errors in the estimation of compressor stability and robustness. A full
computation of the dynamic characteristics of the converged solution is suggested.

A faster progression through the design space towards the final solution is achieved by
using the DE powers to systematically apply modifications to particular blade-rows.
However, one cannot predict the redistribution of disturbance-energy for the following

iteration a priori.
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Chapter 5

Conclusions and Future Work

51 Summary and conclusions

Each chapter in this thesis addresses a distinct aspect in the sequence towards the final
optimisation problem. Concluding remarks concerning each of these stepping-stones are therefore

summed up separately.

5.1.1 Application of the Disturbance-Energy Analysis within the Existing
Dynamic compressor model Framework

The methods development task undergone in Chapter 2 is geared to the successful implementation of
Fréchette's [4] DE control-volume scheme within Spakovszky’s {12] dynamic compressor model. The
required analytical and numerical techniques are put in place to achieve this, highlighting the key
issues related to flow field mapping resolution and computational costs. With respect to the latter,
two issues should be pointed out:

o Blanvillain [1] previously identified a system, lightly damped eigenvalue as being critical
to machine stability. The first harmonic of this mode is the pole with which to evaluate
the compressor’s disturbance-energy balance.

o The available search algorithms are only computationally efficient as long as the critical
eigenvalue growth rate is below 15% of the rotor frequency, i.e. in the immediate vicinity
of the neutral stability condition. Under this condition, the solution to the dynamic
eigenvalue problem can be reached in a timescale of seconds, for one-stage machines, or
a few minutes, for multi-stage configurations. Solution for higher damping levels entails
the re-location of the initial guess for the eigenvalue, which requires user insight and

therefore is not attractive for a large-scale, automated multi-objective optimisation. The
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need for reliable methods relating the cheap, low-damping information to stability

metrics at design is patent.

The full pre-stall dynamic analysis is successfully benchmarked against Fréchette’s [4] results for

the Moore-Greitzer compressor [10] and Blanvillain’s studies on the effects of gap sizing on the

stability characteristics [1].

o

The critical eigenvalue growth rate ¢ and DEB predict the onset of instability
analogously. However, because of the integral nature of the energy-based metric, its
magnitude is found to be size-dependent and therefore not as general as the eigenvalue
to depict the overall dynamic state of the compressor. However, the DE powers are an
integral tool to determine the contributions of each individual blade-row to the overall
system stability.

As pointed out by Blanvillain [1], increasing the intra-stage gap size results in enhanced
stability. A maximum improvement in system damping of 6% for the standard 2-stage
configuration has been achieved for an extension of Ax/R = 8% for gaps 2 and 4. This is
achieved through a uniform reduction in DE powers: sources are seen to diminish in
strength, whereas sinks become stronger.

Conversely, elongation of inter-stage gaps leads to a deterioration in stability. For the
same 2-stage machine, a peak penalty in critical eigenvalue growth rate is incurred with
a gap length of Ax/R = 16%. In this case, the adjacent blade-rows concentrate the
dynamic improvement in the form of reduced DE powers, while the other two register

power increases.

5.1.2 Stability and Robustness Metrics Definition and Standard Relations for
their Assessment

After a review of the shortcomings of the present surge-margin paradigm, a more physically

relevant description of the compression system dynamics is formulated:

(o]

The sensitivity of the dynamics, measured through either & or DEB is shown to be an
indicator of the Equivalent Curvature Ke of the performance characteristic. A general
relation is uncovered that predicts the stable flow range to a certain degree of dynamic
stability based only on Ke. This applies as long as operation is within the incompressible
capabilities of the available dynamic compressor model (Mrel < 0.3), and represents an
indirect method to assess the stability at any flow condition based on the economical,
low-damping information that can be easily obtained through Spakovszky’s dynamic

compressor model.
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o The complete set of relations for the different stability levels have been brought together
in the unified Equivalent Curvature map, which embodies all of the above concepts by
linking the stable flow range, dynamic stability and robustness under a common

framework.

With a view to applying this information to practical designs, new dynamics-based metrics to

determine the degree of dynamic stability and its robustness to flow changes are developed.

o The concept of resonant disturbance amplification under aerodynamic forcing, Q, is
exploited as an absolute stability metric. Through this concept, the dynamic stability is
linked to both the growth and the rotation rates of the critical eigenvalue. In synthesis, if
o and @ are roughly equal, the quality factor Q is about unity, i.e. no amplification of
disturbances exists beyond their static values. A safety limit of Q < 1.1 is suggested as a
suitable margin; in this case, the critical eigenvalue growth rate 0 needs to be around
two thirds of its rotation rate @and of the opposite sign.

o The sensitivity of the disturbance amplification to flow changes is the logical measure of
dynamic robustness, for which a limit of 9Q/d¢ < 10 can be postulated. Although the
point at which the compressor stalls, the safety factor Q and the disturbance rotation rate
all influence the robustness, this sensitivity is largely governed by the equivalent

curvature of the characteristic at the operating point, Ke,op.

5.1.3 Integrated Design Optimisation Scheme for Stability

A systematic roadmap for the combined evaluation of aerodynamic and stability-related
performance within a multi-objective optimisation has been devised and demonstrated on a sample
2-stage compressor.

o The cost function to minimise is defined as:
N AIAE Al
C=C?+CQ+CKe=("‘_’[‘5) + —_-2 4| —t
b3 ¢ K,
The loading is evaluated at the required operating flow. The stability compliance is
ascertained indirectly, by determining the stable flow range to the required damping limit at
which the amplification margin is reached through Equivalent Curvature measurements at
neutral stability. The required Ke for sufficient dynamic robustness is then computed at that

location.
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The full optimisation is carried out, at first, only with the aid of the standard relations.
Comparison of this with the actual system dynamics at design reveals that the converged
solution has a 6.1% error in disturbance amplification and a 2.64% error in robustness.
These are due to the uncertainty band in the Equivalent Curvature relation and the
assumption that K varies linearly along the characteristic.

Blanvillain [1] stated that changing blade-row inertias had no appreciable dynamic
benefit in terms of critical eigenvalue growth rate. While that is true, a reduction in
inertia leads to a lower rotation rate, so the true dynamic state of the machine is affected
even if Oremains the same, since the disturbance amplification Q is effectively reduced.
The disturbance-energy map is essential to speed up the optimisation process, directing
design modifications to the blade-rows with higher DE power. It has been proved that
there exists a direct correlation between the relative powers of the different blade-rows
and the resulting improvements in both stability and robustness as each of them is

enhanced in turn.

5.2 Recommendations for future work

The limitations of the design framework developed hereby have been highlighted throughout the

thesis, and make patent the need for further developments on both the conceptual and

implementation sides.

5.2.1 Dynamic compressor model Refinements towards the Application of the
DEB to a Wider Range of Dynamic Systems and Operating Conditions

Three important lines of work should be initiated to mitigate the key deficiencies of the

disturbance-energy analysis in the form that has been used so far:

o

A thorough application of the DEB scheme should encompass the contributions to the
disturbance flow field of more than just the stability-critical eigenvalue. A cumulative
DEB approach should thus be devised.

Compressibility effects should be incorporated into the dynamic compressor model and
the internal-energy contributions to the DE balance accounted for in the overall metric of
dynamic stability. The physical relevance of the Q-factor analogy in these instances
should be reviewed.

A systematic analysis of the behaviour of the perturbation modeshapes when design
changes are effectuated in an initial compressor configuration should be carried out. This
should evolve into a predictive capability to foresee the re-distribution of disturbance-

energy powers throughout the design process.
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5.2.2 Extensions to the Equivalent Curvature Relation

The modelling enhancements described in the previous section should be employed in the
refinement of the equivalent curvature relation. In particular, the contribution of the acoustic-like
compressibility modes to the equivalent curvature should be explored, with a view to potentially
bring the range prediction error of the presently scattered, high-speed compressors within the
incompressible bounds.

In parallel, thorough parametric studies should be conducted to quantify the inaccuracies in
range prediction due to the design features that can be captured by the dynamic compressor model,
such as, for example, gap length. Physical understanding of the deviations introduced by these
parameters could be used to potentially define correction factors or correlations to apply to the basic

relation.

5.2.3 Integrated Design Optimisation for Enhanced Stability

The above improvements should be brought together within the integrated scheme described in
Chapter 4. It is expected that the errors introduced by the evaluation of the dynamic stability and
robustness objectives will decay as the new modelling additions are implemented, thus minimising
the need for expensive benchmarking of the optimiser solutions with true dynamic histories.

The understanding of the DE re-distribution due to design variations should be embedded in the
optimisation architecture, to guide the convergence path more efficiently.

Most importantly, the methodological insights developed by Perrot [11], principally those
regarding the use of state-of-the-art multi-variable optimisation methods and the use of profile
alterations to engineer precise aerodynamic characteristics, should be merged with the framework
derived in this thesis.

In so doing, the inner optimisation loop of the integrated design philosophy (see Figure 1-1)
envisioned at the start of the Joint Project shall be completed, hopefully revolutionising the field of

axial compressor design for enhanced stability in the not-too-distant future.
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Appendix A

Analytical Derivation of the

Disturbance-Energy Conservation Law

A.1 Conservation law for Disturbance-Energy

Fréchette [4] used an analogy with analytical acoustic theory to derive a Reynolds Transport
Equation for an energy-like quantity representing both the extra internal and kinetic energy due to
perturbation velocities and pressure. As well as the formal identification of disturbance-energy, the
derivation also presents the form of its ‘power sources’ and fluxes.

We shall concern ourselves with 2-D, inviscid, incompressible flow fields. Unsteadiness is
accounted for by suitable linearisation of the governing equations.

To that effect, small perturbations of physical quantities are taken about their average values, i.e.
#(x,t)=¢ + Sp(x,t). The mean flow quantities, calculated via the mean line solver described in
section 2.4.1, are assumed to be steady (3¢ /Bt =0) and spatially invariant (3¢ /849 =0 & 09 [0z=0).

The steps leading to the linearised form are shown in detail for the continuity equation for

illustrative purposes.
%+\7-Vp=0 (A1)
This can be rewritten as
P V(pV)-p V7 =0 (A2)

ot

For incompressible flow (VV =0), this reduces to

%—’t’ +V{pV)=0 (A3)
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Applying small-perturbation theory to this expression, one gets

(P +dp)

29), o+ )7+ 670 (A9

After expanding, one can neglect products of perturbations and derivatives of mean flow
quantities, obtaining the Linearised Continuity Equation

adp

= +V .V +p-VoV =0 (A.5)

The same procedure can be carried out starting from the unsteady Euler equation for momentum

and the entropy transport theorem. The final form of the linearised equations is

o Momentum: /3_%;?)4. /3\—7 [V : (5(7) =-V(dp) (A.6)

(&)

+V V(& A7,
ot (&)=0 47

o  Entropy Transport:

Through appropriate combination of the three linearised equations, Fréchette showed that for

incompressible flow the quantity &= p (V) /2 obeys the following conservation law

% y. (1+eﬁ)=0 (A.8)
ot
where: 1=6P8V (A.9)

If one carries out a similar compressible analysis, DE is found to possess an internal-energy-like
term of the form (6P) / 2pa’ . However, in the simplified incompressible case, DE is simply the

additional fluid kinetic energy per unit volume due to the perturbation velocities.

In fact, (A.8) can be rewritten in terms of substantial derivatives, yielding:

g—f+V (I+£ﬁ)=3—f+V-(£V)+V I-—+[£(V 17]+V Ve]+V I—%?+V Ve+V-1

Dt (A.10)

The flux term 1, known as the Disturbance-Energy Intensity, represents the time rate of change of

disturbance-pressure work per unit area exerted on a given cross-section of the compressor.

110



A.2 Integral Disturbance-Energy Theorem

In view of an application of the DE transport concept in a control-volume analysis, the

conservation law is best viewed in integral form over a generic volume V.

D = = -
m(_ﬁv . 1)dV=m(§+v VetV I]dv —0
v \ Dt v \ ot (A.11)
If the boundaries of integration are fixed in time, then the partial time derivative can be taken to

apply to the integral as a whole. This immediately returns the standard Reynolds Transport Theorem

form

2 (v + [ -ve+v v =0 (A120

Use of Gauss’s divergence theorem, recalling again the zero volumetric strain for incompressible

flow, yields the equivalent expression

% Iffadv + jy(v () Thv =% [ffatv + g(gﬁ i)-7da=0 (A.12b)

Further caveats related to the physical interpretation of this expression, together with its

conceptual implementation in a control-volume form are given in 2.3.2.
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Appendix B

Analytical Evaluation of the Terms

Contributing to the DE Balance

B.1 Fluxes

The annulus integration of the DE flux can be split into the disturbance-pressure work on the
surface and the disturbance-kinetic energy entering the control volume through the boundary of

interest. Both can be solved analytically for any axial location. Thus,

(ov)

F=Fp+Fie =jj‘6P6deA+ﬂpTdeA (B.1)
A A

The local magnitude and phase of the perturbations is known from previous calculation of the
modeshapes. The circumferential variation of any of the perturbation variables is simply a sinusoid of
n lobes and corresponding angular phase.

Thus, we can express the disturbance velocities and pressure as

8V, (6), =10Vy],, sin(26 - pyy) (B.2)
&Ve(6),, =|6Vs|,, sin(n6 - gye) (B.3)
P(6),, =|0P],, sin(n6-gp) (B.4)

Substituting for these perturbations and recalling the definition of the elemental annular area, the
pressure-work flux term can therefore be rewritten as
Fr= zﬂé'Plsin(na ~ 9, JoV [sin(n6 -9y, {&’f—;ﬂ)do =
' (B.5)

2 |

2 _ 2 2
=(M]|6P||5Vxl [(sinn8 cos g, —sin g, cosn@)sin ndcos gy, —sin @y, cosnd}o
0 —— T/ — st
a c d
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Figure B-1 Flux integration schematic

Expanding,

2 _ . 2 2r 2r 2r
F= Reu” —Ri |5P||5VI||:ac [sin*n@16—(ad +bc) [sinn@cosn@iO +bd [cos” n&i o
2 0 0 0 (B.6)

s 0 z
So finally the integral can be expressed only as an algebraic expression of the area and the

perturbations’ magnitudes and phases.

Rext” = Rint” . A
Fp= ﬂ(%]lé}’“wx |(cos @p cos gy, +sin @p sin gy, ) = ?|6P||5Vx |cos(pp —@yy) (B.7)

A similar analysis can be pursued with 7 kg. In this case, however, (6V)?2 is always positive,
oscillating about a non-zero value. This is physically sensible, as it would not be logical to see kinetic

energy taking negative values anywhere in the flow field.

2 2 2 )2x
7 =10y 44 = 2 (v )2aa = Vs (Ro® = Ry, )zj(fsvx2 1oV, H0=
A 2 2 A 4 \]
2 —_R. 22
_pY, (Rex:1 R,.’) g (H,WJCOS(M_% ) +6v,|cos(n6 - gy, )]2}19 (B.8)
7, = p‘;xA v, Flov, |

The overall expression for the DE flux therefore becomes

A V.
7 =2 {|P16V.Jcos(o, - o)+ =lov.Flovif | (5.9
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B.2 Unsteady Term - DEB

The volumetric rate of change of DE requires the evaluation of an kg - like integral over a
continuous axial domain. It has been chosen to carry out this analysis in small control volumina
covering the length between any two consecutive intervals within a gap. The other instance in which
this quantity must be evaluated arises in the calculation of blade-row powers, but the analysis is
exactly the same, except that the control volume is now bounded by the last point in the row’s inlet
gap and the first point of its exit gap.

The order of integration can be chosen as follows

a(sv )

pes=21ijp &L av = 2o 8L ay g pov 28 av = T' (1 pov 2 anax B19

a xin A(x)

The dynamic compressor model is formulated in the frequency domain. Therefore, the time-

derivative can be re-expressed in terms of its corresponding Laplace transform, yielding

DEB= Re|:m[m [[p(x)6V (s, x,60)s6V (s,x,0)dAdx} = Re[x?t [[ plx)s 6V 2(s,;r,e)dAri;vc] (B.11)

xin A(x) xin A(x)

Now, the area integral can be evaluated exactly, so DEB becomes the line integral of a known

function in x,

DEB = Re[s [ p(x) H(é‘V)szdx]—Re[ j( pix)A J‘)|¢5V (=Y |6V, x)|) } B.12)

xin A(x) xin

The integral is a positive real quantity, so the unsteady term is simply

DEB=< J'K (x)dx (B.13)

xin

where K(x)= p(x)A(x)oV, (x)’ |6V, (x)* (B.14)

The control volume is discretised into three points (inlet, mid-section and exit), at each of which
the values of density, radius and perturbation velocities are taken. The modeshapes are only solved
for at boundary data points, so linear interpolation is employed to find the intermediate values. While
this is accurate enough for an elemental gap volume, in the absence of a blade passage flow model,
linear variation of disturbances is also assumed for the calculation of blade powers.

When the control volume is within a gap, the area and density will be constants, because of the
discrete nature of the mean line calculation. When dealing with a blade-row, average values will be
taken for the mid-point.

This is sufficient for the calculation of K(x) at the three points of interest. A parabola is then fitted
through these three points and the integral (B.13) is evaluated analytically.
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Appendix C

1-D Mean Line Flow Analysis

This section provides a concise overview of the process followed to resolve the compressor
background velocity and pressure fields. The essential iterative scheme for compressible flow
matching at the blade-rows is described in detail. The analytical mapping of loss and deviation

buckets is dealt with in Appendix C.

C.1 Geometric Model and Input Parameters

The initial information needed to carry out the mean flow analysis consists of:

T

0,in

o Inlet thermodynamic conditions: P, ,,,
o Operating point mass flow, engine rotational speed and inlet swirl: iz, Q, @,
o Range of mass flow used to generate the compressor characteristic: 71, 1,

o  Number of stages: N,
o Length of inlet and exit ducts, and inter-blade-row gaps: Lg'l ""ILg,Ngaps
o Average hub and tip radius for each duct/gap: 7 1, Ty ngaps s 1,1 7+ Tt Ngaps

o Blade chords, stagger, inlet & exit metal angles: C,o; ;, Y01+ Binsot i » Bout rot s Cstair Yetasi

A geometric simplification is made in considering all gaps to have constant hub and tip radii.
Both ducts and gaps are treated equally in the numbering system; Gap 1 denotes the inlet duct
whereas Gap (2 Nstages + 1) refers to the exit duct. A single value for all flow and thermodynamic
quantities at the Euler radius is computed for each gap, using the turbomachinery equations and

compressible flow theory to bridge the blade-rows separating them.
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Figure C-1 Mean flow model — nomenclature and definitions
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C.2 Flow through a Generic Rotor

The Euler turbomachinery equations are not sufficient to determine the blade exit velocities
without an iterative procedure. Density and Mach number vary with each other, and mass
conservation at rotor exit must be invoked to close the problem. The combination of density and

velocity in any iteration must hold the pre-specified operating mass flow rate, i.e.
m; =PV, A = PV A =ity (€1)
where i is the iteration number.

One can start by postulating an absolute axial velocity at rotor exit. A plausible initial guess is to

set the axial velocity equal to its value upstream of the rotor.

Via=Vy, (C.2)
The blade-relative flow exit angle is calculated from the blade metal exit angle and the deviation,

due to the boundary layer growth over the profile, and remains constant throughout the convergence

history, for a given set of upstream conditions

ﬂZ = ﬂout,mt,l + 6101‘,1 (C3)

An elaborate procedure has been developed to extract J from a 3D surface capturing changes in
both incidence and inlet relative Mach number; this is described in further sections.

Having obtained values for V, and f,, ., the absolute tangential velocity at exit arises from

straightforward manipulation of the velocity triangles

V;,=U-V'y,=QR, -V}, tan §, (C4)

The change in absolute tangential velocity across the rotor leads directly to the increase in
stagnation temperature through the Euler work equation
i u i

T,, =T, +C_(Vo,z _Vo,l) (C.5)

P

From this, one can calculate the ideal total pressure rise by the isentropic flow relations, from

which the stagnation pressure loss, 4P, must be deducted. Like the deviation, this is accounted for by

an accurate distribution of AP, with incidence and inlet relative Mach number, using the same

analytical procedute to map the point on the surface corresponding to the desired operating

condition.
v

, T), !
P:;,z = Po,l {'fij - APo,mt,l (C.6)
0,1
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Compressible flow relations enable one to deduce the static pressure, temperature and density at

rotor exit as follows,

Y
2 0 rd .
: : ‘/l . . ! 7-1 i i
T)=T/,-22  P=Pi, -(TM _Y J pi =tz (C.7)

2c, 2, " RT}

The final step in the iteration is to check whether mass conservation at the downstream station is
satisfied. A variety of control variables can be selected. As the axial velocity after the rotor is used as
the variable of iteration, one can calculate the required value of V7 required to enforce continuity.

oM
2 p;Az

(8

Typically, one will find that the required value of axial velocity will be different than the initial
guess for the iteration step. The starting value for iteration i+1 can be chosen to be the required

velocity at the end of iteration i, so that
Vi =V (€9

The process can be carried on ad infinitum, by simply repeating steps (C.4) through (C.9), until a

pre-specified tolerance level has been reached.

C.3 Flow through a Generic Stator

The compressible flow iteration to bridge a stator is exactly the same as that presented above for a
generic rotor, with the exception that all velocities involved in the calculation are in the absolute
frame and that stagnation temperature remains constant across the blade-row, since no mechanical

work is exerted on the fluid and the flow is assumed adiabatic.

T,s=T,, (€.10)
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Appendix D

Loss and Deviation Models

D.1 Definitions

Because of the exploratory nature of this work, mean flow calculations and dynamic stability
analyses have to be performed for a wide range of compressor configurations and operating points. It
is envisaged that loss and deviation information corresponding to the machine at hand will be
provided by the user in the form of tabulations relating the aforementioned quantities to blade-

relative incidence and Mach number.

T=00,M,,,) 6=00M,,) (D.1)

1

, M = 0.80
/. M=0.67
| M =0.53
o M = 0.40
/ 4 M =0.26

Incidence [°]

Figure D-1 Sample loss dataset obtained from CFD or empirical tests
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The relative stagnation pressure loss suffered by blade-rows can be expressed by the following
loss coefficient, where the relative stagnation pressure drop is nondimensionalised by the dynamic

head

P, ~P
o= (D.2)
Py-P,
In an incompressible simplification, this reduces to
o= Pp-Py (D.3)
whpv'?

While this is the standard term in which loss information is presented, the description used for
the dynamic compressor model involves non-dimensionalisation by the wheelspeed
Pp-Py

L-Fada D9

D.2 3D Interpolation Technique

It is obvious that only a limited amount of data can be generated by either experimental or
computational means. The case for a reliable interpolation technique to any specified flow condition
is thus established.

In addition to obtaining the relevant & and & values, the method should also be capable of
delivering the local derivative of the loss with respect to the relative air angle, a necessary variable for
the generation of the transmission matrices used in the dynamic compressor model.

One could, in principle, solve for the loss or deviation values in the neighbourhood of each
operating point at which a solution is to be found, extracting a functional behaviour applicable to its
vicinity. This has two major drawbacks:

o A low number of data points and high noise levels can potentially make a local

expansion imprecise.
o For any arbitrary point, the interpolation should be carried out for multiple points in the
neighbourhood, in order to determine the loss derivative by, say, finite-difference-type

approaches.

It is much more feasible to obtain an analytic expression for each of the two surfaces. A two-

variable polynomial can be used to map the surface dataset in a least-square sense. Various numbers
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of terms were tried and the final form of the equation permits enough directions of curvature to map

typical loss and deviation buckets, while retaining computational efficiency.

o= kO + kll + k2Mm,re! + kSMiu,reJ"i + k4Min,rrJ'i2 + kSMjn,re12 (Dj)
In order to find the values of the coefficients for a given data-set, a least-squares formulation
yields
%, ]
. . i3
61 1 1 Min,rel] Min,rehl] Min,rﬂlll }VIRH2 kl
. . 2 2
m.2 - 1 I Ml’n,relz Min,relle Min,re!z‘IZ MRiZ i kZ (D6)
k,
wn 1 ln Min,reln Min,relnin Min,rﬂ!ninz MRin2 k4
_k5 .
In a more compact form, this can be expressed as
@=[Ak (D.7)

The standard procedure for calculation of the coefficients whilst minimising the sum of the

magnitudes of the errors at each data-point is as follows,
(AT a=[AT'[aAk = k=(aT'[a)'[a]® (D.8)
After application of this method, the analytic topology corresponding to the data and domain

presented in Figure D-1 is shown below, from which direct calculation of the loss coefficient and its

derivatives at any point is possible.

15

0
0 .
Mach no. 10 Incidence (deg)

Figure D-2 Analytic surface mapping of experimental/computational data
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D.3 Mapping Inaccuracies

The accuracy of the analytic surface fit depends highly on the behaviour of the initial data and its
conformance with the curvature possibilities offered by the polynomial. In any case, the resulting
surface is always continuous in all derivatives.

The standard loss and deviation buckets used for the sample analyses presented in this thesis
were specifically chosen to produce low loss levels. The error ranges from -10% to +12.5%, being

within 5% over most of the domain, as seen below.

12.5.

N :‘J -
n own o
yi F

Percentage LS error

L
o

d
~
(5]

/

—-
-0

0.25" 49
Mach no. Incidence (deg)

Figure D-3 Least-Squares mapping error for sample experimental data

D.4 Evaluation of Loss Sensitivity from the Analytic Surface

While the two loss-coefficients @ and L differ by the non-dimensionalisation parameter,

obtaining the loss-sensitivity with respect to the tangent of the inlet angle, dL/dtan B, , which is

necessary for the dynamic analysis, requires further manipulation.

For a start, one can only calculate analytically the slope of the 3D loss surface used in the mean
line model, da/0y| o - By virtue of the truncated expansion (D.5),
B Y D.9
By 1+ KaMi o + 2kstM (D.9)
It is straightforward, however, to switch to

L. V' ?(owm
FTRETTE [a_) (D-1t)
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To reach the required derivative, an expression for dtan £, /d¢ must be devised in view of the

application of the chain rule

oL _oL_ d
dtanf, Ji dtanf,

(D.11)

The inlet-relative air angle is simply the sum of the blade metal angle and the flow incidence at

the leading edge. Therefore, the tangent of the inlet flow angle can be expressed as

tanz+tan p,
tan B, = tan\B,, ., + l) = B piase
1—-tanztan B, ..

From here, one finds immediately that

dtan 8, _ 1 tan B, .. (tam +tan B, i )
i cos? {1 —tan B,y tanz)  cos? {1 —tan B, ,u,, tanz)

And the loss derivative of interest becomes

Vt 2
oL E}T(kl +kM;, 0 + 2kaM,, )

in.rel

8 tan ﬂl - 1 tan ﬂin,blade (tan 1+tan ﬂ in blade )
cos? ((1—tan B, ., tanz)  cos®f{1—tan B, tans)
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