
EMPIRICAL EVALUATION OF DESIGN PRINCIPLES FOR
INCREASING REVIEWABILITY OF FORMAL REQUIREMENTS

SPECIFICATIONS THROUGH VISUALIZATION

by

NICOLAS DULAC

B.Eng. McGill University, 2001

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE IN
AERONAUTICS AND ASTRONAUTICS

at the

FMASSACHUSETTS INSTITUTE
OF TECHNOLOGY

NOV 0 5 2003

LIBRARIES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
August, 2003

D Nicolas Dulac, 2003
All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute copies of this thesis document in whole or in part.

Signature of Author -
Department of Aeronautics and Astronautics

August 2003

Certified by -

Professor Nancy G. Leveson
Department of Aeronautics and Astronautics

Thesis Supervisor

Accepted by
Professor Edward Greitzer

H.N. Slater Professor of Aeronautics and Astronautics
Chair, Committee on Graduate Students

AERO

EMPIRICAL EVALUATION OF DESIGN PRINCIPLES FOR
INCREASING REVIEWABILITY OF FORMAL REQUIREMENTS

SPECIFICATIONS THROUGH VISUALIZATION

by

Nicolas Dulac

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the

Degree of Master of Science.

Abstract

As software systems become more pervasive in the aerospace industry, new techniques need

to be developed that allow engineers to accurately review and understand the complex

requirements specifications of these software systems. Several visualizations that provide a

different view of formal specifications are proposed based on the experience of trying to manage

the complexity of the MD-i 1 flight management system. A taxonomy for discussing these

visualizations and a s et of g eneral p rinciples that guide the d evelopment of visualizations for

formal specifications are developed.

An interactive tool is developed to implement the visualizations and a user experiment is

conducted using the tool to evaluate several of the principles. Subjects answer questions about

the formal model of the annunciation process of the MD- 11 vertical guidance system using both

SpecTRM-RL and the visualization tool. The results of the experiment demonstrate the

usefulness of formal methods in complex aerospace software systems and the potential of

information visualization to increase the reviewability of formal specifications.

Thesis Supervisor: Dr. Nancy G. Leveson
Professor of Aeronautics and Astronautics

2

Acknowledgements

First and foremost, I would like to thank Professor Nancy Leveson, my academic advisor

and thesis supervisor. Your enthusiasm, support and guidance during these two years at MIT

have made this work possible.

I would also like to thank Professors Peggy Storey and Kim Vicente for your invaluable

research advices and for your willingness to share your time and experience. My gratitude also

goes to Professor Rakheja, for sharing your passion for research and for encouraging me to apply

to MIT.

Many thanks go to Thomas Viguier, my French friend and colleague. Your knowledge and

intelligence made of you an outstanding research partner.

Working in such a stimulating environment was an extraordinary experience. Many thanks

go to my labmates for being so smart, yet so grounded and fun. Thanks Ed, Natasha, Mima,

Karen, Polly, Victor, JK, Elwin, Steph, Martin, Stella, Anna, and all those I forgot.

Thanks to all the volunteers who agreed to participate in the experiment. Your patience and

insight were greatly appreciated. Thanks also to my two UROPs, Craig and Eric, whose work

has helped me to complete this thesis on time, or at least not too late...

Also thanks to all my teammates on the MIT Varsity Hockey Team for providing much

needed humor-based (read: Canadian jokes) stress relief during the past two years. Dump and

bang, guys! Thanks to my coaches: Marky, Jimmy, Donnie and Froggy, for being such an

example of dedication and for allowing me to extend my hockey career.

Katie... Thank you for everything. Thank you for being there for me during these years,

and mostly, thank you for being such a loving, caring, and supportive person.

Many thanks go to my family, whose unconditional love and support over the course of my

(long) studies have been essential for the completion of this thesis and every other thing I

accomplished. Thanks Mom, Dad, Frank and Marie.

3

Table of Contents

Abstract
Acknowledgements
Table of Contents
List of Figures
List of Full-Page Figures
List of Tables

Chapter 1.
1.1
1.2
1.3
1.4
1.5
1.6

Chap

Introduction
Formal Requirements Specification
Specification Reviewability
Measuring Reviewability
Factors Affecting Reviewability
Visualizing Formal Specifications
Visualization Design

ter 2. Background
2.1 State-Based Specifications
2.2 Formal Specifications Readability
2.3 Related Work on Visualization

2.3.1 Cognitive Aspects of Visualization
2.3.2 Visual Programming Languages
2.3.3 Large Media Visualization and Exploration
2.3.4 Human-Machine Interactions

2.4 SpecTRM
2.4.1 Intent specification
2.4.2 SpecTRM-RL
2.4.3 SpecTRM Interface

Chapter 3. Visualizations and Taxonomy
3.1 Sample Visualizations

3.1.1 Structural overview - (V1)
3.1.2 Question-Based Decision-Tree - (V2)
3.1.3 State Transition Diagram and Inversion - (V3)

3.2 Taxonomy of Visualizations
3.2.1 Scope
3.2.2 Content
3.2.3 Selection Strategy
3.2.4 Annotation Support
3.2.5 Support for Alternative Search Strategies
3.2.6 Static / Dynamic

2
3
4
7
9

10

11
12
14
15
16
18
19

20
20
22
23
23
24
25
27
27
28
30
31

33
33
33
38
43
46
46
46
47
47
48
48

4

Chapter 4.
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Requirements Specifications Visualization Design Principles
Minimize Semantic Distance
Match the Task being Performed
Support the Most Difficult Mental Tasks
Highlight Hidden Dependencies and Provide Context when Needed
Support Top-Down Review
Support Alternative Problem-Solving Strategies
Show Roles Being Played
Provide Redundant Encoding
Show Side Effects of Changes

Chapter 5. Experiment Design
5.1 Experiment Objective
5.2 Experiment Hypothesis
5.3 MD-11 FMS Formal Specification
5.4 Tools Description

5.4.1 SpecTRM
5.4.2 Visualization Tool

5.5 Experiment Methodology
5.5.1 Subject Selection
5.5.2 Tutorial
5.5.3 Experiment Questions and Tasks
5.5.4 Post-Experiment Analysis
5.5.5 Experimental Setup

Chapter 6. Experiment Results
6.1 Grading System
6.2 General Results
6.3 Performance Metrics Results

6.3.1 Answer Accuracy Results
6.3.2 Answering Time Results
6.3.3 Question Difficulty Results

6.4 User Preferences
6.5 Principle-Specific Discussion

6.5.1 Highlight Hidden Dependencies
6.5.2 Support Top-Down Review
6.5.3 Support Alternative Strategies
6.5.4 Provide Redundant Encoding

6.6 Experiment Limitations
6.7 Recommendations

49
49
51
51
52
53
54
55
55
56

58
58
60
60
64
64
66
66
67
67
68
69
71

72
72
73
76
76
80
82
84
85
85
87
89
91
92
94

5

Chapter 7. Conclusion
7.1 Attractiveness and Performance of Visual Representations
7.2 Validity of Highlight Hidden Dependencies Principle
7.3 Validity of Top-Down Review Principle
7.4 Validity of Support Alternative Strategies Principle
7.5 Validity of Provide Redundant Encoding Principle
7.6 Other Results and Observations

References

Appendix A. Full-Page Figures
Appendix B. Experiment Questions
Appendix C. Complete Quantitative Results

96
96
97
98
98
99
99

101

104
113
121

6

List of Figures

Figure 2-1.

Figure 2-2.

Figure 2-3.

Figure 3-1.

Figure 3-2.

Figure 4-1.

Figure 5-1.

Figure 5-2.

Figure 5-3.

Figure 5-4.

Figure 6-1.

Figure 6-2.

Figure 6-3.

Figure 6-4.

Figure 6-5.

Simple state-machine of a car cruise control system

Intent specifications dimensions

SpecTRM visual overview of an altitude switch system

Legend key of the visual elements of the structural overview
(Vi)

A sample state-machine transition diagram and inverse transition diagram
taken from the MD-11 vertical guidance specification. This state variable
describes the vertical attitude of the aircraft during cruise

Sample graphical overview of the modes and state variables of a digital
avionics system

Inside view of the MD-11 cockpit. The VG Annunciation Process sends
feedback information to the highlighted display units

Detailed view of the main display units of the MD-1I cockpit

Detailed view of the Flight Control Panel (FCP) located on the glareshield
panel of the MD-11 cockpit

Hierarchical context of the Vertical Guidance Annunciation Process
function along with its main I/O devices

Summary of the average performance (answer accuracy) of each subject
graded on a 0-10 performance scale

Summary of the average difficulty rating of each subject evaluated on a
0(easy)-10(difficult) scale

Summary of the average time spent answering each question

Average overall performance for subjects using the three different tool
configurations

Average results obtained for each question part using the three possible
tool configurations

21

29

31

35

44

54

61

62

62

63

74

75

76

77

78

7

Figure 6-6. Average time spent on each question part using the three possible tool 81
configurations

Figure 6-7. Average overall difficulty rating for subjects using the three different 82
tool configurations

Figure 6-8. Average difficulty rating for each question part using the three possible 83
tool configurations

8

List of Full-Page Figures (in Appendix A)

Figure A. Screen capture of the SpecTRM GUI 105

Figure B. An organized overview of the view of the structure of the specification (V1) 106

Figure C. Sliced structural overview. The state variable Origin ofLevel TD and its
structural dependencies are emphasized over the rest of the model, which is 107
preserved as context

Figure D. A Questions-based Decision Tree taken from the MD-11 Vertical Guidance
Specification. The state variable Active Add Drag Scenario indicates which 108
of the five possible scenarios for extending airbrakes is active, if any

Figure E. A Questions-based Decision Tree from the MD-11 Specification. The state
variable Origin ofEcon Airspeed Target determines how the Vertical 109
Guidance System will compute the Econ Airspeed Target

Figure F. Effects of a slicing scenario applied on the state variable Origin ofEcon
Airspeed Target (Figure E). The states reachable under this scenario are
highlighted. The active scenario specifies that the flightphase is 'Descent' 110
and that the current operational procedure is 'Descent Path' or 'Late
Descent'

Figure G. Five of the six AND/OR tables necessary to describe the state variable
Active Add Drag Scenario in the specification of the MD-11 Vertical ill
Guidance Annunciation Process. This state variable specifies which of the
five possible scenarios for extending airbrakes is active, if any

Figure H. Screen capture of the entire visualization tool 112

9

List of Tables

Table 5-1. Tool/Question combination for the twelve subjects 68

Table 5-2. Variables used in the experiment 69

10

Chapter 1

Introduction

In the last decade, the aerospace industry increasingly relied on software to replace functions

traditionally performed by hardware devices. The increased prevalence of software systems has

been accompanied by a dramatic increase in system size and complexity. This trend toward ever

larger, c omplex, and integrated s oftware s ystems inevitably increases the likelihood of subtle,

undetected errors. This is a most important concern because software is now used to perform

many safety-critical functions in aerospace systems, such as aircraft guidance and spacecraft

attitude control. Examples of system failures caused by software errors abound: the 1999 Mars

Climate Orbiter and Ariane 5 failures are just two recent examples. This threat will only

increase in the next decade as software becomes even more pervasive. Leveson summarizes the

current situation in Safeware [20]:

"Few systems today are built without computers to provide control functions, to

support design, and sometimes to do both. Computers now control most safety-critical

devices, and they often replace traditional hardware safety interlocks and protection

systems-sometimes with devastating results."

The growing size and complexity of software is a result of strong incentives to develop

integrated systems providing more functionality at lower cost. Theoretically, the exponential

increase i n c omputing p ower available p aves t he w ay for s uch an i ncrease i n c omplexity and

functionality. The common industry belief that software is infinitely flexible contributes to this

increase in complexity by replacing well-proven traditional hardware systems with complex

software systems including ever more functions. For example, the Boeing 777 includes more

than four million lines of code distributed over 79 interdependent systems. This represents a six-

fold increase over Boeing's previous aircraft program.

This exponential growth in software size and complexity is not matched by a parallel

improvement of software development methods. Most of the time, standard software

development processes are used to develop safety-critical software systems without regard for

the unique requirements of safety-critical system.

11

Contrary to popular belief, many of the most serious software errors result from flawed

requirements specification activities rather than from coding mistakes. Most of the errors in

software systems can be traced back to the requirements. Errors can occur if the requirements

are wrong, incomplete, or misinterpreted. Requirements errors are not only difficult to detect,

but they are the most expensive to correct at a later development stage because they were made

early in the development process and most likely influenced a variety of design decisions.

Exhaustive testing of large specifications is impossible because of the massive d iscrete s tate-

space involved. Theoretically, formal methods and mathematical analysis present a solution to

our inability to test even a small portion of the enormous state-space involved in today's

complex digital systems. However, while automated analysis tools can find some types of

errors, detecting many of the most serious semantic errors (e.g., will the software advance the

throttle under unsafe conditions or will the software behavior lead to human errors in controlling

the aircraft) requires human expertise. Validating software behavioral requirements in complex

systems is a necessarily multidisciplinary problem involving a large number of engineering

disciplines.

1.1 Formal Requirements Specification

Requirements specification is one of the earliest and most decisive stages of system

development. The impact of the decisions - or mistakes - made during this phase will resonate

throughout the whole system lifecycle. Some people argue that the requirements specification

phase is not as critical for software systems because software is flexible and can be easily

changed or updated at a later date. However, the apparent flexibility of software makes it a

perfect candidate for late fixes when deficiencies are found i n o ther p arts o f t he s ystem. A s

Shore [31] puts it: "Software is the resting place of afterthoughts ".

The requirements specification process includes many activities that often overlap.

Among these activities are the specification creation, modification, validation, and review. A

large number of people with various backgrounds participate in the specification process,

12

including systems engineers, developers, designers, QA people, HMI specialists, regulation

experts, operators, customers, etc.

Irrespective of the process followed in order to obtain the specification, two types of

requirements specification c an b e u sed. I nformal specifications u se plain English and ad-hoc

diagrams to describe the system requirements. The organization and format of informal

specifications is often dictated by the tool used to produce and manage it and by company

policies. Formal specifications use a language with rigorously defined syntax and semantics to

describe the requirements. The format of formal specifications is constrained by the properties

of the language used. Z and Statecharts are two well-known formal specifications languages.

Formal specifications are part of a larger methodology called formal methods. Clarke and Wing

[5] define formal methods as "mathematically based languages, techniques, and tools for

verifying and specifying hardware and software systems".

Through the use of a formal language, formal specifications can promote a common

understanding of the required functionality of the system. Since the language used to create the

specification is rigorously defined, the specification will not be subject to misinterpretations

resulting from users with various backgrounds interpreting ambiguous natural language

expressions differently. The use of unambiguous language is a key for domain experts to

validate that a specification describes a safe and useful system. All specifications are meant to

be a clear means of communication between all the stakeholders involved in systems

development. The advantage of formal specifications is that they are accurate and explicit,

provided they can be read and understood by these stakeholders.

During a formal specifications process, a specification language is used to create is a formal

model of the system requirements. The mathematical foundation of formal specification

languages allows for analysis of some properties of the specification. Among others, formal

models can be analyzed to prove that they are deterministic and robust [14,23]. Because of the

large amount of computation required to prove such properties for complex systems, these

analyses are usually done through the use of automated tools. Another advantage derived from

the use of formal specifications is that the formal models obtained can be executed in order to

"see" the system in operation before it is implemented and make sure the resulting system will

perform as expected. This is only possible through a rigorous specification o ft he e xternally

visible behavior of the system. The benefits derived from the use of formal specifications can

13

result in safer and more reliable products, increased product quality, and reductions in cost and

time-to-market.

However, formal methods are not widely used the industry. Clarke and Wing [5], and

Gerhart and Craigen [9] have conducted surveys of the state of the practice in industry and

academia. Except for a few successful projects in industry, formal methods remain limited to the

academic world. Two main reasons may be advanced for this lack of industrial acceptance:

most formal specifications are not easily readable, and they do not scale well to complex

systems. Readability is arguably one of the most important properties of any specification [21].

Formal specifications will never be accepted if a large amount of training is required only to read

them. Scalability is also a major concern. Most of the formal methods research work in

academia use very small models. Proving properties of toy-size models may be an interesting

intellectual exercise and can produce quality research work, but as long as the theory continues

to be applied to unrealistically small models instead of complex real-world systems, the gap

between academia and industry will not be bridged.

Making formal specification languages readable and scalable to large complex systems is a

key factor in promoting the adoption of formal specifications by the industry. One of the

objectives of the Software Engineering Laboratory (SERL) at MIT is to increase the readability

and scalability of formal specifications to promote their industrial acceptance and profitability.

Previous work by members of this laboratory has addressed the readability of the representations

used to specify the externally visible behavior of complex systems [41]. This thesis concentrates

on increasing the reviewability of formal specifications through the use of visualization.

1.2 Specification Reviewability

The review of specifications is a critical phase in systems development because undetected

specification errors will ripple through the systems design and implementation phase. When

detected at a later development stage, the cost of fixing these errors will many times higher then

it would have been in the specification stage. The review of specifications typically includes two

types of tasks. The first task is to ensure that the low-level systems requirements will

successfully fulfill the high-level customer requirements. That is, making sure the system

14

specified will do what it was intended to do. Domain experts who did not necessarily write the

specification usually do this type of review, often called specification validation. The second

type of review task involves finding errors in the specification itself. These errors range from

common typos to major inconsistencies. This type of review is often conducted by a variety of

people with different backgrounds. For systems requiring certification, this often includes

representatives from regulation agencies. This type of review can be compared to peer review in

programming, and is often called formal review when the review sessions are conducted using a

strictly defined format.

Some advocates of formal methods argue that mathematical analysis facilitates the review of

formal specifications. Although it is true that many advantages are derived from mathematical

analysis of formal models, it does not lessen the need for specifications to be readable.

Experience has shown us that engineers will not put their confidence in a specification they

cannot understand. Furthermore, the refinement of high-level customer requirements to low-

level s ystem requirements requires human expertise and c annot be fully automated. Previous

work at SERL has also shown that automated analysis will not detect all types of errors,

especially subtle errors requiring domain knowledge.

Additionally, reviewing specifications of complex systems is an inherently multidisciplinary

activity, more so than any other systems development activity. In spite of their mathematical

foundation, formal specifications need to be readable and understandable by any individual

involved in the systems development process, including people with no knowledge of computer

science or software engineering.

1.3 Measuring Reviewability

The p receding s ection explained why reviewability is such a desirable property of formal

specifications. In order to evaluate the reviewability of formal specifications, reviewability

metrics have to be defined. Reviewability can be defined as the efficiency of performing various

reviewing tasks. This is also a very subjective definition and should be further refined into

measurable components. Reviewing tasks will vary a lot according to the domain and function

of the specified system. For example, a flight entertainment system onboard an airliner may be

15

highly complex, but will not be subject to the same type of thorough review as the landing gear

monitoring system, a simple but critical system. The experience and knowledge of reviewers

will also affect the efficiency of the review process; A difficult reviewing task for a novice may

be trivial for a domain expert. As a result, objectively measuring the efficiency of review

activities as a whole is more difficult than it appears at first. For this reason, review efficiency is

easier to measure for given tasks, or category of tasks. It is believed that by combining the

cumulative efficiency of a formal specification language to perform a set of typical tasks, a

general assessment of the reviewability of a formal specification can be obtained.

For example, a typical reviewing activity involves searching for the information necessary

to perform a task. A complex formal specification is a large, dense information space and

locating the required information can be a daunting task. Although the use of computer tools

facilitates the location of critical information over paper specifications, different navigation

functions may be available to facilitate information searches. A very useful measure of the

efficiency of an information search function is the cost structure of information [2]. The cost

structure is defined as the reachability of information in a dense information space, in terms of

the amount of effort necessary to locate the desired information. A good cost structure will

reduce the information search time and will make the critical or most often needed information

available first. Since all reviewing tasks include information searches in some ways, the cost

structure of an information space is an easy to evaluate metric that can be used, among others, to

assess the reviewability of formal specifications.

1.4 Factors Affecting Reviewability

In order to evaluating the reviewability of a specification language, it is important to identify

the factors that will affect this property. As mentioned previously, the difficulty or complexity

of the reviewing task to be performed, as well as the experience of reviewers are two primary

factors that will affect the apparent efficiency of a formal specification review process. Other

factors stand out as equally important, although they might not be exhaustive, neither completely

independent from each other.

16

The effectiveness of the notation or representation used to present the information is an

important factor. It is possible, through experimentation, to objectively evaluate the

effectiveness of different representations. However, even if we can prove that a representation

is, on average, better than another, the efficiency of a representation can only be evaluated in the

context of a certain type of users performing a certain type of tasks. A good quality

representation can perform well for most reviewing tasks while being very difficult to use for a

task in particular. The personal experience and background of reviewers may affect their

performance and preferences for different notations. Nevertheless, the representation used

affects the specification reviewability. There is no such thing as a perfect representation, but it is

possible to say that some representations are much better than others.

Regardless of the representation used, the availability of powerful features that modify the

information available in the specification also greatly affects reviewability. Some of these

operations can be as simple as a text search that quickly locates keywords in the specifications.

More powerful features include the ability to simplify the specification based on an operating

scenario, or the ability to analyze a system model for completeness. Such tasks that support the

reviewing process but that are tedious to perform manually should be automated as much as

possible. Powerful features c an greatly a meliorate the e fficiency o f a specification reviewing

process, but they should always b e w ell understood, a nd u sed w ith c aution s ince t hey c annot

replace experience and good sense.

Specification complexity is another factor that affects reviewability. Software systems are

usually more complex than mechanical or physical systems because they are not subject to the

same physical constraints. While physical systems have to comply with nature's laws and

production constraints, software is infinitely malleable "thought stuff' that can be reproduced at

will. Also, when compared to computer hardware, the complexity of software systems tends to

be more difficult to manage because software is more organic and cannot take advantage of the

repetitive structure of c omputer hardware. 0 ur e xperience in trying to create and understand

very large specifications for systems such as flight management, collision avoidance, and air

traffic control has shown that even with a formal notation designed with readability in mind, the

complexity of the behavior being described overwhelms the reader. Not only is it difficult to

provide notations that can be reviewed by people with different backgrounds and expertise, but

17

for complex systems, most users (even the authors of the specification) need help in managing

complexity.

Size is also a critical factor. The discrete mode logic for an aircraft flight management

system may require thousands of pages of formal logic to specify in adequate detail. The review

of such specifications by domain experts or even by those who are expert in the formal notation

itself is a daunting task. The size of a specification document affects the user's cognitive

workload. Even locating the necessary information within a specification hundreds of pages

long can be a tedious task. Trying to build up a mental model of the dependency structure of

only a few elements in the specification usually overloads the user's short-term memory.

Navigating through large specification document is difficult and overloads the user with detailed

information that degrades his or her ability to see the big picture.

Specification s ize and c omplexity are f actors t hat are o ften o ut of the reviewer's control.

However, finding ways to manage them more efficiently can lessen their effect. Powerful tools

and functions can help navigating and understanding large, complex formal specifications. Since

we are trying to increase the human's natural ability to review complex systems specifications,

we need to find ways to extend the human's cognitive limits by amplifying cognition. Humans

use external tools to stretch their cognitive limits by minimizing the use of internal working

memory. For example, humans usually cannot perform long divisions without the use of paper

and p encil. W e believe that properly designed information visualization tools can be used to

stretch the cognitive limits of the reviewers of formal specifications.

1.5 Visualizing Formal Specifications

In a compilation of papers on information visualization [2], Card, Mackinlay and

Schneiderman d efine i nformation v isualization a s " the use of computer-supported, interactive,

visual representation of abstract data to amplify cognition". This definition is slightly restrictive.

For example, a hand-made static representation of the inputs and outputs of a system could also

be considered as an information visualization medium. However, since modern formal

specification tools are computer-supported and interactive, the original definition will be used.

18

Diagrams are a universal way to amplify cognition. Diagrams are often used in a non-

systematic way to explain parts of informal specifications. However, the preciseness of formal

specifications provides the advantage of permitting the automatic generation of diagrams from

the formal model itself.

Visualization clearly has an effect on cognition, but it is difficult to explain and quantify.

Many cognitive scientists and computer scientists have endeavored to explain the appeal of

graphical programming languages but could not reach an agreement. Our task is to design

visualizations of formal specifications that will improve the reviewing process by taking

advantage of the cognitive benefits derived from the use of visual representations.

1.6 Visualization Design

Unfortunately, there are few principles to follow when designing interactive or even non-

interactive graphical and symbolic notations for visualizations of formal software requirements

specifications. Most of the research work was done in other fields and cannot be directly applied

to solve the problems specific to formal specifications. Some of the related work suggest

principles to be used for the design of effective visualizations in fields such as programming,

Internet navigation and software re-engineering. We believe that some of these principles can

be adapted to fit within the context of formal requirements specifications. The research work

presented in this thesis includes the introduction of a set of principles to be used for the design of

effective visualizations for formal requirements specifications. Based on these principles,

interactive visualizations were designed and evaluated through user studies in order assess the

validity of the proposed design principles.

The following chapter provides background work on the reviewability of formal

specification and a survey of related visualization work. Chapter three presents sample

visualizations and a taxonomy used to classify the visualizations created. Chapter four

introduces nine design principles for designing visualizations of formal requirement

specifications. Chapter five explains the design of a user experiment intended to evaluate the

design principles. Chapter six presents and discusses the results obtained in the experiment, and

chapter seven summarizes and concludes this thesis.

19

Chapter 2

Background

The research work presented in this thesis builds upon our own experience in creating and

reviewing complex requirements specifications as well as research in other fields such as formal

languages readability, intent specification, information visualization, and cognitive engineering.

This chapter presents the background research upon which our research is built.

2.1 State-Based Specifications

Formal specifications u se a formally d efined model to make statements about the system

behavior. We use state-machines as the basis for the specification of our formal model because

20 years of empirical work have shown that they are the most easily understood and adopted by

engineers. However, formal models can be built using other methods such as the abstract model

specification used in Z [32] or the algebraic specification used in Larch [12].

State-machine specifications explicitly describe system behavior by a set of states and

define operations as transition between states. A state-machine specification includes states and

their possible values as well as well-defined transition conditions on those values. Figure 2-1

shows a sample state-machine of a car cruise control model along with the conditions that govern

the transition between states and the prescribed system behavior associated with each state. The

cruise control state variable can be in one of the following four states: Cruise Control Off

Cruise Control On - Standby Mode, Increasing Speed and Maintaining Speed. The arrows

specify transitions between states. Transition arrows are defined by source state and destination

state, and are labeled with triggering conditions. A transition between two states is fired when its

associated triggering conditions are met. For example, the cruise control transitions from the

state Cruise Control Off to the state Cruise Control On - Standby Mode when the driver turns the

cruise control on. During this transition, the cruise control is initialized, corresponding to the

prescribed action specified along with the transition condition. The state variable Cruise Control

is a single state variable made up of four possible states. State-based formal specifications for

real systems are made up of several state variables that depend on one another. A drawback of

state-machine specifications is the explosion of states that occurs when specifying complex

systems.

Cruise control turned on /
Initialize Cruise Control

Cruise Increase speed conuanded /
Control On - Send command to tluttle

Cruse Standby Mode to increase at X rate
Centrol1Of Cruise control

turned off

Brake depressed
or Accelerator
depressed / Speed
Discontinue
crnise control

Set point reached /
Reduce threttle

Speed

Read wheel speed /
Adjust tluotte

Figure 2-1: Simple state-machine of a car cruise control system.

State-machines are abstract entities, and as such, they can be specified using many different

notations, both visual and textual. Figure A shows a visual representation of the state-machine

that is very similar to the visual representation used in Statecharts [13]. Such representations

work well for small models but become problematic for state machines including either a large

number of possible states or complex transition conditions. All representations are not equal and

some are better than others for specific tasks. The next section presents related work in

evaluating the effectiveness of different representations.

21

2.2 Formal Specifications Readability

While formal methods have been successfully applied to hardware in industry, their use for

software applications in industry have been very limited despite their large potential. Many

reasons can be hypothesized to be the cause of this lack of widespread adoption of formal

methods by the software industry. Since formal models are based on discrete mathematics and

logic, their use requires some training in these fields of discrete mathematics. Engineers

responsible for the specification of complex software systems typically do not possess the

knowledge required to take full advantage of formal methods. Even if training in discrete

mathematics was readily available for every engineer involved in the use of formal methods, the

notations used in formal languages would discourage the use of such methods for complex

projects. In fact, many formal specification languages often appear cryptic and require extensive

effort to read and comprehend. Since the discrete mode logic for a flight management system

requires hundred of pages of formal logic to specify, the use of an unreadable specification

language prevents the use of formal methods altogether for systems larger than a simple toy or an

elevator c ontrol s ystem. Developing specification languages that are easily readable by every

person involved in the specification and implementation of complex systems is the first building

block necessary for the adoption of formal methods in the industry.

Formal specification tools and languages must take advantage of the mathematical tools and

computing power available while hiding the mathematical representation of the system from the

users. Just as it is possible for everyone to use a computer and navigate the internet without

having the knowledge necessary to write a "hello world" program, engineers should be able to

take advantage of formal methods without knowing about the underlying discrete mathematics

upon which the methods are based. The formal methods field is currently going through this

maturing process where the tools become powerful and simple enough so they can be used

without advanced knowledge of the underlying mathematics. An example of another field that

went through this maturing process is finite elements analysis, which went through a rapid

maturing phase as the availability of computing power increased. Fifteen years ago, despite the

well-established mathematical basis of finite elements and material science, developing a model

of a simply loaded cantilever beam was a difficult task requiring much programming effort and

scientific knowledge. Nowadays, a three-day seminar in finite elements analysis with a

22

commercially available package provide enough knowledge and skills for engineers to build

complex models such as wing assemblies and to collect most of the benefits associated with the

use of finite-elements analysis.

As mentioned previously, we use state-machine models because they have been widely

used in a variety of large projects and are generally well accepted and understood by engineers.

Starting from this hypothesis, since computing power is readily available, the first and arguably

most important step is to provide a formal specification language that will be easily readable by

an audience composed of people with different background and expertise including system

designers and developers, customers, users, certifiers, etc. Zimmerman et al. [41] conducted an

experiment in order to determine how various factors of state-based specification language

design affect the readability of formal specifications using aerospace applications. Six factors

were tested including the representation of the overall state-machine structure, the expression of

triggering conditions, the use of macros, the use of intemal broadcast events, the use of

hierarchies and transition perspective. The results showed that the tabular representation of both

the state-machine structure and the triggering conditions were better accepted and easier to use.

As such, a s pecification 1 anguage u sing t abular r epresentations o f s tate-machine s tructure a nd

triggering conditions will be the basis against which our specification visualization tool will be

compared.

2.3 Related Work on Visualization

There exists a large literature on the visualization of abstract quantitative data. Tufte's work

[36] on the visual display of quantitative information, for example, is largely recognized and

accepted as the reference for designing visualizations of quantitative data. However, very little

work has addressed the visualization of processes or systems, which present very distinct

difficulties, mostly because of the dynamic nature of the information to visualize. This section

presents some work on the use of visualization in related fields that could potentially be applied

to the visualization of formal specifications.

2.3.1 Cognitive Aspects of Visualization

Larkin and Simon [18] pioneered the research into the impact of visualizations on cognition.

They first distinguished between sentential representations, whose contents are stored in a fixed

23

sequence like the propositions in a text, and diagrammatic representations whose contents are

indexed by their position on a 2-D plane. While these two representations may contain the same

information, their cognitive efficiency may be different. Certain features are more easily

extracted from diagrams than from sentential representations. For example, adjacent triangles are

easy to find visually, but require a potentially elaborate search through a sentential

representation. Diagrams can also group together related concepts. Sentential representations

may store related items in separate areas, thus requiring extensive search to link concepts.

Research has shown that the effectiveness of visualizations is highly dependent on the

particular task that a user is trying to complete [3,26]. In other words, a given visualization may

be i deal for p resenting i nformation for o ne t ask b ut m ay hinder the completion of a different

task. There are many ways that representations can affect task performance. For example, visual

representations can draw attention on certain aspects of the information that s upport p roblem

solving. Casner and Larkin have suggested that good representations reduce the amount of

cognitive processing in two ways: (1) they allow users to substitute quick perceptual inferences

for more difficult logic inferences, (2) they reduce the search time for the information required to

perform a task. On the flip side, representations can distract from the information that support

problem solving by drawing attention to other information irrelevant to the task at hand. Good

representations can shift the cognitive load, balancing the use of mental resources, shifting

attention, and creating p erceptual cues, but poor representations can create additional tasks or

make the tasks more difficult to perform.

2.3.2 Visual Programming Languages

There has been a lot of research in visual programming languages and on the use of

visualization to support program comprehension. Fitter and Green [8] proposed five principles

of diagrammatic notation that may be applicable to formal specifications: (1) Relevance states

that only relevant information should be encoded perceptually rather than symbolically, (2)

Restriction states that notations should restrict the user to forms that are comprehensible, (3)

Redundant recoding should be used for critical parts of the information, (4) Notations should

Reveal the underlying processes that they represent, and should be used in the context of a

Responsive interactive system, and (5) Notations should be readily Revisable. Redundant

recoding, for example, is a very useful principle that is applied when specifying the same

24

information in two different ways, each of which simplifies different cognitive tasks. It can also

be used to emphasize certain information. When a piece of information is especially important

to a user's task, or if it is critical to the overall structure of the information, it is helpful to present

a high-level view in a perceptual form, while at the same time presenting the detail in symbolic

notation.

The most useful notations contain both symbolic and perceptual elements. In some cases

they are independent and in other cases, they are logically redundant. An example of this is the

use of indenting, color-coding, parenthesis matching and other cues to make programs more

legible. These perceptual cues have been called secondary notation because they convey

additional meaning above and beyond the "official semantics" of the language, or they

disambiguate syntactic structure in order to assist in interpreting semantics. Petre [24] stresses

that graphics do not guarantee clarity and that good graphics relies on this secondary notation,

which is crucial for comprehensibility. Poor use of secondary notation is not merely neutral; it

can confuse and mislead. It is argued that the appropriate use of secondary notation

differentiates experts and novice visualization designers. Even though empirical studies did not

find visual programming inherently superior to text based programs, visual programming is

perceived as being more accessible, easier to understand, richer, and providing the "gestalt

effect": providing an overview permitting the emergence of the overall structure and promoting

the c onstruction o f a mental model. In itself, this positive image and appeal may have some

important value.

Blackwell at al. [1] reviewed some empirical studies on the use of diagrammatic notations in

programming and proposed a set of cognitive dimensions for visual language design, intended to

be used as a vocabulary of terms describing cognitively-relevant aspects of structure of an

information artifact. Example dimensions are closeness of mapping, consistency, role-

expressiveness, and visibility. Because the context of visual programming languages is in some

ways s imilar t o t hat o f s pecification 1 anguages, s ome o f t his w ork c an b e m odified t o fit o ur

purpose.

2.3.3 Large Media Visualization and Exploration

The overwhelming increase in the size and complexity of information available from

various sources has promoted some good research on the visualization of database data and high-

25

density information spaces such as the Internet. The sheer size of specification documents

cannot be compared to the size of large databases. Nevertheless, specification documents of

complex systems such as flight management systems of modem airliners span thousands of

pages. Consequently, users need help in navigating through these documents and in finding the

information they require to perform a task. Some of the work done in the visualization of large

media such as databases, web searches, and complex programs can be applied to the navigation

of complex formal specification documents. This section provides a sample of related work that

could be useful for designing visualizations to help navigate and find information in large

specifications.

Storey et al. developed a cognitive framework of design elements to be considered during

the design of a software exploration tool [34]. Software exploration tools provide graphical

representations of static software structures linked to textual views of the program source code

and documentation. This framework contains two sets of factors to support the variety of

comprehension strategies used by programmers during software exploration and to reduce

cognitive overhead as they explore and try to construct a mental model of the software. The

framework has been applied to the design and evaluation of a software exploration tool called

ShriMP Views (Simple Hierarchical Multiple-Perspective) [33]. Although this framework has

mostly been applied and evaluated using tools designed to visualize the structure and code of

Java programs, the same combination of complex high-level structure and low-level details can

be found in formal specifications, suggesting a possible adaptation of some parts of the

framework to specification visualization.

Currently, navigating through large specification documents is in many ways similar to

navigating through hypermedia documents using Internet browsers. A hypermedia document

contains related and linked representations of an information space. Many of the difficulties

experienced by users of specification documents are similar to those experienced by

hyperdocument readers. Thuring et al. [35] define the readability of a document as the "mental

effort spent on the construction of a mental model that represents the objects and semantic

relations described in a text". They state that assisting the users in the construction of their

mental model can be done by strengthening factors that support this process and by weakening

those that impede it. Two factors are identified as crucial in this respect: coherence as positive

influence and cognitive overhead as negative influence on readability. A document is coherent if

26

a reader can construct a mental model from it that corresponds to facts and relations in a possible

world [17]. The authors distinguish between local and global coherence and provide tips to

increase document coherence. Conklin [6] defined cognitive overhead as the "additional effort

and concentration necessary to maintain several tasks or trails at one time." Cognitive overhead

can be reduced by improving orientation and facilitating navigation. In an information space,

orientation facilities are meant to help readers find their way and navigation facilities enable

readers to actually make their way. Several design issues are brought up in order to reduce

cognitive overhead and increase document coherence.

However, on certain specific points, searching for information in a specification document is

different from surfing the web. For example, because of the strong coupling between different

parts of the specification document, specification readers frequently need to navigate back and

forth between elements. On the other hand, internet users navigate in a relatively linear way,

from one document to another, while occasionally coming back to a previously viewed document

(or node), usually to branch out to a new location. In this sense, the concept of unbreakable bi-

directional links with strict version control proposed by Ted Nelson [25] in his ongoing Project

Xanadu would be more helpful for specification navigation than for Internet. Also, information

in formal specifications is often "modularized" into elements and even when dealing with

complex specifications, it is always possible to extract the input-to-output mapping of an element

within the system specification. We could see this as being able to observe the "position" of an

element within the system boundary. This is obviously not possible while navigating the

Internet, mostly because the lack of a well-defined boundary.

2.3.3 Human-Machine Interactions

Some research on human-computer interactions is also applicable to our problem. Designers of

interfaces like those of requirements specification tools, need to select the appropriate level of

abstraction, determine how to show relationships, provide context for the information, and build

conceptual spaces using frames of reference [26].

2.4 SpecTRM

SpecTRM (Specifications Tools and Requirements Methodology) is a tool designed to provide

bridges between diverse groups of system designers and implementers. It uses hierarchical

27

abstractions based on goals or purpose to deal with complexity and includes a formal modeling

language (SpecTRM-RL) designed for readability. This formal foundation allows formal

analysis and execution of the models built. This section describes SpecTRM and some of the

related research work upon which it was built.

2.4.1 Intent specification

Intent Specification is an approach to writing system specifications based on research in

systems theory, cognitive psychology, and human-machine interactions. Its goal is to provide

specifications that support human problem solving and the tasks that humans have to perform in

software development and evolution [22]. A second goal of intent specifications is to provide a

better integration of formal and informal aspects of software development and enhance their

interactions. While formal techniques are useful in some parts of the development process and

are crucial in developing s oftware for s afety-critical s ystems, informal t echniques will always

make up a large part of complex software development efforts. To be useful to humans in

solving problems, specification language and system design should be based on an understanding

of the problem to be solved or the task to be performed. The language used to specify a problem

has a direct effect on human problem-solving ability and affects the type of errors made while

solving those problems. An approach to building human-centered specifications has to take into

account what is known about human capabilities and limitations.

Cognitive psychology has established that the representation of a problem can affect the

human problem-solving performance. In fact, the representations provided to the problem-solver

either degrade or support performance [39]. Providing assistance for problem-solving, then,

requires the development of a theoretical basis for evaluating whether a representation supports

effective problem-solving strategies. Moreover, in addition to matching a representation to

effective problem-solving strategies, the evaluation of a representation has to take into account

the experience and background of specification user. In fact, it is likely that the different users of

a specification will have different mental models of the structure and functioning of the system.

Rasmussen has shown that problem-solving strategies are highly variable [29]. Problem-solving

strategies d o n ot o nly v ary among individuals, but users often vary their strategy dynamically

during problem solving, often as a reaction to difficulties encountered along the solution path. In

the absence of a solid theoretical basis for evaluating and matching problem solving strategies to

28

tasks and users, specifications should support all possible strategies that may be needed for

different users to perform a task. Since it is not possible to think of all the possible strategies that

can be used to perform a task, the objective of specification language design should instead be to

make it easy for users to extract and focus on the important information for the specific task at

hand without assuming particular mental models or limiting the problem-solving strategies

employed b y t he u sers o f t he s pecification [22]. I ntent specification provides an approach to

achieve this goal.

Intent specifications are organized along two dimensions: Intent abstraction and part-whole

abstraction (Figure 2-2). The horizontal part-whole abstraction allows the users to change their

focus of attention to more or less detailed views within a model or level. The vertical intent

dimension has seven hierarchical levels, each level providing intent information ("why") about

the level just below while each level provides realization information ("how") about the level

above. Levels three and higher contain information that is most familiar to system engineers.

Level U Project management plans, status information, safety plans, e tc.

Level 1 Assumptions Responsibilities S ys tem Goals,
L e vern 1 A ssu tins eRequi nibents High-le vel Re quirements, H azard
System Constraints Requirements DesignConstraints, Analysis
Purpose I/F Requirements L mitations

Level 2 External Task Analyses Logic Principles, Control Validation
System Interfaces Task Allocation Laws, Functional Plans and

Principles Controls, displays Decomposition and Results
Allocation

Level 3 Environment Operator Task Blackbox Functional Analysis
B lacb o entPlans and

M adels Models and HC I Models Models, Interface S pecs Results

Level 4 HCI Design S ofiw are and H ardw are Test Plans
Design Rep. Design Specs and Results

Level 5 S oftw are Code, H ardw are Test Plans
Phy. _ _al GC otlas Phsical Assembly Instructions and Results

Rpoerors Masinaseonac
Level 6 Audit OperatorManah Error Reports, C hange Performance

O pe rations Procedures Train atg als Requests, etc. an Audit

Figure 2-2: Intent specifications dimensions

The blackbox behavior specification included in level three specifies the system

components and their interfaces, including the human components [22]. The behavioral

specifications at this level are purely blackbox and describe the relationships between inputs and

29

outputs for every component in terms of externally visible variables, objects, and mathematical

functions. The language used to specify each component can vary. SpecTRM-RL, a state-based

formal specification language developed by Prof. Leveson and her students was used in this

experiment.

2.4.2 SpecTRM-RL

SpecTRM-RL (Specification Tools and Requirements Methodology - Requirements

Language) is a state-based formal specification language intended to assist engineers in

managing the requirements, design, and evolution process. It shares many similarities with its

predecessor, RSML [19] (Requirements State Machine Language), a state-machine based

specification language based on Statecharts [13]. SpecTRM-RL has an underlying formal logic

that allows a model of the system specification to be analyzed for consistency and completeness

[23,14]. It also allows models to be executed providing a set of inputs in order to verify the

blackbox behavior of the specified system and to find errors early in the development process.

SpecTRM-RL emphasizes readability and requires little training. Readability is achieved mostly

through the use of AND/OR "transition tables" to specify the conditions where state variables

will switch from one state to another, which have been found to be easier to read and to

understand by people with different backgrounds than representations such as predicate logic or

logic gates [41]. SpecTRM and RSML have been successfully used in the specification of

several large systems, such as TCAS II, a complex Traffic Collision Avoidance System.

Several different elements are used in a SpecTRM-RL formal model. State variables and

their possible values are the basis for the state-machine model upon which SpecTRM-RL is built.

They represent state that can be inferred from the input/output relationship of the system. Modes

are high-level state values that represent the supervisory and control mode of the system.

Macros are Boolean abstractions used to increase intellectual manageability [41] of the

specification by reducing the size of the AND/OR transition tables. Devices are external to the

system and are input sources and output sinks. Inputs and outputs are required for the system to

communicate with the outside world and are the only information allowed to cross the system

boundary. Because of the functional modularity of most complex engineering systems, inputs

and outputs are grouped by corresponding sending/receiving device. Messages are packets of

information sent or received by a device. Functions calculate output and intermediate values.

30

SpecTRM-RL also provides a visual overview of the formal model that includes four main parts:

(1) A specification of the supervisory modes of the controller being modeled, (2) A specification

of its control modes, (3) A model of the controlled process (plant in control s ystems theory)

including the inferred operating modes and system state, and (4) A specification of the inputs and

outputs to the system. The visual overview displays the current state of the system as it changes

over time when the model is executed. Figure 2-3 provides a sample visual overview of a simple

altitude switch formal model. This simple model uses input values from two digital altimeters

and one analog altimeter to automatically lower/raise the landing gear of an aircraft when the

aircraft altitude goes below/above a predetermined threshold.

ArAull n Aftnwter u

Analog AltMrneier Status

Altitude Switch Model Anaog Altirter Sigal

SUPERVISORY MODE

crp o nUoa Anai Dot
Aftiu Alutu
unknown Tw

CONTROL MODE u.tsno

Rett s

Ogital Altimeter One Status

Oigita t Ameter One Signal

i40a igts A lee Two

Digital Aftireter Two Status

Oigital Atimeter Two Signal

-0--Gear Status Signal

Gear Comjmand"3

WacdgStrobe

Figure 2-3: SpecTRM visual overview of an altitude switch system

2.4.3 SpecTRM Interface

Specifications of complex systems quickly become very large. Consequently, users of

formal specifications need help in navigating through the document and in locating the required

information. SpecTRM provides a project browser panel on the left that displays the structure of

the document and helps users in finding information and in navigating through the multiple

levels of the intent specification. All the information contained in the specification is displayed

31

in the formatted text panel on the right. Figure A provides a snapshot of the SpecTRM interface.

SpecTRM includes Forward/Back navigation buttons t hat a llow u sers t o j ump b ack and forth

between different locations in the document just like it is possible to do in a web browser.

SpecTRM provides automatic referencing in the Level 3 formal specification so that hyperlinks

are automatically generated between linked elements. Hyperlinks can be manually generated in

order to link different parts of the document and to provide tracing between levels. Tracing is

extremely important in order to make sure that each high-level requirement has a corresponding

lower-level implementation and that each implemented feature traces up to a high-level

requirement so that no unwanted features are implemented. Hyperlinks greatly facilitate the

navigation through the document but often produce disorientation and loss of continuity when

used intensively in large documents. SpecTRM also provides a text search tool that comes in

handy when the user does not know beforehand the location of some desired information.

32

Chapter 3

Visualizations and Taxonomy

While creating a SpecTRM-RL model based on an existing textual specification of the

Vertical Guidance system of the MD-11 airliner, it quickly appeared that some form of

visualization was needed to understand the functioning of such a complex system. Many

different graphical representations were created manually in order to answer specific questions

about the specification. A few of those graphical representations appeared to be very useful to

understand the structure and functioning of formal specifications. However, the amount of

efforts and time required to sketch those representations was a major shortcoming. It was

decided to create a visualization tool that would automatically generate the most promising

graphical representations based solely on the information included in the specification. The first

section of this chapter introduces three visualizations that were used as the basis for the creation

of our automated visualization tool.

It quickly appeared that we were lacking an appropriate vocabulary to discuss and

classify the visual representations we created. In order to overcome this problem, we created a

taxonomy of visualizations for formal specifications including six different dimensions. The last

section of this chapter presents this taxonomy and briefly explains how it can be used to classify

the visualizations created.

3.1 Sample Visualizations

This section describes three visualizations that were initially created to support the specification

of the MD-1I FMS, and later included in an automated formal specification visualization tool.

3.1.1 Structural overview - (V1)

Figure B presents an interactive graphical overview (referred to as V1) of the dependency

structure of the elements contained in the formal specification. The structural overview visually

displays the elements contained in the model, along with the dependency relationships between

the model elements and the devices external to the system.

33

Motivation

A quality mental model of the specification dependency structure provides many benefits

for the users. For example, it allows the users to easily see how changes in one part o f the

specification will affect the overall system. It also makes it easier for the users to quickly

identify errors such as unintended or missing dependencies between elements and to remove

unnecessary coupling between elements or parts of the specification. The structural overview

visualization was created to compensate for our inability to create a mental model of even small

parts of the MD- 11 FMS specification.

SpecTRM provides all the information necessary for the users to create a mental model of

the dependency structure of the model. However, creating a high quality mental model of the

specification structure requires such a large amount of cognitive effort to remember element

dependencies that it is practically impossible. The structural overview makes the dependency

structure of the specification explicitly visible, avoiding the need for the users to keep in memory

the dependency relationships between the many elements. It is used as a basis for navigation and

provides access to lower-level detail information about the behavior of each element of the

model.

Description

The structural overview is an organized directional graph representation of the dependency

structure of the specification. Figure B shows the structural overview of the annunciation

process of the MD-11 Vertical Guidance system. It is made of nodes (boxes) representing

elements of the models and arrow-links representing the dependencies between those elements.

The arrows represent dependency relationships between elements. An arrow pointing from A to

B, for example, means that the value of element B depends directly on the value of element A.

The structural overview uses perceptual cues such as color, shape and position to encode critical

information about the model elements and their interdependencies. Different colors are

associated with different elements and dependency types. Figure 3-1 provides a legend key of

the visual elements contained in the structural overview. The position of the elements in the

model is arranged to provide a natural top-to-bottom input-to-output flow of information. As

34

such, the input devices are positioned on top of the model, the output devices are positioned at

the bottom, and input-output devices are positioned on the side. Users can directly manipulate

the e lements o n the s creen. T hey are provided with intuitive, easy-to-use functions to select,

move, resize or group elements. The structural overview includes only the information

necessary to visualize the dependency structure of the model but provides access to detailed

information when needed.

statevariable
Macro
Real Variable
External Device

inernal Link

Input Message
Outpt Message

FMS Vertical G..
FMS
Other syostems

Figure 3-1: Legend key of the visual elements of the structural overview (V1)

The structural overview also provides context information about the system boundary and

the hierarchical "position" of the system within its global operating environment. For example,

in figure B, the elements that belong to the specified system, in this case the Vertical Guidance

Annunciation Process system are positioned inside the white rectangle with a thick black

boundary.

The Vertical Guidance Annunciation Process, along with the VG Interpretation Process and

the VG Guidance Process are three functions of the Vertical Guidance System of the FMS. They

are positioned inside the light gray rectangle, which represents the boundary of the Vertical

Guidance system.

The Vertical Guidance system itself is a sub-system of the Flight Management System

(FMS) and is positioned within the boundary of the FMS, along with five other sub-systems.

35

The devices external to the FMS, such as the ADC (Air Data Computer) and the FCC

(Flight Control Computer) are positioned outside the FMS boundary. When multiple coupled

sub-systems are specified, the structural overview allows the users to easily choose which sub-

system specification will be visualized.

It can be seen in figure B that modern engineering systems such as flight management

systems typically exhibit a high level of coupling between elements within the system and with

devices external to the system. High coupling creates occlusion problems when trying to

visualize the structure of specifications. Occlusion problems are inherent to any attempt to

visualize high-density information spaces and can distort a user's perception of the information

space or make it difficult to perceive patterns. Much work has addressed the problem of

visualizing occluded high-density information spaces while maintaining situational context [2].

The structural overview deals with complexity and occlusion by allowing direct manipulation of

the objects on the screen and simplification of the model structure based on techniques such as

slicing and filtering. Simplifications through slicing are based on the dependency relationships

between elements and simplifications through filtering are based on common attributes of

elements. The interactive slicing tool provided with the structural overview allows the users to

perform multiple levels up and/or down slicing of the specification based on a selected element.

Figure C shows the result of using a complete input-to-output slicing on the specification based

on the element Origin of Level TD. When using simplification strategies like the interactive

slicing tool, the information selected to be on a slice is put in focus through the use of larger

fonts and thick borders, while the unselected information is grayed out and sent to the

background as context information. At all times, the relative position of each element is

conserved in order to ensure spatial continuity and avoid disorientation. Interactive slicing is

available to users through a simple double-click on the chosen element. Pull-down menus are

used to adjust simplification parameters.

Expected Advantages

It i s b elieved that explicitly mapping the structure of a specification to a 2- Dimensional

visual space will provide many benefits for the users:

36

1- It removes the need for the users to memorize the dependency structure of the

specification, thus greatly reducing cognitive workload.

2- It gives the users an idea of the size and complexity of the specification.

3- It provides a "gestalt" overview of the specification, where properties and patterns can

emerge to the users.

4- It displays elements as manipulable object on the screen which allows the users to

cognitively "actualize" elements of the specification and visualize them in their

operational context. This should foster the creation of a mental model of the system.

5- It separates the information about the high-level structural dependencies of the system

from the information about the low-level behavior of elements, thus dividing the

specification in two hierarchical levels of information, which makes it easier to manage

intellectually. In SpecTRM-RL, the structural information is presented along with, and

at the same level as the detailed behavioral information, in a single formatted text

document where hyperlinks are used to show the structural connections between

elements. Although the information contained in a SpecTRM-RL model can be divided

in two hierarchical levels, the amount of information contained in large models may

become overwhelming for the users and a feeling of disorientation can occur.

6- It provides an easy way to navigate the specification, both laterally (within the structural

overview) and vertically (between the structural and behavioral information).

7- It provides simplification tools such as specification filtering and slicing to simplify the

model and make it easier to extract information pertaining to the task at hand. Such

tools are required because the complexity of the specification creates a need to simplify

or create abstractions to a level where the model becomes intellectually manageable.

8- It uses perceptual cues such as color, shape and position to encode critical information

about the model elements and their interdependencies. Purely textual specifications

have a tendency to equalize the relative importance of information contained in

specifications. They also fail to take advantage of some perceptual cues that can be used

to highlight the most important information.

37

Expected Disadvantages

Our experience demonstrated the usefulness of the structural overview with the specification

of the Vertical Guidance Annunciation Process system, which is of a size representative of real

complex engineering systems. This function of the FMS includes more than 60 elements (State

Variables, Devices, Macros, etc...) and more than 200 inputs and outputs. The scalability of the

structural overview to larger systems is our primary concern. Visual occlusion is one of the main

problems associated with the use of the structural overview with very large systems. The

structural overview provides ways to alleviate this inconvenient but a size limit may exist above

which the displayed structure becomes simply unmanageable.

Another problem with the structural overview is that human intervention is required to

organize the computer-generated layout. This may be a good or a bad thing. By organizing the

layout b ased on their understanding of the system, users may promote the creation of a high-

quality mental model of the system. However, one-time users, for example, should be able to

benefit from the 1ayout o rganization of e xperts such as the creators of the specification. The

structural overview allows each user to save and retrieve their favorite layout of the system

structure.

Many algorithms exist for automatic layout generation [2] but they are difficult to use and

have had limited acceptance. Consequently, it was decided to let the users or specification

experts organize the structural layout based on their understanding of the system.

3.1.2 Question-Based Decision-Tree - (V2)

The Question-based decision-tree was created to help us understand the logic behind the most

complex transitions in the part of the MD-li specification. We found that it was easier to

answer particular questions if the set of conditions in the transitions (which can be very large) are

shown in sequence rather than in parallel. A decision-tree for each state variable seemed most

natural in order to accomplish this goal.

38

Description

A sample decision-tree for the state variable Active Add Drag Scenario can be found in

figure D. T his s tate v ariable indicates w hich o f t he five possible scenarios for extending the

airbrakes is active, if any. From left to right, each column represents one of the decisions that

must b e m ade t o d etermine which transition will be taken, based on the state or value of the

component of the model shown at the top of the column. The final states to which transitions can

be made appear as leaves of the tree, at the right end of each branch. Usually, there are several

ways to transition to a particular state; in that case, several tree leaves will bear the name of that

particular state. The state None, in Figure D is an example of this.

Although more visually appealing and easier to manipulate, the basic tree does not bring

much new information c ompared t o o ther r epresentations like A ND/OR t ables. H owever, b y

rearranging the information in a tree form, it appeared that each decision could be associated to

an informal but explicit question whose answer is determined by the state of the formal element.

This question is written at the very top of each column. One of the innovations here is to

associate these two complementary pieces of information - the easily understandable informal

question and the state of the formal element - in the same representation. The objective is to

improve the understanding of formal logic by the human's mind, whose mechanisms are

informal. Each isolated decision can thus be viewed informally ("Is the Aircraft

Overspeeding?") or formally ("Is ADC CAS > Active Descent/Approach Segment Predicted

Airspeed + 5 knots").

In order to demonstrate the functioning of the decision-tree, consider Figure D. Suppose the

following information is known about the environment of the system:

- Input Operational Procedure is Descent Path

- Input Active Descent/Approach Segment Thrust Type is Idle

- Input Active Descent/Approach Segment Speed Type is Mach

- Input ADC Mach = 0.82

- Input Active Descent/Approach Segment Predicted Mach = 0.80

- Input Flightphase is Descent.

39

Based on this information, it is possible to identify which branch of the tree will be taken,

from the root of the tree to the leaf labeled Scenario 3. That is, based on the information

available, the state variable Active Add Drag Scenario would transition to the state Scenario 3.

It should be mentioned that the state transitions specified by the decision-tree are

independent of the original or source state. If a transition depends on the current state of the

state variable, the variable itself will appear in one of the columns and a path will be taken based

on the current value of the state variable. This is not an issue if the system specification is robust

and deterministic, in which case only one possible state will be reachable given any combination

of input values [14].

The decision-tree representation of transition conditions is very concise when compared to

textual or tabular representations. In fact, the decision-tree provided in figure D is equivalent to

five pages of text or six AND/OR transition tables. Although conciseness is a desirable property

of specifications, it should never have priority over readability. In the decision-tree

representation, readability is increased by using perceptual cues such as color, fonts, and position

to encode essential information about the specification behavior. As in the AND/OR tables

representation, the order in which conditions are evaluated is technically irrelevant. That is, the

columns of the tree can be reordered without affecting the end result. Every different column

order is associated with a specific decision-tree layout. The interactive visualization computes

and generates the tree layout based on the user-defined decision order. It would be possible to

minimize screen space utilization by using algorithms to identify which of the possible decision

orders will yield a more compact decision-tree. However, there is no assurance that the decision

order associated with a more compact decision-tree will be more intuitive and easier to use, so

the order is left for the users to decide. In theory, it would be possible to combine, or take the

cross product of many state variables and generate larger decision-trees depending only on inputs

to the system. However, such practice would quickly run into space utilization problems and

different visualization strategies would have to be used to mitigate these problems.

Figure E presents a decision-tree generated for one of the most complex state variable of the

MD-I1 Vertical Guidance System. It is equivalent to 20 pages of textual specifications or 12

large (up to 21x28) SpecTRM tables. The sheer size of this tree makes it difficult to extract

information and understand the behavior of the state variable. However, the visualization allows

40

the user to perform behavioral slicing based on user-defined scenarios in order simplify the

decision-tree. Behavioral slicing of formal specifications was identified by Heimdahl [15] as an

effective way to manage complexity by e xtracting t he information a ffecting t he s elected s tate

variables. The behavioral slicing tool available in SpecTRM-RL was created based on

Heimdahl's work and experience with using slicing on large specification.

The interactive behavioral slicing tool provided with the decision-tree visualization has the

effect of pruning the tree based on the value of some of the formal elements used in the decision-

tree. The effect of behavioral slicing are shown in figure F, where the decision-tree for the state

variable Origin of Econ Airspeed Target was sliced based on a scenario where: "The Flightphase

is descent, but the aircraft is still above the normal trajectory, thus the current Operational

Procedure is Late Descent". Branches of the tree that are unreachable based on the active slicing

scenario are grayed out and compacted, which prunes them from the current visualization. Tree

pruning provides more space and visual emphasis on the reachable branches, creating a visual

foreground/background effect similar to that created with structural slicing in VI. Slicing

scenarios are usually defined by restricting input values. However, restrictions on internal

elements can also be used.

Although the slicing tools provided in the decision-tree visualization and in SpecTRM-RL

are based on the same theoretical foundations [15], one of the major differences is that slicing in

SpecTRM-RL is applied on the model as a whole, while slicing on the decision-trees is local and

is automatically removed, unless specified, when the users change focus to another part of the

specification. This feature was implemented to make it easy for the users to perceive the

existence of an active slicing strategy. In the future, behavioral slicing on the specification as a

whole could also be implemented in the visualization environment and offered to the users

through a special menu.

Expected Advantages

Our experience has shown that many benefits are derived from the use of decision-tree

representations of transition conditions:

41

1- Informal annotations coupled with formal notations help the users in understanding

the reasoning involved in the decisions underlying the contents of the transition

conditions. Such a combination of formal and informal representations is especially

useful for novice users because not o nly d oes i t m ake i t e asier t o understand t he

behavior of the system, but it also helps novice users in getting familiar to formal

notations.

2- Perceptual cues such as color, font, and position are used to encode critical

information about the system behavior, thus reducing the user's cognitive workload.

3- The information is presented together in one concise notation. This helps identify

patterns, make comparisons, and detect omissions.

4- Concise notations reduce the need for constantly switching between one part of the

specification to another, thus reducing information fragmentation and navigation

disorientation.

5- Transition conditions reordering provide the flexibility necessary for users to decide

which conditions should be evaluated first based on their understanding of the

system's functioning.

6- Interactive slicing allows for rapid local simplification of the specification based on

the operational context of the task to be performed.

7- Out-of-focus information remains when using slicing in order to remind the users of

the existence of some active simplification strategy.

Expected Disadvantages

Scalability to complex transition behavior is arguably the most important issue that had to

be addressed when designing the decision-tree representation. Although more concise than

textual or tabular representation, the decision-tree notation has to tackle difficult screen space

utilization issues. In fact, it is believed that screen space utilization is one of the most important

factors affecting the scalability of the decision-tree notation to complex transition behavior.

Another disadvantage of the decision-tree notation is that human intervention is often necessary

42

to refine the computer-generated layout. More powerful layout algorithms could be used to

improve the readability of the text areas and conditions, but users would most likely still have to

slightly resize columns or text areas in order to obtain an easily readable layout.

Another factor affecting the scalability of the notation is the user's cognitive limits,

which may be exceed when using large decision trees such as that presented in figure 3-4 without

simplification strategy. It should be mentioned, however, that textual and tabular representations

run into even worse scalability issues. In fact, the scalability difficulties encountered by other

representations w ere the s ingle m ost important factor driving the creation of the decision-tree

representation. A related thesis by Viguier [38] provides an informal comparison between the

decision-tree representation and two existing, well-accepted representations (textual and tabular)

based on the comparative framework defined by Zimmerman [40]. Another anticipated

drawback is the impression of time sequence conveyed by the decision-tree representation. This

illusion i s a s econdary e ffect o ft he representation of transition conditions in sequence, rather

than in parallel. Novice users may be confused by such a time-order illusion, and it may distort

their mental model of the functioning of state machines.

3.1.3 State Transition Diagram and Inversion - (V3)

Figure 3-2 shows a visualization of a typical circle-and-arrows state transition diagram that

was augmented with an inverse state transition diagram in which the information in the original

diagram is redundantly encoded in order to assist in answering different types of questions.

43

Figure 3-2: A sample state-machine transition diagram and inverse transition diagram
taken from the MD-11 vertical guidance specification. This state variable describes the

vertical attitude of the aircraft during cruise.

Motivation

A state-machine representation such as the cruise control system presented in figure 2-1

provides a complete, easy-to-understand representation of the behavior of a simple system.

However, for larger systems, such a representation quickly runs into major scalability problems.

Complex transition conditions are too large to be displayed on the transition arrows, and it is

simply impossible to display the entire state machine of complex systems including thousands of

state values. Nevertheless, users of state-based specifications often find it useful to see part of

the flattened state machine using a traditional state transition diagram. Such a representation is

useful because it explicitly shows the possible state transitions, both into a state, and out of a

state, which is impossible to do using tables or decision-trees. Even though it is impossible to

display the state-machine of entire systems, it is possible to display the state-machine resulting

from the combination of a few selected state variables of the system. In this case, the total

number of state circles will be equal to the product of the number of states in each state variable.

It was also found that the inverse state transition diagram is better suited to some particular

tasks than the traditional state transition diagram. For example, if a user is interested in system

safety and wants to make sure that no undesired transitions will take place, a representation of

the impossible transitions of the state machine may be more appropriate to the task than a

44

representation of the possible transitions. Moreover, in many complex systems, every state is

reachable from almost every other state; so displaying the impossible state transitions may be

more relevant. Consequently, the state transition diagram can be displayed either in its

traditional form or in its inverted form (figure 3-2).

Description

Figure 3-2 shows an example of a state transition diagram for a state variable of the MD-i 1

vertical guidance system. Both the traditional state transition diagram (left hand side) and the

inverse state transition diagram (right hand side) are displayed in this figure. The arrows

between states represent possible transitions in the state transition diagram, and impossible

transitions in the diagram in inverse state transition diagram. The information in the inverse state

transition diagram is the same as that in the traditional diagram, but it is recoded to make it easier

for the user to perform particular tasks. The state transition details are not shown in this

visualization but may be accessed through a simple click on a transition. States that are

reachable through every other state are displayed as being connected to a contour including the

entire state-machine. The state Unknown in figure 3-2 is an example of such a state. A single

state variable is displayed in figure 3-2, however, as mentioned previously, it would be possible

to take the cross-product of multiple state variables and to display the resulting state-machine in

a similar way.

Expected Advantages

This visualization is arguably easier to use, and more intuitive than VI and V2. It provides

useful additional information that could only be extracted from the specification at the cost of

considerable analysis efforts. In addition, it scales relatively well to complex state variables, but

its usefulness is limited to the visualization of two or three combined state variables, after which

the resulting state machine becomes unmanageable.

45

3.2 Taxonomy of Visualizations

This section introduces a taxonomy made of six dimensions upon which visualizations for

formal requirements specifications can be classified. These dimensions are not exhaustive.

Existing dimensions could be modified or more dimensions could be added to fit a particular

purpose. However, the taxonomy presented is a good starting point and proved to be very useful

in discussing and classifying the visualizations created.

3.2.1 Scope

The visualization may focus on the structure of the model or the goal may be to visualize the

behavior of the specified system.

VI V2 V3

Scope Structure Behavior Behavior

Visualization based on Visualization displays Visualization displays

Description dependency links transition conditions for a possible transitions for
between the elements of single state variable. chosen state variables.

the model.

3.2.2 Content

The visualization may include the entire model, perhaps using a different notation (e.g.,

symbolic, tabular, or graphical), or information may be elided. Elision is the ability to

temporarily hide parts of the specification that are not of immediate interest. When information

is elided, it may still be useful to retain some of the omitted information as context, but it is

grayed out or somehow denoted as background rather than foreground. Alternatively, the

visualization may not provide context beyond the information provided in the visualization itself.

46

3.2.3 Selection Strategy

The visualization may be created through slicing the basic formal model, i.e., a selection

based on dependences between the parts of the model or by filtering, i.e., eliding parts of the

model based on a common property or attribute.

3.2.4 Annotation Support

The visualization may include only information provided in the original specification or the

user may be able to add extra domain knowledge through annotation.

47

VI V2 V3

Content Elided Elided Elided

The visualization is based The visualization is The visualization is
. on entire model but created based on a single created based on a

Description details are elided for chosen element of the single chosen element
readability. model. of the model.

Vi V2 V3

Selection Filtering/Slicing Manual/Slicing Manual
strategy

The behavioral The users select the
information isfiltered to element they desire to The users manually
display only structural visualize and select the state variable

Description information and interactive slicing can they wish to visualize
interactive slicing can be be used to simplify the based on the task the

used to simplify the chosen behavioral wish to accomplish.
visualization. visualization.

VI V2 V3

Annotation Not supported Supported Not Supported
Support

The visualization is Informal questions The visualization is
created solely based on may be added to the created solely based on

Description the information visualization to support the information
contained in the formal the understanding contained in the formal

model. process. model.

3.2.5 Support for Alternative Search Strategies

Visualizations may be provided that supports a particular search or problem-solving

strategy without any options for the user. Alternatively, the user may be able to specify the

search strategy to be supported by the visualization. A third option is to provide interactive

visualizations where the user can change the search strategy while navigating through the model.

Vi V2 V3

Support for Alternative High High Low
Search Strategies

Search strategies Search strategies
include top-down include interactive Limited search

Description review, interactive slicing, re- strategies.
slicing, filtering, positioning, and
grouping, etc... condition re-ordering.

3.2.6 Static/Dynamic

A static visualization is a snapshot of the specified behavior of the system at a particular

time or a static description of all possible behavior. Dynamic visualizations or animations show

the specified behavior of the system as it changes over time.

48

Chapter 4

Requirements Specifications Visualization Design Principles

Not all visualizations are useful. Sometimes they may even be misleading. In fact, it

appears that visual representations have more potential for "going wrong" than symbolic

representations. Text is more constrained by nature. Its linear character provides cues to the

reader even when its format is dysfunctional [24]. Visual representations provide more freedom

at the cost of a greater potential for misinterpretation and confusion. A careful evaluation of the

visualizations created for reviewing and understanding formal specifications is necessary to

maximize the usefulness of visualizations while minimizing the potential for misleading users.

This chapter presents nine principles to be used for evaluating potential visualizations and for

creating effective ones. These principles were either adapted from research in related fields such

as visual programming and human-computer interactions, or created based on previous user

studies and on our experience in specifying complex systems [7].

4.1 Minimize Semantic Distance

Semantic distance is a concept devised for human-computer interface design to describe the

distance between the user's model of how the system works and the model of the system

presented by the user interface [16]. In the context of visualizing formal specifications, semantic

distance is the distance between the model in the system specification and the mental model of

the system in the mind of the users of the specification. Readability and reviewability will be

enhanced if visualizations are provided that minimize semantic distance. Professor Leveson has

found informally that reducing the s emantic distance between standard engineering models of

complex systems and formal specification notations can increase acceptability and usability of

formal specification languages among people in industry who previously rejected out of hand the

use of such specification languages. As an example, the formal model of TCAS II (a collision

avoidance system for commercial aircraft), written with Professor Leveson's modeling language,

has become the official specification of this system [22].

49

A previous experiment on the readability of various notational features compared the

specification of the conditions on state transitions using text, tables, graphical logic gates, and

propositional logic. Every computer science student in the experiment commented on the

difficulty of using the logic gate notation while the engineering students were mixed [41].

However, similarity to standard notations is not the only relevant criterion, as every participant in

the experiment preferred the tables and made the fewest errors in using them. Moreover, even

computer science students, well trained in the use of propositional logic ranked this notation at

the bottom for both of these criteria. This indicates that users are willing to use new notations if

they believe it to be better, or more effective. These results confirm our industrial experiences.

Specifications of complex systems are often very large and it is practically impossible for a

single person to have a complete understanding of the functioning of the specified system.

Consequently, each specification user's mental model of the system will be different even though

the content of the specification does not change. Matching a visualization to a specific task is

beyond the scope of this work, mostly because of the almost infinite amount of possible task-

visualization combinations. Because it is not possible to have a perfect visualization-task match,

visualizations of formal specifications should provide customization tools that will allow the

users to "shape" the visualization according to their mental model of the functioning of the

system or according to the specific task they have to perform. As such, a graph-like display of

the structure of a formal specification such as VI should provide customization tools that allow

users to move elements around and group them together according to the user's understanding of

the system's functioning. In some cases, providing a difficult-to-use, computer-generated

structural layout of the specification instead of a pre-organized layout in order to force users to

organize the layout based on their understanding of the system could be a very effective way to

promote the creation of a mental model of the system among novice users. Decision-tree

visualizations of transition conditions such as V2 should allow the user to decide the order of the

sequence that will be used to evaluate the conditions based on their understanding of the

system's functioning. Since the customization of a visualization has no effect on the underlying

formal model upon which the base visualization is built, users should be encouraged to use those

tools in order to shape the visualization to their own mental vision of the system, instead of using

the default visualization provided.

50

4.2 Match the Task being Performed

Gilmore and Green's basic match/mismatch hypothesis states that problem-solving

performance depends on whether the structure of a problem is matched by the structure of a

notation [10]. Applying this hypothesis to visualization implies that the most effective

visualizations of requirements specifications will be those that most closely match the problem

being solved or task of the specification user. The goal is to match the task to be performed with

a visualization that minimizes the amount of cognitive processing required to perform the task.

As mentioned previously, it is not possible to provide visualizations for every potential task

to be performed by specification users. However, a few tasks are commonly performed during

the review of specifications such as searching for information and navigating between overall

structure view and detailed element information. Visualizations should support the most

common tasks first. As such, Vt provides a structural overview of the formal model that can be

simplified depending on the context of the task to be performed and that provides seamless

access to lower-level detailed model information.

4.3 Support the Most Difficult Mental Tasks

Some tasks that use formal specifications will be more difficult than others in terms of the

number and difficulty o f the cognitive processing necessary to perform those tasks. The most

useful visualizations in this context will obviously support the hardest tasks and not simply those

that are easiest to create or are appealing to the visualization tool builder. This principle implies

that the first step in creating useful visualizations is to determine who the users will be, to

perform a task analysis of their potential uses of the visualization, and to analyze the difficulty of

performing the task without a special visualization of the formal model.

Vt was developed to overcome a difficulty in creating a mental model of the complex

dependency structure of a formal model when using hypertext representations. V2 was

developed because even the most readable notations for the specification of transition conditions

run into scalability issues in the case of highly complex system behavior. The table notation, for

example, works great for a few possible states with reasonably complex transition conditions.

However, cognitive wokload increases quickly when the behavior of the system becomes

complex and the tables become larger. As an example, one of the state variables used in the

51

specification of the MD-1I Flight Management System has seven possible states, each of which

has associated transition condition tables reaching a size of twenty rows by thirty columns. Such

complex transition conditions are impossible to manage intellectually and require visualizations

that reduce the user's cognitive workload.

4.4 Highlight Hidden Dependencies and Provide Context when Needed

Blackwell and Green [11] define a hidden dependency as "a relationship between two

components such that one of them is dependent on the other, but that the dependency is not fully

visible". Any notation makes some dependencies clear while obscuring others. These hidden

dependencies may or may not be important in performing a particular task. If the dependencies

are relevant to a user, then visualizations should be provided that perceptually highlight those

dependencies. A good representation will in general point out dependencies or show causal

relationships between different automation behaviors. For example, some formal specification

languages based on state machines organize the specification in s uch a w ay t hat i t i s e asy t o

determine the previous states but not the potential states that follow the current state and vice

versa. For example, tables easily show which states will be accessible, given a current s tate

("going-to" perspective). However, much effort is needed if it is desired to know which states

can transition to a current state ("coming-from" perspective). It is possible to overcome such

difficulties by using visualizations such as V3 that graphically show all possible arrival and

departure combinations of transitions between states.

Another example of hidden dependency often encountered in requirements specifications is

the indirect relationship between elements that are not visible when using a pure hypertext

representation of the specification. VI was developed in order to be able to easily visualize

indirect relationships between elements. Non-structural dependency links can also be user-

defined if, for example, element B does not depend explicitly on element A, but element A has to

be informally taken into account when reviewing element B.

Since formal specifications of complex systems contain a large amount of information, only

a small part of the information will be used at once to construct visualizations. In cases where

only a small part of a specification is being displayed, context has to be provided for the rest of

the specification if it is required for the task at hand. Context information is very important in

visualizing formal specifications for many reasons. It is used to remind the user that only a small

52

part o f t he s pecification i s d isplayed a nd t o c learly i ndicate w hich p art of the specification is

displayed in context. While displaying context information is important, efforts should be made

to minimize spatial disorientation when changing the information in focus. Spatial disorientation

can occur if a change in information in focus is accompanied by a sudden change in visualization

layout. The display of context information was very carefully implemented in VI and V2 using

a "background-foreground" approach. For example, if slicing is used on V1 or V2 to select a

small part of the available information, the selected information is put in focus by being enlarged

("pulled" to the foreground) while non-selected information is put in context by being greyed out

and compressed ("pushed to the background"). Figure C provides an example of information

being put in focus-context by using an input-to-output slicing selection strategy on the state

variable Origin of Level TD.

4.5 Support Top-Down Review

Graphical overviews of the entire specification can be very powerful. During the review

sessions of a formal specification of TCAS-II provided for the FAA, Leveson observed that

domain-expert reviewers would spend hours discussing a simple graphical overview of the state

variables and state values (see Figure 4-1) used in the specification without referring to any

information about the conditions on the transitions between the states, which were not visible in

the graphical overview. Expert reviewers prefer to start with a high-level overview of the system

state values before delving down into the details of the transitions even though all the

information in the overview could be deduced from the structure and content of the rest of the

specification. This is an example of the gestalt effect in cognitive psychology in which providing

an overview makes overall structure or relationships visible or clearer [24]. VI was designed to

provide a high-level structural overview of the system that allows the users to easily access

lower-level system behavior information such as that provided in V2 when needed.

53

Vertical Flight Control
Specification Measured Variables

SUPERVISORY INFERRED SYSTEM OPERATING MODES
MODE

Control I Lowkn P tT Cm |u |e Appmao |!cm | Control

InputCoad

CONTROL INFERRED SYSTEM STATE
MODES

Opeawon de Ai0 Latet Leg Descort Speed Vi lavnn
Vert. Gud Contto Mode Atev Stae Descent Stae

Supervisor s ctuContr ndFs4ot rol Mc Aetw I~tttILiMit Engine t
FCC (O raorielMoDe Arah Aove2Etiier a E h* d - oct mt evice*etr
FCC Enga mde AircraffAtt edV3 FM$ cm feq
Speed Scearo Aircrafl uneer Go Arourd itiated
Vecal Gidarre Type Airraft Speed Status Last Takeoff Trust Umst
FCC FMS Speed Mode Betoa PattApproach Lewt fext Cruse Fligt Level
Ckmb FMS Speed Mode Capture Hed Status Mea Latera Leg
Cnise F MS Spree Wde Cimb FMS Speed Oetrat"on Cuamardsi

Display Demnt FMS Speed Mode CnAe Fight (Status) Petraion areutr Measued
Output Cimb VS Mode Cnise FDuh LeveI PrMe escert Variables

Care Flit Spueed Modle Circ FMS 'eTh tm L eel (Feedback)
OpeeaIoq Prodtre LlWi SdurtieurAveabtue Itruer Limed Recyne (Fu44~

Decd Sition Ergaged VG AAlide Target
oseu"eelApproach Patlh Vaid VG Pathi Target

DL uniwu F MS Speed VG Vrlea Speed Tager

Figure 4-1: Sample graphical overview of the modes and state variables of a digital

avionics system.

4.6 Support Alternative Problem-Solving Strategies

A principle of cognitive psychology is that the reasoning paradigm is distinct from the

representation paradigm. "The cost of reasoning about a particular representation may vary,

depending on how the programmer's reasoning shifts" [1]. Therefore, the representation may

need to change as the user's reasoning process shifts. In addition, different people will employ

different problem-solving strategies for the same problem. Experts are more likely than novices

to change strategies while problem solving and to exhibit flexibility in their strategies [24].

Supporting expert use of formal requirements specifications with visualization will require

supporting flexible search strategies and the ability to navigate between abstract and detailed

views, as well as within detailed views. This principle emphasizes the fact that there will not be a

fixed set of visualizations that are best for all people solving the same problem or performing the

same tasks.

In order to accommodate users of different backgrounds and expertise levels with powerful

tools that will be useful in solving a large variety of tasks associated with the review of formal

specifications, much flexibility must be built in the visualizations. For example, VI offers many

54

different ways of selecting the information to be put in focus (slicing, filtering, etc...) and V2

offers different ways of re-ordering and simplifying the behavioral information in order to solve

many different tasks. Building flexibility in the visualization is important to allow the users to

customize the visualization to their way of thinking about the system and/or to the specific tasks

they wish to perform. However, building flexibility in the visualization may increase the initial

workload of novice users. It creates a need for more user training with the visualization tools,

and may delay the benefits of the adoption of powerful formal specification tools, just like the

adoption of a powerful CAD s ystem in a c ompany w ould initially increase t he w orkload and

decrease the throughput.

4.7 Show Roles Being Played

Visualizations should provide insight into the role being p layed b y a s pecific p art o f t he

specification. As an example, consider the use of modes in control system requirements

specifications such as those used in SpecTRM-RL [22]. Modes are a common way of

abstracting and grouping important subsets of behaviors of the overall system behavior in control

systems. That is, modes divide the overall system behavior into a set of disjoint behaviors, e.g.,

the behavior of the flight management system during landing mode or cruise mode. Modes are

useful in simplifying (reducing) the amount of specified behavior that must be considered at any

time. If there are multiple independent mode classes, the system behavior may be described in

terms of the cross product of the individual mode values. Basically modes allow us to divide the

behavior of the system into non-overlapping chunks that are easier to process cognitively.

Multiple modes allow chunking on different dimensions. Visualizations for control system

requirements specifications should allow identifying and highlighting the role of each mode in

the overall system behavior being described and the role played by each of the components of the

specification in a particular mode. Similar advantages accrue to expressing other important roles

in requirements specifications.

4.8 Provide Redundant Encoding

Any representation makes some questions easier to answer while making others harder [8].

For example, a list or table showing classes taught, time, and professor that is ordered by class

55

number will make it easy to answer questions about who is teaching a particular class, but much

more difficult to answer a question about which classes a particular professor is teaching. A

different ordering will make the latter question easier to answer than the former. Casner's task-

analytic approach suggests that the effectiveness of any visual display will depend on both the

type of task to be performed and the cognitive processing required to perform the task [4]. The

objective is to match the task to be performed with the representation that minimizes the

cognitive processing necessary to perform the task. Since it is not always possible or practical to

perform a task analysis on the specification users, a small number of representations built upon

the same underlying formal model should be available for users to choose the representation that

fits best the task they have to perform.

In addition to trying to provide visualizations that will be well adapted to perform particular

tasks, visualizations need to consider the large variety of users involved in the review of complex

specifications. Previous experiments have shown that while it is possible to design

representations that will be nearly optimal for a group of users, those representations will usually

be sub-optimal for a different group of users [41]. By providing redundant but different

encoding of the same information about the required behavior of the software, support can be

provided for a variety of user groups performing a variety of different tasks.

V1 and V2 were developed based on the underlying hypothesis that multiple notations and

visualizations generated from a common formal model will improve the requirements review and

understanding process. In fact, V1 and V2 provide redundant encoding of the formal models

initially constructed using SpecTRM-RL. VI provides redundant encoding of the structural

information contained in the SpecTRM-RL model, while V2 provides redundant encoding of the

behavioral information contained in the AND/OR transition tables of the SpecTRM-RL model.

4.9 Show Side Effects of Changes

Requirements specifications of complex systems contain a large amount of information and

usually demonstrate high coupling and interdependencies between elements of the system.

Consequently, side effects of changes will propagate throughout the specification and it may be

difficult to ensure that every side effect of a change has been identified and properly addressed.

Because of this, visualizations should allow investigating the impact of a change in one part of a

56

specification on other parts. In other words, visualizations should explicitly show the indirect

effects of changes on the rest of the specification.

This list of principles is not exhaustive. Depending on the application, other design criteria

may have to be taken into account. In some cases, some principles presented in this chapter may

overlap or conflict and tradeoffs may be needed. However, it is believed that these principles

provide an excellent starting point for the design of effective formal specification visualizations.

57

Chapter 5

Experiment Design

The principles proposed i n the p receding chapter h ave b een a dapted from o ther fields or

introduced on the basis of our specification experience [7]. They should not be considered as a

rigid and exhaustive set of rules but as a starting point. They will need to be refined and

evaluated against a variety of visualizations. Although the visualizations described previously

were useful in understanding the MD-11 specification, this anecdotal evidence does not prove

their usefulness to a broad class of users and specifications. The present chapter describes the

design of an experiments with human subjects intended to be the first step into validating the

application of the principles to formal specifications.

5.1 Experiment Objective

The experiment described in this chapter has two major objectives. The first objective is to

evaluate formally the usefulness of the S tructural O verview (VI) and the D ecision-Tree (V2)

visualizations for the review of formal specifications. The second objective is to informally

evaluate the validity of the principles presented in the preceding chapter. The visualizations used

in this experiment (VI and V2) rely heavily on four principles we selected as the most interesting

to evaluate. Those selected principles are:

" Highlight hidden dependencies and provide context when needed

* Support top down review and provide "gestalt" overview

" Support alternative problem-solving strategies

" Provide redundant encoding

58

It is important to understand the difference between the two objectives. The preceding

chapter introduced a set of principles that should be used as a guide to the creation of formal

specifications visualizations. However, the design of effective visualizations is an inherently

organic process requiring much creativity from the designer. Such a creative process is difficult

to quantify and does not lend itself to the realization of a fixed set of guiding principles.

Consequently, the resulting visualizations use the guiding principles in an abstract, interlaced

manner and it is impossible to isolate or extract individual principles from the visualizations.

An exhaustive evaluation of each of the guiding principles separately would require the use

of visualizations where a single principle can be removed in order to compare the performance of

subjects using the base visualization with that of subjects using the "reduced" visualization.

Creating visualizations where individual principles can be removed would probably not be

feasible. Even if it was possible to obtain such visualizations, the design of suitable experiment

questions would be much more difficult because one would have to very carefully assess the side

effects of removing a single principle on the information contained in the visualization. In fact,

it would be impossible to know whether the differences in performance are a result of the

principle removal or of the completely different visualization obtained from removing the

principle.

A different approach will be taken in which the principles will not be validated individually.

Instead, they will be validated through the evaluation of the visualizations they helped create.

By comparing the performance of human subjects in specification reviewing with and without

the use of visualizations, it is possible to indirectly assess the validity of the principles used to

create those visualizations. However, since the principles are evaluated indirectly through

visualizations, there will always be a doubt that the merit and format of the visualizations

themselves may be responsible for the performance difference, whether or not the design

principles were used. Consequently, more visualizations designed through these principles and

more evaluations will have to occur in order to build confidence in the validity of the principles.

This experiment is intended to be the first step in this direction.

59

5.2 Experiment Hypothesis

Based on the objectives of the experiment described above, the general hypothesis of the

experiment was defined as:

The use of interactive visualizations created based on the proposed design principles will

improve the formal specifications reviewing process.

In addition to the formal evaluation of the visualizations created, an informal assessment of

the subjects' performance and problem-solving strategies will be conducted. It is believed that

some of the most important experiment results will come from a careful observation of the

strategies employed by users and by emergent problem-solving patterns.

5.3 MD-11 FMS Formal Specification

The formal specification used as a case study for this experiment was extracted from an

experimental specification of the MD- 11 Vertical Guidance System from Honeywell. The MD-

11 is a three-engine airliner that was produced by McDonnell-Douglass/Boeing in the 1990s.

This specification was originally written by Lance Sherry in 1989 and presents some

characteristics that make it suitable to a translation into a formal specification. A SpecTRM-RL

formal m odel o f t he H oneywell s pecification w as s tarted a t S ERL i n 2 000, and completed in

2002.

The Vertical Guidance (VG) is a subsystem of the MD-11 Flight Management System

(FMS). Its role is to compute the altitude, speed, thrust and pitch targets necessary for the

aircraft to follow its pre-established vertical flightplan. These targets can be sent to the autopilot

or displayed in the cockpit as an advisory to the pilots. The Vertical Guidance function of the

FMS is separate from the Lateral Guidance function.

One of the functions of the Vertical Guidance system is to provide visual feedback to the

pilots a bout t he s tate o f t he a ircraft. F or e xample, t he V ertical G uidance s ystem informs the

60

crew about the current system's operating mode, about the relative position of the aircraft with

respect to its ideal trajectory, and about whether airbrakes should be extended to increase the

aircraft drag. This feedback function of the Vertical Guidance system is known as the "VG

Annunciation Process". This function of the Vertical Guidance system was used as a case study

for our experiment.

VG Annunciation Process sends outputs to most of the display units in the cockpits. This

includes the Primary Flight Display (PFD), the Navigation Display (ND), and the Multifunction

Control/Display Unit (MCDU) (Figures 5-1, 5-2). The VG Annunciation Process function also

provides data to the flight control computer (FCC) for display purpose (Figure 5-3).

Figure 5-1: Inside view of the MD-11 cockpit. The VG Annunciation Process sends
feedback information to the highlighted display units.

61

ND

S201 TCP11v0

18 15Tc
OKOR

STOTA SLASE

C16AF
~ TC~IiPTARCAT

VETIAL

--
WE THER W F

NAV I PUS FMS SALE AIRPLANE PFls NAV 2
RAD NAV TUNED RANGE EYMBOL FROM RADIO
DATA MODE NAVAID DISPLAY WAYPOINT DATA

DISPLAY FOR RING DISPLAY
DISPLAY

Figure 5-2: Detailed view of the main

PFD

PIrTCH-

AIRSPE
D

VMAX FOT,

PMP

RET ACT
SPEED

PRESELECT
SPEED Roo

MISCOUSASEC PITCH ROLL
ANNUNCIATION INDICATOR LIMIT ROLL S NP4KID ROLLF FLIGHT

AREA AND TAPE INDICATOR POINTER INDICATOR INDICES DIRECTOR

,/ "ANUNCATOR

BUG (SELECT)

PRESELECTED

CALTITUDE

S.-CALEP

SCAL

TRUE
AIRSPEED

WIND
OIBPLAY

MISSED
APPROACH

CURVED
TREND
VECTOR

TCAS
ANNUNCIATIO

FS 0 G
WAYPOI

CDU M"So

DRAG MESSAGE

MAPMEODE
DISPLAY

AREA

The VG Annunciation Process function receives inputs from other processes of the Vertical

Guidance system, other functions of the FMS (such as Lateral Guidance or Navigation), and

from other systems external to the FMS such as the Flight Control Panel (FCP, Figure 5-3). The

Flight Control Panel is the main flight control interface of the aircraft. The pilots use it to toggle

the autopilot on and off, and to bypass the guidance functions by manually entering targets.

CHANGE OVER
BUTTON

IAS/MACH HDG/TRK

DISPLAY WINDOW

lASIMACH --
SELECT KNOB

BANK ANGLE
LIMIT HDG/TRK

(OUTER) (INNER)

SELECT
KNOB

SWITCH

APPROACH AUTO
LAND FLIGHT

\I

FMS FMS AFS OVRD FMS
SPO NAV OFF ALTITUD

SWITCH

CHANGE OVER
BUTTON

FEET/METER VIS - FPA

DISPLAY WINDOW

PITCH WHEEL

ALTITUDE
SELECT KNOB

Figure 5-3: Detailed view of the Flight Control Panel (FCP) located on the glareshield panel
of the MD-11 cockpit.

62

V
5 5

N FOOT- ~ -

STICK SHAKEGL DE SLOPE

SCALE PRECISION1

CONFIGURATISP

DLE ETN

WENTT

SCALE IBU (SELECT) AIRCRAFT PRECISION MAGNETIC TRUE ALTITUDE

TRACK uEAD MTA c

lisplay units of the MD-il cockpit.

Figure 5-4 provides an overview of the VG Annunciation Process case study in its

hierarchical context, along with its main Input/Output devices.

FCP
FMS , aa, ,,FMS

- - Na ton Gsiae FliMIarng Nrorinn n

I I I iZT7t
VG

Intelpfetation r-uidine

VG annunciation process
FCC +--

MCDU DEU

.... fl.ND

Figure 5-4: Hierarchical context of the Vertical Guidance Annunciation Process function
along with its main I/O devices.

The state-based specification of this system is of a size representative of today's engineering

systems. The VG Annunciation Process system includes 36 state variables having a total of 170

state values, which adds up to a state-space of about 1018 possible states. The system also

computes e leven c ontinuous v ariables, and the system state depends on more than 120 inputs

coming from 10 different devices. It took a few months for two graduate students to understand

the original specification and extract the information necessary to create a SpecTRM-RL formal

model out of it.

The VG Annunciation Process system is fairly complex. Its complexity is semantic

(meaning and behavior of its different components), functional (several interdependent functions

coexist), and structural (there is a high level of coupling between the various system elements).

63

This system was chosen because it is a real safety-critical system: A wrong feedback to the

pilots can lead to hazardous situations. Also, it has the appropriate size and complexity for our

purpose. It was possible for two engineers to implement it in a few months, yet it is large and

complex enough that it is impossible to grasp entirely in the duration of the experiment.

However, there are some constraints associated with this choice. A certain level of domain

knowledge is required to understand and use such a system. Since the experiment subjects do

not p ossess t his k nowledge, w e e ither h ad t o d esign a n e xperiment t hat d oes n ot r ely on this

domain knowledge, or provide the subjects with a very long tutorial. It is very difficult to design

experiment questions that require no prior knowledge of the system, and an experiment based on

these questions would have less value since reviewing a system specification is a task that

usually requires some knowledge of the system's functioning. Consequently, we decided to

provide the subjects with a relatively extensive tutorial of the specified system.

5.4 Tools Description

This section describes the user interface of SpecTRM and the visualization tool used in the

experiment.

5.4.1 SpecTRM

Chapter 2 presented the principles that guided the design of SpecTRM. This section

presents an overview of the SpecTRM GUI. For more detailed information about the

functioning of SpecTRM, the interested reader is referred to the SpecTRM user manual [30].

Figure A provides a snapshot of the SpecTRM GUI. The SpecTRM GUI is made of two

distinct p anels. T he 1 eft p anel i s c alled the "project b rowser". I t is a tree similar to the file

browser found in Windows Explorer. The project browser is used to navigate within the

specification. The right panel is called the "project editor". It presents many characteristics

common to a formatted text editor. The entire model is displayed and can be edited directly in

the project editor panel.

64

As mentioned previously, a complete SpecTRM intent specification includes seven

hierarchical levels that form a means-end hierarchy. The level 3 of SpecTRM defines the

blackbox behavior of the system using a requirements language called SpecTRM-RL. Because it

was not possible to extract the designer's intent from the paper specification used to create the

model, only the externally visible behavior of the system was specified. Consequently, out of the

seven hierarchical levels necessary to obtain a complete SpecTRM Intent Specification, only

level 3 was used in the experiment.

Level 3 specifies the blackbox behavior of a system using elements of the following types:

modes, state variables, macros, external devices, inputs, outputs, and functions. Other element

types exist b ut w ere n ot u sed in the specification of our system. The different elements in a

SpecTRM specification are specified sequentially and grouped by categories.

Any given element X includes two lists of hyperlinks that reflect its structural dependencies.

All the elements that directly influence the behavior of element X appear in the "References"

field; all the elements whose behavior is directly influenced by the value of element X appear in

the "Appears in" field (see Figure A).

The behavior of elements such as state variables and macros needs to be explicitly specified

in terms of possible state values and transition between those values. It was previously

mentioned that SpecTRM-RL uses AND/OR tables for specifying state transition conditions. An

example of such tables is provided in Figure G. Each element specification also includes fields

for additional information such as element description, informal comments, and exception-

handling behavior.

SpecTRM users navigate through the specification by using the project browser and by

following hyperlinks. One way will usually be preferred over the other depending on the task at

hand.

There are constraints associated with the size of the display. Only one element can be

displayed at once in the project editor panel. This makes some tasks (such as comparing two

different state variables) rather difficult.

65

5.4.2 Visualization Tool

The visualization tool is a GUI coded in Java using the Eclipse development environment.

It displays VI and V2 in two separate panels and allows interactions between the two. Figure H

provides a snapshot of the Visualization Tool GUI. The upper panel (VI) displays the structural

overview of the specification. The users can interact with VI directly through clicking and

dragging elements or indirectly through a pull-down menu that provides further options for

simplifying and changing the layout of the visualization.

The users navigate the specification using the upper panel (V1), which can be considered as

a map of the specification. The bottom panel displays behavioral information about the element

selected by the user in the upper panel (VI). This panel is divided in two parts: the information

panel (left-hand side), and the decision-tree panel (right-hand side). The information panel

contains the same additional element information available in the SpecTRM model such as

description and comments about the selected element. If behavioral information is available for

an element selected in V1, the decision-tree panel will display the decision-tree (V2) associated

with that e lement. T he 1 ower p anel allows detailed information about a single element to be

displayed at once. However, the users have the possibility to save previously viewed trees in

new tabs for future use. Just as in V1, the users interact with V2 directly by clicking, dragging,

and resizing objects on the screen. Behavioral slicing is available through simple mouse clicks.

Just as with SpecTRM, some display size constraints are associated with the use of the

visualization tool. For complex systems, it is usually impossible to display the complete

structural overview and a large decision-tree at the same time. In order to overcome this

problem, each panel is easily resizable to the extent where it occupies the entire screen space.

5.5 Experiment Methodology

This section provides practical information about the experiment itself, including the subject

selection, question design, and analysis methods.

66

5.5.1 Subject Selection

Twelve subjects volunteered to participate in this experiment. All subjects were graduate

students at MIT with backgrounds in either Electrical Engineering/Computer Science or

Aerospace Engineering. The subjects were selected to ensure that they had little or no previous

exposure to SpecTRM, the visualization tool, and formal specifications in general. The subjects

had no detailed knowledge of the functioning of an airliner's FMS.

5.5.2 Tutorial

The first part of the experiment consisted of an hour-long tutorial where subjects are

introduced to the relevant MD-I1 systems and the tools used to answer the experiment questions.

In order to obtain statistically relevant results and to compare problem-solving strategies, it was

important to ensure that every subject had approximately the same level of knowledge and

experience with formal methods, state machines, and digital avionics systems. Since it was not

possible to expect all subjects to have the exact same expertise in these fields, we decided to

reduce the differences by recruiting subjects with rather uniform backgrounds and by providing

them with a relatively extensive tutorial.

The tutorial was in the form of a PowerPoint presentation including 3 parts:

1. A g eneral i ntroduction to the MD-11 C ockpit D isplays and the V ertical Guidance

system, a long w ith a p resentation o f t he V G A nnunciation P rocess system and its

Input/Output interfaces.

2. An introduction to formal requirements specification and state machines, along with

a tutorial on SpecTRM-RL and the visualization tool. This part focuses on practical

skills by explicitly demonstrating how to perform typical tasks using both tools.

3. A practice session where the experimenter helps the subject in answering a sample

question of the same difficulty level as the experiment questions.

The objective of this tutorial was to provide every subject with the knowledge and

experience necessary to answer the experiment questions.

67

5.5.3 Experiment Questions and Tasks

The second part of the experiment consisted of three sets of two questions that subjects had

to answer by themselves. An experimenter was present at all time during the experiment but

could only answer questions pertaining to the use of the tools. Every subject was presented with

the same questions in the same order, but the tools used to answer the question were selected

randomly. Table 5-1 shows the ordering of the question/tool combination used for the twelve

subjects. At the end of the experiment, every subject had answered one set of questions using

SpecTRM-RL only, one set of questions

questions where both tools were available.

using the visualization tool only, and one set of

Subject # Question 1 Question 2 Question 3
1 SpecTRM-RL Visualization Tool Both Tools

2 Both Tools SpecTRM-RL Visualization Tool

3 Visualization Tool Both Tools SpecTRM-RL

4 SpecTRM-RL Both Tools Visualization Tool

5 Both Tools Visualization Tool SpecTRM-RL

6 Visualization Tool SpecTRM-RL Both Tools

7 SpecTRM-RL Visualization Tool Both Tools

8 Both Tools SpecTRM-RL Visualization Tool

9 Visualization Tool Both Tools SpecTRM-RL

10 SpecTRM-RL Both Tools Visualization Tool

11 Both Tools Visualization Tool SpecTRM-RL

12 Visualization Tool SpecTRM-RL Both Tools

Table 5-1: Tool/Question combination for the twelve subjects.

The questions were designed to evaluate the subject's capacity to understand both the

structure of the specification and the behavior of the particular elements. Some emphasis was

put on the detection of indirect relationships between elements, and on the analysis of the effect

of these relationships on the functioning of the system. Each question includes two parts that can

be answered independently. Although no time constraint was officially enforced on the duration

of the experiment, subjects were encouraged to move on to the next question if they spent more

68

than 20 minutes answering a question part. A time period of 20 minutes was deemed sufficient

to answer each question part. A copy of the experiment questions is provided in Appendix B.

Each question has a single best possible answer.

5.5.4 Post-Experiment Analysis

Three metrics were used to evaluate the performance of subjects using the visualization tool

either as a stand-alone tool or as a complement to SpecTRM-RL. The following table (5-2)

summarizes the performance metrics and provides a list of the variables used.

Hypothesis: The use of interactive visualizations created based on the proposed design
principles will improve the formal specifications reviewing process.

Independent Variables Measure Variable Type

Subject Background AA / EECS Categorical

Display Type SpecTRM / Visualization Tool / Both Categorical

Task 3 different tasks randomly assigned Categorical

Dependent Variables Measure Variable Type

Answer to Question Score 0-10 Ratio

Answering Time Minutes Interval

Question Difficulty Difficulty assessment score 0-10 Interval

Table 5-2: Variables used in the experiment

The experiment was designed such that all independent variable types are of the type

Categorical, and all dependent variable are either of the type Ratio or Interval. Such a

combination of variables is appropriate for statistical analysis such as T-Tests or ANOVA.

Randomizing the tool usage ensures that statistical analysis results can be obtained despite the

69

relatively limited number of subjects. A higher number of subjects would simply increase our

confidence in the results obtained.

This experiment method allows an objective evaluation of the visualizations created for

reviewing specifications as stand-alone tools or as a complement to SpecTRM-RL. It was

decided to use SpecTRM-RL alone as a basis for comparison because it has been used

extensively in large specification projects and its value as a reviewing tool has been proven in

many occasions.

The results have to be analyzed while taking into account external factors such as the

background and expertise of the subjects, the design and difficulty of the experiment questions,

and the relevance oft he specification and questions chosen with respect to general reviewing

tasks.

As a complement to the performance metrics described above, the subjects' behavior and

strategies were monitored during the experiment. In particular, the experimenters were

interested in answering questions such as: What tool was used when both tools were available,

and why? What navigation or search strategies were used? What particular visualization features

were used? What level of success was obtained for each feature? What confused the subject? In

some instances, the experimenters had to explicitly ask informal questions to the subjects in

between questions in order to clarify the subject's objectives or strategies. In these occasions,

care was taken not to suggest strategies or provide performance feedback to ensure that no bias

was introduced in the experiment. The objective of these questions is to precisely observe and

record the subjects' behaviors and actions while performing the tasks, and to analyze them

afterwards. Emerging behavior patterns will be discussed and, if possible, linked to the

application of the principles used to design the visualizations.

The experiment sound and screen capture were recorded to assist the experimenters in this

investigation. In order to alleviate the bias introduction resulting from the experimenter's

interpretation of the results, a post experiment debriefing was conducted in the presence of the

three experimenters. While two of the experimenters were directly involved in proposing the

principles, building the formal specification, and designing the experiment, a third one joined the

team later to help in conducting the experiments.

70

5.5.5 Experimental Setup

The e xperiment w as p erformed in the S oftware Engineering Research Laboratory at MIT

using a DELL dual-CPU 2.8MHz Pentium XEON workstation with two 19-inch flat panel

monitors. A single monitor was used when a single tool was available to answer the question.

Both monitors were used (one for each tool) when both SpecTRM-RL and the visualization tool

were available to answer the question. The room in which the experiment was conducted was

closed and isolated from outside disturbances.

71

Chapter 6

Experiment Results

This chapter summarizes the results obtained during the experiment. The results and the

observations made during the experiment are discussed in the light of our working hypotheses

and of previous related work. The most significant results are mentioned in this chapter, but the

complete quantitative results are provided in Appendix C.

6.1 Grading System

The result analysis includes two types of results: objective results based on the subjects

performance, and subjective results based on observations and subject's perception of the

experiment d ifficulty. Q uestions w ere g raded o n a 0-10 basis, based on a previously defined

grading scheme. The number of points allocated to each question part is shown on the

questionnaire provided in Appendix B. For questions with multiple answers, a negative grading

scheme was used where points are awarded for correct answers and deduced for wrong answers.

The grading was done at the end of the experiment, on the twelve questionnaires at once, in order

to ensure consistency and fairness.

This grading system is by no means ideal. For experiment purposes, it would be interesting

for the grader to know whether subjects made careless errors or whether they did not understand

the specification. However, it can be argued that when reviewing safety-critical systems, errors

should be avoided at all cost, regardless of the error context. Furthermore, trying to account for

the subject's intentions could add unnecessary bias to the results. Consequently, we decided to

use a grading system that does not take into account the error context.

The time spent answering each question was carefully recorded by the experimenter. A

limit o f 20 minutes per question was suggested but not strictly enforced by the experimenter.

When the 20 minute period was over, the subjects were told that they should take a minute or

two to finish what they were doing, and then move on to the next question. However, it

72

happened that some subjects refused to move on when they believed they were close to an

answer. One subject in particular took over 50 minutes to answer the first two question parts.

The subjects were told that the time spent on questions would be recorded, but that no points

would be awarded for answering the questions quickly. This was done in order to reduce the

stress that could result from adding a time component to the grade. S ince the s ubjects w ere

instructed not to rush through the experiment, time results should be interpreted in the context of

the question results, rather than as stand-alone results.

After each question part, subjects were asked to subjectively evaluate the difficulty level of

the question. Subjects had to rate each question part on a difficulty scale ranging from 0 (easy)

to 10 (difficult). These results were used to assess the difficulty of each question and to identify

behavior patterns.

In addition to these numerical results, the experimenters recorded comments from the

subjects and information about problem-solving strategies and tool usage.

6.2 General Results

In many experiments with human subjects, inherent differences in ability between subjects

create an important nuisance factor. The effects of this nuisance factor are even more important

when a relatively small number of subjects participate in the experiment. When compiling the

performance results of the twelve subjects, the first and easiest observation is the large variation

in performance between subjects. Appendix C provides the complete quantitative results of the

experiment. Figure 6-1 summarizes the answer accuracy of the twelve subjects on a 0-10

performance scale. When looking more closely at the average performance for each subject, it

appears that the large variation comes from only two erratic data points: Subject #7 answered

every single question perfectly, rapidly, and seemingly without effort, regardless of the tool used.

On the other hand, subject #9 was struggling throughout the experiment, could not answer the

questions without help, and grew discouraged and frustrated during the experiment until a point

where he decided to leave without finishing the last question. This created some problems when

compiling the results because the last question was missing a data point. However, it was

predicted that some of these problems could occur as a result of the duration and difficulty level

of the experiment.

73

Average Subject Performance

10.0

9.0

8.0 Average = 6.6

Eu 7.0 - - -------- - - - -------- - ---- -------------

6.0

5.0

0 4.0

3.0
< 2.0

1.0

1 2 3 4 5 6 7 8 9 10 11 12

Subject #

Figure 6-1: Summary of the average performance (answer accuracy) of each subject

graded on a 0-10 performance scale.

Most of the variation in performance comes from subjects #7 and #9. Regardless of the tool

used, subject #7 performed equally well on every question, while subject #9 performed equally

poorly on every question. Because of this, the results of subjects #7 and #9 do not bring any

insight to the experiment except for increasing the variation between results. Consequently, it

was decided that the statistical analysis performed to confirm our hypothesis would not include

subjects #7 and #9. We can justify this decision statistically by calculating the resulting standard

deviation over the average results. The performance of subjects #7 and #9 is well outside the +/-

2 standard deviation envelope. Thus, those two subjects can reasonably be considered as outliers

and omitted from the statistical analysis.

The results for the average difficulty rating and the average time spent per question for each

subject are shown in figures 6-2 and 6-3, respectively. It can be observed that the outlying

performance of subject #7 and #9 has a very strong correlation to the average time they spent on

each task and on their perception of the task difficulty. Subject # 7 spent ten minutes per task on

74

average with an average question difficulty of 3.2, while subject #9 spent more than 20 minutes

per question on average with an average question difficulty of 8. Such a strong correlation was

expected and supports our decision to consider these two subjects as outliers.

Running a correlation analysis on the rest of the results exhibit a relatively weak negative

correlation between the performance and the difficulty rating, as well as between the

performance and the average time required to answer the questions. This is to be expected since

most subjects demonstrate high consistency and confidence in their results. However, two

subjects in particular demonstrate the opposite behavior in that a strong positive correlation is

obtained between the performance and the time to answer and difficulty rating. This would

suggest that a few subjects either underestimated the question difficulty and did not answer the

question correctly, or had to work really hard to obtain the right answers. The subjects that

demonstrate positive correlations performed under average.

Average Question Difficulty Rating

(U

C.,

(U
I..
0)

10.0

9.0

8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

0.0

1 2 3 4 5 6 7
Subject #

8 9 10 11 12

Figure 6-2: Summary of the average difficulty rating of each subject evaluated on a

O(easy)-10(difficult) scale.

75

Average Time per Question

25.0

20.0
Average= 15.3

015.0 -m - - --

E
o 1 . - --- --- - - - - - -- - - - -- - --- --- - -

0210.0

~5.0

0.0 ---- - - ---- - ----- --- --

1 2 3 4 5 6 7 8 9 10 11 12
Subject #

Figure 6-3: Summary of the average time spent answering each question.

6.3 Performance Metrics Results

This section interprets the results obtained in the context of the experiment hypothesis and

performance metrics previously defined. A summary of the experiment performance metrics

was provided in table 5-2.

6.3.1 Answer Accuracy Results

Figure 6-4 presents the overall average answer accuracy of subject using different tools. On

a scale of ten, the average performance of SpecTRM-RL was 5.7, while the average performance

of the visualization tool was slightly better at 6.5. More surprising is the fact that subjects

having the opportunity to use both SpecTRM-RL and the visualization tool scored much higher

at 7.3.

76

Overall Tool Perfomance
10.0

9.0

e 8.0
C
u 7.0 -
E

6.0
5.0

0,4.0

(D 3.0
2.0 -

1.0

0.0
SpecTRM-RL Visualization Tool Both Tools

Figure 6-4: Average overall performance for subjects using the three different tool
configurations.

Figure 6-5 shows the average answer accuracy for each question using the three different

tool configurations. It can be observed that for most questions, the answer accuracy of subjects

using the visualization tool alone compares well to that of subjects using SpecTRM-RL alone.

The poor results of the visualization tool in the second part of Q1 can be explained in part by

layout difficulties resulting from sub-optimal algorithms used while programming the tool. Q1-

P2 is a behavior-oriented question that requires the display of the most complex state variable in

the model. This state variable is specified using six pages of AND/OR tables in SpecTRM.

Because of the highly complex behavior specified, the decision-tree is only readable when

extended to a whole page, and when behavioral slicing is used. The resulting decision tree can

be seen in figure E. A major inconvenience associated with this tree layout is that it requires

more than 30 second to refresh itself. The interesting result is that subjects answering this

question with both tools performed much better than subjects using the visualization tool only.

Interestingly, when both tools were available, three subjects out of four used both at the same

time, using the decision-tree to answer the question, and double-checking their answers using the

AND/OR tables while the tree layout was refreshing. In this case, the slow refreshing time of the

77

visualization tool was a good motivation for users to use SpecTRM-RL tables. This could

explain the high level of success obtained by users having both tools available.

Answer Accuracy vs. Tool used

C.,
Cu
I..

C.,

I..
C,

U,

10.0

9.0

8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

0.0
Q1 -P1 Q1-P2 Q2-P1 Q2 - P2 Q3 - P1 Q3 - P2

Question

Figure 6-5: Average results obtained for each question part using the three possible tool
configurations.

A paired sample two-tailed T-test was performed on the results in order to assess the

statistical s ignificance of the better performance of the visualization tool. Such a test is well

suited for experiments with a few human subjects where a rather large variation in subject ability

is expected. While the results show that subjects performed slightly better using the

visualization tool alone than using SpecTRM-RL alone, absolutely no statistical evidence was

obtained to support such a statement. However, when the performance of subjects using

SpecTRM alone is compared to that of subjects using both tools, the test results reveal a

probability of 97.5% that the performance difference is statistically significant. By most human

experiment standards, such a result is convincing enough to state that statistically significant

results have been obtained. Thus, it can be declared that a statistically significant increase in

78

performance resulted from answering questions with both tools available, as opposed to with

SpecTRM alone.

On the other hand, the use of both tools also produced a noteworthy increase in performance

over the visualization tool alone, even if a statistical analysis could not show with a high

probability that such an increase is significant.

It does not appear that the background of the users had a large effect on the measured

performance. Students with an aerospace background did slightly better, with an average of 6.7,

compared to 6.3 for students with an EECS background. A statistical analysis did not reveal any

significant difference in performance. Aerospace students performed better with SpecTRM-RL

and AND/OR tables, with an average of 6.6, as opposed to 4.3 for EECS students. This would

suggest that aerospace engineers find tables easier to use than computer scientists. Although we

did not obtain strong statistical evidence to back up this claim, Zimmerman did obtain

statistically significant similar results in his experiment on the readability of different transition

conditions representations [40]. Using a similar two-tail T-test, Zimmerman was able to show at

a 97.5% confidence level that when using AND/OR tables, aerospace engineers outperformed

computer scientists. This result is slightly counter-intuitive since it could be expected that

EECS students would do better at using SpecTRM because of their knowledge of discrete

mathematics.

On the other hand, EECS students performed better with the visualization tool with an

average o f 6.8, c ompared t o 5.8 for a erospace students. This could be partially explained by

their better knowledge of graph theory and search algorithms. In fact, most EECS students

seemed more at ease with the structural and behavioral slicing functions available in the

visualization tool. The performance difference as a function of the subject background should be

interpreted with care because no statistically significant results were obtained and because of the

small number of data points available, especially when it comes to the performance of the EECS

students, who displayed an extraordinary amount of variation in performance.

Another interesting observation comes from the scope of e ach question. M ost questions

were designed as hybrid behavioral/structural questions intended to test the subject's ability to

integrate the information contained in the specification. However, a few questions were

specifically designed as pure behavioral or structural questions. For instance, Q1-P2 is a pure

behavioral question, while Q2-P2 and Q3-P2 are pure structural questions.

79

A possible explanation for the poor performance of subjects using the visualization tool for

the behavioral question Q1-P2 was provided earlier. However, it should be noted that although

subjects performed poorly using the visualization tool when compared to AND/OR tables,

subjects using both tools performed incredibly well with an average score of 9.3. It can be

argued from this performance that AND/OR tables and decision-tree representations of transition

conditions are both valuable and complement each other very well.

When it comes to structure-oriented questions, every tool performed about equally well in

Q2-P2. In fact, most of the errors made by subjects using SpecTRM had to do with a difficulty

in remembering the dependency structure. Many subjects using SpecTRM had to take notes on

paper and expressed some concerns about forgetting some links. On the other hand, most of the

errors made using the visualization tool had to do with either a misuse of the structural slicing

tool, or with a failure to consider multi-level dependencies. Some EECS subjects such as #1 and

#7 knew immediately how to use the structural slicing function and were completely at ease with

graph representations. Those subjects obtained a perfect 10 in both Q2-P2 and Q3-P2. Most

subjects, however, were slightly uneasy with the slicing function at first, either using it

completely wrong or failing to see multi-level relationships. I t appeared, however, that most

subjects got much better at using slicing as the experiment progressed. This learning process

may explain the high level of success obtained by the visualization tool in Q3-P2. Moreover,

every single subject having both tools available for Q3-P2 did not even consider using

SpecTRM-RL to answer this question. However, one could argue that this type of purely

structural question is a perfect match for the structural slicing function of the visualization tool.

The lack of a structural overview in SpecTRM-RL makes it more difficult to answer this type of

question.

6.3.2 Answering Time Results

Figure 6-6 presents the average time results for each tool/question combinations. As

mentioned previously, the time results should be interpreted with care for many reasons. First,

there was some saturation in the time results around 21 minutes because of the lightly enforced

"moving on" policy. Second, some subjects used the extra time available to double-check their

results while other subjects would just move on to the next question. For example, subject #4

80

was very careful to double check his results and made full use of the 20 minutes available for

each question, completing the questions in exactly two hours. On the other hand, subject #10

raced through t he e xperiment, c ompleting t he questions i n an h our and t en m inutes. F inally,

since the subjects were told that answering the questions quickly would not increase their

performance, the time results obtained should be used for insight purposes only.

Average Time spent per question vs. Tool used

25.0
El SpecTRM

20.0 0 Visualization Tool
20.0 0 Both Tools

20.0

.~10.0

5.0

0.0L
Q1 -P1 Q1 -P2 Q2 -P1 Q2-P2 Q3-P1 Q3-P2

Question

Figure 6-6: Average time spent on each question part using the three possible tool

configurations.

Statistical analysis does not reveal any significant difference in the time required to answer

the question as a function of the different tool used. The very quick answer to Q2-P2 by the

visualization tool users is a result of a subject underestimating the question difficulty and failing

to identify indirect relationships between elements, thus obtaining completely wrong answers. In

general, the shorter time required to answer Q2-P2 and Q3-P2 is a consequence of the structure-

oriented questions being somewhat easier and more straightforward than the others.

Little insight was gained through the analysis of the time required to answer the questions

when it comes to the different tools used. However, when comparing the results of the subjects

with different backgrounds, some interesting results emerge. Indeed, it was possible to show a

81

statistically significant difference in average time required to answer questions between students

with an aerospace background and students with an EECS background. On average, EECS

subjects took 82 minutes to answer the questions while aerospace subjects took 97 minutes. A

two-tailed T-test analysis based on these results shows at a 99% confidence level that on average,

EECS subjects answered the questions faster than aerospace subjects. This supports

Zimmerman's observation that computer science students completed his experiment significantly

faster than aerospace students [40].

6.3.3 Question Difficulty Results

Figure 6-7 presents the results of the overall average difficulty ratings for each tool. With

an average difficulty rating of 5.6, the visualization tool seemed to slightly decrease the apparent

question difficulty when compared to SpecTRM-RL (6.3) alone. However, when both

SpecTRM-RL and the visualization tool were available, users evaluated the difficulty rating to be

even lower (5.3). This suggests that in addition to providing better performance, a combination

of the tools could decrease the apparent difficulty of the tasks.

Overall Difficulty Rating

0)

.)

I-

a)

10.0

9.0

8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

0.0

Visualization Tool Both Tools

Figure 6-7: Average overall difficulty rating for subjects using the three different tool
configurations.

82

SpecTRM

Figure 6-8 presents the average difficulty rating for each question as a function of the tool

used. Although the results suggest that, on average, users had more difficulty answering

questions using SpecTRM-RL, no strong correlation was found to exist between the

performances achieved using different tools and the associated difficulty rating. In fact, the

visualization tool seems to create an illusion of facility that may result in subjects

underestimating the question difficulty and making careless errors. As an example of this,

subjects # 10 and #11 did very poorly on Q2-P2 using the visualization tool. In both cases, the

users completely underestimated the question difficulty, resulting in a failure to notice the

indirect relationships between elements that led to completely wrong answers. Although

subjects using SpecTRM-RL alone had to work harder to obtain an answer in Q2-P2, the

organization of the information in SpecTRM-RL enforced the detection of the indirect

relationships that subject #10 and #11 overlooked.

A very strong positive correlation was observed between the average difficulty rating and

the time required to perform the tasks. This was expected since users having some difficulty

answering a question would most likely spend more time working on it.

Average Question Difficulty vs. Tool used

9.0

8.0 -E SpecTRM
8.0 -0 Visualization Tool

7.0 El Both Tools

5.0--

4.0

2.0

1.0

0.0

Q1 -P1 Q1 -P2 Q2 - P1 Q2 - P2 Q3 - PI Q3 - P2

Question

Figure 6-8: Average difficulty rating for each question part using the three possible tool
configurations.

83

6.4 User Preferences

Another r easons w hy w e d ecided t o p rovide b oth tools to answer some questions was to

observe which tool would be chosen, thus trying to confirm the unstated hypothesis that subjects

will be instinctively attracted to rich visual representations. This was confirmed during the

experiment as every single subject used the visualization tool when available. Out of the twelve

subjects, ten went immediately for the visualization tool, while two decided to use both tools at

the same time. Two subjects used only the visualization tool to answer the questions, while the

others used a combination of the two. In general, subjects had a tendency to use the visualization

at first, while using SpecTRM-RL to perform backup tasks such as text searches. Many subjects

mentioned that the lack of a text search function is the most important disadvantage of the

visualization tool. Neither subject used SpecTRM-RL alone when the visualization tool was

available. This supports Petre's observations that subjects are instinctively attracted to colorful,

visually attractive representations.

Interestingly, one of the computer science subjects started answering behavioral questions

using AND/OR tables because of his computer science background (his words), however, when

confronted with the large tables of Q1-P2, the subject got worried and changed strategy saying:

"I should use the tree, it'll be easier... When the tables get bigger, it seems easier to use the

tree." However, after using the decision-tree for a while the subject got confused with the

behavioral slicing tool and had to check his answers using the tables, which he did very well.

Most subjects liked the decision-tree better over the AND/OR tables because "the tables have no

memory" as one subject put it. Users had the possibility to use interactive behavioral slicing

with the decision-tree, which removed the need to remember which conditions have already been

evaluated. Although it is possible to simplify the AND/OR tables based on an operating scenario

in SpecTRM-RL, the subjects were not taught the technique because it was decided that the

tutorial would be too long. This can be seen as an unfair advantage that may have biased the

user's preferences toward the visualization tool.

When asked to explain why the visualization tool was preferred over SpecTRM-RL,

subjects had comments such as: "The visualization makes it easier to tie things together... It's

tough to see the big picture in SpecTRM-RL, too much to remember...", "It's easier to see

what's going on with the visualization, there's too much clicking back and forth in SpecTRM-

RL", and "The visualization is easy to use except for programming bugs, it helps to see the

84

relations because everything is on one page." In general, the users seemed attracted to the

interactivity of the visualization tool, which gives an impression of control over the

specifications, even though the information remains unchanged. However, the powerful

interactive features of SpecTRM-RL (slicing, analysis, model execution, etc...) were not

available, which may have affected the user's preferences.

6.5 Principle-Specific Discussion

In the preceding chapter, four principles were identified as the most interesting to evaluate in

the context of this experiment. In this section, the application and validity of these principles is

discussed in the light of the observations made during the experiment.

6.5.1 Highlight Hidden Dependencies

The specification used for this experiment included two types of hidden structural

dependencies. The first type of hidden dependency is a side effect of the high level of coupling

between elements of the model. The value of many state variables depends on a large amount of

information c oming from different e lements which themselves a ffect the v alue of many other

elements. This type of hidden dependency occurs when individual dependencies are obscured or

buried within the mass amount of information. This occurs as much in SpecTRM-RL as in the

unsliced structural overview (V1). Structural slicing seemed to be the preferred way for subjects

to cope with this type of hidden dependency. The use of structural slicing in V1 appeared to be

fairly intuitive t o u sers h aving a p rior understanding o f d irected g raphs a nd s ome i dea o f t he

meaning of slicing. However, some users had to learn the meaning of slicing the structural

overview. Those users improved throughout the experiment but were not as proficient as the

users who instinctively knew how to use the tool. One subject in particular misused structural

slicing because of a complete lack of understanding of its meaning. Most subjects were able to

isolate structurally coherent subsets, which was useful in several questions. They were also able

to easily transition from sliced to unsliced view. It is strongly believed that the fact that context

85

remains visible to ensure geometric continuity during slicing is the main factor explaining this

apparent ease-of-use. However, we do not have objective evidence to backup that claim.

A major shortcoming of VI is that it does not allow input and output based slicing. In order

to isolate such structural patterns, subjects had to manually search the "raw" data since VI was

not able to highlight these dependencies. On the contrary, when compared to SpecTRM-RL, VI

tends to obscure these dependencies. Most subjects were confused by what appeared to be an

inconsistency within VI, and performed poorly on the questions that involved input influence. It

is believed that the additions of a simple input and output based slicing feature could eliminate

this problem.

The second type of hidden dependency involves the indirect structural dependencies

(structural dependencies involving multiple levels of dependency) naturally "hidden" in both

SpecTRM-RL and the unsliced Vi. Indirect dependencies exist because explicitly representing

each dependency for the entire model would be impractical and would add unnecessary size and

complexity. Indirect dependencies are an important aspect of any specification because they are

involved in all questions of the kind: "What if that component fails?" or "What happens to the

system if I make a change here?" V1 offers a simple and efficient way to visualize these

dependencies by applying multiple levels of slicing. Subjects who understood the concept of

indirect dependencies were able t o a nswer t his t ype o f question much f aster and w ith g reater

accuracy using V1 because SpecTRM-RL does not provide an explicit representation of indirect

dependencies. On the other hand, subjects who were not comfortable with the concept of

indirect dependencies had a tendency to perform better using SpecTRM-RL because the lack of a

structural overview enforces the link-following process that inevitably uncovers indirect

dependencies. In summary, using SpecTRM-RL for purely structural questions required more

effort, but was somewhat safer.

Our observations show that this principle is extremely valuable. It is important because

exploring the dependency structure of a specification is a tricky, yet frequent and important

review task. In the case of hidden structural dependencies, nodes-and-links graphs appeared to

be a natural and more effective representation in terms of the amount of effort necessary to

obtain a solution, but it required more training than the hyperlink representation used in

86

SpecTRM-RL. The task of the visualization designer is to identify all possible relevant types of

hidden or indirect dependencies and find ways to properly highlight them.

6.5.2 Support Top-Down Review

This principle was less controversial than the others. A great deal of evidence already

demonstrated that top-down review is an effective reviewing approach [21, 24]. For that reason,

the top-down approach was tightly incorporated, and even somewhat enforced in the

visualization tool. In fact, it is impossible to access the detailed information in V2 without first

locating the d esired element within the structural overview (V1). The experiment shows that

users have absolutely no problem with that approach. Users did not seem to be upset by the

necessity to navigate the overview in order to access detailed information. These observations

confirm t hat t op-down r eview i s a s olid, proven approach to deal with very large amounts of

information.

Another part of the top-down review principles states that the use of an overview promotes

the gestalt effect, which allows the emergence of the overall structure and promotes the

construction of a mental model of the system. One subject clearly demonstrated the value of VI

for quickly creating a high-quality mental model of the system by finding an inconsistency in the

specification s olely b ased o n the structural overview (V 1). During the tutorial, subjects were

presented with a high-level hierarchical overview of the VG Annunciation Process and its

interfaces. This high level overview is shown in Figure F. The tutorial clearly explains that the

Display Electronic Unit (DEU) device is responsible for processing the outputs to the Primary

Flight Display (PFD) and N avigation Display (ND). Question Q2-P1 asks: "The FMA speed

window is used to display speed targets on the pilot's primary display unit (PFD). What

additional information is required for this window to display a magenta speed target?" The

subjects were expected to first locate the required state variable FMA Speed Magenta-White

Discrete, and then use the information available in the information panel to ensure that it was the

right element to answer the question. However, one subject pointed out that it makes no sense

that FMA Speed Magenta-White Discrete provides outputs only to the FCP device since the

question mentions that this state variable controls the display on the PFD, which is not connected

87

with the FCP. After verification, it turned out that the subject was correct and that an external

link was missing between the FCP and the DEU, which controls the PFD. The model in itself

was correct, but some inconsistency resulted from the omission of the external link added as a

dotted line in figure 5-4. The user was able to detect an inconsistency between the information

in the question and his mental model of the system created through the use of the structural

overview (V1).

While the visualization tool provides a graphical overview of the structure of a model,

SpecTRM-RL provides a graphical overview of the model behavior (see figure 2-3). The

behavioral overview displays the inputs and outputs to the system, the modes and state variables

of the system, along with their possible values. During the periodic reviews by domain

experts of a formal specification of a collision avoidance provided for the FAA, Leveson

observed that such a graphical behavioral overview of the entire specification was a very

powerful review tool [7].

Although such a behavioral overview was available in SpecTRM-RL for the VG

Annunciation Process system, the automatically generated layout of the graphical overview was

very awkward because of the sheer size of the model used. Consequently, subjects did not use

the graphical behavioral overview. The commercial release of S pecTRM-RL features greatly

improved graphical overview layout generation, but it was not used in the experiment because it

was not available at the time.

The characteristics of the overview will support different types of review tasks, some

requiring more expertise than others. For example, a graphical overview of the system behavior

such as that provided in SpecTRM-RL may be very useful for reviewers having a refined mental

model of the system's functioning, while a structural overview may be more useful for the initial

creation of the mental model.

Nevertheless, the use of hierarchy is the preferred way for humans to manage complex

systems. Consequently, top-down review is an extremely important, well-accepted principle that

should be supported by visualizations designed to enhance the reviewability of formal

specifications. The fact that a subject was able to detect an inconsistency in the model based

solely on the structural overview is a proof of the value of the principle.

88

6.5.3 Support Alternative Strategies

The flexibility of the visualization tool was artificially limited because the experiment

subjects were all novices. Implementing the visualizations with a large number of features

increases their potential and flexibility, but makes them more difficult to use without extensive

training. Since we wanted the pre-experiment tutorial to be limited to an hour, some of the

features were suppressed, such as the ability to visualize several graphs at the same time, or the

ability to reorder columns in the decision-trees. Some features usually available in SpecTRM-

RL were also restricted because they would have required too much training to master. These

restricted features included slicing, analysis and model execution.

However, some flexibility was preserved and several questions were formulated in such a

way that users could obtain an answer using many different strategies. For instance, V1 does not

provide any preferred "entry point" to the system: a search strategy can start with inputs, outputs,

or any internal element. Most of the time, an answer to the questions can be reached through

several approaches. Although it is believed that some of the most powerful features cannot be

used without some level of expertise, some simple features such as text searches and input/output

based slicing were often mentioned by users as being most required for the visualization tool.

The addition of these features probably would have added valuable flexibility to the visualization

tool without the need for much additional training.

Most subjects displayed a very high level of flexibility in problem-solving strategies. This

is consistent with Vicente's observations [37] that:

"[...] the detailed cognitive procedures used by workers during any one particular situation

are idiosyncratic. As a result, there is a great deal of variability across situations. [..] This

variety is also due to individual differences in behavior, both across workers within a situation

and within a worker across situations. Different people prefer to perform the same tasks i n

different ways. Moreover, even the same person can prefer to perform the same task in different

ways on different occasions."

Because of this, problem-solving strategies are usually defined as a category, rather than as

an explicit sequence of operations. Rasmussen proposed a definition of strategy in this context:

"A strategy is a category of cognitive task procedures that transforms an initial state of

knowledge into a final state of knowledge."

89

The use of a single tool to answer the questions somewhat limited the number of different

strategies subjects could use. Despite a large variability in individual problem-solving strategies,

most users seemed to reach answers in a very systematic way. They would start answering

questions using the strategy that instinctively seemed more appropriate. When both tools were

available, this strategy usually included the use of the visualization tool. However, as soon as a

roadblock was reached, instead of pushing the use of the initial strategy, users having another

tool available had a strong tendency to switch tool in order to overcome the difficulty. As an

example, such change in strategy was very often encountered when users could not find the

required elements in the visualization tool. If SpecTRM was available, they would locate the

desired information in SpecTRM, take note of some additional cues in order to locate the

information in the visualization tool and continue on their initial problem-solving path. This is

consistent with Rasmussen's observations that individuals make spur-of-the-moment shifts in

processing directions rather than merely executing some strategy determined beforehand.

Also, when users had limited confidence in an answer reached, they would very often

double-check this answer using the other available tool. In some cases, it appeared that this

double-checking process revealed an easier way to answer the question and the users would re-

answer the question using the easier strategy.

In general, subjects would obtain a solution using a strategy similar to a depth-first search

strategy with backtracking on failure. The increase in performance resulting from the

availability of both tools could be partially explained by the smaller backtracking depth that

could be achieved by using the other available tool. As soon as a difficulty arose, users would

seek alternate answer paths using the other available tool, instead of persevering in an uncertain

direction that would often lead to a dead-end. Surprisingly, subjects who employed many

strategies as a result of the failure of their first strategy performed better than the others

This category of strategy was identified by Rasmussen and Jensen [27,28] as "The

Technician's Approach". While studying the diagnosis of equipment failures, they observed that

rather than exploit knowledge of the equipment to develop an equipment-specific plan of attack,

professional technicians tended to use generic methods that were independent of both the

equipment and the fault. Rather than extracting as much information as possible from each

observation, technicians tended to use e ach observation o nly t o d etermine where to m ake the

next observation. Various strategies have different resource time, memory, and knowledge

90

requirements. Rasmussen and Jensen found that when one strategy is becoming too effortful,

technicians would spontaneously switch to another strategy to meet the task demands in a more

economic fashion.

It is interesting to note that although every subject had an undergraduate degree in

engineering or computer science, the strategies observed were much closer to the "Technician's

Approach" than to the "Engineer's Approach", which is based on a profound knowledge of the

system's functioning. It appears that given the time constraints and the impossibility for subjects

to obtain a deep understanding of the system within a two-hours period, subjects performed the

experiment tasks as professional technicians, jumping from one part of the specification to

another, collecting bits of information on the way, in order to decide where to go 1 ook next.

Given the c onstraints, subjects automatically switched to the "Technician's Approach", which

was facilitated by the larger flexibility resulting from the availability of both tools. The

strategies observed confirm this hypothesis and at least a portion of the performance increase can

be attributed to the larger flexibility in strategies offered to subjects having both tools available.

6.5.4 Provide Redundant Encoding

It was believed that providing both the visualization tool and SpecTRM at the same time

could enhance the users' performance by providing them with the opportunity to choose the most

appropriate representation for their tasks. However, it seems that in most cases, users decided

which tool would be used before reading the question. T his c hoice w as b ased o n subjective

criteria, rather than on analysis of the task to be performed. This can be explained by the

inexperience of subjects who could not identify beforehand the most effective strategy to answer

each question. Users had a tendency to start with one preferred notation and switch only if this

notation failed. However, further experimentation using possibly more experienced subjects

would have to be performed to see if users would eventually choose one representation over

another based on more systematic criteria.

Although it appears that subjects did not choose a particular representation based on

objective criteria, the background of subjects using different representations seemed to affect

their performance. The results mentioned previously seem to demonstrate that aerospace

subjects are better at using SpecTRM-RL and AND/OR tables, while EECS students are better at

91

using the visualization tool. This supports the results obtained in a previous experiment on the

readability of various notations where Zimmerman was able to show at a 97.5% confidence level

that aerospace subjects find tables easier to use than computer science subjects. These combined

results suggest that multiple representations of the same information may support reviewers with

different backgrounds. In this case, an emerging problem will be to find a way to encourage

reviewers with different backgrounds to choose a representation that helps to optimize their

performance.

Every representation exhibits different strengths and weaknesses. When both SpecTRM-RL

and the visualization tool were available, many users would somehow create a more powerful

"hybrid" representation by manually compensating for the weakness of a representation by using

the other. This supports both the need for more flexibility and the need for redundant encoding

of the information contained in the specification.

This experiment v ery c learly d emonstrates the v alue of the redundant encoding principle.

Whether it is because users with different background will prefer different notations, or because

the characteristics of a representation will make i t m ore s uitable t o p erform a c ertain t ype o f

tasks over another, this experiment strongly corroborates the hypothesis that multiple

representations based on the same underlying formal model will improve the specification

reviewing process.

6.6 Experiment Limitations

Running the experiment on human subjects revealed limitations that were overlooked during

the preparation of the experiment. Some of these limitations could potentially have adverse

effects on the initial objectives of the experiment.

One of the limitations comes from the relatively small number of subjects who participated

in the experiment. Based on previous experiments performed at SERL, it was decided to limit

the number of participants to twelve, in order to prevent excessive experiment duration.

Theoretically, twelve subjects are sufficient to obtain statistically significant results, however, a

92

small number of subjects decrease the robustness of the results o btained and the tolerance to

outliers.

The user background may also be a limitation. It was decided to recruit graduate students at

MIT rather than professional systems engineers because students were more available and

provided a relatively homogeneous group of subjects that had little or no exposure to

specification reviewing tasks. Because of this, some of the answers may be based on intuition

rather than on a rigorous systems engineering process, which would have been the case if

professionals had been used.

Another limitation was the possible bias introduced by the experience of some of the

experimenters. In order to evaluate the visualizations created for reviewing formal

specifications, questions were designed to reflect realistic tasks that professional reviewers

perform on a routine basis. Although every care was taken to ensure that questions were

representative of real tasks, it is possible that the question designer's relative inexperience with

formal reviewing processes influenced the question design. Also, the question designer was

directly involved in the design of the visualization tool. Independent people reviewed the

questions b ut s ome b ias m ay h ave b een unintentionally i ntroduced b y t he question d esigner's

familiarity with the features of both SpecTRM-RL and the visualization tool.

Another important limitation is the scope and duration of the experiment. In order to reflect

real-world reviewing tasks, the questions were necessarily challenging. Although such questions

allowed us to thoroughly test the subjects' ability to use the different tools provided, some of the

subjects quickly grew tired and discouraged. This may have affected the answers to the last

questions. One of the objectives of the experiment was to observe whether the subjects were

able to dynamically adapt their problem-solving strategies. This requires some time for the

subjects to learn which strategies work in certain situations and to adapt. Consequently, from an

experimenter's point-of-view, even longer experiment duration would have been desirable.

However, from a subject point-of-view, it was simply unreasonable to extend the total

experiment duration beyond three hours.

Experiment subjects were all novices in the field of formal requirements specification.

Consequently, an hour-long tutorial was necessary for the subjects to be able to understand the

specification and to effectively use the tools provided. The tutorial combined with the nearly

93

two-hour experiment extended the total duration well beyond two hours for most subjects.

However, it appeared that this tutorial was not sufficient for some of the subjects to acquire the

necessary skills. Insufficient training for some subjects was reflected in their lack of confidence

in answering s ome questions. I t c ould be argued that such variation is simply due to natural

ability differences between subjects, but it is believed that an overly intensive learning process

accentuated those differences. In the real world, individuals usually have the opportunity to

extend learning activities over a much longer period of time and have more time to practice.

6.7 Recommendations

Based on the experiment limitations and sources of error mentioned previously, we

suggested several recommendations intended for further experimentation in this field.

People with various backgrounds use complex systems specifications. The reviewability of

formal specifications by non-technical people is an important factor in the acceptance of formal

methods by the industry. Consequently, it would be useful to test subjects with a non-technical

background. Although every experiment subject possessed an undergraduate background in a

technical field, it should be mentioned that the subject who answered every question perfectly is

doing graduate work in a highly technical field while the subject who did poorly on the

experiment has spent the last years pursuing graduate studies in a management/policy-oriented

field. It is not possible to extrapolate from those two data points and claim that technical people

are better reviewers than non-technical people, but further investigation could shed some light on

the matter.

Providing more training on the use of state-machines or selecting subjects with a better

understanding of the functioning of state-machines would also be useful. Although state-

machines are a relatively easy concept that is quite natural for engineers, it is unreasonable to

think that a ten-minute introduction to state-machines is enough for subjects to become proficient

in the subject and confident in their answers. Furthermore, industry reviewers would certainly be

familiar with the concept, or at least given enough time to understand it well.

94

Another recommendation is to include professional reviewers in a future experiment.

Graduate students were used in this experiment for convenience and availability, but their lack of

reviewing experience was a limitation when it came to associating particular tasks with effective

problem-solving strategies. Experienced reviewers would bring more insight into this matter.

If this experiment had to be repeated, a stricter enforcement of the time limit should be

considered. Although most subjects could answer the questions in less than 20 minutes, some

subjects took significantly more time to answer some questions, which may bias the results.

The experiment was too demanding for most subjects. The combined tutorial and questions

required a good amount of concentration from the subjects. Maintaining such a concentration

level for almost three hours ended up being too much for some subjects, who grew tired and

frustrated. Further experiments should be divided in two parts. Subjects should go through a

longer tutorial session on a day, and answer the experiment questions the following day. Each

session should be limited to two hours.

95

Chapter 7

Conclusion

Reviewability of formal specifications is one of the major roadblocks hindering industry

adoption of formal methods. This research is founded on the working hypothesis that

visualization can significantly improve the specification reviewing process, thus supporting the

industrial acceptance of formal specifications. The experiment performed as the core of this

thesis highlights strong trends that support this belief.

7.1 Attractiveness and Performance of Visual Representations

The most obvious trend is the attractiveness of rich visual representations. This

phenomenon had already been thoroughly observed and documented [24]. When given a choice

of representations, ten out of twelve subjects initially used the visualization tool over SpecTRM-

RL, while two subjects initially used both representations at the same time. Although most users

chose to initially use the visualization tool, as soon as they encountered a difficulty, most

subjects were very inclined to use SpecTRM-RL to overcome the difficulty. Nevertheless, the

natural appeal observed toward rich visual representations comforted our belief that visualization

can actively participate in making formal methods acceptable to a larger community of engineers

and researchers.

Petre [24] concluded that even if representations containing rich visual content do not

improve the performance of users compared to more traditional representations, their

attractiveness in itself may be their major strength and should not be underestimated. However,

our results show that users performed well using visual representations. Although the

performance of subjects using SpecTRM-RL alone was comparable to that of subjects using the

visualization tool alone, a significant increase in performance resulted from the availability of

both tools. It was even possible to show at a 97.5% confidence level that the combination of

96

SpecTRM-RL and the visualization tool resulted in a significant increase of performance over

SpecTRM-RL alone. Similarly, the combination of both tools created an increase of

performance over the visualization tool alone, but the significance of the statistical results was

not as strong.

The main objective of this experiment was to evaluate the interactive visualization tool

created based on the proposed design principles. SpecTRM-RL was used as a basis for

comparison but it would be a mistake to equate the visualization tool to a pure visual

representation and SpecTRM-RL to a pure textual representation. In fact, the decision-tree

representation of transition conditions includes just as much text as the table representation used

in SpecTRM-RL. However, it can be reasonably argued that the visualization tool takes more

advantage of perceptual cues such as color and position than SpecTRM-RL does. Since the

combination of SpecTRM-RL and the visualization tool resulted in better performance, it

suggests that the best reviewing tools should include a combination of many different

representations, each highlighting different properties of the information contained in the

specification.

7.2 Validity of Highlight Hidden Dependencies Principle

The observations made during the experiment show that highlighting hidden dependencies is

a very important design principle. Ideally, dependencies should be highlighted in such a way

that detecting hidden dependencies is effortless and unequivocal. However, it appeared that

while the visualization tool provided a simple and efficient way of highlighting hidden

dependencies by applying multiple levels of slicing, some subjects were not able to take

advantage of this feature because of a misunderstanding of its purpose. Those subjects

performed better using SpecTRM-RL because the lack of a structural overview enforces the

uncovering of indirect dependencies at the price of larger effort. In short, using SpecTRM-RL

seemed to be a safer way to explore the structural dependencies of a model, but it usually

required more time and effort. Also, the different properties of each representation seem to

highlight different types of dependencies. For example, questions about the influence of input

values seemed to be easier to answer using SpecTRM-RL because the visualization tool was not

97

able to highlight this type of dependency. In addition to supporting the "Highlight hidden

dependencies" principle, these observations seem to show that different types of dependencies

can be highlighted through the use of redundant encoding.

7.3 Validity of Top-Down Review Principle

Top-down review was somewhat enforced in the visualization tool because it was

impossible to access detailed behavioral information without first locating the desired element in

the structural overview. The subjects seemed to adopt very quickly the use of an overview as a

navigation tool. Some comments even mentioned that the structural overview helped to tie

things together and understand the relationships between elements. In p articular, one subject

was able to detect an inconsistency in the model based solely on the structural overview. The

use of a graphical overview, either structural (visualization tool), or behavioral (SpecTRM-RL),

seems to be a good way to promote the creation of a mental model of the system. These

observations, along with past experiences confirm that top-down review is a solid, well-accepted

approach to deal with large amounts of information.

7.4 Validity of Support Alternative Strategies Principle

The results show that the most important factor affecting performance was arguably the

flexibility built in the representation and the possibility to answer questions in many different

ways. The large variation in problem-solving strategy between users was quite amazing to

observe. This large variation may be due in part to the inexperience of users who did not know

beforehand which tool or strategy would be better suited to answer certain types of questions.

However, such a large variation in strategy was expected based on the results of other

experiments with human subjects. Rasmussen explains this by the idiosyncrasy of the detailed

cognitive procedures used by different people in a particular situation. In addition to exhibiting

different strategies, some subjects switched strategy many times while answering a single

question. This is also consistent with Rasmussen's observations that individuals make spur-of-

the-moment shifts in processing directions rather than merely executing a strategy determined

98

beforehand. Interestingly, the subjects provided with more flexibility through the availability of

multiple representations undoubtedly performed better. This supports our claim that much

flexibility must be built in the visualizations in order to support users with different backgrounds

and expertise levels in performing a large variety of reviewing tasks.

7.5 Validity of Provide Redundant Encoding Principle

As mentioned previously, some of the principles may overlap. As an example, redundant

encoding both supports the highlighting of different types dependencies and provides much

needed additional flexibility in p roblem-solving s trategy. I n a ddition t o s upporting t hese t wo

principles, it appears that users with different backgrounds performed better using different

information representations. For instance, it seems that aerospace subjects were better at using

SpecTRM-RL than EECS subjects. This claim was not backed by strong statistical evidence and

may be anecdotal but it supports previous results showing at a 97.5% confidence level that

aerospace students were better than computer science students at using AND/OR tables. On the

other hand, EECS students performed slightly better using the visualization tool than aerospace

students, possibly because of their knowledge of graph theory and search algorithms. These

results further support the redundant encoding principle by suggesting that multiple

representations of the same information may increase the performance of reviewers with

different backgrounds.

7.6 Other Results and Observations

It appeared that subjects improved at using the visualization tool throughout the experiment.

Apart from a few exceptions, subjects were confused at first and had trouble understanding the

meaning of some functions of the visualization tool. However, toward the end of the experiment,

most subjects exhibited more confidence and ability while using the visualization tool. A linear

99

regression analysis based on the subject performance with d ifferent tools show a n et p ositive

improvement in performance using the visualization tool.

There was no indication that one tool permitted answering the questions faster than another.

However, the time results may be biased by the different attitudes of subjects during the

experiment. Some subjects were very patient and meticulous, p aying attention to details and

verifying their results while other subjects would move on to other questions very quickly, even

when unsure about an answer. Although no significant time difference was observed between

subjects using different tools, it was possible to show with a 99% statistically significant

confidence 1 evel that w ith c omparable performance, EECS subjects performed the experiment

faster than aerospace subjects. This result confirms observations made in previous experiments.

The difficulty ratings collected seem to show that for the particular questions asked, users

perceived the visualization tool to be slightly easier to use than SpecTRM-RL. However, when

combining the difficulty ratings with the answer accuracy, results shows that subjects often

underestimated the question difficulty when using the visualization tool, resulting in completely

wrong answers. SpecTRM-RL users never underestimated the question difficulty. Although

users often had to work harder to obtain an answer using SpecTRM-RL, it seemed to be less

error-prone than the visualization tool. Interestingly, the results show that the combination of

both tools, in addition to providing better performance, significantly decreased the apparent

difficulty of the tasks. This result is encouraging because it suggests that the use of the design

principles could not only increase the performance of specification reviewers, but also decrease

the apparent difficulty of typical specification review tasks.

More visualization designs, along with more human experimentation will be required to

build confidence in the design principles proposed in this thesis. However, the results obtained

are encouraging and should be seen as a good motivation for further research in the area.

The results of this research show that visual representations of formal requirements

specification have strong potential, especially as a complement to more traditional

representations. It is believed that the development of easy-to-use, intuitive formal specifications

tools including powerful features and analysis capability is the keystone to the industrial

acceptance of formal specifications. The potential benefits justify the effort.

100

References

[1] Blackwell, A.F., K.N. Whitley, J. Good, and M. Petre, "Cognitive Factors in Programming
with Diagrams", accepted for publication in Artificial Intelligence Review.

[2] Card K., D. MacKinlay and B. Shneiderman (Eds), Readings in Information visualization,
Using Vision to Think, Morgan Kaufnann, 2000.

[3] Casner, S. and J.H. Larkin, "Cognitive Efficiency Considerations for Good Graphic Design",
11th Annual Conference of the Cognitive Science Society, August 1989.

[4] Casner, S., "A Task-Analytic Approach to the Automated Design of Graphic Presentations".
A CM Trans. on Graphics, 10:111-151, April 1991.

[5] Clarke, E. and J. Wing, "Formal Methods: State of the Art and Future Directions", ACM
Computing Surveys, vol 28, no. 4, December 1996, pp. 626-43.

[6] Conklin, J., "Hypertext: An introduction and survey", IEEE Comput. 20,9 (Sept. 1987), 17-
40

[7] Dulac, Nicolas, Thomas Viguier, Nancy Leveson, and Margaret-Anne Storey. "On the Use
of Visualization in Formal Requirements Specification." Proceedings of the International
Conference on Requirements Engineering. Essen, Germany. Sep 2002.

[8] Fitter, M. and T.R.G. Green, "When do diagrams make good computer languages",
International Journal ofMan-Machine Studies, 11(2):235-261, March 1979.

[9] Gerhart, S.L., D. Craigen, and T. Ralston. "Observations on industrial practice using formal
methods", Proceedings 15th International Conference on Software Engineering (ICSE),
Baltimore, Maryland, USA, May 1993.

[10] Green, T.R.G., "Conditional Programs Statements and their Comprehensibility to
Professional Programmers", Journal of Occupational Psychology, 50, 93-109, 1977

[11] Green, T.R.G. and A.F. Blackwell, "A tutorial on cognitive dimensions". (1998)

[12] Guttag, John V., James J. Homing, S.J. Garland, K.D. Jones, A. Modet, and J.M. Wing.
"Larch: Languages and Tools for Formal Specification." Springer-Verlag, New York, NY, 1993.

[13] Harel, David. "Statecharts: A visual Formalism for Complex Systems", Science of
Computer Programming 8. Elsevier Science Publishers B.V., Nirth Holland. 1987. pp. 231-
274.

[14] Heimdahl, Mats P.E. and Nancy Leveson. "Completeness and Consistency Analysis of
State-Based Requirements." IEEE Transactions on Software Engineering. May 1996.

[15] Heimdahl, Mats P.E. and Michael W. Whalen. "Reduction and Slicing of Hierarchical
State Machines", Proceedings of the Sixth European Software Engineering Conference
(ESEC/FSE 97).

[16] Hutchins, Edwin, James Hollan, and Donald Norman, ""Direct Manipulation Interfaces".
In Donald Norman and Stephen Draper, User Centered System Design, 1986, pp. 87-124

[17] Johnson-Laird, P.N. "Mental Models", In M.I. Posner, Ed., Foundations of Cognitive
Science. MIT Press, Cambridge, MA, 1989, 468-499.

[18] Larkin, J.H. and H.A. Simon, "Why a Diagram is (Sometimes) Worth Ten Thousand
Word", Cognitive Science, 11(1):65-99, Jan-Mar 1987.

[19] Leveson, Nancy, Mats P.E. Heimdahl, Holly Hildreth, and Jon D. Reese. "Requirements
Specification for Process-Control Systems", Published in IEEE Transactions on Software
Engineering, September 1994.

[20] Leveson, Nancy. "Safeware: System Safety and Computers". Addison-Wesley Publishing
Company, 1995.

[21] Leveson, Nancy, Jon Damon Reese and Mats P.E. Heimdahl. "SpecTRM: A CAD System
for Digital Automation". Safeware Engineering Corporation, 1998.

[22] Leveson, Nancy. "Intent Specifications: An Approach to Building Human-Centered
Specifications." IEEE Transactions on Software Engineering. Jan 2000.

[23] Leveson, Nancy. "Completeness in Formal Specification Language Design for Process-
Control Systems." Proceedings ofFormal Methods in Software Practice Conference. Portland,
OR. Aug 2000.

[24] Petre, M. "Why Looking Isn't Always Seeing: Readership Skills and Graphical
Programming." Communications of the ACM, 38(6), pp.33-44, 1995.

[25] Nelson, T.H. "Xanalogical Structure, Needed Now More than Ever: Parallel Documents,
Deep Links to Content, Deep Versioning and Deep Re-Use", Project Xanadu and Keio
University.

[26] Ranson, D.S. and D.D. Woods, "Making Automation Activity Visible", Technical Report
1995-03, Ohio State University, December 1995.

[27] Rassmussen, J. and A. Jensen. "A study of mental procedures in electronic
troubleshooting". Roskilde, Denmark: Danish Atomic Energy Commission, Research
Establishment Riso, 1973.

[28] Rassmussen, J. and A. Jensen. "Mental procedures in real-life tasks: A case study of
electronic troubleshooting". Ergonomics, 17, 293-307, 1974.

[29] Rasmussen, J. "Information Processing and Human-Machine Interaction: An Approach to
Cognitive Engineering." North Holland, 1986.

[30] Safeware Engineering Corporation. SpecTRM User Manual. Version 1.0.0. 2003.

[31] Shore, John. "The Sachertorte Algorithm and Other Antidotes to Computer Anxiety".
Penguin Books, New York, 1986.

102

[32] Spivey, J.M. "The Z Notation: A Reference Manual." Prentice-Hall, Englewood Cliffs,
New Jersey, USA, Second edition, 1992.

[33] Storey, M.A., and H.A. Muller, "Manipulating and documenting software structures using
ShriMP Views". In Proceedings of the 1995 International Conference on Software
Maintenance. (ICSM '95) Opio (Nice), France October 16-20, 1995.

[34] Storey, M.A., F.D. Fracchia, and H.A. Muller, "Cognitive Design Elements to Support the
Construction of a Mental Model during Software Exploration", Journal of Software Systems,
44:171-185, 1999.

[35] Thilring, M., J. Hannemann and J. Haake, "Hypermedia and Cognition: Designing for
Comprehension", Communications of the ACM 38(8), 1995, 57-69.

[36] Tufte, E.R. "The Visual Display of Quantitative Information". Graphics Press. 1983.

[37] Vicente, Kim J., "Cognitive Work Analysis: Toward Safe, Productive, and Healthy
Computer-Based Work". Lawrence Erlbaum Associates, Publishers. Mahwah, New Jersey,
1999.

[38] Viguier, Thomas. "Evaluating Visualization In Formal Requirements Specification: An
Experiment With Human Subjects". M.S. Thesis, Massachusetts Institute of Technology, 2003.

[39] Woods, David. "Toward a theoretical base for representation design in the computer
medium: Ecological perception and aiding human cognition." In J.M. Flach et al., editors An
ecological Approach to Human Machine Systems I: A Global Perspective, Erlbaum, Hillsdale,
New Jersey, 1995.

[40] Zimmerman, Marc. "Investigating the Readability of Formal Specification Languages".
M.S. Thesis, Massachusetts Institute of Technology, 2001.

[41] Zimmerman, Marc, Kristina Lundqvist and Nancy Leveson, "Investigating the Readability
of State-Based Formal Requirements Specification Languages", International Conference on
Software Engineering, Orlando, May 2002.

103

Appendix A

Full-Page Figures

104

Ij NeW t-rOject

B C] MD-11 FMS Experiment
rl Level 0: Program Management Information FMA Vertical Alert Discrete

F1 C! Level 1: System-Level Goals, Requirements, a
El El Level 2: System Design Principles

f i Level 3: Blackbox Behavior
BBehavioral Assumptions and Models ofthe FXV umw

E C Communication
B Operational Procedures Ueis4M6 Wk*4tbFd* fVC to ar n.t vnttn 'ovMT AunTnungv H& atelif FMA k ~wkW imorwt a:Imarp vsn

ALERT Aufsm' w ana *b aws ja PROF, 5 smabr atage dumar. I-&in:Ma maci"wimded[User Model *o l p &*tone &Rta -atot* aof*mp CRxO a" tod&r 4 a=koWIW *A Otad
E i System Blackbox Behavior omhoatoMuoer m.ITAulTeiaiaofhfo r ata aSe angesiy

E (MD-1I FMS VG, Annunciation Process canweo . mvAmra oerapqigr 4%ts nxwe oqn d

E C State Variables Meem AimestIT im r na a attsnaDn Au rn tayrn nm to Ti qn r- -i %i
C A Macros n 7a .n To MV Of rgtar bitT n k 0 To Aetim t 0 Tn4 flMA Ta aa ko
1 i Devices ma o h A i weo

El - Inputs ,e A

E) Ci Outputs .%pw* U, FTC ua

E i Special Functions used as Real Va
En Verification and Validation

5l Li Level 4: Physical and Logical Design Represe DEFINiTION

El Ei Level 5: Physical Implementation -

El CJ Level 6: System Operations
constantDefnltions
Index
Glossary

RnnadT T T T T

Snme R gtyl F T T T I

FC feted Akina > Fr Akao Ttz + so T T F

FN M0 &AkbA C A&AT-50 F T

um to a To Aim t11m mit Th<S T

rT'. o rm To r - Tmas oarl<o 5 T T
XIaZ.. BowL|l3s<5 1 F

unO~avl 777n hdefar r 7m7? hss

S1 4 intiU Alrimafmp in W~n T

EDEA MA T T T T T T F
Azrft it Lenldt T T T T T F

FMr M%#6uA AlthA > ti= AkMA Trea + 5 T T F

F(*ed AiAkkk < WAkAWTra -30 r T T

?to e To aroe COrn %it PMo >o T T

DM t6 ag To Artn T1 tr m > T F T

TkIA. i& fi To in oY TiqSjet >W > T T

nuli Eian Ai ansra Does Ha Eman T T

sitjn A AOA r3n i PRAO

Figure A: Screen capture of the SpecTRM GUI.

VG/ irptilt, VG Guidance.

aawtm'in-Lmi

Aircraft is a..

pilot Initial.

PROF en incom n

FCC

Aircraft in 1 -1

MCDU DEU

Figure B: An organized overview of the view of the structure of the specification (V1).

Pilot lnitate..

FMAVeilcalA11R

FMApeOdTa

1FMA 8pe M3 9..

19-1.

Climb "

Aircraft in le.

No

mR

Figure C: Sliced structural overview. The state variable Origin of Level TD and its structural dependencies are emphasized

over the rest of the model, which is preserved as context.

-~1

m.m.

I

Is the Aircraft MIll the Aircraft Violate Is the Aircraft trying to Is the Active is the Predicted Speed of Is the Aircraft Is the Aircraft Is the Aircraft in Is the Aircraft
Maintaining the the Next Downpath Decelerate or to Segment Predicted Speed Descent/Approach Segment Overspeeding? Overspeeding? Descent? Decelerating fast
Descent/Approach Descent Altitude Maintain Speed? an Airspeed or a Wch? an Arspeed or a Wch? enough?
Path? Constraint?

Next Downpath Aititude
Constraint Violation

nEate " *

^ Active Descent ' Aetiv Descent
Apprmach Segment Approach Segment

Thrust Type' Sp~eed Typeta(INPUT (maV tm i5."e (I PUT VGP 1 -5iepd~

* Preceding
Descent-Appmoach

"eeetrpe Tp

ADCCAS

(INPUT from ADC)

* ADC Mach * *Fffgtphase*

(' "UT''''I" .p' ' lee

Figure D: A Questions-based Decision Tree taken from the MD-11 Vertical Guidance Specification. The state variable
Active Add Drag Scenario indicates which of the five possible scenarios for extending airbrakes is active, if any.

*Operabronal
ProcedureI

(INPUT r.. vG Ga..

*RS Fight PaMt
Acceera)onI

(INPUT from IRU)

Sc enariw 4

(no)

None_

>,-O.Og (no -
< -0.o 0

55
VHJ4oine

oo
00

AtitWhat is the current T"AIt Is the aircraft above1n714 I2 I Is the aircraft 1s the aircraft above I al,-dano is R Before cruise, was the Is the aircraft Is the aircraft
omry di deWhat iIs th ca lidiua.ticf I . te the econ CLIMB speed 0'""Cn"I" E kc ,%6.
mq.LWa operational d.cuwnes above the ei ie'.min d.wa.e in cruise? schedule crossover P".d''. .. aircraft in climb or in speed limited speed limited

M~jt.,procedure? Pancod- acceleration """.K'?" A" .. d"bl altitude? ""'"""- descent? to climb to descent

"-o altitude? I speed? speed?

; t poe'" * a e r de ct
IPreceding

Fightphase
INPuT rmv VG iaec.,

Takeof OR imb

-anyesbi/t OR

any ohrvU

A(Mol r. CLs)

(mYb)
AL-m1fr.uDessar

(MXCb)

TakeoffOR Cit b

Appmngh

any Other v

Takeoff OR Climb -

any other value

rA!..e.l0RCs..b

Crisstevel

4 escent
-D. ..d

5Aniss

S

*any oter vah

\\

- -4
- - -4

Descent Speed

Descent Speed

-Descert Speed
r- Mach T.get for

Descent Speed
-Return To Path

Speed
-Descent Speed

Descent Speed

Descent Speed

HM CAS

Descent Speed

SHM CAS

-Descent Speed
Rtrnho Path

-DsetSpeed

Descent Speed
M-h T.

5
et fe

-u

a
Figure E: A Questions-based Decision Tree from the MD-11 Specification. The state variable Origin of Econ Airspeed

Target determines how the Vertical Guidance System will compute the Econ Airspeed Target.

*4ecomieg

Holding

(MACRO)

*'A i-9 "" E. fmbSe
De-ce-rAppr Flightphase Ank.'

"mu P i -eVG tiNPUTf'sruc

FCC Airspeed Reference-

Accelerabon
Altude*

liNaPTfe. rUc
riIgesb.as

nio)

(INPUT(-, vitoAn'n'e-*c

A wraft

A uraft
At

* Vertical
Guidance
A ctive^

iNPUTf. VG
lsoWa,,

Not ctive
(nby)

I '
ae(other

> A ircraft

Altitude

* Operatonal
Proceare*

,INPUT..,G G.Id

I''

D.sslse ae

__4

,y other
vaile

Iyadrnr
0 iymXothr

-F

other

vailke

CTryj

Ta/e

Falsel4

'-4

-4

SLAS'
PMach--

*CMGS "

V

. Tue*

-4 GAS
Mfadcft

,

I

"

Figure F: Effects of a slicing scenario applied on the state variable Origin of Econ Airspeed Target (Figure E). The
states reachable under this scenario are highlighted. The active scenario specifies that the flightphase is 'Descent' and

that the current operational procedure is 'Descent Path' or 'Late Descent'.

= Stenkio_1

Opersti kotekri * Des1 at

Opediml oterei~ Desctzt Mrt Overspeed

* Downa=h Alredetach Voinmti WiMmNot Vm *Idl

= Smcnio_2

pentimt Jke~el is Dsc at M%

Activ Descarz AinatsmuW mt CabJd

Ac*t, Deixn* Appmach seatSa ye&Dece

Ardi DewataAppmath Smmta lnt Tyn a kp Mvd

ADC CA g < Ar-&a Denna -AM=aCh Segmant Pedctd Airgae -. 05

iraiioi4

OpetiMul Dt&re k Desc at. Mi

kArd DA ett Ammeth Uamnatt 3n Typeis Idletd

Arm Devrt AApranahAimi gotd Tye ecl

* Senurio_4

Operaimal 0.a00mi i Dsc7at Mt

Areoy Dogt*4 Appmach Snant LdInt T* # ped

Artveuyt jAmmernx Iennnt tpeed nye is bC

ADC CMj < Actve D unt Approac SmtkeedA rspeedjg .000

AntimLa jLU kar & Estt M

T

T

T T

T .T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

Figure G: Five of the six AND/OR tables necessary to describe the state variable "Active
Add Drag Scenario" in the specification of the MD-11 Vertical Guidance Annunciation
Process. This state variable specifies which of the five possible scenarios for extending

airbrakes is active, if any.

111

Utilized by the FCC to determine when the PROF TO
message (meaning "profile to") shall be annunciated
in the FMAAltitude Window (Fig 2-13). PROF TO shall
be displayed when a Vertical Flightplan Altitude
Constraint restricts aircraft ascent or descent to the
Clearance Altitude. This clearance altitude is
displayed to the right of PROF TO. The FMS Altitude
target (which is the constraint in this case) is
displayed as usual in the FMA Altitude Window.

PROF TO is neerdipayedffthe vefcalproflie is not
enaged.

Figure H: Screen capture of the entire visualization tool.

I
-. .. -.

It Vertic~d Guidance Antnuniciatin Procs Wen

Appendix B

Experiment Questions

113

Tutorial Question

State Values
o Sequencing Status of Step 2 End in primary flightplan ="Does not Exist"

2- Given the information in "Info Box Z"

a) What additional information is necessary for the State Variable Origin of Next Altitude
Target For Display on PFD to transition to the State "Active Cruise Flightlevel"?

Element Element Type Value

Step climb exists in primary Vertical Flightplan Macro True

Vertical Guidance Active Input Active

b) Given all the above information including what you found in a), if you can infer the
state of the following State Variables, write it in the space below, otherwise, leave it
blank.

State Variable State
Sequencing Status of Step 1 End in Primary Flightplan Unsequenced
Sequencing Status of Step 2 End in Primary Flightplan Does not Exist
Sequencing Status of Step 3 End in Primary Flightplan
Sequencing Status of Step 4 End in Primary Flightplan
Sequencing Status of Step 5 End in Primary Flightplan

Origin Of Altitude Target For Display On PFD VG Reference Altitude

c) If ALL the above information is exact except for the Flightphase, which just changed
to Cruise, what do we know about the Aircraft Altitude?

Aircraft Altitude < 12400 ft

114

Macro
o PROF Engaged = True

Inputs from VG Interpretation Process
o Flightphase = Climb
o Clearance Altitude = 11000 ft

Input from VG Guidance Process
o Operational Procedure = Cruise Level

Input from FMC Flightplanning
o Step _1EndAltitude = 12500 ft
o Active Cruise Flightlevel = 12000 ft Info Box Z

Question 1, part 1

In a particular situation, the Air Data Computer (ADC) of the MD- 11 fails and starts sending
unreliable Calibrated Airspeed (CAS) inputs to the system.

a) To which State(s) could the following State Variables incorrectly transition to because of
this failure:

i. Active Add Drag Scenario

Scenario 2, Scenario 4, None

ii. Active Remove Drag Scenario

Scenario 2, Scenario 4, None

b) Which Output(s) and associated Device(s) could be affected by this failure?

Output Name Device(s)

FMS Drag Annunciation DEU

c) Given the states affected by the failure you found in a), which input(s) from other
device(s) than the ADC would have to be set to specific values to make the transition to
ONLY those possibly affected Scenario States impossible? (ignore None State).

List the Input Device(s), the input(s) and the specific input value(s)?

Input Device Input Name Input
Value

VG Interpretation Process Active Descent Approach segment speed type Mach

VG Interpretation Process Preceding Descent Approach segment speed type Mach

d) What other State Variable(s) in the system would be affected by the change in input
values you proposed in c)?

-Origin of Econ Airspeed Target
-Origin of Econ Mach Target

How would you rate the difficulty in answering this part?

0
Easy

1 2 3 4 5 6 7 8 9 10
Average Difficult 115

3/10

2/10

Question 1, part 2

4/10 a) Given the following information:

Input from VG Interpretation Process
* Flightphase = Descent
* Preceding Flightphase = Cruise

Input from FMC Performance Computation
* DescentApproach Path Speed Schedule = Unknown

Macro
0 Incoming Holding Pattern = False Info Box A

Which State(s) of the State Variable Origin of Econ Airspeed Target are reachable?

-FCC Airspeed Reference
-Climb Speed Limit
-Econ Climb CAS
-Econ Cruise Mach
-Not Valid

3/10 b) Given the following information:

State Variable
* Active Add Drag Scenario = Scenario 1

Macro
* Descent Speed Limit Altitude limits Aircraft to Descent Speed True

Input from FMC Performance Computation
" Descent Approach Path Speed Schedule = Econ
" Vertical Guidance is Active Info Box B

What will be the State of the State Variable Origin of Econ Airspeed Target?

- Descent Speed Limit

3/10 c) Given the information in "Info Box B", if a change in Aircraft Altitude causes the Macro
Descent Speed Limit limits Aircraft to Descent Speed to become False, which State(s) of the
State Variable Origin of Econ Airspeed Target are reachable?

-Return to Path Speed
-Airspeed Target for Active Descent Approach Segment
-Mach Target for Active Descent Approach Segment

How would you rate the difficulty in answering this part?

0
Easy

1 2 3 4 5 6 7 8 9 10
Average Difficult

116

Question 2, part 1

Given the information in "Info Box C" above,

a) The FMA speed window is used to display speed targets on the pilot's primary
display unit. What additional information is required for this window to display a
magenta speed target if:

i. FCC Input FCC Engaged Mode = "Unknown" 3/7

Element Element Type Value

FMS Mach Target Validity Input Valid

Econ Mach Target Real Variable FMS Mach Target +/- 0.01

ii. FCC Input FCC Engaged Mode = "AltHold Speed" 4/7

Element Element Type Value

FMS Mach Target Validity Input Valid

Econ Mach Target Real Variable FMS Mach Target +/- 0.01

or or or

FMS Mach Target Validity Input Not Valid

Econ Mach Target Real Variable ComputeMach fromCAS()

b) Is the information in "Info
Procedure is:

Box C" above possible when the Aircraft's Operational

1. Cruise Level?

2. Late Descent?

3. Climb Intermediate Level?

How would you rate the difficulty in answering this part?
0 1 2 3 4 5 6 7 8 9 10

Difficult

State Variable

* Origin of Econ Mach Target = "Climb Speed Limit"

Input from FCC

0 FCC FMS Speed Mode Discrete = FMS Speeds Info Box C

7/10

3/10

NO

NO
NO

YES

CYE

117
Easy Average

Question 2, part 2

4/10

0
Easy

1 2 3 4 5 6 7 8 9 10
Average Difficult

Which Device(s) are NOT involved in determining the value of the following:

i. (Real Variable) - Vertical Deviation

GCP, IRU, ADC, FCC

ii. (DEU Output) - Econ Airspeed Target

GCP, IRU, ADC

How would you rate the difficulty in answering this part?

6/10

118

Question 3, part 1

The following information is known about the state of the system:

Given the information above:

5/10 a)

i- What information is necessary for the State
in any state other than "Does Not Exist"?

2/10 ii- What would be the State in this condition?

Descent/Approach Path Level Segment End

3/10 b) Given the above information, what state other than
state variable Origin of NON-Level TD?

Does Not Exist can be reached by the

Intersection of Descent/Approach Path with Clearance Altitude

How would you rate the difficulty in answering this part?
0
Easy

1 2 3 4 5 6 7 8 9 10
Average Difficult

Input from VG Interpretation Process

o Flightphase = Approach
o Clearance Altitude = 10550 ft
o Active Descent/Approach Segment Altitude = 15520 ft
o Clearance Descent Approach Segment Flight Path Angle > 0.1 deg

Input from FMC Navigation

o Aircraft Altitude = 15580 ft
Info Box D

Variable Origin of Level TD to be

Element Element Type Value

DescentApproach Path Validity Input Valid

Operational Procedure Input Descent Path

Active Descent/Approach segment flight path Angle Input <0.1

119

Question 3, part 2

3/10

How would you rate the difficulty in answering this part?

0 1 2 3 4 5 6 7 8 9 10
Difficult

Which outputs(s) and corresponding device(s) could be affected by the value of the following
elements (other than itself):

i. (MACRO) - Aircraft in level flight

Output Name Device(s)

FMA Speed Magenta White Discrete FCC

FMA Vertical Alert Discrete FCC

ii. (State Variable) - Sequencing Status of Step 3 End in Primary Flightplan

Output Name Device(s)

Next Altitude Target for Display on PFD DEU

FMA Vertical Alert Discrete FCC

Sequencing Status of Step 3 Start in Primary Flightplan DEU, MCDU

Sequencing Status of Step 4 Start in Primary Flightplan DEU, MCDU

7/10

AverageEasy 120

Appendix C

Complete Quantitative Results

121

Q1 Q2 Q3
Parti1 Part 2 Part 1 | Part 2 Part 1 Part 2

Subject #1 Tool S V S+V
EECS Result 3 8 5 10 6 10

Difficulty Rating 9 8 5 3 3 1
Time (min) 21 21 21 7 21 7

Subject #2 Tool S+V S V
Aerospace Result 6 8 2 6 5 4

Difficulty Rating 7 3 10 5 5 4

Time (min) 18 15 22 7 17 8

Subject #3 Tool V S+V S
Aerospace Result 8 5 3 8 6 10

Difficulty Rating 8 9 8 5 8 2

Time (min) 23 21 21 11 24 9

Subject #4 Tool S S+V V

Aerospace Result 8 6 8 8 7 10
Difficulty Rating 8 9 6 5 6 5

Time (min) 21 21 21 20 17 18

Subject #5 Tool S+V V S
EECS Result 8 10 7 7 1 1

Difficulty Rating 5 9 5 2 5 2

Time (min) 17 21 18 10 12 5

Subject #6 Tool V S S+V
EECS Result 8 3 9 4 7 10

Difficulty Rating 5 7 5 8 5 6

Time (min) 15 15 14 15 12 7

Subject #7 Tool S V S+V
EECS Result 10 10 10 10 10 10

Difficulty Rating 2 2 3 3 7 2

Time (min) 14 15 11 3 13 7

Subject #8 Tool S+V S V

Aerospace Result 10 9 0 8 7 10

Difficulty Rating 10 5 10 5 10 1

Time (min) 20 17 16 17 21 10

Subject #9 Tool V S+V S
EECS Result 4 3 0 7 4 0

Difficulty Rating 10 9 10 5 6 X

Time (min) 26 31 15 12 20 ?

Subject #10 Tool S S+V V

EECS Result 4 7 4 4 7 8

Difficulty Rating 5 8 3 2 4 7

Time (min) 12 19 10 4 15 11

Subject #11 Tool S+V V S

Aerospace Result 7 10 3 4 8 6

Difficulty Rating 6 4 8 2 5 3
Time (min) 22 22 22 3 11 9

Subject #12 Tool V S S+V

Aerospace Result 5 9 8 8 6 6

Difficulty Rating 7 8 6 5 8 6

Time (min) 12 16 13 11 16 9

122

123

