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Abstract

Hall thrusters offer the potential to significantly decrease the cost of satellite oper-

ations, but concerns over the high energy plasma plume's impact on the spacecraft

have limited their general acceptance. In contrast to the cost and difficulty in obtain-

ing relevant experimental data, accurate numerical tools for modeling the plume are

inexpensive and can offer insight into ways of alleviating integration problems. A new

hybrid-PIC simulation called Aquila has been developed to expand on the capabilities

of previous computational tools. Aquila functions on unstructured, tetrahedral grids

to obtain the greatest flexibility in modeling the geometry in question. A Poisson

solver has been implemented to account for regions of the plume where neutrality

breaks down. Comparisons of simulated results and vacuum tank experimental data

of current density and potential show considerable agreement. Simulations using

the non-neutral potential solver demonstrate that Aquila correctly discriminates the

quasineutral from the non-neutral regions and provides information about situations

that require a non-neutral approach.

Thesis Supervisor: Jaime Peraire
Title: Professor
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Chapter 1

Introduction

1.1 Background

1.1.1 Electric Propulsion

Electric propulsion (EP) is a growing technology with many characteristics that

appeal to satellite providers in government and industry. EP systems accelerate

a charged propellant through an electric field to produce thrust. Unlike chemical

propulsion systems, EP engines separate the propellant from the power supply, mean-

ing the propellant exit velocity is not limited by the internal energy of the fuel. The

best available chemical rockets generally have a specific impulse on the order of 450

seconds, but electric propulsion devices such as Hall thrusters have specific impulses

typically between 1,000 and 2,000 seconds. This disparity in specific impulse repre-

sents a significant improvement in fuel efficiency for spacecraft with electric propulsion

devices.

The standard rocket equation demonstrates this advantage:

Mf AV
1 - = e gIsp (1.1)

where Mf is the mass of fuel and Mo is the total vehicle mass. For a given Av required

by the mission, increasing the specific impulse, Ip, results in a smaller mass fraction

of fuel for the spacecraft, allowing more of the mass to be payload. Thus, EP has
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Figure 1-1: Cross-section of typical Hall thruster.

garnered more attention as a viable cost-saving technology.

1.1.2 Hall Thrusters

Hall thrusters are a particular type of electric propulsion that are well-suited for

missions such as station-keeping and orbit transfer. The thruster is generally an

annular device with an interior anode that emits propellant while an external cathode

emits electrons (Figure 1-1). Magnets in the inner and outer portions of the annulus

generate a radial magnetic field that traps electrons in the acceleration channel where

they collide with and ionize the propellant flowing from the anode. Because of their

small inertia, electrons are easily captured by the magnetic field and drift within the

annular region (thus the name 'closed-drift' thruster), whereas the propellant ions

have enough momentum to overcome the magnetic field and are accelerated through

the channel by an axial electric field to create thrust.
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1.2 Motivation

A primary disadvantage of Hall thrusters is the lack of understanding of how the

high energy plasma emitted from the engine influences the spacecraft. As the plasma

plume expands from the thruster exit, a variety of particle interactions occur that can

have a significant impact on the spacecraft. Because only a fraction of the propel-

lant is ionized, the plume contains a combination of neutrals, ions, and double ions.

Due to the electrostatic acceleration through the thruster, the charged particles have

much higher velocities than the uncharged neutrals, producing a comparable density

of neutrals and ions in the plume. Charge-exchange collisions (CEX) occur when an

ion and a neutral exchange an electron, thereby creating a fast neutral and a slow

ion. Whereas most ions from the thruster have sufficient axial momentum to continue

moving in the thrust direction, slow ions created in CEX collisions may accelerate

through the plume's radial potential gradient and generate backflow in the direction

of the spacecraft. When propellant above a certain threshold energy impacts with the

spacecraft, material from the surfaces is sputtered and can degrade the performance

of sensitive components. Also, these high energy particles can interfere with com-

munication systems and sensitive instrumentation on the spacecraft or contaminate

other spacecraft in a satellite array.

Because these engines are designed to operate in space, testing under true operat-

ing conditions is a costly and time-consuming process. On-ground vacuum chamber

tests have provided a large amount of data to assist in the understanding of Hall

thrusters, but the imperfect vacuum conditions cast doubts on information relating

to processes that are strongly influenced by a background of neutral particles. Due

to the difficulty in obtaining reliable experimental data for a space environment, ac-

curate numerical tools would be a major contribution to the study of these engines.

Although many simulations of EP plumes exist, the assumptions and simplifications

necessary to obtain information in a reasonable amount of time have limited the

utility and application of these codes.

17



Weight charges to grid

Move particles At Calculate fields

Weight fields to particles

Figure 1-2: Computational cycle of PIC method

1.3 Hybrid-PIC Method

The Particle-in-Cell (PIC) method is a numerical technique that kinetically models a

physical system by tracking the motion of a representative number of particles. The

real particles in the system are lumped into macro-particles to obtain a feasible num-

ber of simulated particles for computation. A continuum approximation of properties

is calculated by weighting the particles to a grid. Both external and self-induced

fields are calculated on the grid and weighted back to the particles. These fields

determine the acceleration and subsequent velocity of the particles, which are moved

for a particular time step based simply on the equations of motion. Figure 1-2 shows

the computational cycle that the PIC method follows [11] [2].

The PIC method is appropriate for plasma simulations because the long-range

Coulomb interactions between particles dominate [2]. In the case of a plasma, charge

is weighted to the grid to avoid directly calculating the forces between each particle

pair. This charge density, p(x, y, z), is used to find the electric potential, #, governed

by Poisson's equation,

_ p(x, y, z). (1.2)
Eo

The gradient of the potential gives the electric field, E(x, y, z),

E(x, y, z) = -V#. (1.3)

The force on a particle is then determined from the Lorentz equation,

18



F = q (ZE+ x .(1.4)

Hybrid-PIC methods treat certain types of particles kinetically, while others are

modeled as a fluid. In plasma simulations, heavy species (neutrals, ions, and double

ions) are modeled as particles, and electrons are treated as a fluid. Because of their

low inertia and high mobility, electrons react quickly to any potential gradients and

can be represented accurately with a Maxwellian distribution [5]. By treating the

electrons as a fluid, not only is considerable memory saved by not storing the electron

particle information, but the numerical time step need not resolve the electron plasma

time (10- to 10-11 seconds), thus speeding computation time. Although the hybrid-

PIC method is much more efficient than the N-body problem of directly calculating

the force between each particle pair, it suffers from noise and numerical heating issues

because of the finite number of particles being modeled [11].

1.4 Previous Work

1.4.1 Quasi3

Quasi3 is a Hall thruster plume code developed by Oh [13]. It uses a hybrid-PIC

algorithm with a DSMC collision model to simulate the expansion of the plume.

Quasi3 provides useful information about the erosion of surface materials and the

characteristics within the plume, but suffers from certain limitations that curtail its

utility.

The most restrictive aspect of Quasi3 is that computational grids must be struc-

tured. Cartesian grids cannot accurately represent the actual geometry of a satellite or

vacuum chamber because the objects are limited to be rectangular in shape and must

have boundaries parallel to grid lines. Generating new meshes for different simulations

is a complicated and tedious process because of the method of geometry definition.

Embedded meshes offer a certain degree of refinement to regions of the computational

domain, but not to the degree necessary to fully describe the complicated plume re-

19
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Figure 1-3: Quasi3 grid of MIT vacuum chamber

gion. Thus, the simulation is limited to run on unrealistic computational grids such

as the square vacuum chamber in Figure 1-3 [6].

Throughout the computational domain, Quasi3 assumes that the plasma is quasineu-

tral, which means that the density of ions, ni, is equal to the density of electrons,

nei

ni = ne. (1.5)

By making this assumption, solving Poisson's equation is no longer necessary, and the

potential is calculated by assuming a Maxwellian electron distribution and inverting

Boltzmann's equation,

ne =n e- e. (1.6)

Quasineutrality is a valid assumption for Low Earth Orbit or vacuum tank simula-

tions where the Debye length of the plasma is much shorter than the scale of the

computation. However, in situations such as Geosynchronous orbit or the wake of a

witness plate in a tank experiment, quasineutrality no longer holds. For these simula-

20



tions, solution of Poisson's equation is required to accurately calculate the potential.

Therefore, the situations for which Quasi3 is valid are limited.

1.4.2 Other PIC Simulations

Other research groups are using similar numerical tools to analyze a variety of prob-

lems. Sonnendrucker [14] has implemented the PIC method on a two-dimensional un-

structured grid to solve Maxwell's equations. At the University of Michigan, Boyd [3]

has developed a hybrid-PIC DSMC simulation similar to Quasi3 and has compared

the simulation results to data gathered on a Russian Express satellite. Mikellides,

et.al. [12] at SAIC have developed the Environmental Work Bench for modeling a

range of spacecraft plume interactions. However, no single simulation currently com-

bines a simple way to produce suitable grids with the flexibility to solve a variety of

problems with the same tools.

1.5 Aquila

Aquila is a new hybrid-PIC simulation that expands on the capabilities of the Quasi3

simulation by using unstructured tetrahedral grids and incorporating a Poisson solver

for non-neutral regions of the plume. The grid aspects and potential solver are dis-

cussed in-depth in the following chapters, but because the development of this sim-

ulation has been a collaborative effort, the source, collision, and surface interaction

models are only briefly described here.

1.5.1 COLISEUM

Aquila operates within COLISEUM, a computational framework developed by Fife,

et.al. [9] at the Air Force Research Lab to facilitate the development of plasma sim-

ulations. COLISEUM provides a standard way of building a plasma simulation and

handles overhead by providing routines for input and output of information. By stan-

dardizing how information is passed into the simulation, plasma modules integrated

21



Exit Plane Outer Radius, r1  0.0203 m
Exit Plane Inner Radius, r 2  0.0000 m

Anode Propellant Fraction, fa 0.875
Anode Utilization Fraction, r7 0.6957
Xe+ Azimuthal Drift Velocity 221.4 m/s

Xe+ Axial Near-side Ion Temperature 2.96 eV
Xe++ Axial Near-side Ion Temperature 3.47 eV

Xe+ Axial Far-side Ion Temperature 7.29 eV
Xe++ Axial Far-side Ion Temperature 3.46 eV

Xe+ Azimuthal Temperature 0.068975517 eV
Xe Temperature 0.0603448276 eV

Cathode Orifice Radius 0.0037338 m
Cathode Axial Offset 0.0094 m
Cathode Radial Offset 0.0472 m

Anode Double Ion Fraction 0.125

Table 1.1: BHT-200 source model parameters.

into COLISEUM can be used to run simulations of varying fidelity without altering

the overall setup. Thus, the same input files can be used to get a first estimate of

plume behavior using a crude algorithm or to obtain a more detailed description of

the plume with another module.

1.5.2 Source Model

The source model provides the input to the plume simulation and must be accurate if

there is any hope of obtaining meaningful results. Cheng [6] originally developed the

Aquila source model for Quasi3, but reimplemented it for use in the new framework

and geometry. The source model represents the conditions at the exit of the BHT-

200 thruster developed by the Busek Company. The information is generated using

time-averaged results from Fife's HPHall engine code [8]. Ions and double ions are

treated separately by HPHall; therefore, separate distributions of flux and both axial

and radial velocity are determined for each species. The source model also indicates

two distinct peaks in the radial velocity distribution for both single and double ions

as a result of particles originating from the far-side of the thruster. Thus, different

distributions are also created for these near-side and far-side populations. The flux

22



Charge Exchange Elastic

Xe-Xe+ Xe-Xe+

Xe-Xe++ Xe-Xe++

Xe-Xe

Table 1.2: Collisions simulated in Aquila.

and axial and radial velocity distributions are determined as a function of radial

position from the center of the thruster exit plane, and these equations are then

sampled to determine the appropriate number and characteristics of particles to be

inserted into the plume simulation at each iteration. The source model parameters

for the BHT-200 are shown in Table 1.1.

1.5.3 Collision Model

Aquila uses the Direct Simulation Monte Carlo (DSMC) method to model the effects

of important elastic and charge-exchange collisions. The five collision types listed in

Table 1.2 are modeled within Aquila. Celik [4] has implemented a No-Time-Counter

(NTC) DSMC model to remove the statistical complications experienced when parti-

cles in the same simulation must represent a significantly different number of actual

particles. This difference in macroparticle weighting is a necessary condition for

simulations within a vacuum chamber, where the background of neutrals always far

outnumbers the number of ions. Only particles within the same computational cell

are considered valid collision partners. Collision pairs are then selected randomly, and

their probability of collision is determined from their relative velocity and collision

cross-section.

1.5.4 Surface Interactions

Cheng [6] utilizes a modified Yamamura method for calculating sputtering yield and

outgoing angular distribution. When a particle strikes a surface within the simulation,

the incident particle's energy and angle as well as the target material properties are

used to determine the amount of material removed from the target surface.
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1.6 Outline of Research

This research has focused on expanding the capabilities of current Hall thruster plume

simulations. Chapter 2 describes the numerical implementation of unstructured grids

in a hybrid-PIC simulation. Chapter 3 explains the calculation of potential assuming

quasineutrality in the plume, and Chapter 4 describes the potential solution when

quasineutrality breaks down. Chapters 3 and 4 also present results from the simula-

tion and comparisons to analytical solutions as well as some experiments conducted

at MIT. Chapter 5 gives conclusions and suggestions for future work.
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Chapter 2

Grid Implementation

2.1 Overview

Aquila functions on unstructured, tetrahedral grids in order to accurately represent

complex geometries. The computational domain is defined by means of solid models

constructed with CAD software packages, and the tetrahedral grid is then created

based on this solid model using an automatic grid generator. Tetrahedral discretiza-

tion offers the most flexibility in generating grids that can sufficiently represent com-

plicated satellite configurations. Though tracking particles in a tetrahedral mesh is

a more difficult and time-consuming problem than in the rectangular case, Aquila

incorporates techniques rendering this a relatively efficient process.

2.2 Geometry Definition and Grid Generation

Efficient methods of geometry definition significantly streamline the process of de-

veloping an appropriate grid for simulating the plume region. Solid Works CAD

software is used to create solid models of the computational region for Aquila sim-

ulations. Two-dimensional renderings are created either with Solid Works' built-in

drawing tools or by specifying curves from an input file. These 2D drawings are then

extruded into 3D solids, and by combining multiple drawings, complex objects can be

accurately modeled. Individual components of a complicated structure can be created
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Figure 2-1: Solid Works model of a satellite.

and then joined together into a single entity. Figure 2-1 shows a satellite composed

of 29 separate parts modeled in SolidWorks. Components such as the solar arrays are

easy to maneuver into any orientation by simply changing the parameters that define

how they are attached to the rest of the overall structure. SolidWorks allows output

into a parasolid text format, a generic format that many grid generation packages

can interpret. The solid model must be a water-tight volume (no open boundaries),

and all surface normals must point inward toward the volume being gridded in order

for the grid generator to properly interpret the structure.

GridEx is a grid generating package created at NASA Langley [10] for CFD appli-

cations, but the tools are applicable to plasma simulations as well. GridEx separates

the meshing processes of the surface and volume into separate phases that do not

require communication between one another. This decoupling of the surface and vol-

ume discretization allows for greater flexibility. The geometry definition is read from

the parasolid text file created within SolidWorks, and the user can choose to only

create a surface triangulation for simulations such as ray tracing or to also generate

the full 3D volume grid for simulations such as PIC. Directional refinement gives the

user the ability to pinpoint regions of the computational domain that require more
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Variable Description
dS grid spacing at source

Constant Dist radial distance from source
where grid spacing remains dS

Distance radial distance at which grid spacing
recovers background spacing

Table 2.1: GridEx source definition variables

grid resolution. GridEx provides three types of source terms for defining the desired

grid refinement. The user defines a point, line, or triangle within the computational

domain that needs a more precise definition. The user-defined variables in Table 2.1

dictate the level of refinement that GridEx uses at each source position. For the

purposes of a Hall thruster simulation, a line source originating at the thruster exit

plane and extending along the exhaust direction normally provides sufficient grid re-

finement for the expanding plume. The grid metrics in Table 2.1 are specified at each

end of the line source; therefore, a smaller grid spacing is provided at the thruster

end of the source to achieve finer grid resolution in this high density region.

COLISEUM also offers the option of generating the volume grid given a surface

triangulation. This discretization uses the same fundamental routines as GridEx,

but COLISEUM does not currently support source definition and directional grid

refinement with this method. Basically, the tetrahedral volume is "grown" from

the surface assuming no sources exist. The geometry requirements for a water-tight

volume and inward-facing normals also exist for this option. Thus, the users of

COLISEUM have the ability to use another grid generation package such as Cosmos

Works that only performs surface discretizations.

2.3 Finite Element Method

The interpolation functions (also called basis or shape functions) for the tetrahedral

grid are based on the volume coordinates of a particular location within the elements.

Volume coordinates are obtained by calculating the relative volumes of the four tetra-

hedra created by connecting the interior particle location to the nodes of the element.
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Figure 2-2: Sample tetrahedron with interior position p

Figure 2-2 shows a sample tetrahedron with a particular location P chosen in the

interior. For a given position, the shape function for each node is the ratio of the

volume of a tetrahedron with corners at the three other nodes of the element and

the interior point to the total volume of the tetrahedron. In Figure 2-2, the volume

coordinates for node 1 is the ratio of the volume of the shaded region to the total

volume of the tetrahedron,

VP234Li = .(2.1)
V 1234

The volume of a tetrahedron is the determinant of a four by four matrix of the

coordinates of its nodes,

1 x1 Y1 Z1

1 1 x 2 Y2 Z2
V1234= (2.2)

6 1 X3 Y3 Z3

1 X 4 Y4 Z4

Thus, the volume coordinates of each node are the ratio of the determinants of two 4

by 4 matrices. This ratio simplifies to a linear function based on the coordinates of
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the tetrahedral nodes,

1 Xp yp Zp

1 x 2  Y2 Z2

1 X 3  Y3 Z3

1 X4  Y4 Z4  ai + 1Xp + 71y + izp (2.3)
6V 6V

The four coefficients in equation 2.3 are each determinants of a 3 by 3 matrix. For

each of the four nodes in each element, these four coefficients are calculated once and

used throughout the simulation. For each node, the equation is of the form,

Li = Ozi±+3 ix+'}Y (2.4)
6V

During every iteration, the charge of each particle within the simulation is in-

terpolated to the nodes using the basis functions, which are precisely the volume

coordinates for the linear case. The charge is weighted to the nodes with the equa-

tion,

qj= ( qNi(k). (2.5)
k

The basis functions also interpolate the force due to the electric field back to the

particle,

Fk = qk EiNi(4k). (2.6)

A drawback to the finite element method for electric field applications is that with lin-

ear basis functions, the field is only piecewise constant. Higher order basis functions

can be used, but these will also produce discontinuous fields. A hybrid implementa-

tion is necessary to obtain continuous electric field functions. Discontinuous fields can

possibly lead to tesselations in the grid and bunching of particles, but with a tetrahe-

dral grid this is not a significant problem. The PIC method requires approximately 5

to 10 particles per cell in order to achieve good levels of accuracy because the inter-
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Figure 2-3: Leapfrog time integration scheme

polation to the grid assumes a continuum of the charge distribution. If a reasonable

number of particles are not present in each cell, the continuum approximation does

not provide sufficient accuracy.

2.4 Particle Mover

2.4.1 Leapfrog Method

Aquila uses the leapfrog time marching scheme for moving particles. Figure 2-3 shows

that the position and velocity of the particles are known at different points during the

computational time step. The equations of motion for the particles that are treated

kinetically are drawn from Newtonian physics,

dxp
dt

mPdvp p
dt

Using the leapfrog algorithm, these equations are discretized to the form,

Sn+1 _ n n+1
P tP= vP 2

(2.7)

(2.8)

(2.9)
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m-vp t = Fp. (2.10)

The leapfrog method is second order accurate in time and has no amplitude error for

timesteps that resolve the plasma frequency. More accurate time marching schemes

such as the fourth order Runge-Kutta method are available, but MacNeice [11] claims

that the leapfrog scheme has the best balance of accuracy, stability, and efficiency for

particle simulations. Because the PIC method requires a large number of particles to

be moved at each iteration, the efficiency of the time algorithm is a serious consider-

ation, and the leapfrog method appears to be the best option.

2.4.2 Particle Search

The primary drawback to unstructured grids for PIC simulations compared to struc-

tured, Cartesian meshes is the extra cost of locating particles. Accurately finding the

particles element location is necessary to properly weight the charges to the grid and

the forces back to the particles. For each particle at each iteration, the particle mover

performs a directional search based on the particle's location during the previous time

step. For each element in the domain, the numbers corresponding to the elements

that border on each face are stored in memory. If the four shape functions determined

by the particle's position are between 0 and 1 for a given element, the particle lies in

the interior of that element. Otherwise, the particle's new element location must be

determined. Figure 2-4 shows a 2D analogy of how the shape functions, Ni, facilitate

the search. After the position vector of a particle is updated in the move operation,

the particle's previous element location is checked by calculating the shape functions

at the particle's new position. If any shape function is not between 0 and 1 and the

particle has moved to another element, the next element to be checked corresponds

to the neighboring element with the most negative shape function. This procedure is

performed recursively until the new element is found or the particle strikes a surface

(see Figure 2-5).

To determine if a particle crossed a domain boundary, the point where the particle
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Figure 2-4: Shape functions determine search direction

Figure 2-5: Recursive search algorithm
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crossed in the plane of the surface is calculated based on the updated position and

velocity. This position is then connected to the three nodes of the triangular surface

element, and the areas of the three new triangles are calculated and compared to

the total area of the full surface element. When a particle crosses the boundary,

the appropriate surface interaction operation is chosen based on the incident particle

properties and the target material.

2.5 Particle Storage

The position, velocity, and element location are stored for each particle in the com-

putational domain. In addition to these necessary values, particles within a given

element are referenced to one another using a linked list in order to perform collisions

efficiently. A block data structure is used in order to speed the calculation. The

block structure stores many particles in sequential locations in memory; therefore,

each update of the position and velocity requires fewer memory calls and increases

overall efficiency. As the computation progresses, particles are deleted, and a list of

open memory locations is kept and filled by new particles. In this way, all available

memory within a block is utilized before another particle block is allocated. Because

particles consume the bulk of the simulation memory, they are stored in a zone data

structure to facilitate a future transition to parallel computing.
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Chapter 3

Quasineutral Potential

3.1 Overview

As mentioned earlier, the quasineutral assumption means that the number density of

ions and electrons is equal at each point in the domain,

ne = ni. (3.1)

This assumption significantly reduces the computation time in a hybrid-PIC sim-

ulation as the potential can be calculated directly from the momentum equation.

Therefore, when quasineutrality is appropriate, the potential is determined using a

direct analytical solution, making Poisson's equation unnecessary.

According to Chen [5], quasineutrality is a valid assumption as long as the domain

of interest is many Debye lengths in overall dimension. For most problems, only a thin

sheath region at boundaries contain any disparities with the quasineutral assumption.

The Debye length,

dD= ,ofe (3.2)
e2 ri,

is a measure of the shielding distance of the plasma and represents the distance over

which non-neutralities are shielded out by the electrons. Thus, for applications such

as Low Earth Orbit and vacuum tank simulations when the Debye length is very
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small compared to the overall dimension of the system, quasineutrality is valid. Only

in special circumstances, such as a wake region, will the plume not behave according

to quasineutrality.

3.2 Derivation of Quasineutral Potential

Oh [13] shows that the general electron momentum equation for the case of a Hall

thruster plume under normal operating conditions does not need to include inertial,

magnetic, or collisional contributions. After these simplifications, the formulation

equates the electrical and pressure terms,

VPe = eneV4. (3.3)

Assuming the electrons have a Maxwellian distribution, the ideal gas law is used to

describe the electron pressure,

Pe = nekTe. (3.4)

By combining Equations 3.3 and 3.4, the potential is found to be,

kTe VTe Vne
V# = + ). (3.5)

ekTe ne

If the temperature and density are assumed to have a polytropic relationship,

Te ne (3-6- = -,(3.6)

Teo jneoJ

then the potential takes the form,

V# kTeo( ne (3.7)
Tc t e neo

Thus, the potential behaves according to the equation,
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y kTeo ne (3.8)
-y- I e [Yneo!

At this point, Aquila offers two options for calculating the potential assuming

quasineutrality. An assumption of isothermal electrons implies that -y = 1, and by

l'Hospital's rule, Equation 3.8 simplifies to the inverse of Boltzmann's relation from

Equation 1.6,

# - #0 = kTeln e (3.9)
e (neo)

where #0 and neo are reference quantities taken from a specific point in the simulation.

Alternatively, if the polytropic constant 7 is known from experiments, the potential

can be self-consistently calculated directly from Equation 3.8 by assuming a reference

potential at some point within the computational domain. Therefore, for each run of

the simulation, a point must be selected where all potential values are referenced to,

for both the constant and polytropic temperature cases.

3.3 Quasineutral Results

Part of the appeal of COLISEUM is its versatility in simulating different geome-

tries within the same fundamental framework. Simulation results on a vacuum tank

geometry and on a satellite configuration in perfect vacuum are presented.

3.3.1 Vacuum Tank Simulations

The vacuum tank pictured in Figure 3-1 is used to simulate experiments performed

in the MIT vacuum chamber. The front and back walls have been removed for easier

viewing. Unlike the previous vacuum chamber grid created for Quasi3 (Figure 1-

3), this grid closely matches the actual chamber geometry. The chamber, roughly

cylindrical in shape, is 137 cm in length and 68.5 cm in radius. The thruster is

10 cm in diameter, but the thruster exit plane where particles are injected into the

simulation is only 4 cm in diameter. Figure 3-2 shows the surface triangulation of
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Figure 3-1: Simulated vacuum tank geometry.
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Figure 3-2: Surface grid for simulated thruster face.
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the thruster face with the actual exit region circled. The tetrahedral grid contains a

single linear grid source originating at the center of the thruster exit and terminating

50 cm downstream.

The simulation mimics experiments performed by Azziz [1] in both the Busek

and MIT vacuum chambers. For comparison, cases are run with both the constant

temperature and the polytropic temperature models. The constant temperature is

chosen to be 2 eV. The polytropic simulation assumes a temperature of 2.8 eV

at a distance of 25 cm from the thruster exit with a -y of 1.3 as determined from

Azziz's experimental results. Each simulation is run for 15,000 iterations with a

computational time step of 10- s. The thruster is the BHT-200 with the parameters

listed in Table 1.1, and simulated current density and potential probes are placed in

arcs of 25 cm and 47 cm in front of the thruster exit. Current density measurements

are found by tracking the charge of ions crossing a hemisphere at different angular

bins at the specified radial distance from the thruster. Potential measurements are

directly calculated at the distance and angle specified for the simulation by using the

finite element approximations.

Figures 3-3 and 3-4 show comparisons of current density for the nominal thruster

discharge voltage of 300 V with a background pressure of 2.2 x 10- Torr. At 25 cm,

both temperature models predict the mid-angle region of the current density profile

well, but the centerline of the constant temperature model has a peak that does not

appear in experimental data. Conversely, the polytropic model approximates the

centerline well. However, at angles between about 60 and 75 degrees, both models

underpredict the current density. The real temperature near the center of the exit

plane is higher than the 2 eV constant value; thus, for the polytropic model, the

higher temperature at the exit disperses ions and spreads the flux. At 47 cm, both

models underpredict the high angle region again, but unlike the 25 cm case, the

polytropic model also underpredicts the centerline region.

Figures 3-5 and 3-6 compare the potential for a discharge voltage of 250 V with a

background pressure of 3.2 x 10' Torr. Because the source model for the simulation

is for the 300 V thruster, velocities are scaled to match the 250 V operating condition

39



Comparison of results at 25 cm
10

-100 -80 -60 -40 -20 0 20 40 60 80 100
Angle (degrees)

Comparison of simulated results and experimental data of current density

Comparison of results at 47 cm

- + "-.. +-

, Simulated results - constant Te
- Simulated results - polytropic Te
+ Scaled experimental data

-80 -60 -40 -20 0 20 40 60 80
Angle (degrees)

100

Figure 3-4: Comparison of simulated results and experimental data of current density
at 47 cm.

40

Figure 3-3:
at 25 cm.

100

E

CT

102

10~2

110-3
-10 0



Comparison of results at 25 cm
12

, I I 1 1 1

11 -

10-

9-

0

7-

6-

5-

4-
-100 -80 -60 -40 -20 0

Angle (degrees)
20 40 60 80 100

Figure 3-5: Comparison of simulated results and experimental data of potential at 25
cm.

Comparison of results at 47 cm

0
+

0*
0

Simulated results - Constant T
Simulated results - Polytropic Te
Experimental data

-100 -80 -60 -40 -20 0 20 40 60 80 100
Angle (degrees)

Figure 3-6: Comparison of simulated results and experimental data of potential at 47
cm.

41

o Simulated results - Constant T
+ Simulated results - Polytropic T

- Experimental data

7

6

a.0

4

3



used in the experiment by,

V- = -(3.10)
V* V *

where v is velocity, V is the operating voltage, and the starred quantities are for

the 300 V nominal operating condition. The peaks of the simulated potential are

matched to the experimental data for purposes of comparison. Both temperature

models agree well with the potential data at 25 cm, but at 47 cm, the overall potential

drop for the constant temperature case is significantly larger than that indicated by

the experimental data, suggesting that temperature drops axially.

These four figures indicate that the current density near the centerline is extremely

sensitive to the chosen value of y, whereas the radial potential drop does not have as

strong of a dependence. Figures 3-7 and 3-8 show the potential contours directly in

front of the thruster at the same cross-section for the constant and polytropic cases.

The contours in the polytropic case are closely grouped directly downstream of the

thruster, creating a strong radial potential gradient in this region. In contrast, the

constant temperature case does not demonstrate this bunching of contours. Therefore,

ions in the near-thruster region experience a much stronger radial potential gradient

with the polytropic temperature model. The reason for this stronger gradient is the

higher electron temperature in this region resulting from the high density of particles.

The velocity phase-space plots for the ions in each simulation provide further evidence.

Figures 3-9 and 3-10 show the axial and radial velocities of the single ions from the

source and those resulting from CEX and elastic collisions. Although the fundamental

structure of the two plots is the same, the radial velocity in the polytropic case for

the CEX ions has a noticeably higher peak than the constant temperature case. Even

the high energy source ions have a higher maximum radial velocity in the polytropic

case. Due to the larger radial potential gradient, more particles are diverted to the

wings, thus reducing the centerline current density peak that has been observed in

previous calculations with a constant electron temperature [4].

Figures 3-11 and 3-12 show the influence of the grid and the chosen value of -y
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Figure 3-7: Contour plot of potential around the thruster for constant Te case.

Figure 3-8: Contour plot of potential around the thruster for polytropic Te case.
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Figure 3-11: Comparison of current density at 25 cm with three grid refinements at
the thruster exit.

on the current density results. Figure 3-11 compares the current density at 25 cm

using three different grid refinements at the thruster exit. The coarse grid contains

approximately 4 triangular edges across the exit plane diameter, the medium grid

approximately 9, and the fine grid 16. All three cases are run assuming a polytropic

temperature model with a y of 1.25. The three cases produce similar results except the

fine grid appears to underpredict the wing region slightly worse than the other two.

Only the medium refinement exhibits the dip in current density at the centerline that

is also observed in the experimental data. Varying -y for the polytropic temperature

model has a more pronounced impact on the current density results than the grid

(Figure 3-12). As -y increases, the current density at the centerline decreases and

agrees with experimental data with a -y of approximately 1.3, but all simulations still

underpredict the wing region.

Regardless of temperature model and grid refinement, all simulations exhibit a

significant discrepancy in current density in the wing region. This region is dominated

by CEX ions, which are of particular interest to spacecraft designers as these ions

cause the most damage. Figure 3-13 shows a logarithmic contour plot of the CEX ion

number density averaged over the final 5000 iterations of the polytropic simulation.
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Figure 3-12: Comparison of current density at 25 cm with four values of y.

The CEX particles do not exhibit grouping to the thruster sides, but this is a result

of scattering along the entire plume instead of immediately outside the thruster exit

as expected in a true vacuum.

Comparing simulations with each temperature model to the experimental data

reveals that the polytropic model captures the plume physics significantly better

than the constant temperature model. The radial potential gradient that pushes

slow ions to the wings is more pronounced using the polytropic model, resulting in

an appropriate centerline current density measurement. The tetrahedral grid with

refinement in the primary plume region provides results that are more accurate than

previous simulations of similar problems [6]. Run times for the simulations are less

than 2 hours despite the extra cost of moving particles on the tetrahedral grid. The

ability to model the actual geometry of the vacuum tank also makes Aquila a more

useful tool for gathering information about geometry-dependent properties such as

sputtering and deposition.

3.3.2 Satellite in a Perfect Vacuum

To demonstrate the advantages of using unstructured grids, a simulation is performed

with the simplified satellite in Figure 3-14. The light-colored surfaces represent the
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Figure 3-13: Logarithmic contour plots of CEX number density in polytropic T, case.

actual spacecraft surfaces, whereas the darker color shows the edge of the computa-

tional domain. The geometry has a crude satellite structure with two solar arrays,

four solar reflectors, the bus, and the thruster at the center of the bus. The simulation

is run assuming perfect vacuum conditions with no background of neutrals. This case

is run for only 6000 iterations because it reaches a steady-state more quickly than

the previous tank cases. The simulation uses a polytropic temperature model with a

-y of 1.25 at 25 cm from the thruster exit.

Though this hypothetical simulation does not have any experimental data with

which to compare, the logarithmic contour plots of number density in Figures 3-15, 3-

16, and 3-17 are informative as they show that ions from the source and from CEX and

elastic collisions are in their expected regions. Source ions form the familiar plume

pattern, while the CEX ions develop very distinctive wings. The elastically scattered

ions also exhibit concentrations in the 60 degree region as suggested by theory. The

primary difference between this case and the vacuum tank simulations in the previous

section is the lack of a background of neutrals in the satellite simulation. Because

Aquila requires all particles of the same species within the simulation to have the same

weighting (for purposes of the DSMC collision model), the presence of a background

in the vacuum chamber necessitates an extremely large neutral weighting compared
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Figure 3-14: Geometry of a simplified satellite.

Figure 3-15: Logarithmic contour plot of number density for source ions.
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Figure 3-16: Logarithmic contour plot of number density for CEX ions.
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Figure 3-17: Logarithmic contour plot of number density for elastically scattered ions.
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to the ions and double ions from the thruster. In the pure vacuum simulation, the

particles are given equal weightings. This simulation confirms that ions created at

the source or resulting from collisions are ending up in their expected locations within

the plume, but does not offer any clear insight into the causes of the discrepancies

between the experimental data and simulated results in the vacuum tank simulations.
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Chapter 4

Non-neutral Potential

4.1 Poisson's Equation

The potential, #, due to space charge given by Poisson's equation is a function of the

electron density, pe, and the ion density, pi,

V2 Pe - (4.1)
co

but the electron density is a function of the potential obtained by solving the simplified

electron momentum equation, as in Section 3.2. Thus, Poisson's equation takes on

the form,

62- pe2g) = -pi. (4.2)

Depending on the chosen model, the electron density term assumes a different form,

but the solution method remains the same. The next section describes the discretiza-

tion of Equation 4.2 assuming a Boltzmann relation for the density and a constant

electron temperature, Te,

e0V 2 0 - pe *-0o) =pi, (43)

where peo and #, are reference quantities. However, the underlying steps are identical
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for other electron models such as a polytropic relation.

4.2 Newton-Raphson Solver

Aquila uses a Newton-Raphson method to solve Equation 4.3, which rearranges to

the form,

V 20 - AeB, = f (44)

and is subject to Dirichlet and Neumann boundary conditions,

#= #D on ED (4.5)

= g on FN- (4.6)
an

Newton-Raphson is an iterative technique that determines the derivative of a function

to obtain a new estimate until the desired level of accuracy is obtained. Generically,

the method is used for finding the roots of a function and can be expressed in the

following manner,

SI f(pi)

where f is any function and p is the desired root of the function.

Equation 4.4 is discretized using the finite element variational formulation,

J vV 24dQ - I vAeBdQ = j vfdQ, (48)

where v is the variation and Q is the domain volume. Green's Theorem transforms

the first term in Equation 4.8 into two terms containing only first order derivatives,

J vV 2 4OdQ = - Vv - VpdQ + j gvdfN, (4.9)
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and Poisson's equation becomes,

- Vv -V0d - J vAeBpd = j vfdQ - j gvdFN-

The residual, R, is simply the difference between the expected and the desired

value, or the left and right hand side of Equation 4.10,

R(v; #) = vfdQ -
JrN

gvdTN + j Vv ' VqdQ + J vAeB#dQ.

Taking the derivative of the residual, DR, with respect to the potential gives

DR(v, w; #) = -
J4

Vv - VwdQ -

where w is a second variation. Equation 4.12 provides the means to minimize the

residual with the Newton-Raphson method,

#i+ - #' = DR-1 (v; #')[-R(v; #i)] (4.13)

In this case, the roots of the residual are determined by incrementing the potential.

Discrete representations of these quantities are determined by inserting the basis

functions as an approximation for the variations across the elements,

(4.14)

Combining Equations 4.11 and 4.12 with Equation 4.14 yields the vector,

I gNkdN - f Nk -VENVjjdQ -JrN 4NkAeBLNi pidQ, (4.15)

defined at all nodes, k, and the square matrix,

VNk -VNydQ + AB
n

NkNjeB$dQ.
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Rk = jNfdQ -

DRak= (4.16)

# ~- E Nj #j.



Set initial guess $ = $0

Calculate stiffness matrix, K

F Calculate residual, R($i)

Check convergence

Newton- Calculate mass matrix, M(0)
Raphson
Iteration

Calculate DR($i) = K + M($i)

Solve DR($i)A$ = -R($i) with PCG

Update $i+1 = $i + A$)

Figure 4-1: Flowchart of Poisson solution method

The first term on the right of Equation 4.16 is the element stiffness matrix, and the

second term is a modified version of the mass matrix. Thus, Equation 4.7 becomes a

linear system,

_DR( _ = -R(O'). (4.17)

This equation can now be solved for # with any of a variety of linear solvers. Aquila

utilizes a preconditioned conjugate gradient solver (PCG) with diagonal precondi-

tioning.

Figure 4-1 shows the Poisson algorithm. The stiffness matrix depends only on

the geometry and is calculated once, whereas the mass matrix must be recalculated

every time the potential is updated. In general, the overall scheme only requires 2 to

4 Newton-Raphson iterations of updating the potential before reaching a converged

solution, but the embedded PCG solver requires more iterations (approximately 100)

to determine the appropriate A#. This method of solving Poisson's equation has

proven to be sufficiently fast for this application, but due to numerical constraints

necessitating additional modifications to the basic problem, the non-neutral solution
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requires significantly more computation time than the quasineutral methods.

4.3 Stability Issues

Equation 4.3 suffers from stability issues arising from the Boltzmann electron term.

This instability occurs when the grid spacing is not sufficient to resolve the variation

in potential. A one-dimensional version of the Newton-Raphson solver is used to

examine this effect more closely. The notation of Equation 4.4 is used again here, but

A, B, and f are set as constant input parameters to the solver as the number of nodes,

N, across the domain is varied. Dirichlet boundary conditions are imposed on each

end point with the one side being set to 1 and the other to 0. In physical terms, this

problem is the equivalent of having a plasma with a constant electron temperature

and a constant density of ions between two infinite plates with potentials of 1 and 0.

Figures 4-2 and 4-3 illustrate the effect of decreasing electron temperature while

keeping other parameters constant. As B increases, corresponding to a decrease in

electron temperature, more grid refinement is necessary to capture the change in

# because the potential curve becomes more steep. For instance, in Figure 4-3, the

proper shape of the curve is not captured until 32 nodes are placed along the line, and

for the cases with 4 and 8 nodes, # dips below zero. Figures 4-4 and 4-5 demonstrate

a similar yet less severe effect as A and f increase while B is held constant. The

numerical parameters, A and B have a direct relation to the Debye length,

dD = 1 (4.18)

The Debye length offers a convenient means of accounting for the observed instability.

By examining similar plots for many different values of A and B, it is found the

instability arises when the grid spacing, Ax, is greater than the Debye length,

Ax > dD. (4.19)

Thus, using the Debye length as a comparison to the grid spacing to ensure there is
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Figure 4-6: Potential contour at a snapshot in time showing a numerical instability.

sufficient resolution provides a way to avoid unrealistic potential calculations.

Figure 4-6 demonstrates the consequences of not properly resolving the grid in

certain regions of the domain. The figure shows a potential contour plot of a thruster

with its thrust direction pointing to the right in the figure. The light-colored point

directly above the thruster indicates that this point has a significantly higher potential

than that immediately in front of the thruster exit, where the potential should be

highest. Though this is a converged solution of Poisson's equation, the region above

the thruster has an abnormally large concentration of charge due to the motion of

a few simulated particles. Non-physical results such as this example can lead to

anomalous electric fields and unrealistic particle motion. These discrepancies also

demonstrate a drawback of the PIC method because the finite number of particles

in the simulation do not necessarily produce a smooth charge distribution that can

accurately represent a continuum approximation.
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4.4 Poisson Switch

Solving Poisson's equation at every point in the computational domain is not neces-

sary because in most regions of the plume, the plasma can be considered quasineutral,

and potential can be solved for using the methods discussed in Chapter 3. In addi-

tion, attempting to solve Poisson's equation in regions where the grid does not resolve

the Debye length can produce incorrect results (as in the previous section) that lead

to abnormally large particle acceleration. Therefore, a switch has been implemented

to allow for the solution of Poisson's equation only in regions determined to be non-

neutral and sufficiently refined.

Each node in the domain undergoes two tests to determine if it will be part of

a region that needs to be solved with Poisson's equation. The first check directly

determines the level of non-neutrality and must account for how the potential was

determined in the previous time iteration. If the potential was previously determined

by inverting Boltzmann's equation, then the density of ions and electrons will be

precisely equal because of the assumption made in using Equation 1.6. Therefore,

a direct comparison of densities would be useless, but the Laplacian operator in

Equation 1.2 serves as a measure of the non-neutrality in the system in regions that

were quasineutral in the previous iteration,

N = (4.20)

where N is the measure of non-neutrality. If the potential at a node was previously

calculated with Poisson's equation, the level of neutrality is directly calculated from

the tracked ion density and the electron density resulting from Boltzmann's equation,

N = Pe ~ . (4.21)
Pi

N is then compared to a minimum level of neutrality (usually 1 percent) to determine

if the non-neutral solver is necessary. The second check is simply a comparison of the

Debye length to the average grid spacing at a node. If the Debye length is smaller than
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Neutrality
Check N < e N > E

Resolution
Check Unnecessary dD < AX dD > AX

Solution Quasineutral Non-neutral
Method Quasineutral (Equation 3.9) (Equation 3.9) (Equation 4.3)

Table 4.1: Poisson checks. N is a measure of neutrality, and E is the necessary level
to assume quasineutrality.

the grid spacing, then Poisson's equation is not used to solve for potential because

of stability concerns. Grid nodes that are determined to be quasineutral or that lie

in unresolved regions are given a potential value by inverting Boltzmann's equation

and are treated the same as Dirichlet boundaries within the actual solver. Table 4.1

shows the progression of checks necessary for a non-neutral case.

Hence, the solution of Poisson's equation for this application requires multiple

checks to ensure the obtained potential solution is valid. In the primary plume region,

the plasma is found to always be quasineutral, so inverting Boltzmann's equation is a

valid method for determining the potential. However, if an obstruction exists in the

line of sight of the plume, the wake region will not necessarily exhibit quasineutrality

because the ions will be unable to turn sharply enough to enter the wake region, while

electrons can, to a limited extent, diffuse into it.

4.5 Non-neutral Results

The non-neutral potential solver is only needed for specialized problems containing

large density gradients. The following example demonstrates a circumstance when

the quasineutrality assumption breaks down and actually solving Poisson's equation

is necessary.

4.5.1 Prandtl-Meyer Fan Analogy

The grid in Figure 4-7 is used to model a problem analogous to the supersonic fluid

flow over a sharp corner expanding into vacuum (see explanation in Figure 4-8).
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Figure 4-7: Computational grid for expansion into vacuum past a sharp corner.
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-do

Figure 4-8: Side view of computational space showing plasma flow configuration.
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The flow generates a series of expansion waves originating at the corner, known as a

Prandtl-Meyer expansion fan. For the purposes of this analysis, a population of only

ions (no neutrals) is injected from the region in the upper left-hand side of Figure 4-7.

The incoming flow has a Mach number of 3 and a temperature of 2 eV. The ions are

given a uniform velocity with small thermal distributions in the x, y, and z directions

to avoid particle bunching. The far wall and bottom wall of the grid are treated as

perfectly absorbing, while the side walls specularly reflect particles to create the effect

of infinite width.

This problem can also be solved analytically. The Mach number, Mi, in a plasma

flow is given by,

M = i ,(4.22)
kT'

where -y is the exponent used in the polytropic relation and mi and vi are the ion mass

and velocity respectively. Assuming quasineutrality, analytical expressions based

solely on the initial flow conditions can be determined for potential (#), Mach number

(M), number density (ne), and level of neutrality (N):

-y e o, 2 ( 1 + M i2 N o0 ~- -1 4 . 3
= -1 e +1 2i (4.23)

M= 1+K2cot2 (oK ), (4.24)

Te _ 1__2_ (4.25)
neo 1 + -'M2

2

N_ = eo 4-y 1) 1 + -, 1MO2 (d)2COS 2 (@oo - @) . (4.26)
ne (7+ 122 r IKI

Quantities with the subscript o are values for the incoming flow, @oo is the minimum

possible flow turning angle, and K is given by,
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Figure 4-9: Potential contours of expansion assuming -y = 1.3.

K = .(4.27)

The potential profile in Figure 4-9 is produced using the polytropic temperature model

and assuming quasineutrality. Figure 4-10 shows how the simulation results compare

to the analytical solution. The three curves of simulation results demonstrate how

the potential varies along an arc at the specified distance away from the corner. The

analytical and simulated results agree until approximately 30 degrees, at which point

the nearest radius fails to represent the analytical solution. The analytical solution

also provides an estimate of the neutrality of the expansion as a function of the inlet

conditions and angle. Figure 4-11 shows where the analytical solution predicts when

the neutrality becomes less than 1 percent. The angles where the simulation potential

deviates from the analytical potential in Figure 4-10 matches with the angles predicted

for neutrality breakdown.

To test the non-neutral solver, a simulation assuming quasineutrality is compared

to one that implements the Poisson switch. Both cases are run with a constant

temperature of 2 eV on the geometry in Figure 4-7. In spite of the fact that the

analytical solution assumes quasineutrality, the non-neutral potential solution actu-

ally corresponds more closely with the analytical predictions than the quasineutral
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Figure 4-11: Analytical estimate of radial distance where quasineutrality drops below
1 percent as a function of angle for y = 1.3.
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solution (Figure 4-12). Also, to check if the switching mechanism is determining an

appropriate region to solve the non-neutral problem, Figure 4-13 shows the portion

of the problem that is solved by Poisson's equation (black region in the lower left-

hand corner) compared to the gray line that represents the 1 percent quasineutrality

predicted by the analysis. The non-neutral regions coincide well with only a small

region of disagreement in the portion expected to be quasineutral.

The non-neutral switch calculations deviate from the analytical results assuming

quasineutrality in Figure 4-12, but not the precipitous drop in potential seen in the

quasineutral approximation. Agreement in the predicted regions of neutrality between

the analysis and the calculation indicates that the switching mechanism in the non-

neutral solver is providing a reasonable estimate of where to use Poisson's equation to

determine potential. The non-neutral potential solver provides the ability to obtain

an accurate potential estimate in regions of largely varying electron density.

4.5.2 Plume Shield

Currently of interest to spacecraft designers is the effectiveness of a shield in the plume

to protect sensitive surfaces. The region immediately behind the shield is precisely the

wake situation where the non-neutral solver may be necessary. Figures 4-14 and 4-15

show the computational setup used for examining the neutrality properties behind a

shield. The refinement of this grid matches that of Figure 3-1 with an additional grid

source placed immediately behind the shield.

Five cases are run with the BHT-200 firing into the specified vacuum chamber

geometry. Four cases are run with a background neutral density varying from 2 x 10-4

Torr to 2 x 10-7 Torr in order of magnitude increments, and one case is run in true

vacuum conditions. Figure 4-16 demonstrates how the non-neutrality in the wake

region changes with the background pressure. The contours represent the fraction

of simulation time that the regions are determined to be non-neutral. In the perfect

vacuum case, the non-neutral wake region is clearly defined, but as the pressure

increases, the non-neutral plume regions gradually disappear. This effect is a result of

the increased charge-exchange collision frequency with the larger background density.
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Figure 4-14: Plume shield geometry.
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Figure 4-15: Detailed layout of shield geometry.
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Figure 4-17: Logarithmic contours of source ions for P 2 0 x 10' Torr.
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Figure 4-18: Logarithmic contours of CEX ions for P =2.0 x 10O' Torr.
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The slow CEX ions fall into the wake more easily than the fast source ions; therefore,

the increased CEX density in the cases with a background neutral density leads to

quasineutrality behind the shield. Figures 4-17 and 4-18 are logarithmic contour plots

of the number density of source and CEX ions respectively for the 2 x 10- Torr case.

Behind the shield, there are no source ions, but the CEX density behind the shield is

comparable to the density in the primary plume region, leading to quasineutrality in

the wake. Therefore, the presence of a background pressure has a significant influence

on the neutrality properties of the plume.
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Chapter 5

Conclusions

5.1 Summary of Results

Aquila, a new hybrid-PIC plume model, has been successfully implemented, expand-

ing upon the capabilities of previous simulations. Geometries can now be defined

using CAD solid modeling packages, and the corresponding unstructured, tetrahedral

grid is automatically generated. Tetrahedral grids provide the means to accurately

represent complicated geometries for examining surface interactions. A non-neutral

potential solver accounts for specialized problems where quasineutrality breaks down.

Results using both the quasineutral and the non-neutral potential solvers have served

to verify the fundamental operation of Aquila.

e Simulated current density results compare favorably with experimental vacuum

chamber data. With a constant temperature model, the centerline region has a

significant peak that does not agree with the experimental data, but by increas-

ing the value of -y in the polytropic model, this peak is eliminated. Increasing

-y provides a stronger radial potential gradient that pushes particles from the

centerline, thus reducing the current density. Unfortunately, although results

at 25 cm agree along the centerline with a value of 1.3 for Y, the current density

falls below the experimental data by 47 cm. All simulations underpredicted the

current density in the wing region dominated by CEX ions.
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* With a source model scaled to the experimental operating condition of 250 V

discharge voltage, potential results show strong agreement with experimental

data. The overall potential drop of 7 V between the centerline and 90 degrees

is found with both the constant and polytropic temperature models at 25 cm.

At 47 cm, the polytropic model predicts the expected 4 V difference while the

constant temperature run shows a larger drop.

* Running Aquila with true vacuum conditions provides evidence that the sepa-

rate portions of the code are operating as expected. Source ions are forming the

familiar expanding plume pattern. The number density of ions resulting from

CEX collisions shows a distinctive wing region, and ions resulting from elastic

collisions are found in the expected 60 degree region off centerline.

" Based on simulation results mimicking the analytical solution of a plasma flow

expanding into vacuum, the non-neutral potential switch is not only providing

more reasonable potential approximations than assuming quasineutrality, but

is also predicting the correct region of the flow where neutrality breaks down.

5.2 Suggestions for Future Work

Although Aquila expands upon the capabilities of plume codes such as Quasi3, certain

aspects still need improvement.

" Hybrid weighting functions would provide continuous electric fields and avoid

any bunching of particles. Although not a major concern for tetrahedral grids,

continuous electric fields would certainly increase the accuracy of the field cal-

culation.

" Dealing with unresolved, yet non-neutral, regions of the plume needs to be im-

proved. Currently, the non-neutral solver simply inverts Boltzmann's equation

to obtain the potential, but perhaps a better approximation for this potential

can be determined without imposing a quasineutral solution. Because non-
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neutral regions are only present in regions of extremely low density, imposing

an electron density of zero might be a reasonable assumption.

" A Monte Carlo collision model (MCC) would remove the necessity that all

particles of a single species must have the same weighting. Allowing for variable

species weighting would enable a scheme such as the one introduced by Fife [8]

where particles are combined in dense regions and separated in sparse ones. This

flexibility would also provide a more accurate charge distribution and alleviate

some of the resolution problems in the non-neutral solver.

" Adaptive grid refinement would enable the grid to change during the simulation,

dynamically conform to the structure of the plume, and locally refine non-

neutral regions.

" Ionization collisions in the plume should be included to account for the extra

current density measured experimentally. Perhaps this creation of low energy

ions in the plume will partially explain the discrepancies in the wing region of

the current density profile.

" Tools for increasing the speed of the calculation would help the simulation to

reach a steady state in a more reasonable time. Currently, collaborators at

the Air Force Research Lab are adding neutral subcycling to assist the heavy

neutrals in reaching a steady state distribution quickly. Techniques such as

orbit-averaging [7] where particle charge is calculated over several time-steps

rather than instantaneously would enable fewer tracked particles to accurately

represent the overall distribution. Moving the simulation to parallel processors

would distribute the work load to several machines and increase the computa-

tional speed.
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