
A DECOMPOSED SYMBOLIC APPROACH TO
REACTIVE PLANNING

by

Seung H. Chung

B.A.Sc., Aeronautical and Astronautical Engineering
University of Washington, 1999

SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS
IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2003

@ 2003 Massachusetts Institute of Technology
All rights reserved.

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

SEP 1 0 2003

LIBRARIES

Signature of Author
Department of Aeroautics and Astronautics

May 23, 2003

Certified by-- -- ...
Brian C. Williams

Associate Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by ---- -. . . ------. --
Edward M. Greitzer

H.N. Slater Professor of Aeronautics and Astronautics
Chair, Department Committee on Graduate Students

AERO

A Decomposed Symbolic Approach to
Reactive Planning

by

Seung H. Chung

Submitted to the Department of Aeronautics and Astronautics
on May 23, 2003, in partial fulfillment of the

requirements for the degree of
Master of Science at the

Massachusetts Institute of Technology

Abstract

Autonomous systems that operate in uncertain dynamic environments must respond to
unanticipated events and goals by reconfiguring themselves in real-time. Reactive plan-
ning achieves reconfiguration in real-time by constructing a goal-directed plan (GDP) for
all possible events and goals offline and then executing the GDP online, while monitoring
the outcome of each execution step. A GDP, however, is susceptible to an explosion in
space that is proportional to the square of the system's state space.

This thesis presents a new reactive plan encoding called a decomposed goal-directed
plan (DGDP), which addresses the state space explosion problem by unifying two com-
plementary approaches in the literature: transition-based decomposition and symbolic
encoding. The DGDP encoding first uses transition-based decomposition to reduce the
overall complexity of the planning problem by dividing the problem into a set of subprob-
lems that may be solved independently, and then combined serially. This decomposition
is based on the structure of the system's transition dependency graph (TDG), which cap-
tures the transition dependencies among the system components. Next, a GDP for each
subproblem is generated using a compact symbolic encoding in terms of Ordered Bi-
nary Decision Diagrams (OBDD). Finally, these GDPs are combined into a full plan, the
DGDP, based on the transition-based decomposition. This thesis makes two additional
contributions to state-of-the-art reactive planning. First, it generalizes the "divide-and-
conquer" approach introduced by the Burton reactive planner to systems with interde-
pendent components, where a system with interdependent components is characterized
by cycles within its TDG. Second, it generalizes OBDD plan encodings from universal
plans, which are conditioned on all possible initial states, to goal-directed plans that
are also conditioned on all possible goal states. The new decomposed symbolic reactive
planner is empirically validated on representative spacecraft subsystem models.

Thesis Supervisor: Brian C. Williams
Title: Associate Professor of Aeronautics and Astronautics

3

r

Acknowledgments

This thesis is dedicated to my parents, Shin-Kwan and Young-Soon Chung. They are the

source of all knowledge I deem most invaluable. They taught me of faith and love. They

will remain the greatest teachers of my life, and I will eternally be grateful to them. I

also thank my sisters, Hee-Won Chung and Hee-Sun Chung, for their love and friendship.

I especially thank my advisor, Professor Brian C. Williams, for his inspirational

breadth of knowledge and guidance through which this thesis was made possible.

I thank Michel Ingham for his support and encouragement, not to mention his leader-

ship as the senior graduate student of the Model-based Embedded and Robotic Systems

Group. I also thank Paul Elliott and Robert Ragno for the discussions on C++ coding

styles, and the rest of the Model-based Embedded and Robotic Systems Group members

who worked together as a team in the development of the model-based executive.

A special thanks goes to Margaret Yoon, Greg Sullivan, and Mark Hilstad for their

time commitment in proof-reading this thesis. I thank David Watson and Mike Pekala

at the Johns Hopkins University Applied Physics Laboratory for being supportive of the

model-based technology research and development. I thank all MIT students in the Space

Systems Laboratory who have provided great moral support.

Most importantly, I thank God for His grace and blessings.

This research was supported in part by NASA's Cross Enterprise Technology Develop-

ment program under contract NAG2-1466, DARPA's MOBIES program under contract

F33615-OOC-1702, and NASA Graduate Student Research Program Fellowship.

5

Contents

1 Introduction

1.1 Model-based Executive .

1.2 Motivation for Tractable Reactive Planning

1.3 Thesis Contributions .

1.3.1 Handling State Explosion through Decomposition

1.3.2 Handling State Explosion through Symbolic Representation

1.4 Thesis O utline .

2 Spacecraft Telecommunication System

2.1 MESSENGER Telecommunication System

2.2 Transmitter and Amplifier Interdependency

2.3 Simplified Telecommunication System

2.3.1 Bus Controller Model .

2.3.2 Transmitter Model .

2.3.3 Am plifier M odel .

2.3.4 Antenna M odel .

3 Symbolic Representation of Concurrent Automata

3.1 Computational Model: Concurrent Automata

3.1.1 Automaton Definition

3.1.2 Concurrent Automata

3.2 Symbolic Representation of CA

3.2.1 Ordered Binary Decision Diagram

3.2.2 Encoding Finite Domain Variables

7

15

16

17

19

19

20

21

25

26

30

30

31

32

33

34

37

. 38

. 39

. 42

. 44

. 44

. 46

8 CONTENTS

3.2.3 Encoding the Transition Function 48

4 Goal-directed Plans 51

4.1 Composing Concurrent Automata . 52

4.1.1 Composed Automaton . 52

4.1.2 Implementing Concurrency via Interleaving 54

4.1.3 Size of Composed Transition Relations 56

4.2 Goal-directed Plan . 57

4.2.1 Generating the Goal-directed Plan 59

4.2.2 Goal-directed Plan Execution . 62

5 Decomposed Goal-directed Planning 65

5.1 Decomposing the System . 66

5.1.1 Serializable Subgoals: Example 66

5.1.2 Subgoal Serialization . 67

5.1.3 Decomposing Concurrent Automata 68

5.2 Decomposed Goal-directed Plan . 71

5.2.1 Computing a DGDP . 72

5.2.2 DGDP Size Analysis . 75

6 DGDP Execution 77

6.1 DGDP Execution Example . 77

6.1.1 Nominal Execution . 79

6.1.2 Repairing a Faulty State . 81

6.1.3 Reconfiguration . 81

6.2 Algorithm EXECUTEDGDP . 81

6.3 DGDP Execution Time . 84

6.4 DGDP Optimality . 85

7 Results 87

7.1 Implementation . 87

CONTENTS 9

7.2 Empirical Results 88

7.2.1 Case Scenarios 88

7.2.2 Experimental Results.. 90

8 Conclusion 93

8.1 Implication on Space Missions . 93

8.2 Future W ork . 94

A Binary Decision Diagram 97

A.1 Ordered Binary Decision Diagram . 97

A.2 Reduced Ordered Binary Decision Diagram 98

A.3 OBDD Operators . 102

A .3.1 Restrict . 102

A .3.2 Apply . 103

A .3.3 Compose . 103

A.3.4 Quantification . 104

A .4 Sum m ary . 104

List of Figures

1-1 Model-base Executive. 17

1-2 Mode Reconfiguration . 18

1-3 Decomposed Goal-directed Planning Process 22

2-1 MESSENGER Telecommunication System 27

2-2 MESSENGER Antenna Locations . 29

2-3 Simplified Telecommunication System . 31

2-4 Bus Controller Model . 32

2-5 Transmitter Model . 32

2-6 Amplifier Model . 34

2-7 Antenna Model . 35

3-1 Amplifier Automaton . 41

3-2 Bus Controller and Transmitter CA . 43

3-3 OBDD Examples . 46

3-4 Amplifier States and State Space OBDDs 47

3-5 Amplifier Automaton without Fault Transitions 48

3-6 Transition and Transition Relation OBDDs 50

4-1 Composed Automaton of a System . 54

4-2 Transition Relation Size vs. Number of States 57

4-3 Goal-directed Plan . 58

5-1 Bus Controller and Switch Concurrent Automata 67

5-2 Transition Dependency Graph . 69

5-3 SCC Composed Automaton . 70

11

12 LIST OF FIGURES

5-4 T1/A1 SCC Composed Automaton GDP

6-1 Bus Controller SCC Composed Automaton GDP

6-2 T1/A1 SCC Composed Automaton GDP

6-3 Simplified Telecommunication System TDG . .

6-4 Three Types of TDGs

7-1 GDP and DGDP Size vs. Number of States . .

(x 1 4 X2)A (X3 4 x 4) OBDD

Three BDD Reduction Methods

BDD Reduction Example

Reduced Ordered Binary Decision Diagram.

Restrict Operation

. 99

. 100

. 101

. 101

. 102

71

78

78

79

85

92

A-1

A-2

A-3

A-4

A-5

List of Tables

3.1 Amplifier Transition Function

7.1 BuDDy Functions for OBDD Operators.

7.2 Plan Size Comparison

A.1 BDD Operation Time Complexity

13

. 4 1

. 88

. 9 1

. 104

-V

I

Chapter 1

Introduction

NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSEN-

GER) mission will launch in March 2004 to explore Mercury for the first time in nearly

30 years. One of the most critical stages of the mission is Mercury orbit insertion (MOI).

A fault during this stage could cause the MESSENGER spacecraft to either crash into

Mercury or miss Mercury altogether, resulting in mission failure.

Traditionally, a ground operator controls a spacecraft by uploading the necessary

sequence of commands. However, this type of open-loop commanding lacks robustness.

Especially, if an anomaly occurs during the execution of the command sequence, the

spacecraft could not only fail to achieve the intended objective, but the execution of the

remaining commands in the sequence, given an off-nominal state, could potentially have

disastrous effects.

If a spacecraft and its operational environment always behaved exactly as expected,

open-loop commanding would suffice. Due to possible occurrences of anomalies, however,

closed-loop control is necessary. Typically, control is provided with ground operators in

the loop. While ground operators are very capable, their ability to react to anomalies

is limited by the communication-time delay. For example, MESSENGER and Earth are

so distant during MOI (approximately 200 million kilometers), that round-trip commu-

nication is delayed by approximately 21 minutes. If an unanticipated fault arises within

21 minutes prior to MOI, the spacecraft will be helpless.

Missions, like MESSENGER [1], use onboard rule-based systems for fault recovery.

Rule-based system reactions are not limited by communication delay, but their recovery

capability is limited to only the set of faults predicted by the engineers. Also, as spacecraft

15

16 INTRODUCTION

become more complex to accommodate ambitious mission requirements, hand coding

robust recovery rules becomes more arduous and prone to error. Thus, a new type of

onboard reactive system is necessary to autonomously respond to anomalies.

1.1 Model-based Executive

Remote Agent, which flew on board Deep Space One (DS1) as one of the New Millennium

Program technologies, provided the first demonstration of fully autonomous and adaptive

operation of a spacecraft [27, 26]. Embracing the essential features of Remote Agent,

the concepts of model-based programming and execution were developed to address the

problems in traditional software development practice that can lead to software that

is unreliable and lacks modularity and portability [30, 29]. Model-based programming

was developed as an instance of the "executable specification" paradigm, in which a

specification is automatically translated into system interactions by the model-based

executive. This is in contrast to the traditional approach of hand translating a software

implementation into a specification used for verification, where the hand coding opens

up a considerable potential for human introduced errors. Model-based programming

is distinguished from other executable specification languages [20, 4] in that it is state

and fault aware. Specifications are expressed at a high level in terms of hidden state

evolutions, rather than through detailed command and observation sequences. This

allows the error prone process of reasoning through system interactions to be delegated

to the model-based executive. Specifications are fault aware, in that they include models

of the physical plant's nominal and faulty behaviors. This allows the executive to act

appropriately during failure in order to achieve the specified state evolutions.

A model-based executive consists of two components, a control sequencer and a de-

ductive controller, as shown in Figure 1-1 [29]. The control sequencer is responsible for

generating a sequence of configuration goals using the control program and the plant

state estimates. Each configuration goal specifies an abstract state of the plant to be

achieved.

The deductive controller is comprised of two model-based modules, Mode Estimation

1.2 Motivation for Tractable Reactive Planning

Figure 1-1: Model-based executive architecture.

(ME) and Mode Reconfiguration (MR) (see Figure 1-1). The two software modules along

with the physical plant (e.g., spacecraft hardware) form a closed-loop control system. The

ME module estimates the most likely state of the plant that is consistent with the model,

the observations from the plant sensors, and the knowledge of the executed commands.

Given the state estimates from ME, the MR module generates the commands necessary

to achieve the goals specified by the control sequencer. Fault protection is inherent to

this closed-loop architecture. In the event of a fault, ME diagnoses the faulty state, and

MR immediately attempts to command the plant out of the faulty state and into the

goal state that corresponds to the configuration goals. If such a command exists, MR

executes it, thus recovering from the fault.

The MR module is comprised of two submodules as depicted in Figure 1-2. The first

submodule is Goal Interpretation (GI). GI takes the configuration goals and generates the

goal state that satisfies the configuration goals. The second submodule is the Reactive

Planner (RP). RP determines and executes the command that will progress the plant

from the estimated state to the goal state. The focus of this thesis is the RP submodule.

1.2 Motivation for Tractable Reactive Planning

While any general-purpose onboard planners could be put in place of the reactive planner,

due to the PSPACE-complete nature of planning problems [9], real-time response cannot

17

18 INTRODUCTION

Configuration
Goal

Estimated State Command

Figure 1-2: Mode Reconfiguration submodule of the deductive controller.

be guaranteed by a general-purpose planner. In time-critical situations, such as MOI,

late response to a fault could be disastrous for the mission. A reactive planner compiles

a plan offline for all possible situations, and then executes the plan online. Reactive

planning is an approach that guarantees real-time response.

One of the early approaches to reactive planning is universal planning [28]. Given a

goal state, a universal plan maps a set of all possible initial states to the actions that

lead towards the goal state. With a universal plan, the correct sequence of actions can

be decided at the execution-time, while observing the outcome of each action. Although

universal plans provide the means to react to a nondeterministic environment in realtime,

Ginsberg pointed out the intractability of universal planning due to the exponential state

space explosion problem [18].

In addition, a universal plan cannot react to rapidly changing goals. Since a universal

plan is valid only for a specific goal, a new universal plan must be generated for each

new goal. As such, realtime response cannot be guaranteed when the goal changes. For

example, if the primary propulsion system of MESSENGER fails just prior to MOI,

the secondary propulsion system must be turned on, that is, a new goal state must be

achieved.

Alternatively, Burton reactive planner produces a goal-directed plan (GDP) that can

react to all possible initial states and goals as well. Burton is innovative for its use of

a "divide-and-conquer" approach that divides a planning problem into smaller subprob-

lems. This permits Burton to encode an extremely compact plan, where the plan's size

1.3 Thesis Contributions 19

is linear in the number of system components. However, Burton's reactive planning ca-

pability is limited to problems in which no components are interdependent, that is, no

two components may depend on one another for their transitions.

1.3 Thesis Contributions

This thesis presents a new reactive plan encoding called a decomposed goal-directed plan

(DGDP), which addresses the state space explosion problem by unifying two complemen-

tary approaches in the literature: transition-based decomposition and symbolic encoding.

The DGDP encoding first uses transition-based decomposition to reduce the overall com-

plexity of the planning problem by dividing the problem into a set of subproblems that

can be solved independently, and then combined serially. Next, a GDP for each subprob-

lem is generated using a compact symbolic encoding in terms of Ordered Binary Decision

Diagrams (OBDD). Finally, these GDPs are combined into a full plan, the DGDP, based

on the transition-based decomposition.

This thesis makes two additional contributions to state-of-the-art reactive planning.

First, it generalizes the "divide-and-conquer" approach introduced by the Burton reactive

planner to systems with interdependent components. Second, it generalizes OBDD plan

encodings from universal plans, which are conditioned on all possible initial states, to

goal-directed plans that are also conditioned on all possible goal states.

1.3.1 Handling State Explosion through Decomposition

The method of divide-and-conquer is a well known, effective approach to solving prob-

lems. The transition-based decomposition approach [31] leveraged in this thesis is an

approach that effectively divides a planning problem into subproblems. This decomposi-

tion is based on the structure of the transition dependency graph (TDG), which captures

the transition dependencies among the system components. Although this method is

very different in its specifics from that of the structural decomposition methods used for

constraint satisfaction (CSP), database theory, and Bayesian Network problems, the con-

tribution of transition-based decomposition to planning is analogous to that of structural

20 INTRODUCTION

decomposition methods.

CSPs are known to be NP-complete in general; however, Freuder has shown that a

CSP with a tree-structured constraint graph is solvable in linear time [17]. Similarly,

Williams and Nayak have shown that if a planning problem has an acyclic TDG (i.e., the

dependency among all components with respect to the transition conditions is unidirec-

tional), then the problem can be solved within a state space that grows linearly in the

number of system components [31]. For CSPs that do not have a tree-structured con-

straint graph, Dechter and Pearl have shown that the constraint graphs of those problems

can be transformed into tree-structured graphs using a tree decomposition technique [16].

For planning problems with cyclic TDG (i.e., some components are interdependent), this

thesis introduces a transition-based decomposition that transforms a cyclic TDG into an

acyclic TDG. Thus, through the transition-based decomposition technique, even planning

problems with cyclic TDG can be solved within a state space that grows approximately

linearly in the number of system components.

1.3.2 Handling State Explosion through Symbolic Representa-
tion

The transition-based decomposition method reformulates a problem into a set of subprob-

lems, then the global solution is constructed from serial solutions to the subproblems.

The transition-based decomposition method addresses the state space explosion prob-

lem at the global level, similar to Burton, but then uses symbolic encoding methods to

address the explosion problem difficulty at the subproblem level.

The logic synthesis and model checking communities have made very effective use of

a symbolic representation called Ordered Binary Decision Diagrams (OBDD) [6] to con-

struct compact state space encodings. An OBDD-based model checking technique has

proven particularly successful in dealing with the state space explosion problem [8]. Rec-

ognizing the similarities between model checking and planning, Cimatti et al. introduced

a new universal planning technique that takes advantage of the OBDDs [11]. Since then,

several OBDD-based universal planning algorithms have been developed for operating

1.4 Thesis Outline 21

within nondeterministic domains [13, 12, 21]. Likewise, the new reactive planning ap-

proach adopts the OBDD encoding technique to compile the goal-directed plans (GDP)

that can react to the nondeterministic environment as well as rapidly changing goals. In

essence, a GDP maps all possible situations and goals to an action that is guaranteed to

progress the system toward the goal state. The GDPs of the subproblems are combined

into a decomposed goal-directed plan (DGDP) for the entire planning problem.

1.4 Thesis Outline

The remaining chapters discuss a new approach to reactive planning that unifies the

aforementioned decomposition and symbolic representation methods. Figure 1-3 outlines

the planning process that computes DGDPs:

First: A behavioral model of a system is represented as concurrent automata, CA. In

addition, for compactness these concurrent automata are encoded in OBDDs.

Second: The TDG of the concurrent automata is computed. The TDG describes how

the transitions of an automaton depend on other concurrent automata.

Third: A cyclic TDG is transformed into an acyclic TDG by decomposing the system

into smaller subsets. Then, the concurrent automata in each subset are composed

into a single automaton.

Fourth: The composed automata are serialized in topological order.

Fifth: A DGDP is produced by computing a GDP for each composed automaton in

topological order.

To set the context of this technical development, a spacecraft telecommunication sys-

tem example is first introduced in Chapter 2. This example is used to help guide the

reader throughout the aforementioned planning process. Chapter 3 maps to the first

planning process. This chapter defines a concurrent automata formally and presents an

22 INTRODUCTION

Compute Transition
Dependency

Concurrent
Automata

(CA)

Compute DGDP

Decompose

A

A A

A A A

A A A A

A

Serialize
(Topological Order)

Figure 1-3: Decomposed goal-directed planning process.

E*

C=

1.4 Thesis Outline 23

OBDD representation of the concurrent automata. Before going into the details of de-

composition, Chapter 4 introduces the method for computing and executing a GDP using

a symbolic encoding. The algorithms outlined in this chapter also provides the founda-

tion for computing DGDPs. Chapter 5 then discusses the decomposition, serialization,

and DGDP computation. This chapter's discussions correspond to steps 3 through 5 of

the planning process mentioned above. Chapter 6 discusses how a DGDP is executed,

followed by Chapter 7, which provides a discussion of implementation and experimental

results. Finally, Chapter 8 provides concluding statements and future work.

1~

Chapter 2

Spacecraft Telecommunication
System

NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSEN-

GER) mission will launch in March 2004 to explore Mercury for the first time in nearly

30 years. The objective of the mission is to further our understanding of Mercury's

geological and atmospheric characteristics, ultimately advancing our knowledge of the

terrestrial planets and their evolution. The telecommunication system is one of the

spacecraft's critical subsystems required to achieve MESSENGER's objective. Without

the telecommunication system, the commands necessary to carry out the science activ-

ities cannot be uploaded to MESSENGER and science data cannot be downloaded to

Earth; without the science data, the mission will be a failure.

Maintaining an operational telecommunication system is crucial for the mission. If

a reparable fault occurs in some component of the telecommunication system, it must

be restored to an operational state immediately. An offline telecommunication system

would result in the loss of science opportunities, as no commands can be uploaded to

initiate any science activities. In the worst case, ground operators will be incapable of

uploading the commands that initiate time-critical maneuvers, such as orbit insertion

around Mercury, resulting in complete mission failure. Furthermore, since the ground

operators cannot upload the commands necessary to repair the faulty telecommunication

system, this repair operation must be autonomous.

As such, the telecommunication system is an appropriate example for illustrating an

autonomous repair capability based on reactive planning. Furthermore, the complexity

25

26 SPACECRAFT TELECOMMUNICATION SYSTEM

and redundancy that the telecommunication system possesses presents an ideal scenario

for an autonomous reconfiguration demonstration. This chapter introduces MESSEN-

GER's telecommunication system design and provides a functional description of its

components. Finally, a simplified, yet representative telecommunication system is in-

troduced. The remaining chapters will use the simplified telecommunication system to

describe the decomposed symbolic approach to reactive planning.

2.1 MESSENGER Telecommunication System

Due to its criticality to the mission, MESSENGER's telecommunication system was

designed to be fully redundant with no credible single-point failures. As illustrated in

Figure 2-1, the telecommunication system consists of two X-band Small Deep Space

Transponders (DST), a hybrid coupler, two solid-state power amplifiers (SSPA), two

radio-frequency (RF) switch assemblies, and eight antennas. A computer and a 1553 bus

controller, a simplified integrated electronics module (IEM), were added to complete the

data flow. In this section, each of these components is described in more detail.

Integrated Electronics Module

The IEM consists of three components: a computer, a 1553 bus controller, and a 1553 bus.

The IEM's computer generates all data to be transmitted to Earth, and all data received

from Earth is routed to the computer. The computer also commands all controllable

devices (e.g., commanding the transponder to be on or off). The 1553 bus controller is

responsible for directing the flow of data and commands between all devices connected

on the 1553 bus. For example, the bus controller directs data to be downloaded to the

appropriate DST, and routes the data received in the latest uplink by a DST back to

the computer. Though the MESSENGER design includes a redundant IEM, only one is

shown for the clarity of the diagram.

2.1 MESSENGER Telecommunication System 27

IEM Telecommunication System

Small DST#1 RF Switch Assembly #1 LGA (-Y)

3- - Receiver
LGA (-Z)

- - Transmitter, - - SSPA #1 -+Diplexerean(Y
Fanbeam (-Y)

Phased (Y
1553 Swirih Aay #1

Computer -Bus -ouHybr
Controller CuerPhased (Y

Array #2

Fanbeamn (+Y)

Trnmttr- +SSPA #2 Diplexer LA(Y

X-Band RIF Switch Assembly #2 1 LGA (+Z)
Small"DST #2

Figure 2-1: On the right side of the dotted line is the schematic of the MESSENGER
telecommunication system [1]. To the left of the dotted line is a simplified schematic of
MESSENGER's integrated electronics module (IEM).

28 SPACECRAFT TELECOMMUNICATION SYSTEM

Deep Space Transponder

Two DSTs are available within MESSENGER for redundancy. Each DST consists of a

transmitter and a receiver. The transmitter converts the downlink data to an X-band

signal that is appropriate for transmission via available antennas. The receiver converts

the received X-band uplink signal into data that is recognizable by the computer.

Hybrid Coupler

A hybrid coupler is a passive device that distributes the signal from each transmitter to

two SSPAs. The design of the hybrid coupler is very simple; as such, its failure rate is low

enough not to be considered a credible point of failure, and no redundancy is necessary.

Solid-State Power Amplifier

Two SSPAs are available for redundancy; each one is associated with one RF switch

assembly. Each SSPA is capable of amplifying the signal strength to the level required

for transmission via one of the available antennas.

RF Switch Assembly

The amplified signal from each SSPA is sent to the corresponding RF switch assembly.

An RF switch assembly is comprised of a diplexer and a series of switches. A diplexer

allows the antennas to be used for both transmitting and receiving simultaneously. A

series of switches in the two RF switch assemblies allow either of the diplexers to be

connected with any of the available lowgain or fanbeam antennas, enabling multiple

diplexer/antenna combinations to be used for transmitting and receiving data.

Antennas

The MESSENGER spacecraft uses three types of antennas. Two phased array anten-

nas are used exclusively for downlinking data. A phased array antenna provides high

bandwidth transmission at 40 bits per second (bps), with the ability to direct the signal

in various directions. Unlike high bandwidth parabolic antennas, no mechanical parts

are necessary for deployment or pointing. Lowgain and fanbeam antennas can be used

2.1 MESSENGER Telecommunication System 29

Top View Side View

Back

Back Fanbeam Forward
Phased Array- Lowgain

Back
Lowgain

Front
Lowgamn Front

Front / Phased Array Aft
Fanbeam Lowgain

+Y - +Y

+X *--. +Z

Figure 2-2: MESSENGER antenna locations with respect to the body axis [1].

for both uplink and downlink. The main difference is that a lowgain antenna (LGA)

provides omnidirectional (i.e., approximately hemispherical coverage) transmission and

reception at a bandwidth of 7.8 bps. A fanbeam antenna provides higher bandwidth at

10 bps, but the transmission and reception direction is limited compared to the lowgain

antenna.

For additional redundancy, multiple antennas are positioned in various locations on

the MESSENGER spacecraft (see Figure 2-2). The primary reason for the multiple

antennas is that none of them can transmit or receive in all directions due to either

limited beamwidth or transmission/reception obstruction by the spacecraft itself. Due

to the close proximity of Mercury to the Sun, the MESSENGER spacecraft must cope

with high heat and radiation. A heat shield in front of spacecraft protects the instruments

onboard, and the MESSENGER spacecraft must always point its heat shield toward the

Sun. The multiple location of antennas ensures that MESSENGER always has at least

one antenna pointed toward the Earth, while the heat shield is maintained pointed toward

the Sun. Furthermore, if one antenna fails, one of the others antenna can be used for

transmission and reception.

30 SPACECRAFT TELECOMMUNICATION SYSTEM

2.2 Transmitter and Amplifier Interdependency

One important operational safety requirement on the telecommunication system is that

the amplifier must be off before the transmitter can be turned on. The process of switch-

ing on the transmitter may generate a transient signal spike. If the amplifier is on and

the power of the transient signal spike is beyond the acceptable range for the input to the

amplifier, it could be damaged. Moreover, even if the transient signal does not damage

the amplifier, the amplified transient signal spike may damage the devices downstream,

such as the diplexer or antennas. Furthermore, for an additional safety, the transmitter

is required to be on before the amplifier is turned on.

As described, the amplifier and transmitter components are interdependent, that is,

the amplifier imposes an operational constraint on the transmitter, and the transmitter

imposes an operational constraint on the amplifier. In many engineered systems, the be-

havioral specifications only impose a unidirectional operational constraints. Occasionally,

however, the safety requirements impose bidirectional operational constraints on compo-

nents. These interdependent components present a challenge for reactive planning. The

upcoming chapters will demonstrate the use of transition-based decomposition to address

this issue.

2.3 Simplified Telecommunication System

In the remaining chapters, a simplified model of MESSENGER's telecommunication sys-

tem will be used to present the decomposed symbolic approach to reactive planning. As

illustrated in Figure 2-3, the simplified system includes two transmitter/amplifier/LGA

subsystems connected to the computer via the bus controller. The 1553 bus, receivers,

hybrid coupler, diplexers, and switches are excluded from the simplified model. To sim-

plify the model further, the computer is assumed to behave nominally at all times, thus

the computer behavior is not modelled. Figure 2-3 depicts the direction of signal flow

among the components. The computer sends data to be transmitted through the bus

controller. When the data is received, the bus controller routes it to the transmitters.

2.3 Simplified Telecommunication System 31

Transmitter #1

TI

Antenna #1

Al

Amplifier #1

Computer a otrolle

Amplifier #2

A2

Antenna #2

e T2

Transmitter #2

Figure 2-3: Simplified spacecraft telecommunication system.

The transmitters receive the data and generate the corresponding X-band signal. The

signal is then amplified by the amplifiers and is finally transmitted through the antennas.

The computer is also responsible for controlling the devices. For example, it may com-

mand the transmitter and amplifier to turn on or off. Again, these commands are sent

to the appropriate devices via the bus controller. In the following sections, the behavior

models for each component of the simplified telecommunication system are described in

more detail.

2.3.1 Bus Controller Model

The computer can switch the Bus Controller on or off. Figure 2-4 illustrates the behavior

of the component graphically. In the diagram, a state of a component is represented by

a circle. The Bus Controller B has two operational modes: on (labelled B = on) and

off (labelled B = off). For system safety concerns, a component model must include an

unknown failure state that captures all unanticipated behaviors to ensure completeness of

the model [24]. For most of the components in the simplified telecommunication system,

however, these unknown failure modes have been omitted for the sake of keeping this

illustrative example simple. However, in practice, the unknown failure state must never

be left out.

A transition between states is represented by directed arcs, with the necessary transi-

32 SPACECRAFT TELECOMMUNICATION SYSTEM

-cmdB = off) -,(cmdB = on)

cmdB = off

B = on Be off

cmdB = on

Figure 2-4: Simplified model of the Bus Controller.

I'B=onA' A B=on A
, A1 =off A , Al = off A

cmd, = off cmdT, = on

B = on A
Al = off A

cmd,, = off

T1 = on T1 off

B = on A
Al = off A

cm4, = on

Figure 2-5: Simplified model of Transmitter #1.

tion condition(s) labelled on the arc. As illustrated in Figure 2-4, the computer can turn

on the Bus Controller from the off state by simply issuing the command cmdB = on. If

the command is not issued (i.e., the condition -,(cmdB = on) is true), the Bus Controller

stays off. Here, the - symbol represents the logical operator not. When the Bus Con-

troller is in the on state, the computer may turn it off by commanding cmdB = off. Oth-

erwise, if the computer does not command the Bus Controller to turn off, -(cmdB = off),

then the Bus Controller remains on.

2.3.2 Transmitter Model

As illustrated in Figure 2-5, Transmitter #1 also has two possible states, T1 = on and

T1 = off, similar to the Bus Controller. The conditions on the transitions, however,

are more complex for the transmitter than for the Bus Controller. Since all commands

from the computer are routed by the Bus Controller, the computer cannot command

the transmitter if the Bus Controller is off. Thus, all transitions of the transmitter

are conditioned on the state of the Bus Controller being on. Also, the interdependency

between the transmitter and amplifier (as discussed in Section 2.2) adds extra complexity

to the transition conditions.

2.3 Simplified Telecommunication System

For example, the computer can switch Transmitter #1 on from the off state only if the

Bus Controller is currently on, the Amplifier #1 is off, and cmdTl = on is commanded.

The simultaneous requirement of these three conditions is represented using the logical

conjunction operator A (i.e., B = on A Al = off A cmdTi = on). If any of these conditions

are not satisfied (i.e., - (B = on A Al = off A cmdTl = on)), the transmitter must remain

in the off state.

Similarly, the computer can turn Transmitter #1 off from the on state only if the Bus

Controller is currently on, the Amplifier #1 is off, and cmdTl = off is commanded (i.e.,

B = on A Al = off A cmdTl = off). Again, if the conjunction of the conditions is not

satisfied, the transmitter must remain on.

The model for Transmitter #2 is exactly the same as Figure 2-5 except that T1, Al,

and cmdT are replaced by T2, A2, and cmdT2, respectively.

2.3.3 Amplifier Model

As illustrated in Figure 2-6, in addition to having on and off states, Amplifier #1 includes

a repairable failure state (Al = resettable). This state captures situations in which a

failed amplifier can be repaired simply by turning it off and then back on. For example,

when the state of the power amplifier becomes uncertain due to observed off-nominal

behavior, spacecraft operators would restore the nominal behavior of the amplifier by

resetting it. In the case of the Mars Polar Lander's SSPA, the engineers found that if the

RF output power drops below the required level, cycling the power off and on solves the

problem [10]. Inclusion of this state will help demonstrate the reactive planner's ability

to repair in the upcoming chapters.

Due to the interdependency between Transmitter #1 and Amplifier #1, the transition

from off to on is conditioned on the Bus Controller being on, Transmitter #1 also being

on, and Amplifier #1 being commanded on (B = onAT1 = off AcmdAl = on). Otherwise,

the amplifier remains in the off state. Since turning the amplifier off does not have any

harmful effects on any downstream components, turning the amplifier off from the on

state only requires the Bus Controller to be on and the amplifier to be commanded off

33

34 SPACECRAFT TELECOMMUNICATION SYSTEM

B = on A
(B = on A) ,T1=onA

,[cmdA, = off cmd,~ = on

B = on A
cmdc, = off

A1l on A1=off

B = on A

cmd~l= onB = on A
cmd = off

non_
determnistic

transition-

(B = on A
~cmdA, = off

Figure 2-6: Simplified model of Amplifier #1.

(B = on A cmdAl = off). For the same reason, the computer can turn the amplifier

off from the resettable state if B = on A cmdAl = off. Note that from the on state,

the amplifier can non-deterministically fail to the resettable state at any time without

the need to satisfy any constraints. Such non-deterministic unconstrained transitions are

typical of failures, which generally occur unexpectedly.

Again, the model of the Amplifier #2 is exactly the same as Figure 2-6 except that

T1, Al, and cmdT are replaced by T2, A2, and cmdT2 , respectively.

2.3.4 Antenna Model

A lowgain antenna (LGA) is a passive device consisting of two possible states, nominal

and failed (see Figure 2-7). The nominal state is the operational state of the antenna.

The failed state represents the unknown faulty state of the antenna. Although the

antennas themselves serve no purpose in demonstrating commanding and repair, they will

be used to demonstrate the reactive planner's capability to reconfigure the system quickly

back to an operational state when an irreparable failure occurs. For example, assume that

the Transmitter, Amplifier, and Antenna #1 are being used for downlink. If Antenna

#1 fails, the reactive planner must generate commands to turn on the Transmitter and

Figure 2-7: Simplified model Antenna #1.

Amplifier #2 to maintain downlink capability.

2.3 Simplified Telecommunication System 35

Chapter 3

Symbolic Representation of
Concurrent Automata

A central idea in the model-based programming paradigm is the notion of an executable

specification [29]. In an executable specification, the system behavioral description is

used directly for reactive planning. Thus, the conceptual description of the system be-

havior must be written in, or automatically mapped to, some form of model on which

deductive algorithms can operate. Furthermore, the computational model must be ca-

pable of representing complex behaviors of a system while facilitating computationally

tractable reactive planning.

Within the model-based execution framework, the behavior of the system being con-

trolled is modelled as a factored partially observable Markov decision process (POMDP)

that is compactly encoded as probabilistic concurrent constraint automata (CCA) [30].

Concurrency is used to model the behavior of a set of components that operate syn-

chronously. Constraints are used to represent co-temporal interactions and intercommu-

nication between components. Probabilistic transitions are used to model the stochastic

behavior of components, such as failure.

While compact, this representation is also expressive enough to facilitate both mode

estimation and reconfiguration. For the purpose of reactive planning, however, only a

subset of the full CCA model is necessary, corresponding to state and control variables

and transition functions. The constraints on dependent variables are eliminated by sub-

stituting them with entailed constraints on state and control variables. The essential

elements of the CCA model are extracted using knowledge compilation methods [31]

37

38 SYMBOLIC REPRESENTATION OF CONCURRENT AUTOMATA

and encoded as concurrent automata (CA) for reactive planning. In essence, CA rep-

resent a nondeterministic transition system with finite state and concurrently operating

components. Compiling a CCA into a CA eliminates the need for constraint-based rea-

soning. Also, the elimination of the dependent variables reduces the size of the state

space. For example, the Deep Space One (DS1) CCA model developed for the Remote

Agent included approximately 3000 propositional variables; with the dependent variables

eliminated, only about 100 variables remained.

Regardless of the compactness of this representation, the exponential state space

explosion problem pointed out by Ginsberg [18] still remains for reactive planning. This

problem is addressed by leveraging the transition-based decomposition and the compact

state space encoding capability of Ordered Binary Decision Diagrams (OBDD), i.e., a

symbolic encoding. OBDD-based model checking [8] and OBDD-based universal planning

[11, 13, 12, 21] have proven particularly successful in dealing with the state explosion

problem. This problem can be mitigated for reactive planning by encoding CA as OBDDs,

similar to how a typical automaton is encoded in an OBDD [7]. Once CA is represented

using OBDDs, the planning algorithms can be defined in terms of OBDD operators.

In this chapter, a formal description of the CA computational model is introduced.

Then, after a brief introduction to OBDDs, the OBDD representation of CA is discussed.

Examples based on the simplified telecommunication system discussed in Chapter 2 are

interleaved throughout this chapter.

3.1 Computational Model: Concurrent Automata

CA denote a set of concurrently operating automata. Though the CA model has not

yet been formally introduced, the models of the simplified telecommunication system

depicted in Section 2.3 (see Figures 2-4, 2-5, 2-6, and 2-7) are, in fact, graphical repre-

sentations of the system's CA. In this section, the automaton for a single component is

first formally defined, then CA is defined as a set of such automata. These definitions

are similar to the definition of a CCA [30, 31, 29].

3.1 Computational Model: Concurrent Automata

3.1.1 Automaton Definition

Each automaton has an associated state variable si with domain D(si). Given the current

state assignment (si = v), an automaton transitions its state in the next time step,

according to a transition function ri. A transition function may be conditioned on a

constraint involving the state of other automata and/or values of control variables. A

transition is enabled if its constraint is entailed. In general, the domain of all control

variables includes the default noCmd (i.e., no command) value. Formally, the automaton

is defined as follows:

Definition 3.1. The automaton As for component i is a 4-tuple (Hi, Ei, -r, oM03), where:

1. Hi = H; U Hf is a finite set of variables for the component, where each variable

x E Hi ranges over a finite domain D(x). Hi is partitioned into a set of control

variables H1 and a set of state variables H that includes the component's state

variable si and possibly other sys.

2. E is a finite set of full assignments over Hs. A state of the automaton, denoted

o-3, is an assignment to the component state variable si (i.e., og = (si = v)), where

si E fI and v E D(si). The state space of the component is the set E' C Ei, the

projection of Ei to variable si. E C Ei is the projection of Ei to Uf.C

3. ri : Ei x C (He) -* 2E' is a transition function. C(Hi) denotes the set of all

finite domain constraints over Us. A constraint is defined using propositional state

logic, in which a proposition is an assignment to a variable (x = v), or one of

the constants true or false. Propositions are composed into a formula using the

standard first-order logic operators: AND (A), OR (V), and NOT (-,). Given a

state assignment o(t) E Ei at time t and a constraint c) E C(H1) entailed at

time t, (, ct)) specifies a set of states to which the automaton can transition

at time t + 1. The transition function captures both nominal and fault behaviors,

represented by ri" C ri and rf C -r, respectively. In the absence of fault behavior,

39

40 SYMBOLIC REPRESENTATION OF CONCURRENT AUTOMATA

the nominal transition function is always deterministic (i.e., F : Ei x C(Hi) -+ Ei)

The fault transitions introduce nondeterminism into the system.

4. oO E E' is the initial state of the automaton.

For example, consider Amplifier #1 illustrated once again in Figure 3-1. The au-

tomaton is represented as 4-tuple (HAi, E1, TAl,) where:

1. UA1 = {B, A1, Ti, cmdA1} is the set of variables, of which the state variable of

Amplifier #1's component is Al. The variables are partitioned into a set of state

variables Hi = {B, A1, Tl} and a set of control variables Hli = {cmdAl}. The

domain of Al is D(A1) = {off, on,resettable}, and the domain of the remaining

variables are D(B) = D(Tl) = {off, on} and D(cmdAl) = {off, on, noCmd}.

2. While set EAi = D(B) x D(A1) x D(T1) x D(cmdAl) is too large to list, having 24

elements, the set of Amplifier #1 states (i.e., projection of EA1 to SAi) is El =

{A1 = off, Al = on, Al = resettable}, and the projection of EA1 to HAi is E'Ai =

{cmdAi = off, cmdAi = on}.

3. The set of constraints C(7Ai) associated with the transition function TAi is defined

in Equation 3.1.

(B= on A T1 = on A cmdAl = on),

B = on A Ti = on A cndAl = on,

C(HAi) = , (B = on A cndAl = off), (3.1)

B = on A cmdAl = off,

The transition function TAi(UAi, CAi), where 0A1 E EA1 and CAi E C(HA1) is defined

in Table 3.1.

3.1 Computational Model: Concurrent Automata

B =on Al

~ cmdA = offj

T1 = on A
cmdAl = on

B =on A
, T1=onA

cmd, = onI

B = on A
cmdA, = off

non-
deterministic

transition

B = on A
-cmdI = off

Figure 3-1: Automaton of Amplifier #1 from the simplified telecommunication system.

qAl E EA1

Al = off

Al = off

Al = on

Al = on

Al = resettable

Al = resettable

Table 3.1: Amplifier #1's Transition Function

CA1 E CA1

, (B = on A T1 = on A cmdAl = on)

B on A T1 = on A cmdAl = on

(B = on A cmdAl = off) {A1 = on

B = on A cmdAl =off {A1 = off

(B = on A cmdAl = off) {A1

B = on A cmdAl = off

A1(OAl, CA1)

[Al = off}

{Al = on}

, Al = resettablet}

,Al = resettablet}

= resettable}

{A1 = off }

tRepresents faulty behavior.

41

42 SYMBOLIC REPRESENTATION OF CONCURRENT AUTOMATA

3.1.2 Concurrent Automata

CA is a set of concurrently operating automata. The simplified telecommunication sys-

tem's CA consists of seven automata, one for each modelled component (i.e., Bus Con-

troller, Transmitter #1 and #2, Amplifier #1 and #2, and Antenna #1 and #2). Within

this formalism, all automata are assumed to operate synchronously, that is, at each time

step every component performs a single state transition. In this section, CA and its legal

execution are formally defined.

Definition 3.2. CA is a 3-tuple (A, H, E), where A = {A 1, A2 ,... ,,A} is a finite set

of automata associated with the n components in the system. H = H ' U J" is the set

of system variables, where each variable x E H ranges over a finite domain D(x). H

is partitioned into a set of control variables flc = Ul 1 I and a set of state variables

Uls = Un=1 Hr. E = fJ> E, is a finite set of full assignments over Hi.

The state space of CA, denoted Es, is the Cartesian product of the individual au-

tomaton state spaces E" , for all automata A, E A. The state of the system at time t,
(E , is Un1 0 , where (t) is the state of automaton A, at time t. Similarly, a

control action pi(t) E Ec is an assignment to all control variables, flc.

Definition 3.3. A legal execution of a CA is a trajectory of states [o(0),a(1),...] and

control actions [I(0), p(, ...] such that:

1. o40) is an initial state of the system.

2. t+1 E U1Uri(o , c.) is the state of the system in the next time step t + 1,

for all c3 E C(HI) entailed by a(t) and 1 ().

The second part of the definition asserts that the next state, U(t+1), is defined by the

transition functions {ri(oft, cj)|i = 1, 2,... , n}, where each transition is enabled by some

cj E C(Hr) that the system's state and control actions entail at time t. Due to the system's

3.1 Computational Model: Concurrent Automata

I'B =on A)
A1 = off Alcmd7 , = off

,(cmdB = off)

(a)

B = on A
,I A1= offn

cmdn = on

B = on)

(b)

Figure 3-2: Concurrent automata of (a) Bus Controller and (b) Transmitter #1.

nondeterministic behavior, the enabled transitions may lead to a set of possible states.

Thus, 0 (t+) is defined as one of those possible states, that is (t+1) E 1L=1 U3 r-(uzt) c3).

For example, consider a subset of the simplified telecommunication system in which

there are only three components: Bus Controller, Amplifier #1, and Transmitter #1. The

graphical representations of the three concurrent automata are once again illustrated in

Figures 3-2(a), 3-2(b), and 3-1, respectively. A state trajectory

{B = off,T1 = off,A1 = off},

{B = on,T1 = off,A1 = off},

{B = on,T1 = on,A1 = off},

{B = on, T1 = on, A1 = on},

(3.2)

and a sequence of control actions:

{cmdB =

{cmdB =

{cmdB =

on, cmdT1 = noCmd, cmdAl = noCmd},

noCmd, cmdTl = on, cmdAl = noCmd},

noCmd, cmdTl = noCmd, cmdAl = on},
(3.3)

represent a legal execution. In this scenario, all components are initially off, {B = off, T1=

off, Al = off }, and one by one each component is turned on.

43

44 SYMBOLIC REPRESENTATION OF CONCURRENT AUTOMATA

3.2 Symbolic Representation of CA

The use of a symbolic encoding called Ordered Binary Decision Diagram (OBDD) for

reactive planning is motivated by the exponential state space explosion problem. This

problem is not exclusive to reactive planning, but it has been a major source of dis-

couragement for research in this area. After all, responsiveness, the objective of reactive

planning, is generally realized by trading off the required computational time for the

memory space.

The state space explosion problem is obvious and can be observed even in a model

as simple as the simplified telecommunication system. Of the seven components in the

simplified telecommunication system, five components have two states and the remaining

two components have three states. This means that the simplified telecommunication

system has a total of 25 x 32 = 288 possible states, that is, the number of states in a

system is exponential in the number of components. To alleviate this problem, OBDDs

are used to encode all variable assignments, E, as well as transitions, r, of a CA. OBDDs

provide two distinct benefits: (1) a compact state space encoding and (2) operators

that allow a state space to be searched without the need to enumerate all of the states

explicitly.

Encoding CA using OBDDs involves representing each finite domain variable in H

and the transition functions ri as OBDDs. In this section, OBDDs are briefly introduced

for readers who are not familiar with this representation. Then, the method for encoding

finite domain variables in OBDDs is presented, followed by the method for encoding the

transitions. For a more detailed discussion of OBDDs, refer to Appendix A.

3.2.1 Ordered Binary Decision Diagram

An Ordered Binary Decision Diagram (OBDD) is a rooted, directed acyclic graph (DAG)

representation of a Boolean function, where the set of Boolean variables are ordered

sequentially. A Boolean function f : B" -+ B is an expression formed with Boolean

variables, and Boolean operators, including, but not limited to, negation -, conjunction

A, disjunction V, implication =>, and equivalence e, where B is the Boolean domain

3.2 Symbolic Representation of CA 45

{true, false}. Equation 3.4 is an example of a Boolean function.

(x1 Ay1)V (X2 A y2) V (XsA y3) (3.4)

The corresponding OBDD with x1 -< Y1 -< x 2 -< Y2 -< x 3 -< y3 ordering is shown in

Figure 3-3(a). Each node of an OBDD represents a Boolean variable. The dotted and

solid outgoing edges respectively represent false and true evaluations of the Boolean

variable. The terminal nodes 1 and 0 represent the evaluation of the Boolean function

(i.e., OBDD) where each path from the root to a terminal evaluates to 1 for true or 0

for false. The OBDD in Figure 3-3(a) has a total of five different paths from the root

to terminal 1:

{x 1 = true, y1 = true}

{x 1 = true, y1 = false,x2 = true, y 2 = true}

{ x1 = f alse, x 2 = true, Y2 = true} (3.5)

{xi = f alse,x 2 = true, y 2 = false,x 3 = ture, y3 = ture}

{x1 = false, x 2 = false, x 3 = true, y3 = true}

The fact that {xi = true, yi = true} terminates to 1 implies that as long as x1 = true

and yi = true, Equation 3.4 evaluates to true regardless of the values of x 2, X3 , y2, and

Y3-

The ordering of the variables is crucial to the compactness of an OBDD representation.

For example, if the ordering of the same Boolean function in Equation 3.4 changes to

x 1 < X 2 -< x 3 -< Y1 -< x 2 -< y3, the size of the OBDD becomes considerably larger as

shown in Figure 3-3. Unfortunately, determining an ordering that minimizes the size of

the OBDD is a coNP-Complete problem [6]. However, ordering the "dependent" variables

near each other is a good heuristic for reducing the size of an OBDD [14]. For example,

X1 Y1 - x2 -< Y2 -< X3 -< y3 places the "dependent" variables near each other. That is,

one possible solution of Equation 3.4 requires both x1 and y1 to be true, thus x1 and yi

are "dependent" on one another. Similarly, x2 and y2 are "dependent" on one another,

and x3 and ys are "dependent" on one another.

46 SYMBOLIC REPRESENTATION OF CONCURRENT AUTOMATA

(a) (b)

Figure 3-3: OBDD for (x1 A yi) V (x2 A y2) V (X3 A y3) with two different ordering se-
quences: (a) x 1 -< y1 -< x 2 -< Y2 -< X3 -< y3 and (b) x 1 -< x2 -< x 3 -< Y1 -< x2 -< 3

Many graph-based algorithms have been developed that facilitate efficient "opera-

tion" on OBDDs [6, 7]. Algorithms exist for most commonly used logical operators and

quantifiers, including -,, A, V,], and V. These operators have also been extended for set

operations, such as U, n, E, C, and - (i.e., set subtraction). For example, if X and Y

are OBDD encodings of boolean functions representing sets X and Y respectively, X A Y

is equivalent to X n Y. Similarly, X V Y is equivalent to X U Y, X A -Y to X - Y, and

X A -Y = false to X C Y. It should be noted that all of the aforementioned opera-

tors have linear or polynomial time complexity with respect to the number of Boolean

variables used in the OBDDs.

3.2.2 Encoding Finite Domain Variables

Each finite domain variable in II of a CA must be encoded as an OBDD. For variables

with binary domains, this task is trivial. For example, consider Transmitter #1's state

variable T1 where D(T1) = {off, on}. T1 can be represented in an OBDD by simply

using an OBDD Boolean variable whose false and true values correspond to off and on,

respectively. In this case, variable T1 is overloaded to also denote an OBDD Boolean

variable that represents T1.

3.2 Symbolic Representation of CA 47

(a) (b) (c) (d)

Figure 3-4: Two Boolean variables, A1[0] and A1[1], are used to represent Amplifier #1's
states where: (a) Al = (0, 0) corresponds to Al = off (a) Al = (0,1) corresponds to
A1 = on, and (a) Al = (1,0) corresponds to A1 = resettable. The set of feasible states
{Al = (0,0), Al = (0,1), Al = (1,0)} is represented by (d).

For variables with a domain larger than a binary domain, a vector of OBDD Boolean

variables must be used. For example, consider state variable Al of Amplifier #1, where

D(Al) = {off, on, resettable}. A 2-bit binary vector is necessary to represent Al in

OBDD. Again, overloading Al to also denote a 2-bit binary vector, Al = (0,0) corre-

sponds to Al = off, Al = (0, 1) corresponds to Al = on, and Al = (1, 0) corresponds to

Al = resettable. With each bit, A1[0] and Al[1], represented as an OBDD Boolean vari-

able, the OBDD encodings of Amplifier #1's states {Al = off, Al = on, Al = resettable}

are shown in Figures 3-4(a), 3-4(b), and 3-4(c), respectively.

Note that Al = (1, 1) has no corresponding state. This knowledge is taken into

account by representing the feasible state space as an OBDD. A set is encoded in an

OBDD as a disjunction of its elements. In the case of Amplifier #1, the state space is

encoded in an OBDD as A1 = (0, 0) V A1 = (0, 1) V A1 = (1, 0). The OBDD of Amplifier

#1's state space is illustrated in Figure 3-4(d).

In general, a finite domain variable x with N = ID(x) I values is represented by n =

~log 2 N] OBDD Boolean variables, where each distinct n-bit binary vector corresponds

to a value in D(x). While a set of variables are defined to represent the control variables

in IV, two sets of variables must be defined for state variables in IP so that the state at

time t can be distinguished from the state at time t + 1. In the case of the state variable

for Amplifier #1, the vector Al denotes the state of the amplifier at current time t and

Al' denotes the state at time t + 1.

48 SYMBOLIC REPRESENTATION OF CONCURRENT AUTOMATA

B =onA
(B=on Al , I T=onA

cmdM, = off cmdl - on

B = on A
cmd , = off7

A1l on A =off

=oonfA
T1 =on A

cmd, = on
B = on A

cmd,j = off

B = on A
,cmd, = off

Figure 3-5: Amplifier #1 automaton. Nondeterministic fault transitions have been omit-
ted for the purposes of reactive planning.

3.2.3 Encoding the Transition Function

For the purpose of reactive planning, all nondeterministic fault transitions are omitted

from the model. In general, fault transitions are highly unlikely, and a plan that requires a

highly improbable event to occur is futile. Moreover, purposely failing a system to achieve

the desired goal state is unacceptable. In the case of Amplifier #1, the nondeterministic

failure transition from on to resettable (i.e., the dashed arc in Figure 3-1) is omitted,

resulting in the deterministic automaton shown in Figure 3-5. Thus, only the transition

r, representing the nominal behavior of Amplifier #1, needs to be encoded in an OBDD.

The transition functions of all concurrent automata are stored as a set of OBDDs, R =

{Rili = 1,2, ... , n}, where each RI is an OBDD encoding of the automaton Ai's transition

function. A transition function of an automaton A. is represented as a transition relation

R, = (E', C(IHs), Ei) using the characteristic function R- : E" x C(Ij) x E' -+ B, where

B is the Boolean domain. The relation is defined as R'(oj, ci, o) = (o' E r"(a, ci)), where

oa indicates the state at the next time step and ci E C(fI1) denotes a constraint that is

entailed in the current time step. For example, the transition relation RA1 of Amplifier

#1 is specified using a standard encoding [31] as follows:

3.2 Symbolic Representation of CA 49

(Al = off A , (B = on A T1 = on A cmdA1 = on)) Al' = off

(Al =off AB=onATl=onAcmdA1 =on) => Al'=on

(Al = on A -,(B =on A cmdAl =off)) > Al'= on

(Al = on A B =on A cmdAl= off) = Al'= off

(Al = resettable A -(B = on A cmdAl = off)) = Al' = resettable

(Al = resettable A (B = on A cmdAl = off)) -> Al' = off

In general, the transition relation is:

Ri = EsiA Ec A E.Z A A i A ci -> o (3.6)

oliE"' ciEC(ni)

where a c T (ai, ci). Each variable in the relation is represented with the appropri-

ate OBDD Boolean variables, and -ri(o-, ci) is represented with the appropriate OBDD

variables that denote the the next time step state. The conjunction of E", E, and Eq

restricts the transition relation to only the feasible states and control assignments. All

logical operators used in Equation 3.6, including those used in the constraints ci, are

computed using the corresponding OBDD operator.

Figure 3-6(a) illustrates the OBDD representation of the transition (Al = on A B =

on A cmdAl = off) => Al' = off. Figure 3-6(b) shows the result of conjoining the OBDDs

of the transitions into the transition relation RA1 1 . In Figure 3-6(b), all paths that lead to

false have been omitted for simplicity. One of the benefits of using OBDDs to represent

transition relations is their relative compactness. [12] shows that the size of an OBDD

does not necessarily depend on the number of states, but rather on the structure of the

information the OBDD encodes. As such, OBDD-based model checking and planning

have been successful even for problems with large state space. However, the compactness

of OBDDs is not guaranteed.

'In this example, we assume cmdT and cmdAl domain is {off, on}. The noCmd has been removed
only to simplify the example.

50 SYMBOLIC REPRESENTATION OF CONCURRENT AUTOMATA

A1[0] A1[0] A1[0] A1[0]

A1 [1] A1 [1] A1 [1] A1 [1]

cmdAl cmdA1

i1 [0 l'[0

1 01

(a) (b)

Figure 3-6: OBDD representation of (a) (Al = on A B = on A cmdAl = off) => Al' = off
and (b) Amplifier #1 transition relation RA1. In (b), all paths to 0 terminal (i.e., false)

have been omitted.

Chapter 4

Goal-directed Plans

Traditionally, a ground operator controls a spacecraft by uploading the necessary se-

quence of commands. However, this type of open-loop control lacks robustness to anoma-

lies. Typically, a spacecraft manages anomalies using a rule-based fault protection sys-

tem. However, as spacecraft become more complex in order to satisfy more ambitious

mission requirements, hand coding robust recovery rules becomes more arduous and

prone to error.

Use of a universal plan is an innovative approach to managing anomalies during

execution [28]: a universal plan can provide robustness by specifying ways to achieve a

goal from any spacecraft state, including fault states. However, a new universal plan

must be computed on the fly for each new goal state received (i.e each reconfiguration

request). Since computing a new plan is a PSAPCE-complete problem in general [9],

this approach cannot guarantee hard real-time response to reconfiguration requests.

Goal-directed plans (GDP), a concept pioneered by Williams and Nayak [31], can

be executed for both repair and reconfiguration. Much like a universal plan, a GDP

accounts for possible anomalies during execution, i.e., performs repair. However, distinct

from a universal plan, a GDP can be used for reconfiguration as well. In essence, a GDP

compactly encodes a set of universal plans for all potential goal states. A GDP specifies

the right action to take in all situations, conditioned on the specified goal state, thus the

term "goal-directed".

Computing a GDP for concurrent automata can be challenging. Since a system is

modelled as a set of synchronous and concurrently operating automata, the transition de-

pendencies among automata must be taken into account, which complicates the planning

51

52 GOAL-DIRECTED PLANS

problem. One way to address this issue is to compose the set of concurrent automata

into a single composed automaton, thus eliminating concurrency during planning.

In this chapter, a method for composing concurrent automata into a single composed

automaton is introduced. Then, computing a GDP for the composed automaton is dis-

cussed. Finally, the OBDD encoding of a GDP is described, as an approach to mitigating

the state space explosion problem.

4.1 Composing Concurrent Automata

In this section, the composition of concurrent automata into a single automaton is for-

mally introduced, followed by a discussion of the implications of composing concurrent

automata.

4.1.1 Composed Automaton

For n concurrent automata, the state space of the composed automaton E"- is simply

the cartesian product of each concurrent automaton's state space E, that is E'" =

I " E. Similarly, the initial state of the composed automaton 0o is the union of

each concurrent automaton's initial state of, that is (0) = ,_ o. A transition

rCA(C4o24, CCA) of the composed automaton represents a combination of each automaton's

transition ri(o(, ci) where the composed automaton state otC represents each automa-

ton's state oft and the constraint CCA is the logical conjunction of each ci. Given a state

oM and a control action pt) at time t a transition ,cA(), CCA) is enabled at time
and (t) Fomaly a composed

(t +1) if and only if the constraint CCA is entailed by oj and p4. Form ally, a composed

automaton ACA is defined as follows:

Definition 4.1. Given concurrent automata CA = (A, 11, E) where A = {A 1 , A 2,... , A,,}

a composed automaton ACA is a 4-tuple ([ICA, ECA, TCA, oT(), where:

1. HCA = H is a finite set of variables for CA. HCA = H['A U H'A is partitioned into a

set of state variables ['UA and a set of control variables H['A.

4.1 Composing Concurrent Automata 53

2. ECA = E is a finite set of full assignments over rICA. ECA = ECA U EcA is also par-

titioned into a set of assignments to state variables EsA and a set of assignments to

control variables EgA. For a composed automata, the state space EA is equivalent

to ECA.

3. TCA(UCA, CCA) = f 1 i r(o-i, c) is the transition function of the composed automa-

ton, where ri(o-, ci) is the transition of an automaton A, E A. -cA = U'"=1 o is

the state of the composed automaton, where o- is a state of automaton Ai E A.

The transition conditions on the constraint CCA =A\ c. Given a state o- and a

control action y at time t, a transition TCA(c('), CCA) is enabled at time (t + 1) if

and only if the constraint ccA E C(7 CA) is entailed by -f and pi where C(JIcA)

is a set of all finite domain constraints over Uca.

4. o& = U 0) is the initial state of the composed automaton, where oM E E'4 is

the initial state of automaton A, E A.

In reactive planning, only the transitions that represent the nominal behavior (i.e.,

nominal transitions) is considered. A nominal transition of the composed automaton

is simply TcA(UCA, ccA) = U'i r"(u, ci), where rin(o, ci) is a nominal transition of an

automaton Ai E A.

This composition operation is straight forward using the OBDD representation of

concurrent automata. The state space of the composed automaton is simply a conjunction

of each automaton's state space:

ECA = i (4.1)
i=1

where Ei is an OBDD-encoded state space of automaton Ai E A. Similarly, a set of

assignments to control variables is:

m

i=1

where E is an OBDD-encoded set of assignments to control variables of automaton A, E

A. The transition relation for the composed automaton is a conjunction of the transition

54 GOAL-DIRECTED PLANS

-cmdA1 = on A -cmd, = off

-cmdAl = off ,cmdM = off

c md,, = off
T1 = on iT1 = on T1= on

A1 = on A1 = off cmdA, =off
cmd, = on

cmd,, = on cmd,, = off

T 1= off rT1= off T1= off

A1 = on cmdA, = off \ 1 = f cmdA, =Off

,cmdA1 = off ,cmdA. =Off
,cmd,l = Ont

Figure 4-1: Composed automaton representing a system consisting of Transmitter #1
and Amplifier #1. The Bus Controller was removed from the system by assuming that
it is always on.

relations for the concurrent automata. That is, given a set of transition relations R =

{R1, R2 ,..., Rm} of the concurrent automata CA, the transition relation RcA of the

composed automaton is:
m

RCA =A Ri (4.3)
i=1

4.1.2 Implementing Concurrency via Interleaving

For example, consider the system consisting of Transmitter #1 and Amplifier #1. Con-

current automata for these two components are illustrated in Figures 2-5 and 2-6 (pages

32, 34). Also, for simplicity, assume that the Bus Controller is always on. Thus, B = on

is removed from all transition conditions of Transmitter #1 and Amplifier #1. The

composed automaton that represents this system is shown in Figure 4-1.

Notice that one transition seems missing, the transition from {T1 = on, Al = off}

to {T1 = off, Al = on}. According to the model shown in Figures 2-5 and 2-6, such

transition may occur if and only if Transmitter #1 is commanded off (cmdT = off) and

the Amplifier #1 is commanded on (cmdAi = on) simultaneously.

4.1 Composing Concurrent Automata 55

This ability to execute multiple commands simultaneously requires a synchronous

system. While a concurrent automata is assumed synchronous in that each automaton

performs a single state transition at each time step, the concurrent automata are not

assumed to transition simultaneously within a time step. Instead, the transitions of the

concurrent automata are assumed interleaved. This model of concurrency via interleav-

ing is assumed for two reasons. First, a spacecraft typically consists of a single main

processor, which executes synchronous activities by interleaving them. Two, for asyn-

chronous systems, as is the case with many spacecraft components, the interleaved model

is more robust.

With concurrency modelled via interleaving, issuing the command cmdT = off and

cmdAl = on at exactly the same time cannot be guaranteed. In fact, taking such action

could be hazardous: the amplifier could be damaged if cmdAl = on precedes cmdTl = off

even by a fraction of a second.

To ensure safe and proper execution, the interleaved transitions must not interfere

with one another nor compete for mutually exclusive needs, as described by the mutual

exclusion rule of Graphplan [5]. The composition of the OBDD-encoded transition re-

lations resolves all mutual exclusion rules except for one interference problem, that is,

assuring that the effect of one transition does not remove the needed precondition of

another transition. For example, turning Transmitter #1 off requires Amplifier #1 off,

but commanding cmdAl = on will turn Amplifier #1 on, an interference.

To resolve this interference issue, the transition relation of each automaton must be

modified. If a transition is conditioned on the state of another automaton, the transition

is constrained so that the state condition must be true both before and after the transition

occurs. For example, consider the amplifier's transition from off to on:

(Al = off A T1 = on A cmdAi = on) =>. Al' = on (4.4)

where the variable Al' indicates the amplifier state at the next time step. The transi-

tion relies on the transmitter being on (T1 = on). Thus, the transition is modified to

56 GOAL-DIRECTED PLANS

guarantee that the transmitter is on before and after:

(A1 = off A T1 = on A T1' = on A cmdAl = on) = Al' = on. (4.5)

Similarly, the transmitter's transition

(T1 = on A Al = off A cmdT = off) -T' = off (4.6)

is modified to

(T1 = on A Al = off A Al' = off A cmdTi = off) => T' = off. (4.7)

When the transitions in Equations 4.5 and 4.7 are logically conjoined, the transitions they

represent cannot occur simultaneously. Thus, the transition from {T1 = on, Al = off}

to {T1 = off, Al = on} is eliminated from the composed automaton (see Figure 4-1).

4.1.3 Size of Composed Transition Relations

In general, when composing automata, the concern is the size of the OBDD representing

the composed automaton. For example, while the composed automaton for the Trans-

mitter #1/Amplifier #1 system has a total of six possible states, a total of 22 nodes are

necessary to encode the composed automaton's transition relation in an OBDD. Recall

that Figure 3-6(b) showed that for Amplifier #1 alone, which has a total of three possible

states, the OBDD-encoded transition relation requires 14 nodes, excluding the 0 and 1

terminals.

Figure 4-2 shows systems of various state space size and their corresponding OBDD

transition relation sizes. The number of states in the system was increased by adding

additional components. See Section 7.2 (page 88) for more details. The system with

288 states represents the simplified telecommunication system introduced in Chapter 3.

The simplified telecommunication system's composed transition relation encoded as an

OBDD required a total of 68 OBDD nodes. The composed transition relation of the full

MESSENGER telecommunication system with only two antennas had a state space size

of 18432 and required a total of 108 OBDD nodes. As the trend in Figure 4-2 suggests,

4.2 Goal-directed Plan 57

Transition Relation Size vs. Number of States

0 50 100 150 200 250

Number of States

Figure 4-2: Size
space.

of OBDD encoded transition relations relative to the size of the state

the size of the OBDD-encoded transition relation does not explode along with the state

space of the system. This trend is similar to the result shown in [12], in which the growth

of a universal plan encoded in an OBDD is shown to be small with respect to the growth

of the state space of the problem.

4.2 Goal-directed Plan

Recall that GDPs include plans that can react to all possible initial states and goals, and

the central focus of this thesis is in compactly encoding the GDPs.

A GDP is comprised of a set of goal-directed rules, where a goal-directed rule is a

3-tuple (o, y, o'). A goal-directed rule can be interpreted as "if the current state is o- and

the goal state is o', execute p", i.e., (a,U') -> p.

Figure 4-3 is a tabular representation of the goal-directed plan for the Transmitter

#1/Amplifier #1 system. Each entry in the table corresponds to a goal-directed rule.

100

90

80

70

60

50

40

30

20

10

0

z
Q
08

z

300

58 GOAL-DIRECTED PLANS

Current Goal State
State T1 = on, Al = on T1 = on, Al = off T1 = off, A1 = off T1 = off, A1 = on

T1 = on, Al = on idle cmdAl = off (1) cmdAl = off (2) failure

T1 = on, Al = off cmdA1 = on (1) idle cmdT1 = off (1) failure

T1 = on, Al = resettable cmdAl = off (2) cmdAl = off (1) cmdT1 = off (2) failure

T1 = off, Al = off cmdT1 = on (2) cmdT1 = on (1) idle failure

T1 = off, Al = on cmdA1 = off (3) cmdAl = off (2) cmdAl = off (1) idle

T1 = off, Al = resettable cmdAl = off (3) cmdAl = off (2) cmdAl = off (1) failure

Figure 4-3: Goal-directed plan for the Transmitter #1/Amplifier #1 system. The number
next to each command represents the total number of steps necessary to achieve the goal.
Similar to the goal state {T1 = off, Al = on}, neither the goal state {T1 = on,A1 =

resettable} nor {T1 = off, Al = resettable} can be reached from any other states.

For example, when the system is off, i.e., {T1 = off, Al = off }, the goal-directed rule for

the goal state {T1 = on, A1 = on} is:

({T1 = off, A1 = off}, {cmdT1 = on}, {T1 = on, A1 = on}). (4.8)

Upon execution of this rule, issuing command cmdT1 = on1 , the system's next will be

{T1 = on, Al = off} under a nominal situation (i.e., no occurrence of a fault). Then,

from the state {T1 = on, Al = off }, the goal-directed rule

({T1 = on, Al = off }, {cmdA1 = on}, {T1 = on, Al = on}) (4.9)

should be executed (i.e., issue the command cmdAl = on). Under a nominal execution

of the rule, the desired goal state is finally achieved. If the system fails to a repairable

fault state (for example, {T1 = on, Al = resettable}), the execution of the GDP will

naturally repair the system back to the desired goal-state. This is similar to the behavior

of a universal plan or a Markov decision process policy. Recall that the difference is that

a GDP includes plans for all goal states. This enables a robust reactive execution with

both repair and reconfiguration capabilities and fast online response.

Although no plan can guarantee to achieve a goal under nondeterministic failures, a

plan must be guaranteed to achieve a goal under nominal execution:

'The control action cmdTi = on implies cmdAi = noCmd, that is "no command". In general, no
explicit assignment to a control variable implies the values noCmd.

4.2 Goal-directed Plan 59

Definition 4.2. Given a composed automaton A = (H, E, r, -())2, a goal-directed rule

(o-, y1, -') is valid if and only if pL E E' is guaranteed to progress the automaton toward

a' E E' under nominal execution.

As long as the goal-directed rules are valid and the system behaves nominally, the system

is guaranteed to reach the goal in some finite sequence of GDP execution.

4.2.1 Generating the Goal-directed Plan

A GDP is generated by iteratively searching the state space in (1) parallel, (2) backward,

and (3) breadth-first manner. (1) Using an OBDD encoding, states within the search

space do not have to be explicitly enumerated. Goal-directed rules are generated for

all goals and initial states simultaneously using a compact analytical encoding, thus a

"parallel search". This is one of the key advantages in using the OBDD encoding. (2)

The search method is also characterized as a "backward search", as the GDP is generated

by searching for the states that can reach the goal, instead of searching for the goals that

can be reached from the current state. (3) In the process of generating the goal-directed

rules, the one-step rules, that is, rules that achieve the goal after a single transition, are

generated first. In Figure 4-3, one-step rules are those with "(1)" next to the commands.

For example, the goal-directed rule

({T1 = on, Al = off}, {cmdAl = on}, {T1 = on, Al = on}) (4.10)

is a one-step rule. Notice that one-step rules correspond directly to the transitions

(a, yi, a') in the transition relation. Next, the two-step rules, labelled "(2)" in Figure 4-3,

are generated. For example, the goal-directed rule

({T1 = off, Al = off}, {cmdTl = on}, {T1 = on, Al = on}) (4.11)

is a two-step rule. This process continues sequentially until the fixed-point is reached,

thus "breadth-first". A fixed-point is reached if no new goal-directed rules exist. In

2The subscript CA that indicates composed automaton has been omitted for simplicity.

60 GOAL-DIRECTED PLANS

the Transmitter #1/Amplifier #1 system example, the fixed-point is reached after two

iterations (i.e., after the three-step rules are generated).

The COMPUTEGDP algorithm for generating a GDP is shown as Algorithm 4.1. The

COMPUTEGDP algorithm takes the transition relation R and the set of assignments to all

control variables E' of an automaton as its input. As discussed earlier, goal-directed

rules are searched iteratively in breadth-first order. An OBDD called oldPlan is initially

empty as reflected in line 1 of COMPUTEGDP. oldPlan stores the goal-directed rules found

in the previous iteration. An OBDD newPlan stores all goal-directed rules found up

to the current iteration. Again, the one-step rules correspond directly to the transition

relation (line 2). In lines 3-5, it iteratively searches for two-step rules, three-step rules,

etc. while adding them to the newPlan. The procedure exits once the fixed-point is

reached (line 3), and returns the plan (line 6).

Algorithm 4.1 COMPUTEGDP(R, EC)

1: oldPlan <- 0
2: newPlan +- R

3: while oldPlan $ newPlan do
4: oldPlan <- newPlan
5: newPlan <- oldPlan U GENERATENEXTSTEPRULES(R, EC, oldPlan)
6: return newPlan

In line 5, GENERATENEXTSTEPRULES(R, Ec, oldPlan) generates all n-step rules, given

all rules of less than n steps. The argument R is the transition relation, Ec is the set

of control actions, and oldPlan is a set of all rules of less that n steps. Assume that

(0-, i, a-k') is an element of the transition relation R and that an (n - 1)-step rule

(ak)l Am') is an element of the old goal-directed plan oldPlan. Then, (a i, n,),

returned by GENERATENEXTSTEPRULES(R, EC, P), is one of the valid n-step rules. For

example, given the 1-step rule

{T1 = on, Al = off }, {cmdTi = off}, {T1' = off, Al' = off}) (4.12)

4.2 Goal-directed Plan 61

and the transition relation

({T1 = on, Al = on}, {cmdAl = off }, {T1' = on, Al' = off}) (4.13)

GENERATENEXTSTEPRULES produces the 2-step rule

({T1 = on, Al = on}, {cmdAl = off }, {Tl' = off, Al' = off}) (4.14)

Formally, GENERATENEXTSTEPRULES(R, 7c P) generates a set of n-step goal-directed

rules (a, p, a'), where R is a transition relation and P is a goal-directed plan containing

all m-step rules, for m = 1, 2,... , (n - 1). Each rule (Ua, p3, Uk') is restricted such that

oC' C (R A o' A pi), 3(p C Ec).(,,, y, Uk') E P, and ,3(p E Ec). (i,, . k') E P.

C C (R A a' A pi) states that given input pi, or" must be reachable from state a'

in a single transition. ((p E Ec).(a, p, 0 -k) E P states that some goal-directed rule for

current state a and goal state a-k must exist in the plan P. The restriction -3(p E

3c)(i 1 .k') E P says that (a, p3, o-k') cannot be a new goal-directed rule if a rule

for the current state a' and the goal state a-k' already exists in the plan P. With this

restriction, the resulting GDP is guaranteed to be optimal, where an optimal plan is

defined as a plan with the shortest control sequence. For example, while

({T1 = on, Al = off }, {cmdTl = off }, {T1' = on, Al' = on}) (4.15)

is a 3-step rule, it is not included in the GDP, since the optimal 1-step rule already exists

in the plan:

({T1 = on, A1 = off }, {cmdAl = on}, {T1' = on, Al' = on}) (4.16)

In fact, the 3-step rule is not even a "valid" rule, since the rule commands the system

further away from the desired goal-state.

The algorithm for GENERATENEXTSTEPRULES(R, Ec, P) is given as Algorithm 4.2. This

algorithm leverages the OBDD representation to efficiently search the state space, with-

out enumeration.

62 GOAL-DIRECTED PLANS

Algorithm 4.2 GENERATENEXTSTEPRULES(R, EC, P)

1: nextPlan <- R[,tnp/,q, A]Ec.P,temp/,l

2: optimalNextPlanWithNoCmd <-]E".nextPlan -]Ec.P
3: return (nextPlan A optimalNextPlanWithNoCmd)

Line 1 of GENERATENEXTSTEPRULES(R, EC, P) computes all next step goal-directed rules

including the non-optimal ones3 . Line 2 determines which rules are the optimal rules.

Finally, line 3 returns only those rules that are valid. Note that all next step rules are

computed simultaneously, thus "parallel".

4.2.2 Goal-directed Plan Execution

As illustrated in the beginning of this section, executing a goal-directed plan is, in essence,

a matter of a simple lookup for the appropriate goal-directed rule. Given the current

state o- and the goal state o-', the goal-directed rule (o, y, a') must be isolated from the

GDP. Upon identification of the rule, the command y is executed. The algorithm for

executing a GDP is shown in Algorithm 4.3.

Algorithm 4.3 EXECUTEGDP(P, o-, -')
1: if o- = o-' then
2: return (success)
3: else
4: rule = PA orA-'
5: if rule / false then
6: return]ao, a'.rule
7: else
8: return failure

The EXECUTEGDP algorithm takes a GDP P, the current state a, and the goal state a'.

First, if the current state o- is the same as the goal state o-' (line 1), then the algorithm

returns success (line 2). Otherwise, the conjunction P A a A a' identifies the correct

goal-directed rule (a, ya, o-') (line 4). If the rule for the specified current state and goal

state exists (line 5), then the existential quantification of the goal-directed rule over the

3 [atemp/0,] symbolizes the replacement of variable o with variable ,.temp

4.2 Goal-directed Plan 63

current state o and the goal state o-' extracts the control action and it is returned (line

6). Otherwise, no plan exists that can achieve the goal. Thus, failure is returned by

EXECUTEGDP algorithm (line 8).

Chapter 5

Decomposed Goal-directed Planning

A goal-directed plan (GDP), as introduced in Chapter 4, is in essence a set of goal-

directed rules that map a current state and a goal state to an action that guarantees

progress of the system toward the goal state. As the transition dependencies among

concurrent automata complicates the planning problem, the concurrent automata are

composed into a single automaton. However, the number of states of a composed au-

tomaton grows exponentially with respect to the number of concurrent automata (i.e.,

the number of modelled components). Thus, the number of goal-directed rules in a GDP

is also exponential in the number of concurrent automata. This exponential growth is

mitigated somewhat by encoding a GDP compactly as an OBDD; however, no guaran-

tees can be made about the compactness of the OBDD-encoded GDPs. In the worst

case, OBDD-encoded GDPs can also grow exponentially with respect to the number of

concurrent automata. Thus, generating a GDP for a composed automaton is intractable

in general.

A more tractable approach to reactive planning is the divide-and-conquer approach. If

a problem can be divided into a set of subproblems, and the size of the largest subproblem

is bounded, then the difficulty of the full problem is bounded by the difficulty of the largest

subproblem. Such a divide-and-conquer approach can be applied to reactive planning, in

which concurrent automata CA are decomposed into a set of sub-automata that define the

subproblems. The set of goal-directed plans for the individual sub-automata is called a

decomposed goal-directed plan (DGDP). The DGDP can be executed to control the entire

system. This "decomposed" approach eliminates the exponential explosion problem of

reactive planning.

65

66 DECOMPOSED GOAL-DIRECTED PLANNING

In this chapter, the method for decomposing concurrent automata is first introduced.

Then, computing DGDP on the decomposed automata is discussed.

5.1 Decomposing the System

Decomposition of CA is based on subgoal serializability, where a set of subgoals are

serializable if and only if the goal can be partitioned into a set of subgoals that can be

solved sequentially to achieve the goal [23]. As will be discussed in the following sections,

the absence of component "interdependence", described in Section 2.2 (page 30), can lead

to a simple goal serialization method. If no interdependence exists among the components

of a system, the decomposition of CA is trivial, since the set of individual automata in

CA is itself the decomposed automata. This decomposition can also be generalized for

systems with interdependencies.

In this section the notion of subgoal serialization is introduced through an example.

Then, a method for determining the subgoal serialization is described using a graph called

the transition dependency graph [31]. Finally, the decomposition of CA is discussed in

the context of subgoal serialization.

5.1.1 Serializable Subgoals: Example

Consider Bus Controller and Switch #1A illustrated in Figures 5-1(a) and 5-1(b), respec-

tively. As described earlier, one of the roles of a bus controller is to route the commands

from the computer to the intended devices. Switch #1A is one of the three switches in

the RF Switch Assembly #1 that routes the signal to either one of the two lowgain an-

tennas (LGA) attached to the RF Switch Assembly #1 (see Figure 2-1, page 27). Switch

#1A routes the signal to the LGA pointing in the -Y direction if it is in position 1, posl,

and it routes the signal to the LGA pointing in the -Z direction if it is in position 2, pos2 .

As shown in Figure 5-1(b), Switch #1A can be commanded from posi to pos2 and vice

versa if and only if the bus controller is on.

Presume that the current state of the Bus Controller/Switch #1A system is {B =

off, S1A = posl} and the goal state to achieve is {B = off, SlA = pos2}. In this case, it

5.1 Decomposing the System 67

(B=on A) (B=on A)~[cmd,,A = pos2 cmd,1 = Pos1

,(cmdB = off) ,(Cmd, = on)
B=on A

cmdl = po82
cmdB =off 1A = posl =

B =on B=off B=on A
cmdB = on 4CM4iSA =P08

(a) (b)

Figure 5-1: Concurrent automata of (a) Bus Controller and (b) Switch #1A.

is not necessary to compute a single plan that achieves both B = off and SlA = pos2.

Rather, the goal can be partitioned into two subgoals: S1A = pos2 and B = off. Once

SlA = pos2 has been achieved, B = off can be achieved without worrying about affecting

the already achieved S1A = pos2 subgoal. That is, the S1A = pos2 subgoal is achieved

by first turning the Bus Controller on. Once the Bus Controller is on, the switch position

can be commanded to pos2. As the process of achieving the subgoal SlA = pos2 leaves

the Bus Controller on, an essential side-effect, the Bus Controller must be commanded

off to achieve the second subgoal (B = off). Achieving the second subgoal has no

consequences on the first subgoal that has already been achieved. Hence, the subgoals

are serializable. Note that "serialization" implies an ordering. That is, the subgoal

must be achieved in the specified order. Attempting to achieve the subgoals in the

reverse order (i.e., B = off and then SlA = pos2) will not accomplish the intended goal

{B = off, SlA = pos2}. In particular, after achieving the subgoal B = off, which requires

no action, the bus is turned on during the process of achieving S1A = posl. The resulting

state {B = on, S1A = pos2} is not the desired goal state {B = off, SlA = pos2}.

5.1.2 Subgoal Serialization

For the Bus Controller/Switch #1A system, the execution order of the subgoals is actually

independent of the goal specified. In other words, regardless of the goal, as long as the

subgoal associated with Switch #1A is achieved first, followed by the subgoal associated

with the Bus Controller, the desired goal state can be attained. The subgoal ordering is

independent of a goal due to the acyclicity of the system's transition dependency graph

68 DECOMPOSED GOAL-DIRECTED PLANNING

(TDG). That is, no "interdependency" exists among the components. The TDG of CA

is defined formally as follows:

Definition 5.1. The transition dependency graph G = (V, E) of concurrent automata

CA = (A, II, L) is a directed graph, where each vertex v E V corresponds to an automaton

A, E A. Given a vertex u E V corresponding to the automaton Au E A and a vertex

v E V corresponding to the automaton A, E A, G contains a directed edge from vertex

* to vertex v (i.e., (u, v) E E) if and only if the state of automaton Au is referred to by

one of the transition conditions of A,.

An acyclic TDG defines the hierarchy of the concurrent automata. That is, the tran-

sitions of an automaton represented by vertex v are conditioned on the states of the

automata that correspond to the ancestors of vertex v. Conversely, the transitions of an

automaton represented by vertex v are not conditioned on the states of the automata

that correspond to v's descendants. Thus, if each subgoal is associated with an au-

tomaton and each automaton with a vertex in the TDG, each successive achievement of

subgoals is guaranteed not to interfere with the previously achieved subgoals, as long as

the subgoals are achieved in the depth-first order of the TDG. This depth-first order is

also equivalent to the inverse topological order of an acyclic TDG [15]. Williams and

Nayak first recognized and exploited this relationship between the topological order of

an acyclic TDG and the ordering that serializes the subgoals [31]. If the TDG is cyclic,

however, the subgoal ordering will depend on the specified current state and goal state.

Furthermore, identifying the correct ordering that serializes the subgoals requires solving

the planning problem itself.

5.1.3 Decomposing Concurrent Automata

If the TDG of a CA is acyclic, the concurrent automata decomposition is trivial. In

this case, computing a goal-directed plan of the composed automaton is unnecessary, as

described in Chapter 4. Instead, a goal-directed plan for each individual automaton can

5.1 Decomposing the System 69

Antenna #1

Al

I) Ampfi #
Bus

Comute Controller|^
Amplifier #2

A2

Antenna #2

-T2

Transmitter #2

Figure 5-2: Transition dependency graph of a simplified telecommunication system. The
computer has no numbering since it is not modelled.

be computed as described in the following section. In essence, the problem has been

decomposed into a set of subproblems, where each subproblem is associated with an

individual automaton.

Fortunately, this divide-and-conquer approach can also be applied to CA with a cyclic

TDG, by transforming a cyclic TDG into an acyclic TDG. For example, the TDG of

the simplified telecommunication system is cyclic (see in Figure 5-2) due to the inter-

dependencies between each transmitter and its associated amplifier. However, if the

transmitter and the amplifier are grouped into a single vertex in the TDG, the resulting

graph is acyclic. As each vertex corresponds to an automaton, grouping a set of vertices

corresponds to composing the automata associated with these vertices. It should be rec-

ognized that a set of cyclic vertices in a TDG directly corresponds to a strongly connected

component (SCC) of the TDG (i.e., Transmitter #1 and Amplifier #1 together form one

of the SCCs in the TDG in Figure 5-2) [15]. In addition, composing the automata within

an SCC corresponds to transforming the TDG with SCCs into a component graph [15].

Transforming a set of concurrent automata contained within an SCC into a single

automaton involves composing the concurrent automata as described in Section 4.1 (page

52). However, one small, yet important, difference exists between composing the CA of

70 DECOMPOSED GOAL-DIRECTED PLANNING

(B = onAA)cmd - cmdr (B = on A
~cmdl = off ,(cmdn = off

(m off B = on A (Bof
T1 =on cmA f T1=on T1=on

A1A A1off B =on A
B = onAA cmd' = off

cmdL, = onoA

Ba=onA B = on A
cmd = on cmd o r = off

T 1 = off T1 =moff T1= off

cmdA, = off cmdA, = off

B =on Al_[
B =on Al

~cmdA, = off (B = onA ' cmdl = off
cmd,, = on

Figure 5-3: Composed automaton representing the two interdependent components,
Transmitter #1 and Amplifier #1.

the entire system versus composing a subset of the concurrent automata.

To illustrate this difference, consider composing Transmitter #1 and Amplifier #1.

The composition of two automata that represent the components is shown in Figure 5-3.

Note that when the CA of the entire system is composed into a single automaton, the

transitions of the composed automaton are only conditioned on the commands. However,

when a subset of the CA is composed into an automaton, the transitions of the composed

automaton may be conditioned on the state of other automata as well. For example,

when Transmitter #1 and Amplifier #1 are composed, the transitions of the composed

automaton are conditioned on the Bus Controller state.

Once CA are decomposed into a set of SCCs, the ordering on the decomposed au-

tomata is defined for the purpose of subgoal serialization. As discussed in [31], the

subgoal serialization ordering is computed using a simple topological sorting algorithm

[15] on the component graph of the TDG. The topological order, as labelled in Figure

5-2, corresponds to the inverse subgoal serialization ordering.

5.2 Decomposed Goal-directed Plan 71

Current Goal State
State T1 = on, A1 = on T1 = on, A1 = off T = off, A = off TT1 =off, A1= on

T1 = on, A1 = on idle B =o cm on fum
T1 = onA1 = o cm n c dAl = Off cm dAl = Off

T1 = on, A1 = off B = on idle B = failurecmdAl= On cmndTl = Off

T1 = on, A = resettable B = on B = on B = on ile
cmdAl = off cmdAl = off cmdT = off

T1 = off, Al = off d = on = odle failure

T1i=off, A1= on B =on B =on B =on idle
cmdAl= Off cmdAl= Off cmdA = Off

T=ofA= eetbe B = on B = on B = onfalr
Ti =off Al= rsetab 1 cmndAl = off cmdAl = Off cmndAl = Offfalr

Figure 5-4: Goal-directed plan for the Transmitter #1/Amplifier #1 SCC automaton.
Similar to the goal state {T1 = off, Al = on}, neither the goal state {T1 = on, Al =

resettable} nor {T1 = off, Al = resettable} can be reached from any other states.

5.2 Decomposed Goal-directed Plan

Once the TDG is made acyclic by replacing each SCC with a single vertex, a GDP can

be computed for each SCC successively, instead of generating a single GDP for the entire

CA. This set of GDPs for all SCCs in the system is called a decomposed goal-directed plan

(DGDP). For example, the GDP of a composed automaton that represent the Transmitter

#1/Amplifier #1 SCC automata is shown in Figure 5-4. This GDP, unlike the GDP of

the composed automaton that represents the Transmitter #1/Amplifier "system", can

include intermediate subgoals (i.e., B = on) within the control action p.

For example, when the transmitter and the amplifier are off (i.e., T1 = off, Al = off),

the goal-directed rule for the goal state {T1 = on, Al = on} is:

({T1 = off, Al = off}, {B = on, cmdT1 = on}, {T1 = on, Al = on}). (5.1)

Here, B = on is an intermediate subgoal that must be achieved before the command

crmdTl = on can be executed. The intermediate subgoal can be achieved simply by looking

up the GDP of the Bus Controller. Upon success in achieving the intermediate goal, the

control action cmdT1 = on can be commanded. The achievement of the intermediate

subgoal B = on is an essential "side-effect" of achieving the subgoal {T1 = off, Al = off}.

72 DECOMPOSED GOAL-DIRECTED PLANNING

The following section introduces how a DGDP is computed, followed by an analysis

of DGDP sizes.

5.2.1 Computing a DGDP

A DGDP is generated by computing the GDPs of each composed automaton associated

with an SCC. While the COMPUTEGDP algorithm (see Section 4.1, page 60) can be used to

compute the GDPs, a simple modification must be made to the way COMPUTEGDP is called.

Recall that GDPs in a DGDP may include intermediate subgoals in the control action

of a goal-directed rule. Intermediate subgoals are handled in COMPUTEGDP by simply

treating them as commands. For example, in the case of the Transmitter #1/Amplifier

#1 SC composed automaton, T1 and Al define the state of the automaton. B, which

defines the state of the Bus Controller, is treated as a control variable for the purposes

of computing the GDP of the Transmitter #1/Amplifier #1 composed automaton.

Additionally, all intermediate subgoals of GDPs in a DGDP must be reversibly reach-

able states [31]. Reversibly reachable states are states that can be reached from the initial

state and can also lead back to the initial state through some sequence of actions. In

general, fault states of a component are not reversibly reachable, but the nominal states

are reversibly reachable. In some cases, however, even some nominal states are not re-

versibly reachable. For example, one of the components commonly used on a spacecraft's

propulsion system is the normally-open pyro-valve. This valve is initially open, but can

be closed. Once closed, however, the valve is permanently closed, with no mechanism to

reopen the valve. Thus, the valve's closed state is not reversibly reachable from the open

state. These valves are used because they are highly reliable and virtually leak-free, but

because of the irreversibility associated with the closed state, the valve should be closed if

and only if it is truly necessary. Hence, if the closed state is explicitly requested as a sub-

goal, executing the GDP of the valve should close the valve. However, the valve should

not be commanded closed as a side-effect of achieving other subgoals, as this side-effect

may not be the original intent. If the valve is closed unintentionally, the permanently

closed valve could potentially fail the mission. Thus, a GDP must be generated such that

5.2 Decomposed Goal-directed Plan 73

it can achieve any of its subgoals, including the states that are not reversibly reachable,

but should not include any intermediate subgoals that are not reversibly reachable.

An intermediate subgoal appears in a GDP of an automaton if one or more of its

transitions are conditioned on the state of other automata with lower topological number,

that is, composed automata associated with the ancestors in the component graph of a

TDG. Thus, if a transition relation is restricted to a subset of "allowed" transitions,

which are only conditioned on the reversibly reachable states of the ancestors, the GDP

computed from this "allowed" transition relation is guaranteed to include only reversibly

reachable intermediate subgoals.

COMPUTEDGDP(n, R, S, C, S', s(O)) in Algorithm 5.1 generates the DGDP of a CA. n

is the number of SCC composed automata. R is a vector of transition relations. R[i]

corresponds to the OBDD-encoded transition relation of the i-th composed automaton,

where the composed automata are ordered in topological order. S is a vector of the state

spaces of the current time step, where S[i] corresponds to an OBDD-encoded state space

of the i-th composed automaton. Similarly, C is a vector of control actions set, where C[i]

is an OBDD-encoded set of all possible control actions for the i-th composed automaton.

S' is a vector of the state spaces of the next time step, where S'[i] corresponds to an

OBDD-encoded state space of the i-th composed automaton. s(O) is a vector of initial

states, where s(O)[i] is the initial state of the i-th automaton.

Algorithm 5.1 COMPUTEDGDP(n, R, S, C, S', s(o))

1: revReachAncs +- true
2: for i = 1 to n do
3: allwdR <- R[i] A revReachAncs

4: DGDP[i] +- COMPUTEGDP(allwdR, C[i])
5: revReachAncs <- revReachAncs U COMPUTERRS(R[i], S[i], C[i], S'[i], s(0)[ij)
6: return DGDP;

Lines 2-5 successively generates the GDPs of each SCC composed automaton. Each

GDP is computed in the topological order and stored in the vector DGDP (lines 2-6).

In line 1, an OBDD-encoded set of reversibly reachable ancestor states, revReachAncs,

is initialized to true. Note that an OBDD set equal to true implies that the set includes

74 DECOMPOSED GOAL-DIRECTED PLANNING

all possible elements of the set. Then, revReachAncs, computed in the i-th iteration, is

used to compute allwdR of the (i + 1)-th SCC composed automaton (line 3). allwdR

is computed by restricting the transition relation R[i] to only the reversibly reachable

ancestor states (i.e., states of the composed automata with the topological number lower

than i). Line 4 computes a GDP by calling COMPUTEGDP and stores the GDP in DGDP.

Line 5 computes the reversibly reachable states of the i-th SCC and adds them to the set

of reversibly reachable ancestor states, which is used to compute allwdR of the (i + 1)-

th SCC composed automaton in line 3. COMPUTEDGDP is based on the algorithm for

computing concurrent policies[31].

COMPUTERRS, shown in Algorithm 5.2, computes the reversibly reachable states by

computing the intersection of the set of states reachable from the initial state and the set

of states that can reach the initial state. This is similar to computing a SCC. COMPUTERRS

takes the transition relation R, the state space of the current time step S, a set of all

possible control actions C, the state space of the next time step S', and the initial state

s(0).

Algorithm 5.2 COMPUTERRS(R, S, C, S', s(0))
1: RNoCmd <- 3(p E C).R
2: f ReachOld +- 0
3: f ReachNew <- s(0)
4: while f ReachNew / f ReachOld do
5: f ReachOld <- f ReachNew
6: fReachNew <- fReachOld U (](s E S).(RNoCmd A fReachOld))[s/s
7: bReachOld +- 0
8: bReachNew + s(0)
9: while bReachNew # bReachOld do

10: bReachOld <- f ReachNew
11: bReachNew - bReachOld u](s' E S').(RNoCmd A fReachOld[s/s'])
12: return fReachNew n bReachNew

In computing the reversibly reachable states, it is not important to determine how the

states are reversibly reachable, rather, only the fact that they are reversibly reachable is

necessary. Thus, the control action information in the transition relation is irrelevant. As

such, line 1 modifies the transition relation (a, yu, -') into (o-, a') and stores it in RNoCmd.

5.2 Decomposed Goal-directed Plan 75

Line 2 initializes fReachOld to an empty set. fReachOld represents a set of all states

that were found to be reachable in the previous iteration of the search. Line 3 initializes

f ReachNew to the initial state. fReachNew represents a set of all reachable states

found in all iterations, up to the current iteration. Lines 4-6 iteratively searches for all

states that are reachable from the current state, i.e., forward reachable states. While line

5 updates fReachOld with fReachNew, line 6 adds a set of states that are reachable

from fReachOld into fReachNew. This process is continued until the fixed-point is

reached, at which no more new forward reachable states are found (line 4).

Similarly, line 7 initializes bReachOld to an empty set, where bReachOld represents a

set of all states that were found to be backward reachable (i.e., all states that can reach

the initial state) in the previous iteration of the search. Line 8 initializes bReachNew to

the initial state. bReachNew represents a set of all backward reachable states found in all

iterations, up to the current iteration. Lines 9-11 iteratively searches for all states that

can reach the current state. While line 10 updates bReachOld with bReachNew, line 11

adds a set of states can reach bReachOld into bReachNew. This process is continued

until the fixed-point is reached, at which no more new backward reachable states are

found (line 9).

Finally, the intersection of the forward and backward reachable states is returned as

the reversibly reachable states (line 12).

5.2.2 DGDP Size Analysis

The advantage of this method is that the size of the DGDP is much smaller than a single

GDP for the full CA = (A, H, E). For a given automaton with x number of states, the size

of the GDP for the automaton is quadratic in x, O(x 2). Now, assume that the number

of concurrent automata is n = JAI, and the average number of states per automaton

is m = |E' 1. If CA is composed into a single automaton, the number of states in the

GDP grows exponentially in n, O(m"), and so does the size of the GDP, O(m 2"). If the

maximum number of the automata in an SCC is w, however, the number of states in

the corresponding DGDP is only 0(l -mw) and the size of the DGDP is only O(l - m2w),

76 DECOMPOSED GOAL-DIRECTED PLANNING

where 1 is the total number of SCCs. Thus, even if the size of a CA grows, as long as

m and w remains constant, the size of the corresponding DGDP grows only linearly in

1. Constant m and w is a fair assumption, since components with large state space are

seldom built and systems with many interdependent components are also rare.

Chapter 6

DGDP Execution

In Chapter 5, the method for constructing a DGDP was introduced. As discussed earlier,

a DGDP is capable of reactively repairing and reconfiguring. A system with a DGDP

is quick to respond to anomalies since all necessary reactive plans have been computed

offline. During online execution, no replanning is necessary.

In this chapter, the simplified telecommunication system example is used to demon-

strate the ability to repair and reconfigure using a DGDP. This example is followed by

a description of the online execution algorithm EXECUTEDGDP. This algorithm is identi-

cal to the concurrent policy execution algorithm developed by Williams and Nayak [31].

The only difference is that the execution algorithm presented in this chapter operates

on OBDD-encoded DGDPs. Next, the time complexity of the execution algorithm is

discussed based on the analysis work of Williams and Nayak [31]. Finally, the optimality

of DGDPs is informally discussed.

6.1 DGDP Execution Example

Once again, consider the simplified telecommunication system (see Section 2.3, page 30).
This system is decomposed into five sets of SCC composed automata: Bus Controller,

Transmitter #1/Amplifier #1, Transmitter #2/Amplifier #2, Antenna #1, and An-

tenna #2. As a result, the DGDP of the simplified telecommunication system includes

five GDPs, each GDP associated with one of the composed automata. The GDP of the

Bus Controller is shown in Figure 6-1. The GDP of Transmitter #1/Amplifier #1 com-

posed automaton is shown in Figure 6-2. The GDP of the Transmitter #2/Amplifier #2

composed automaton is not illustrated, since the GDP is exactly the same as the GDP

77

78 DGDP EXECUTION

Current Goal State

State 7l~~~
B = on B =77 ~3off]

B=o idle cmd = O

B f cmdB = on idle

Figure 6-1: Goal-directed plan for the Bus Controller SCC composed automaton.

Current Goal State

State T1=on, A1 =on T1=on, A= off T=off, A1= off T1 =of, A1=on

T1 = on, Al = on idle cm = of cm = of failure

T1 = on, A1 = off B=on idle B = on failure
cmdAl =on cmdTl = Off

T1 = on, Al = resettable = of cm = of cm = of failure

Ti = off, Al = off B=on B=on idle failure
cmdTl = on cmdTl = on

T1 = off, Al = on B = on B = on B = on idle
cmdAl = off cmdAl = off cmdAl = off

T1 = off, Al = resettable cm of cm = of cm =o failure

Figure 6-2: Goal-directed plan for the Transmitter #1/Amplifier #1 SCC automaton.
Similar to the goal state {T1 = off, Al = on}, neither goal state {T1 = on, Al =

resettable} nor {T1 = off, Al = resettable} can be reached from any other states.

of the Transmitter #1/Amplifier #1 composed automaton, except for the replacement

of the variables T1 and Al with T2 and A2, respectively. Also, the GDPs of the two

antennas have been omitted, as they are passive devices. The topological ordering of the

decomposed system is (B, Ti/Al, T2/A2, Anti, Ant2) as shown in Figure 6-3.

As an example, assume that the current state and the desired goal state of the sim-

plified telecommunication system is as follows:

* Current State: {B = off, T1 = off, Al = off, T2 = off, A2 = off, Anti = nominal,

Ant2 = nominal}

" Goal State: {B = on, T1 = on, Al = on, T2 = off, A2 = off, Anti = nominal,

Ant2 = nominal}

6.1 DGDP Execution Example 79

Antenna #1

AlI

(D Amplifier #1

Controller

Amplifier #2

-- A2

Antenna #2

-T2

Transmitter #2

Figure 6-3: Transition dependency graph of a simplified telecommunication system. The
numbers correspond to the topological order. The computer has no numbering since it
is not modelled.

6.1.1 Nominal Execution

Before executing the DGDP, the goal must be partitioned into subgoals and then serial-

ized. According to the decomposition shown in Figure 6-3, the goals associated with T1

and Al must be combined into a single subgoal, and the goals associated with T2 and

A2 must be combined into a subgoal. The list of subgoals in topological order is shown

below:

9 Serialized Subgoals: ({B = on}, {T1 = on,A1 = on}, {T2 = off,A2 = off},

{Ant1 = nominal}, {Ant2 = nominal})

First Command: Turn on the Bus Controller

For proper execution, the subgoals must be achieved in inverse topological order, which

is the order for successful goal serialization. The first subgoal is Ant2 = nominal. Since

the current state of Antenna #2 is nominal, nothing needs be done. Similarly, nothing

is required for the second subgoal (Anti = nominal) nor the third (T2 = off, A2 = off).

However, actions must be taken to achieve the forth subgoal (T1 = on, Al = on).

Looking up the GDP of T1/A1 in Figure 6-2. The following goal-directed rule applies

80 DGDP EXECUTION

for the current state:

({T1 = off, A1 = off}, {B = on, cmdTl = on}, {T1 = on, A1 = on}) (6.1)

According to this rule the intermediate subgoal B = on must be achieved before issuing

cmdTi = on. Thus, the GDP of the Bus Controller is used to determine how to achieve

B = on from the current state B = off. The corresponding goal-directed rule from Figure

6-1 is:

({B = off}, {cmdB = on}, {B = on}) (6.2)

This rule requires commanding cmdB = on.

Second Command: Turn on Transmitter #1

After the execution of cmdB = on, the system transitions nominally and the new state

is:

e Current State: {B = on, T1 = off, Al = off, T2 = off,

Ant2 = nominal}

Given the new state, the next unachieved subgoal with the

is {T1 = on, Al = on}. Again the same goal-directed rule is

A2 = off, Anti = nominal,

highest topological number

applied:

({T1 = off, A1 = off}, {B = on, cmdT = on}, {T1 = on, A1 = on}) (6.3)

This time, since the intermediate subgoal B = on has already been achieved, cmdT = on

can be commanded.

Third Command: Turn on Amplifier #1

Again, the system behaves nominally and the command cmdTi = on progresses the

system to a state closer to the goal state:

* Current State: {B = on, T1 = on, A1 = off, T2 = off, A2 = off, Anti = nominal,

Ant2 = nominal}

6.2 Algorithm EXECUTEDGDP 81

Once more from the T1/A1 GDP, the required next command is determined to be

cmdAl = on.

6.1.2 Repairing a Faulty State

This time, however, assume that Amplifier #1 fails to the resettable state instead of

finally transitioning the system into the goal state:

* Current State: {B = on,T1 = on,A1 = resettable, T2 = off, A2 = off, Anti =

nominal, Ant2 = nominal}

According to the GDP of T1/A1, the proper repair action is to command the amplifier

off (cmdAl = off). Once that repair action is successful, the same process above can be

repeated to reach the goal state.

6.1.3 Reconfiguration

However, if Antenna #1 fails during the process of achieving the goal state, nothing can

be done to achieve the goal state. To bring the telecommunication system online, the

redundant antenna must be used. Thus, the new reconfiguration goal state is:

Goal State: {B = on, T1 = off, Al = off, T2 = on, A2 = on, Anti = failed,

Ant2 = nominal}

Fortunately, the new goal state can still be achieved using the same DGDP and the same

execution process. Unlike universal plans, no new plan needs to be generated.

6.2 Algorithm ExecuteDGDP

EXECUTEDGDP shown in Algorithm 6.1 essentially performs the process outlined in the

previous section. It attempts to achieve each subgoal in inverse topological order. Recall

that this algorithm is identical to the concurrent policy execution algorithm in [31].

The first argument to algorithm EXECUTEDGDP is the decomposed goal-directed plan

DGDP. As described in Section 5.2 (page 71), DGDP is a vector of GDPs, where the

82 DGDP EXECUTION

Algorithm 6.1 EXECUTEDGDP(DGDP, S, G, firstCall)
1: if firstCall then
2: for i = 1 to IGI do
3: j = ToPOLOGICALNuM(G[i])
4: if (DGDP[j] A S[j] A G[i]) = false then
5: return failure
6: for i = IGI to 1 do
7: j = ToPOLOGICALNuM(G[i])
8: if G[i] # S[j] then
9: contAct = EXECUTEGDP(DGDP[j], S[i], G[i])

10: (intG, cmd) = PART IT IONACT(cOntAct)

11: nextCmd = EXECUTEDGDP(DGDP, S, intG, f alse)
12: if nextCmd = success then
13: return cmd

14: else
15: return nextCmd
16: return success

GDPs are ordered in the topological order of the corresponding composed automata. The

second argument, S, is a vector of current states also ordered in the topological order.

G, a vector of subgoals ordered in the topological order, represents the goal. A goal may

be expressed as a full assignment to the state variables of the CA, or even as a partial

assignment to the state variables. Thus, the size of the goal vector |G| may be less than

the size of the current state vector |SI, i.e., the number of SCCs in the TDG of CA. As

EXECUTEDGDP is a recursive algorithm, the argument firstCall is used to distinguish the

initial call from the recursive calls. If firstCall is true, that implies that EXECUTEDGDP

is being called for the first time.

The first step in EXECUTEDGDP is to check if the goal is achievable (lines 2-5). If any

one of the subgoals is unachievable, it is unnecessary to achieve the remaining subgoals,

since even a single unachieved subgoal still implies failure to achieve the goal. For ex-

ample, consider the simplified telecommunication system. If the desired goal is to turn

on the Bus Controller, Transmitter #1, and Amplifier #1, but the amplifier is currently

in a nonrecoverable failure state, there is no point in turning on the Bus Controller and

Transmitter #1.

Thus, in lines 2-5, each subgoal is checked to ensure that a plan exists in the DGDP

6.2 Algorithm EXECUTEDGDP 83

that can achieve all subgoals. If any one of the subgoals are not achievable, failure is

returned by EXECUTEDGDP (line 5). In more detail, line 3 calls TOPOLOGICALNUM to deter-

mine the topological number associated with the subgoal G[i]. Though this algorithm is

not defined, it is a matter of looking up a table that maps the OBDD variables used in

G[i] to the topological number associated with the corresponding composed automaton.

Once the corresponding topological number j is determined, line 4 checks to see if the

corresponding GDP, DGDP[j], includes a rule that can achieve subgoal G[i] from the

current state S[j]. If any of the subgoals are determined unachievable, line 5 returns

failure. Note that this check is done only once (line 1), because a goal is achievable if

and only if all subgoals are achievable. All intermediate subgoals are guaranteed to be

achievable, since the DGDP was computed so that all intermediate subgoals are not only

reachable, but reversibly reachable.

Once all subgoals are determined achievable, the next step is to compute the necessary

action that achieves the goal (lines 6-16). Each subgoal in G is achieved in the inverse

topological order (line 6), as required by subgoal serializability discussed in Section 5.1

(page 66). Once again, line 7 determines the topological number associated with the

subgoal G[i]. For each subgoal, line 8 checks to see if the subgoal has already been

achieved, i.e., the subgoal state is the same as the current state of the composed automata

associated with the subgoal. If all subgoals have been achieved, success is returned in

line 16. However, when the first unachieved subgoal is found, the appropriate control

action is computed by simply calling EXECUTEGDP with the parameters DGDP[j], S[j],

and G[i]. DGDP[j] is the GDP associated with the subgoal G[i]. S[j] is the current

state of the composed automaton associated with G[i]. For more detail on EXECUTEGDP,

see Section 4.2 (page 57).

Once EXECUTEGDP returns the control action contAct (line 9), it is partitioned into a

pair (intG, cmd), where intG is a vector of intermediate subgoals in the topological order

and cmd is the command that must be issued after achieving the intermediate subgoals

(line 10). PARTITIONACT computes this pair. Now, the set of intermediate subgoals intG

must be achieved before achieving subgoal G[i]. Line 11 calls EXECUTEDGDP with intG

84 DGDP EXECUTION

instead of G. Also, false flag is passed on to identify that this is a recursive call. Since all

intermediate subgoals are guaranteed achievable, the only possible values for nextCmd

are either a command or success. Line 12 checks to see which value has been returned,

and if the value is success, i.e., all intermediate subgoals have been achieved, then cmd

is finally returned (line 13). However, if the value of nextCmd is not success, it must

be a command that achieves one of the intermediate subgoals in intG. This command is

returned instead of cmd (line 15), since the intermediate subgoals must be achieved first.

6.3 DGDP Execution Time

The execution algorithm consists of two major iterative loops, lines 1-5 and lines 6-

15. The number of iterations performed by each loop is n, where n is the number of

subgoals. Note that the maximum size of subgoals is equivalent to the number of SCCs

computed during CA decomposition; and the maximum number of SCCs for any given

CA = (A, H, E) is equivalent to the number of concurrent automata, i.e. n = JAl. Then,

the first loop iterates at most n times. Also, this first loop is never iterated in the

recursive calls to EXECUTEDGDP.

As for the second loop, there are two possibilities: either no action is necessary and

success is returned, or a subgoal must be achieved. In the first case, the loop will be

iterated exactly n times. In the second case, EXECUTEDGDP is recursively called, in which

case the maximum number of iterations on the second loop is n. For example, assume

that m-th subgoal needs to be achieved. This means that the second loop was iterated m

times to find the m-th subgoal. At the same time, the composed automaton associated

with this subgoal can have at most (n-m) ancestors, or equivalently (n -m) intermediate

subgoals. Continuing on with this process results in at most n iterations for the second

loop.

With all polynomial operations within the loops, the execution time of a single com-

mand is 0(n), where n is the number of components in the system. Thus, if a plan exists

for a problem, DGDP will guarantee to issue a command that progresses the system

toward the goal in 0(n) time.

6.4 DGDP Optimality 85

AB CA -- > B C

(a) (b)

(c)

Figure 6-4: Three possible configurations of the transition dependency graph: (a) inde-
pendent, (b) serial, and (c) branched.

6.4 DGDP Optimality

If an optimal plan is defined as the plan with the least number of actions required to

achieve the goal, a GDP of a CA is guaranteed to be optimal. A DGDP, however, does not

guarantee optimality. While each GDP in a DGDP is optimal, depending on the ordering

of the subgoal serialization, a DGDP may or may not be optimal. Consider the three

possible configurations of CA TDGs shown in Figure 6-4. In the case of the configuration

shown in Figure 6-4(a), the ordering is irrelevant since none of the components, A, B, nor

C, are dependent on one another. Thus, the number of actions required to manipulate

the components will be independent of the ordering of the components. As such, a DGDP

will also be optimal. Next, consider the serial configuration shown in Figure 6-4(b). In

this case, due to the serial dependency among components, only one serialization ordering

is possible. Thus, the ordering used in a DGDP is also guaranteed to be the optimal one.

In the branched TDG configuration shown in Figure 6-4(c), the Switch serves as a

mechanism that routes commands from A to either B or C. Thus, B can be turned on or

off by A, only if the Switch connects the path from A to B. Similarly, C can be turned

on or off, only if the Switch connects the path from A to C. For this problem, there are

two possible subgoal serialization orderings: (B, C, Switch, A) and (C, B, Switch, A).

Now, assume that both B and C are off and the desired goal is to turn both of them

86 DGDP EXECUTION

on. Using the ordering (B, C, Switch, A), the following achieves the goal: (1) turn on

B, (2) Switch to C path, and (3) turn on C. However, if the ordering (C, B, Switch, A)

is used, the plan takes one additional step to achieve the goal: (1) Switch to C path (2)

turn on C (3) Switch to B path and (4) turn on B. Note that the Switch was positioned in

the C path as a side-effect of turning C on. This is a result of the two components B and

C competing for the same resource (i.e., the Switch). However, if the two components

were sharing a resource instead of competing for a resource, both orderings would be

equally optimal. In summary, a DGDP can be suboptimal if there are branches in the

component graph of a TDG, and the sibling components compete for a resource.

Chapter 7

Results

In this chapter, the implementation and some empirical results on relevant examples are

discussed.

7.1 Implementation

The reactive planner was implemented in C++ using an OBDD package called BuDDy

(Release 2.0), developed by Jorn Lind-Nielsen of the IT-University of Copenhagen [25].

The BuDDy package provides a C++ library that defines the OBDD data structure

and provides operators for manipulating OBDDs. As described previously, many of

the concepts underlying the decomposed symbolic approach to reactive planning were

inspired by the Burton reactive planner [31]. Likewise, the implementation of DGDP

was inspired by the implementation of Burton as well.

Many OBDD packages have been developed and their relative performances have

been compared [32]. The BuDDy package was chosen for its user-friendliness, simplicity,

and C++ interface. The performance of the OBDD package was not an important

consideration.

Along with the BuDDy package, Lind-Nielsen provides documentation describing all

available OBDD operators [25]. Some of the commonly used OBDD operators are listed

in Table 7.1.

While the algorithms were implemented with the Model-based Executive (see Section

1.1 16) in mind, the interface necessary to plug the new reactive planner into the Model-

based Executive has yet to be implemented. Once the interface has been implemented,

the new reactive planner should operate within the Titan Model-based Executive [29], in

87

88 RESULTS

Table 7.1: BuDDy Functions for OBDD Operators
OBDD Operator Corresponding BuDDy Function

,IA bdd..not (A, B)

AAB bdd-and(A, B)

AVB bdd-or(A, B)

A => B bdd-imp (A, B)

3A.B bdd-exist (A, B)

a manner similar to the Burton reactive planner.

7.2 Empirical Results

A goal-directed plan for a system is computed by composing all concurrent automata of

a system into a single composed automaton and then by mapping this automaton to a

plan. A difficulty with this encoding is that the size of the plan is exponential in the

number of system components being controlled.

The decomposed symbolic approach to reactive planning offers a solution to com-

pactly encoding this plan. A DGDP of a system is computed by decomposing the system

into sets of strongly connected components (SCCs), and by using a symbolic encod-

ing to compactly represent the plan corresponding to the composed automaton of each

SCC. The compactness of this encoding was proven analytically in Section 5.2 (page 71).

This chapter reinforces this point empirically, by comparing the size of a GDP with its

corresponding DGDP, for problems with varying state space sizes.

7.2.1 Case Scenarios

A GDP and its corresponding DGDP was computed for six different systems, which vary

in the size of the system's state space. These cases were constructed by modifying the

number of components within the simplified telecommunication system example (Section

2.3).

7.2 Empirical Results 89

Case 1:

Starting with the simplest case, the first example consists of only one component, Am-

plifier #1. To generate this case, all transition conditions on the Bus Controller and

Transmitter #1 were removed, thus assuming the amplifier's transitions do not depend

on any other components.

* 1 Amplifier

Case 2:

The second case adds Transmitter #1 to the first case. Since the Bus Controller is not

part of the system, the transitions of both the amplifier and the transmitter were assumed

to be independent of the Bus Controller's state.

* 1 Transmitter

* 1 Amplifier

Case 3:

The third case adds the Bus Controller to the second case. In this system none of the

transition conditions were modified.

* 1 Bus Controller

* 1 Transmitter

* 1 Amplifier

Case 4:

This case is comprised of two transmitter and amplifier pairs, along with the Bus Con-

troller.

* 1 Bus Controller

* 2 Transmitters

* 2 Amplifiers

90 RESULTS

Case 5:

This case is the original simplified telecommunication system, described in Section 2.3.

The simplified telecommunication system includes a Bus Controller, two transmitter/amplifier

pairs, and two antennas, as listed below:

* 1 Bus Controller

* 2 Transmitters

* 2 Amplifiers

* 2 Antennas

Case 6:

Case 6 is the largest example tested. This system includes all relevant components

within the MESSENGER spacecraft's telecommunication system. The only components

missing are two diplexers and four antennas. They were excluded since they are all

passive devices, that is, none of them can be commanded on or off.

* 1 Bus Controller

* 2 Transmitters

* 2 Amplifiers

* 2 Antennas

* 2 Receivers

* 6 Switches

7.2.2 Experimental Results

Table 7.2 lists the experimental results for each of the six cases. The size of the state

space is specified for each case in the second column. The third and fourth columns list

7.2 Empirical Results 91

Table 7.2: Plan Size Comparison
Number of States GDPt Burton$ DGDPt

Case 1: 3 9 9 9

Case 2: 6 37 36 37

Case 3: 12 63 40 48

Case 4: 72 237 76 93

Case 5: 288 241 84 97

Case 6: 18432 384 116 145

tThe size of a plan is the number of nodes in its OBDD representation.
$Burton indicates the use of only the decomposition method. The size of the

plan is the size of the array necessary to represent the plan.

the sizes of the computed GDPs and DGDPs. The sizes of the GDPs and DGDPs are

measured in terms of the number of nodes that appear in their OBDD encoding. For

cases 1 through 5, the sizes of the GDP and the DGDP as a function of state space size

is plotted in Figure 7-1. The sixth case was omitted since its number of states is too

large compared to the state space size of the other cases.

Note that neither the GDP size nor the DGDP size grows exponentially with the

number of states, as indicated by the trend shown in Figure 7-1. The trend for DGDP

size growth was as expected from earlier analytical analysis. However, the trend for

GDP size growth is less than expected by the analytical analysis. Nonetheless, this is

not surprising given that OBDD encodings are known to be very compact.

According to Table 7.2, what is even more striking is that a goal-directed plan can

be compactly represented without the use of the OBDD encoding. The data seems to

suggest that the symbolic encoding is unnecessary, and that a plan can be compactly

represented using only the decomposition method. However, this is only true if the num-

ber of interdependent components is minimal, as is the case for the telecommunication

system (i.e., two interdependent components). Assume a total of 15 components as is in

the sixth case, but all 15 components are interdependent. Then, without the symbolic

encoding, the size of the plan will be in the order of 180002. On the other hand, if the

symbolic encoding is used, the size of the plan is 384. In this case, the symbolic approach

92 RESULTS

Plan Size vs. Number of States

0

z4

300

250

200

150

100

50

0
0 50 100 150

Number of States

200 250 300

Figure 7-1: A plot of GDP and DGDP size versus number of states.

is desired over the decomposition method. Thus, DGDP combines the benefits of both

the decomposition and symbolic approaches to provide a compact representation in all

cases.

Chapter 8

Conclusion

The decomposed symbolic approach to reactive planning presented in this thesis is novel

in three ways. First, it unifies two complementary approaches: transition-based decom-

position and symbolic encoding. When transition-based decomposition is used to solve

a problem, the complexity of the problem becomes linear in the size of the SCCs instead

of being exponential in the size of CA. As long as the size of the SCCs remain relatively

small, the problem is guaranteed to be tractable. However, even if the size of the SCC

is large, the OBDD representation of individual GDPs generally will be very compact

as was validated empirically. Hence the decomposition-based and symbolic approaches

work strongly together to tame state space explosion.

Second, the new approach generalizes the "divide-and-conquer" approach, introduced

by the Burton reactive planner, from systems restricted to acyclic interdependencies to

general systems of interdependent components.

Third, the new approach generalizes OBDD plan encodings from universal plans,

which conditions on only the initial states, to goal-directed plans that are also conditioned

on all possible goal states, thus enabling a quick response to rapidly changing goals.

8.1 Implication on Space Missions

The significance and the necessity of a new space technology may be defined by its

potential to improve mission robustness, enable new missions, and reduce mission costs.

The reactive planner along with the remaining modules that comprise the model-based

executive is an emerging space technology that can revolutionize space exploration in

three respects:

93

94 CONCLUSION

First, a model-based executive can improve mission robustness by enabling an imme-

diate response to unexpected failures. Without autonomy, valuable science time can be

lost due to spacecraft safing. Furthermore, delayed or unreliable communication could

inhibit ground operators from promptly reacting to a time-critical hazard, such as a

propulsion subsystem fault occurring during orbital insertion.

Second, a Model-based Executive can enable ambitious mission scenarios that would

otherwise be infeasible due to long communication delays or uncertainty in the space-

craft's operational environment. An example of such a mission is the Europa Hydrobot

mission, under study by NASA Jet Propulsion Laboratory. If an ocean is discovered

under the icy surface of Europa, submarine robotic explorers can be deployed to explore

the dynamic and hazardous environment with very limited Earth communication.

Finally, a Model-based Executive can also lower mission costs by reducing ground

operation staff and the communication bandwidth necessary to carry out a mission.

Operations cost reduction will become increasingly significant for long-duration missions

and multi-spacecraft constellations, such as the Terrestrial Planet Finder mission.

8.2 Future Work

The first extension to the work presented in this thesis will be the automated random

CA generator. This addition should help better quantify the benefits of the DGDP,

identifying the limitations of DGDPs as well as its strengths.

There are also a couple of interesting research topics associated with the optimality

of a DGDP. First, as discussed in Section 6.4 (see page 85), in one case, in which DGDPs

are known to be less than optimal. In such a case, a simple local search algorithm may

be applied to determine the optimal ordering. Also, the definition of optimality can be

modified to a minimization of some arbitrary cost function. For example, the transitions

of the concurrent automata can be augmented to be probabilistic, as in the case of

Concurrent Constraint Automata [30]. This is in essence, a Markov Decision Process

(MDP) problem. While the OBDDs are inadequate for representing MDPs, a variant of

the OBDDs called Algebraic Decision Diagrams (ADD) [3] have been successfully applied

8.2 Future Work 95

to MDP problems [19]. Similarly, a DGDP could be adapted to solve an MDP problem

encoded in ADDs.

Appendix A

Binary Decision Diagram

Due to the compactness of the Binary Decision Diagram (BDD) [6, 7] representation and

the low time complexity of BDD manipulation, BDDs have been popular in the model-

checking community [8, 32]. In recent years, BDDs have become popular in the planning

community as well [11, 13, 12, 22]. The purpose of this appendix is to introduce the

readers to BDDs. This theoretical development is adapted from [6, 7, 2]. The examples

used in this appendix were borrowed from [2].

A.1 Ordered Binary Decision Diagram

A BDD is a directed acyclic graph representation of a Boolean function. A Boolean

function is composed of Boolean variables and operators. Boolean variables may take on

a value of either 0 or 1. Boolean operators include negation -I, conjunction A, disjunction

V, implication =>, and equivalence M. Equation A.1 is an example of a Boolean function.

(X1 - x 2)A (X3 4*x 4) (A.1)

In a BDD, nonterminal vertices represent the Boolean variables and terminal vertices

represent the possible values of the Boolean function, 0 and 1. When variables are

ordered in a predetermined sequence, the representation is called Ordered Binary Decision

Diagram (OBDD). This ordering is important since it guarantees canonicity of BDDs.

The first of the ordered variables corresponds to the root vertex of the OBDD. To generate

the OBDD, the Shannon expansion is recursively applied to the Boolean function starting

from the root vertex until the terminal vertices are reached. The Shannon expansion of

97

98 BINARY DECISION DIAGRAM

the Boolean function f (x 1, x2 , ... Xn) is given by:

f = (-,xi A f|,_=) V (xi A fs=1) (A.2)

where fx,_. denotes the Boolean function f for which the value of the variable xi is

restricted to the value a. For example, consider the Boolean function f (x1, x2, X3, x4)

given in Equation A.1 with the ordering sequence of x1 -< x 2 -< x3 -< x4 . Applying

the Shannon expansion to the function according to its ordering results in the following

recursive calculations:

1. f = (-x 1 A f _1=0) V (xi A f| 1=,1)

2. f = AX2^ f 1 =0,o2=0 V X2 A

f |X1=1 = IX 2 A fI 1=1, 2=0 V X2 A

3. f| 1=0, 2 = ,X 3 ^ fA ,o=-oX-o

f IXi=,X_1= ,X 3 A f|X=oX2=,X 3=

f| 1=1,X = ,_x3 A f|,X-o0-o

f IX1=1,21 = ,X 3 ^ fAX1=1,X2=1,X2=1

f X=O,X=1

f |X 1,X2= 1

V x3 ^ fA ,X2=,X_1

V x3 fl -oX-iX=

V x3 A fIX|=1-X2=oX31

V X3 A f|21=1,X2=1,X3=1

4.

The time required to generate an OBDD is exponential due to the recursiveness of

Shannon expansion. Figure A-1 shows the graphical OBDD representation of Equation

A.1. Dashed lines represent low branches and the solid lines represent high branches,

i.e., low (xi) corresponds to the branch for which xi = 0 and high (xi) corresponds to the

branch for which xi = 1.

A.2 Reduced Ordered Binary Decision Diagram

Although the size of OBDD, as shown in Figure A-1, increases exponentially with the

number of variables (bounded to 2n+1 vertices for a function with n variables), this size

can be further reduced. OBDDs are reduced by removing duplicate terminals, dupli-

cate nonterminals, and redundant tests. This process is called the Reduce operation.

A.2 Reduced Ordered Binary Decision Diagram

Figure A-1: OBDD of (x 1 # x2) A (X3 < x4) with ordering sequence x1 -< x 2 -< x 3 -< x 4.
Dashed lines represent the low branches and the solid lines represent high branches, i.e.,
the low (xi) corresponds to the branch for which xi = 0 and high (xi) corresponds to the
branch for which xi = 1.

Duplicate terminals are the terminal vertices whose values are identical. For duplicate

terminals, all vertices directed to the duplicate terminals are redirected to a single ter-

minal and the rest of the duplicating terminals are removed. Figure A-2(a) illustrates

the removal of duplicate terminals. Duplicate nonterminals are the vertices for which

their corresponding variables, lows, and highs are identical. Formally, vertex v and

v' are duplicate terminals if and only if v and v' correspond to the identical variables,

low (v) = low (v') , and high (v) = high (v'). For duplicate nonterminals, all vertices

directed to the duplicate nonterminals are redirected to a single nonterminal and the

rest of the duplicating nonterminals are removed. Figure A-2(b) illustrates the removal

of duplicate nonterminals. Redundant tests are the vertices whose lows and highs are

directed to the same single vertex, low (v) = high (v). For redundant tests, all vertices

directed to the redundant test vertex v are redirected to the vertex that corresponds to

low (v) and the redundant test vertex is removed. Figure A-2(c) illustrates the removal

of a redundant test.

Figure A-3 illustrates the reduced OBDD (ROBDD) of Equation A.1 along with

the steps taken to generate the ROBDD from the OBDD. This reducing process can

99

100 BINARY DECISION DIAGRAM

(a) (b) x

o i o 1

Figure A-2: Three BDD reduction methods: (a) removing duplicate terminals, (b) re-
moving duplicate nonterminals, and (c) removing redundant tests.

be integrated into the OBDD building process. The run time of reducing is minimized

through dynamic programming, as follows. Each time a new vertex is visited, its variable

name and low and high vertices (children) are stored in a hash table. When another

node with the same variable name and low and high vertices is encountered, the values

in the hash table are used instead of recursing through the children of the new node.

Since the run time of searching through the hash table is constant, the time complexity

of reducing is 0 (IGI) where IGI is the number of vertices in OBDD graph G. This not

only guarantees that the run time of reducing an OBDD is linear, but also reduces the

run time of building the OBDD by limiting the number of necessary recursions. As

reduction of OBDDs is an essential operation, in general, all OBDDs used in this thesis

are assumed to be ROBDDs. The reducibility of an OBDD, however, depends on the

ordering of the variables. If the ordering of the same Boolean function in Equation A.1

changes to x1 -< x 3 -< x2 -< x4 , the size of the ROBDD becomes considerably larger

compared to the ROBDD with variable ordering x1 -< x 2 -< X3 -< x 4 .

The reducibility dependency on ordering is illustrated in Figure A-4. Determination of

the optimal ordering that minimizes the size of the ROBDD is a coNP-complete problem.

Fortunately, ordering the dependent variable near each other is a good heuristic for

reducing OBDD [22]. Encoding a Boolean function with n variables as an ROBDD assures

the upper bound on the size of the graph of [2"n + 2], superior to classical representations

such as truth tables which have a lower bound of [2"J.

A.2 Reduced Ordered Binary Decision Diagram 101

£3 3 X3 X

£, 4 £44 £4 X 4

!0

1 - 1 O 1

(d) C(c)

£3

£4 £4 £4 £4

0 1 0 1

Figure A-3: Reduction steps for ((x 1 4-* x2) A (X3 < x4)) with ordering sequence of
x1 -< x 2 -< X3 -< x4. (a) OBDD of ((x 1 # x2) A (X3 # x4)) contains duplicate termi-
nals 0 and 1. (b) There are two sets of duplicate nonterminals with variable x4. (c)
Vertices that correspond to the variable x3 are duplicating nonterminals. (d) ROBDD of
((x 1 ' x 2) A (x 3 # x 4 -))

(a) xi (b)

£2 £2 £3 £3

£3 £3 £2 2 £3

£4 £4 £4 £4

0 1 0 1

Figure A-4: ROBDD for ((x1 4 x 2) A (X3 4 x4)) with two different ordering sequences:
(a) x 1 -< x2 -< X3 -< x 4 (b) x1 -< X3 < X2 -< X 4

102 BINA RY DECISION DIAGR AM

(a) X, (b)

X3 X3

X 4 X4
'T4 X

0 1 0 1

Figure A-5: Example of the Restrict operation. Restricting X2 = 1 on Boolean function

f = (X1 <-* X2) A (X3 4 x 4) (a) results in f I(b).

A.3 OBDD Operators

One of the major operations on OBDDs, Reduce, has been already covered. In this sec-

tion, the additional operations Restrict, Compose, Apply, and existential and universal

quantifications are briefly introduced. While more operations are available to OBDDs,

these three operations form the basis for OBDD manipulation.

A.3.1 Restrict

The Restrict operation solves for f lx=a It generates the OBDD of a Boolean function

f for which the value of the variable x is restricted to the value a. This simply involves

finding all vertices that point to the vertex of xi and redirecting them to the vertex

to which xi = a points. For example, consider the f represented by Figure A-5(a).

Restricting the variable x2 to 1, or f , results in the OBDD illustrated in Figure

A-5(b). The time complexity of Restrict is 0 (1G) where IGI is the number of vertices

in OBDD graph G.

A.3 BDD Operators 103

A.3.2 Apply

The Apply operation allows the evaluation of a Boolean operator on two OBDDs. This

operation is carried out by applying the distributive property of Shannon expansion:

fi <op> f2 = [,zi A (fil o <op> f2|x4=o)] V

[zi A (fls 1 <op> f2|xj=1)]

where <op> is an arbitrary Boolean operator of two Boolean functions fi and f2. This

operation can be optimized by applying dynamic programming, similar to the Reduce

operation. For two OBDD graphs G1 and G2 that correspond to two Boolean functions

fi and f2 respectively, both the time complexity and size are 0 (1G, I -|I) where IGil
is the number of vertices in the OBDD graph G. The Apply operation forms the basis

for most types of BDD manipulations. This operation not only applies to logics in which

satisfiability or implication can be tested, but also to problems of sets, relations, and

others that can be solved using various combinations of Boolean operators. For more

details see [7].

A.3.3 Compose

The idea of the Compose operation is similar to that of the Restrict operation; however,

instead of restricting a variable to a value, a variable is restricted to another Boolean

function. The composition filjX,-h:

fifh= (-,f2 A f'I.=O) V (f2 A fix,_1) (A.4)

By cleverly applying the Restrict and Apply operations, the time complexity of Compose

can be bound to 0 (1G112 1G2), where OBDD graphs G1 and G2 correspond to Boolean

functions fi and f2, respectively, and IGil is the number of vertices in the OBDD graph

Gi. This operation is important for a function fi that may contain multiple occurrences

of some subfunction f2.

104 BINARY DECISION DIAGRAM

Table A. 1: Worst Case Time Complexity of OBDD Operations [6].

Operations Description Time Complexity

Reduce Reduce OBDD to the canonical form by re- 0 (|G|)
moving duplicate terminals, duplicate nonter-
minals, and redundant tests.

Restrict flx.-a O(|GI)

Apply fi <op> f2 O(IGi 2|)

Compose f1I Of2 (IG1 |
2. G 21)

A.3.4 Quantification

Both the existential, 1, and the universal, V, quantifications can be implemented using

Restrict and Apply operators, where:

3X.f = (fULO) V (fU) (A.5)

and

Vx.f = (f|= 0) A (f =1) (A.6)

The time complexity for both the existential and the universal quantifications is 0 (IG| 2),

where IGI is the number of vertices in the OBDD graph G that corresponds to the Boolean

function f.

A.4 Summary

The advantage of using the OBDD representation is that it is compact and the time

complexity of BDD manipulations is generally low. Table A. 1 lists the worst case time

complexity of most widely used operations. In this table, G represents an OBDD graph

with IGI vertices. It should be noted that all of the operations are linear or polynomial.

This appendix has introduced OBDDs and provided some intuition on building and

manipulating them. More detailed descriptions and algorithms for generating and ma-

nipulating OBDDs can be found in [6, 7].

Bibliography

[1] NASA Discovery Mission MESSENGER Preliminary Design Review. PDR Presen-

tation, May 22-24 2001.

[2] H. R. Andersen. An Introduction to Binary Decision Diagrams. Lecture Note for

49285 Advanced Algorithms E97, October 1997.

[3] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Machi, A. Pardo, and

F. Somenzi. Algebraic Decision Diagrams and Their Application. In Proceedings

of the International Conference on Computer-Aided Design, pages 188-191, Santa

Clara, CA, November 1993.

[4] G. Berry and G. Gonthier. The Synchronous Programming Language ESTEREL:

Design, Semantics, Implementation. Science of Computer Programming, 19(2):87-

152, 1992.

[5] A. Blum and M. Furst. Fast Planning Through Planning Graph Analysis. In Pro-

ceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI

95), volume 2, pages 1636-1642, Montreal, Canada, August 1995.

[6] R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE

Transactions on Computers, C-35(8):677-691, August 1986.

[7] R. E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-Decision Dia-

grams. ACM Computing Surveys, 24(3):293-318, July 1992.

[8] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang:. Symbolic

Model Checking: 1020 States and Beyond. Information and Computation, 98(2):142-

170, June 1992.

105

106 BIBLIOGRAPHY

[9] T. Bylander. Complexity Results for Planning. In Proceedings of the Twlefth In-

ternational Joint Conference on Artificial Intelligence (IJCAI-91), volume 1, pages

274-279, Sydney, Australia, August 24-30 1991.

[10] J. Casani, C. Whetsler, A. Albee, S. Battel, R. Brace, G. Burdick, P. Burr, D. Dip-

poey, J. Lavell, C. Leising, D. MacPherson, W. Menard, R. Rose, R. Sackheim, and

A. Schallenmuller. Report on the Loss of the Mars Polar Lander and Deep Space

2 Missions. Technical Report JPL D-18709, Jet Propulsion Laboratory, California

Institute of Technology, March 22 2000.

[11] A. Cimatti, F. Giunchiglia, E. Giunchiglia, and P. Traverso. Planning via Model

Checking: A Decision Procedure for AR?. In Proceedings of the Fourth European

Conference on Planning (ECP'97), Toulouse, France, September 24-26 1997.

[12] A. Cimatti, M. Roveri, and P. Traverso. Automatic OBDD-based Generation of

Universal Plans in Non-Deterministic Domains. In Prodeedings of the Fifteenth

National Conference on Artificial Intelligence (AAAI'98), Madison, Wisconsin, July

26-30 1998.

[13] A. Cimatti, M. Roveri, and P. Traverso. Strong Planning in Non-Deterministic

Domains via Model Checking. In Proceedings of the Fourth International Conference

on Artifcial Intelligence Planning Systems (AIPS'98), Pittsburgh, Pennsylvania,

June 7-10 1998.

[14] E. M. Clarke, 0. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-

rithms. The MIT Press, Cambridge, MA, 2nd edition, 2001.

[16] R. Dechter and J. Pearl. Tree Clustering for Constraint Networks. Artificial In-

teligence, 38(3):353-366, April 1989.

[17] E. C. Freuder. A Sufficient Condition for Backtrack-Bounded Search. Journal of the

ACM (JA CM), 32(4):755-761, October 1985.

BIBLIOGRAPHY 107

[18] M. L. Ginsberg. Universal Planning: An (Almost) Universally Bad Idea. AI Maga-

zine, 10(4):40-44, 1989.

[19] J. H., R. St-Aubin, A. Hu, and C. Boutilier. SPUDD: Stochastic Planning using

Decision Diagrams. In Proceedings of the Fifteenth Conference on Uncertainty in

Artificial Intelligence (UAI 99), pages 279-288, Stockholm, Sweden, 1999.

[20] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The Synchronous Data-

flow Programming Language LUSTRE. Proceedings of the IEEE, 79(9):1305-1320,

September 1991.

[21] R. M. Jensen. OBDD-based Universal Planning in Multi-Agent, Non-Deterministic

Domains. Master's thesis, Technical University of Denmark, June 7 1999.

[22] R. M. Jensen and M. M. Veloso. OBDD-based Universal Planning: Specifying and

Solving Planning Problems for Synchronized Agents in Non-Deterministic Domains.

Journal of Artificial Intelligence Research, 13:189-226, 2000.

[23] R. E. Korf. Planning as Search: A Quantitative Approach. Artificial Intelligence,

33(1):65-68, September 1987.

[24] N. G. Leveson. Safeware: System Safety and Computers. Addison-Wesley Publishing

Company, Inc., Reading, MA, 1995. ISBN-0-201-11972-2.

[25] J. Lind-Nielsen. BuDDy: Binary Decision Diagram Package Release 2.0, May 2001.

http://www.it-c.dk/research/buddy/.

[26] N. Muscettola, P. P. Nayak, B. Pell, and B. C. Williams. Remote Agent: To Boldly

Go Where No AI System Has Gone Before. Artificial Intelligence, 103(1-2):5-47,

August 1998.

[27] B. Pell, D. E. Bernard, S. A. Chien, E. Gat, N. Muscettola, P. P. Nayak, M. D.

Wagner, and B. C. Williams. A Remote Agent Prototype for Spacecraft Auton-

omy. In Proceedings of the SPIE Conference on Optical Science, Engineering and

Instrumentation, pages 74-90, Marina del Rey, CA, October 1996.

108 BIBLIOGRAPHY

[28] M. J. Schoppers. Universal Plans for Reactive Robots in Unpredictable Environ-

ments. In Proceedings of the Tenth International Joint Conference on Artificial

Intelligence (IJCAI'87), volume 2, pages 1039-1046, Milan, Italy, August 1987.

[29] B. C. Williams, M. D. Ingham, S. H. Chung, and P. H. Elliott. Model-based Program-

ming of Intelligent Embedded Systems and Robotic Space Explorers. In Proceedings

of the IEEE, volume 91 of 1, pages 212-237, January 2003.

[30] B. C. Williams and P. P. Nayak. A Model-based Approach to Reactive Self-

Configuring Systems. In Proceedings of Thirteenth National Conference on Artificial

Intelligence (AAAI'96), Portland, Oregon, August 4-8 1996.

[31] B. C. Williams and P. P. Nayak. A Reactive Planner for a Model-based Executive. In

Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence

(IJCAI'97), Nagoya, Japan, August 23-29 1997.

[32] B. Yang, R. E. Bryant, D. R. O'Hallaron, A. Biere, 0. Coudert, G. Janssen,

R. K. Ranjan, and F. Somenzi. A Performance Study of BDD-Based Model Check-

ing. In Proceedings of the Second Internaitonal Conference on Formal Methods in

Computer-Aided Design (FMCAD'98), pages 255-289, Palo Alto, CA, November

4-6 1998.

