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VIBRATIONS AND INSTABILITIES
OF A DISK GALAXY

WITH MODIFIED GRAVITY

by

STANLEY ARVID ERICKSON, JR.

ABSTRACT

This thesis studies the effect of a modification of the gravi-

tational potential upon the vibrations and instabilities of a thin,

differentially rotating disk subject only to its own gravity. Instead

of the usual potential q = - GM/R at a distance R from a mass

point M, it is assumed here that

= GM/(R 2 + a2)

meaning that gravitational force has been greatly reduced at distances

smaller than the fixed length a. The disturbances examined encom-

pass the entire disk, but are restricted to particle displacements

that are both infinitesimal in amplitude and horizontal in direction.

The approach taken is largely numerical, yet some physical interpreta-

tion is also provided.

After a brief historical introduction and some remarks in de-

fense of the modified gravity in Chapter I, the dynamical equations

for the perturbations of the disk are developed and the specific choice



of equilibrium model is discussed in Chapter II. In Chapter III a

detailed description of the axisymmetric modes of the disk for both

normal gravity and modified gravity is given, stressing the excellent

agreement between the estimates of short wavelength theory and the com-

puted point of stabilization of the disk, the existence and disappear-

ance of discrete modes and the shape of the eigenfunctions. Finally,

in Chapter IV a number of the nonaxisymmetric modes of the disk are

discussed; included among them are open spirals as well as other un-

stable modes which do not become stable with the use of modified

gravity.

June 1974
Massachusetts Institute of Technology
Department of Mathematics
Thesis Supervisor: Professor Alar Toomre



TABLE OF CONTENTS

Page

Chapter I.

Chapter II.

INTRODUCTION . . . . . . . . . . . . . . . .

a) Background . . . . . . . . . . . . . . .
b) Rationale for the Modified Gravity . . .

DYNAMICAL EQUATIONS . . . . . . . . . . . .

a)
b)
c)
d)
e)
f)

Chapter III.

Chapter IV.

Motion of a Single Test Particle . . . .
Motion of a Ring of Test Particles . . .
Disturbance Densities and Forces . . . .
Spline Approximation and Force Integrals
Matrix Equations . . . . . . . . . . . .
Equilibrium Model and Scaling . . . . .

RESULTS OF AXISYMMETRIC CALCULATIONS . . .

a) Results for Normal Gravity (a = 0) . .
i) Predictions . . . . . . . . . . .
ii) Calculations . . . . . . . . . .

b) Results for Modified Gravity (a 0)
i) Predictions for a Sample Case

(a = .15) . . . . . . . . . .
ii) Calculations for the Sample Case

(a = .15) . . . . . . . . . .
iii) Achievement of Stability . . . .
iv) Predictions and Calculations

for a > acrit - . . . . -.
v ) Summary . . . . . . . . . . . .

RESULTS OF NONAXISYMMETRIC CALCULATIONS

6

6
11

18

18
22
33
38
43
47

52

53
54
55
67
68
68

76
82

* . . . 87
* . . . 95

99

Appendix I

Appendix II

Appendix III

Appendix IV

Appendix V

a) General Characteristics of the
Eigenvalue Spectra . . . . . . .

b) The Most Unstable Modes
c) Stable Modes . . . . . . . . . . .
d) Other Unstable Modes . . . . . . .

DISPLACEMENT INTERPOLATION . . . . . .

COMPUTATIONAL METHODS FOR a = 0.0 . .

AXISYMMETRIC SHORT WAVELENGTH THEORY .

CONCLUSIONS FROM A MODEL EQUATION

CONTROL OF ERRORS IN COMPUTATION .

101
103
107
117

119

124

129

147

163

.



ACKNOWLEDGEMENT

First and foremost, I must thank my thesis advisor, Professor

Alar Toomre, for his patient help and guidance in every phase of this

work. Without his forbearance and diligence the thesis would never

have been completed.

The support I received at my place of employment, the Naval

Underwater Systems Center, was also crucial to my being able to

continue this work. Especially Dr. John Brady, Louis Bisci and

A.M. Bottoms strongly and persistently encouraged my efforts. NUSC

was also responsible for some of my tuition and salary support during

the work on the thesis.

For their support and assistance I would also like to thank

Professors C.C. Lin and C. Hunter; and A. Kalnajs for his comments

on an early draft of the thesis.

I am also greatly indebted to the typists who prepared the

drafts of my work, especially Mersina Christopher, and most of all,

Fay Wark who typed the final manuscript under extreme deadline pres-

sure. Also the assistance of the computer personnel at NUSC and

M.I.T. is appreciated.

Lastly, I must thank my wife for tolerating my absence for

long periods and for never failing to encourage me; also several

friends whose moral support was invaluable at certain periods.

-5-



I. INTRODUCTION

During the past decade, the main preoccupation of theorists

concerned with the dynamics of galaxies has doubtless been the problem

of the spiral structures present in so many of the highly flattened

systems. Owing largely to the pioneering work of Lindblad, and later

of Lin and his associates, it is widely believed now that gravitation

is the prime cause of the spirals. Gas and magnetic forces surely

also affect these structures, but their role seems largely confined to

such subordinate processes as interstellar cloud dynamics and the much-

needed formation of young and highly visible stars.

(a) Background

Speculations as to the dynamical causes of the spirals are

almost as old as the discovery by Lord Rosse in 1845 of the "whirlpool"

nature of Messier 51. Among the more notable suggestions involving

gravitational dynamics are those made already by Alexander (1852) of

various clumpings and shearing of nebular matter, by Chamberlin (1901)

of tidal forces from a neighboring galaxy, and by Jeans (1929 and

earlier) of the shedding of material essentially from unstable Maclaurin

spheroids.
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These conjectures were carried much farther by Bertil Lindblad,

whose extensive work in this subject (see especially Lindblad 1927,

1948, 1957, 1961, 1963) spanned nearly four decades. To be sure, there

exists no unified Lindblad theory of spiral structure that one can

point to in retrospect: from early ideas similar to those of Jeans,

Lindblad proceeded through a long and varied series of attempts at

understanding the spiral structures in terms of the motions and oscil-

lations of many separate stars. It was probably such over-emphasis on

individual orbits rather than on truly collective effects that pre-

vented him from producing any satisfactory theory of the spirals. Yet

it was certainly Lindblad who most inspired the modern theoretical

analyses; indeed he also introduced many of the concepts in use today,

and in his last papers he even discussed the idea of density waves.

Even so, the real flurry of theoretical analyses of spiral

structure dates only from the 1960's. The most deservedly well-known

work which began then is that of C.C. Lin and his associates. Lin

and Shu (1964, 1966; Lin 1967, 1971; Shu 1968) greatly developed

Lindblad's idea that at least the most striking spirals are wave

phenomena. Their key contribution to the understanding of such

presumed "quasi-stationary" waves involving entire galactic disks was

a dispersion relation for stellar-dynamic density waves coupled by

self-gravity. Although strictly based only on a short-wavelength

approximation to the Poisson and collisionless Boltzmann equations,

this dispersion relation and its implications were applied with con-



siderable success by Lin, Yuan and Shu (1969), by Shu, Stachnik and

Yost (1971), and by Mathewson, van der Kruit and Brouw (1972) to

interpreting the observed structures of the Milky Way and several

other galaxies.

Certain difficulties with the theory remain, however. Many

of the grand spirals are not tightly wrapped; this obviously strains

the Lin-Shu assumption that all radial wavelengths are short compared

to the scale of the disk. Remarkably, their theory does not even dis-

criminate clearly between leading and trailing spirals. Furthermore,

boundary conditions for the waves at the center and edge, and at any

internal resonances, are hard to supply for such asymptotic analyses.

And perhaps most worrisome is that even spiral waves have a group

velocity and propagate in the radial direction (Toomre 1969) -- tending

to empty a disk of such structures in a few galactic years unless some

source of replenishment exists. Although several sources have been

proposed (cf. Toomre 1969, Lin 1970, Lynden-Bell and Kalnajs 1972),

this portion of the theory remains distressingly unresolved. Thus

there is clearly a need for global, non-WKBJ analyses incorporating

automatically (if perhaps not explicitly) the various transport and

boundary conditions for the instabilities and vibrations of entire

disks. In fact, a number of analyses of this sort have already been

attempted, using widely varying techniques.

The first full-disk studies were performed by Hunter (1963,

1965). He began by constructing a family of cold disk models (no



random stellar motions) based on polynomial representations of the

surface density. Then using techniques that were mostly analytical,

he was able to determine both axisymmetric and non-axisymmetric modes

of vibration for the first member of that family -- namely a Maclaurin

disk rotating as a solid body -- as well as the axisymmetric frequencies

for several other members. Many of the eigenfrequencies proved to be

complex, representing a tendency of the disks to fragment into dense

clumps of matter due to Jeans instability. Later using WKBJ techniques,

Hunter (1969) also uncovered some strongly growing spiral waves of a

"leading" sense in several of these models, but he did not find any of

the trailing waves which seem much preferred by observations.

Some completely numerical studies of cold disks were also

undertaken. Rehm (1965) and Miyamoto (1969), just as Toomre (1964) had

done in an axisymmetric context, divided a disk into thin concentric

rings to estimate its non-axisymmetric modes of oscillation. Both Rehm

and Miyamoto again found numerous spiral instabilities of leading plan-

form, as well as certain others. However, also like Hunter's analyses,

these numerical studies were plagued by the severity of the deduced

gravitational clumping. This made it difficult to sort out any subtler

behavior, and also risky to extrapolate it to actual galaxies. Hence

all the cold-disk studies served mainly to emphasize that rotation

alone cannot stabilize thin model galaxies: a significant amount of

random stellar motion is required as well (cf. Toomre 1964).

To date, Kalnajs (1965, 1970, 1971) has made the most exten-

sive efforts to explore analytically the truly non-local behavior of
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disks with the requisite random motions. His work, which began indepen-

dently of Lin, has at least in principle allowed spiral waves of very

open planform. Even so, the only complete solutions yet obtained by

Kalnajs (1972) have been those for a class of uniformly rotating

Maclaurin-Freeman disks: as it turned out, their most enduring insta-

bility is not spiral at all, but is bar-like, and its suppression

requires a good deal more random motion than the demise of the last

axisymmetric instabilities. Also according to Kalnajs, other model

galaxies involving shear as well as random motions have so far proved

intractable, except via numerical methods requiring severe approxima-

tions. Similar difficulties were encountered by Shu (1968, 1970).

To circumvent such complexity, a totally different approach

to the dynamics of hot disks was followed by Prendergast and Miller

(1968), Hockney and Hohl (1969), Prendergast, Miller and Quirk (1970),

and Hohl (1971). Those authors simulated a hot disk galaxy directly

as a kind of N-body problem. In other words, they followed a large

number of mass points along trajectories confined to a single plane,

allowing each particle to be affected only by the collective gravity.

As expected from the studies already mentioned, these simulated disks

were again found to be unstable when cold or cool, and to become smooth

and stable only when the random motions had increased sufficiently.

Again, nonaxisymmetric instabilities of large spatial extent proved

hardest to stabilize, requiring several times the random velocities

predicted by Toomre's axisymmetric analysis. In some of the experiments,
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these instabilities took the form of trailing spirals which appeared

and dissolved; in other instances they were more bar-like. However,

owing to difficulties in interpreting all the outcomes -- not helped

by the impermanence of the computed spirals -- no thorough understanding

of spiral mechanisms emerged from those studies either.

(b) Rationale for the Modified Gravity

In this thesis we attempt to steer between the two hazards

of the instabilities of cold disks and the complexities of hot ones.

Our strategy will be to simulate the effects of stellar random motions

through the artifice of a greatly reduced gravitational force between

nearby stars. In essence, we seek thereby to avoid the great bother

of having to deal explicitly with random motions, but we do indeed

pretend that it is their diffusive or smearing action which renders

the local gravity much less effective than it would otherwise have

been.

This softening is accomplished here in about the simplest

manner possible: the standard potential -GM/R at a distance R

from a point mass M is just replaced by

- GM / (R2 + a 2 )' (1)

where G remains the familiar gravitational constant but where the

newly-introduced length a represents a finite if gradual close-
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range cut-off distance for the effective gravity. Notice that this

assumed force per unit mass,

FR = - GM R/(R 2 + a2)3/2 (2)

thus attains its maximum magnitude when R = al /2 , and that it

actually vanishes as R + 0. Obviously the force (2) can also be re-

garded as the "horizontal" component of the full force between two

particles differing in "height" by distance a and otherwise separated

by a projected distance R. Hence we will often refer to a simply

as the vertical offset.

As recognized also by Miller (1971), such a modification of

the gravity already promises axisymmetric stability for a disk without

random motions, provided the offset a is chosen sufficiently large.

This promise can best be understood by recalling (cf. Toomre

1964) that any radially sinusoidal wave of (positive) wavenumber k,

in a cold thin disk of local surface density p that is subject only

to standard gravity, would vibrate with a frequency w such that

2 K 2 - 2r G P k. (3)

As indicated by this approximate formula, the net effect of the local

self-gravity represented by the second term is always to reduce the

wave frequency w below the single-particle or "epicyclic" frequency
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K contained in the first term. Obviously for wavenumbers

k > k cri = K
2 (r)

21T G p (r)

the expected w2 is negative, and the wave is unstable.

Using the modified gravity, however, the dispersion relation

becomes

2 = K2- 2 G p k e-ak

Left implicit here is any (generally small) change in the central force

field itself, and hence in K. Much more significant is the exponen-

tial factor in equation (5): it stems from the fact that, as we have

already implied, our new "gravitational" potential associated with

any given sinusoidal density field of short wavelength is equivalent to

the standard potential

' (r,z) = A e-k zI cos kr (6)

evaluated at a fixed height

the disk.

Izi = a above or below the plane of

Since the largest possible value of x e-x is 1/e, the

local force term in equation (5) cannot exceed 27T G p/a e. Hence,

,13-
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r it happens to be true that the given

a > acrit(r;a) -2ff Gvpx(r)
e K2 (r;a)

it is clear that that second term can nowhere overwhelm K2  -- and

then, at least superficially, we seem assured of small-scale axisymmetric

stability everywhere.

To be sure, such easy stabilization of all short axisymmetric

disturbances is by no means unique to our device of the modified

gravity. One simple alternative that has often been contemplated is

to mimic the stellar random motions instead by an isotropic gas pressure:

indeed if such a phoney "gas" disk is imagined somehow to remain very

thin in the z-direction, its axisymmetric dispersion relation becomes

W2 = K2 - 2ff G p k + c2 k2 (8)

(cf. Hunter 1972), where

Clearly

c denotes the local speed of sound.

c > Ccit T G p(r)
c > Ccrit (r)

(9)

then suffices to ensure the same sort of local stability as our

a > acrit.

-14-
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There is, nevertheless, one strong a priori reason for pre-

ferring something like the reduced gravity to the gas pressure: no

upper limit at all exists to the possible frequency w implied by

the gas equation (8) for shorter and shorter wavelengths, whereas our

relation (5) clearly indicates that w + K as k + o. Although

the former, w -* behavior is understandable as a kind of acoustic

limit, it is hardly what one expects for short, radially propagating

waves in an actual disk of stars. On the contrary, the well-known

dispersion relation

2= K2 - 2f G P kFv(x) (10)

of Lin and Shu (1966), (but see also Kalnajs, (1965)), for such stellar

waves does not admit any wave frequencies w in excess of the epi-

cyclic frequency K -- as emphasized especially by the appropriate

label "reduction factor" coined for the function FV(x) by Lin and

Shu. More exactly, that reduction factor (which seems unnecessary to

exhibit here) tends to zero faster than 1/k as k + o, meaning

that very short-wave stellar vibrations have the same limiting frequency

W = K as the waves governed by our modified gravity. Hence, unlike

any gas disks, our models with the faked gravity should at least mimic

the Lindblad resonances expected in disks of stars.

These differences and similarities may also be judged from

Figure 1, which shows the relative frequence w/K plotted as a
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/ Gravity
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Wave Number k/kcrit

Figure 1. This diagram compares the frequency w predicted
for various wavenumbers k by (i) the Lin-Shu formula
for a disk of stars, (ii) a thin gaseous disk, and (iii) our
modified gravity, all in circumstances of marginal stability.
Also shown by broken curve "MG2" is a second modified gravity
relation which fits the Lin-Shu curve more closely; this curve
was generated using a potential { (r,a) - aat(r,a)/aa} where
(r,a) is the usual gravity modification.
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function of the dimensionless wave number k/kcrit, as predicted

from each of the three dispersion relations (5), (8) and (10) in cir-

cumstances that are barely stable. Although these curves for the re-

duced gravity and the Lin-Shu relation are by no means coincident,

they seem close cousins indeed when compared with the gas example for

the larger values of k. Of course, it should be possible to modify

the "gravitational" potential further, so as to create a dispersion

relation which matches the Lin-Shu curve really closely (see Figure 1)

-- but understandably for this initial exploration we have simply opted

to confine all our efforts to disks subject only to the elementary

potential (1).
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II. DYNAMICAL EQUATIONS

Throughout this thesis we will be dealing with infinitesimal

horizontal displacements of particles from their circular equilibrium

orbits in an originally axisymmetric thin disk. The details of our

equilibrium model will come later. What matters at present is simply

that any such disk can be completely specified by its surface density

p(r) given as a function of the radius r -- provided one assumes,

as we do here, that all its mass is strictly confined to the plane

z = 0. Even with our modified gravity, this density then obviously

defines a unique gravitational potential p(r, z; a) and that in

turn dictates that the angular speed Q(r; a) must satisfy

r 02 (r, a) = W~ar l (11

for centrifugal balance; for all values of the vertical offset a,

this function 02 (r, a) is non-negative and thus sensible for any

P(r) that nowhere increases outwards.

(a) Motion Of A Single Test Particle

Before we begin the study of the perturbation of the whole

disk, let us review the characteristic behavior of a massless test

-18-



particle when slightly perturbed from a circular equilibrium orbit. If

we take r and e to be the polar coordinates of the particle

relative to the disk center, any trajectory of the particle through

the disk must be governed by

r - r 62= -r Q2 (r) + fr(rst)

(12)
re+2r = f,(r,e,t)

where dots denote differentiation with respect to time t, and fr

and f0  denote the radial and tangential components of the accelera-

tion caused by an additional applied force.

In this thesis, we will only be dealing with infinitesimal

deviations from exactly circular trajectories, so we immediately linearize

equation (12) in terms of two new variables

= r - ro (13)

- = (e - o - 2t) ro

the radial and tangential displacements of the particle from its undis-

placed position r0, 0 + Ot. To first order in E and r, equa-

tion (12) becomes

2; = -(K2 _ 402 ) C + fr

(14)
n+2 = f

-19-



For good reason we have introduced here K(r), the epicyclic frequency,

which is defined by:

K2 (r) = 4Q2(r) + r d 2(r). (15)

This particular frequency is of special importance because it is the

only frequency at which test particles oscillate around their equilibrium

orbits when perturbed.

As is quickly shown, two of the four characteristic or modal

solutions of the unforced version of equation (14) have zero frequency;

the other two have ±K. Just as with a simple harmonic oscillator,

these latter two solutions differ only in phase and can be written

= c cos(Kt + a)
(16)

-1 -c' sin (Kt + a)

where c and a are constants of integration and c' = 2 c/K.

Equation (16) describes the well-known epicyclic motion of a

test particle. If we watch the particle from a coordinate system rota-

ting with angular speed s , we will see it trace out an ellipse with

its center (the "epicenter") at the unperturbed position of the particle.

In the usual case of Q decreasing with radius, the minor axis of

the ellipse points directly outwards from the center of the disk.

-20-



However, viewed in fixed, non-rotating coordinates, the motion

of the particle is an infinitesimally wavering departure from the equi-

librium orbit. The epicenter does move in the original orbit with con-

stant speed Q, but the test particle itself revolves around the epi-

center, repeatedly crossing the equilibrium trajectory.

Currently, the word "epicycle" is used to describe such motion,

as it is a mild generalization of the ancient Ptolemaic circles upon

circles. Similar motions occur in plasma theory, as a charged particle

in a magnetic field revolves around a "guiding center", which itself

drifts along the magnetic field lines (see, for example, Spitzer (1962)).

To finish off the discussion of the motion of our test particle,

let us note that the other two non-epicyclic solutions of equation (16)

are physically simple. One merely corresponds to a constant change in

longitude:

= 0

(17)
T = c

and the other to a constant rate of change in longitude, accompanied

by a slight change in radius:

= C
(18)

T = c't
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is an infinitesimal constant, and

c = (K 2 - 4Q 2 ) c/2Q.

In the latter mode, note that q can also be written as

n = r d, ct

which implies that the angular speed of the particle is

- 0= (rO ) + c0 ,
0dr

or just the equilibrium angular speed at the new orbital radius,

ro + c.

(b) Motion Of A Ring Of Test Particles

As an intermediate step in the development of the perturbation

equations for the entire disk, let us examine the perturbation of a

ring of many particles, equally spaced along a single equilibrium

orbit. This will elucidate the separate and combined roles of Q and

K and also serve to introduce the notation we shall use. Again let

us discuss only massless particles, which move in the field of the

equilibrium potential without interacting with each other.

Rather than discuss the complicated general motions of the

particles, let us focus our attention on motions periodic in azimuth,

-22-
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specifically, varying sinusoidally as me, where m is an integer.

If we desired we could create kinematic waves of any azimuthal periodi-

city by cleverly arranging the phases of the epicyclic motions of our

ring of particles. Such a contrivance is shown in Figure 2, where the

phases were chosen at t = 0 proportional to cos 20. Here each

epicycle has identical amplitude, and the epicenters lie on the same

equilibrium orbit. At a time t =(ff/2)K- 1, the particles have moved

a quarter turn around their epicycles, and the pattern has rotated

7/2m around the equilibrium orbit. Evidently, this wave has a pattern

speed of K/m in rotating coordinates.

However, since we will soon be dealing with particles of

different angular speeds, it seems more in order to examine the motion

in a fixed coordinate system, rather than one rotating with some parti-

cular Q. Therefore, we need to write equation (16) in Eulerian

variables. Let E'(r, e, t) and n'(r, a, t) be the infinitesimal

displacements from (r, e) of that particle now at (ri, 01) which

we would have found at (r, o) had it continued in its equilibrium

trajectory:

E r1 - r (19)

n = (1 - a) r

Traditionally, the transformation from Lagrangian to Eulerian

variables is handled very compactly by replacing the Lagrangian deriva-
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kt =-r12

Fast kinematic wave with periodicity m = 2
of massless particles. The angular speed is
in fixed coordinates.
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on a ring
a + K/m



tive d/dt, as applied to a single particle, by its equivalent

Eulerian derivative, Dt, which is applied with respect to fixed

coordinates. In general,

Dt = 3/ t+ (V - V)

but our linearization simplifies it to

Dt = 3/ Dt + 3/ ae

in our polar coordinates. Hence, equation (16) becomes

D - 2o Dt ni -(K 2 - 4E2) ' + f't r

(20)

D2 n' + 2Q Dt f

where f' and f' are now expressed in terms of fixed coordinates.
r 6

Fortunately, this equation, and indeed all the dynamical equa-

tions of this thesis, are easier to solve using complex variables as

a shorthand notation. The simple reason for this is that the mth

Fourier components of equation (20), expressed in terms of eime and

e-imO do not mix with each other in any situation, which cannot be

said for components written using sin m e and cos m e. Let us

define the Fourier coefficients of C, n by



= Re {E (t) eme}

(21)

n I = Re {n (t) eimeI

and similarly decompose the forces

= Re f

f'
0

eime I

= Re {f eime, .

In these new variables, equation (20) becomes a set of equations for

the Fourier coefficients:

D2 m - 2n Dt 'mn

Di nm + 2o Dt Em

-( (2 - 402) E m + frm

(23)

f m '

where Dt is now

Dt =t + i m

Since the dynamical equations are linear we can resolve them

in terms of single frequency modes, or eigenmodes, varying with time

as e-ilt. The displacements and forces are expressed as

,26
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= Re( X e me e Wt)

= Re (i Y eime e-iwt)

= Re ( Fr e e-lwt)

= Re (i F0 eime e-iwt)

and we will

efficients

number i

so that Y

later on.

conveniently leav

X, Y, Fr, and

has been include

and F0 will

In terms of these

e implicit the dependence of the four co-

Fe on m and w. The imaginary

d in the expressions for i' and f

be real if w is real, as we will see

new variables, equation (23) turns into

D2 X - i 2o Dt Yt

D Y - i 2 Dt X

is now reduced toand Dt

- _(K2 4Q2 ) X + Fr

F
0

Dt = -iw + i m Q .

Finally, we are ready to deduce the unforced motion of our

ring of test particles. If we set

Fr = F0 0

n

f'
r

f'

(24)

(25)

=0



in equation (25), we quickly arrive at a polynomial for the character-

istic frequencies of the ring:

(W - mQ) 2 ((W - mQ) 2 + K2) = 0 (26)

As we would expect, the solutions are the single particle solutions

with a convective term added:

W = m ±K

(27)
= m Q (twice).

Now the uniqueness of the four eigenmodes becomes more apparent

than in the single particle discussion. If we look at the first eigen-

mode:

= Re ( X exp i {m o - (m 0 + K)t})

(28)
' = Re (iY exp i {m o - (m Q + K)t})

with X arbitrary and Y = 2QX/K, we find the formula for the well

known rotating pattern of particles. As shown in Figure 34, for m = 2,

a ring of equispaced particles is perturbed into an ellipse, (of infini-

tesimal eccentricity), on which particles are bunched on the inner por-

tions and separated on the outer portions. This ellipse rotates without

change of shape with pattern speed



b

a .;

C

xl

d .. .

D2

Figure 3. The four elementary modes of a ring of massless
particles displaced with periodicity m = 2. Pattern speeds
Wp are shown below the diagrams.
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w/MQ = + /M ,

and any observer fixed in space just inside the ring will see it oscil-

late with the frequency w. If we had endowed the particles with a

slight mass, this observer would measure a gravitational force with

frequency w exactly in phase with C'. This force arises from

two causes, the bunching of particles, and the reduction in distance

between the observer and the ring where it bulges outward.

Similarly, the second eigenmode, given by

' = Re( X exp i {m e -(m Q- K)t})
(29)

= Re (iY exp i {m e -(m -K)t})

with again X arbitrary and Y = 2QX/K, can be represented by a

rotating ellipse, (for m = 2), but several differences exist be-

tween it and the first eigenmode. It rotates with a pattern speed

/M = Q - K/m

which may be negative if K exceeds mQ at the ring radius. If

the pattern speed is negative, the ellipse rotates in an inverse or

retrograde direction compared to the rotation of the disk. Also, the

bunching we mentioned before occurs on the portion of the ellipse out-

side the equilibrium orbit, as is quite visible in Figure 3.d. In this



eigenmode our observer would note a lesser gravitational effect than

in the first mode, as the force caused by the bulging of the ring

counteracts that caused by bunching of the particles. If we moved our

observer to just outside the ring, the inverse would occur, and the

second eigenmode would produce more gravitational force at his new

location.

Now let us turn to the ring motion derived from the third

particle eigenmode, in which

('U = 0
(30)

T' = Re (i Y exp i {m a - m Q t})

with Y arbitrary. This consists simply of sinusoidal bunchings

and separations along the equilibrium orbit, as depicted in Figure 3b.

The pattern rotates exactly at orbital speed, so the pattern speed

is merely

W/m =

Finally, we note that the fourth mode, also of frequency mQ,

has a secular rather than purely sinusoidal nature:

= Re (X exp i {m 6 - m Q t})
(31)

n' = Re (Y t exp i {m e - m Q t})
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where X is arbitrary and

= K2 -402 X.
2Q

The particles here oscillate with constantly increasing amplitude in the

tangential direction. The picture of this eigenmode at t = 0 is

shown in Figure 3c for m = 2, and is again an ellipse, but lacks

the bunching of the earlier modes. This ellipse immediately begins to

distort as it rotates. If the motion had finite amplitude instead of

infinitesimal, the particles would eventually pass one another in

longitude and shear the ellipse into a quite complicated figure.

Before leaving this discussion of the motion of a ring of

particles, we want to remark that complex notation is a convenient way

of manipulating the displacements X and Y, as well as Fr

and Fe. To see this we expand, as an example, the displacements of

the first eigenmode, as given in equation (28):

= Re X cos{me - (ma + K)t} - Im X sin {me - (mQ + K)t}

(32)

n = Im Y cos{MO - (mQ + K)t} - Re Y sin {me - (mQ + K)t} .

It is clear from this expansion that the real part of X specifies

the t = 0 radial displacement at 0 = 0, and the imaginary part,

that at 0 = f/2m. These two displacements completely characterize

E' in the first eigenmode. Similarly the real part of Y specifies
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the tangential displacement at e = f/2m and the imaginary, that at

0=0. The force terms Fr and F as well follow this pattern.

Note also that the stable, solely vibratory, eigenmodes, the

first three given here, can be expressed by a choice of phase as

' = c cos (m 6 - t)

n = c' sin (m 0- wt)

with radial and tangential displacements i/2 out of phase. If only

those stable eigenmodes existed, we would have no need for complex co-

efficients, at least in the case of a single ring. However, as we noted

before, an unstable eigenmode, such as the fourth, breaks this pattern

and forces us to include one or both of the other two terms:

- c" sin(m e - wt)

n' = c"' cos(m 0 - WOt)

in our calculations. As we will see, this phenomenon extends to the

more complicated case of perturbations involving the whole disk.

(c) Disturbance Densities And Forces

So far we have been examining the motions of massless particles,

affected only by the gravitational field of the unperturbed disk. How-
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ever, we really need to discuss the perturbed motions of all the particles

constituting the disk. These perturbations will almost always give rise

to a surface density which in turn will cause a gravitational force.

And in turn, that force -- left implicit as the f' and f' termsr0

in the dynamical equation (20) -- will affect the motion of the particles.

In essence, we need to complete equation (20) by making those forcing

terms self-consistent, that is, dependent on the displacements E'

and n' themselves.

Of course, the perturbation density v' can be deduced

immediately from the pertinent continuity equation:

1' = - ( (r P x') - - y y' . (33)r r r 00

As with the displacement variables, we decompose the density into

Fourier components:

P' = Re {S, (r,t) eime} (34)

and further into eigenmodes:

11' = Re {S(r) eime e-iWt} . (35)

In terms of the latter coefficient, equation (33) becomes

S(r) = - dI (r - X) + El y Y, (36)Frdr r
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and we are finished with continuity.

For any disk with surface density v', the potential '

at r is found by merely superimposing the contribution from each

infinitesimal mass dm,

_ G dm
VA2 + az,

where A is the distance between the mass dm and r, and a

is our now-familiar offset. This leads to

= -G 00 27T
0 0

vP'(p,st) p dP d 1 (37)
(r2 + p2 + a2 - 2rp cos(a - )

Clearly, if -P' consists of only one Fourier coefficient, as in

equation (34), ' will also, and we may write it as

P'

Pm (r,t)

- Re {pm (rt) em O} , (38)

= 0

0 fKm (rsp) &m (p~t) dp

in terms of the kernel

27 (39)
K (r,p) = Gp f cos md0
m 0 (r2 + pZ + az - 2rp cos )2
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Our kernel is also expressible in a variety of other ways: using Bessel

functions

K. (r, p) = -2r Gp { m (kr) Jm (k) e-ak dk , (40)
. 0

hypergeometric functions

Km (rp) = -G { T P r (M + )2 r Mr++2
22M-1 r r (M + 1) az + rz + p2

(41)

F { m + 2 r p 2
2 4' 2 4' a2 + rz + pz } ,

associated Legendre functions

Km (r, p) = -2G 1- a 2 + r+p 2 ,
M-42- 2r p (42)

and doubtless others. As discussed in Appendix V, we found the last-

named formula convenient for computation. This kernel is of course

used without change in the decomposition of the potential into eigen-

modes:

' = Re {P eime e-swt} 4,3(43)



where

P (r) = f K (r,p) S(p) dp . (44)0 m

To complete this section, a decomposition of the self-consis-

tent forces:

f = - 3 1
r r

(45)
= 1 - 1 a

is in order. Azimuthal components are simply

f = -9 mr,m -o r ~

f,m im

and the eigenmodal components are

r r

F - P
0

(47)

r

(46)

Note that F
0

multiplying it, a

has previously been defined with a factor of i

s was Y, so that the complete dynamical equations

are entirely real:
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D2 X - 2o D Y = (K 2  -42) X + !L p
dr

D2 Y - 2Q D X = P
r

D = -+ m (48)

00P = Km (r,p) -1d (r p X) + a P Y dp.

These equations are very suggestive of a characteristic value

problem for a -pair of coupled singular Fredholm integral equations. The

similarity can be made even stronger by some simple manipulations, such

as integrating the X-related force terms by parts to eliminate the de-

rivative of X in the integrands, and by introducing two new variables,

DX and DY. However, we have no need here for the formal modifica-

tions, as we only wish to discuss the choice of method of solution.

(d) Spline Approximation and Force Integrals

The literature on Fredholm integral equations is quite rich,

containing several methods which might be applied to our equation (48).

The formal theory developed by Fredholm (see, for example, Mikhlin (1957)),

involves the calculation of a series of iterated kernels, each of which

is the integral of a previous pair of kernels. Clearly, this method
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would require a prodigious amount of calculation, and seems better suited

to the proof of existence of solutions. We are more concerned with ob-

taining solutions here, and so we need to consider now the approximate

methods available.

If we intended to find only a few eigenfunctions, our best

choice would probably be an iterative method of solution similar to that

of Kellogg (see Mikhlin (1957)) in which we would make an initial guess

for X and Y, evaluate the force integrals, use equation (48) to

find a second guess for X and Y, and then continue the process

until convergence hopefully occurs. However, the results of Hunter and

Toomre (1969) on the bending of a disk, which involved similar equations,

raise the suspicion that the whole spectrum would itself be extremely

interesting to see, whereas the first few eigenfunctions would not neces-

sarily be so. Hence, we need a method more suitable for obtaining the

whole spectrum, and, by elimination, we are left with the choice of some

method of approximating equation (48) by a set of algebraic equations.

Broadly speaking, a method of approximating integral equations

by a set of algebraic equations is specified by only two things: the

set of functions used to expand the dependent variables, and the criterion

used to minimize error. We discuss the first point here, and the second

in the next section.

Initially we expanded the displacements as sums of the first

n Chebyshev polynomials (Froberg (1965)), written as functions of

C = 1 - exp(-r 2/2) which has the proper finite range for an edgeless
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disk. We chose Chebyshev polynomials rather than any other set of poly-

nomials principally because decomposition of an arbitrary function into

a sum of the first n Chebyshev polynomials can be accomplished by

merely evaluating the function at n points and then summing these

values with n sets of weights. No extra integration is required.

This technique worked tolerably well in the axisymmetric case

(m = 0), but we realized that as n increased, we were introducing

very rapidly varying functions of radius into the displacements. In-

tuitively, we should better have chosen a set of smooth functions whose

main feature was that they "localized" disturbances well, so that con-

centrated perturbations do not cause spurious forces large distances

away from the perturbation. In other words, if our set of functions

was used to synthesize a trial function which was zero everywhere except

in a small region, the reproduction of the trial function should be

nearly zero everywhere outside that region. The Chebyshev polynomials

are not especially good at this, as they tend to distribute the error

made in fitting trial functions over their whole domain, whereas we

would like them to concentrate any error near the disturbance region,

and leave the rest zero. No set of polynomials seems to do that well,

so we turned to splines (see, for example, Ahlberg, Nilson and Walsh

(1969)).

The localizing ability of splines is a result of their piece-

wise character. They are merely cubic polynomials fitted between adja-

cent points r and ri + 1 of a set of well-chosen sampling



points {r1 , i = 1, n}. The polynomial coefficients for each interval

are picked so that the resultant function and its first two derivatives

are continuous, as well as satisfying the obvious requirement of pro-

ducing the exact result at all the ri. The details of the splines

used, and of a companion method we used for testing purposes, are dis-

cussed in Appendix V.

We should also note here that X and Y were not them-

selves the subject of our "splining", but rather we used

X(r)/rlm-1 , Y(r)/rIm-1I, (49)

for, as described in Appendix I, the leading term of the expansion of

X and Y in powers of radius is crim-1, where m is the

azimuthal modal number used frequently above, and c is some constant.

Furthermore, we symmetrized the two functions (49) as they depend only

on r2  rather than on r, as also discussed in Appendix I.

One last point to be made concerning the splines is the obvious

fact that they are linear functions of the displacements X(ri) and

Y(r1 ). This allows us to write the interpolated displacements as sums:

X(r) = S Si(r) X(r )
i=1 n

(50)
n

Y(r) = )Y(r)

r,41 r



where we use the symbol s (r) to indicate the interpolation
n

obtained when we have started with a unit displacement of ri

zero displacement at all the other n-1 radii, rj, j i.

expansions let us write the integrals above also as sums:

n r
= iA(rv'.) Xjry)

n
(A,(r'ri

= Km(r,p)

X(r. )

+ A2 (r,r ) Y(r 1 )j

+ A4(r,r ) Y(r )

{- dS (p))I dp
P dp n

= fO Km(r'p) {m -p(p) S' (p)} dp
0 p n

= f a_ K (r,p) {-

co M

o a r m, p:

= n r Km(rp){ m (p )
o carp

(py(p) S (p))} dpn

i
Sn (p)} dp .

Fr and F become

curve

and

These

P(r)

dP
r)

where

(51)

Ai(r,r )

A (r,r. )

A3(r,r )

A4 (r,r .)

In a similar fashion,



n
Fr(r) = - A3(r,r.) X(ri) + A4(r,r 1) Y(ri)

(52)

F,(r) = Al(r,ri) X(r.) + A2 (r,r.) Y(ri)

(e) Matrix Equations

Last to be considered in our development of the dynamical equa-

tions is the method used to minimize the error of approximation. The

orthogonality properties of the Chebyshev polynomials led us to use a

natural criterion for them: making the residual of equation (48), that

is, the difference between the left-hand and right-hand sides, orthogonal

to the first n Chebyshev polynomials. This can be accomplished by

simple summation.

No similar property obtains for the splines, but the method of

collocation (Hildebrand (1952)), or the setting of the residual equal

to zero at n selected points, fits very naturally with the use of

splines, provided, of course, that the set of collocation points is

identical with the set of sampling points. If this proviso holds, we

will be basing our spline curves directly on the values we compute at

the collocation points.

There are surely many other choices of error criterion for

spline-based approximations. Two other frequently-used criteria, mini-

max error and least-squares fitting, could be used, but they require
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maxima hunting or additional integrations and so appear less desirable.

However, no actual comparison of the relative accuracy of the different

criteria was made, as collocation proved quite satisfactory.

To write the dynamical equations conveniently in our new form,

let us first define several quantities in terms of the sampling points

{rXX:

X i= X(ri)

i = (ri )

Anij

Y = Y(r )

Ki K(r )

Di = D(r ).= An(ri rj)

Furthermore, two velocity variables,

which we define by

D0 X.

D0 Y.

X and Y, will be needed,

= X.

(54)

= Y .

Then the dynamical equations in collocation form are expressed by:

n
D.5. = 2Q t + (K? - 4Q?) X + E (A X + A Y.)
11 1 1 1 1 j=1 3ij J 4ilj

Di v = 2

(55)

- (A X + A2. Y)
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Finally, these last four equations can be written compactly in terms

of a single vector, Z where

= (X1, X2,.., Xn, X1,...Xn' W ''''' Yn' Y1 ...y n).

The resulting equation is then

W Z = M Z

where M is a 4n x 4n matrix composed of 16 nxn blocks:

ma

B1

0

B
3

In this matrix 0 denotes an nxn zero matrix, I is an identity

matrix, and finally o is a m

and the off-diagonal terms zero.

atrix whose diagonal terms are

Also

-A 1- (K(B)..

(B 2)..

40?~) S

= -A 4..

m
j r.

and (B 4)..

A.
llj

M A.
r.i 21J
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(56)

- I 0 0

mQ B2

0 m92

-2o B 4

-2P

-I

mQ

a72

(57)

M=



are the blocks holding the force terms.

Note that our dynamical matrix M is entirely real, which

is the result of our particular choices of phase for the variables.

This allows us to use considerably simpler programs to compute the

eigenvalues of M than if the matrix were complex.

A greater simplification can

case, where m = 0. Here we have

Y from Equation (25) to obtain

be obtained in the axisymmetric

F = 0, and so we can eliminate

W2 X = - K2 X + Fr (58)

and

n
F (r) = -. A3(rri) X(r.)r=

is also zero. If we write X as a vector:

= (X(rl),... X(rn)

Thus we obtain a matrix equation for X immediately as

W2 X = N X

where the nxn matrix N is defined by

(N)i = -A 3 ij - K? 6 ij
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This equation produces n eigenvalues for w2 , or a total of 2n

values for w. Naturally, this corresponds to the loss of one of the

two degrees of freedom in the dynamical equations, as Y can no longer

be specified independently of X, but instead must obey

Y = 2 X/. (60)

(f) Equilibrium Model and Scaling

The only thing left unspecified thus far is the choice of the

density, ', for the equilibrium model, which in turn specifies Q

and K. Several classes of models could be considered as candidates.

There are a number of finite-radius models, where p, Q, and K

are algebraic functions, for example the models in Hunter (1965). These

would be easy to use, but the presence of a sharp edge can only be ex-

pected to introduce new complications into the results. Since galaxies

have no sharp edge, there is a risk that these edge effects might obscure

something more fundamental. One would expect that Toomre's modification

of the models (Hunter and Toomre (1969)) in which the surface density

goes to zero near the edge like (R-r)n, where R here is the disk

edge, might have removed some of the edge effects. However, there is no

need to have any edge at all in our models.

Probably the most obvious choice would be an exponential den-

sity as the surface brightness of the outer portions of many galaxies is

roughly exponential with radius, and this suggests that the density
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might also be exponential:

S = PC exp (-r/R) . (61)

Here yc is the central density and R is now a scale radius. There

is no major objection to this model, and we might well have used it;

nevertheless, one could object that the mass in the model is rather

widely dispersed. If we arbitrarily define the central portion of the

model as that which contains the inner half of the mass, we find that it

extends to 1.68R. The radius encircling 99% of the mass is quite far

out, at 6.64R or 3.96 times the central disk radius. This is excessive

compared with almost all other models. For example, the Maclaurin disk,

which is the first member of Hunter's series of models, has 1.60 for the

same ratio.

A family of more centrally concentrated models is that given

by Toomre (1963), which have the added convenience that the density and

rotation curves are simple algebraic functions. Yet the surface density

decays only algebraically for large r, implying that too much mass

stretches to large radius, as compared with the exponential density (61).

However, the limiting member of their family, the gaussian disk does not

suffer from this diffuseness. If we let

P = Pc exp(- r2/2R2) (62)

we find the 99% radius at 2.58 the central disk radius, and furthermore,
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it decays faster than the exponential model for large radius. In addi-

tion, it is also quite simple to use computationally, and so we chose

to use it for all our calculations.

In order to make any computations at all, it is necessary to

define in what units our variables are measured. The most convenient

set of units for our problem is one based on the natural units inherent

in the model itself. Besides a, the equilibrium model has three

constants in it, R, pC, and G. In scaling we have the choice

of three units, typically mass, length and time, and these three are

exactly specified by choosing R, p c, and G. We will set R = 1,

PC = 1, and G = 1/2fr. The latter value is just the reciprocal of

the total mass of the disk, M = 2fr, and was chosen so that the angu-

lar velocity would have the simple form r-3/ 2  at large distances

from the center of the disk. This choice of G also conveniently

cancels the factor of 2fr in the Bessel function integral representa-

tion of the kernel Km(r, p) of equation (40). All of the results and

discussions which follow refer to this choice of units.

For reference, the rotation curve

V(r; a) = r Q(r; a) (63)

and the surface density p(r) are shown in Figure 4. As indicated

by the notation, the velocity curve is also dependent on a, but as

the figure demonstrates, that dependence is weak. We chose to let the
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Rotation speed V(r)

-=0 0.15 0.3

0.5

Surface density p(r)

0 1 1
0 I 2 3

Radius r

Figure 4. The linear speed of rotation V = r a and the
surface density V for the Gaussian disk, shown as func-
tions of the radius r. The latter is independent of the
offset a , but the rotation curves vary with a as
shown.
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equilibrium model depend on a just for self-consistency; technically,

it could just as easily have been computed with a = 0 for all our

work.
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III. RESULTS OF AXISYMMETRIC CALCULATIONS

The simplest class of eigenmodes is obviously the one where all

perturbations are independent of longitude. We concentrate here on these

m = 0 disturbances, both to demonstrate the performance of our approxi-

mation schemes, and to show that axisymmetric stability in the large is

indeed achieved upon sufficient modification of the gravity.

For m = 0, two elementary facts greatly simplify the pre-

sentations of spectra. For one thing, as noted already in Chapter II,

axial symmetry implies that only 2n nontrivial characteristic fre-

quencies w exist in modal calculations performed using n sampling

radii, rather than the 4n frequencies found more generally. More-

over, these 2n frequencies occur in pairs differing only in sign,

since they are merely the positive and negative square roots of the

eigenvalues w2  of equation (57). In this chapter we can therefore

describe the spectra simply in terms of w2.

The second simplification is closely related to the m = 0

version of the dynamical equation (48):

W2 X(r) = K2 (r) X(r) + d K0(r,p)

- (PX)) dp (63)
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Upon introducing here the new variable X'(r) = (rp(r))2 X(r) and

integrating by parts, the resulting integral would have the symmetric

kernel

(ry(r)) (-_2 p) arap (pKo(r,p)).

Hence by arguments of Hilbert-Schmidt theory, all exact values of w2

must be real. Our approximations do not strictly preserve this symmetry

implicit in equation (63), except in the limit as n . Using

finite n, it is conceivable that complex values of w2 could be

obtained using our matrix scheme. However, in practice we have not

discovered any instances where this nuisance occurred, even with values

of n as low as two, provided the integrations were carried out with

sufficient care. Thus the entire spectrum of n important eigenvalues

for any axisymmetric case studied may conveniently be displayed on a

single line.

(a) Results for Normal Gravity (a = 0)

We first show that the approximation machinery used here pro-

duces quite reasonable results for the traditional potential, meaning

a = 0. Intuitively, if any axisymmetric case is likely to be poorly

approximated it is this one, as the kernels of the force integrals there

are singular. However, even here this is not a very worrisome problem,

since the integrals themselves are well-defined -- it means only that
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more than usual care is needed in calculating them, as we discuss in

Appendix II. Indeed, the interpretation of the results is more of a

problem.

i) Predictions

Before examining the computed data, let us first anticipate

what results could be expected, both from previous work and from short

wavelength theory. As noted before, a very similar study of the axi-

symmetric perturbations of a cold disk was carried out by Toomre (1964).

He used an algebraic disk model having no outer boundary, and therefore

no edge effects, just as with our gaussian disk. Stated very briefly,

his technique was to divide the mass of this disk into N discrete

rings, which were allowed to move in accordance with the total self-

generated gravitational force. As in our case, this procedure led to

a matrix eigenvalue problem, with the solutions corresponding to the

vibratory modes of the disk.

For his model, Toomre found modes both with well-defined fre-

quencies, that is, virtually independent of the number of rings, and

also with ill-defined frequencies. From this result and other work, he

conjectured that the cold disk had a bipartite spectrum, containing both

discrete modes with particular frequencies for w2 > 0, and continuum

modes, with w2 < 0. If this were so, one might expect that in any

computer experiment, an arbitrary selection of continuum frequencies

would appear, the choice being dictated not by the model, but by the

particulars of the numerical approximation used.
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Later, an analytical proof of the existence of this type of bi-

partitespectrum was obtained by Hunter (1969) for a broad family of

cold disk models of finite extent. His method was to express the per-

turbations as sums of Legendre functions, and to then obtain difference

equations relating the different orders of these functions. By approxi-

mating the difference equations he was able to show that, provided the

equilibrium density declines sufficiently rapidly with radius, a semi-

infinite continuum of axisymmetric vibrations will exist, with upper

bound

W2 = K2(re).

Here re is the edge radius of the disk. By numerically solving the

difference equations, Hunter further showed the existence of discrete

modes with positive w2  for several models of the family.

Since our model does not have a finite edge, Hunter's results

cannot be unhesitatingly used as predictions of our numerical calcula-

tions. However, the implication from his work is the same as that of

Toomre's, that we might expect a continuous spectrum for negative values

of W2 , and a discrete spectrum for positive.

Short wavelength theory (SWLT) also implies the same prediction.

Let us solve equation (3) for the wavenumber k

IkI = (K 2 - W2)/2nGp ; (64)
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this function is graphed for a selection of values of w2  in Figure 5.

Since k may take equal positive and negative values, we show only

the positive. Note that the curves in this figure are of two types.

For non-positive squared frequencies, k grows positively infinite,

while for positive squared frequencies, a radius rL exists where

K2(rL) = W2  and k = 0. At radii beyond rL no short wavelength

solution of equation (3) exists.

As implied by the figure, no boundary of any kind appears for

non-positive squared frequencies, thus there is nothing to prevent an

eigenmode from existing at any of these frequencies, and SWLT predicts

a continuum. On the other hand, rL is definitely a boundary of

some sort for eigenmodes of positive frequency.

To determine the conditions at this boundary, we found it neces-

sary to supplement SWLT, which is hardly valid at a point where wave-

number is zero, with the phase condition at rL determined by a

highly simplified model equation. As described in Appendix IV, a total

phase change of nn is required from center to resonance:

r L
k dr = n7 n = 1, 2, 3, .. , (65)

.0

at least in the sense of the SWLT approximation of completely separate

short and long-wavelength oscillations.
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Figure 5. Wavenumbers k(r;W 2) as functions of the radius r
predicted from the axisymmetric dispersion relation with normal
gravity (a = 0). The curves labeled S1, S2, ... correspond
to the squared frequencies w2 predicted for the discrete modes;
they bound an area measuring an inteqer multiple of w.
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ii) Calculations

Ideally we would like to confirm or contradict the above pre-

dictions by calculating the complete spectrum of the exact equation (48).

It would be hoped that if N increased toward infinity, our set of

N approximate eigenvalues would converge towards those of the exact

equation. Even granting this hope, we are faced with a problem dictated

by practical limitations on our computing: We must extract the essential

characteristics of the exact spectrum from sparse representations of it.

Of course, we get around this obstacle in the only feasible manner, by

intercomparing different approximate versions of the same spectrum and

thereby gaining a familiarity with typical patterns and arrangements.

These versions are generated by computing the same case (here m = 0,

a = 0) with different numbers of samples, subject to a practical

maximum, and by varying their location.

Our first choice of sampling points can be regarded as the most

natural, that which divides the mass equally over the samples. To be

precise we put the ith location at the radius encompassing

(i - 1/2)/N of the total mass, e.g. for 8 samples, the rings through

the sampling points surround 1/16, 3/16, 5/16, ...., 13/16 and 15/16

of the total mass respectively, as is graphically shown in Figure 6.

The results for this arrangement of "rings" appear in Figure 7a,

where the spectra for 2 through 15 samples are shown on the left side of

the figure. We can immediately tell that our predictions are justified:



AA,~.. rj~.

- - ---6 -- a~ 3/

0L
0 I 2 3

Spline S (r)

o r4 r7

C

0

2 3

Radius r

Figure 6. Demonstration of mass-spaced splines.
In (a), radii which divide the disk into annuli with
equal mass are shown as open circles; in (b) the curve
for the fourth 8-point spline appears; in (c) we dis-
play the complete set of 8-point splines, normalized
to unit height at the displaced radius.
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Figure 7. On the left side the eigenvalues w2 for mass-spaced
sampling rings are shown. The number of rings used varied from
2 to 15. On the right side the eigenvalues for 15 mass-spaced rings
are repeated in the left column, in the rightmost column the eigen-
values for rings equally spaced with overall extent 4 are given.
The columns between these correspond to five equal shifts of the
ring locations from mass-spaced to radially-spaced.
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Two classes of modes are clearly identifiable for larger N. As ex-

pected, there are both positive eigenvalues which are nearly independent

of N, and also a band of negative eigenvalues that stretches from

near zero down toward negative infinity.

Note that the scale had to be highly non-uniform to clearly

accommodate both the large negative values and the small values near

zero. We plotted the vertical w 2  scale by adjusting the heights

by the rule (0.5 - w2)2.

The squared frequency

quite precise even for small

of the first isolated mode is actually

N, as seen in Table 1.

TABLE 1

N

2
3
4
5
10
15
30

W2

.29909

.29797
.29895
.29978
.30141
.30182
.30211

Table 1. Eigenvalues of the first discrete
mode for a = 0.0, computed with varying
numbers of sampling points.

This is to be compared with a value of .3132 predicted by

SWLT. As noted below, the second eigenvalue is much less precisely

determined by this chain of experiments.
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These results were corroborated by a second series of experiments

in which the sampling locations were gradually shifted from experiment

to experiment. Rather than have the sampling points equally spaced in

mass, we moved them in five equal steps to points equally spaced in

radius, located at

r. = 4(i - !)/N (66)1 2

In Figure 7b we show the resulting eigenspectrum at each of these steps.

The leftmost column of eigenvalues is the same as the rightmost column

of Figure 7a: the 15 sampling points are equally spaced in mass. The

second column of eigenvalues is the spectrum obtained by moving each

ring 20% of the distance from its original location to its final loca-

tion as given by equation (66). The third column refers to a 40% shift

and so on.

Again the discrete frequencies stay fixed and the continuum fre-

quencies flow to new positions in the spectrum. Each step causes all

of the continuum eigenvalues to move to smaller frequencies. The reason

for this can be deduced from our Figure 5. As we move the sampling

locations outwards and simultaneously increase the spacing between adja-

cent locations, we reduce the maximum value of k or equivalently

increase the minimum wavelength that our sampling can mimic at any

radius. And Figure 5 shows that lower values of k at any radius

correspond to smaller values of w2 ; thus increasing the spacing moves

us to lower w .
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Furthermore, the same value of k at a larger radius will in

general relate to a smaller value of w2, so, moving the sampling

rings outwards also will move the spectrum to lower w2 . Both of

these effects combine to produce the large frequency shifts shown in

Figure 7b.

Although difficult to distinguish in Figure 7b, sliding the

rings outward has also caused more stable discrete eigenvalues to appear.

In Figure 5 we deliberately chose to show the values of k corres-

ponding to the positive discrete mode frequencies for the first four

modes of this type predicted by theory. Since our mass-spaced set of

samples did not extend even to r = 3, and these modes extend beyond

r = 4, it is little wonder that the third and fourth discrete eigen-

modes were entirely missed by our first series of experiments. Extending

the set of samples to 4.0 did cause them to appear but to obtain an

accurate description of their shape it was necessary to calculate with

samples extended to r = 5.5. For this same reason, even the second

stable frequency was poorly determined by the mass-spaced samples.

The eigenfunctions of the first three discrete eigenmodes are

displayed in Figure 8. As we would expect, they are very similar to

Toomre's eigenfunctions in several respects. Just as with a great

number of physical systems, such as strings, beams, plates, etc., they

have respectively zero, one and two modes. Furthermore, the highest

peak is the outermost one, and the boundary radius, rL, is located
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Figure 8. The first three discrete stable eigenfunctions for normal gravity (a = 0).
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on the downslope of this latter peak. This of course agrees with the

model equation prediction of a 7/4 phase at resonance.

The last thing we want to mention in the normal gravity case is

the form of the unstable, continuum eigenfunctions. As can be seen in

the pyramid of eigenvalues appearing in Figure 7a, squared frequencies

very close to w 2 = -1.69 appear coincidentally at N = 5, 9, and 15

sampling locations, as well as for N = 23, which is not shown in

Figure 7a. In Figure 9 we display the computed eigenfunctions corres-

ponding to these eigenvalues.

The upper eigenfunction is a rather simple curve, as it must be

with only five sampling points. Progressing downwards, the lower curves

have successively more nodes and there is certainly little indication

from the presented data that the last curve shown is a good representa-

tion of the true eigenfunction. On the contrary the superposition of

the last two functions shows that the sequence has far from converged

for radii beyond 2.5. Since SWLT predicts an unbounded number of nodes,

stretching out to infinite radius, our computed results might optimis-

tically be considered a mild corroboration of the theory. However, we

have a much better indication of the accuracy of SWLT from a comparison

of the computed nodal positions with the theoretically derived positions.

As noted in Appendix III, a first approximation to the theoretical nodal

positions can be found from the zeroes of the Bessel function J (a(r))

where c (r) = f k(s)ds and the wavenumber k(r) is obtained
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from the dispersion relation. Table 2 shows that at least the first

4 nodes are well-defined by our 23-sample computation.

TABLE 2

Node Theory Computation

1 .8713 .8674
2 1.4320 1.4271
3 1.8038 1.8000
4 2.0482 2.0535

Table 2. Nodal radii of the continuum mode
at w2 = -1.69, as predicted by SWLT and
as computed with 23 mass-spaced samples.

To find the computed nodes for this table, we first found the

nodes at the exact frequency determined in the computation and then

adjusted the radii according to SWLT -- amounting at most to a slide of

.001. The location of even more nodes could be obtained from calcula-

tions with large numbers of samples; however, the point is already well

made by the data at hand -- that the wavefunction seems to be fulfilling

the predictions of SWLT and oscillates endlessly to infinity.

(b) Results for Modified Gravity (a 0)

As noted in the introduction, the idea of using the modified

gravity in a cold disk model stems from the hope that at least the axi-



symmetric waves could all be stabilized for large enough a. Before

checking this surmise, we will examine in detail the modifications to

the eigenmodes that are caused by making a nonzero, both in SWLT

prediction and in computational fact.

i) Predictions for a Sample Case (a = .15)

Let us start our examination of the effects of a with a

case still possessing instabilities, a = .15. As in the introduc-

tion, our SWLT predictions will be wholly on the basis of equation (5),

the dispersion equation for nonzero a:

W2= K2 -27r G k exp(-ak)

First we wish to discuss modes where the wavenumber k is real.

We can immediately see that this requirement implies that for any radius

r, there are both maximum and minimum values that w2  can take,

namely

W2 = K 2 (r) W2  = K2 (r) - 2r Gv(r)/ae. (67)
max min

Here we have used the fact that the maximum of k exp (-ak) is 1/ae,

as illustrated in Figure 10.
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Figure 10. The shape of the curve ak exp(-ak) which
appears in the local dispersion relation. The value
k = a-1 divides the short-wave from the long-wave
solutions.



In this thesis, we will refer to these two w2(r) curves as

resonance and cutoff respectively. This nomenclature differs distinctly

from that used in plasma physics (cf. Stix (1962)). In plasma physics,

resonance refers to a point where k becomes zero, and cutoff, where

k becomes infinite. Both of these possibilities occur at the same

radius in our galactic dynamics, and so we can make do with the single

term resonance for this point. The superfluous word cutoff we borrow

for a radius at which k is maximum. Incidentally, plasma dispersion

relations for omnidirectional propagation do not have a maximum, but

instead are monotonic, much like our a = 0.0 case.

These two special curves (67) have been plotted in the upper

diagrams of Figure 11; the leftmost one corresponds to a = 0.15. As

just noted, real values of k can exist only in the area between

these two curves. But we can interpret this diagram in another way.

In looking for eigenmodes of the disk, we are concentrating on solutions

with one fixed frequency. Figure 11a shows us that, for any value of

W2  in the allowed region, real solutions of the dispersion relation

(5) can only extend from the center, r = 0, out to some outer radius.

Evidently there are three kinds of solutions of this general type,

one for positive squared frequencies less than K 2 (0) and greater

than the maximum value having a cutoff, w2 , which is here .0124;
x

these solutions extend from center to cutoff. A second kind exists for

negative squared frequencies greater than W2 ; these stretch out to
x

resonance. A third kind exists for the remaining values of w 2
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0 < 2 < 2 . For eigenvalues w2 in the third band, real values
x

of k can be found in two separated regions, one from the center out

to cutoff, and another from a second cutoff radius out to resonance.

A better viewpoint for these three categories is provided by

the kr plane. For each point inside the allowed region in Figure

Ila, there are two values of k satisfying the dispersion relation,

one with k greater than a-1, one with k less than a-1,

as was already clear in the plot of ke-ak in Figure 10. Let us

draw the curves of k versus r corresponding to a fixed frequency

in the lower part of Figure 11. There the value k = a-1  divides

the two solutions; above it appear the short wavelength solutions,

called for convenience s-waves, and below it the long wavelength solu-

tions, the 1-waves. Note that for squared frequencies less than W2

the s-waves join the 1-waves at this value of k, which is of course

the translation into k and r of the lower curve of Figure 1la,

the cutoff.

In contrast, eigenvalues above w2  have separated solutions
x

which never join, but instead go off to k = c(s-waves) or to

k = 0 (1-waves). These two limiting values of k are the two

translations of the single resonance curve of Figure 1la. Taken as a

whole, this kr diagram is the analogue of Figure 5 for non-zero a.

With this detailed plot before us, the most prominent question

is that of the existence of discrete and continuum modes, in analogy



with the discussion centering around Figure 5 for a = 0. Each type

of curve in our new kr diagram can be characterized as a separate

category of eigenmode. We will treat them sequentially.

1. S-modes

The lowest set of curves, comprised of 1.-waves with squared fre-

quency greater than w2 , is structurally identical with the k-curves
x

for positive w2  for the case of a = 0. The boundary conditions

for 1-waves at the center and the resonance radius rL again produce

the requirement that

L

aj(rL) f 0 kl(s) ds = nfr

and therefore we should expect discrete frequencies to appear. Here

we have used the subscript I to refer to the 1-wave solution of the

dispersion relation.

Unlike the case of a = 0, only a finite number of S-modes

can exist when a is non-zero. In the former case, an arbitrarily

large number of discrete modes could be found by lowering the squared

frequency toward zero. Here the S-mode spectrum is bounded below by

W2 , and the largest value of al(r ) that can occur is that ob-x L

tamned for w2 = W2
X
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2. C-modes

The upper set of curves is the s-wave analogue of the curves

representing the S-modes. In each of this upper set k rises to

infinity at r = rL. As we discuss in Appendix IV, there is no phase

condition on as at r , nor is there any requirement for a node.

Thus theory predicts that, instead of discrete modes, a continuum of

s-wave eigenmodes, extending from w2 to K2 (0), will overlay
x

the discrete spectrum of s-modes.

3. U-modes

Let us now study the modes corresponding to the U-shaped curves

which occur for squared frequencies below w2 . To the right of the

crossover point in Figure 11 there are curves for w2  between 0

and w2 , each of which can be associated with a curve of the same
x

squared frequency among the U-shaped curves. These pairs of separated

curves directly correspond to values of w2  which have no associated

curve anywhere in the kr-plane. We will refer to only these modes

as U-modes, as they alone are unstable. From an asymptotic analysis

in Appendix IV, we found that the boundary condition for U-modes in-

volved the difference of the phase of the 1-wave and s-wave at cutoff,

rc 

s(r - a(re) = (n + n = 0,1,2, ... (68)
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where as and al are the phases of the s- and 1-waves

respectively. Strictly speaking the term wave is inapplicable here,

as we are dealing with disturbances with purely imaginary frequency

either growing or decaying in time.

The boundary condition (68) dictates that all unstable modes

will be discrete. In graphical terms equation (68) says that the only

unstable modes predicted to exist by SWLT are those which enclose an

area of (n - 1))w in the kr plane, such as those pictured in

Figure 11.

This, of course, is very much like the requirement for the S-

modes, which is that the corresponding curves in the kr plane en-

close nff. The similarity between the two graphical interpretations

should not obscure the actual differences between the role of the cut-

off radius and that of resonance. The former serves to couple the long

and short waves, rather than providing a boundary condition on either

one of them alone. Thus we can also predict that the eigenfunctions

for U-modes will be very different from those of S-modes.

4. T-modes

Matters are a bit more complicated for modes with w2  in the

range from 0 to w . Here two cutoff radii exist, rcl and

rc2 , as well as the resonance radius, r . Between the two cut-

offs no real k can satisfy the dispersion relation, and we will

therefore have a mixture of spatially growing and decaying waves there,



and in the two "allowed" regions, 0 < r < rC1  and rc2 < r < rL
a mixture of s-waves and 1-waves will occur. This type of behavior

cannot be studied with the model equation of Appendix IV, which has

only one cutoff owing to the use of a linear K 2 (r). Furthermore,

except for a small band of frequencies just below w2 , SWLT is in-x

applicable in the inter-cutoff annulus as no solution of the dispersion

equation exists, even with complex k. For these reasons, and with

the justification that very few modes occur in this region, we neglect

quantitative prediction of the phase relations for T-modes. However,

there should be little qualitative difference in the wavefunctions be-

tween C-modes and T-modes, inasmuch as the inter-cutoff region is

generally quite narrow.

ii) Calculations for the Sample Case (a = .15)

To check our SWLT predictions for discrete and continuum modes,

we performed an extensive series of experiments very similar to those

done in the normal gravity case. Again, theory and experiment complement

each other. On the right of Figure 12a, the spectrum of eigenvalues

for 2 to 20 mass-spaced sampling points is presented. Both U-modes

and S-modes are instantly visible against the background of continuum

modes. The same is true for the right columns of eigenvalues in Figure

12a, in which we show the results of a complementary set of experiments,

where we gradually slide the 20 sampling points from their mass-spaced

positions into radially-spaced positions extending out to r = 4.0,
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just as we did in the former set of experiments with a = 0.0 shown

in Figure 7. At least eleven of the discrete modes have well-defined

frequencies which we can check against our SWLT predictions.

TABLE 3

S-modes U-modes

Predicted

.3308

.0581

.0157

.0124

Calculated

.3245

.0584

.0159

.0125

Predicted

-.4001
-.2839
-.1942
-.1265
-.0773
-.0425
-.0191

Calculated

-. 3973
-. 2744
-. 1812
-. 1134
-. 0641
-. 0314
-. 0100

Table 3. Comparison of SWLT predictions with the results of
experiments. The squared frequencies for all discrete modes
a = .15 detected in the experiments are shown.

computer
of

As shown in Table 3, the results are especially good for the stable

modes. Also, in this particular case, no T-modes were found.

Let us now turn to the eigenfunctions corresponding to the various

classes of modes. In Figure 13 we see the first four U-modes. The

lower two give ample evidence of the mixing of s-waves and 1-waves which

takes place in this category of mode. The small arrowheads in the

figure denote the cutoff radius, rc; unlike the stable modes, the U-

modes continue to have nodes beyond their outer boundary. This can
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Figure 13. Eigenfunctions of
for a = 0.15.

the four most unstable modes
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intuitively be understood in terms of the values of k at the

boundary. For a resonance k is zero, and phase changes should

have stopped; but for a cutoff k is at its maximum, 1/a, and

phase is still changing rapidly there. Indeed a visual inspection of

the four curves shows that k in the decaying portions is indeed

about a-1 ~ 6.66; or in terms of wavelength x 0.94.

Continuing our examination of the new classes of eigenfunctions,

we show in Figure 14 five representations of a continuum wavefunction,

a C-mode, for w2 = 0.50. These five curves were found by using

radially-spaced sampling points and adjusting the ring extent, re,

so that one of the eigenfrequencies exactly coincided with w2 = 0.50.

For the first four curves, the ring extent was in the vicinity of

r = 3, but for the last curve we moved re into about 2.3 to

provide a higher concentration of samples over the important radial

range of the eigenfunction, while still computing with a total of 30

samples.

Again SWLT is an excellent predictor of these wavefunctions.

Just as with a = 0.0, we compute the SWLT-predicted nodal loca-

tions, and contrast them with the actual experimental nodes. As shown

in Table 4 the agreement is excellent.
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Figure 14. Five representations of the stable continuum wavefunction
with w2 = 0.50. Decreasing interring spacings were used'in the upper
sequence of curves to improve the accuracy of the wavefunction;
sampling points are denoted by + . In the lower curve the two best
curves are overlaid and expanded; superimposed is the prediction of
the envelope height la WKB.

-81-

0

\4/ VAV30

( A ,

A

A A A AA

A /+\, A



TABLE 4

N and re

Node
Number

1
2
3
4
5
6
7
8
9
10

15
2.905

0.237
0.427
0.622
0.818
1.018
1.217
1.419
1.616
1.821
2.012

20
2.986

0.242
0.445
0.639
0.842
1.014
1.175
1.331
1.485
1.637
1.788

25
2.973

0.243
0.443
0.636
0.826
1.003
1.172
1.314
1.445
1.576
1.703

30
2.870

0.242
0.442
0.635
0.820
0.996
1.158
1.310
1.434
1.545
1.651

30
2.305

0.243
0.442
0.634
0.818
0.993
1.155
1.303
1.434
1.536
1.627

Table 4. Comparison of SWLT nodal positions with calculated
computed with a = 0.15,
points and extents.

W2 = 0.50, and varying numbers

WKB

0.243
0.441
0.633
0.817
0.991
1.152
1.299
1.430
1.540
1.624

positions,
of sampling

In this example we can go even further with SWLT predictions.

In the lower plot of Figure 14, the envelope of the amplitudes as gen-

erated by the group velocity arguments of Appendix III are overlaid as

dotted lines on the final wavefunction. Peak heights match the envelope

heights to within a few percent.

iii) Achievement of Stability

An initial rationale for the use of reduced gravity was that it

made possible the achievement of stability in the local axisymmetric
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sense. In Chapter I, we made an initial estimate of the value of a

needed to achieve stability by finding the particular radius most un-

stable and then choosing acrit to just stabilize that position.

For our model this value is 0.2016. But the calculations with

a = 0.15 demonstrated that the unstable modes do not form a continuum

as implicitly required by this argument, but rather comprise a discrete

set. This will alter our predictions.

Since a discrete mode requires that some sizable interval in

radius be unstable we can expect that the finding of discrete U-modes

will lower the SWLT estimate of the value of a needed to stabilize

our model. While this is true, it is a peculiarity of the gaussian

model that, near a = acrit, a disk out to about r = 2 stabilizes

locally almost simultaneously in a, as is visible in the kr

diagram of Figure 11b. There the region containing the unstable fre-

quencies has deflated to a thin area measuring less than one-half wf

Thus at this value, a = 0.2, the last unstable U-mode has already

just disappeared. However, since the region from center to about

r = 2 changes from stability to instability in unison, we would ex-

pect that only a small decrease in a would expand this area to one-

half w thereby implying that the newly-predicted acrit is only

slightly less than the locally determined acrit'

To find the new acrit we must determine the value of a

for which w2 becomes equal to zero for the last remaining unstable

mode. In Figure 15 we show the traces made by the squared frequency
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as a function of a . The open circles mark experimental
data points.
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of the U-modes as a is varied, according to SWLT. The last unstable

mode, labeled U1, intersects the line w2 = 0.0 at a = 0.1997.

This value compares very well with the values of acrit estimated

from the model computations, for various numbers of samples, which we

give in Table 5.

TABLE 5

Number of a .
Samples crt

5 0.1979
10 0.1977
15 0.1979
20 0.1982
25 0.1983
30 0.1983

Table 5. Computed values of a for which stability
is just achieved, for varying numbers of mass-spaced
sampling locations.

The simultaneous stabilization of the gaussian model is made

even clearer by following the last unstable eigenfunction to stability,

as we show in Figure 16. Note how the radial extent of the unstable

region grows as a approaches acrit. Over that whole region we

both expect and find a wave with wavenumber approximately equal to

a~1, as both the 1-wave and s-wave components of the U-mode have

wavenumbers close to that value.
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Figure 16. The eigenfunction of the U1 mode, shown for values
of a below its stabilization and disappearance, and for the
final value a = acrit. The wavefunction increases in radial
extent due to the flattening of the cutoff curve near acrits
as shown in Figure 11b.
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Predictions and Calculations for a > acrit

In contrast to the a = 0.15 spectra just studied, the

spectra of completely stable disks are rather plain. Let us first con-

sider the predictions of SWLT and then check them via the calculations.

By definition, the unstable U-modes have disappeared from the

eigenvalue spectrum for values of a > acrit. In Figure 11a, the

w2 r diagram for a = 0.15, these modes occupied the area between

the lower curve, the cutoff, and the w2 = 0 line. As we see in

Figure 11c, the counterpart of Figure 11a for a = 0.25, the cutoff

curve has risen above the w2 = 0 line, effectively eliminating the

area available for unstable modes. But less obvious is the fact that

the cutoff curve has also risen to pass through all but the highest S-

mode eigenvalue. This essentially means that only one stable discrete

eigenmode should appear at a = 0.25, according to SWLT. In the

locale of the previous S-modes, a new type of mode now occurs in place

of both the S-modes and the C-modes. This mode is simply described by

referring to the kr plot for a = 0.25 in Figure 11. At lower

values of w2, for example 0.20, there is no real solution to the

dispersion relation inside some cutoff radius, rc, which itself is

the intersection of the w2 = 0.20 line and the cutoff curve. Instead,

in that inner disk the wavefunction must take on complex values of k,

if indeed a wavenumber can be determined there.
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On the other hand, in the region between rc and rL we

would again expect 1-waves and s-waves. At rL there is a boundary

condition on the 1-wave component, and at rc a matching condition

on the two; however, since no boundary condition applies to the s-wave

at rL, there will be no condition demanding discreteness for modes

at these frequencies. Thus only a continuum remains below w2  __
x

the maximum height of the cutoff.

The extinction of the S-mo'es therefore continues as a in-

creases. By the time a reaches 0.35 the last S-mode disappears,

according to SWLT.

The full disk calculations, at a = 0.25 and a = 0.35,

confirm these spectral predictions nicely. In Figure 12 these spectra

are each displayed for 2 through 15 mass-spaced samples. For a = 0.25,

one discrete mode alone appears, at a squared frequency of .3460

(for 15 samples), which is to be compared with the SWLT prediction

of .3480. Note that there seems to be a condensation of modes in

the a = 0.35 spectrum near where the last discrete mode disappeared,

but there is nothing that could even be tentatively identified as a

discrete mode there.

The only novel eigenfunctions for these values of a is of

course the N-modes, so-called because they exist in the "non-allowed"

region. In Figure 17 we show progressively improving representations

of the eigenfunction at w2 = 0.20 for a = 0.35, constructed by
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Figure 17. The eigenfunction of the continuum wavefunction at
W2 = 0.20, evaluated at a = 0.35. Above, four representa-
tions are shown, for 15 through 30 equally-spaced sampling rings.
The interpolation points are denoted by +. Belowthe four are
superimposed to emphasize the limited radial extent of this class
of mode.
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the techniques used for Figure 14. Note that unlike other modal eigen-

functions, it is highly concentrated near the resonance radius. This

might be loosely explained by noting that the increase of a weakens

the gravitational forces needed to support large-scale modes.

The last item of interest is the manner of disappearance of

the S-modes. The initial impression, provided by SWLT, is that the

disappearance would be abrupt. However, this idea was immediately dis-

pelled by the initial calculation of the eigenfunction for S1 at

a = 0.25; the results were not free from a short-wavelength component,

and in fact the eigenfunction was extremely sensitive to the location

of the sampling points.

In order to decide whether there was intrinsic "corruption" in

the S1 mode or rather if it was merely difficult to compute, we chose

to perform a totally different series of computer experiments. In

these we drove the disk with a forcing that would preferentially in-

duce long-wavelength oscillations.

Two devices were available for this purpose. The most obvious

was to simply use a forcing whose radical variation is smooth and of

large scale, and similar in shape to the expected long-wave response.

In line with this, we chose to use a force proportional to

r e



which is of the rough shape of the earlier (low a ) S1 eigenfunctions.

Secondly, we chose to force the disk with an exponentially growing

force,

re-r 2/2 cos wt eSt

so that, at any instant, the response will be principally that caused

by recent forcing, and less that caused by long-previous forcing. The

latter response would naturally be expected to be more corrupted by

short-wavelength functions, as the transformation, whether numerical

or dynamical, from long-wavelength functions to short-wavelength func-

tions has to have some finite time scale. Therefore we excluded the

evolved responses to earlier forcings as much as possible with the de-

vice of growing forcing.

Intuitively, to avoid the evolution of long-wavelength responses,

it might be thought a better idea to impulsively force the disk. How-

ever, this method of forcing necessarily induces responses at fre-

quencies far from that of the S1 mode. These other frequencies neces-

sarily correspond to short-wavelength oscillations, and so the overall

response would have large amounts of non-long-wavelength eigenfunctions.

One very convenient form for writing the response of the disk

to the above forcing is that obtained by decomposing it into modes. If

the force is exactly given by

EAeEt cos wt re-r 2/2 (69)
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then the response is

n
x(t) = Z E . cos t - E . sin t (70)

i=1 Cl si

where

E . = 2E2A qi wvi(r)

((W? - W2) + 62)2 + (2ew)2

1

and

E . = Ai ((WA - W2) + E2) v (r)

((W - W 2) + E2)2 + (2Ew)2

Here v.(r) is the eigenfunction of the ith mode, w. its fre-

quency, and qi the respective component of the forcing.

This response to forcing is not what we are looking for, the

S1 eigenmode, but we can theoretically obtain this eigenmode from it.

If we were able to take n large enough to form an accurate response

function for each e, we could obtain the S1 eigenfunction by

allowing e to go to zero. The part of the response which does not

go to zero with c, the first term of equation (70), the out-of-

phase term, has as a limit

A q s. v s. (r)
s .. s l s n e ( - s 1
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whose radial variation immediately gives the eigenfunction v 1 (r).

However, a practical maximum value of n prevents this limit in s

from being taken, but it will not prevent our verifying that indeed

there is intrinsic corruption of the S1 mode at values of a as

low as 0.25.

In Figure 18 we show the out-of-phase component of the response,

as well as the in-phase component, for a = 0.30 -- which is just

below the SWLT disappearance value of a = 0.313. For a very high rate

of growth, 6 = w/2r, little waviness appears in the eigenfunction.

But as c progresses to smaller values, down to our practical limit

of w/67T, more and more radial variation arises. Thus the limit can

definitely be expected to possess a short-wavelength component.

The pattern of growth of short-wavelength corruption as a

increases is also interesting. Even though SWLT predicts that the dis-

crete mode will disappear at a = 0.313 we can continue to follow

the descendant of S1 to higher values of a by appropriately de-

fining the frequency and performing the same limit procedure in C.

Any method of choosing frequency is somewhat arbitrary, just as was

the choice of forcing function, but it is physically appealing to maxi-

mize the kinetic energy absorbed by the disk by choosing W2. We used

this rule exclusively, and found that it agreed with SWLT, and worked

without any difficulties in convergence up to at least a = 0.40.
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The gradual increase of the short-wavelength component in the

"discrete mode" is pictured in Figure 18c, where we show the response

function for a = 0.20 through a = 0.40 for an E of w/47.

There is apparently no sudden increase in waviness upon passing through

the SWLT-predicted disappearance value of a = 0.313

This gradually increasing "leakage" from long waves to short

waves at a near a cutoff radius is quite understandable in view of

the model equation of Appendix IV: near the cutoff radius the two

saddle points in the asymptotic solution to the integral equation move

close enough together so that they cannot be treated independently.

At this point the discrete frequency mode has both long and short wave

components. On the other hand, for a < 0.313, the 1-wave component

must still alone satisfy the boundary conditions which caused it be

discrete, and thus the spectrum but not the eigenfunctions give witness

to the abrupt disappearance of the last discrete mode.

v) Summary

The variation of the modal spectrum with a can be very con,-

cisely summarized in one diagram. In Figure 19 we show the theoretical

spectrum for values of a from 0.0 to 0.35. The lowest values of

a, 0.0, is clearly seen as a very special case: the unstable eigen-

modal traces tend to it only asymptotically, as they run out to negative

infinity. The positive continuum of stable modes approaches arbitrarily

close to a - 0.0 but does not occur there. Only the discrete stable
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Fiqure 18c. The variation of the out-of-phase response to a
growing forcing for various values of offset a, shown as
functions of radius r. The composite wavefunction Es
shows increasing amounts of the short-wavelength component
as a approaches and passes acrit'
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of the solid lines, but the extension of S1 to higher values of a by our forcing arguments are
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frequencies extend from 0.0 into the remainder of the diagram.

These latter modes disappear when they contact either the cutoff curve,

or after they enter the thin band of frequencies along w2 > 0

not treatable by SWLT. Finally note that the continuum upper limit

shrinks, being given exactly by K2(0,a) which itself is a measure

of the weakening of gravitational force brought on by the increase in

a.

This entire set of predictions has been shown to be accurately

borne out by the full disk calculations, as shown by the calculated

eigenvalues superimposed in Figure 19. In brief, the axisymmetric

modes are both quite complicated, but also quite understandable by

asymptotic analyses.
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IV. RESULTS OF NONAXISYMMETRIC CALCULATIONS

Nonaxisymmetric motions of our model galaxy are, expectedly,

much more complicated than the axisymmetric motions we have just

examined and, regretably, even with this simple model, less amenable

to explanation. In this chapter we will principally describe several

types of modal behavior that the disk can display, and secondarily,

for a few modes, provide an interpretation in terms of a straightfor-

ward application of SWLT.

Before proceeding to the reportage, it is useful to recall that

for the same number of sampling points, say n, there are twice as

many nonaxisymmetric eigenfrequencies and eigenmodes, 4n, for each

non-zero azimuthal mode number m, as there are axisymmetric ones.

Furthermore, while the axisymmetric eigenfrequencies always occur in

pairs, the nonaxisymmetric may or may not. Real eigenfrequencies occur

without any partner at all, while complex eigenfrequencies are accom-

panied by their conjugate. This last fact of course occurs because

the modal eigenfrequencies are the characteristic values of a matrix,

denoted by M in equation (55), which we were able to write in real

form by a particular choice of phase for the displacements.

To accommodate these complex frequencies, we will be forced to

display the spectrum in a plane rather than stretched along a line, and
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consequently the illustrative pyramids of eigenvalues used in Chapter

III are not as appropriate here. They might be used for the stable,

i.e., real, frequencies, but even this usage has difficulties. The

eigenfrequency calculations with smaller numbers of sampling rings, say

10 or less, simply are not accurate enough to reveal the discrete fre-

quencies which stood out so clearly in the pyramids. For this reason,

the only method we used for the detection of nonaxisymmetric discrete

stable frequencies was the comparison of spectra for different sampling

locations, each done with the maximum practical number of rings, 20.

This latter limit arises because the computer used for the majority of

the nonaxisymmetric calculations was able to process at most 80 by 80

matrices.

Even with 20 rings, accuracy problems still remain. For example,

two nearly equal stable eigenfrequencies can, for some choices of samp-

ling point location, turn into a complex conjugate pair of frequencies

with a very small imaginary part. In spectra where this happened, an

empty gap appears in the stable portion of the spectrum. We did not

attempt to fill in such gaps as we considered that it would not be

wholly reliable to separate out these mock unstable modes from the large

number of actually unstable modes. Fortunately, this difficulty occurs

only to a small number of modes in any single spectrum.

As noted in Appendix II, our nonaxisymmetric calculations were

done only for non-zero offset a. In the reporting to follow we ex-
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clusively concentrate on the values of a near the axisymmetric

acrit, namely from 0.15 to 0.25.

(a) General Characteristics of the Eigenvalue Spectra

Contrary to what might be initially imagined, the computed

spectra for different values of azimuthal mode number, m, are re-

markably similar. For a given value of a, the spectra for m = 1,

2, or 3 exhibit the same features, such as the existence of discrete

modes, and also change in the same fashion when either a or the

sampling locations are varied. This occurs despite the differences in

both the location of resonances and cutoffs and also the frequencies

for which they exist. Thus, comments made concerning a spectrum cal-

culated for one value of m are usually valid for other values of

(non-zero) m also.

In Figure 20 a typical spectrum is shown to illustrate the char-

acteristic features. This particular spectrum corresponds to m = 1

and a = 0.15, that is, for a less than our axisymmetric acrit'

The sampling points were equally spaced out to r = 3.2, in the

manner used for equispaced points in Chapter III. In the nonaxisymmetric

calculations, we exclusively used this method of sampling, as we found

the equal spacing of samples to be more convenient than the mass spacing,

inasmuch as the former places more of the samples at larger radii where

the disturbances are often most pronounced.

The outstanding feature of this pectrum is clearly the pair of

sloping, almost straight lines projecting away from the Re(w) axis.
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These frequencies represent highly unstable modes, with growth or decay

rates Im(w) of the same magnitude as their oscillation rates

Re(w). The remaining unstable frequencies do not consistently form

a simply shaped locus in the complex plane. However, in many cases,

especially when the sampling locations are nearer the center, these

points include one or more conjugate pairs of arch-shaped curves such

as the one appearing in Figure 20.

(b) The Most Unstable Modes

Let us first concentrate on the "line" of unstable eigenvalues.

Those points are more aptly described as beads on a necklace, as they

are quite discrete, and the gaps between individual values remain empty

for any location of sampling rings. The accuracy of these frequencies

is demonstrated in Table 6, where we give the most unstable members of

this category of mode for m = 1 and 2, and a = 0.15 and 0.25. In

all four cases the first, or most unstable, eigenmode has a frequency

accurately computed to about three digits, with the accuracy declining

for less unstable modes.

Note that only two discrete frequencies are listed for a = 0.25

for both m = 1 and m = 2. These are the only well-determined

frequencies, as the remainder have such low values of Im(w) that

they cannot be extracted from the non-"line" complex frequencies.
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TABLE 6

re

3.2

ring extent

3.6

.6344+i.6836

.5870+i.5275

.5358+i.4381

.4846+i.3559

.4350+i.2891

a = 0.25 .2802+i.0695
.2058+i.0244

1.2642+i.6515
1.1820+i.5458
1.0970+i.4541
1.0153+i.3777
.9326+i.3164

a = 0.25 .8308+i.2177
.7136+i.1555

.6339+i.6332

.5857+i.5240

.5327+i.4352

.4801+i.3515

.4299+i.2855

.2801+i.0694

.2090+i.0261

1.2645+i.6527
1.1823+i.5460
1.0961+i.4538
1.0122+i.3793
.9265+i.3270

.8308+i.2177

.7139+i.1560

.6331+i.6328

.5834+i.5196

.5284+i.4323

.4736+i.3467

.4248+i.2843

.2799+i.0694

.2092+i.0255

1.2651+i.6542
1.1826+i.5469
1.0970+i.4541
1.0207+i.3859
.9410+i.3496

.8310+i.2176

.7137+i.1576

.6318+i.6322

.5799+i.5146

.5221+i.4295

.4658+i.3434

.4175+i.2829

.2797+i.0693

.2082+i.0264

1.2660+i.6562
1.1820+i.5485
1.0858+i.4548

.8310+i.2174

.7160+i.1597

Table 6. Discrete unstable frequencies found in comparing data for 20
equally-spaced sampling points, with different outer edges.

The unstable modes of the "line" have a characteristic planform,

two examples of which are shown in Figures 21 and 22. The density maps

are contoured at equal intervals, and only the non-negative contours
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Figure 21. Density contours for the most unstable mode
with periodicity m = 2 and offset a = 0.15. Only
the contours with non-negative density are shown. The
marked contours are equally spaced in density. The disk
rotates counterclockwise; this spiral grows with time
such that w = 1.264 + i 0.653.
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Fiqure 22. Density contours for the second most unstable
mode with periodicity m = 2 and offset a = 0.15.
Here w = 1.182 + i 0.546.
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are shown. The modes are grand open-armed spirals of a trailing sense,

with the winding becoming tighter as the imaginary part of the frequency

declines. The two spirals shown are the two most unstable for m = 2

and a = 0.15.

Although these two spirals were computed for a less than

the axisymmetric acrit, spirals do persist well beyond this value,

with a large, easily recognizable spiral existing for m = 2 and

a = 0.40. On the other hand, there is a large reduction in the growth

rates when a is increased. In Figure 23 we track the imaginary

parts of the most unstable modes from a = 0.15 up to 0.25. The

growth rate does decline by a factor of 3 but there is clearly no

sign that nonaxisymmetric stabilization will occur with this model as

easily as axisymmetric stabilization did. Other calculations show that

even with the extreme value of a = 1.0, unstable modes continue to

exist for m = 2.

(c) Stable Modes

To discuss the stable modes we will concentrate solely on des-

cribing the spectrum of one typical case: a = 0.25 and m = 1.

As noted before, spectra with a greater than acrit have less

extensive lines of unstable points, however, this particular example

has no special features absent in other spectra.
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In Figure 24 we show the stable part of the spectrum, as cal-

culated for four different sample spacings. Since the frequencies

are very crowded near w = 0.3 , a section of the spectrum has

been shown expanded in scale on the right side of the figure. A num-

ber of discrete frequencies are apparent. Two stand out at

W = 0.422 and 0.337, and a sequence of 7 stretch from

W = 0.102 down to 0.017; some other tentative identifications

might be added.

To even begin to interpret these frequencies we need to

generalize SWLT to the nonaxisymmetric case. Rather than rederive

the nonaxisymmetric dispersion relation for modified gravity, let us

just note here instead, that if we make the assumption of tightly

wound waves following Lin and Shu (1964), the derivation for our model

goes through exactly as the axisymmetric one does with a single excep-

tion. In all the formulas relating to SWLT, the frequency, w, is

replaced by the frequency relative to the local convection, w - mo.

In other words, the dispersion relation merely changes to

K2 - ( m - mQ) 2 = 2nGpke-ak , (72)

where again k is the radial wavenumber.

Before, discrete eigenvalues arose in connection with special

radii, specifically, resonance and cutoff. These radii exist in abun-

dance in the nonaxisymmetric cases. In contrast to the axisymmetric
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Figure 24. The real eigenvalues for offset a = 0.25, periodicity
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were equally spaced out to the ring extent, in the manner discussed in
Chapter III. The right side is an expansion of a crowded portion of
the multiple spectra shown on the left.

-110-

0.4

0



case, there are three distinct types of resonance when m is non-

zero, rather than only one. Two are typically referred to as Lindblad

resonances, and are radii where k takes on the two values 0

and -. Equivalently, they are defined as radii where

W = m K ± K (73)

Here the positive and negative signs correspond to the "outer" and

"inner" Lindblad resonances, L + and LC , respectively. These

resonances are clearly the analogs of the m = 0 resonance, when

The remaining resonance arises from an entirely different cause,

involving the orbital frequency rather than the epicyclic frequency.

Although the dispersion relation (72) itself does not reveal any

special behavior when w = mR , consideration of the particle dis-

placements, X and Y of equation (24), does. In the present

approximation they are related by the equation:

Y = X/(W - mQ) (74)

which implies that tangential displacement Y may suffer a singu-

larity at the "corotation radius" or "particle resonance radius",

rp, where w = MR (rn).
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The loci of these three resonances are plotted in Figure 25

for a = 0.15 and 0.25 and m = 1 and 2. The only qualita-

tive difference between the sets of curves involves L~, which is

negative only for m = 1. This negative value implies that a retro-

grade pattern speed exists at inner radii, as noted in Chapter II, and

does not imply any difference in the character of the spectrum for

m = 1, such as the m = 0 instability which occurs when the axi-

symmetric w 2  can be negative.

In Chapter III we used the term "cutoff" to denote a radius

where the wavenumber took the value, 1/a, which corresponded to

the lowest allowable frequency. Here such radii are also possible, but

at any such radius there are two frequencies related to it.

By setting k = 1/a in the dispersion relation (72) and

solving for o ,

W = m (K2 - 2fr Gp/ae) 2  (75)

it becomes obvious that there will be either two or zero frequencies

for which a certain radius r is the cutoff radius. If

K2 (r) 2Tr G p(r)/ae , (76)

then two real frequencies are described by equation (75). Otherwise, cut-

off might be said to occur only for a complex pair of frequencies.
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As noted in equation (67) of Chapter III, the condition (76)

for cutoff to exist is exactly the condition for the squared axisymmetric

cutoff frequency, w2 at the radius r to be non-negative.

Thus from the axisymetric diagrams of Figure 11, we can deduce that for

a = 0.15, cutoff would only exist for radii beyond r = 2.81, while

for a = 0.25, cutoff occurs at all radii. We plot the frequencies

of the cutoffs as C+ and C~ on Figure 25a and c. As just noted,

in both diagrams for a = 0.15, these lines intersect the particle

resonance curve P at r = 2.81, where K
2 = 2ffGp/ae.

Recall that in the axisymmetric case, two types of discrete

frequencies arose, one where the long and short waves met at cutoff,

and the other with only long waves stretching from center to reson-

ance. Let us develop the analogous waves for the nonaxisymmetric case

m = 1, a = 0.25, which we are using as our typical representative.

As shown in Figure 25b, there is only one band of frequencies

which might contain discrete modes analogous to the U-modes of Chapter

III. Since the region between C~ and C+ corresponds to fre-

quencies where no real value of k will satisfy the dispersion re-

lation, frequencies from w = 0.16 to W = 1.14 cannot support

such a mode. Also, neither do the frequencies above the maximum L ,

1.96, or below the minimum L, -0.66, have real solutions of

relation (72). Lastly, the bands from 1.14 to 1.96 and -0.66

to 0.0 have no cutoff radius, leaving only the narrow region of

0.0 to 0.16.
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Again we have the problem that in the lowest part of this band,

from 0.0 to 0.03, two inner Lindblad resonance radii occur be-

tween the center and cutoff, analogously to the problem of the T-

modes elaborated on in Chapter III. Since no real k exists in

the interval of range between those two resonances, we cannot use

SWLT to describe modes occurring in this band of frequencies. This

leaves only the band from 0.03 to 0.16 to contain candidates

for a SWLT explanation similar to that of the U-modes.

Using the rule of phase differences developed for axisymmetric

U-modes, namely that the phase integrals for long and short waves

differ by (n - )7 , we can predict the frequencies at which U-

modes should occur. For our representative case, six such frequencies

occur, as indicated in Table 7. For comparison, the seven detected

discrete frequencies are also listed, along with a debatably discrete

frequency which appears near the highest predicted value. The lowest

two detected discrete frequencies fall below the band in which SWLT

is applicable -- these modes, if they are the analogous to the T-

modes, "tunnel" from resonance to resonance with complex values of

k.

Unfortunately, even such limited success does not occur with

the analogues of the S-modes. SWLT applied to the example case in-

dicates that a 11-f mode should exist at w = 1.167 with a

wave stretching between the center and L+, and another 1 -rr
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TABLE 7

SWLT
Predicted Computed

n Frequency Frequency

1 0.139 0.142 ?
2 0.108 0.102
3 0.083 0.076
4 0.065 0.058
5 0.052 0.045
6 0.042 0.038

- 0.028
0.017

Table 7. Comparison of nonaxisymmetric predicted
and calculated U-mode frequencies for a = 0.25
and m = 1.

mode should exist at w = -0.064, lying between the center and

L~. These frequencies do not correspond to any discrete frequency

in Figure 24. Conceivably, the computational accuracy might be in-

sufficient to indicate the discrete modes; however, the S1 modes were

by far the best computed of all axisymmetric modes, as can be seen

by the two-ring calculations in Figures 7 and 12. No other values

of a or m fared any better.

Conversely, the other two discrete frequencies, 0.422 and

0.337, do not correspond to real wavenumbers for almost all radii.

As seen in Figure 25, the only real solution of the dispersion rela-

tions at those frequencies exists between C+ and L+, but

over this interval the SWLT-predicted integrals of long waves amount
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to only fractions of ff , thereby disallowing any SWLT explana-

tion similar to the S-modes of Chapter III. Furthermore, as was

discussed in connection with the N-modes of Chapter III, cutoff and

resonance boundaries do not combine to form discrete modes, at least

in the axisymmetric cases. Thus, a wholly unique explanation seems

to be necessary for these two modes.

(d) Other Unstable Modes

Little can be said with confidence about the remaining un-

stable modes, as they have the least well-computed frequencies.

There seem to be no unstable discrete frequencies other than those

previously mentioned. However, the modes whose frequencies fall on

an "arch", such as in Figure 20, appear to comprise a one-dimensional

continuous spectrum. Because of the curious contours of the density

plots we include, as Figure 26, the planform of a typical "arch" mode,

computed for a = 0.15 and m = 2, the same values as Figures

21 and 22. Two sets of peaks and valleys occur in this mode rather

than one. The large innermost peak is the higher one and is located

just inside the corotation radius. The smaller peak has a maximum

value of only 7% of the first peak, and lies just outside corotation.

Other modes of the arch appear similar, but with differing peak density

ratios and longer spiral-like tails. But as with the grand spirals,

no SWLT explanation was found.
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r 4

Figure 26. Density contours for a mode lying on the "arch"
of unstable values. For this plot a = 0.25, w = 1.214
+ i .058. The contours on each of the two hills are
separately equispaced in density; however the maximum
height of the second, outer peak is only seven percent of
the maximum of the inner peak.
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APPENDIX I. DISPLACEMENT INTERPOLATION

All the calculations done with the model were carried out by

computing radial and tangential displacements of the equilibrium disk.

The purpose of this appendix is to show why a direct interpolation of

the displacements is inferior to a symmetrized interpolation of weighted

displacements.

To do this we must consider the requirements of continuity.

Let (x, y) be a rectangular coordinate system with the origin at the

disk center. Any continuous displacement of the disk can be described

by the function of x and y which describes the motion of the

point (x, y) along the x and y axes. Denote these displace-

ments by (X, Y). Assuming the displacements arbitrarily differentiable,

these functions can be expressed as power series in x, y:

00 00
X = E a.. x1 y

i=0 j=O 1)
(A-1)

00 00
Y = E' b.. x yi=O j=0 13

These expressions can be transformed into polar reference coordinates

(r, o) by making the substitution:
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x = r cos e

y = r sin a ,

and the displacements can be transformed into radial and tangential dis-

placements, (R , T) by

R = X cos e + Y sin 0

T = -X sin 0 + Y cos a

which lead

R = I ri+j (a.. cosi+l
i=O j=0 j

T E rj
i=O j=O

e sind a + b . cos

(-a.. cos1 e sinj+1 a + b. .
i~) ii

e sinj+i e)

cos i+1 e sin 0).

(A-4)

The trigonometric product cosm 6 sinn 0 can be written in

terms of trigonometric functions of multiple angles:

m n
cos 0 sin 0

m+n mn mn
= E (Ak sin k e + Bk cos k e).

k=O

If n is odd, the left hand side is odd around

mnfore Bk = 0.k If n is even

that Amn = Bmn = 0 both fork k

Amn o
, Ak=d . A

k odd if m+n

(A-5)

o = 0, and there-

nother identity is

is even, and for

4 20,

(A-2)

to

(A-3)



k even if m+n is odd. This identity is easily proved by recur-

sion. If it holds for m = m 0 , n = n it also holds for m = M +1,

n = n o and for m = m 0, n = n + 1 as can easily be seen by per-

forming the multiplication and using the identities

cos

cos

sin

sin

o cos k

o sin k

o cos k

o sin k

0

0

0

0

= cos

= sin

= sin

= - cos

(k+1)

(k+1)

(k+1)

(k+1)

o + cos

o + sin

o - sin

o + cos

(k-1)

(k-1)

(k-1)

(k-1)

0

0

0

0

(A-6)

Since the identity is obvious for m = 1, n =

the recursion shows it holds for all m and

In terms of multiple angles

0 and m = 0, n = 1

n.

R and T become

00 00 i+j
R = E r (a

i=0 j=0

i+j+1
b..

13 k=0

i j+i
{

= r (-a..
i=0 j=0

i+j+1
E

k=0
{A1+l j sin
k

i j+i
sin k 0 + B

k

i+j+ 1
E

k=0

i+1 jk e + B cos k e} +
k

cos k e}),

i j+i i j+i
{A sin k e + B

k k
cos k e} +

i+j+1
b.. E

13 k=O

i+1lj i+l j
{A sin k e + B cos k })

k k
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Inverting the series summation order produces

00 00 00

R = {sin ke E E ri+j
k=O i=i j=j 1

+ cos ke z E r i+

i=il j=jl

00 00 00

T = E'{sin ke z E ri3
k=O i=iij=ji

00 00

+ cos ke E Z ri+
i=ij=j 1

(a Ai+1 j + b Ai j+
ij k ii k

( 'BF1 j + i j+1(a. B1+l ~+b B1l)
ij k ij i

(-a A j+1 + b. Ai+1 j)
ii K3 k

(-a Bi j+1 +b
ij k

(A-8)

1+1
ij Bk l

where ii = max (0, k-1)

Finally note that for

and j = max (0, k-1-i).

k = 0 we have as the first non-

zero term

r(a B20 + b B11 + a0 B11 + b0 B02) (A-9)

as a trigonometric identity causes the r0  term to be zero. For

k = 1 and higher, the first term is a trigonometric function times

rk-1 as the inner summations have non-zero lower indices. Thus R

and T in the mth mode have power series starting with rim-11 ,

and we therefore interpolate R/r~m-11 and T/r~m-11 rather than



the unweighted displacements, so that continuity will be maintained.

Also note that the second trigonometric identity forces both R/rIm-lI

and T/rIm-1I to be power series in r2  rather than r. This

restriction on the expansion is handled by using only symmetric func-

tions of r. We double the number of interpolation points and obtain

their values by reflecting the original set over the r = 0 axis,

thereby obtaining a symmetric set of interpolation points. This pro-

duces a symmetric spline curve for interpolation, and satisfies the

second requirement for continuity.
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APPENDIX II. COMPUTATIONAL METHODS FOR a = 0.0

As noted in Chapter III, the kernels of the force integrals of

equation (51) are mildly singular for a = 0.0, and, as would be

expected, our usual technique of integrating with equally-sized gauss-

ian panels proved to be inaccurate even with twice the number of panels

typically used for non-zero a . We therefore wished to find a con-

venient method of performing the integration which would be efficient,

in the sense of minimizing the number of evaluations of the integrand

required for a given accuracy.

Rather than explore the possibilities of transforming the

variable of integration, or of using another type of integration in

place of the gaussian, we decided as a first approach on merely op-

timizing the placement and sizes of a fixed number of our usual

gaussian panels.

For reference, let us here recall that the integral of a func-

tion f(x) from xa to xb is approximated according to many

integration schemes by the weighted sum of several values of the

function:
xb n

f(x) dx z w. f(x ) (A-10)
xa i=1 A

where
xa < xi < xb,=l 1 ....n.
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The gaussian method differs from similar schemes in that the

points x. and weights wi are chosen so that polynomials up to

order 2n-1 are perfectly computed. We make use of this method in

the non-singular case by dividing up our total integration range into

NI equal panels, as noted in Appendix V, and by then using ten-

point gaussian approximation on each of them.

Now, in the singular case we have Km(r,p) and

a/ar Km(r,p) contributing singularities to the integrand of the form

K m(r,p = r + = - G ln 62

(A-11)
Km

S(r,p = r + 6) = 2G/ .

Naturally, we should take advantage of the symmetry of these singu-

larities, and place the panels in a symmetric fashion around the

singular point r = p. The two obvious choices were to have the

singular point be the center of one of the panels, or to have it be

located at the boundary between two equally-sized panels. Since in-

tuitively it seemed to us that a polynomial would fit one side of

the singularity better than it would fit both sides simultaneously,

we chose the latter course of action.

This left the question of how panel sizes should be arranged

and allocated. However, since the majority of the contribution to the

integral does not come in the vicinity of the singularity, but rather
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from the more well-behaved regions, we cannot severely deplete these

latter regions of panels. Yet the integral in the region of the singu-

larity will not be well computed unless that region receives a larger

than normal number of panels. With these considerations in mind, we

concentrated on a family of arrangements which would satisfy these re-

quirements and yet leave us some room for optimizing. The family

studied was one in which each symmetric panel size on both sides of the

singularity was increased by a constant ratio over the adjacent panel

on the side toward the singularity, and, as shown in Figure A-1, we

continued this pattern symmetrically away from the singularity until we

came to one of the two boundaries, either the center or outer integration

edge. The remaining region, shown here from A to E, was given a

number of equally-sized panels. Within this scheme, two variables were

still at our disposal, the ratio of adjacent panel sizes, and the number

of panels allotted to the symmetric region OA as opposed to those in

the remainder AE.

After a considerable amount of experimentation, we found working

values for these two quantities which seemed superior to all others tried,

in the sense that, for a given number of points, the integrals using

these values more closely agreed with the integrals computed with very

large numbers of panels. The final values used were: 1.5 for the ad-

jacent panel ratio, and a panel distribution allotting the region AE

half the number it would have received in the equal-sized distribution

used for the non-singular cases. These values were then used for all

of the a = 0.0 computations presented in this thesis.
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Figure Al. The arrangement of integration panels for the singular
case a = 0.0 . Panels are progressively smaller nearer the
singularity S in the region 0 (center) to A, and equally
spaced from A to E (outer edge of integration).
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Although this method is comparatively efficient, there is a

higher computational cost involved in calculating the singular force

matrix as opposed to the non-singular. In the latter we would use the

same panel placement for each of the n2  or 4n2  integrals (axisym-

metric or non-axisymmetric), and this conveniently would allow us to

compute many common quantities once for each evaluation location, rather

than n2  or 4n2  times. In the singular case, a total of n

different panel arrangements were used so that these common quantities

were computed n times as frequently as in the non-singular cases.

Two other factors add to the cost of the singular cases, first, more

panels are needed for a given accuracy, and second, on the small computer

used for the majority of the calculations performed, the common quantities

for the n different panel arrangements had to be swapped in and out

of core n times each. For this compelling reason, no non-axisymmetric

calculations were made in the singular case.
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APPENDIX III. AXISYMMETRIC SHORT WAVELENGTH THEORY

From the abundant numerical agreements between theory and experi-

ment listed in Chapter III, it is clear that SWLT accurately explains

most of the behavior of axisymmetric perturbations. The purpose of

this appendix is to derive formally the SWLT equations which we referred

to in Chapter III. Phase and amplitude estimates will be discussed as

well as the modifications to the theory necessary at the center. By

itself, SWLT is not capable of predicting the behavior at resonance,

and for this reason a special study was made of the resonance region.

This study appears in the next appendix. The discussion of wave matching

at cutoff is also considered in Appendix IV.

For the purpose of deriving SWLT, we will need to make two assump-

tions about relative magnitudes. The first is standard: wavelength is

small compared to the scale of the disk. The second arises from our use

of reduced gravity: the gravitational offset parameter a is also

taken to be small compared with the scale of the disk, that is, of the

same order as or smaller than the wavelength. Actually, these assump-

tions are formal and are useful in performing the derivation. As was

seen in Chapter III, SWLT may still be surprisingly accurate even

though the assumptions are not fulfilled.
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Let us start with some definitions. Rather than carry out the

derivation in terms of the displacements used in the calculations, we

will use velocity variables as have been used in all previous SWLT

formulations for thin disk galaxies, e.g. Lin and Shu (1964). From

the outset, let us take the variation with time of all quantities to be

proportional to exp(iwt), as we look only for modes of a fixed

frequency. Let '(r,z) be the perturbation potential, at radius

r and height z as computed with gravity reduction; let u'(r)

and v'(r) be the radial and tangential perturbation velocities,

and p'(r) the perturbation density. As usual, equilibrium surface

density is still denoted by p(r).

First, we connect potential and surface density via Poisson's

equation

+ + 2 ' = 47r G p' 6(z). (A-12)

Here 6(z) is the Dirac delta function. Now let us make the short

wavelength assumption by expanding $' in terms of x, a large

parameter representing a typical wavenumber:

= exp (i x {F0(r,z) + x~1 Fl(r,z) + ... }) . (A-13)

By substituting this into Poisson's equation for z 0 and ordering

by powers of X we obtain separate equations for F (r,z). To
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0(X 2 ) we find

a F

I2F

+ z S0 ,

which has two separate, non-combinable solutions

F0 = fo(r + iz) and F0 = f*(r - iz)

where f0  and f*

Continuing, we find to

)FO a F1
-2 +

a r a r

(A-14)

(A-15)

are functions of one argument, as yet unspecified.

0()

32 FO i 9FO @F0 a F1  o2F0
i + -2 += +L

r a r

(A-16)

which reduces by cancellation into

a F _ a F1

H r + use zw~

Here the upper sign is used when

i

2r

F0 = fo,

= 0 .

the lower when

In the former case

F1 - fl(r + iz) + 'ln r
2
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and in the latter

F1  = f*(r - iz) + iln r
2

(A-19)

where fl and f* are also unspecified functions.

We now make the connection with surface density by integrating

Poisson's equation from 0~ to 0+, which results in

a - a Ia 0+ - a z 10 ~

= 47 G 11' (A-20)

and using the obvious symmetry above and below the disk

= 2ff G P' (A-21)

0

Since SWLT is based on the existence of consistent local wavenumbers

for all functions, we can write surface density in terms of the same

wavenumber expansion as potential, with its own amplitude:

P' = Ani (M + X~1 Mi + - --) exp i X (F0 + x-1 F1 + '). (A-22)

In this expansion n, lending powers of X have been appended to

make possible a consistent set of first order equations, as we shall

see shortly. With this expansion, equation (A-21) is, to leading
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order in X on both sides,

2S G n-1 e f i D FO
3 z

Similarly, to the next order we find

27r G An,-1 = a F1
Sz

These can be written in terms of the two alternate solutions for

M = -1 nj ',fo,
27T G, iT r

1 27T
Mo = 2rrG "1' 1ar ,

M = -1 af

2T G n-1 D r

1 af*.
Mi = 2_ _ G r 1

Now we can interpret the alternate solutions. To be physically realistic,

we must have solutions for c' which decay at large distances from

the plane of the disk. In turn, the use of SWLT implies that potential

is locally determined, and therefore potential must decay away from the

plane of the disk even for small values of jzj. We can accomplish

this by using the fo solution if
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Im . .fo. z
az I

= Re zfoz
Iar I

solution if

Im f 0 z
az I

is positive, assuming that fo

another in the plane z = 0.

the solution

and

This is

r *Re afO z
ar

fo are mirror images of one

equivalent to saying we will use

fo(r + is Iz|)

at all times, where we choose s to be

S = sgn {MIQJ
ar

the sign of the radial derivative of fo. Thus we no longer have to

refer to the starred alternate solutions, but instead have a single

form for q' and 1':

= exp i x (fo(r + isizi) + x-1 fi(r + islz|) + i n r +...)
2

-' = x (r) + ~ 2- (r) +27rG (a r a r) (A-26)

exp i x (fo(r + isizi) + X-1 fl(r + isfzj +I n r +
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Before leaving the solutions to Poisson's equations we have

one last item to derive. According to our device of reduced gravity,

the force that the particles feel is gauged by the derivative of the

potential evaluated on a plane at a height a above the disk. Thus

the force will be given by

4, X f(r + isa) + x-1 of(r + isa) + 5-+Lrar 2r ''-

(A-27)

exp i x [f(r + isa) + x~'(fi(r + isa) + + ..

In order to be able to cancel the wavenumber exponent from the dynamical

equations, we need to write this in terms of the original wavenumber

plus a correction. Here we make use of second assumption, of the small-

ness of a, and write

f (r + isa) ~ fo(r) + isa dfo(r) +(isa) 2 d+f-
dr 2 d~f (r) + .. (A-28)

and similarly for fj and their first derivatives. Let us rewrite

the force expansion, keeping only those force terms which contribute

to first or second order in J 1. We will assume that a = O(A-1)

at most, as if it were much greater than X-1 the perturbation force

acting on the particles would be exponentially small. So we have
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=f(r) + df( ( r (r) + I

exp i X ffo(r) + isa L!0(r) -a 2 d2f0L dr -r

+ x-1 (fo(r) + isa Lf 1 (r) + I ln r) (A-29)dr 2

Finally, we further expand this by writing the terms of 0(X-1) in

the exponent as a power series

= i X 0(r) + isa d (r) + X-1(.u1 (r) + -

SI Xa 2 d2 f (r) - as LI (r)-

exp i X ffo(r) + i sa df0 (r) + X-1(f (r) + I ln r)l
L dr 2

(A-30)

We are now ready to examine the dynamical equations:

i w u' - 2o v' = -

S V' + e '= 0 , (A-31)
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which we combine, as usual, into

W2 u'+ K 2 U' = -i W

At this point we require an expansion of u':

U' = n2 (UO + X-1 U1 + ... ) exp ix (fo(r) +

X-(fl(r) + ln r) +

which we immediately insert into the dynamical equation:

(K 2 _ W2 ) X 2 (Uo + X-1 U1 + . = fdfo (r) + i sa

(A-32)

(A-33)

d2 fo (r) +

a2 ( d2f
2 F (r

as $r (r)3 exp -as X dr (r), (A-34)

Following the routine of SWLT, we decompose this in powers of

(K2 _ W2 ) Xn2-1 Uo = A fo exp (- as d d (r))
dr P T s i r)

(A-35)
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(K 2 _ w2 ) Xn2- 1 U W isax 0 (r) + dfl (r) +I d-r-Tdr

i df0  - 2a2d2f
2r + dr 2 x drI 2 0 (r) - (A-36)

as A d1 (r) exp -as A d (r)].

Having expanded both Poisson's law and the dynamical equations,

it remains only to expand the continuity equation before we can balance

and solve the entire set. The continuity equation:

iWP' + r d (rpu') = 0 (A-37)

merely becomes

WX nj-n2-1 M0 + P UO i d

ioAn-n2- 1 M + P U i dr + P UO

1d 1
r (riir UO) 2 U 0 0 .

= 0 (A-38)

df, +
dr

(A-39)

Let us use the first order equations to decide on the leading powers

of A:
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Poisson's law

dynamics

continuity

0(G) 0(X1 0(1)

=( (2)

O(Xnl) nO(X2+1

where we have deliberately introduced G, the gravitational constant,

into the balancing scheme as a device to satisfy all three equations

simultaneously. The solution is thereby quite clear:

ni= 2

n = 1

0(G) = 0(Xl) .

With this order scheme, the solution of the total set of equations is

now quite straightforward. For the first order solution we solve equa-

tion (A-37) for UO and replace UO in equation (A-35) with its

equivalent:

(2 - W2) -W MO w df exp (-asx d r) .
d df (A-40)

Then by using (A-25) to replace MO we find

K2 -2) [ is (a
(K2 W (2) - GX)' = u - exp (-as>, !0 (M)),

p .r
(A-41)
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or equivalently

W2 = K2 - 2w Gp. xs 9f0 exp (-as x df0) (A-42)
dr dr -

Of course, this is the dispersion relation, and it becomes more familiar

by replacing Adfo/dr with k, a specific symbol for the wave-

number:

W2 = K2 - 2w GP jk( exp (-ajkj) . (A-43)

This equation was the basis for most of our SWLT conclusions in the body

of the thesis.

The second order solution is not much more difficult. If we

make use of the first order result,

0 2irG '
(A-44)

equation (A-39) becomes

-iws df 1 + U . dif-0 + iws ds
2 d G dr dr 27 Gx dr r 2n Gx

1 Ws
2r 2w Gx (A-45)= 0
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u u 1  +fo 1 WS
di: 2r 2w~ Gx = 0 . (A-46)

If we write equation (A-36) as

U = isax d 0 +dr di + - + 4- o -i ) 2 a2 d2f - as df
dr dr 2r dr 2 dra dr

exp (-asx d0)

K2 W2 I
the rightmost term, in braces, can be replaced with

1/(2n GP. X s dO)

by using the dispersion relation. This leads to

27 G .a U1 dfi

dr = s a x + + +=ia dr7 dr 2r

df(- X2 d2f0 - as )dfl,dr 2dr2 a dr' (A-48)
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but equation (A-46) can be rewritten as

21 Gxp U1 U
i

Thus equation (A-48) becomes

0 = sa, + + f (- 2  
2

- a s x dfi)

which we solve for the unknown df /dr

df - isa A - i X2 2 df
1 =2 dr d2f0

-as f0 dr

and integrate by rewriting as

d dfo
df ( - asx dr ) i d2f
dr =~ 2d ~

(1 -asx r

Thus
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fi - In (1 - a s X !KO)- asx If0o
2 dr 2 dr

plus an inconsequential constant.

To second order, the perturbation velocity u' can be

written now:

=s + A- 1

\ ~i
iW2 exp

27TrGLp 2r -

+ i-1 ( in (12

a s 0 + L'1n r)]

- asx 0)dr

(A-54)

u2 (1
27rGP

+ 2r f ) 1f
2r x d0/ r(1-asAdf)dr dr

(A-55)exp (i x f + a LQ)0 2 dr

In terms of the wavenumber k = x dfO/dr, we can write this as
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ix (f 0 (r)

or



u WS-( I+ -&) 1 xU' = 2rG( 2rk /r(1-alkI)

(i f r k dr'-+- 1 k) .0 2 (A-56)

Except for the 0(k~ 1) term in the first pair of parentheses, this

formula can be derived in a fast, more intuitive way by appealing

to conservation of energy. As noted by Toomre (1969), for axisym-

metric waves, wave energy is maintained while propagating radially,

and furthermore the velocity at which it propagates is aw/ak.

From the dispersion relation, equation (A-43) we can find that

aw/3k = - 27Gp exp (-alki) (1-alkI) s/2w . (A-57)

Since wave energy is proportional to the amplitude of kinetic energy,

y u'2, we immediately deduce that

by insisting that the energy passing through any circumference is

constant. Thus we again find

1 1 1 (A-58)U - r/ exp(-aIk|) V1-ak(

just as before.

-144-



Now let us analyze the center of the disk. In the regular

derivation just finished, we solved Poisson's equation under the

assumption r = 0(1). Clearly the solution obtained is not valid

in the center. However, a complete set of nonsingular solutions to

Poisson's equation for potential in polar coordinates can be written

as merely

p'(r,z) = C Jo(wr) e- (A-59)

where C and w are arbitrary constants. We will use a single

solution of this form as the inner solution to our set of equations,

valid over a small region in the center where wavenumber is approxi-

mately constant. Then, we must match this solution with the one just

derived which is valid for larger radii. The center solution, written

asymptotically in r, is

'(r,z) ~ C e-WZ / 2sin (wr - w/4)
1' 7wr

- C e-z /1 i(wr-7r/4) -

/2wr

-i(wr-7/4) ) . (A-60)

Thus two of the outer solutions can be summed to match this, resulting

in
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'(r,z) = C V2Tr - (0 ) r -i (exp (ixfo + if, - iwr/4) -

exp (-ixf + if1 + i 7/4))

where we note that the coefficient of fl

fo is replaced by -fo because fl

does not change when

is a real function of

We can replace the leading constants with unity by a proper

choice of C, leaving the solution for

'(r,O) =

Similarly, the velocity

u'(r) =

z = 0 as

Cs/exp (-ak|) '-ak|

cos ( f 0 k dr' - 7/4) .

becomes

W 1 1 1

27rGp A /-alk /exp(-alkI)

r
(sin (Jr k dr' - 7/4)

+r
+ 1-Cos (fr kdr - ff/4))

2rk 0
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APPENDIX IV. CONCLUSIONS FROM A MODEL EQUATION

In this appendix we will be studying a particular approximation

to the axisymmetric dynamical equations, designed specifically to deter-

mine the phase condition at the resonance radius. For this purpose,

no attention will be given to the global variation of parameters. In-

stead, we will be drastically modifying the dynamical equations so as

to make them nearly soluble analytically.

1. Approximation

The model equation which we will shortly be deriving can most

concisely be described as the resultant equation in the limit of zero

perturbation density. The dispersion relation indicates that as the

density participating in the perturbation declines, the wavelengths

involved in the solution will proportionately decline, assuming of

course that we similarly diminish our gravity offset a. Suppose

that we rescale distances on the basis of either wavelength or a,

all the while keeping the resonance position fixed in space. First

of all the center of the disk will recede to infinity, making curvature

effects disappear. Second, equilibrium density will approach a constant.

And finally, K2 (r) - w2 will become linear with a single zero at
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our fixed resonance point. For convenience, we may take that resonance

radius to be the center of the stretched coordinate, which we label r

to indicate its original purpose.

Under these three conditions, the dynamical equations are greatly

simplified and much more amenable to analysis. However, the approxi-

mation process has so drastically altered the equations that we expect

no possible comparison of prediction between the model equation solution

and SWLT for the original disk. Instead, we can expect that certain

invariant conditions, such as the boundary condition at resonance, will

remain the same, and now be derivable -- this is the purpose of the

modeling.

Because the assumption we make concerning K2 (r) is nonphysi-

cal -- that it be linear over an infinite range -- we cannot necessarily

assume that a solution of the model equation exists. Instead, to inter-

pret the results of the formal solution we found it necessary to apply

a slowly growing force to the model, and then allow the growth rate to

diminish. The usefulness of this device will be evident later when we

examine the formal solutions of the equations.

2. Derivation

The fundamental equation for the model is of course the dynamical

equation of Chapter III, which we write now as

a2X +K 2(r) x' = - + F (A-64)



Here x'(r,t) is again the real radial displacement, ', the

corresponding potential and F, an applied force. We will be

examining the response of our model equation to an applied force with

wavenumber s* and with time dependence of the form

F = Re{A eis*r eiwt + gt} (A-65)

where w is a real frequency and g a small growth rate. Because

of the linearity of equation (A-64), we will want to assume that x'

and $' have the same time dependence in their solutions

x'(r,t) = Re{x(r) eiwt + gtI

(A-66)

'(r,t) = Re{4(r) eiot + gt; I

Owing to the spatial inhomogeneity in our model equation, these two

functions will by no means have the same wavenumber dependence as

Let us now introduce the assumption that

K2(r) = 2 + Dr

which puts resonance at r = 0 in the limit of small

here a positive constant. Then equation (A-64) becomes

g. D is

(Dr + 2iwg + g2) x =
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Having the dynamics completed, we can turn to the evaluation of

the potential. Since we have approximated away all curvature effects

in the model equation, the perturbation force -d /dr can be re-

garded as the sum of the forces from a set of infinitely long thin

rods, oriented perpendicularly to the coordinate r, and each pos-

sessing a total line mass density j(r)dr:

dr= - (P) dp 2G r- p) (A-69)

Of course 5(r) is the surface density. Note also that we are here

using reduced gravity with offset a. Owing to our neglect of curva-

ture forces, j-(r) is merely -d where p is the constant
dr

equilibrium density participating in the perturbation. By simply inte-

grating by parts we can write the above as

00

- d 2G p x(p) a2 + (r-p)22 dp (A-70)

Then for convenience, let us designate the term in braces as the kernel

K(r-p). Thus the final dynamical equation emerges as

Co

(Dr + 2 iwg + g2)x = 2 G p K(r-p) x(p) dp + A eis*r

-00 (A-71)
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3. Formal Solution

The convolution form of equation (A-71) is well-suited to be

treated by Fourier transforms. Let us denote the transform of x(r)

by 1(s), defined so that

CO

x(r) = jX(s) eirs ds

-00

(A-72)

and use the integral to replace

(Dr + 2iwg + g2) -k(s) eirs ds

-CO

x(r) in equation (A-71):

2Gy K(r-p) '(s) eirsdsdp + A eis*r

(A-73)

In textbook fashion we modify the first term on the left-hand side by

integrating by parts

Dr X(s) e irs ds = -i Y(s) Deirs + D eirs d! ds , (A-74)

- CO 00O

and then carry on with the solution by temporarily assuming that X(s)

goes to zero at co.

Similarly, the standard modification for the convolution term is

merely
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00 00 o

2Gp JK(r-p) Je Ps Y(s) dsdp = 2GP JX(s) eirs ds ei(p-r)sK(p-r) d(p-r)
-0 -Co -00 _( 7

(A-75)

The inner integral on the right-hand side

Jeiys K(y) dy = eys a2 + y2 dy
0- f C (az + yz)2

f eiys 2a2

(a2 + y 2 )2

(A-76)

az + yZ_ dy

is easily evaluated. Of the pair of terms, the second is soluble in

terms of contour integration as

(A-77)

If Re s is

of arbitrarily

pole at ia.

sequently, the

where a = sgn Re s.

greater than zero we close the contour in a semicircle

large radius above the Re y axis, incorporating the

If Re s is less than zero, we close it below. Con-

second integral has a value of

7 e-aasa

For real s we can write this as

7 e-alsl
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The first integral is evaluatable as a derivative in

giving us a final value for the whole integral of

r Is j e-als

for real s and a similar formula for complex

a of the first,

S.

This in turn leads to a form suitable for replacement in the

transformed dynamical equation:

00

2Tr G { (s) eirs ds ffIsi e-alsI

-CO

(A-78)

Lastly, in the same spirit of Fourier transforms we write the applied

force term as

A eis*r = A eirs 6(s-s*) ds, (A-79)

and this enables us to write equation (A-71) as a single Fourier trans-

form:

00

eirs iD dX+ (2i&g + g2 ) 1- 2r Gp Is| e-as| Y - A s(s-s*) ds
I d - 0,

(A-80)
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which is equivalent to

i 0 dj+ (2iwg + g2 ) Y - 2Tr Gy IsI e-alsi Y = A 6(s-s*),

(A-81)

a differential equation for the transformed variable.

The solution of equation (A-81) is straightforward, and leads to

a free or unforced solution:

X exp i- {(g2 + 2iwg) s - 2ff Gy sgn s (1-e-a IsI + 2)

(A-82)

Here is a constant of integration. Now this solution leads to a

non-convergent integral for the Fourier inversion for any choice of g,

as there is a real multiple of g in the exponent. Even for zero g

we are faced with an inversion integral whose behavior at large Isi

is given by

exp (irs - 2E) ds (A-83)

which is related to a delta function at r = 0. In fact, this 6(r)

behavior can clearly be seen to arise in the direct equation (A-71) with

the right-hand side set equal to zero.
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Fortunately a forced solution can be found without these nui-

sances. The forced solution of equation (A-81) can immediately be ob-

tained from the free solution by an integration. Since the forcing is

a delta function in wavenumber, the forced solution is immediately

available:

X = A H(s-s*) exp +g2 +2ig) s

- 2n Gp sgn s (1-e-alsJ s LI k2 J} (A-84)

Where H(s-s*) is a unit step function occurring at s = s*. The

inversion integral of this function clearly converges for any finite

s* and positive g. Furthermore, the form of equation (A-84) makes

plain the difficulty with the free solution. Suppose s* is zero,

or in other words we decide to force the mode uniformly in space. Only

positive wavenumbers take on non-zero amplitudes. In general, distur-

bances at one wavelength only turn into disturbances at algebraically

large wavelengths, never at smaller ones -- the flow in wavenumber

space is unidirectional. Thus we see that the free solution does not

converge simply because it is required to have disturbances at arbi-

trarily large negative wavenumber, which will continually supply the

flow; and the sum of these disturbances is non-integrable.

Let us make the final point that the forced solution is identical

with the free solution except for the non-convergent tail at arbitrarily

large negative wavenumbers. For our purposes we can simply use the

forced solution as we are concerned primarily with the phase conditions
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on the long wavelength waves near the resonance radius. These waves

are clearly not affected by waves with arbitrarily large wavenumbers,

as is demonstrated by the asymptotic inversion of equation (A-84).

4. Long Waves at Resonance

Before proceeding with the investigation of the phase conditions

at resonance, let us transform the variables into a slightly more mean-

ingful set. First we will scale both wavenumber and distance by a,

writing

u = as u* = as*

R = r/a Rc = 2n GP/a 2 e D

where Rc is the cutoff radius where the long and short wavelength

branches of the dispersion relation have the same wavenumber, u = 1.

Then we have

x(R) = exp i {Ru + _ (g2 + 2iwg) u -
auD

(A-85)

Rc e sgn u 1- (1+ lul) e-uI I du

This integral will be evaluated by the method of steepest descent for

some values of R. Consider the relation for the zeroes of the de-

rivative of the exponent:
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i {R + I (g2 + 2iwg) - Rc elul eul} = 0D0
(A-86)

for g = 0, this has a solution for real Jul only for R be-

tween 0 and R , just where SWLT, applied to the model equation

would be valid. In order to find the phase condition, we therefore

should evaluate this integral for small positive R to obtain the

long-wavelength branches of the solution.

At this point there is no difficulty in making an asymptotic

approximation to the long-wavelength contribution, xL, to the in-

tegral (A-85). Two terms occur in this contribution, amounting to

steepest descent evaluation at ±u = ±(ur + iu.), where ur > 0:

xL(R) ~ A_ exp i {Ru + 2 + 2iwgu+R e1

I Rc e(1-u) exp (-u)1

/Z7 exp i{-/4 - 1/2 phase (1-ur-u) - i

- (u+1) exp(-u)

(2ui-ur ui)J}

+ exp i {-Ru-- + o a - Rc e (1-(u+1) exp (-u)

(Rc e (1-u) exp (-u)1

I/5T exp i{7r/4 - 1/2 phase ((1-ur-u) - i (2ui-ur u ) }

(A-87)
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Since problems of convergence are now behind us, we can take the limit

of g - 0, after which xL(R) appears as

x (R) /2, A 2 _ cos{Ru -
L a IRc e (1-u) exp (-u)I

Rc e (I-eu (1 + u) - 7r/4} . (A-88)

At resonance, R = 0, the phase of the long-wave contribution is

-7r/4, which is to be compared with w/2 for the first node in the

direction of cutoff. Thus the resolution of the phase question is

that a phase change of 37/4 exists between the last node and the

resonance radius for longer waves.

Transferred back to the original axisymmetric problem, this

phase condition determines the rule for discrete modes: Total phase

change from center to resonance must be nur, with contributions

of 57r/4 from center to first node arising from Bessel function

behavior at the center, (n-2)7r in internodal distance, and 37/4

from last node to resonance. If no nodes occur between center and

resonance, the ff/4  surplus from the center combines with the w/4

deficit from the resonance to make the total phase change merely ff.

5. Mixing at Cutoff

We can also use the linear K
2  model as a vehicle to study

the solution near cutoff, as the scaling was chosen to leave the dis-

-158-



tance to cutoff, Rc, finite. The use of asymptotics should go

through without change from resonance to cutoff, inasmuch as the

formal solution is identical between 0 and Rc. For radii be-

yond R , however, a modification will be needed as the steepest

descent points now move into the complex plane, even in the limit of

g + 0.

By using the above procedure of asymptotic evaluation of the

integral now for the shortwave contribution, we find the combined

solution in the wave-like region to be

x(R) = /2TAr 2 cos {Ru - Rce (1 - e-u(1+u) - r/4 }
a 

1"IRce (1-u) exp (-u)1 2

(A-89)

cos {Ru - Rce 11 - Cu(l+u) + w/4) }

IRce exp (-U)IJ

Here we have used the symbol u to represent the short wavelength

solution of equation (A-86), after the limit g + 0 has been taken.

Note the principal point of interest here, at cutoff, R = Rc' we

have u = u and the phases of the two contributions differ by exactly

R12, although the value of these phases is not a fixed value but a

function of Rc. This condition on phase difference combined with

the center boundary condition will provide a specification of the dis-

crete frequencies of the unstable modes, containing an obvious mixture
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of both constituents. Make note however, that this condition is much

less exact than that at resonance, as we are evaluating the contribu-

tions from two nearby steepest descent points as if they were widely

separated.

For radii beyond R = Rc, equation (A-86) has no real solu-

tion -- this of course is one of the defining conditions for cutoff.

However, we can still use steepest descent by finding the solutions

in the complex plane. Let u = ur + iui with ur positive --

then we desire the solutions to

e-ur (ur cos U + u1 sin ui) = R/Rce

(A-90)

e-ur (u1 cos u - ur sin ui) = 0

which is the complex form of the equivalent of equation (A-86). These

two equations are even and odd in ui respectively, thereby implying

that if ur + iu. is one solution so is ur - iu. Inasmuch as

the actual equation (A-86) involves not ur but ur sgn ur, two

further solutions are -ur + iu , -ur - iui, making four corners

of a rectangle in the complex u plane.

The locus of the complex values of u traces out a symmetrical

pair of U-shaped curves as R moves further beyond Rc. For R

inside Rc, and ur positive, there are two solutions of equation

(A-86) on the positive half of the real line, one inside u = 1 and
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one outside. By R = R these tc

move perpendicularly off the real

which bend back toward the Im u

which corresponds to a radial point

No points have met and they then

u axis; moving along curves

axis to intersect it when u = f/2 i

R = 'zfe Rc'

Because of the symmetry of equation (A-86) in ur, the loci

of negative values of u corresponding to real solutions of this

equation must be mirror images of those for positive ur. Thus the

continuous change in wavenumber must stop when R = Rs, which might

be called a second cutoff, as it marks the edge in R-space of de-

caying (and growing) sinusoidal waves, just as Rc marks the edge

of non-decaying sinusoidal waves.

Since u is the effective local wavenumber, it is plausible

that only solutions with positive ui are realistic, as the lower

two correspond to radially growing waves. Therefore to evaluate the

Fourier inversion integral for radii beyond R, we will want to

take a contour through the two points with positive ui. Under this

assumption, the use of steepest descent asymptotics immediately leads

to the result:

x(R) 2 /2,- exp I- Im Ru + Rce (1 - exp(-u)(1+u)) }

(A-91)

cos {Re (Ru + RCe (1 - exp(-u)(1+u) - P/2 + w/4J}

wR e (1-) exp(-u)

where P = phase (1-u) - phase (u).
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Differentiating the real exponent with respect to R will

produce an effective rate of exponential decay, which can only be

equal to the imaginary part of the effective wavenumber, Im u. This

decay rate is zero exactly at cutoff and increases as ui rises to

the maximum value of 7/2 when R = Rs. Beyond Rs our straight-

forward use of asymptotic evaluation is not valid, but we might surmise

that the exponential decay turns into a decay function of another form,

perhaps algebraic.
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APPENDIX V. CONTROL OF ERRORS IN COMPUTATION

In order to eliminate the possibility that computational errors

could corrupt the data calculated for the model, checks were made at

each separate stage on the accuracy of computation. Basically there

are three main steps in the computational procedure: first, the eval-

uation of the force matrix and the equilibrium frequencies, K
2 (r)

and Q2 (r), evaluated at the sampling radii; second, the determina-

tion of the eigenvalues of the dynamic matrix; and third, the evalua-

tion of the eigenfunctions corresponding to each eigenvalue. Each of

these was verified by an independent procedure.

As noted in Chapter II, the force integrals take the form

C*

Q a2 +2 p + P (p) A(r,p) dp (A-92)

'0

where Q is a Legendre function of order m - , S is the

density function calculated by interpolation between values calculated

at sampling radii and A(r,p) is an algebraic function of r and

p. Difficulties could conceivably arise in the accurate calculation

of the Legendre function, the interpolation procedure, or in the inte-

gration itself.
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Legendre functions were calculated by evaluating two expansions,

a singular one for arguments near 1, and an asymptotic one for large

arguments. The asymptotic formula is the one given by Gradshteyn and

Ryzhik (1965) for toroidal functions

Qk (cosh n) = (-1)k 2k r(m + k + )v sinhk e-(m+k-2) .
m-2 r(m + 1)

F(k+ , k+m+ ; m+1; e-2n)

(A-93)

where Qk (cosh n)M-12

second kind, of order

and letting k = 0,

is the associated Legendre function of the

m - and k. By substituting z = cosh n

we obtain

Q 1 --(z) = + e-(m+ ) F( I, m + ; m +1; 1M12 2(z + /'zz-2)2

(A-94)

F (a, b; c; p) is the hypergeometric function.

For the inner expansion we use the expansion of

terms of z - 1 of Erdslyi et al (1953):
z + 1
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Q (z) e~iIW7 = 2-1-v() (z + 1)V+ 1J (z - 1)~P

F(- v, -v+ p; 1 - p; (z - 1)/(z + 1))+

2-1-v r(1 + v +p) 1(-p) (z + 1 )-11+v

(z - 1) 11 / r(1 + v'- 1) (A-95)

F(- v, - v + p; 1 + p; (z -1) (z + 1)) .

It is necessary to take

resulting expression,

the limit of this expansion as P + 0. The

= 2-V (z + 1)v {- 4(1+v) - ln ((z+1)/(z-1) - y} -

F(- v -v; 1; (z - 1) / (z + 1)) -

1 >0 2 -v+k) z-1l
z(-V) k (k') z+1,

k ki 
El -V+ (j-)~ +(-)

(A-96)

is particularly easy to evaluate as the hypergeometric series and the

latter expansion have almost identical terms. i is the psi (digamma)

function and y, Euler's constant.

These formuli and the programs calculating them were verified

by comparing them with one another and with the tables of Abramowitz
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and Stegun (1964). Accuracy of better than 10-9 was maintained at

all times. It was empirically found that a crossover point of z = 1.4

gave the most efficient calculation at this accuracy.

The initial interpolation procedure used was that of cubic

splines (Ahlberg, Nilson and Walsh, (1967)). These functions are

piecewise cubic and continuous everywhere, with specified discontin-

uities in the derivatives at the points being interpolated, through

which the interpolation curve is made to fit. The simple cubic spline

has continuous first and second derivatives, with the third derivative

discontinuous. This spline can be visualized at the curve taken by

a very thin beam, which is forced to pass through the points being in-

terpolated by forces perpendicular to the beam.

Since interpolation of the displacements between the sampling

radii is one of the major techniques in our approximate calculation of

eigenfrequencies, the question should be raised as to why splines

were used, rather than another set of functions, for example, Chebyshev

or Lagrange polynomials. Polynomial methods have great advantage in

interpolating smooth functions, but the functions typically interpolated

here are those in which displacements are zero at all sampling radii

but one, where it is unity. This particularly non-smooth function

causes the polynomial interpolations to have large contributions away

from the displaced point. On the other hand, the splines tame the dis-

placements between sampling locations far from the displaced point
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rather well. This localization of a unit displacement means that the

forces arising from mass displacement at a single sampling ring are

not greatly influenced by the concurrent displacement of mass caused

by the use of interpolation.

This argument can be carried further to ask if there are inter-

polation curves superior to simple cubic splines in respect of local-

izing a unit displacement. One candidate interpolation procedure is

the spline-with-tension (Schweikert, (1966)), which is the spline

which would be obtained from a thin beam, constrained to go through

the interpolation points, but with a tension applied to the ends,

rather than allowing them to be free linear extensions beyond the end-

most interpolation points. Between interpolation abscissa, xi

and xi+1, the spline-with-tension curve takes the form

y C sinh a(x +1-x) + C2. sinh a(x-xj) + C3i(xi+1-x) + C 4(x-xi),

(A-97)

where the coefficients C.. are chosen to produce continuity of the
Ji

curve and its first two derivatives.

The programs which were used to calculate the splines were

validated by running them with a simple main program which provided

input and output, and observing that the output passed through the

interpolation points, and, in the case of the spline-in-tension, that
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the tension parameter behaved as expected. The spline-in-tension

program, run with very small tension, duplicated the output of the

spline program, thus providing another check. Since the spline pro-

gram computes polynomials and the spline-in-tension program hyperbolic

sines, it is unlikely that agreement would occur unless both programs

operated correctly.

By increasing a, the tension parameter, it is possible to

reduce the deviation of the curve from zero between non-displaced

points to as small as desired. The limit curve, when a -+ c, is

the piecewise linear curve obtained by connecting adjacent interpola-

tion points with straight lines. Figure A2 shows the interpolation

curves using splines and splines-in-tension which result from dis-

placing one ring out of twenty and allowing the remaining nineteen to

remain at rest. Notice that a tension of 50 makes a large change in

the interpolation curve, virtually eliminating any interring displace-

ment more than one ring away from the displaced ring, and reducing the

displacement peaks next to the displaced ring to about one-third of

that of the spline curve.

To get an estimate of what effect the interpolation scheme has

on the spectra, we ran several cases twice, using first splines and

then splines-in-tension with a = 50. Little difference was apparent,

with the eigenvalues differing in both real and imaginary parts by

less than 0.001. Following this result, splines alone were used for

all computations.
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1b=0

5

50

radius r

Figure A2. Effect of tension parameter a on 20-point splines
extending out to radius r = 4. In each spline, the fifth point
is displaced a unit amount, while the remainder are unmoved, just
as in the calculational scheme used.
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The numerical integration of the force integrals was carried

out by using Gauss' method of integration (Froberg, (1965)). The

quadrature formula approximates

'l n
f(x) dx by z Ak f(xk)

k=1
-1

where weights Ak and abscissas xk are chosen so that the inte-

gration is exact for polynomials up to degree 2n-1. Rather than go

to a high value of n and integrate using one application of Gauss'

formula from the center to the outer edge of integration, re, we

divided the integration interval into n, panels, where the i th

panel covers the subinterval

and applied Gauss' formula with nI = 10 to each panel individually.

This allowed an excellent test of integration accuracy to be made by

varying n , the panel number. The integration routine was also

tested on a number of analytically integratable functions, such as

exp (x) and sin(x), before applying it to the force integrals.
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In the majority of calculations nI was set at about 15.

Comparison of the eigenvalue results for n = 15 and n = 16

indicated excellent agreement. For the case of m = 2 and

a = .4, the largest relative error among the real frequencies amounted

to .025%, which occurred at the smallest real eigenvalue. Larger

discrepancies, up to .1%, occurred in the imaginary parts of slightly

complex eigenvalues.

A more sensitive parameter than the panel number was detected

in the course of the integration tests, however. The outer edge of

the integration interval is not fixed by any physical object or pheno-

mena in the model and must be chosen arbitrarily. Choosing it close

to the outermost sampling radius will make the model ignore its outer

portion, and choosing it far from the outermost sampling ring will

give the outermost one or two sampling points more effect than they

would have if more points were available to add on beyond the outer-

most. We empirically determined that the integration edge could be

placed anywhere in a wide band beyond the outermost sampling point

without making any major change in the eigenfrequencies, and that

placing the integration edge beyond that band caused sizable changes

in the arch frequencies which had the largest real components.

The case m = 2, a = .4 was used for experimentation, with

the sampling rings equally spaced between the center and r = 3.6,

the innermost at 0.09 and the outermost at 3.51. Little difference

in eigenvalues was found between runs with integration limits of 3.6

-171-



and 3.8, amounting to less than one-half percent in the real parts of

all eigenvalues and less than one-half percent in the imaginary parts,

except for the four outermost unstable eigenvalues of the arch, which

have up to ten percent variation in the imaginary parts.

Changing the integration edge to 4.2 causes much larger varia-

tion in these outer arch eigenvalues, but again the remaining un-

stable and all stable eigenvalues are only slightly changed, of the

order of one percent or less.

These arch eigenvalues are all characterized by having their

maximum displacements near the outer edge of the rings, which accounts

for their sensitivity to the integration edge. However, serious al-

teration of even these eigenvalues only occurs with extreme values of

the integration edge, compared to the outermost ring radius. In

general, the ratio of these two quantities did not exceed 1.1 in any

run, except for the test just mentioned.

The only other functions besides the force integrals which

enter into the dynamic matrix are the equilibrium disk frequencies,

o (r) and K (r). For the gaussian disk, these can be simply

calculated by power series for all radii of interest:

o2 (r) = er 2/2 Z r2i-2 qi

(A-98)

K 2 (r) = e-r2/2 r2 -2 (2(i + 1) q. - q )
i=1 1 i-i
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where

9O = 0

q. = p.00 (2k - 1)-(j-1)
j=1 J k=1 4k (k + 1)

and

pj a k~ (k +1)2k j odd

_ j-1 j H-2 (k + 2)
k=1 (k + 1) k jeen

Since they are power series which converge terms may be calculated

until a required tolerance is reached. Generally, 10-6 was de-

manded.

Having disposed of the possible causes of computational error

in the calculation of the dynamical matrix, we consider errors which

arise from the calculation of its eigenvalues. The procedure used

for this was the QR method, recommended by Wilkinson (1965) as the

most effective of known methods. To ensure against programming errors,

two implementations of this method were used and checked against each

other. The shorter of the two was the pair of programs HSBG and ATEIG
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from the Scientific Software Package of IBM (1968). These two trans-

form the general matrix into a Hessenberg (almost triangular) matrix

(HSBG) and then compute the eigenvalues of the almost triangular

matrix (ATEIG).

The same steps are included in the algorithm of Grad and Brebner

(1968), but their routine is more careful, involving a prescaling opera-

tion on the rows and columns. Both programs were checked independently,

using randomly generated matrices and then were also checked against

one another. The less complicated program of IBM provided sufficient

accuracy when run on actual dynamic matrices, judged by the discrepancy

between the two.

An indication of the accuracy of the eigenvalue program was

gained by computing the determinant of

M - (W. + e) I

where M is the dynamic matrix of equation (55), and w is an

eigenvalue. These determinants were calculated by the method of Chio

(see Kunz (1957)), which is designed to reduce roundoff error in the

value of a determinant by minimizing the number of multiplications

required. The resulting determinants showed that the calculated value

was within 10~8 of that the value which would cause the determinant to

be zero. The computer used carried 20 digits in double precision

arithmetic, which was used on the more critical portions of the eigen-

value routines.
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Further evidence of the accuracy of the eigenvalue methods, as

used on dynamical matrices, is offered by the fact that the eigenvalues

change only slightly when the panel number is changed, which induces

small perturbations in the force integrals. Eigenvalue algorithms

computing grossly false results would be expected to be unstable to

perturbations, as the error would arise from a small divisor somewhere

in the process.

The last major calculation associated with the model is the

eigenfunction calculation. The Grad and Brehner algorithm has an

eigenfunction subroutine associated with it, and for comparison a

separate program was written to accompany the IBM pair of subroutines.

Each worked adequately on randomly generated matrices.

The eigenfunction routines were also tested by evaluating

A v.

where v. is the eigenfunction, and comparing the result with

W.v.. Again the two agreed to several digits accuracy in all cases
3 11

tested.

Having eliminated the sources of computational error, any

problems remaining with the routines must fall into two categories:

programming errors in the basic model, for example computing the wrong

density, or model deficiencies, such as too small a number of samples.
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If such an error occurred in the axisymmetric programs, disagreement

would surely have arisen between the model results and the SWLT theory

predictions. Since the theory does not provide many corroborations

with the nonaxisymmetric calculations, this check is not valid for

these programs. However, to guard as much as possible against such

errors, a high degree of commonality was maintained between the axi-

symmetric and nonaxisymmetric routines. The differences between the

two were so thoroughly checked that such an error is extremely un-

likely.
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