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ABSTRACT

Electrons of energies between 125 ev and about 2000 ev were observed

out to distances of 24.4 earth radii near the geomagnetic equator on the

dusk side of the earth from October to December 1964 by means of a Faraday

cup detector with four energy windows flown on the OGO-A satellite. In the

transition region between the magnetosphere and the solar wind, fluxes of

electrons varying from 108 cm- 2 sec-1 to 1010 cm- 2 sec- 1 were found, the

higher values occurring during magnetic storms the d fferential flux of

the electrons varied with energy roughly as E-4 to E- , indicating that

the electrons were a non-Maxwellian high energy tail of a distribution

peaked well below 125 ev. Weak or no fluxes were detected in the solar wind;

the termination of transition region electron fluxes occurred at the shock

front, except that during one magnetic storm strong fluxes were found out

to some distance in front of the shock. In the magnetosphere a band of

electrons of mean energy of a few hundred ev, density of order 1 cm-3,

and flux of order 109 cm-2sec-1 was found extending from the magneto-

sphere boundary inward to a sharp termination at 11 t 1 earth radii, occa-

sionally closer; crossing this termination inward, the mean energy of the

electrons dropped sharply (as much as a factor of 5 in 1 earth radius

distance) while the density increased slightly. This band is identified

with the soft electron belt previously inferred from Lunik 1 and 2 obser-

vations by Gringauz. At distances greater than about 10 earth radii from

the dawn-dusk meridian on the night side, a region of electrons of mean 1

energy 40 to 80 evdensity 5 to 10 cm- 3 , and flux of the order of 101 0 cm- 2 sec~

was found, but limited data prevented determining its precise boundary. Through-

out the surveyed region of the magnetosphere, including both the high and

low energy regimes mentioned, the electron energy density was found to be

approximately the same and relatively unvarying; the total energy density of

the plasma, if equipartition of energy between electrons and protons is

assumed,corresponded to magnetic fields of 20 to 40 , comparable to the

measured fields.

Thesis Supervisor: Stanislaw Olbert

Title: Associate Professor of Physics
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I. INTRODUCTION

Observations of charged particles have constituted one of the

major scientific efforts of space exploration since its beginning. They

are studied both as a significant geophysical system in its own right

and for insights that their study can be expected to provide into fund-

amental processes in collisionless magnetic plasmas, on the one hand,

and into the causes of a great variety of geomagnetic and auroral

phenomena, on the other. High energy particles, that small fraction of

the plasma with improbably high velocities, have been the most intens-

ively studied to date. In recent years, extensive surveys of protons

in the 100 ev to 10 key energy range have provided information on the

bulk (rather than just the high energy tail) of the positive particles

in the plasma; there were no comparable surveys of plasma electrons but

only brief and scattered observations, until the launchings of Vela 2

and OGO-A in the summer of 1964. The regions of space surveyed by these

two satellites are nearly orthogonal surfaces: while Vela scanned a wide

range of latitudes at a fixed geocentric distance of 17 earth radii,

OGO-A, relatively confined in latitude to near the geomagnetic equator,

scanned a range of distances from 1.3 to 24.4 earth radii. This thesis

is a report on observations of electrons of energies from 125 ev to about

2000 ev with a Faraday cup flown on OGO-A.
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II. REVIEW OF PREVIOUS WORK

A. General Concepts

The electromagnetic and charged-particle environment of the earth

is determined largely by two factors: the permanent magnetic field of the

earth and the continuous flow of a tenuous, ionized gas from the sun.

Nearly forty years before the beginning of space exploration, an

intermittent flow of plasma from the sun was postulated by Lindemann (1919)

to account for magnetic storms*; starting from his ideas Chapman and

Ferraro (1931, 1932, 1933), in a classic series of papers, developed the

first detailed theory of the interaction between the earth's magnetic

field and the flowing plasma. A continuous streaming of plasma from the sun

was invoked by Biermann (1951) to account for certain properties of comet

tails and was later theoretically derived from a hydrodynamical model of

the solar corona by Parker (1958a , 1963), who named it the solar wind.

To put Parker's argument very simply, the heating of the corona inferred

from observations represents an energy input too large to be balanced by

radiation and heat conduction alone; hence to maintain a steady state a

continuous expansion of the coronal gas, carrying energy off into space,

* See Appendix D for a brief description of magnetic storms and their phases
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is required. The existence of the solar wind has been established and

its gross features determined by plasma observations from a number of

satellites and space probes, among them Explorer 10, Mariner 2, Explo-

rer 18 (alias NIP-1), Explorer 21 (alias IMP-2) Vela 2, OGO-A, Mariner

4, Vela 3, and Pioneer 6 (see e.g., Bonetti et al., 1963; Snyder et al.,

1963; Bridge et al., 1965, 1966; Lyon, 1966; Wolfe et al., 1966;

Strong et al., 1966; Neugebauer and Snyder, 1966). The positive ion

component of the solar wind consists minly of protons, with an admix-

ture of alpha particles ranging from 2% to 8% by number. Typically

the number density of protons varies between 4 and 15 particles cm-3,

the bulk velocity varies between 250 and 700 km/sec, and the "therml"

spread in velocities corresponds to temperatures of the order of 105 OK.

Magnetic measurements (see Ness et al., 1964; Wilcox and Ness, 1965;

Colemn, 1966; and references therein) show an interplanetary magnetic

field with magnitude ranging from 2 to 10 gammas (1 gamma = 10-5 gauss)

and with rather variable direction; on the average, though, the field

vector lies close to the ecliptic plane and points either away from or

toward a direction about 450 west of the sun, in agreement with the

spiral field pattern predicted by Parker's model.

The electrical conductivity of the solar wind is very high and,

as a well-known consequence, the magnetic flux through any closed loop

moving with the wind must remain nearly constant. Thus the solar wind

cannot flow through the high-field region near the earth; there must

therefore be a boundary dividing space into two regions, one containing

the interplanetary plasma, the other the earth's magnetic field; electric

currents flowing on the boundary (associated with the magnetic
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field discontinuity there) shield the plasma from the earth's magnetic

field and also interact with the field to produce the forces that balance

the plasma pressure on the boundary. The region containing the geomagnetic

field is called the magnetosphere, a term introduced by Gold (1959); its

boundary is often called the magnetopause*. That the flow of the solar

wind past the earth would produce a magnetosphere was one of the chief

predictions of the Chapman-Ferraro theory. Magnetic field and plasma meas-

urements from satellites have confirmed the existence of the magnetosphere

and mapped its boundary (at least in regions not very close to the earth's

magnetic dipole axis) (Heppner et al., 1963; Cahill and Amazeen, 1963;

Bonetti et al., 1963; Ness et al., 1964; Ness, 1965; Lyon, 1966; Ness et al.,

1966; Cahill and Patel, 1966); Figure 1 contains a sketch of the (rather

non-spherical) shape found for the magnetosphere. The observations, as far

as they go, are consistent with a shape having at least a rough axial

symmetry about the sun-earth line (or, more precisely, about the direction

of the plasma flow; the two differ only by a few degrees). Over the sunlit

side of the earth the boundary is quasi-spherical and in rough agreement

with theoretical calculations based on simplified models of plasma-field

pressure balance (Midgley and Davis, 1963; Mead and Beard, 1964- Slutz

and Winkelman, 1964; reviewed by Beard, 1964); on the night side the

magnetosphere is drawn out into a long "tail" that seems to approach a

constant width and shows no sign of closing even at the greatest distances

yet reached by satellites, about half-way to the moon. The size of the

* "- pause" as the boundary of "- sphere" is a common meteorological

usage; compare, e.g., "troposphere" and "tropopause".
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magnetosphere is somewhat variable but a typical distance to its sub-

solar point (i.e. the point on the sun-earth line) is about 10 earth

radii (abbreviated Re; 1 Re=6380 km) and a typical tail radius (Ness,

1966) is about 20 to 22 Re.

The magnetic field in the magnetosphere is of crucial signif-

icance in determining the behavior of charged particles. The principal

features of the field topology inferred from observations (see especial-

ly Ness, 1965) are sketched in Fig. 1. The field line pattern can be

thought of as obtained by deforming the dipole pattern of the earth's main

field: in the front part of the magnetosphere the field lines are com-

pressed; in the tail they are pulled back until they point in a direction

nearly along the sun-earth line. With such an almost straight-line topo-

logy, in the tail there must be a thin region in which the field reverses

direction pointing generally away from the earth below this region (over

the southern hemisphere) and toward the earth above it; such a region of

abrupt field reversal is generally called a neutral sheet (within it the

field magnitude must be very small to avoid large stresses on the ionized

matter present). The existence of a neutral sheet in the tail of the

magnetosphere was demonstrated from Explorer 18 magnetic measurements by

Ness (1965), who also noted that the neutral sheet lies roughly in a plane

containing the sun-earth line and the line perpendicular to this and the

earth's magnetic dipole axis (and hence having a diurnal roll motion

about the sun-earth line) as suggested earlier by Axford et al. (1965)

and Dessler and Juday (1965).
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Two different theoretical approaches to the magnetospheric tail

have been proposed. The model of the tail suggested by Dungey (1961) and

elaborated by Levy et al. (1964) and Axford et al. (1965) is sketched in

Fig. 2. Field lines from the earth become connected to the field external

to the magnetosphere (assumed to have a southward component opposing the

dipole field) at a neutral point near the subsolar point(thus producing a

small component of the field normal to the magnetopause), are carried back

by the external plasma flow and reconnect to form closed loops again at

another neutral point in the tail; the resulting motion, when projected on

the polar caps, agrees qualitatively with auroral current patterns (Levy

et al., 1964) and the reconnection of field lines at the neutral points

provides mechanisms for injecting into the magnetosphere particles needed

to account for a variety of auroral and geomagnetic phenomena (Axford,

1966). The length of the tail to the neutral point is estimated by Dungey

(1965) as --'103 Re. The model proposed by Dessler (1964; see also Dessler

and Juday, 1965, and Michel and Dessler, 1965) and sketched in Fig. 3, on

the other hand, is based on the assumption that field reconnection cannot

be significant because of lack of sufficiently fast dissipative processes

(such as collisions); the tail extends indefinitely (i.e.as far as the solar

wind itself), maintained open by the pressure of hydromagnetic waves generated

in the front of the magnetosphere during magnetic storms; no field lines

cross the magnetopause anywhere or in other words, the field at the mag-

netopause is tangential to the boundary. In spite of recent extensive and

occasionally heated discussions (see, e.g. the debate between Van Allen,



1966 and Dessler, 1966), at present there appears to be no clear-cut

observational (or theoretical) argument to decide between the two models.

The magnetosphere presents an obstacle to solar wind flow, a

blunt obstacle of typical dimension 105 km. Now from the values of solar

wind parameters (density, magnetic field etc.) given earlier one can

readily show that the speed of either "sound" waves

05=- (Y' PC)
or Alfven waves

CA =

is an order of magnitude less than the flow speed. (Here P is the pressure,

the mass density, B the magnetic field strength, the ratio of specific

heats). Thus the solar wind is highly "supersonic", in the sense that the

flow speed exceeds the speed of relevant small amplitude waves (a feature

predicted by Parker). This, if the solar wind can be described by the

continuum fluid equations of ordinary gasdynamic theory, at once implies

that an obstacle like the magnetosphere will produce ahead of it a standing

shock wave, separating the region of the flow disturbed by the obstacle from

the region where the obstacle has not yet been "sensed" by the flow. That the

solar wind should behave like a fluid on a length scale of 105 km, however,

is by no means obvious, since in it the mean free path for proton-proton

collisions is of the order of 108 km. Nevertheless, on the grounds that the

long-range electromagnetic interactions in a collisionless plasma could

produce the collective behavior characteristic of a fluid (a view argued by,

- 16 -
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for example, Levy et al.) 1964), several theorists, among them Axford

(1962) and Kellogg (1962), predicted the existence of a shock front ahead

of the magnetosphere; the expected shape of the shock was calculated from

magnetohydronamic equations by Spreiter and Jones (1963) and more recently

by Spreiter et al. (1966). Satellite observations of both plasma and mag-

netic fields have in fact found outside the magnetosphere a well-defined

region with a sharp outer boundary (sketched in Fig. 1) that agrees

approximately with the shock shape of Spreiter and Jones (see references

cited earlier, and also Heppner, 1965 and Holzer et al., 1966). This tran-

sition region between the undisturbed solar wind flow and the magnetosphere,

generally called simply the transition region (another term which has been

occasionaly used lately is magnetosheath ), is characterized by turbulent,

fluctuating magnetic fields and a plasma that is appreciably hotter (i.e.

with a larger spread of proton random velocities) than the undisturbed solar

wind; the increase in the random thermal motions takes place at the expense

of the speed of bulk motion which is reduced from the solar wind value, a

process sometimes described as thermalization of the plasma.

Whether or not the outer boundary of the transition region is indeed

a standing shock in the conventional gasdynamic sense is at present not

certain. The distinguishing feature of a shock is the transition from a

supersonic flow upstream to a subsonic flow within a region bounded by the

obstacle and a certain well-defined surface (the sonic surface) ahead of it.

In the azz 1T eb-taoc lik -h mgfteteaphf , hI Lirl f
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whieh the und .il~

the-; According to the analysis of the Explorer 18 results

by Olbert and coworkers (Moreno et al., 1966), even in the subsolar part

of the transition region the thermal speed of the protons (related to

the speed of acoustic waves) is comparable to the flow speed; whether the

flow is subsonic or not depends on the precise relation between thermal and

wave speeds.* This uncertainty about the applicability of continuum shock

theories (emphasized by, e.g. Bernstein et al., 1964, and Wolfe et al.,

1966) has not prevented the general use of the term "shock" for the outer

boundary of the transition region (a loose but convenient usage that I

shall follow).

The distance between the magnetopause and the shock (i.e. the

width of the transition region) near the subsolar point is often called the

stand-off distance, another term borrowed from theories of the gasdynamic

analog, and is typically 3 - 4 earth radii.

This concludes a rather brief and sketchy account of the overall

configuration of plasmas and magnetic fields around the earth, as determined

through extensive observational and theoretical work, and forming the

general framework within which more detailed particle observations must be

considered.

*The "thermal speed" of the Explorer 18 analysis is the most probable

speed of protons, whereas the wave speed is related to their rms speed; the

ratio of the two is sensitive to possible departures from a Maxwellian

distribution.
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B. Electron Observations in the Magnetosphere

Ground-based observations and related work. - Some information

about magnetospheric electrons can be obtained with ground-based equip-

ment, by observing their effect on electromagnetic wave propagation.

Historically the first and so far the most important such technique makes

use of certain naturally occurring very low frequency (VLF) electromagnetic

signals called whistlers. These are circularly polarized waves whose fre-

quency(typically 1-20 kc Is) lies below the plasma frequency and above the

electron gyrofrequency of the propagation medium. They originate from the

electromagnetic impulse associated with lightning and propagate back and

forth ("hop") between the hemispheres along magnetic field lines; different

frequency components propagate at different speeds in the highly dis-

persive medium, changing the original "click" into the characteristic desc-

ending "whistle". The phenomenon and its application to electron studies

have been extensively described in reviews by Carpenter and Smith (1964)

and Helliwell (1965); more recent work is presented by Carpenter (1966)

and Angerami and Carpenter (1966). The quantity observed is the signal

time delay since the originating lightning impulse (identified by the

"click") as a function of frequency, for each hop; there often is a

frequency (called the "nose" frequency, because of the shape of the

frequency-time plot) at which the delay is a minimum. Analysis in terms

of the cold-plasma (magnetoionic or Appleton-Hartree) dispersion relation

(described in detail by Carpenter and Smith, 1964) relates the nose

frequency to the gyrofrequency near the equatorial point of the propagation
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path (from which the equatorial distance of the path can be derived if

the field line pattern is known) and gives the delay time as an integral

along the path of the plasma frequency (and hence the square root of the

electron density) times a function of the field which is strongly peaked

at the equatorial point. Assuming a model for the electron density dist-

ribution along the field line that is the propagation path (common choices

are N-R-3 or R-4 where R is the radial distance; the results are not

very sensitive to the precise model used), one obtains from a number of

different whistlers the electron density in the geomagnetic equatorial

plane as a function of radial distance (the distance is conventionally

and conveniently described by the L value* of the propagation path). The

electron density thus obtained decreases smoothly with increasing L,

remaining in the range 100 to 1000 electrons cm-
3 out to about L=4 or 5;

then abruptly the density drops to about 1 cm-
3 , remaining at this low

level out to the largest distances, L-T ,accesible to whistler obser-

vations so far. Carpenter has named the abrupt decrease at L ~ 4 the

"knee" of the density profile. That it is a real spatial feature and not

the result of some peculiar time variation is dramatically demonstrated by

numerous simultaneous observations of several whistlers, some propagating

inside, others outside the high density region. The position of the knee

shows an inverse correlation with geomagnetic activity (as measured by the

Kp index**), moving closer to the earth by as much as 2Re during disturbed

periods.

* See Appendix E

**Explained in Appendix D
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There must be a corresponding abrupt decrease in positive ion

density if the medium is to be electrically neutral. Such a decrease near

a distance of 4Re was observed in plasma measurements from Lunik 2 and

Explorer 10 (Bonetti et al., 1963), both of which, however, made only one

pass through this region. More recently, repeated direct observations of

the ion density knee have been made with the mass spectrometer on OGO-A

by Taylor et al. (1965), who obtained densities and knee positions in

general agreement with whistler results, confirmed the inverse correlation

with geomagnetic activity and presented eyidence that the positive ions

are predominantly protons, with a 1% admixture of He+ ions. Indirect

evidence for the ion knee from the present experiment will be described

in a later chapter. Measurements of very low energy (0-15 ev) electrons

with retarding potential analysers on Explorers 18 and 21 (Serbu) 1Q65;

Serbu and Maier, 1966), on the other hand, while agreeing with whistler

results inside the high density region. give densities of the order of

50 cm-3 outside, more than a factor of 10 higher than other determinations.

It should be kept in mind, however, that the average energy of the

electrons detected is of the order of 1 ev, that the outside surface of the

detector is maintained at potentials of +15 volts or so relative to the

skin of the satellite and the efficiency for collecting electrons is

known no better than within a factor of 10, and that no detailed consid-

eration of possible contributions from a photoelectron sheath around the

satellite has been published. The whistler data are thus generally

reported by satellite measurements so far with some possible but not

well-established discrepancies.
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Whistlers are not very sensitive to electron energy spectra;

attempts by Liemohn and Scarf to deduce spectra from cut-off frequencies

did not lead to self-consistent results (Liemohn, 1965). Measurements by

Serbu and Maier (1966) inside the high density region give electron thermal

energies 0.2 to 1 ev. In the case of positive ions, the observations on

Explorer 10 of a flux maximum from the direction of satellite motion

(Bonetti et al., 1963) indicate that the most of ions were slower than

the satellite, putting an upper limit of a few tenths of an ev on their

thermal energies.

To summarize, there seems to be a region near the earth filled

with relatively high density, low energy plasma and having a sharp boun-

dary that usually coincides approximately with the L=4 magnetic shell,

but moves closer to the earth during magnetically disturbed periods. The

L=4 shell intersects the earth at magnetic latitude 600, somewhat below

the auroral zones. The existence of some physically significant boundary

at that latitude was already inferred from a variety of ionospheric and

geomagnetic phenomena by Axford and Hines (1961), before the discovery of

the knee; more recently a sharp local depression of electron density in

the ionosphere near L=4 has been discovered by topside sounders (Muldrew,

1965; Sharp, 1966). The origin of this region and its relation to other

phenomena has yet to be theoretically understood (some suggestions have

been made by, among others, Axford and Hines, 1961, and Block, 1966).

Another ground-based technique for observing electrons makes use

of high frequency radio waves reflected from the moon or transmitted to

or from satellites. The quantity measured is the dispersive Doppler shift
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(a Doppler shift not proportional to frequency and hence not arising

from relative motion) which can be related, using the magnetoionic

dispersion relation, to the electron density integrated along the

propagation path. This technique, extensively used for ionospheric

studies, has been applied to the study of the average electron content

in the magnetosphere by Howard et al. (1965) and Yoh et al. (1966), who

used radio waves reflected off the moon, and more recently to the study

of the electron density in the solar wind by Eshleman and others (1966),

who used radio transmission to the Pioneer 6 space probe and obtained an

average value of 8.25±4.43m-3 , in fair agreement with direct proton

density measurements. The lunar radar measurements yield, after subract-

ing the large contribution from the ionosphere, a total electron content

in a column to the moon that varies, as a function of angle from the earth-

16
sun line, by up to 6X106 m 2 relative to an unknown zero level, reaching

a maximum near the antisolar direction. If spread uniformly between the

ionosphere and the moon. as done by Yoh et al., this gives a mean density

in the tail of the magnetosphere of ^-' 200 cm-3, inconsistent with whistler

results and also objectionable on theoretical grounds (Dessler and Michel,

1966). It is certain, however, that the density is not uniform over the

path and that a large contribution to the result must come from the high

density region just discussed. For example, taking the density of electrons

at 1000 km height as 104 cmn3 (measured by Alouette 1, as cited by

Angerami and Carpenter, 1966), assuming a density decrease as L-4 or L-3

out to L=4, as suggested by whistler results (Angerami and Carpenter, 1966),

and assuming for simplicity that the propagation path lies in the equatorial
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dL
104cm-3 x 6.4 x 108cm x 104cm2m-2 ~r

17-

where n = 3 or 4, giving values 3.2 x 1017m-2 or 2.1 x 10 7n-2 , quite

comparable to values quoted by Yoh et al. The lunar radar technique thus

probably can be a valuable method of studying the high density region

within the whistler knee; whether it can also provide significant infor-

mation about the density beyond the knee is questionable.

Satellite observations - general remarks. - Aside from the few,

rather specialized, ground-based techniques just described, the only way

to observe electrons in the magnetosphere has been to send a detector

there on a satellite. Since 1957, a variety of particle detectors have

been flown on a variety of satellites. Restricting oneself to satellites

of interest in connection with the present work, however, a rough classif-

ication is possible. On the basis of their orbits, these satellites fall into

two groups. In the first group are satellites (such as Explorers 10, 12, 14

18 and 21, as well as OGO-A) in highly eccentric orbits with long apogee

distances; their apogees are at relatively low latitudes (within t 300, say)

and thus their primary use is for studying the radial distribution of elect-

rons in the equatorial region of the magnetosphere. Any one orbit samples

all radial distances (between perigee and apogee) within a longitude sector;

a number of orbits covering a significant fraction of a year scans a

large range of longitudes (as measured from the earth-sun line), since the

magnetosphere is fixed relative to the earth-sun line and thus rotates
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(relative to an inertial reference frame) around the ecliptic pole once

a year while the orbit is fixed in inertial space (aside from secular

perturbations, which are small for these orbits). Figure 4 shows,

projected on the solar magnetic plane*, the regions scanned by the

principal satellites that have provided magnetospheric electron surveys,

The second group consists of satellites (for example, Injun 3,

Alouette 1 and 1963-38C) in low altitude (typically around 1000 km),

very high inclination (near 900), usually nearly circular orbits. Although

on a magnetospheric distance scale these satellites are barely off the

ground, they go to very high latitudes which are connected by magnetic

field lines to the distant equatorial regions scanned by satellites of the

first group. These low-altitude, high-latitude observations thus should

reflect the structure found in the equatorial region and help to trace its

relation to auroral and geomagnetic phenomena,

An unusual group of satellites that do not fit the above classif-

ication are the Vela Hotel nuclear test detection satellites, in nearly

circular orbits at about 17 Re and at a relatively high inclination (near 600).

The most widely used electron detector has been the Geiger tube;

others include magnetic spectrometers, scintillation counters, and solid-

state detectors. None of these detectors, as used, has had appreciable

response to electrons of energy below about 30 key; the usual threshold

has been 40 key. The current view of electron distribution in the magneto-

sphere has been derived largely from measurements on electrons in the

*See Appendix E for description of relevant coordinate systems
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40-300 key range, except for charged particle trap measurements of

electrons above 200 ev from three soviet space probes (each of which,

however, made only one pass through the magnetosphere) and the Explorer

12 measurements with a CdS energy flux detector that was sensitive to

electrons from 200 ev to 500 key (but with no means of energy selection).

The distribution of low energy (a few key or less) electrons has been

explored only recently, with curved-plate electrostatic analyzers on the

Vela satellites and with a Faraday cup on OGO-A which is the subject of

this thesis.

Satellite observations - radial surveys. - It is well-known that

near the earth there is a region filled with energetic particles trapped

on magnetic lines of force - the Van Allen radiation belts (for reviews

and historical accounts, see e.g. O'Brien, 1962-63, Farley, 1963, or

White, 1966). The so-called "inner belt" consists primarily of protons;

peak fluxes occur at L values between 2 and 4, depending on the energy.

The "outer belt", which is of concern here, consists primarily of electrons-

the fluxes show large time variations, but typical fluxes of electrons

above 40 key are of the order of 107 - 108 cm-2 sec'1, a broad maximum

occurring at L values around 5 or 6. The extent of this trapping region

near the equatorial plane has been investigated with detectors on Explorer

12 (Freeman et al., 1963; Freeman, 1964), Explorer 14 (Frank and Van Allen,

1964; Frank, 1965; Seriemitsos, 1965,1966), Explorer 18 (Anderson et al.,

1965; Anderson, 1965) and Electron - 2 (summarized by Vernov et al., 1966).

In the subsolar region there is generally a fairly sharp termination of

energetic particle fluxes at distances near 10 Re, occurring at or near the
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magnetosphere boundary (as checked in a number of cases by comparison

with simultaneous magnetic field measurements). At all angles from the

earth-sun line there is found a generally not very sharp but neverthe-

less clearly identifiable boundary, at a distance of roughly 8 Re in

the geomagnetic equatorial plane, enclosing a region called the

"hard core" of electrons by Frank (1965) or the Van Allen trapping

zone by Anderson (1965); within it fluxes of electrons above 40 key

are of the order of 107 cm-2 sec~1 , the particle distribution in space

is at least to some extent governed by the geomagnetic field (i.e.

its gross features are at least roughly symmetric about the geomag-

netic equator and aligned with L shells), and time variations are relativ-

ely small compared to those outside Between this "hard core" and the

magnetosphere boundary and extending from near the subsolar point to

somewhat beyond the dawn and dusk meridians lies a region characterized

by fluxes (E>40 key, alvays) of the order of 105 -106 cm-2sec 1, large

temporal fluctuations, and an energy spectrum softer (i.e. containing

fewer high-energy electrons) than within the trapping zone; "the radiation

is agitated and very soft" is the description given by Anderson (1965). This

region is often called the skirt, a name apparently first used by Frank et

al.,(1963). Over the sunlit hemisphere the skirt extends in latitude up

to the highest latitudes reached by Explorers 14 and 18, about 300 south

geomagnetic latitude. In longitude it extends back to about 1100 - 1200

from the earth-sun line; whether it extends in front right up to the subsolar

point, or whether instead the trapping zone touches the magnetosphere boun-

dary there, is at present not clear (Anderson, 1965, has identified skirt-type

electrons as close as 230 from the sun-earth line).
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The distribution of E> 40 key electrons in the night side of the

magnetosphere is somewhat more complicated. The first extensive survey

of this region was done with Explorer 14 (apogee distance 16 Re); the

results, as described by Frank (1965), indicated that (a) there is a

tail of electron fluxes beyond about 10 Re (and out to beyond the

satellite apogee) over the night side of the earth, lying more or less

in the ecliptic plane (definitely not in the geomagnetic equatorial

plane- the observations were made at a time close to the winter solstice,

when the relative inclination of the two planes is at a maximum), and

(b) electrons (outside the trapping zone) on the flanks of the night side

of the magnetosphere (i.e. between this tail and the dawn-dusk meridian)

are confined to a relatively narrow range of latitudes, in contrast to

the sunlit skirt region. Anderson (1965), using data from Explorer 18,

(apogee distance 31 Re), confirmed result (b) and gave the name cusp to

the latitudinally confined region of electrons on the night side. He

distinguished the cusp from the skirt (placing the boundary between them

at about 1200 from the earth-sun line) not only by their extent in

latitude but also by the type of time variations within them, the cusp

being characterized by fast increases in flux followed by slow decreases,

as distinct from the more or less random fluctuations within the skirt.

According to Anderson's observations the cusp is not drawn out into a tail

but has a sharp termination at a distance varying between 10 and 15 Re.

Beyond this boundary there are no steady electron fluxes observed on Explorer

18; instead, there occur so-called electron patches or islands. isolated
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electron fluxes up to 106 or even lo7 cm-2sec l that appear rapidly

(rise time of minutes) and decay slowly (decay time up to a few hours),

then often disappear again rapidly. The fast rise - slow decay behavior

is observed on both inbound and outbound passes, showing that the "is-

lands" are caused by actual time variations of electron flux, and are not

fixed spatial features with gradients producing apparent time variations

due to satellite motion (hence the name "islands", although widely used,

is rather inappropiate). Similar observations have been reported by

Serlemitsos (1965, 1966) and Konradi (1966), using data from Explorer 14

(and can be recognized, with the benefit of hindsight, in some of Frank's

published data), and by Vela experimenters (Montgomery et al., 1965;

Singer et al. 1966). The "islands" generally occur within about 6Re of

the solar magnetospheric equatorial plane; Frank's electron tail may

perhaps be identified with the average position of the "islands", since at

the solstices the mean position of the solar magnetospheric equator co-

incides with the ecliptic. Such a spatial distribution is in agreement

with the suggestion of Ness (1965) that the E> 40 key electrons are the

high energy tail of a plasma that balances magnetic pressure in regions

of weak or zero field associated with the neutral sheet, a suggestion suppor-

ted by detection of the low-energy (E20l key) electron component of the

plasma with detectors on Vela satellites (Bame et al., 1966a,b) and the

observation of frequent correlation between occurrence of "islands" and

depression of magnetic field strength (Anderson and Ness, 1966). Both

Anderson and Serlemitsos find that the occurrence frequency of "islands"

decreases with increasing radial distance, but according to a statistical
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analysis of Explorer 18 data by Murayama (1966) the occurrence frequency

is independent of radial distance and depends on height above the neu-

tral sheet (or the solar magnetospheric Z coordinate), the coupling of

the two distances through the satellite orbit producing the apparent

radial variation.

The neutral sheet is almost certainly a permanent feature of the

magnetospheric tail, and hence the plasma sheet associated with it must

also be permanent. The transient nature of E> 40 key electron fluxes

can then be explained in at least two ways: (a) the permanent plasma

sheet has an electron spectrum soft enough so that 40 key electrons are

undetectable except when occasional "heating" (i.e. acceleration)

occurs, or (b) the plasma sheet always contains detectable 40 key electrons

but the observed variations arise from motions of the sheet, or from

changes in its thickness as suggested by Axford (1966) (this is rather

plausible since most satellite orbits more or less graze the sheet).

Whether there is an actual sharp termination to the cusp region

as inferred by Anderson or whether instead the cusp joins on smoothly to

the tail plasma sheet and the observed termination results from the

satellite orbit (as sketched in Fig. 5) is not conclusively settled by

observations available to date. Anderson and Ness (1966) find that the

cusp is associated with a depression of magnetic field strength and its

observed termination (i.e. decrease of electron fluxes) coincides with

abrupt increase in field strength. They infer that the field lines

inside the cusp are closed so that particles can be trapped between

mirror points; the cusp boundary coincides with the first open line of
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force, and the field decrease inside the cusp is caused by the diamag-

netic effects of trapped particles within it. No drawing of the envisaged

model is given in their paper, and it is not clear what the proposed

field and particle configuration near the cusp-neutral sheet interface

is. Fig. 6 shows a plausible model, consistent with the observations of

Anderson and Ness, in which the cusp joins smoothly to the plasma tail

associated with the neutral sheet.

The foregoing results were obtained largely from measurements

of omnidirectional electron fluxes, any angular distributions being

ignored or averaged out. Angular distributions of electrons near 100 key

energy were observed on Explorer 14, as reported by Serlemitsos (1965,

1966), who finds three types of behavior in the night side of the magne-

tosphere: (a) inside about 8Re more electrons move at right angles to

the magnetic field than along it, i.e. the angular distribution is peaked

at right angles to the field, a well-known behavior in the case of the

stably trapped particles of the Van Allen belts; (b) outside 8Re and out

to distances as large as 13Re during magnetically quiet periods the dis-

tribution peaks along the field; during magnetically disturbed periods

the outer boundary of this type of anisotropy (which Serlemitsos ident-

ifies as the boundary of the trapped particle region) moves closer to

the earth, and isotropic, highly variable fluxes are found outside of

it; (c) near 8 to 9 Re, at the transition between (a) and (b), the

angular distribution is nearly isotropic. The distances given strongly

suggest that the region of anisotropy of type (a) should be identified

with the "hard core" trapping zone, and that of anisotropy of type (b)
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should be identified with the cusp (as has been done by Anderson and

Ness, 1966).

To recapitulate, from the extensive observations now available

of electrons with energies above 40 key a reasonably definite, if some-

what schematic, picture of their spatial distribution within the equatorial

region of the magnetosphere can be drawn. The classical Van Allen trapping

region, in which the energetic particle distribution is governed by the

dipole field, extends to about 8 Re. Between it and the magnetosphere

boundary lie regions of weaker, softer, and more variable electron

fluxes: the skirt region, over the sunlit hemisphere, extends over a wide

range of latitudes; the cusp region, over the dark hemisphere, is confined

to a narrow range of latitudes, roughly near the solar magnetospheric

equatorial plane. The cusp apparently terminates at distances of 12-15

Re in the antisolar direction; beyond it lies a region of highly variable

or even transient electron fluxes (the "islands") related to the magnetic

neutral sheet found in the magnetospheric tail. The precise connection

between the cusp, the neutral sheet, and the "islands" remains obscure,

as does the nature of the boundary between the cusp and the skirt.

Observations of lower energy electrons, of more direct relevance

to the present work, have been very meager indeed compared to the 4o key

work. Fluxes of electrons with energies above 200 ev were measured by

Gringauz and coworkers, using Faraday cups with retarding D.C. potentials

flown aboard Luniks 1 and 2, in 1959 (Gringauz et al., 1960a,b); the two

space probes each crossed the magnetosphere once, Lunik 1 at an angle of

about 800 to the earth-sun line on the dawn side, Lunik 2 at about 1300
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on the dusk side, both remaining relatively close to the geomagnetic

equator (the directions relative to the earth-sun line, not given in

the original papers, were later published by Gringauz, 1964). In each

flight electrons were detected within one interval of radial distances,

just outside the Van Allen belts; in the case of Lunik 2, they were

detected between geocentric distances of 61, 4oo km and 81, 400 km

(9.6 and 12.7 Re), well inside the magnetosphere (solar plasma was not

encountered until a distance of 39 Re); typical fluxes were--' 2 x 108

cm2sec-1 . These observations indicate a well-defined band of low energy

electrons lying outside the Van Allen belts, which was named by Gringauz

the "third" or "outermost radiation belt" (Gringauz and Rytov, 1960),

though what precisely this term was meant to imply has since been disputed

(Gringauz, 1964; Van Allen, 1964). A similar detector was carried on the

Mars 1 space probe in 1962, which went away from the earth at high

geomagnetic latitudes and near the late evening and midnight meridians

(Gringauz et al., 1964; Gringauz, 1964); the belt of low energy electrons

was again detected, this time at distances between 12,900 and 20,400 km

(2.2 and 3.2 Re) corresponding, at the high latitudes, to roughly the

same L value as the Lunik 2 observations; the inner boundary coincided

with the termination of the outer belt as determined from simultaneous

50 key electron observations. The flux of low energy electrons was essen-

tially the same as that found by Lunik 2,/-4 x 108 cm-2 secJ1 , in spite

of the somewhat lower threshold (80 ev instead of 200 ev) of the detector,

indicating that most of the electrons had energies above 200 ev if the

spectrum had not changed much between 1959 and 1962.
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A similar sharply bounded region of electrons, with energies

above 100 ev and flux ~'108cm-2sec , beginning at 8 Re and extending

out to the magnetosphere boundary and beyond it to the shock, was found

at an angle of 250 from the sun-earth line by Serbu (1965), using data

from one orbit of Explorer 18.

The other observations, prior to the summer of 1964, that provided

some information on low energy electrons were made aboard Explorer 12

(Freeman et al., 1963; Freeman, 1964). The detector consisted of a CdS

crystal that measured the total energy flux due to electrons between

200 ev and 500 key and protons between 1 key and 10 Mev (the energy flux

was actually weighted by an energy-dependent efficiency function that

increased by a factor of 10 over the energy range quoted); the proton

contribution was determined with a similar detector from which electrons

were excluded by a magnet. Some information on the electron energy spectrum

could be obtained by comparing the CdS results with those of two magnetic

spectrometers on the same satellite measuring electrons in 40-50 key and

80-100 key energy ranges. With this set of detectors Freeman found a

band of soft electrons on the dawn side of the magnetosphere at angles

from the earth-sun line greater than about 1200; how far back this band

extends could not be determined because of "the untimely death of the

satellite". The energy fluxes quoted by Freeman are of the order of

tens of ergs cm-2sec-lster', corresponding to fluxes of 109cm- 2 sec'"lster1

if the electrons are predominantly of 10 key energy; these numbers must

be viewed with some caution because, as will appear in the discussion

of transition region observations, the effective solid angle of the
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CdS detector apparently is known no better than within an order of mag-

nitude.

Freeman identifies this band of low energy electrons with that

observed by the soviet probes, although there appear to be at least

two possible discrepancies: (a) no radial terminations of the soft

electron flux are reported by Freeman; his one published pass through

this region shows no significant change of flux between 20,000 and 70,000

km radial distance; (b) Freeman's soft electron band is only found farther

than about 1200 from the earth-sun line, whereas the Lunik 1 observations

were at about 800 (and, it may now be added, the Explorer 18 observations

of Serbu were at 250). The second point suggests a major question about

Freeman's analysis. The conclusion that the electrons on the night side

are very soft was drawn primarily from the large decrease of the flux

measured by the 40 key magnetic spectrometer; there is no evidence

presented for a coincident increase in the flux measured by the CdS

detector, and indeed no significant such increase is apparent from the

published data. It is thus entirely possible that Freeman's soft electron

belt is simply a region of reduced high energy electron fluxes, which could

be quite distinct from the regions of enhanced low energy electron fluxes

reported by Gringauz (it should be kept in mind that although the energy

ranges of the two detectors are similar, the CdS detector gives much more

weight to high energy particles than the ion trap and thus is much less

sensitive to low energy particles). Indeed, the boundary of the soft

* See Gringauz, 1964.
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electron belt given by Freeman and his observation that low 40 key

electron fluxes occur during outbound passes when the satellite, as is

apparent from his plots, is at (southerly) geomagnetic latitudes near

200 or higher are in striking agreement with the properties of the cusp

region as subsequently discovered by Frank and Anderson.

In summary, prior to the launchings of Vela 2 and OGO-A in late

1964 there were definite but scattered pieces of evidence for existence

of low energy electrons within the magnetosphere beyond the radiation

belts, but no systematic surveys (in contrast to E>40 key electron

studies). Such a survey is one of the major objectives of this work.

Satellite Observations at High Latitudes, Low Altitudes. -

Magnetic field lines that leave the earth at high latitudes extend out

to large distances in the equatorial region of the magnetosphere. Given

the ease with which charged particles and magnetic disturbances can

propagate along the field lines, the structure and the activity of the

distant magnetosphere should be reflected in the high latitude regions

of the earth. This connection is today thought to be the principal reason

for the variety and complexity of high latitude phenomena, of which the

most spectacular is the aurora but which also include, to name just a few,

magnetic disturbances (bays), short period magnetic fluctuations, very

low frequency radio emission, galactic radio noise absorption, charged

particle precipitation, etc. Here I will briefly discuss only two aspects

of high latitude studies that are of most direct relevance to the present

work: the boundary of the outer radiation zone and satellite observations

of electron precipitation.
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Although the fluxes of energetic (E>40 key) trapped electrons

of the outer radiation zone show large temporal variations at heights

of '-1000km, on any one satellite pass there usually is found a well-

defined latitude above which the trapped electron flux is below a detect-

able level and which is therefore identified as the boundary of the outer

zone (see, e.g. McDiarmid and Burrows, 1964, Frank et al., 1964, Williams

and Palmer, 1965). A useful spatial coordinate for describing magnetically

related phenomena at high latitudes is the invariant latitude A , related

to the L parameter;* for a dipole field, A is just the usual magnetic

latitude. In a magnetosphere undistorted by the solar wind any trapped

radiation boundary would occur at a constant A (or, in other words,

the boundary would coincide with an L shell), independently of local time.

The actual boundary, however, shows a striking dependence on local time:

the boundary is found at highest latitudes on the noon meridian and at

lowest latitudes on the midnight meridian, varying monotonically in between.

Measuring electrons above 40 key, Frank et al. (1964) find the boundary at

A' 770 at noon and at A~ 690 at midnight. At the same energies McDiarmid

and Burrows (1964) obtain as the corresponding numbers 760 and 710; the

two measurements must be considered to be in good agreement, especially in

view of the fact that somewhat different criteria were used by the two

groups to define the precise boundary. Measuring electrons above 280 key

Williams and Palmer (1965), on the other hand, obtained values ranging

from 70.40 at noon and 66.10 at midnight to 73.10 at noon and 70.30 at

* See Appendix E
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midnight; the midnight values are in agreement with 40 kev results, but

the noon values are (probably significantly) higher. The boundary gener-

ally moves to lower latitudes during magnetic disturbances (Maehlum and

O'Brien, 1963; Ness and Williams, 1966; Williams and Ness, 1966; a similar

effect has been noted at higher altitudes by Rosen, 1965). The position

of the boundary is slightly above the conventional auroral zone; its

variation with local time and with magnetic activity is similar to

corresponding variation of the auroral zone (see, e.g. Davis, 1965;

Sugiura and Heppner, 1965). By considering the boundary as the shell formed

by electrons mirroring near 1000 km height and drifting, with conservation

of the first two adiabatic invariants, in a model magnetic field that

includes distortion of the earth's dipole field both by compression of

the magnetosphere and by fields due to the tail neutral sheet, Williams

and Mead (1965) were able to account semi-quantitatively for all these

properties, as well as for the correlation between decrease of boundary

latitude and increase of magnetic field strength in the magnetspheric tail

during magnetic storms found by Ness and Williams (1966; also Williams and

Ness, 1966).

In addition to trapped electrons, one observes precipitated electrons,

that is, electrons whose pitch angles are small enough so that their

mirror points lie in the atmosphere and hence they are absorbed by the

atmosphere before they can mirror.* These precipitated electrons are today

thought to be the principal cause of aurora and related phenomena, an idea

* Very recently a comprehensive review of electron precipitation has been

published by Brown, 1966.
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confirmed by a strong correlation between occurrence of particle prec-

ipitation and auroral light emission observed by instruments on Injun 3

(O'Brien and Taylor, 1964). Average fluxes of precipitated electrons

ET>40 key reach-4 x 104 cm-2sec-1, compared to' 6 x 105- sec~ trapped

fluxes at comparable latitudes both measured on Injun 3 (Frank et al.,

1964); events in which precipitated flux becomes nearly equal to the

trapped flux have been reported by O'Brien (1964). There is a latitude

boundary above which precipitated E >40 key electrons are not generally

observed, which coincides approximately with the trapped radiation boundary,

showing the same local time dependence (McDiarxmid and Burrows, 1964;

Frank et al., 1964).

At latitudes above the radiation zone boundary occasional short

bursts of E>40 key electrons have been observed by Alouette 1 detectors,

described by McDiarmid and Burrows (1965), who call them the "high

latitude spikes"* of energetic electrons. Fluxes range from 104 to

9O -2 -l -J10 cm sec ster . The events occur predominantly on the night side,

between local times 15h and 7h (all but 4 events out of 38 reported

occur between 19h and 5h), and within a well-defined latitude range,

between A = 670 and A = 830 (30 events out of 38 between A = TOO and

= 780); the probability of their occurrence increases with increasing

geomagnetic agitation as measured by the KP index. Similar observations at

lower energies have been reported by Fritz and Gurnett (1965), using data

from an electron multiplier flown on Injun 3 that measured the flux of

* Not to be confused with transition region spikes, to be discussed later.
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electrons above 10 kev. They observed about 600 events with fluxes

greater than 2.5 x 107cm-2sec-1 ster~1 , reaching up to 109cm-2sec~ ster~ ;

the events are confined to local times between 16h and 8h and invariant

latitudes between 580 and 760 (with few events below A =670) and their

occurrence frequency increases with increasing Kp. Some spectral infor-

mation could be obtained by comparing data from the electron multiplier

with that from Geiger tubes measuring electrons above 40 kev on the same

satellite. Fritz and Gurnett give spectral parameters for two events, for

which they obtain exponents Y = 4 6.8 and + 7.3 if a power law spectrum

is assumed, or e-folding energies E,=3.4 kev and 3.1 kev, respectively,

if an exponential spectrum is assumed; by contrast, in the outer

radiation zone during the same passes they obtain Y< 2.8 or Eo' >15 kev

in the first case and Y = 2.2 or Eo = 22 kev in the second. The E>40 kev

"spikes" found in Alouette 1 data and the E >10 kev "spikes" found in

Injun 3 data thus have very similar geographic distributions and a similar

dependence on geomagnetic activity; whether they are the same events is

not entirely clear, especially as the fluxes found by Fritz and Gurnett

when extrapolated to 40 kev seem considerably lower than those found by

McDiarmid and Burrows. All these authors, and others, have speculated that

these events might be related to the tail electron "islands" described ear-

lier and/or to the low energy electron belt of Gringauz and Freeman, but

no definite theory has yet been formulated.

Precipitation of still lower energy electrons into the auroral

zone has been observed by Sharp et al. (1964, 1965), who used plastic

scintillator detectors responding to electrons of energy down to 2 kev
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in one flight and 180 key in another. They observed typical downward

energy fluxes carried by E> 2 key electrons of the order of several ergs

cm-2sec 1 (but as high as 100 ergs cm-2 sec~- on one occasion) and found

that most of the energy was generally carried by electrons below 10 key.

In one case (in which, however, the visual aurora observed was not typical)

they compared the measured energy flux above 2 key, 5 ergs cm-2 sec-1, with

the total energy influx as determined from the luminosity profile of the

visible aurora (measured at the same time from the ground), 200 ergs

cm-2 sec,-1 concluding that (at least in this case) the bulk of the part-

icle energy producing the aurora was carried by electrons of energy below

2 key (Sharp et al., 1964; see also Evans and Belon, 1963).

To conclude this very cursory review of some aspects of high

latitude studies, a number of observations suggest that an important

role in high latitude phenomena is played by low energy electrons,

especially those near the boundary of the outer radiation zone and

outside it.
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C. Electron Observations In The Transition Region

No steady fluxes of electrons of energy above 40 key have been

detected in the transition region; as discussed in an earlier section,

abrupt termination of 40 key electron fluxes is a well-established

characteristic of the magnetosphere boundary, at least over the sunlit

hemisphere. Transient fluxes of these electrons, referred to as "spikes",

generally lasting several minutes and reaching flux values of

104 - 106 cm-2sec-1 , have been observed with detectors on Explorer 14

by Frank and Van Allen (1964) and on Explorer 18 by Anderson et al.

(1965) and Fan et al. (1966). The spikes are occasionally found as far

as several earth radii ahead of the shock front, in the interplanetary

medium, especially during magnetic disturbances. Assuming a power law

spectrum for the electrons above 30 key in the spikes and using meas-

urements from two detectors (a Geiger tube and a solid state counter)

aboard Explorer 18 Fan et al. obtained exponents between 2.5 and 4.0 for

spikes occurring at angles less than 450 from the sun-earth line and

between 3.0 and 4.5 at angles greater than 800. They also found that

spikes closest to the magnetosphere boundary (which have the highest

fluxes, as had already been pointed out by Anderson et al.) tend to

have the softest spectra (i.e. the highest exponents).

Several explanations of these spikes have been proposed. Anderson

et al. suggest that they are electrons escaping from the magnetosphere,

on the grounds that the spike intensity decreases with increasing distance
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from the magnetosphere boundary. Fan et al. reject this hypothesis as

inconsistent with the observed lack of correlation between the intens-

ities and spectra of electrons in the spikes and in the magnetosphere

and suggest that electrons in the spikes are accelerated near the shock

front. A theory of the spikes along these lines has been proposed by

Jokipii and Davis (1964; also Jokipii, 1966a) who suggest that electrons

are accelerated in front of the shock by the classical Fermi process

as they bounce back and forth between the shock and an approaching

magnetic irregularity in the interplanetary medium; Jokipii (1966b)

also accounts for the observed spectral changes in terms of an energy-

dependent diffusion process, the highest energy electrons diffusing

away most rapidly as the spike is convected by the plasma flow through

the transition region away from the subsolar region. Another theory has

been proposed by Shen and Chang (1966), in which electrons are accel-

erated inside the transition region by large amplitude hydromagnetic

waves. Yet another theory, invoking electron acceleration by ion acoustic

waves in the transition region, has been proposed by Scarf and coworkers

(Scarf et al., 1965; Fredricks et al., 1965).

As in the case of the magnetosphere, study of low energy electrons

has lagged behind study of 40 key electrons. Serbu (1965) and Serbu and

Maier (1966), using data from the Explorer 18 retarding potential ana-

lyser, report densities of 2 ev electrons of the order of 50 cm-
3 and

no change in this 2 ev component across the magnetosphere boundary; for

reasons mentioned in an earlier section, however, this result is open

to question. Serbu and Maier also find a "high energy" electron component



in the transition region, having energies higher than 15 ev and a total

flux /-10 9cm-2 sec-1. Freeman (1964), using the CdS total energy detector

aboard Explorer 12 described earlier, found energy fluxes of tens of

ergs cm-2 sec-l in the transition region, usually about a factor of 2

higher than the energy flux inside the magnetosphere on the same pass.

On 13 orbits he also found a sharp decrease of energy flux at larger

distances which he interpreted as the shock front (judging from his 4

published plots, the energy flux outside the shock is slightly lower

than or comparable to that in the magnetosphere); the positions of

these shock crossings are in fair agreement with the shock boundary as

subsequently mapped by Explorer 18. The only published discussion of

electron energy spectra in the transition region based on Explorer 12

results is that of Freeman et al. (1963); it refers to a single pass

and its conclussions were assumed in later papers (Freeman, 1964) to

be valid generally. As this discussion has formed the observational basis

for three years of theoretical speculation on transition region electrons,

a detailed critique of its remarkable argument is given in Appendix F.

Freeman et al. conclude that the average electron energy is near 2.6 kev;

however, as described in Appendix F, an inconsistency between results of

their various detectors was avoided and the 2.6 key figure obtained only

by a procedure that amounts to an ad hoc increase of the CdS detector

solid angle value by a factor of about 4 or 5.

On general theoretical grounds it is to be expected that electrons

will be heated at the shock along with the protons. The amount of heating

and hence the expected average electron energy in the transition region,
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however, depends on the details of the randomizing process that must

be active at the shock. The most common assumption has been that this

process is due to a two-stream instability caused by relative motion of

protons and electrons; detailed calculations (e.g. Parker, 1958b;

Kellogg, 1964) then lead to the conclusion that electrons will acquire

a significant fraction, up to 1/2, of the energy carried by solar wind

protons, giving mean electron energies of the order of hundreds of ev.

The previously mentioned results of Freeman et al. have often been cited

as observational support for this deduction. The supposition that

transition region electrons have energies comparable to those of solar

wind protons has been made the basis of far-reaching theories (e.g.

Bernstein et al., 1964; Scarf et al., 1965) and has been well on its

way to acquiring "it is well known that..." status. The results of the

present work, as well as of Vela 2 and 3 observations, for the first

time allow a direct observational test of this hot electron hypothesis.
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III. THE EXPERIMENT

The description of the experiment given in this chapter is

brief and intended to provide only the information needed to understand

the results. A more detailed description will be found in Appendices

A,B, and C.

The flight. - OGO-A (official designation 1964-54A), the first

satellite in NASA's Orbiting Geophysical Observatory series, was launched

from Cape Kennedy at 01:23:10UT and injected into orbit at 02:17UT on

September 5, 1964. Some parameters of the (initial) orbit are:

geocentric distance of apogee 24.4 Re

height of perigee 280.5 km

eccentricity 0.918

period 3839.4 minutes (8/3 days)

solar ecliptic latitude at apogee 350

initial sun-earth-satellite (or sun-earth-probe, abbreviated SEP)

angle at apogee 1350 and decreasing

initial solar ecliptic longitude at apogee 1500 and decreasing

inclination of orbital plane to the ecliptic 620

speed at perigee 10.7 km/sec

speed at apogee 0.46 km/sec

The orbit is shown in relation to the ecliptic plane and the sun in Fig.8,

and projected on the solar ecliptic (S.E.) coordinate XY and XZ planes
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(for the first two revolutions*) in Fig. 9#.Looking from the sun: in the

early orbits the satellite, as it moves away from the earth, goes up

(above the ecliptic), to the right (the dusk side of the earth), and to

the back (toward the antisolar direction); the sense of revolution is

clockwise in the S.E. Y-Z plane looking from the sun, and counterclockwise

in the S.E. X-Y plane looking from the north ecliptic pole. Later orbits

as seen in S.E. coordinates are obtained from these, of course, by clock-

wise rotation about the S.E. Z axis. The data discussed in this work

were obtained during October through December 1964; at this time apogee

was always on the dusk side of the earth and at SEP angles from 1350

to 540 or S.E. longitudes 1500 to 440.

Another important aspect of the orbit is its relation to the

earth's magnetic dipole orientation. Fig. 10 is a polar plot of radial

distance vs. geomagnetic latitude (i.e. the orbit projected onto a magnetic

meridian by rotation about the dipole) for three consecutive orbits; be-

cause three orbits corresponds to very nearly an integral number of

days (8) every third orbit is approximately the same in this projection.

The main feature to be noted is that in all inbound passes the satellite

is relatively close to the geomagnetic equator. Projections of the orbit

in more complicated coordinate systems will be discussed later where

appropriate.

OGO-A was planned to be completely stabilized; however, the

attitude control system failed soon after launch and the satellite was

* In accordance with common usage I shall refer to revolutions as

"orbits"; thus first orbit, second orbit, etc.
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left spinning with a period of nearly 12 see about an axis pointing

approximately to right ascension 440, declination -100; or, if referred

to the ecliptic plane, pointing 230 below the ecliptic and 380 from

the vernal equinox (as shown in Fig. 8). Throughout the period under

consideration the spin axis is pointing to a direction well within the

antisolar hemisphere; it does not come within 900 of the sun until late

in January 1965 and comes closest to the sun around May 1.

OGO-A carries 20 experiments (for a complete list, as well as a

general description of the satellite, see IG Bulletin No. 92, 1965). Among

those of particular relevance to the present work are the companion MIT

experiment to measure plasma protons, the flux gate magnetometer

(J.P.Heppner), the search coil magnetometer (R.E. Holzer and E.J.Smith),

experiments to observe high energy (>40 kev) electrons with Geiger

tubes (J.A. Van Allen), magnetic spectrometer (J.R. Wincker and R.L.

Arnoldy) and scintillation counter (A. Konradi), an electrostatic

analyser plasma probe (J. Wolfe), experiments to observe very low energy

(0-100 ev) ions and electrons with spherical (R.C.Sagalyn) and planar

(E.C.Whipple) traps, a positive ion mass spectrometer (H.A. Taylor, Jr.),

and a very-low-frequency noise detecting antenna (R.A. Helliwell). The

experiments can be operated from September through December and from

March through June; at other times the spin axis-sun angle is such that

the solar cells do not produce enough power for the experiments. With

this limitation, the satellite has been operating from soon after launch

and still is. The present work is restricted to data between September

and December 1964 because (a) the data from March to June 1965 proved to
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be unusable, as will be discussed later, and (b) later data were not

made available soon enough to be included.

Apparatus. - The detector (very similar to the positive ion

detectors extensively used by the M.I.T. group, described in e.g.

Bonetti et al., 1963, or Lyon, 1966) is shown schematically in Fig. 11.

It consists of a cylindrical metal cup open at one end with a collector

plate at the other end and 5 planar grids. A periodic voltage (ideally a

square wave with upper and lower voltages -V2 and -Vl, V2> 1 ) is applied

to grid G3, called the modulator grid. Charged particles are variously af-

fected, depending on their charge, energy, and direction of motion. Let

E = particle energy, E = angle between direction of incidence and cup

axis, e = magnitude of particle charge; the following cases occur:

(1) Negative particles for which

E cos2 9 eV1

are repelled by the electric field of the modulator grid and never reach

the collector.

(2) Negative particles for which

eV 1< E cos 2 e< eV2

reach the collector during one half of the modulation cycle (when the

modulator potential is -V1 ) but not during the other half, producing an

A.C. current to the collector at the same frequency as the modulating

potential and 1800 out of phase with it (when the modulating potential

goes from -Vi to -V2 , it algebraically decreases; at the same time the

number of negative particles reaching the collector also decreases, i.e.

the current to the collector increases if the usual sign convention is
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used); the amplitude of the current is proportional to the flux of particles

in the stated range.

(3) Negative particles for which

eV2 < E co s 2 E

and positive particles for which E cos 2 O /e > 150 volts (the positive

potential on the collector, discussed later) reach the collector at all

times, producing, to first approximation, only a D.C. current to the

collector. Positive particles for which E cos2e /e < 150 volts never

reach the collector.

Grid Gl and the walls of the cup are "grounded" (i.e. electrically

connected to the skin of the satellite), forming a closed equipotential

surface around the detector. Grid G4 (the shield grid), also grounded,

prevents direct capacitive coupling between the modulator and the collector.

Grids G2 and G5 are grounded and serve no particular purpose in the

present detector. The collector plate is maintained at a D.C. potential

of +150 volts in order to prevent the escape of secondary electrons

produced as the incident particles impinge on the collector.

The quantity measured is the A .C. component at the modulator

frequency (in this case 2.461 ke/s) of the current to the collector.

A block diagram of the electronics is shown in Fig. 11. The collector

plate is capacitor coupled to a linear preamplifier, whose output is

passed first through a narrow band filter which removes all but the

fundamental component at the desired frequency, and then through a non-

linear compression amplifier with an approximately logarithmic characteristic,

3 decades of input current corresponding to a 0.5 to 5.1 volt output
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range. The synchronons detector (which can be thought of as an integrator

preceded by a switch that is closed during one half of the modulator

cycle and open during the other half) then removes any A.C. component that

is 9Q0 out of phase with the modulator and smoothes the remaining signal

(by integrating over about 5 cycles, or 20 milliseconds), producing a

nearly D.C. output that is positive if the original A.C. signal was 1800

out of phase with the modulator (as it should be if the detector is

functioning normally) and negative if it was in phase. The emitter follow-

er circuit acts as a link to the spacecraft telemetry system; since the

latter can accept only positive signals, any negative signal is blocked

and a zero is presented in its place to the telemetry. The smallest

detectable collector current is about 2 x 10-11 amps. With zero A.C.

current to the collector the output of the system is about 0.5 volts;

thus a steady zero output unambiguously indicates that, for some reason,

the A.C. current to the collector is of the wrong phase. Additional

details about the apparatus, calibration procedures, etc. are given in

Appendix A.

The actual wave form of the modulating potential is not exactly

square, but has nearly rectangular "spikes" added at the beginning of

each half-cycle, as shown in Fig. 12. The modulation must be described

by four voltages, V< V2 V3< V4, instead of two. Positive particles and

negative particles in the ranges E cos2 e < eV, and E cos2 3 > eV4

produce no significant effect, as before. The remaining negative particles

are detected but the fluxes of particles within each of the three ranges
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(1) eV < E cos 2 E < eV2

(2) eV2 < E cos2 8 < eV3

(3) eV3 < E cos2e < eV4

are weighted unequally, as discussed in Appendix A; the "main window"

(2) is weighted most heavily and the "side lobes" (1) and (3) are

weighted by a factor of about 0.3 to 0.4 relative to (2), but (1) is

weighted negatively, because of phase considerations. In other words, if

F(eV, eV' ) is the flux of negative particles within the range

eV < E cos 2 9< eV/

that can reach the collector, then the measured current is proportional to

-a F (eV, eV2 ) + F (eV2 , eV3) + av F (eV ,3 (e3,e)

where a , aL are constants depending on the modulator wave form.

One can define a function Wk (E) describing an "energy window" of

the detector

W (E) = 0 E eV

= -a eV < E - eV2

=1 eV2 <E<eV 3

a. aeV
3 < E < eV4

-0 eV 4 4E

(where W+ refers to the kth set of modulation voltages) which will later

prove useful for a precise discussion of the meaning of the measurement.

There are 4 sets of modulation voltages (referred to , for brevity,

as "energy channels" or "energy windows"). The parameters Vi, V2 , V3 , V4 , a ,

and a4 of each channel are given in Table I and the functions W. (E)

are shown in Fig. 13; note that on a logarithmic energy scale the 4 channels
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are roughly of equal width and equally spaced. The timing of the meas-

urements is shown in Fig. 14. The currents in the 4 channels are measured

in sequence, from the highest energy channel to the lowest; the complete

set of 4 measurements takes 2.3 seconds and is repeated every 9.2 seconds.

There are some additional complications, besides the non-square

modulation. They are discussed in Appendix A and only the conclusions are

given here. Effects due to varying curvature of the particle trajectories

are not important. Secondary electrons emitted from the shield grid

contribute to the current at the collector; the A.C. component of this

contribution, however, is proportional to the modulated incident electron

flux and effectively multiplies it by a factor A (which I shall call the

effective secondary electron yield) that can be estimated, from published

data on secondary electron emission, to be between 1.5 and 2.5. Other

complications are the detector response to sunlight and to protons. The

response to sunlight is presumably caused by photoelectrons emitted

from various surfaces within the detector, though the mechanism by which

they are modulated is not yet completely understood; in practice the

effect is found to be rather severe, and useful data can be obtained only

when the sun is not within the field of view of the detector. The response

to protons occurs by means of energy-dependent secondary electron emission

from the modulator grid; the A.C. current produced is of the wrong phase

(in the sense discussed earlier) and is approximately proportional to the

modulation potential. The effect corresponds to detection of at most one

percent of the total incident proton flux and thus is important only when

the total proton flux exceeds by two orders of magnitude the electron flux
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shown in a later chapter) within the high density, low temperature region

delimited by the whistler knee, i.e. within 4-5 Re distance. That the

detector is responding predominantly to protons can be recognized, when

it occurs, by a continuous zero output (since the proton signal has the

wrong phase). Protons of energy above 150 ev can be detected by another

mechanism, the variable bending of their trajectories in the modulating

electric fields, but this effect can be estimated from the direct proton

measurements simultaneously carried out on this satellite and shown to be

at or below the electron detector noise level in the transition region and

much smaller elsewhere.

The detector is mounted on the main body of the satellite. The

direction of normal incidence is within a few degrees (20 to 7 , not

known precisely yet) of the satellite spin axis. The angular response func-

tion G (E) ), giving the fraction of particles incident at an angle 0

to the cup axis that are detected, can be calculated from the geometry

(with due regard to secondary electron effects), as discussed in Appendix

A, and is shown in Fig. 15; a simple analytical approximation that has a

maximum deviation of 4% is

G ( )= 1. 408 cos2 e - 0.451 0 S 0 < 550 30

- 0 > 550 30

The angular field of view of the detector thus is a cone of half-angle

550, the weight given to the flux of particles incident at an angle

decreasing from 1 at e = 0 to 0.5 at E = 350 to zero at 8 = 550; the

axis of the cone nearly coincides with the spin axis. Referring to the

- 54 -
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earlier discussion of the spin axis orientation, during the period

September through December the detector points well away from the sun (and

also, it may be noted, away from the solar plasma flow) and there are no

photoelectron problems. During March through June, on the other hand,

the detector faces the sun and the data are largely useless.

For later use it is convenient to express the measurements in

terms of the electron velocity distribution function. Let f(Q)dv be the

number of electrons per unit volume, at the position of the satellite and

at the time of a measurement, whose velocity vectors lie within a volume

d_ of the point v in velocity space; the integral d"f (0) gives the total

density of electrons at the point stated. Then the current ik in the kth

channel is

ik eA dv v cosa G(O ) Wk(1 a 2cos2 13) f(v)

where 0 = angle between v and the cup axis, A = 18.3 cm2 = effective

area of detector (allowing for the transparency of the various grids),

and ) , G( e ), and Wk have been defined previously. The basic data of the

experiment are a set of 4 such numbers ik, k = 1,2,3,4, every 9.2 seconds;

the object of the analysis is to obtain what information one can about

the function f( ) and its spatial and temporal variations.

Data acquisition and processing. OGO-A has 4 telemetry modes:

data can be transmitted in real time (i.e. as it is produced) at one of

three rates, 1, 8, or64 kilobits per second; or it can be stored on an

onboard tape recorder (at the rate of 1 kbit/sec) and played back and

transmitted later. The orientation of the satellite directional antenna

is such that real-time transmission is possible only during the outbound
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portion of the orbit; during the inbound portion data must be stored on

the tape recorder and played back near perigee.The choice of bit rate

for the real-time transmission is governed by two competing factors:

for most experiments the higher bit rates provide more information;

on the other hand, the relative number of errors increases sharply

at the higher bit rates and increases with satellite altitude at all

bit rates. As a compromise, a telemetry schedule was worked out which is

roughly as follows: 64 kbit transmission from perigee out to about

30,000 km altitude; 8 kbit from there to about 120,000 km, alternating

with 1 kb above about 80,000; 1 kbit from there to apogee; data storage

(at 1 kbit) from apogee on. On any particular orbit there are deviations

from this schedule and gaps, depending on availability of tracking

stations at suitable locations.

The present experiment functions only when the telemetry is in

a 1 kbit mode, either real time or data storage. Thus there are no data

available on the outbound part of the orbit from perigee to about 14-15 Re,

pieces (typically an hour or two, with gaps of comparable duration) from

there to about 20 Re, and more or less continuous coverage with occasional

gaps from there on; the data for the last 4 or 6 Re are not useful because

of the positive ion effect mentioned earlier. Fig. 16 shows the data

coverage for various orbits.

The data are digitized on the satellite and transmitted in the

form of 9-bit integers. Initial processing, including determination of the

time at which a measurement was made, is done at Goddard Space Flight Center;

the data for the 20 experiments are then put on separate magnetic tapes and
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sent to the respective experimenters. The processing done at M.I.T. is

described in Appendix C. Briefly, the electron and proton data are

separated; the data are sorted by energy windows, using the special

marker signals generated by the detector electronics; the data are

arranged in correct time sequence; the fluxes in the 4 energy windows are

plotted as functions of time, with the position of the satellite in space*

indicated on three additional independent coordinate axes. Most of the

results in this thesis were obtained from examination of these summary

plots; for a closer study of the energy spectra, 2-minute averages at

selected times were plotted as a function of the energy window.

* All orbit calculations are done at the Goddard Space Flight Center.
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IV. RESULTS

A. The Transition Region

The properties of electrons in the transition region, as

determined in this experiment, can be summarized in a few sentences:

(1) The omnidirectional flux of electrons with energies above

8 10 -2 -l
200 ev varies between 10 and 10 cm sec . The flux generally fluct-

uates in a more or less random way, with periods of flux enhanced by a

factor of 3 or so lasting from a few minutes to a few hours. Large,

long-lasting increases occur in association with magnetic storms.

(2) In the range 125 to 1000 ev the differential flux is a

sharply decreasing function of energy, typically varying roughly as

E-4 or E-5. The observed electrons thus must be a non-Maxwellian tail

of a distribution peaked well below 125 ev.

(3) There is some, generally inconclusive, evidence for occasional

flattening or even possibly a second peak in the spectrum somewhere in

the vicinity of or above 1 key, especially in data from orbit 27 inbound,

during one of the most intense magnetic storms that occurred within the

period studied.

(4) In the undisturbed solar wind the electron flux is usually

below, or only slightly above, the noise level of the instrument,

corresponding to a flux above 200 ev '5 8 x 107 cm-2se~ -. The change
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from this to the strong fluxes characteristic of the transition region

usually is sudden (within the 9 second resolution of the measurements )

and occurs at the shock crossing as determined from simultaneous proton

and (in the few cases so far where comparison has been made) magnetic

field observations.* In a few notable cases, however, all during a

magnetic storm, strong electron fluxes are found out to some distance

outside the shock.

(5) The change from transition region to magnetosphere electron

behavior, discussed in a later section, usually is also relatively sudden

and occurs, in the cases where comparison has been possible, at the magne-

topause as determined from proton and/or magnetic field data.

All these properties were inferred from observations during

October, November, and December 1964, at angles from sun-earth line between

600 and 1150 on the dusk side of the earth, close to the geomagnetic

equatorial plane but considerably above the ecliptic plane.

To illustrate some of these points, figures 17 and 18 show two

highly contrasted passes. Orbit 23 inbound (Fig.l7) is a typical quiet

time pass. The transition region here extends down to 16.4 Re (at which

point the satellite enters the magnetosphere); inside it, the current in

the 4th (lowest energy) channel fluctuates around 10-10 amps, occasionally

(as, for example, between 22 and 20 Re) dropping nearly to the noise level.

On the other hand, orbit 22 inbound (Fig.18), occurring only 3 days earlier

* I am grateful to Drs. J.P.Heppner and M. Sugiura of Goddard Space Flight

Center for access to some of their magnetic field data before publication.
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but during a moderate magnetic storm that had begun with a sudden

commencement at 03:20U.T. on November 1, has a markedly different

character. The seven shock crossings identified from proton data are

indicated in the figure (here and in most other figures, the electron

data have been smoothed by taking a 2 minute sliding average to elimin-

ate some instrumental fluctuations, as discussed in Appendix A, and hence

the change at a shock crossing appears more gradual than it actually is);

the magnetosphere boundary crossing occurs somewhere in the data gap

between 19.3 and 18.1 Re. Within the transition region, the most obvious

difference from the preceding figure is the much larger current in all

channels, at times exceeding 10~9 amps in the 4th channel. Another ex-

ample of storm-time transition region electrons, showing currents

reaching 3 x 10-9 amps and once as high as 9 x 10-9 amps, is given in

Fig. 19 (note the expanded time scale and the reduced smoothing, using

a 36 second sliding average); this is a portion of orbit 27 inbound

(November 15), which will be mentioned again later on. Similar enhance-

ments of electron current by a factor from 3 to 10 and more above quiet-

time values occur during all the other magnetic storms for which trans-

ition region data are available: the sudden commencement storms of

October 26 and November 8, and the disturbed period October 18 to 20.*

While the electron intensity thus changes from orbit to orbit, the

electron energy spectrum, as indicated by the ratios of currents in the

various channels, is much less variable.Figures 17, 18, and 19 all show

* A list of sudden commencements and a plot of Kp indices for this period

are given by Lincoln, 1965a,b.

A
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that within the transition region the current in channel 4 (responding

primarily to electrons between 170 and 315 ev) is significantly larger

than that in channel 3 (primarily 240 to 500 ev), typically by a factor

of 3 or so; the current in channel 3 in turn exceeds that in channel 2

whenever the over-all intensity is high enough so that the latter is

above the noise level. This behavior, the decrease of current with

increasing channel energy, at least in the range 150 to about 600 ev

corresponding to channels 4,3, and 2 (the behavior of channel 1, about 700

to 1760 ev, is somewhat more complicated and will be discussed later), is

found in all the available transition region data; there has not yet been

one case in which the current in channel 3 was equal to or greater than

that in channel 4, within the transition region. Note in particular from

Fig. 19 that this behavior persists even during the most intense en-

hancements of total current that occur during magnetic storms.

The general character of the energy spectrum is even more

apparent from a plot of current vs. channel energy at a given time. Such

plots are given for 33 times, scattered throughout the period under study,

in Fig. 20; the selection of these times was somewhat biased toward

periods of higher intensity (since I chose mostly cases where signifi-

cant currents were found in at least 3 channels) but otherwise was intended

to provide a reasonably representative sample of spectra observed in

the transition region. The abscissa in these plots is log of the voltage

V2 of each channel*; the ordinate is log of the measured current, which is

* See Chapter III, section B.
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proportional to the electron flux averaged (with a certain weight function)

over the energy range of the channel, as described earlier. From these

plots it is clear that (a) the measured current decreases with increasing

channel energy, as already mentioned; (b) the decrease goes, roughly

speaking, as a power law of the energy with a rather steep exponent,

about -3 to -6 (except for a few "flat" cases such as numbers 27 and 33

in Fig. 20); (c) this general character of the energy spectrum does not

change much even while the over-all intensity varies by more than an order

of magnitude. The "flat" cases, where the exponent is of the order of

-0.7, are isolated events each lasting a few minutes; the total number

of such events found in the data for the period studied is three, two

of them during the November 15 magnetic storm and the third during a

rather quiet pass on December 12.

Thus, with the exception of a few uncommon occurrences and, of

course, within the spatial and temporal limits of the present study, the

transition region electron spectrum in roughly the 150-600 ev energy

range has a well-defined and relatively unchanging character: the flux

of electrons at a given energy decreases with increasing energy; the

decrease, although fairly sharp, is not as fast as an exponential and

at least qualitatively behaves like a power law. In other words, the

spectrum in this energy range can be described as a non-Maxwellian

high-energy "tail" of a distribution whose peak lies somewhere below

150 ev, below the range of the instrument. The data are definitely

inconsistent with any distribution that peaks near a few hundred ev;

electrons in the transition region seem to be colder than had been
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theoretically anticipated.

Electrons in the energy range near 1 to 2 key can be studied with

the present instrument only when the over-all intensity is high enough so

that a significant current can be measured in channel 1. A number of such

cases is included in Fig. 20. In some of them the channel 1 current falls

on a smooth extrapolation of the lower energy points (for instance, numbers

13, 22, 25, or 27 in Fig. 20); in others it is comparable to (numbers 11,

26) or even larger than (number 24) the current in channel 2; nearly all

the latter cases occur during the November 15 magnetic storm and can be

seen clearly in Fig. 19. Such behavior would indicate a "knee'" or "hump"

in the spectrum somewhere near or above 1 key.

To obtain more precise information about the electron velocity

distribution function f(v) it is necessary to start from the relation

given earlier between the distribution function and the measured current

in the kth channel

ik = eA J dv v cos 9 G(O ) Wk ({iv 2cos 2 ) (Y) (1)

In principle, this defines an integral equation for f(v) in terms of ik)

provided one knows ik for a sufficient number of energy windows and

detector orientations. In practice, with only four energy windows and one

orientation, it is necessary to assume a reasonable (and reasonably

simple) functional form for f(v ) containing a few parameters, calculate

the expected currents in the four channels as functions of the parameters,

and try to find a set of parameters that will reproduce the measured

currents; in other words, one tries to find a model distribution function

that will fit the observations and hopes that, at least within the energy
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range of the observations, this model will have some resemblance to

reality.

The first assumption I will make is that the electron distribution

is isotropic, i.e. f (V) depends only on the speed v (a natural assumption

for an experiment in which the detector points in a fixed direction!). An

approximate isotropy of electron fluxes (within a factor of 2 or so) has

in fact been observed with detectors on Explorer 18 (Moreno et al., 1966)

and Vela (Asbridge et al., 1966) and would be expected because of the

turbulence of transition region magnetic fields and the consequent lack

of a permanent preferred orientation. With this assumption, writing the

integral in equation (1) in a spherical coordinate system with the z axis

along the Faraday cup normal and carrying out the 4 integration

ik = 2T e A f sin 9 dE cos 0 G(a) v3dv Wk (*nv 2 cos 2 9) f(v)
)v~~~dv(2)

It is convenient to express ik in terms of the omnidirectional integral

flux above energy E

J(E) = 4-i v3dvf(v)
(2E/m)-f (3

then, differentiating (3)

v3dv f(v) = -dJ dE (4)

inserting into (2) and integrating by parts, assuming that J(E) Wk(Ecos 2 a )

vanishes at both E = 0 and E = 00

ik = -- sin( decose G(e) fdE J(E) Wk (E cos2) (

jo 40(5)

where W (x) e d W(x). Making the substitutions x = sec2 9 and V = E cos2 8
dr

one obtains
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CO0

ik x eA G(x) dV Wk (V) J (Vx) (6)

where for convenience G(sec-l JT) is written simply as G(x). With the

step-function form for Wk given earlier, Wk is a sum of delta functions,

so that finally, carrying out the V integration

i eA dx G(x) Ik (x) (7)

where

Ik(x) - a J(eV,x) + (1 + a ) J(eV2x) - (1 - au) J(eV3x) - au J(eV4x)

(8)

and V1, V2, V3 ' V4 , a,, au refer, of course, to the kth channel.

To proceed further it is necessary to specify a functional form

for f (v). In view of the earlier qualitative discussion, f(v) should go

over into something like a power law at high energies; in addition, it

should lead to finite values for physically significant quantities such

as density or pressure, have few free parameters and be as simple as

possible. A model distribution function meeting these requirements, first

proposed in this context by Olbert (cf. Moreno et al., 1966; some special

cases of it have been used in the literature earlier), is

N T (K+1) 1f~p =K-+.J. (9)
o (T K) P (K-i) (i+L-2 )

Kwo

where the parameters are

N the total density of electrons.

W0  the most probable speed (the position of the peak in the speed

distribution v2f(v) ).
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K the exponent, at high energies, of the differential flux

per unit energy.

As K-' 00, f(v) approaches a Maxwellian distribution with temperature

kT = Nm2. The function is shown, for several K, in Fig. 21. The corres-

ponding omnidirectional integral flux, obtained by an elementary integration,

is
12 E

J()=)w 2 _(K -1) 1 + -f
(E) =~1 N(+) K (10)

KEo

where Eo nWO2

Several other quantities of interest are

total omnidirectional flux # = J(O) = Nwo K) 2 '(K (11)
\P T(K-)

energy density U = dvmv2f(v) = NE K 2)
K - 3

total omnidirectional energy flux

dd f() =4K (13)
SK -2 (3

A list of the various K - dependent coefficients is given in Table II. These

formulas are collected here primarily for reference and for later use in

discussing magnetosphere observations. In the transition region only the

high-energy tail of any model distribution can be expected to be significant

since only electrons in the tail of the actual distribution are detected;

model quantities like K or J(E) for large E will be significant, whereas

N and E0 will not.

The expected currents ik were calculated, using the form (10)

for J(E), by numerically evaluating the integrals (7). The results are
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shown in Figs. 22a to 22d; for each channel, the quantity F(K,x) defined

by

ik=eA A K-1 (K 2 P (K-1) Nwo F(,V2(4)4 K T (K-4) Eo

is plotted as a function of x = V2 with K as a parameter. F is essentially
Eo

the current expressed in flux units divided by the total flux, with some

additional normalization.

The first question to be investigated using these model calculations

is the relation between the measured current in channel 4 and the electron

flux. Fig. 23 shows the ratio of the omnidirectional flux above energy E,

J(E) as given for some E. and K by equation (10), to the current i4 in

channel 4 calculated from equation (T) for the same Eo and K (the ratio

is of course independent of N), plotted vs. the energy E, for several K and

a number of values E. in the range 10 ev to 100 ev. The curves all come

close together (within a factor of 1.5) near E = 200 ev; hence i4 is

proportional to the omnidirectional flux of electrons above 200 ev, the

constant of proportionality being approximately (within 1 30%) indepen-

dent of the distribution function provided its parameters fall in the

range cited. The relation is

flux (E>200ev) 1 4 x 108 CM-2 sec-1 4

10-1 0 amps (15)

With this conversion factor, everything said earlier about the current in

channel 4 can be restated in terms of flux above 200 ev; thus, in

particular, the typical quiet time flux fluctuates around 4 x 108 cm-2sec -

10 -2 -1 10 2 -1
and peak storm time fluxes reach 1.2 x 10 cm sec and once 3.6 x 10 cm- sec.

A related quantity is the density of electrons

A
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with energies above E,

N (E) = 41Ff v2dvf(v)
(2E/m)Y (16)

which can be related to J(E) using equation (4)

N(E)=- fE' 1 dai (17)
E

where v(E) is the speed corresponding to energy E; integrating by parts

N(E) =J(E . C dE J(
E

=~~~if [J~d,~,) {~~ (18)

For a steeply falling spectrum the quantity in brackets is close to 1 (for

example, it equals 2 ca / (2a-+ 1) if J(E) ~-' EO) and one has, approximately,

N(E) (19)

The current i4 thus can be also related to the density of electrons

with energies above 200 ev (v(200ev) 8.4 x 10cmsec )

density (E >200ev) - 0.5 cm- 3  i4 (20)

10-10 amps

Densities above 200 ev thus range from around 0.5 cm-3 during quiet times

to as high as 15 cm- 3 (and once 45 cm- 3 ) during magnetic storms.

Turning now to the use of model distributions to study the electron

energy spectra, I will deal mainly with the cases shown in Fig. 20. It

is convenient to form the current ratios i 4/i3, i3/i2 and i2 /i1 , which

are independent of the total density N and, within the context of the

model, are functions of the two parameters K and Eo. Fig. 24 is a plot
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with log (i 3 /i 2 ) as abscissa and log (i/i 3 ) as ordinate; the lines are

curves of constant K and curves of constant E0 calculated from the model;

the numbers enclosed in circles or squares indicate points corresponding

to measured spectra from Fig. 20 ( ( indicates spectrum number 1 in

Fig. 20, etc.). Fig. 25 is a similar plot with log (12/i 1 ) and log

(i 3 /i 2 ). Spectra with measurable currents in all four channels, which

therefore appear in both Figs. 24 and 25, are shown enclosed in squares;

those in which the current in channel 1 was below noise level and which

thus appear only in Fig. 24 are shown circled. With only a few exceptions,

the circled points in Fig. 24 fall within a region corresponding to

distribution functions with exponents K in the range 4.5 to 7 and energies

Eo in the range roughly 10 to 50 ev, that is, well below the energy range

of the instrument, in agreement with earlier qualitative deductions. Of

the points enclosed in squares, numbers 27 and 33, the "flat" cases men-

tioned earlier, fall in regions corresponding, within the uncertainty

of the measurements, to the same parameters K and Eo in both Figs. 24 and

25, namely, an exponent K~,,2 and a low E; thus the "flat" cases indeed

correspond to an unusually flat power law distribution. The other squared

points, however, tend to deviate in a systematic way from the predictions

of the model. In Fig. 24 they tend to be somewhat higher than allowed by

the model; in Fig. 25 they fall into two groups, either considerably

higher than allowed (this includes, of course, the cases such as number

24 where i1 exceeds 12 ) or somewhat low. The qualitative character of

the distribution function indicated by these deviations is sketched for

the several cases in Fig. 26. All the deviations suggest that the "hump"

in the spectrum so readily apparent during the November 15 storm (see
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Fig. 19 and earlier discussion) may exist also at other times, to a

lesser extent and sometimes at a lower energy. This must be regarded,

however, merely as an interesting suggestion and not an established fact,

for at least two reasons: (a) the observational evidence for the "hump"

being based entirely on currents in channels 2 and 1 which are almost al-

ways close to noise level, is of marginal significance; (b) at these very

low current levels there may be some contribution from proton fluxes, as

discussed in Appendix A.*

To summarize the whole discussion of energy spectra, the present

measurements provide strong evidence that transition region electrons have

a non-Maxwellian energy distribution peaked well below 125 ev; only a

sharply decreasing, approximately power law distribution is found in the

several hundred ev range. The exponent of the differential flux per

unit energy ranges roughly between -4 and -7, although there occur isol-

ated, apparently rare at this time, events in which the exponent flattens

to about -2. Fluxes of electrons above 200 ev range from 108 to a few times

1010 cm-2sec 1, corresponding densities from 0.1 to 40 cm , the highest

values occurring during magnetic storms. There are occasional indications

of a "hump" or a flattening in the spectrum in the vicinity of 1 key, but

these must at present be considered as inconclusive.

The very detailed electron energy spectrum measurements (64 points

* Eventually, but not at present, it will be possible to evaluate the

proton contribution, if any, from the simultaneous proton measurements.
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between 70 ev and 18 kev) with an electrostatic analyser on Vela 3,

recently reported by Asbridge et al. (1966), show, within the transition

region, a power law spectrum between about 100 ev and 900 ev, with (dif-

ferential) exponents in the range -3.5 to -5.5, in substantial agreement

with the present work; earlier reports (including the published abstract

of the paper of Asbridge et al.) of a peak in the spectrum near 200 ev

resulted from failure to take into account the reduced detector efficiency

at low energies.

The last question to be discussed is whether the decrease of

electron flux from transition region to solar wind values coincides with

the shock front as determined from proton measurements. In most of the

cases the answer is, within the 40 second resolution of the proton

measurements, in the affirmative. An example of this is given in Fig. 27

which shows the unsmoothed electron data for a portion of orbit 33 out-

bound; each of the large sharp increases and decreases of electron flux

coincides with a shock crossing observed in the proton data. A few

dramatic exceptions to this general rule, however, occurred during the

November 15 magnetic storm and can be seen in Fig. 19; at 10:17 UT and

again at 10:53, as the shock front was driven in past the satellite by

the increased pressure of the solar wind causing the storm, strong

electron fluxes were observed in the interplanetary medium until they

disappeared suddenly at 10:30 and 11:02, respectively. This sharp

disappearance some distance upstream from the shock strongly suggests

that these electrons are not part of the solar wind itself but are
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related to the shock. The electrons observed around 11:45, from 12:45

to 13:30, and again from 14:00 to the shock crossing at 14 :4 7 are probably

of the same origin.
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B. The Magnetosphere

For reasons already mentioned, nearly all the electron data in

the magnetosphere were obtained from inbound passes of the satellite and

hence from regions relatively close to the geomagnetic equatorial plane;

between geocentric distances 20 and 10 Re on inbound passes, the geo-

magnetic latitude of the satellite during the period considered ranged

from -60 to +250. The sun-earth-probe angle during this period, for

portions of the inbound orbits between the magnetosphere boundary and

about 10 Re distance ranged from 1450 to 800, on the dusk side of the

earth. The part of the magnetosphere to which the present study refers

is thus the evening sector (about 18h to 22h local time) of the equato-

rial region. The principal features of the electron distribution found

in this experiment are the following:

(1) There exists in this evening sector a band of electrons

extending, within the equatorial region, from the magnetosphere boundary

inward to a geocentric distance of about 11 Re, characterized by densities

of the order of 1 cm- 3 , mean energies of several hundred ev, and omni-

directional fluxes of the order of 109 cm-2 sec- 1 . The band extends in

longitude toward the sun-earth line beyond the limits of the present

survey, i.e. to within at least 800. Toward the anti-solar direction it

is found as far as 10 Re behind the dawn-dusk meridian*; the electron

distribution beyond that distance cannot be unambiguously determined

* The meridian plane perpendicular to the sun-earth line



because of limited data coverage. This band should probably be identified

with the once so-called "outermost radiation belt" of Gringauz.

(2) Within this band, the electron flux, mean energy, and

density, although fluctuating in time and varying from one orbit to

another, do not show any obvious systematic dependence on geocentric

distance or on the angle from the sun-earth line. As to possible depen-

dence on geomagnetic activity, a significant increase in density occurs

during the magnetic storm of November 15, but no such increase is apparent

during the storms of November 1 and 9; because of the very small number

of storms available for study during this period, the question of storm

effects must for the present be left open.

(3) Toward the tail region of the magnetosphere, roughly farther

than 10 Re from the dawn-dusk meridian, a region of electrons of consid-

erably lower energies is encountered; as far as can be determined with

the present instrument, the density is of the order of 5 to 10 cm- 3 ,

the mean energy is of the order of 40 to 80 ev, and the total omni-

directional flux is of the order of 4 x 109 to 1010 cM-2sec1. Only a.

very limited amount of data from this region is so far available and its

precise spacial limits cannot be established.

(4) Electrons in both this region and the previously mentioned

band have roughly the same and relatively unvarying energy density;

assuming equipartition of energy between electrons and (so far undetected)

protons, the energy density of the entire plasma corresponds to that of

a magnetic field of magnitude 20 to 4o Y, comparable to the observed

field. The only significant increases of energy density above this range
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that have been found so far occur during the magnetic storm of November

15, when values corresponding to 50-60 ' are reached.

(5) The band of several hundred ev electrons usually has a

well-defined boundary on the earthward side, occurring generally at a

geocentric distance of 11+1 Re but sometimes as close as 8 or even 6 Re;

most of the close boundary crossings occur at the larger angles from

the earth-sun line, but because of the small numbers involved it is not

clear whether this is a significant result or just a coincidence. The

boundary is defined by a remarkable change in the electron spectrum:

as the satellite moves inward, the electron mean energy decreases,

while the density increases somewhat; it is possible to follow the

energy decrease from 400-500 ev to about 100 ev, (and the corresponding

density increase, e.g. from 0.8 to 1.3 cm-3 ), at which point the meas-

ured currents are almost at noise level. The decrease from the typical

measured current of a few times 10-10 amps outside the boundary to noise

level (about 2 x 10-11 amps) inside usually occurs relatively rapidly,

while the satellite moves 1 Re or less, although in some cases the

low energy electrons can be detected for a distance of several Re inside

the onset of the decrease.

(6) At distances closer than about 4-5 Re the output of the

detector falls to zero (as distinct from noise level); the effect is

believed due to the large fluxes of positive ions acting through the

mechanism described in an earlier chapter. The boundary of the high-

density plasma region obtained from the onset of this effect is in

agreement with whistler and other determinations.



Examples of inbound passes through the magnetosphere are

shown in figures 17 (orbit 23), 18 (orbit 22), and 19 (orbit 27); as

additional examples, Fig. 28 shows one of the earlier orbits, orbit

15, at relatively large angles from the sun-earth line (note that the

magnetopause is encountered at a distance of 23 Re) and Fig. 29 shows

the last orbit in 1964 for which complete data coverage through the

magnetosphere is available, orbit 35, at an angle of about 800 from the

sun-earth line (note the magnetopause crossing at 12.5 Re). All these

figures show a region, extending inward from the magnetosphere boundary,

in which the largest currents are observed in channels 1 and 2, the

high energy channels (in contrast to the transition region, in which

the largest current always occurs in channel 4., the lowest energy

channel); the current in channel 1 is usually somewhat smaller than that

in channel 2, indicating that the differential electron flux has a

maximum at an energy somewhere near or within the range of channel 2

(roughly 300 to 1000 ev) and is already decreasing within the range of

channel 1. The sharp earthward boundary of this region appears as the

rapid decrease of current in all channels, at 10 Re in orbit 15 (Fig.28),

10.8 Re in orbit 23 (Fig. 17), and 10 Re in orbit 35 (Fig. 29). The

change of the energy spectrum across the boundary is especially clear

in orbit 23; while the satellite moves a distance of 1 Re, the maximum

of current shifts from channel 1 through channels 2 and 3 to channel 4;

it is apparent that the energy at which the peak electron flux occurs is

falling. Similar behavior, although not as marked, can be seen in orbit

15, and is found in most of the cases available. In orbit 35, however,

- 76 -
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the decrease of the currents to noise level is so sudden that the

details cannot be made out from a plot on this time scale; in orbit 22

(Fig. 18), by contrast, the channel 1 current drops to noise level at

11 Re, but currents in the lower channels persist to 6 Re. In orbit

27 (Fig. 19), finally, strong electron fluxes are found as close as 8 Re.

A very different electron spectrum can be seen in orbit 11

inbound (Fig. 30); the peak current occurs in channel 4, and the spectrum

falls with increasing energy in almost transition-region-like fashion,

although the ratio of the current in channel 4 to that in channel 3 is

somewhat smaller than in the transition region, indicating that the

spectrum near 100-200 ev is flatter (and hence presumably the peak of

the electron distribution is at a higher energy). During orbit 11

inbound there is a magnetic storm, but a similar spectrum is found at

quiet times in a portion of orbit 14 inbound and, for a very brief

period only, in orbit 15 inbound (the pulse in channel 4 at 19.6 Re in

Fig. 28).

The behavior of the observed signal at distances less than

about 5 Re cannot be represented on these plots, which show the input

current corresponding to the telemetered voltage, a quantity which has

no meaning for voltages smaller than the noise level at zero input. A

plot of the telemetered voltage for orbit 23 inbound from 14 Re to

perigee is shown in Fig. 31. The previously mentioned boundary at 10.8

Re is clearly visible; inside it, the signals in all four channels stay

at their noise levels* until a distance of 5.3 Re when first the signal

* The difference in widths of the four traces is purely an instrumental

effect, discussed in Appendix A.
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in channel 1 and then in succession those in channels 2,3 and 4

decrease rapidly to zero. This according to the discussion in Chapter

III B, indicates a wrong phase signal*, such as one produced by strong

fluxes of positive ions; the fact that the onset of the decrease is not

simultaneous in all channels results from the dependence of the positive

ion signal on modulation potential, as explained in Appendix A, and

indicates that the positive ion flux increases with decreasing distance.

This phenomenon is observed in all orbits, inbound and outbound, for

which data are available at the appropiate distances. The value of the

L coordinate at the onset of zero in channel 1 ranges from 3.7 to 5.3

(with one far-out case at 6.3), in good agreement with previously reported

boundaries of the high density plasma region near the earth (see

Carpenter, 1966; Taylor et al., 1965: and the discussion of whistler work

in Chapter II B); in the one case so far where comparison has been made,

the onset of zero in channel 1 coincides with the "knee" in ion density

as determined from simultaneous measurements on OGO-A by Taylor et al.

(1965).

Data on the spatial distribution of electrons are sumnmarized

in Fig. 32. The coordinates are distance along the sun-earth line (or

the solar ecliptic X coordinate, XSE) and distance perpendicular to

the sun-earth line ( (YSE2 + ZSE2 )1 ), or equivalently the polar coord-

inates geocentric distance and angle from the sun-earth line; because

* The electron detector on Explorer 21, of the same type as the present

one but measuring only the amplitude of the AC signal regardless of the

phase, finds a large sharp increase in current at distances of 3-5 Re, in

agreement with this interpretation (J. Binsack, private communication, 1966).
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of the nature of the orbits an essentially indistinguishable plot

would result in solar magnetospheric X, Y coordinates or in solar-

oriented geomagnetic X, Y coordinates. All portions of the orbits inside

the magnetosphere from which useful electron data were obtained are

shown, different types of lines indicating the various types of electron

spectra; the three types of observed boundaries - magnetosphere, several

hundred ev electron region, and high density plasma region - are marked.

In Fig. 32 there appears to be a fairly well defined boundary

between the "high energy" (several hundred ev, density' 1 cm-3; solid

lines in the figure) and "low energy" ( < 100 ev, density ^' 5 - 10 cm-3;

dashed lines) electron regimes, corresponding roughly to the line

XSE= -10 Re. It should be kept in mind, however, that observations on the

low energy side of this line are very scarce (fractions of two orbits)

and that all of these were at somewhat higher than average magnetic

latitudes (10 to 200); thus the actual shape of this boundary, and in

particular whether the high energy regime actually terminates at about

XSE=-10 or instead is just confined to a thin sheet beyond there so that

the orbits lie above it, cannot be settled on the basis of the present

observations (a very similar ambiguity, it will be recalled, exists

regarding the 40 key electron cusp region boundary).

The early observations of softelectrons on Lunik 2 (whose orbit

passed through part of the region surveyed by OGO-A, as shown in Fig. 4)

are in good agreement with the electron distribution here described. The

band of electrons with energies above 200 ev detected by Lunik 2 extends

from 9.6 Re distance (close to the electron earthward boundary observed at
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11± lRe or closer by OGO-A) to 12.7 Re at a sun-earth-probe angle of

approximately 130-1400 ( or XSE'" '-8 to -10 at approximately the bound-

ary here inferred of the region of low energy electrons, which would

probably be undetectable by the Lunik 2 instrument with its 200 ev

threshold and limited sensitivity); at the latter point the geomagnetic

latitude of Lunik 2 was about 100 south and increasing. so the ambig-

uity about this boundary mentioned earlier is not clarified.

Turning now to an analysis of the electron energy spectra, the

method to be followed has already been described in the section on

transition region observations, namely, assuming a specific form for the

electron distribution function with a few parameters whose values are

chosen to fit the measurements. The form chosen is again that given by

equation (9); of the assumptions involved, isotropy of the electrons at

these energies has been verified by measurements on Vela (Bame et al.,

1966) and on the space probe Pioneer 6 (using a detector very similar to

the present one) during its one pass through the magnetosphere near the

dusk meridian*; the power law character of the spectrum at high energies

has been observed on Vela (Montgomery et al., 1965; Bame et al., 1966).

The required formulas have already been presented in the earlier section.

Since the peak of the electron spectrum now lies, as is clear from the

earlier qualitative discussion, well within the energy range of the

detector which therefore is responding to a significant fraction of the

* I am indebted to Prof. A.J. Lazarus and Dr. V. Formisano of M.I.T.

for making the Pioneer 6 data available prior to publication.
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total number of electrons present (rather than just to the small

fraction on the high energy tail, as in the transition region), one

can reasonably attempt to estimate quantities referring to the distrib-

ution as a whole, such as density, flux, or mean energy; on the other

hand, since the high energy tail of the distribution now lies mostly

above the range of the detector, it cannot be assumed that the value

obtained for a parameter like K will necessarily reflect the exponent

of the tail.

A simple graphical method was devised to estimate the parameters

N, Eo, and K from the measured currents ik. Equation (14), which can be

rewritten as

=A C N(K)No F (K ) (21)

where for brevity

K- _L.LKl (22)

expresses ik as a function of three variables Nw's, Eo, and K. Now for an

assumed K and a measured current ik in a given channel k, equation (21)

defines a curve in the NW0 - Eo plane; writing the equation of the curve as

0~I -fo C N lg .tD NWl o~(rL) b 0 oIF(K, tiVz kto E (23)

and comparing with a corresponding form of (21)

AF(K)- o Co- C(&)
(P, A )(24)
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it is clear, after a little thought, that the curve log NwO vs. log Eo

for fixed ik and V2 is the same as the curve -logi) vs -log V2 for

fixed Nw0 and Eo, i.e. the curve of Fig. 22 rotated by 1800 and suitably

normalized. There are four channels and hence four such curves in the

Nwo - Eo plane, which should all intersect at a common point corres-

ponding to the correct values of Nwo and EO; if the curves do not all

intersect at the same point for any value of K, the data cannot be fitted

by a distribution of the assumed form.

These curves were constructed by first plotting the four measured

values ik as functions of V2 , then, for each channel, taking the approp-

iate section of Fig. 22, rotating it by 1800, superposing it on the plot

so that the point X=1, F(KX)=0.l (the intersection of the coordinate axes)

lay on the measured point and tracing the curve for the assumed K; for

the curve thus obtained the coordinates V2, ik must be reinterpreted as

Eo, (0.1 eAX C(K)Nwo). To obtain K with the least amount of trial and

error, use was made of the fact, apparent from Fig. 22 that F(K,X) is

practically independent of K for X= .<Zl and the four curves were

constructed in the following sequence: first the curve for channel 3, the

relevant portion of which nearly always proved independent of K; then

the curve for channel 2, the intersection of which with 3 was only weakly

dependent on K; the requirement that the curve for channel 1, drawn

next, pass through the intersection of 2 and 3 served to select K; the

curve for channel 4, the relevant part of which was of course completely

independent of K, served to check the fit (channel 4 was not used at

the start because its current was generally the weakest and hence least
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accurate. From the intersection point, finally, the values of Nwo

and Eo were read off, and from these N can be readily obtained.

Three examples of this process, of varying goodness of fit,

are shown in Fig. 33. In a number of cases, exemplified by the leftmost

set in Fig. 33, a nearly exact fit was obtained; in others, such as the

remaining two in Fig. 33, although the intersections did not all coincide,

they were clustered together within a relatively small area, which could

be taken as defining a probable region within which the actual para-

meters Nwo and Eo lay*; the lack of fit in such cases could reasonably

be attributed to uncertainties in the measured values. No really bad

fits, indicating that the model distribution was entirely inappropiate,

were found except in some cases when one of the measured currents was

close to noise level and hence unreliable.

59 measured spectra have been analyzed by this method; the

results are given in Table IV, which lists the values obtained for the

most probable energy Eo, the density N, the omnidirectional flux

(computed from equation (11) ), and the parameter K (where no value

of K is given, Eo is high enough so that the fitting process is indep-

endent of K). Where a range of values for E and N is specified, an

exact fit could not be obtained but a range of possible values is

defined by the various intersections; these ranges also give an indication

of the uncertainties in the values of Eo and N generally. The positions

* The region thus defined is generally rather elongated, so that the

parameters N and Eo cannot be varied independently within the ranges

obtained, but the largest N corresponds to the smallest E0, and vice versa.
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in space at which the analysed spectra were measured are shown in Fig. 34

(in the same projection as Fig. 32), together with a rough indication of

the energies found; they are scattered throughout the surveyed region of

the magnetosphere and include examples from both the high arid the low

energy regimes.

The electron spectra obtained by OGO-A on the dusk side of the

magnetosphere are significantly different from those obtained on Vela 2

within the neutral sheet on the midnight meridian (Bame et al., 1966);

the Vela measurements indicate energies near 1 kev* and densities

generally near 0.1 to 0.3 cm . On the other hand, the values of K

obtained in the present work happen to be in agreement with the expon-

ents of the high-energy power law tail quoted by Montgomery et al. (1965).

A most interesting property of the magnetospheric electron

spectra becomes apparent if one plots E0 vs. N for the 59 cases analyzed,

(exluding the few inside the earthward boundary of the several hundred ev

electron band) as is done in Fig. 35: the points do not scatter at

random but are strongly clustered in a band about a line NEo= constant,

i.e. the spectra tend to have the same energy density. To illustrate

this more clearly, lines of constant energy density are drawn in Fig. 35

and labeled by values of the "equivalent field strength", i.e. the

magnetic field strength at which the energy density in the field is

* The "average energy" quoted by Bame et al. appears to be 4 *

(energy flux over particle flux) and thus is related to E0 A according to

equation 13, by "av. E" = 2K Eo = 4Eo for K = 4.
Kfr
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equal to the energy density in the plasma, computed in this case from

(cf. equation 12)

x (25)

where the factor of 2 is included to allow for a proton energy density

assumed equal to that of electrons; K has been taken equal to 4.

Leaving out the circled points which refer to measurements during the

intense magnetic storm of November 15, nearly all the remaining points

fall between curves of equivalent field strength 20 and 40 , comp-

arable to the measured field magnitudes (cf. Heppner, 1965). Note that

this set of points contains measurements from a sizable region of space

over a time interval of two months and includes samples from two distinct

energy regimes; yet, while the energy of the electrons varies by about

a factor of 20 and the number density by about a factor of 40, the

energy density varies by no more than a factor of 4.

Finally, Fig. 36 shows the change of spectral parameters Eo,

N, and as the satellite crossed the earthward boundary of the several

hundred ev electron region on orbit 23. As already inferred from

qualitative arguments, there is a sharp drop in Eo as the satellite

moves in through the boundary; in this case the drop seems to be, very

crudely speaking, exponential in distance with a factor of 5 decrease

per 1 Re; at the same time, the density N of the electrons is increasing

slightly. A similar behavior, a sharp drop in mean energy together with

a slight increase in density, has been found in the two other cases

analysed, orbits 17 and 22 (included in Table IV as the last two points
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for each of these orbits). It thus appears that, while the outermost

region of the magnetosphere, at least near the geomagnetic equatorial

plane on the dusk side, is filled with electrons of several hundred ev

energy, as one moves toward the earth and approaches the trapped high

energy particle region of the Van Allen belts, the mean energy of the

bulk of the electrons decreases (while the density increases but only

slightly) at a sharply localized, well defined boundary.
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V. CONCLUSION

The most important result of this work in the transition region

is the discovery, simultaneously with and independently of the Vela

observations, that the electrons in the transition region are compara-

tively cold, with a non-Maxwellian spectrum that peaks below a hundred

ev*. This rules out theories of the shock front which lead to strong

heating of electrons, such as those that consider the two-stream

instability as the dominant randomization process, and also indicates

that the transition region plasma, with electrons that are colder than

protons, is quite different fram the usual plasma treated by theorists

in which, following what is thought to be the case in fusion machines

the electrons are assumed much hotter than the ions. In the magnetosphere,

the soft electron band talked about since the early years of space

exploration has been firmly established, at least near the geomagnetic

equator and on the dusk side of the earth, and its spatial extent

delineated. The density and mean energy of these electrons have been

measured; the energy density appears to be consistent with at least

approximate equipartition of energy between plasma and magnetic field.

Perhaps the most surprising result of the observations is the peculiar

* More recently Moreno et al. (1966), from an analysis of Explorer 18

observations, have placed the peak of the electron spectrum, at energies

ranging from 20 to 50 ev. The peak of the proton thermal spectrum, by

contrast, is usually 100-200 ev.
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earthward boundary of this electron band. which is found near the

termination of the stably trapped particle region and also near the

transition from a dipole-like magnetic field configuration to the dis-

torted, nearly constant - magnitude field characteristic of the outer

magnetosphere, although so far the sharp boundary has not been correl-

ated with any comparably sharp feature in magnetic field or high energy

electron data*; inside the boundary, i.e. in the trapped radiation,

dipole-like field region the plasma electrons have much lower energies

than those outside, although comparable or somewhat larger densities.

It is not easy to see what maintains such a (relatively sharp)

temperature gradient, and most processes one can think of would maintain

a gradient in the other direction; the high energy electrons, it should

be noted, behave in the opposite way) having higher energies inside the

radiation belts. To speculate on one possible candidate, the several

hundred ev electrons could be dumped into the atmosphere by a resonant

interaction with VLF waves such as that discussed by Kennel and Petschek

(1966), with low energy electrons being pulled up from the ionosphere

to maintain charge neutrality (which would, of course, require steady

state electric fields along the magnetic field); the boundary would

then result from the fact that only on closed dipole-like lines the

VLF waves can bounce back and forth and be amplified. Other possibil-

ities will no doubt be suggested.

A major task for the future is the detailed comparison of these

* Only a few, very limited comparisons have been made yet, however.
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observations with those of other experiments flown on OGO-A, especially

the observations of protons, magnetic fields, very low energy (<100 ev)

and high energy (> 40 kev) electrons. To mention only a few of the questions

that can be raised: are major changes observed in one of these

quantities reflected in the others, and if so in what way? Is there an

equipartition of energy between plasma and magnetic field which holds

in detail, or are the two energies merely comparable on the average but

varying independently? What phenomenon, if any, in low energy electron

behavior coincides with the 40 key spikes? Are the different energy

regimes for magnetospheric electrons found in this work related to the

spatial distribution of 40 key electrons? Are there any other peculiar

observations at the earthward boundary of the soft electron band? It is

to be hoped that the full potential of a large multiple-experiment

satellite such as OGO-A will eventually be exploited to gain further

insight into the complex and fascinating phenomena of space.
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Appendix A. Some details of the apparatus

Energy windows. - Consider a beam of particles incident on

the cup with the component of velocity normal to the cup corresponding

to energy E

/ V coL 9 :E

The current produced by these particles has a constant value, propor-

tional to their flux, when E>eV (where V is the magnitude of the

modulator potential) and is zero when E< eV. The electronics of the

detector picks out the sin wt component of this current, where w is

the modulation frequency and t=0 at the start of the modulation cycle.

Referring to Fig. 12, let 'Ct = length of modulation cycle,, T - length

of upper "spike" of the modulation wave form, T= length of lower "spike",

I t ) v W/r, /t ; then the current during one modulation

cycle produced by the beam is

L(t W 0 0 < '

where io is the current in the beam and depend on the energy.

as follows:

C Z-0 V3< F<> Vq

PjO V, < E
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( i(t) = 0, of course, for F>- 1V or E <tV)

Taking the sin wt component, the measured quantity is

2.

Normalized to unity for eV2<E< eV3, this is the function W(E) of

Chapter III B

W (E) o ±rr (< F~~ ~ v < V

V ~. 2-< EY_<4,V 3

with the definitions

The modulator aveforms were observed directly with a high-impedance

probe; the fractions fu and f for each channel were measured from

oscilloscope photographs of the waveforms and the quantities au and a

calculated from the above equations. The voltages V, V2 > V3, V4 were

measured in the same way.

When there is a distribution of particle energies, the

amplitude of the appropiate Fourier component is the sum of the amplit-

udes due to particles of each energy at the input to the compression

amplifier, since the electronics is linear up to that point; neglecting

possible small phase shifts due to particles within the "side lobes"
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of the energy window, the output of the compression amplifier and

synchronous detector is a known function of the amplitude at its

input. The latter can thus be determined from the output signal using

a calibration curve, described further on; it is the quantity so

determined, a linear functional of the particle distribution, that

is the "measured current" spoken of in the text.

Calibration. - To determine the effective response of the elect-

ronics, a square wave current of the correct fequency and phase was

fed into the preamplifier and the output voltage was measured as a

function of the amplitude of the input square wave. The resulting curve

is an empirically determined relation between the output voltage and

the input current to the collector, taking into account both the

over-all gain of the system and the non-linear characteristic of the

compression amplifier) that was used to convert the telemetered

voltages to collector currents. The curve is shown in Fig. 37; the

points are the averaged measured values, while the line is the smooth

curve adopted for use in the analysis (the few points that deviate

significantly from the curve are averages of only a few measurements

and are not considered reliable). There is a sharp break in the curve

at an input current of about 1010 amps; the very flat curve for

currents below that point is uncertain (in particular, instead of the

single line drawn from 10-10 to noise level there may actually be

a completely flat "plateau" just below 10-10 followed by a decline to

noise level; there are not enough measured points in this region to

decide between the two possibilities) and the values obtained for very
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small measured currents are somewhat doubtful. The gain of the system

was checked in flight by passing through it a standard signal of known

amplitude.

A peculiar feature of the electronics, observed in both pre-

flight calibration runs and in the flight data, is a systematic

variability of the output for a fixed input: if one considers the out-

put of a given channel, which is sampled every 9.216 seconds, on

succesive samples the output will be alternatively high and low,

until after 13 samples the pattern will slip by one, i.e. there will

be two succesive highs; thus, the sequence is

H L H L H L H L H L H L H H L H L H L H L H L H L H H L H L etc......

Another channel will exhibit that same pattern but randomly phased with

respect to the first. The effect of this variation can be clearly seen

in unsmoothed data plots (such as figures 27 and 31) where, because

of the high density of points (431.25 data points per inch) it produces

a broad trace. The amplitude of the variation is about 0.5 volts; at

noise level it decreases with increasing channel energy, resulting in

the varying width of the traces in Fig. 31.

The cause of this phenomenon is at present unknown, although it

is purely a property of the electronics and has nothing to do with the

data since it appears in calibration runs. The 13 sample periodicity

has been found to hold accurately, however, and the effect thus can be

eliminated by taking a 13-point sliding average in the data for each

channel; the calibration curve is applicable to data thus smoothed since

a similar average was taken in constructing it. This causes some loss
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of time resolution; where large short scale time variations occur,

most of the instrumental effect can be eliminated by taking a 4-point

sliding average and the rest will generally be insignificant compared

to the variations of interest (an example is Fig. 19).

Angular response. - The fraction of electrons incident at a

given angle that can strike the collector was calculated by projecting

each aperture within the cup along the particle trajectories onto the

collector plate and finding the area common to the collector and all

the projected apertures. Straight line trajectories were used; the

curvature of the trajectories within the relatively narrow electric

field regions near the modulator and the collector is significant only

at larger angles and produces at most a 10% correction, as shown by

extensive calculations on the Explorer 21 cup by J. Binsack (private

communication, 1966); compared to other uncertainties, this is not

significant. The angle-dependent tranparency of the grids was approximately

included using a formula valid for a rectangular grid

transparency = to (1 - a (sec O - 1) )

with the constants to and a determined from measured mesh sizes and

wire diameters of the grids.

Besides striking the collector, electrons can also be detected

through the secondaries they produce in striking the shield grid (second-

ary production from other grids is negligible because of their high

transparency, 90-93%, and the consequent small area struck by the

incident electrons). The effective area of the shield grid struck by

incident electrons was calculated (in the same way as that of the collector),
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multiplied by an assumed effective secondary yield, and added to that

of the collector to obtain the total response function. The value of

the effective secondary yield is the most uncertain quantity in the

calculation; for an assumed constant effective yield independent of

angle, the shape of the angular response curve turns out however, to

be practically independent of the yield as long as it is not too small

(not less than 0.5,say). Published values of the secondary electron

yield from electrons incident on metal surfaces (see, e.g., McKay, 1948)

indicate, for most metals*, a very broad maximum of about 1.0 to 1.5

secondaries per primary at a primary energy of 4 00-700 ev and at normal

incidence; the yield increases with increasing angle & between the

primary electrons and the normal to the surface, roughly as sece for

angles not close to 900. In the present case the curved surface of the

grid wires produces an averaging over directions of incidence for all

angles between the cup normal and the incoming electrons, and thus there

is some reason to think that the effective yield of the whole grid is

independent of the angle between the cup normal and the incoming electrons.

In addition, the slow energy variation of the yield over the energy range

of the detector was neglected; thus for calculations a constant effect-

ive yield for all angles and energies was assumed. The quantity

used in the text is related to by

Ac

* The shield grid is made of phosphor bronze, the others of tungsten
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where As, A are the effective areas of the shield wires and the collector,
C

respectively, at normal incidence; numerically

= 1 + 1.76S

A value of = 0.6 was chosen (reduced from measured yields to allow

for re-absorption of secondaries by the grid), giving ? = 2; this

number is uncertain by probably about i 50%.

Response to protons. - The two mechanisms by which the detector

can respond to protons have been briefly described in the text. An

increased modulator potential increases slightly the collection

efficiency for protons (of energy greater than 150 ev; only these can

reach the collector) by bending their trajectories inward; since an

increase of modulator potential produces an increase of proton current,

which is equivalent to a decrease of electron current, the A.C. signal

produced has the phase expected for the genuine modulated electron current.

From the calculations of J. Binsack mentioned earlier, the effect with

the modulation voltages here used amount to at most 5% of the incident

proton flux. The noise level of the Faraday cup proton detector flown

on OGO-A corresponds to a flux of about 8 x 10T cm-2sec the

corresponding current produced in the electron detector through the

effect under discussion is about 1 x 10 amps, below the noise level.

No protons are detected in the magnetosphere, hence the effect on

electrons is below the noise level; in the solar wind the electron cup

is pointing away from the highly directed proton flow and the proton

flux into it is thus very small and again insignificant. The angle
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between the proton detector axis and the sun varies as the satellite

spins, during the period considered, roughly between 0 and 200. In the

transition region much of the time the observed proton current is

already at noise level at the larger angle, and the proton flux into

the electron detector is therefore even smaller; in several cases,

however, the proton current at 200 is as much as 5 times the noise level

and the effect in the electron detector could be comparable to its

noise level. In summary, the proton current observed by the electron

detector through this mechanism is negligible except for a few periods

of exceptional intensity in the transition region, when it could be

comparable to the weak electron currents in channel 1.

The other mechanism results from secondary electrons produced

by protons striking the modulator grid; since the energy with which

they strike the grid is their initial energy plus e times the potential

of the grid and the secondary electron yield increases with incident

proton energy (cf. Medved and Strausser, 1965), an increase in

modulator potential produces an increase in electron current; the

resulting A.C. signal is thus opposite in phase to the genuine mod-

ulated electron current. The effect has been investigated experiment-

ally, using a detector similar to the present one; it was found that the

A.C. current produced was roughly proportional to the width of the

electron energy window and amounted to about 0.007 times the incident

proton flux for a 1 key wide window. The size of the effect (remembering

that it comes from the 7 - 10% of the grid area that is covered by

wires) and the energy dependence are in approximate agreement with



published data on secondary electron yields from protons incident on

metal surfaces (Medved and Strausser, 1965). The effect is at least

5 times smaller than the preceding one and a fortiori negligible in

the solar wind, the transition region, and most of the magnetosphere.

It is important only in the region of relatively dense, cold plasma

near the earth, where its presence is easily recognizable, as discussed

in the text.

- 98 -
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Appendix B. Orbital Elements

The conventional orbital elements, referred to the celestial

coordinate system, are given below for reference; the more useful

(for present purposes) elements referred to the ecliptic plane cited

in the text can be derived from these by straightforward coordinate

transformations.

Orbital elements of OGO-A, epoch 10/14/64:

Semi-major axis 81225.69 km

Eccentricity 0.90779

Anomalistic period 3839.59498 minutes

Inclination 32.1320

Right ascension of ascending node 164.7190

Argument of perigee 317.2010
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Appendix C. Some details of data processing.

As indicated in Fig. 14, a complete sequence of measurements

of the present detector consists of 16 data points; the 4 measured

currents, 4 housekeeping parameters (reset word, standard signal,

temperature, and marker signal), and the same 8 points repeated with

the modulator off. The detector continuously cycles through this

sequence, driven by periodic index pulses from the spacecraft; there

is no synchronization with the subcommutator sequence. Since the

telemetry format is organized around the subcommutator sequence and

is thus unrelated to the detector measurement sequence. finding the

latter is a principal task of the data processing. This is done using

the marker signals: a 5 volt signal precedes the channel 1 current in

each sequence. The data processing program scans each record of the

data tapes for these periodically spaced 5 volt signalspicks up the

4 following numbers as the measured currents, and writes a new data

tape whose format is organized around the measurement sequence. This

new data tape is then sorted to put the records in correct time sequence.

Data plots such as those shown in Fig. 17, 18, and 19 are produced

using the sorted data tapes and the orbital information tapes. The

latter contain the position of the satellite and assorted other infor-

mation (sun vector, velocity, magnetic coordinates, etc.), at intervals

of one minute; positions of the spatial coordinate axis ticks in the

plots are obtained by linear interpolation.
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All processing at M.I.T. is done on an IBM 7044 computer

operated by the Laboratory for Nuclear Science. Plotting is done

using a Calcomp model 565 digital incremental plotter.
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Appendix D. Some concepts of geomagnetism.

The field of geomagnetic studies, or even just the part of

it of particular relevance to satellite measurements, is very exten-

sive and here I will merely define a couple of its terms that have

appeared in the text; for a summary account of the field the reader

may consult, for example, the recent review by Sugiura and Heppner

(1965).

Magnetic storms, as the name might imply, are prolonged

periods of disturbance in the earth's magnetic field. Although the

detailed field variations at the earth's surface during a magnetic

storm are very complex and differ greatly from one storm to another,

there is an underlying pattern that can be recognized in most storms,

especially in the behavior of the horizontal component of the field

(usually called H) at low and middle latitudes. The idealized typical

storm begins with a sudden increase of H, observed simultaneously

(within a minute or so) all around the earth, called the sudden

commencement. This is followed by a period, typically lasting several

hours, during which H remains above its pre-storm value; this is the

initial phase of the storm. Then the field decreases to below its

pre-storm value; this period, which may last as much as a day or so,

is the main phase. Finally the field slowly returns to its quiet-

time value during the recovery phase, which often lasts several days.

There are also storms which begin gradually, without a sudden commen-

cement. Sometimes a sudden worldwide increase(or decrease) in H is
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observed without a storm following; this is a positive (or negative)

sudden impulse .

A frequently used rough indicator of the degree of geomagnetic

activity is the K, index. The K index for a given observatory is a

quasi-logarithmic measure of the range of measured field variation

about its quiet time value during a three-hour period, excluding

variations which can be recognized as produced by solar electromag-

netic radiation through photoionization in the ionosphere; it is intended

as a measure of the effects of "solar corpuscular radiation". The

planetary (i.e. worldwide) K index, or Kp, is the average, for each

three-hour period of U.T., of the K indices from 12 selected observa-

tories in middle latitudes. The values of K range from 0 to 9 and

are quantized in units of 1/3) indicated by writing -, 0, or + after

the number; thus the possible values are Oo, 0+, 1-, lo, 1+, 2-,

20, 2+, etc. As already mentioned, K9 is a quasi-logarithmic measure

of field variation; an equivalent linear measure, defined for each

value of Kp, is the planetary amplitude or Ap index.
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Appendix E. Coordinate systems.

A variety of coordinate systems have been introduced in order

to simplify the representation and interpretation of satellite meas-

urements by taking advantage of some special symmetry or geometrical

pattern thought to exist in the spatial distribution of the measured

quantities. Most of them are earth-centered Cartesian systems with

an axis aligned in a special direction, and it is convenient to intro-

duce a general formalism for describing them in order to avoid frequent

A A
repetition of cumbersome verbal descriptions. Let a and b be two unit

vectors along directions thought to be significant for the problem

A A
discussed; then, provided a x b3 0, a coordinate system can be

defined by writing the components (X1 , X2, X3) of a vector as

r2 ^
A

A

( (L-( ))

In words, the axis points along a, the axis along the normal

A
to the plane formed by a and b, and the X axis completes a right-3
handed Cartesian coordinate system (the X axis can also be described3
as along the direction at right angles to a and as close as possible

A ^ A
to b). This coordinate system I will designate as ( a, b ).
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p, A A
If a b : 0, a second coordinate system can be formed from a and b

by interchanging them in the above equations, namely the coordinate
A ,A ^ /k A A ifr b

system ( b, a ) (if a- b=0, (a , b) and ( b, a) differ only by the

labeling of the axes and are not to be considered distinct).

Among the directions that have been used to define coordinate

systems are

jA
the earth's rotation axis R

Athe earth' s magnetic dipole axis 1A (taken as pointing north)

the direction to the sun S

the direction to the ecliptic pole 6

The standard celestial coordinates, used e.g. to describe satellite

orbits are the set ( RE- ), with the axes (X1 , X2 , X3 ) conventionally

labeled as (z,x,y). Geomagnetic coordinates, ( ,R ) with axes labeled

(z,-y,x), are convenient for discussing phenomena governed by the

earth's magnetic field and either corotating with the earth or having

axial symmetry about the dipole axis. For phenomena governed primarily

by the geomagnetic field but also having a diurnal variation, i.e., a

dependence on angle from the sun-earth line, it is convenient to orient

the X axis of geomagnetic coordinates toward the sun rather than along
A A

some direction fixed relative to the earth; these are coordinates (J, s),

with axes labeled (z,y,-x), which have been called in the text solar

oriented geomagnetic coordinates and are often called more simply

solar magnetic coordinates. In both of these systems the polar

coordinates are used more often than the Cartesian.
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At larger distances from the earth where the effects of the

solar wind become significant, it becomes convenient to orient one

axis along the direction of the solar wind flow, which for most

purposes can be considered the same as the direction of the sun-earth

line. The most widely used of such coordinates have been the solar

AA
ecliptic coordinates, (S , - ) with axes labeled (x,y,z). They are

particularly useful for describing satellite orbits, since the

precession of the orbit relative to the magnetosphere is especially simple

in these coordinates, as already discussed in Chapter III A. More

recently the solar magnetospheric coordinates, ( S, /A ) with axes

labeled (x,y z), have come into use; they were introduced by Ness

(1965), who found that their x - y plane approximately coincided with

the magnetic neutral sheet in the tail of the magnetospliere (see

Chapter IIA).

A coordinate system much more sophisticated than the above

simple, geometrically constructed systems are the B,L coordinates

introduced by McIlwain (1961) for trapped radiation studies; a point

in space is labeled by B, the magnitude of the magnetic field at it,

and L, a quantity constructed from a model of the earth's main field

(including non-dipole terms) such that points on a given shell on

which trapped particles moving under conservation of the three

adiabatic invariant remain all have the same L value; the third

coordinate is usually the geomagnetic longitude. For a pure dipole

field exactly and for the earth's real field approximately the L

value of a point is the geocentric distance in the dipole's equatorial



- 107 -

plane to the field line passing through the point. With this inter-

pretation, the L coordinate is often used as a convenient label for a

field line and for projecting quantities onto the geomagnetic equatorial

plane along the field lines, even in studies unrelated to trapped radiation,

such as whistlers. Instead of B and L, an equivalent set R,A is occa-

sionally used, defined by the relations valid for a dipole field

where M = earth's dipole moment and Re = 1 Re. A , called the

invariant latitude, is often used in place of L for high-latitude,

low-altitude work; because of the low altitude, R is taken approxi-

mately as Re and the relation between L and A simplifies to
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Appendix F. Critique of the electron energy calculation of Freeman et al

Freeman et al. (1963) consider the pass of Explorer 12 through

the transition region during the initial phase of the magnetic storm

on September 13, 1961. They first show, from lack of detectable

signals in the magnetic spectrometers and Geiger tube, that only a

small fraction of the particles detected by the CdS crystal could

have energies above 30 key. Then, citing arguments from the Chapman-

Ferraro theory of magnetic storms, they equate the particle pressure

in the transition region to the stress corresponding to the observed

magnetic field discontinuity at the magnetopause, and write

N V-/2.- 5x 10- t17

Then they equate the energy flux of the particles to the value

measured by CdS and write

N [1 V3/ r- =650 O A

Dividing the two expressions gives

\V ~ .3 x 0 C, 7

corresponding to electrons of 56 kev; from this they obtain a density

of 0.6 ci-3 and a flux of 1010 cm -2sec~1.

As Freeman et al. recognize, this energy is in flagrant

contradiction with their high energy detector results; but they

remark that V depends on the CdS reading, its solid angle -A , and

the magnetic field discontinuity, and then, in their words
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"Since there are clearly uncertainties by factors

of the order of unity in each of the three essential

quantities (especially J.), it is evident that

a rms particle velocity as low as

can be tolerated."

This gives an electron energy of 2.6 key, a density of 10 cm-3, and

10 -2 -l
a flux of 3 x 10 cm sec , which is considered "consistent with

all observational evidence".

Nothing more is said about how the electron energy was reduced

from 56 to 2.6 key. It is clear, however, that since one of the

equations is

energy flux ( NMV 3

and the value of V was reduced from 1.3 x 10 to 3 x 109 while N was

increased from 0.6 to 10, the essential step in the change is a

reduction in the assumed energy flux by a factor of

13 \O 0 3 0.

The energy flux is proportional to the CdS counting rate divided by

its solid angle; since no source of an error of a factor of 5 in the

counting rate is apparent, it must be concluded that Freeman et al. can

obtain a consistent set -of results only by increasing the assumed solid

angle of the CdS detector by a factor of 5. The ease with which this stq)

is taken does not increase one's confidence in the numbers obtained from

this detector.
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Table I. Energy Windows Of The Detector

Channel 1 2 3 4

V1 (ev) 549 317 181 126

V2  695 41o 240 168

v3  1653 942 501 315

V4  1757 1015 552 352

au 0.30 0.37 0-45 0.37

al 0,19 0.30 0.37 0.30
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Table II. Numerical Coefficients For Various Quantities

Related To The Model Distribution Function

K 4 /Nwo U/NEO U Eo

2 1.8o 6 -

2.5 1.59 3.75 10

3 1.47 3 6

3 .5 1.40 2 6375 4.67

4 1 36 2 4 4

4.5 1.33 2.25 3.6

5 1.30 2.14 3.33

5.5 1.28 2.0625 3.14

6 1.27 2 3

6.5 1.25 1.95 2.88

C0 1.13 1.5 2
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Table III. Positions And Times For Spectra In Fig. 20

Spectrum Orbit Date U.T. Distance SEP angle

number 1964 (RE) (degrees)

1 17 out 10/18 1630 22.8 100

2 "1 10/19 0030 24.2 104

3 18 out 10/20 2025 16.1 88

4 t " 2315 18.4 91

5 " 10/21 0203 21.0 95

6 18 in " 1820 24.3 io4

7 20 out 10/26 0215 14.2 82

8 " " 0530 17.0 86

9 i " 1830 23.4 95

10 22 out 11/01 0305 23.4 92

11 22 in " 1530 23.8 98

12 f 1610 23.7 98

13 " " 1705 23.5 99

14 " " 1909 23.0 100

15 " " 2045 22.5 101

16 23 in 11/04 0300 24.3 93

17 24 out 11/05 1925 15.2 77

18 25 in 11/09 1230 24.1 90

19 " " 1400 24.0 91
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Table III. (Continued)

Spectrum Orbit Date U.T. Distance SEP angle
number 1964 (RE) (degrees)

20 26 out 11/11 1530 22.4 82

21 " 11/12 0125 24.2 86

22 26 in 0230 24.3 87

23 27 in 11/15 1028 19.9 92

24 "t " o48 19.8 93

25 " " 1450 16.9 96

26 " " 1525 16.5 96

27 " " 1700 15.1 98

28 28 out 11/16 1355 17.3 73

29 " " 1442 17.9 73

30 28 in 11/17 1055 24.2 83

31 " " 1537 23.7 85

32 37 in 12/12 0314 19.4 69

33 " " 0330 19.3 69

11,



Table IV. Electron Spectra In The Magnetosphere

Orbit
(inbound)

10

11

15

16

Date
1964

10/01

10/03

10/14

10/17

U.T.

1612

1123

1525

1823

1832

1843

1905

1945

2208

0715

1100

1115

1200

1620

1800

1845

2012

2055

0320

0410

Eo
ev

300-350

300-350

250-270

60-80

30-42

7o-80

25-45

40-50

70

44o

295

68

220-240

4oo-6oo

280

210-220

280-300

280-300

310

310

N
cm-3

2.3

0.9

1.5

7-4

20-10

8-6

35-12

13-8

20-25

0.74

1.1

5.2

2.1

0.8

0.9

1.9

1.3

1.1

1.0

1.3

io9 cm-2sec-l

3.6

1.1

2.4

3-4

5-8

4-5

7-14

4-5

17

1.2

1.4

3.3

2.1

1.2-1.5

1.2

2.4

1.7

1.5

1.4

2.1

K

3

6

3

3

5.5

2.5

3.5

6

7

4

4

4

6

4

3.5

5

4

4

5

4

- 114 -



Table IV. (Continued)

Orbit
(inbound)

17

21

22

Date
1964

10/20

10/30

11/2

U.T.

0539

0546

0910

1115

1221

1255

1420

1535

0100

0640

0650

0745

2005

0820

0845

1000

1110

1147

1235

1420

1525

E0
ev

140-160

190-210

370

54o-Tio

370-480

46o-600

6oo- 7

44o-48o

170

350-420

150-190

70-110

410

405

440-54o

48o

340-380

500-580

320

160-190

loo-14o

N
cm~ 3

2.1-1.9

1.9-1.7

1.6

0.9-0.8

1.0-0.8

o.8

1.0-0.9

1.2

3.4

0.8

1.1

2.6-1.6

0.8

0.9

1.5-1.4

1.0

1.4

0.5

0.7

1.3-1.1

2-0-1.T

109 cm-2 sec 1

1.6

1.6

2.3

3.0

1.4

1.4

1.8

2.5

1.3

1.4

1.3

1.1-1.4

1.2

1.7

2.2

1.5

1.7

0.8

1.2

1.0

1.4

K

6

6.5

5.5

(4)

3

5

3

4

6

4.5

3

6

6

5

6

3

6

6
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Table IV. (Continued)

Orbit
(inbound)

23

24

25

27

29

30

35

Date
1964

11/4

11/5

11/7

11/10

11/15

11/10

11/23

12/T7

K

4

6

6

6

3

U.T.

2337

2353

0005

0030

0250

0350

o4oo

0420

1900

o805

1818

1827

1957

2220

2236

0420

2020

0428

Eo
ev

74-80

150-210

210-350

235

310-350

580-740

4oo-500

41o-48o

260

350-430

265

280-350

41o

210

170-240

320-400

290

280

N
cm~3

6.8

2.8-2.5

2.1-1.6

1.7

0.7

0.9-0.8

o.9-o.8

0.7(

1.7

o.6-o.5

4.4

3.5

2.0

7.0

8-7

1.3

0.7

3.4

i09 cm-2sec

3.7

2.3-2.8

1.3-1.7

1.8

1.1

1.7

1.2-1.4

1.4

2.1

1.0

6.6

5.9

3.6

7.4

6.4-7.0

2.4

1.1

4.3

5

3

4

3

3

3

3

5

6.5

3

3

4
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