
ORIGINAL ARTICLE

Pyramidal neurons in the superficial layers of rat retrosplenial
cortex exhibit a late-spiking firing property

Tohru Kurotani • Toshio Miyashita • Marie Wintzer •

Tomokazu Konishi • Kazuhisa Sakai • Noritaka Ichinohe •

Kathleen S. Rockland

Received: 4 October 2011 / Accepted: 10 February 2012 / Published online: 1 March 2012

� The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract The rodent granular retrosplenial cortex (GRS)

is reciprocally connected with the hippocampus. It is part

of several networks implicated in spatial learning and

memory, and is known to contain head-direction cells.

There are, however, few specifics concerning the mecha-

nisms and microcircuitry underlying its involvement in

spatial and mnemonic functions. In this report, we set out

to characterize intrinsic properties of a distinctive popula-

tion of small pyramidal neurons in layer 2 of rat GRS.

These neurons, as well as those in adjoining layer 3, were

found to exhibit a late-spiking (LS) firing property. We

established by multiple criteria that the LS property is a

consequence of delayed rectifier and A-type potassium

channels. These were identified as Kv1.1, Kv1.4 and Kv4.3

by Genechip analysis, in situ hybridization, single-cell

reverse transcriptase-polymerase chain reaction, and phar-

macological blockade. The LS property might facilitate

comparison or integration of synaptic inputs during an

interval delay, consistent with the proposed role of the GRS

in memory-related processes.

Keywords Retrosplenial cortex � Pyramidal neuron �
Firing property � Potassium channel � Late spiking

Introduction

The granular retrosplenial (GRS) cortex of rodents is an

important structure in several networks involved in spatial

learning and memory (Cooper and Mizumori 2001;

Pothuizen et al. 2008; Garden et al. 2009; Vann et al. 2009;

Aggleton et al. 2010). Consistent with this, lesion-behavior

experiments have demonstrated that damage to the GRS

results in specific impairments in spatial working memory

(Keene and Bucci 2009), and selective activations in the

GRS have been reported in spatial tasks using immediate

early genes (Pothuizen et al. 2009). This aspect of GRS

function has been attributed to its dense reciprocal con-

nections with the hippocampal formation, with the idea that

the two areas operate conjointly to support spatial memory

(Mizumori et al. 2000). One recent report, corroborating

earlier studies, found that hippocampal lesions produce

marked reductions in the levels of immediate early gene

proteins in the GRS, subsequent to behavioral tasks

(Albasser et al. 2007). Several other recent investigations

provide evidence that disrupting the dense reciprocal con-

nections between the GRS and anterior thalamic nucleus

results in a striking loss of synaptic plasticity in the

superficial layers of the GRS (Garden et al. 2009; Wright

et al. 2010).
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The underlying substrates of GRS function are complex,

and are likely to incorporate both intrinsic cellular spe-

cializations as well as network properties. Theta-rhythmic

activity has been postulated to coordinate activity in dis-

tributed systems, including the GRS, during mnemonic

processes (Kirk and MacKay 2003). Detailed information

for the GRS, however, is largely limited to anatomical

characterization of individual neuronal types (Vogt and

Peters 1981; Wyss et al. 1990), and identification of the

major inputs and outputs (Sripanidkulchai and Wyss 1986;

van Groen and Wyss 1990; Wyss and van Groen 1992;

Shibata et al. 2004; Aggleton et al. 2010).

A distinctive feature of the rodent GRS is an accentu-

ated layer 2, consisting mainly of closely packed, callosally

projecting small pyramidal neurons (Wyss et al. 1990;

Ichinohe et al. 2008). In the rat, the apical dendrites of

these neurons form prominent bundles, which co-localize

with parvalbumin-positive dendrites (Ichinohe and Rock-

land 2002) and with patches of thalamic terminations

(Shibata 1993).

As a step toward elucidating synaptic properties of this

neuronal population, we recorded from slice preparations

of the rat GRS to characterize intrinsic membrane char-

acteristics. We found that the majority of pyramidal neu-

rons in layer 2, and some in underlying layer 3, have a

distinctive late-spiking (LS) firing pattern, where an initial

rapid rise in membrane potential is followed by a slowly

ramping depolarization that leads to an action potential

firing near the end of a just-threshold current step. This LS

property is unusual for pyramidal neurons, but has been

previously reported for pyramidal neurons of rat perirhinal

cortex (Beggs et al. 2000; McGann et al. 2001; Moyer et al.

2002).

We further established that the LS property is a conse-

quence of delayed rectifier and A-type potassium channels.

These were identified as Kv1.1, Kv1.4 and Kv4.3 by sev-

eral corroborating techniques; namely, Genechip analysis,

in situ hybridization, single-cell reverse transcriptase-

polymerase chain reaction (RT-PCR), and pharmacological

blockade.

Materials and methods

Slice preparation and recording of intrinsic membrane

properties

Postnatal day 20–35 Wistar rats were deeply anesthetized

with isoflurane and decapitated. The brain was quickly

removed and immersed into chilled and oxygenated (95%

O2 and 5% CO2) artificial cerebrospinal fluid (ACSF)

containing (in mM): NaCl 126, KCl 3, NaH2PO4 1.2,

MgSO4 1.3, CaCl2 2.4, NaHCO3 26, and glucose 10.

Coronal or horizontal slices (300 lm thick) were prepared

from GRS cortex using a Pro-7 vibrating microtome

(Dosaka, Kyoto, Japan). After cutting, the slices were

transferred to an interface-type chamber and perfused with

oxygenated ACSF at 32–34�C for at least 1 h for recovery.

Then one slice was selected and placed in a recording

chamber continuously perfused with oxygenated ACSF

(2 ml/min) at 27–30�C. Layer 2 of GRS cortex was easily

visualized by virtue of its cell density, and neurons were

targeted for recording on the basis of a pyramidal-like

shape as visualized by infra-red differential interference

contrast video microscopy (BX-50, Olympus, Tokyo,

Japan). Whole-cell recordings were conducted with boro-

silicate patch pipettes (BF150-110-10, Sutter Instrument,

Novato, CA, USA) filled with an internal solution con-

taining (in mM): K-gluconate 150, NaCl 10, MgSO4 5,

HEPES 10 and EGTA 0.3, with 3 mg/ml biocytin and pH

7.3 adjusted with KOH. Current-clamp recordings were

made by an Axoclamp 2B amplifier (Molecular Devices

Corp., Sunnyvale, CA, USA) and intrinsic firing properties

were investigated by injecting step-depolarizing currents

(duration 1 s, amplitude ±10–200 pA). In some of the

experiments, spontaneous postsynaptic responses were

suppressed by perfusing 40 lM DNQX, 25 lM DL-APV

and 20 lM bicuculline methiodide. To confirm that the

firing pattern of the neurons was unchanged at 36�C,

intracellular recordings from GRS layer 2 neurons were

performed using sharp glass microelectrodes (containing

2 M K-gluconate and 10 mM KCl, resistance[150 MX) in

a Haas type interface chamber. In all electrophysiological

recordings, the electrode resistance was effectively can-

celed out using a bridge balance circuit equipped in Axo-

clamp 2B.

After the recording, the cells were filled with biocytin by

diffusive loading through the patch pipette for 10–15 min.

The patch pipette was slowly retracted from the cell after

the filling so that the cell membrane was successfully

resealed. One to eight neurons were filled per slice, and the

slice was then transferred back to the interface-type

chamber for more than 1 h for completion of biocytin

transport. Slices were fixed overnight at 4�C in 4% para-

formaldehyde (PFA) containing 0.3% picric acid, washed

four times for 10 min each in phosphate buffered saline

(PBS) at room temperature, and treated with 1% H2O2 in

0.1 M PBS for 20 min. After four rinses of 5 min each in

0.1 M PBS, the slices were incubated overnight in an

avidin–biotin complex (one drop of each reagent for 7 ml

of 0.1 M PBS containing 1% TritonX; ABC Elite kits,

Vector Laboratories, Burlingame, CA, USA) at room

temperature. Next day, sections were rinsed four times in

0.1 M phosphate buffer (PB) for 10 min each, and DAB

histochemistry (25 mg/50 ml, in 0.1 M PB) was performed

with the addition of 0.03% nickel ammonium sulfate.
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In some experiments, the same slice preparation, recording

and staining procedures were carried out for the pyramidal

neurons in layers 3 and 5 of GRS, layer 2 of the barrel field

cortex (BF) of adult rats for comparison.

To compare the dendritic branching pattern, the stained

pyramidal neurons in layer 2 of GRS and of BF were

investigated by Sholl analysis. Labeled pyramidal neurons

were analyzed using Neurolucida (Micro-BrightField Inc,

Colchester, VT). A series of concentric circles, with radius

increasing by 10 lm increments, were drawn starting from

the center of the cell soma. Then the number of intersec-

tions made by the particular dendrite with each circle was

counted using NeuroExplorer (Micro-BrightField Inc), and

plotted against the distance from the soma. For statistical

analyses of data obtained from the electrophysiological and

morphological experiments, Student’s t test was employed

unless otherwise mentioned.

Microarray data

From a parallel investigation involving rat GRS (Miyashita

et al. 2010), we had microarray data for genes which are

highly and specifically expressed in GRS layer 2. Briefly,

concerning the criteria for gene selection, we compared

gene expression profiles for layer 2 of GRS, layer 5 of

GRS, and layer 2 of the somatosensory barrel cortex at

postnatal day 28. Significance in expressional change

between layers 2 of GRS and BF was tested gene-wise

using paired t test on perfect match (PM) cell data of

microarray (GeneChip, Rat Expression 230 2.0 Array;

Affymetrix, Santa Clara, CA). Among the corresponding

PM data of a gene, all the data that were out of the plau-

sible signal range (Konishi 2004, 2008), and those within

the detected area but caused by dust contamination

(Konishi 2006), were removed. Then, t test was performed

by cell-wise comparison, using a threshold of 0.01. Genes

were further selected that showed three times higher

expression levels in layer 2 than in layer 5 of GRS

(Table 1). Full details are given in Miyashita et al. 2010.

In situ hybridization for Kv1.4

PCR primers for Kv1.4 (50-CATAATTGTGGCGAACG

TG-30 and 50-TTTTGAAAGATTCGGCTGCT-30) were

designed based on the rat cDNA sequence of Kv1.4

(GenBank No. NM_012971). The DNA fragments were

produced by RT-PCR from rat brain cDNA. PCR frag-

ments were ligated into the pGEMt-easy (Promega, Mad-

ison, WI) vector. The plasmids were extracted and

linearized by Asp718 or Xho1 before being used for the

template of antisense or sense probes. The digoxigenin

(DIG)-dUTP labeling kit (Roche, Basel, Switzerland) was

used for in vitro transcription.

Two adult rats were used for in situ hybridization for

Kv1.4 mRNA. Animals were anesthetized with Nembutal

intraperitoneally (100 mg/kg), and perfused transcardially,

in sequence, with 0.9% NaCl and 0.5% NaNO2 for 1 min,

and 4% PFA in 0.1 M PB for 10 min. Brains were removed

Table 1 List of Kv channel genes that were highly expressed in GRS layer 2

HGNC name IUPHAR name Ratio (GRSL2/BFL2) P value Ratio (GRSL2/GRSL5)

Kcnd3 Kv4.3 3.55 5.05E - 17 8.65

Kcna4 Kv1.4 4.33 1.67E - 15 4.24

Kcns1 Kv9.1 2.27 1.58E - 07 2.53

Kcnd2 Kv4.2 1.82 5.46E - 08 2.25

Kcna1 Kv1.1 5.05 5.37E - 22 1.57

Kcnd2 Kv4.2 1.22 4.35E - 05 1.26

Kcnc1 Kv3.1 1.80 3.12E - 10 1.22

Kcng2 Kv6.2 1.25 1.49E - 03 1.02

Kcnb1 Kv2.1 1.24 6.98E - 06 0.93

Kcns3 Kv9.3 2.39 1.62E - 12 0.92

Kcnc3 Kv3.3 1.40 1.01E - 03 0.88

Kcnab1 Kvb1.3 3.54 9.62E - 19 0.77

The expression level of each gene in GRS layers 2, 5 and BF layer 2 was calculated as z score. Then significant difference in expression levels of

each gene in GRS layer 2 and BF layer 2 was calculated by Welch’s paired two-sided t test, and the P values were determined (Konishi 2004,

2006, 2008). Kv channel genes, having expression ratio[1 and P \ 0.01 in GRS layer 2 compared to BF layer 2, were selected. The genes are

sorted by the expression ratio of those in GRS layer 2 to in GRS layer 5. Note that Kv4.3 and Kv1.4 genes are much more highly expressed in

GRS layer 2 than in GRS layer 5 (ratio; 8.65 and 4.24, respectively). It should be also noted that Kv1.1 was highly expressed in GRS layer 2,

compared to BF layer 2 (ratio; 5.05)

HGNC HUGO Gene Nomenclature Committee, IUPHAR International Union of Pharmacology

Brain Struct Funct (2013) 218:239–254 241

123



and postfixed in the same fixative for 2 h, and then

immersed into 30% sucrose in 0.1 M PB until sinking

(20–40 h). Sections were cut (in the coronal plane, at

30 lm thickness) using a sliding microtome. Sections were

washed in 0.1 M PB, and again postfixed with 4% PFA in

0.1 M PB for 10 min. After washing in 0.1 M PB, sections

were treated with 1 lg/mL proteinase K for 10 min at

37�C, acetylated, then incubated in hybridization buffer

containing 0.5–1.0 lg/mL DIG-labeled riboprobes at 60�C

over night. The sections were sequentially treated for

15 min at 55�C in 29 standard sodium citrate (SSC)/50%

formamide/0.1% N-lauroylsarcosine, twice; for 30 min at

37�C in RNase buffer (10 mM Tris–HCl, pH 8.0, 1 mM

EDTA, 500 mM NaCl) containing 20 lg/mL RNase A

(Sigma, St. Louis, MO, USA); for 15 min at 37�C in 29

SSC/0.1% N-lauroylsarcosine, twice; for 15 min at 37�C in

0.29 SSC/0.1% N-lauroylsarcosine, twice. The hybridized

probe was detected by alkaline phosphatase-conjugated

anti-DIG antibody with DIG detection kits (Roche Diag-

nostics, Basel, Switzerland). Controls with sense ribo-

probes showed no hybridization signal.

Single-cell RT-PCR experiment

To assess potassium channel mRNAs across individual LS

pyramidal neurons, single-cell RT-PCR experiments were

performed. Recording pipettes were prepared as above,

except that an RNase inhibitor (Takara, Otsu, Japan, final

concentration, 0.5 U/ll) was added to the pipette solution.

Pipettes were filled with 5 ll of the solution. Directly after

patch-clamp recording, the contents of the cell including

the nucleus were aspirated into the patch electrode. The

small size of LS neurons made it difficult to obtain enough

cytoplasm for single-cell RT-PCR without including the

nucleus. However, by employing the intron-spanning

assay, it was possible to effectively differentiate between

genome-derived and mRNA-derived signals (Liss and

Roeper, 2004). The electrode tip was broken off into a

reaction tube containing 5 ll diethylpyrocarbonate treated

water containing RNase inhibitor (0.5 U/ll, RNase OUT,

Takara), and the tubes were briefly stored on ice until use.

Reverse transcription (RT)

mRNA was reverse transcribed with the Superscript III

CellsDirect cDNA Synthesis System kit (Invitrogen, San

Diego, CA, USA). The reverse transcription mixture con-

taining the cell contents, 1 ll Oligo(dT)20 (50 mM) and

0.5 ll dNTP mix (10 mM) was first heated to 70�C for

5 min and incubated on ice for 2 min. Single-strand cDNA

synthesis was carried out at 50�C for 50 min, after the

addition of 3 ll 59 RT buffer, 0.5 ll RNase OUT (40 U/ll),

0.5 ll DTT (0.1 M) and 0.5 ll Superscript III RT

(200 U/ll) in a final volume of 15 ll. This reaction was

terminated at 85�C for 5 min. Before PCR amplification,

1 ll of RNase (2 U/ll) was added and the samples incu-

bated at 37�C for 20 min. Ten microliters of RT products

were used for following PCR amplification.

PCR amplification

Multiplex PCR conditions were optimized using total RNA

purified from rat brain. Primer pairs were designed to

locate on different exons separated by introns to prevent

amplification of genomic DNA. Under these conditions,

subsequent gel analysis did not detect nonspecific products.

Controls for contaminating artifacts using sterile water

instead of DNA, and PCR done on samples without reverse

transcriptase did not detect any product. A multiplex two-

round single-cell PCR was carried out for simultaneous

detection of vesicular glutamate transporter 1 (VGluT1),

GABAA receptor a1 subunit, and voltage-activated potas-

sium channels Kv1.1, Kv1.2, Kv1.4, Kv3.1 and Kv4.3.

GABAA receptor a1 subunit and b-actin were used as a

positive control.

The first amplification round consisted of 15 min hot

start at 95�C, followed by 40 cycles (94�C for 30 s, 57�C

for 1.5 min and 72�C for 1 min). All genes were simulta-

neously amplified in a single tube containing 10 ll of the

RT product, 250 nM of each of the outer primers, 40 lM of

each dNTPs, 2.5 U Ex Taq Hot Start DNA Polymerase

(Takara) and 19 PCR buffer (Takara) in a final volume of

50 ll.

A second round of PCR consisted of 15 min hot start at

95�C, followed by 40 cycles (94�C for 30 s, 55�C for

1 min and 72�C for 1 min), and terminated at 72�C for

7 min. In this round, each gene was individually amplified

in a separate test tube containing: 1 ll of the first PCR

product (template), 250 nM of each nested (inner) primers,

30 lM of each dNTP, 2 U Ex Taq Hot Start DNA Poly-

merase (Takara) and 19 PCR buffer (Takara) in a final

volume of 30 ll. The products of the second PCR were

analyzed by 2% agarose gel electrophoresis (see Fig. 9 for

example). Primers used for the experiment are shown in

Table 2.

Pharmacology

As blockers of Kv channels, we used dendrotoxin-K (DTX-

K) (100 nM for Kv1.1), CP-339818 (1–3 lM for Kv1.4)

and nicotine (100 nM for Kv4.3). Drugs were bath

administrated after recording intrinsic membrane and firing

properties of layer 2 pyramids in normal ACSF, and

changes in the firing pattern were monitored at 0.5–1 min

intervals over 10–15 min by applying 70–110 pA depo-

larizing current pulses.
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Results

Layer 2 in the rat GRS is densely populated by small

pyramidal neurons and was readily identified by differen-

tial interference contrast microscope. Whole-cell record-

ings were made under current-clamp condition in

pyramidal neurons to record passive membrane and

intrinsic firing properties in response to depolarizing and

hyperpolarizing step current injections (duration = 1 s,

except for test recordings of 5–8 s). To evaluate laminar

specificity of firing properties, we compared recordings

from pyramidal neurons in the rat GRS layer 3, GRS layer

5, layer 2 of BF cortex, and, with smaller sample sizes,

from the rat presubiculum and perirhinal cortex. Neurons

with resting membrane potential more negative than

-55 mV and overshooting action potentials were selected

for further analyses. Properties of passive membrane and

action potential for the recorded neurons are indicated in

Table 3.

Biocytin filling confirmed that the LS neurons were

pyramidal. That is, dendrites were studded with spines and

an apical dendrite was visible, extending into upper layer 1

(Figs. 1, 2). The apical dendrite was typically unbranched

in its proximal portion, or had only 2–3 main bifurcations

in layer 1c.

A more extensive tuft formed distally in layers 1a and

1b. Basal dendrites within layer 2 and/or 3 were promi-

nently studded with spines. Slight morphological variations

were evident, as described by previous Golgi studies (Vogt

and Peters 1981; Fig. 5 in Wyss et al. 1990). Axon col-

laterals occurred in layers 1–6, being more abundant in

layer 5 and 6 in our material. Long axonal segments could

be followed up to about 350 lm from the soma, especially

in layers 1 and 2. These had evidently been cut by the

slicing procedure, and probably extended further. The

average cell body size of layer 2 pyramids was significantly

smaller than that of layer 5 pyramids in GRS (P \ 0.01 for

both of the minor and major axes, Table 3).

Subdivisions of layer 1 are determined following the

criteria of Vogt et al. 1981. Layer 1a is subjacent to the pia

and layer 1c is above layer 2. Layer 1b is identified by

approximation as the middle sublayer.

Firing and intrinsic membrane properties

GRS layer 2 pyramidal neurons

Of 138 layer 2 pyramids recorded in GRS, 130 neurons

(94%) showed a distinctive LS firing pattern. This was

characterized by an initial rapid rise in membrane potential

followed by a slowly ramping depolarization. Layer 2 LS

neurons demonstrate a significantly hyperpolarized resting

membrane potential (-75 ± 0.62 mV, n = 130, Fig. 3a;

Table 3) compared with that of GRS layer 5 neurons

(P \ 0.01, Table 3). Voltage responses of LS neurons to

hyperpolarizing current steps demonstrated little or no sag

at the initial hyperpolarization phase, suggesting a weak

expression of hyperpolarization-activated cation channels

in these neurons (Fig. 3a). The first action potential

occurred near the end of a just-suprathreshold current step

(Fig. 3b). LS neurons have a very high input resistance

(420 ± 15 MX, Fig. 3c; Table 3). This implies that LS

neurons have a small cell body, as reported by others

(Wyss et al. 1990) and confirmed in our morphological

observation (Figs. 1, 2; Table 3). Because of a high input

resistance, the threshold level was not always sharply

determined. For 15 neurons in which we could sharply

Table 2 List of primers used for the single-cell RT-PCR experiment

Kv1.1 outer Forward: 50-TGCCCATGAAGTAGTCTGTG-30

Reverse: 50-ATCCACTTCTGAAGGTCAGG-30

Kv1.1 inner Forward: 50-CGTGGAACACCATGTAACAG-30

Reverse: 50-AGGGGTCAGGATTGGTTT-30

Kv1.2 outer Forward: 50-GGGGACAGAGTTAGCTGAGA-30

Reverse: 50-TCCCTCCTGTATCTCCATGT-30

Kv1.2 inner Forward: 50-GTCCAGACACTCCAAAGGTC-30

Reverse: 50-TCTCCCGGTGGTAGAAGTAG-30

Kv3.1 outer Forward: 50-CCTGCTGTGACTGTATGCTC-30

Reverse: 50-CCTGAACTGGAGGGACTCT-30

Kv3.1 inner Forward: 50-GGAGGTCAGGGACTAAGGAT-30

Reverse: 50-CACTGGAGCTACACACCAAG-30

Kv1.4 outer Forward: 50-GTCAGTTGCCCATACCTACC-30

Reverse: 50-CTCGGGACCACCTTTACTAT-30

Kv1.4 inner Forward: 50-AAGAAGGGGTCAAGGAGTCT-30

Reverse: 50-TAATGCCTCCCTCTTCTCC-30

Kv4.3 outer Forward: 50-AAGATGCCTTGAGGTCTGAG-30

Reverse: 50-AGGATGAAGACAGGGAGACA-30

Kv4.3 inner Forward: 50-AGTGAGCCTCAGGGTTAGTG-30

Reverse: 50-CAAAACACCAGGACTCCTCT-30

b-actin outer Forward: 50-ACACGGCATTGTAACCAACT-30

Reverse: 50-CATTGCCGATAGTGATGACC-30

b-actin inner Forward: 50-AGAAGATTTGGCACCACACT-30

Reverse: 50-CCATCTCTTGCTCGAAGTCT-30

GABAA a1

outer

Forward: 50-
ACGACCGTTCTGACCATGACAACCT-30

Reverse: 50-
AAAGATTCCAAATAGCAGCGGAAAG-30

GABAA a1

inner

Forward: 50-
CTCCTACAGCAACCAGCTATACCC-30

Reverse: 50-GCGGTTTTGTCTCAGGCTTGAC-30

VGluT1 outer Forward: 50-GGCCCCTCCCTTAGAACG-30

Reverse: 50-CCTCCGATGGGTACGATGATA-30

VGluT1 inner Forward: 50-CCTTTTGCGGTTCCTATGC-30

Reverse: 50-AATGTATTTGCGCTCCTCCTC-30
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determine the threshold, the latency of the first spike was

809 ± 32.5 ms. As the intensity of the depolarizing current

increased, the latency of the first spike shortened, but there

was still a delay in the latency of the first spike from the

time of current onset (Fig. 3b, d). Spike trains evoked by a

stronger current pulse ([200 pA) exhibited a slight

accommodation of firing. The instantaneous firing fre-

quency was measured from the time difference between the

n and (n ? 1)th spikes (Fig. 3e). In response to a strong

depolarizing current injection, the maximum instantaneous

firing frequency was observed between the first and the

second spikes, reaching a value of more than 50 Hz. From

this, the frequency gradually diminished to 30–40 Hz at the

end of the current step (Fig. 3e, filled circle). It was con-

firmed that the LS firing pattern could be recorded at 36�C

(n = 5, Fig. 3b, inset).

GRS layer 3 pyramidal neurons

Pyramidal neurons in layer 3 of rat GRS were morpho-

logically distinct from the LS neurons in layer 2. Their cell

body was smaller than that of layer 2 LS neurons (Table 3;

Table 3 Properties of LS pyramidal neurons in GRS layers 2 and 3, and RS pyramidal neurons in GRS layer 5 and BF layer 2

Soma size (minor and major axes, lm) Vrest (mV) Rin (MX) AP threshold

(mV)

AP height

(mV)

AP half width

(ms)

GRS L2 (n = 130) (11 ± 0.31) 9 (18 ± 0.47) -75 ± 0.62 420 ± 15 -35 ± 0.85 93 ± 1.0 1.9 ± 0.06

GRS L3 (n = 32) (10 ± 0.50) 9 (13 ± 0.48)** -76 ± 0.97 450 ± 24 -36 ± 0.84 93 ± 2.3 1.7 ± 0.07

GRS L5 (n = 14) (17 ± 0.81)** 9 (25 ± 1.3)** -68 ± 1.2** 90 ± 13** -39 ± 1.9 96 ± 2.4 1.8 ± 0.12

BF L2 (n = 21) (12 ± 0.33) 9 (19 ± 0.81) -74 ± 0.98 130 ± 6.5** -40 ± 1.9* 100 ± 2.5* 2.5 ± 0.15**

Numbers are presented as mean ± SEM. Using a camera lucida, the soma shape of pyramids was approximated by a triangle or a diamond, and

then the length of minor and major axes was measured. Significant differences between GRS L2 neurons and the other neuron groups are

indicated as asterisks (*P \ 0.05 and **P \ 0.01). Numbers without the asterisks were not significantly different from those for GRS L2 neurons

Fig. 1 Biocytin-filled layer 2 pyramidal neurons in rat GRS cortex.

a Low magnification view of three biocytin-filled neurons in layer 2.

Horizontal slice (300 lm in thickness) from postnatal day 31 Wistar

rat. ant anterior, post posterior, scale bar 300 lm. b Higher

magnification view of the middle neuron (arrow) in a. Two arrows
indicate horizontal axon collaterals largely within layer 2. Scale bar
50 lm. c Another example of a layer 2 neuron. Scale bar 100 lm
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cf. Figs. 1, 2, 4a), and they had distinctly flat basal den-

drites (extending straightly and parallel to the layer bor-

ders; Fig. 4a, see also Fig. 5 in Wyss et al. 1990). Despite

the morphological difference, 32 of 34 neurons recorded in

upper layer 3 had the same LS firing property as layer 2

neurons (Fig. 4b–f; Table 3). The remaining 2 showed a

regular-spiking (RS) firing pattern.

Pyramidal neurons in layer 5 of GRS and layer 2 of BF

Consistent with many previous reports (Connors et al.

1982; McCormick et al. 1985; Sutor and Hablitz 1989;

Mason and Larkman 1990; Steriade et al. 1993; Cho et al.

2004; Otsuka and Kawaguchi 2008), we found that most of

the tested pyramidal neurons in layer 5 of GRS (74%, 14 of

19, Fig. 5a) demonstrated a RS firing pattern. Compared

with GRS pyramidal neurons in layer 2, those in layer 5 of

GRS had a more positive resting membrane potential

(-68 ± 1.2 mV, Fig. 5b, c; Table 3), and a much lower

input resistance (90 ± 13 MX, Table 3; Fig. 5d). The

remaining 5 neurons in layer 5 of GRS showed an intrin-

sically bursting firing pattern. Even with a depolarizing

current just above threshold, the latency of the first spike

was 83.4 ± 17.2 ms, and significantly shorter than that of

LS neurons (P \ 0.01, Table 3). With increasing intensity

of the depolarizing current, the latency of the first spike

shortened, in marked contrast with LS neurons (Fig. 5e).

These neurons showed adaptation during repetitive firing

and lower maximum firing frequencies (Fig. 5f).

As to the pyramidal neurons in BF layer 2, all of the

cells tested (n = 21) demonstrated a RS firing pattern and

the average input resistance showed an intermediate value

(130 ± 6.5 MX, Fig. 6b–d; Table 3) between layer 2 and

layer 5 pyramids in GRS. Interestingly, the average resting

membrane potential of layer 2 pyramids in BF was

-74 ± 0.98 mV, close to that of GRS pyramids in layers 2

and 3. Thus, despite differences in the firing properties,

there may be common factors underlying the resting

membrane potential for these populations. They had a

shorter average latency for the initial AP firing

(120 ± 15 ms, for a just-suprathreshold current, Fig. 6c)

than that of LS neurons (P \ 0.01). With increasing

intensity of the depolarizing current, the latency of the first

spike shortened, in marked contrast with LS neurons

(Fig. 6e). These neurons showed adaptation during repeti-

tive firing and lower maximum firing frequencies (Fig. 6f).

Biocytin fills confirmed that neurons recorded in layer 5

of the GRS and layer 2 of BF showed standard pyramidal

cell morphologies (Figs. 5a, 6a, respectively).

Sholl analysis of layer 2 neurons in GRS and BF

Distinctive dendritic morphology of layer 2 pyramidal

neurons in GRS, as compared with that of pyramids in

layer 2 of BF, was revealed by Sholl analysis (Fig. 7).

Eight biocytin-filled RS pyramids in BF and 23 filled LS

pyramids in GRS were selected for Sholl analysis. For BF

layer 2 neurons, the number of intersections for apical

dendrites had the highest values (about 15) at 50–60 lm

from the soma (proximal dendritic zone), and gradually

decreased until 350 lm more distally. In contrast, for GRS

layer 2 neurons, the number of intersections of the apical

Fig. 2 Neurolucida

reconstruction of biocytin-filled

neurons. a GRS L2 neuron

indicated in Fig. 1b. The cell

body and dendrites are shown in

black, and the axon is shown in

red. L1–L6 represent layers

1–6, respectively, and dashed
lines indicate the borders

between them. WM represents

white matter. b Similar to a,

but corresponding to GRS LS

neuron in Fig 1c. Axon

reconstructions are necessarily

limited to the portion contained

within the 300 lm slice and are

therefore not complete. (Same

holds for the reconstructions

shown in Figs. 4, 5, 6.)

Scale bar 100 lm is common

to a and b
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dendrites was smaller (Fig. 7a), reaching highest values

(about 6) at 160–170 lm from the soma (distal dendritic

zone, corresponding to layer 1A). Dendritic branching was

also less for the basal dendrites of GRS LS neurons than for

those of BF RS neurons (Fig. 7b).

The LS property is attributed to potassium channels

Microarray data

We identified two genes coding for different types of

potassium channels, Kv1.4 and Kv4.3, that were highly

expressed in GRS layer 2. (Layer 3 neurons were not

investigated.) The expression ratio of these two genes in

comparison with that in GRS layer 5 was 4.24 and 8.65,

respectively, and was much higher than that of the other

potassium channels (less than 2.53, Table 1). From these

microarray data, we selected Kv1.4 and Kv4.3 channels for

further analyses.

In situ hybridization

By in situ hybridization, we confirmed that the Kv1.4

signal was highly expressed in the superficial layers of

GRS, but not in either GRS layer 5 or BF layer 2 (Fig. 8).

The localization of Kv4.3 mRNA expression in the

superficial layer of GRS has already been shown by others

(Serôdio and Rudy 1998). Kv1.1 is known to be widely

expressed in neocortex of mouse (Allen Brain Atlas,

http://mouse.brain-map.org/), and has been investigated in

supragranular pyramidal neurons of rat somatosensory and

motor cortices (Guan et al. 2006).

Single-cell RT-PCR

Microarray and in situ data provide only laminar-specific

resolution. We next employed single-cell RT-PCR to

assess potassium channel mRNAs across individual LS

pyramidal neurons in layer 2 of GRS (Fig. 9a). Expression

of b-actin and GABAA receptor a1 subunit was used as a

control for the experimental accuracy for a given cell. With

this criterion, results were obtained for 21 LS neurons

(Fig. 9b). Five Kv channel mRNAs were screened: Kv1.4

and Kv4.3, and for comparison Kv3.1. We also examined

Kv1.1 and Kv1.2 expression in addition to Kv1.4 and

Kv4.3, because Kv1.1 and Kv1.2 containing potassium

channels have been reported to be responsible for LS firing

property in medium spiny neurons in rat striatum (Shen

et al. 2004) and superior colliculus (Saito and Isa 2000). Of

these five channels, Kv1.1 and Kv1.4 mRNAs showed the

highest expression ratio (81% each, n = 17). Kv1.1 and

Kv1.4 were co-expressed in 14 neurons, and were inde-

pendently expressed in 6 neurons (3 for Kv1.1 and 3 for

Kv1.4). In total, 20 out of 21 LS neurons expressed Kv1.1

and/or Kv1.4 mRNAs. Kv4.3 mRNA was detected in the

remaining one LS neuron. This cell was included in 12 LS

neurons (57% of 21) expressing Kv4.3 mRNA. Of those,

nine neurons co-expressed Kv1.1 and Kv1.4 mRNAs (see

Venn diagram, Fig. 9c).

The expression ratios for Kv1.2 and Kv3.1 were rather

low (24% each; Fig. 9b). These findings are consistent with

the data from gene chip and/or in situ hybridization, and

point to a preferential role for the Kv 1.1, Kv1.4 and Kv4.3

channels in the generation of the LS property.
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Fig. 3 A representative example of passive membrane and firing

properties of a layer 2 pyramidal neuron of GRS. a Voltage responses

to hyperpolarizing and sub-threshold depolarizing current injections

(intensity, -200–60 pA, duration, 1 s). b Voltage responses to supra-

threshold depolarizing current injections. The current intensity is

indicated at the end of each trace. This neuron had a resting

membrane potential of -76 mV. Note that onset of the first action

potential is substantially delayed from the initiation of the current

injection. Inset red trace indicates a representative example of LS

firing pattern recorded at 36�C from another GRS L2 neuron.

c Current–voltage (I–V) relationship measured 800 ms after the onset

of step currents in a. The input resistance of this neuron was 417 MX.

d Onset latency of the first to nth spikes in response to the various

intensities of the step current shown in b. Each symbol represents a

different injection current intensity; squares, triangles, inverted
triangles, diamonds and circles represent 70, 80, 100, 150 and

200 pA, respectively. e Inter-spike interval between nth to (n ? 1)th

spike, calculated from the onset latency data. Symbols are the same as

those in d
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We note that VGluT1 mRNA was expressed in all the

screened neurons, consistent with other evidence that LS

neurons are glutamatergic pyramidal neurons.

Pharmacology

The contribution of KV1.1, Kv1.4 and Kv4.3 channels to the

LS property was further tested by pharmacological blockade

of these channels (Fig. 10). In the presence of 100 nM den-

drotoxin-K, a specific blocker for Kv1.1, the latency of the first

spike evoked by just-super threshold current was shortened to

24 ± 2.2% (n = 5, Fig. 10a). At this concentration, DTX-K

slightly depolarized the resting membrane potential and

decreased the input resistance in some cases. In such cases, the

resting potential was brought back to the original level by DC

current injection and the amplitude of depolarizing current

pulse was increased to just-super threshold level. In the

presence of 1–3 lM CP-339818, a blocker for Kv1.4 channels

at this concentration (Nguyen et al. 1996), the latency of the

first spike evoked by just-super threshold current was

shortened to 54 ± 7.6% (n = 8, Fig. 10b) without a change in

the resting membrane potential and the input resistance. The

drug did not affect the first spike latency in 3 out of 11 LS

neurons tested. Although CP-339818 also blocks Kv1.3, we

concluded that the drug specifically blocked Kv1.4 channels

in our experimental condition, because the Gene-chip analysis

showed that the expression of Kv1.3 was low in GRS layer 2.

Nicotine (100 nM), reported to block Kv4.3 channels directly

in cardiac muscle (Wang et al. 2000), also shortened the onset

delay of the first spike evoked in response to a depolarizing

current injection (48 ± 3.5%, n = 5, Fig. 10c). In the pres-

ence of mecamylamine (10 lM), a nonselective blocker for

nicotinic acetylcholine receptors, we obtained a similar result

(53 ± 9.9%, n = 5, Fig. 10d), confirming that nicotine

directly suppressed Kv4.3 channels, as in the case of cardiac

muscle (Wang et al. 2000). The firing pattern of 3 out of 8 LS

neurons was not affected by nicotine. Since some LS neurons

were not affected by CP-339818 or nicotine, additional factors

might be contributing to the LS firing property (see

‘‘Discussion’’).
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Fig. 4 Layer 3 pyramidal neurons in GRS show similar firing and

intrinsic membrane properties to layer 2 pyramids. a A biocytin-filled

layer 3 pyramidal neuron and its Neurolucida reconstruction. The cell

body and dendrites are shown in black, and the axon is shown in red.

Scale bar, 100 lm. b Voltage responses to hyperpolarizing and sub-

threshold depolarizing current injections (intensity, -140 to 50 pA,

duration, 1 s). c Voltage responses to supra-threshold depolarizing

current injections. The current intensity is indicated at the end of each

trace. This neuron had a resting membrane potential of -77 mV.

d I–V relationship measured 800 ms after the onset of step currents in

(b). The input resistance of this neuron was 625 MX. e Onset latency

of the first to nth spikes in response to the various intensities of the

step current shown in (c). Each symbol represents a different injection

current intensity; square, triangle, inverted triangle, diamond and

circle represent 55, 60, 80, 140 and 200 pA, respectively. f Inter-spike

interval between nth to (n ? 1)th spike, calculated from the onset

latency data. Symbols are the same as those in (e)
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Area specificity of LS neurons

We carried out a short survey of two other areas intercon-

nected with GRS for the presence of LS neurons; namely, the

presubiculum and perirhinal cortex. In the presubiculum,

nine neurons were recorded from the superficial layer. Five

of these were classified as RS, three as LS, and one as LS-

like. In perirhinal cortex, neurons were identified as mainly

RS (12 of 18 neurons from layer 2, and 7 of 12 neurons from

layer 6). Of the 6 other layer 2 neurons, 1 was LS, 1 stuttering,

3 FS, and 1 single spiking. In the layer 6 sample, 1 neuron was

LS, 1 FS, and 3 intrinsically bursting.

Discussion

The LS property is unusual for cortical pyramidal neurons,

but has been previously described for several other cell

types, in particular: medium spiny stellate neurons of the

basal ganglia (Nisenbaum et al. 1994), neurons in the

intermediate layers of the superior colliculus (Saito and Isa

2000), and cortical neurogliaform cells (Kawaguchi 1995;

Chu et al. 2003). In barrel cortex, the delay in firing of

neurogliaform cells may be associated with a slow initia-

tion of whisker-evoked action potentials (Zhu et al. 2004).

Pyramidal cells in rat perirhinal cortex have been

reported to exhibit long delays in spike initiation when

injected with depolarizing current steps. Encoding over

long time intervals would be appropriate to associative

learning, a function identified with perirhinal cortex (Beggs

et al. 2000; McGann et al. 2001). LS neurons in perirhinal

cortex were reported in high percentages in both the upper

layers (19 of 26 neurons) and layer 6 (74 of 86 neurons). In

our screen of perirhinal cortex, we identified two neurons

as late spiking (one in layer 2, from a total of 18; one in

layer 6 from a total of 12). Other investigators have
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Fig. 5 A representative layer 5 pyramidal neuron in GRS, demon-

strating the RS firing property. a Biocytin-filled layer 5 pyramidal

neuron and its Neurolucida reconstruction. The cell body and

dendrites are shown in black, and the axon is shown in red. Scale
bars, 100 lm. b Voltage responses to hyperpolarizing and sub-

threshold depolarizing current injections (intensity, -500 to 150 pA,

duration, 1 s). c Voltage responses to supra-threshold depolarizing

current injections. The current intensity is indicated at the end of each

trace. This neuron had a resting membrane potential of -63 mV.

d I–V relationship measured 800 ms after the onset of step currents in

(b). The input resistance of this neuron was 51 MX. e Onset latency

of the first to nth spikes in response to the various intensities of the

step current shown in (c). Each symbol represents a different injection

current intensity: square, triangle, inverted triangle, diamond and

circle represent 200, 250, 300, 400 and 500 pA, respectively. f Inter-

spike interval between nth to (n ? 1)th spike, calculated from the

onset latency data. Symbols are the same as those in (e)

248 Brain Struct Funct (2013) 218:239–254

123



identified perirhinal neurons in the upper layers as behav-

ing as RS relay cells (Biella et al. 2007). The apparent

discrepancy in the abundance of LS neurons is surprising

but may be due to sublaminar or other variations in the

location of the recording sites, and/or differences in the

recording conditions.

What is the significance of LS neurons in the rat GRS?

In previous discussions, the LS property has been inter-

preted as required for synaptic integration in a certain

context. The GRS is known to contain head-direction cells

(Chen et al. 1994; Cho and Sharp 2001), and has been

implicated in aspects of learning and memory in a wide

range of behaviors such as visual and vestibular

integration, path integration, and spatial navigation (Coo-

per and Mizumori 1999, 2001; Cooper et al. 2001; Harker

and Whishaw 2002; Vann and Aggleton 2002; Vann et al.

2003; van Groen et al. 2004). This functional profile could

be consistent with a LS property, where synaptic inputs are

compared or integrated during the delay interval. On the

other hand, it is clear that the LS property per se is asso-

ciated with a range of neuronal phenotypes, including both

GABAergic and glutamatergic neurons in several different

regions (see above). The exact mechanism and significance

of the LS property may depend on area-specific circuitry.

Our results on the physiological distinctness of GRS

layer 2 pyramids, are in accord with several recent studies
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Fig. 6 A representative layer 2 pyramidal neuron in BF, with a

typical RS firing property. a Biocytin-filled layer 2 pyramidal neuron

and its Neurolucida reconstruction. The cell body and dendrites are

shown in black, and the axon is shown in red. Scale bars 100 lm.

b Voltage responses to hyperpolarizing and sub-threshold depolariz-

ing current injections (intensity, -500–100 pA, duration, 1 s).

c Voltage responses to supra-threshold depolarizing current injec-

tions. The current intensity is indicated at the end of each trace. This

neuron had a resting membrane potential of -71 mV. d I–V

relationship measured 800 ms after the onset of step currents in (b).

The input resistance of this example neuron was 146 MX. e Onset

latency of the first to nth spikes in response to the various intensities

of the step current shown in (c). Each symbol represents a different

injection current intensity: squares, triangles, inverted triangles,

diamonds and circles represent 160, 200, 300, 400 and 500 pA,

respectively. f Inter-spike interval between nth to (n ? 1)th spike,

calculated from the onset latency data. Symbols are the same as those

in (e)
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that demonstrate layer-specific dysregulation in the GRS

after anterior thalamic lesions (Poirier and Aggleton 2009;

Amin et al. 2010). That is, activity-related markers show

either decreased levels in superficial GRS (c-fos, zif268,

5ht2rc, kcnab2) or, for one marker (cox6b), increased

levels (Amin et al. 2010). These results highlight the role of

GRS as part of an extended network, notably involving the

anterior thalamic nucleus and the hippocampal formation.

The distal dendritic tufts of layer 2 neurons, in upper layer

1, are potential postsynaptic candidates of projections from

the anteroventral thalamus (Shibata 1993), which converge

in this layer with GABAergic input from CA1 hippocam-

pus (Miyashita and Rockland 2007).

The GRS could have multiple roles in an extended

thalamic-hippocampal network. Working memory tasks,

for example, increase immediate early gene activity in the

GRS during spatial learning and navigation based on both

internal and external cues (light and dark conditions;

Pothuizen et al. 2009). No layer-specific patterns were

identified in these experiments. However, another recent

experiment has reported a selective change in c-fos

expression in layer 2 GRS neurons during a spatial, but not

during a non-spatial version of the Morris water maze in

mice (Czajkowski et al. 2008).

Another possibility is that the LS neurons as a popula-

tion are involved in synchronous activity. The GRS is

recurrently interconnected with hippocampal structures,

and is known to be one of several regions which can

independently generate theta-range oscillations (Kirk and

Mackay 2003; Talk et al. 2004). Synchronous firing could

be achieved by extensive axonal interconnectivity, such as

has been demonstrated for LS neurogliaform neurons in

cortical layer 1 (Chu et al. 2003). However, although GRS

neurons in layer 2 have horizontal, intralaminar collaterals,

these are not unusually abundant, nor are collaterals

restricted to this layer. The conspicuous bundling of apical

dendrites is another candidate mechanism for synchronous

firing, either via direct dendro-dendritic appositions among

the apical dendrites or via the intermingled parvalbumin-

positive dendrites (Ichinohe and Rockland 2002). In a

previous electron microscopic study (Ichinohe et al. 2003),

we reported direct appositions in the upper layers between

distal dendrites of layer 5 GRS neurons, identified by im-

munolabeling for OCAM. In that study, appositions

between putative layer 2 apical dendritic trunks were

observed in single sections, but this observation requires

confirmation with serial section reconstruction or identi-

fying markers specific for layer 2 apical dendrites. Clas-

sical gap junctions were not observed between pyramidal

cell dendrites, although these were found between parval-

bumin-positive dendrites (Ichinohe et al. 2003).

Potassium channels

The large family of potassium channels has been exten-

sively investigated; and the expression, distribution, and

biophysical properties have been characterized for multiple
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Fig. 7 Sholl analysis of the apical and basal dendrites of layer 2

pyramidal neurons in GRS and BF. a The number of intersections of

concentric circles made by the apical dendrites of GRS layer 2 (open
circles) and of BF layer 2 neurons (filled circles), plotted against the

distance from soma. b Similar to a, but for the basal dendrites

Fig. 8 In situ hybridization for Kv1.4 mRNA in GRS and BF

cortices. Cortical layers numbered at left. Scale bar 300 lm
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subunits (Gabel and Nisenbaum 1998; Shen et al. 2004;

Guan et al. 2006; Vacher et al. 2008). Single-cell RT-PCR,

immunocytochemistry, and whole-cell recordings with

specific peptide toxins have established that neocortical

pyramidal cells express multiple delayed rectifier Kv1 a-

subunits, likely to play a role in regulating cell excitability

(Guan et al. 2006, 2007).

We have demonstrated in this report that Kv1.1, Kv1.4

and Kv4.3 channels are highly expressed in layer 2 pyra-

midal neurons in GRS and provided evidence for their

contribution to the LS firing property in those pyramids.

Kv1.1 is classified as a delayed rectifier, while Kv1.4 and

Kv4.3 generate the so-called ‘‘A-type’’ rapidly inactivating

potassium currents (IA). Our single-cell RT-PCR experi-

ment showed that the Kv1.1 channels were expressed in the

LS neurons in layer 2 of GRS, but not selectively for this

layer and cell population (Table 2). Indeed, it has been

reported that Kv1.1 channels are widely expressed in

supragranular neocortical pyramidal neurons (Guan et al.

2006). The firing property of these neurons is mostly RS

(McCormick et al. 1985; Sutor and Hablitz 1989; Mason

and Larkman 1990; Cho et al. 2004), as was found in our

present results (Fig. 6). However, Kv1.1- and Kv1.2-con-

taining potassium channels have been proposed to regulate

the LS firing property in striatal medium spiny neurons

(Nisenbaum et al. 1994; Gabel and Nisenbaum 1998; Shen

et al. 2004). Correspondingly, we found that application of

dendrotoxin-K (100 nM), specific blocker for the Kv1.1

channel at this concentration, reduced the onset latency of

the first spike in layer 2 LS neurons of GRS (Fig. 10). Our

pharmacological experiments also show effects of IA in

layer 2 LS pyramids. This current has been attributed to

several combinations of Kv channels (Gabel and Nisen-

baum 1998). In cultured Drosophila neurons, Sh and Shal

channels, mediating IA-like rapidly inactivating currents,

have been reported to contribute to the formation of a

Fig. 9 a Single-cell RT-PCR for one layer 2 neuron in GRS. Eight

genes were tested. Amplified cDNA fragments were confirmed by 2%

agarose gel electrophoresis, with a 100 bp DNA ladder marker. Note

the presence of genes for Kv1.1, Kv1.4 and Kv4.3. For this cell, genes

for Kv1.2 and Kv3.1 were not found (two dark lanes). b Expression

ratio of each of these genes in 21 GABAA receptor a1 subunit and

b-actin positive LS neurons. c Venn diagram showing the number of

cells expressing Kv1.1, Kv1.4 and Kv4.3 messages. Note that all of

the LS neurons (n = 21) expressed at least one of three Kv channel

messages
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Fig. 10 a A representative example showing the effect of 100 nM

DTX-K on the LS firing pattern. Voltage responses to a depolarizing

current for a layer 2 LS neuron, before and 10 min after the

administration of DTX-K are shown. The lower graph shows the

change in the onset latency of spikes in the same LS neuron. Note that

the onset latency of the first spike was reduced from 660 to 80 ms

after DTX-K application. b Similar to a, showing the effect of 3 lM

CP-339818. c Similar to a, showing the effect of 100 nM nicotine.

d Similar to a showing the effect of 100 nM nicotine in the presence

of mecamylamine (10 lM)
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‘‘delayed’’ firing property. Interaction of rapidly and slowly

inactivating currents has been implicated in specific firing

patterns in Drosophila (Peng and Wu 2007). In developing

and cultured cerebellar granule cells, suppression of IA by

expressing a dominant negative mutant Kv4.2 resulted in

shortening of latency before the first spike generation

(Shibata et al. 2000). Whether the same channel combi-

nations characterize LS layer 3 pyramidal cells requires

further investigation.

In summary, by microarray, in situ hybridization, and

single-cell RT-PCR, we showed a clear association of

delayed rectifier and A-type potassium channels, Kv1.1,

Kv1.4 and Kv4.3, with neurons in layer 2 of the GRS.

Further experiments will be needed to determine whether

these channels additionally contribute to other properties

(e.g., Kv4.3-mediated currents as underlying rhythmic

activity in hippocampal interneurons, Bourdeau et al.

2007), and to determine the full panoply of channel inter-

actions responsible for the LS firing property.

Conclusion

In conclusion, layer 2 GRS neurons in the rat are a dis-

tinctive population, with a common output (i.e., callosally

projecting; Wyss et al. 1990), strong apical dendritic bun-

dling, and shared unusual firing properties. A recent study

reports that layer 2 GRS neurons are developmentally

distinctive, characterized by late migration from the sub-

ventricular zone during the first postnatal week (Zgraggen

et al. 2011). Some layer 3 neurons have callosal outputs

and show LS firing properties, although layer 3 neurons

have a slightly different dendritic morphology. How these

features subserve aspects of learning and memory remains

for further investigations.
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