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Abstract

In a recent paper, Hausman et al. (2012) propose a new estimator, HFUL (Heteroscedasticity

robust Fuller), for the linear model with endogeneity. This estimator is consistent and asymp-

totically normally distributed in the many instruments and many weak instruments asymptotics.

Moreover, this estimator has moments, just like the estimator by Fuller (1977). The purpose of this

note is to discuss at greater length the existence of moments result given in Hausman et al. (2012).

In particular, we intend to answer the following questions: Why does LIML not have moments?

Why does the Fuller modification lead to estimators with moments? Is normality required for the

Fuller estimator to have moments? Why do we need a condition such as Hausman et al. (2012),

Assumption 9? Why do we have the adjustment formula?

1



I. Introduction

The linear model with endogeneity is one of the most popular models in economics and there

exist several estimators for this model. The Two Stage Least Squares estimator is inconsistent if

there are many moments, see Kunitomo (1980) and Bekker (1994). Another estimator, the LIML

(Limited Information Maximum Likelihood) estimator does not have moments. As a result, the

estimates of the last estimator are dispersed when simulated data are used, see for example Hahn,

Hausman, Kuersteiner (2005). These authors suggested the Fuller (1977) estimator as a solution

to this problem for LIML. However, the Fuller estimator is inconsistent in the many instrument

asymptotic if the data is heteroscedastic. In a recent paper, Hausman et al. (2012) propose a

new estimator, HFUL (Heteroscedasticity robust Fuller), for the linear model with endogeneity. In

that paper, we show that HFUL is consistent and asymptotically normally distributed in the many

instruments and many weak instruments asymptotics, even in the presence of heteroscedasticity.

Moreover, we also show that HFUL has moments, just like the estimator by Fuller (1977). The

purpose of this note is to expound the existence of moments results given in Hausman et al. (2012).

Thus, in this note, we intend to answer the following questions:

Q1: Why does LIML not have moments?

Q2: Why does the Fuller modification lead to estimators with moments?

Q3: Is normality required for the Fuller estimator to have moments?

Q4: Why do we need a condition such as Hausman et al. (2012) Assumption 9?

Q5: Why do we have the adjustment formula α̂ = [α̃− (1− α̃)C/n] [1− (1− α̃)C/n]−1 inHFUL,

and what are the effects of C on the asymptotic properties of HFUL?

To keep our discussion as intuitive as possible, we adopt the simplest possible setup: a Gaussian,

exactly identified IV regression with one endogenous regressor, orthonormal instrument, and a

canonical error structure; i.e.,

y = xδ0 + ε, (1)

x = zπ0 + v, (2)

where z′z/n = 1. The reduced form representation y is easily seen as

y = zφ0 + ζ,

2



where φ0 = π0δ0 and ζ = ε+ vδ0. To keep notation simple, we also assume that the IV regression

is in what has been called the canonical form, so that

(
ζi
vi

)
∼ i.i.d.N (0, I2) , (3)

where ζi and vi are the ith element of the random vectors ζ = (ζ1, ..., ζn)
′ and v = (v1, ..., vn)

′,

respectively. With this simple, stripped-down setup, we can present the essential ideas behind our

results while avoiding some of the technical difficulties and tedious calculations associated with

having non-normality, heteroskedasticity, and many and/or weak instruments.

In this simple setting, it is easily seen that the OLS estimators of the reduced form parameters

φ and π have the following joint normal distribution

(
φ̂n
π̂n

)
=

(
z′y/n
z′x/n

)
∼ N

((
φ0
π0

)
, n−1I2

)
. (4)

Note that φ̂n and π̂n are independent in this case.

Given the simplicity of the setup here, the existence and non-existence of moment results given

below are not new but are presented here so as to illustrate some of the issues involved. In fact,

Fuller (1977) has already established the existence of moments of his estimator for a IV regression

model under homoskedastic, Gaussian error assumptions and a fixed number of instruments. How-

ever, here, we provide some intuitive explanation for why the Fuller modification works based on

certain geometric properties of the high-dimensional sphere. Similar discussion does not appear in

Fuller (1977) and does not seem to appear elsewhere in the literature. In addition, the existence

of moments result which we give in Hausman et al. (2012) is new, as it generalizes the Fuller

(1977) result to IV regression models with heteroskedasticity, non-Gaussian error distributions,

and possibly many weak instruments, and it establishes such a result for a new estimator HFUL.

In the remainder, we answer each of the questions posed above in turn.
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II. Q1: Why does LIML not have moments?

Now, to address Q1, we note that, under exact identification, we have

δ̂LIML = δ̂2SLS =
π̂n (z′z) φ̂n
π̂n (z′z) π̂n

=
φ̂n
π̂n
.

The non-existence of finite sample moments for this estimator is easily established by the following

calculations

E
∣∣∣δ̂LIML

∣∣∣
p

=

∫ ∞

−∞

∫ ∞

−∞

∣∣∣∣∣
φ̂

π̂

∣∣∣∣∣

p
n

(2π)
exp

{
−1

2

[
n (π̂ − π0)2 + n

(
φ̂− φ0

)2]}
dπ̂dφ̂

=

∫ ∞

−∞

∣∣∣φ̂
∣∣∣
p
√
n

2π
exp

{
−n

2

(
φ̂− φ0

)2}
dφ̂

×
∫ ∞

−∞
|π̂|−p

√
n

2π
exp
{
−n

2
(π̂ − π0)2

}
dπ̂

≥
∫ ∞

−∞

∣∣∣φ̂
∣∣∣
p
√
n

2π
exp

{
−n

2

(
φ̂− φ0

)2}
dφ̂

×
∫ |π0|

−|π0|
|π̂|−p

√
n

2π
exp
{
−n

2
(π̂ − π0)2

}
dπ̂

≥
∫ ∞

−∞

∣∣∣φ̂
∣∣∣
p
√
n

2π
exp

{
−n

2

(
φ̂− φ0

)2}
dφ̂

×
√
n

2π
exp
{
−2n |π0|2

}∫ |π0|

−|π0|
|π̂|−p dπ̂

= +∞ (5)

for all p such that 1 ≤ p <∞ and for each finite n, since

∫ |π0|

−|π0|
|π̂|−p dπ̂ = +∞.

Note that problem here is that part of the integrand (i.e., |π̂|−p) has a pole at π̂ = 0, so that if

there is sufficient probability mass in the neighborhood of π̂ = 0, then the integral does not exist.

We will provide more discussion and intuition when we contrast this case with the case where the

estimator has been modified in the sense of Fuller (1977). Please see remark in section III below.
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III. Q2: Why does the Fuller modification lead to estimators with moments?

To address this question, note first that, under the current setup, Fuller estimator can be written

as

δ̂FULL =
π̂ (z′z) φ̂+ (C/n)x′My

π̂ (z′z) π̂ + (C/n)x′Mx
=
nπ̂φ̂+ (C/n) v′Mζ

nπ̂2 + (C/n) v′Mv
=
π̂φ̂+ (C/n) (v′Mζ/n)

π̂2 + (C/n) (v′Mv/n)
, (6)

where M = In − z (z′z)−1 z′ = In − zz′/n. To understand why this estimator solves the moment

problems it may be helpful to draw an analogy with ridge-regression. In particular, the ridge version

of the least squares estimator has its denominator perturbed by an extra term which ensures that

the denominator is nonzero. Similarly, in this case the Fuller modification modifies the denominator

of 2SLS/LIML by adding an extra term.

To show that this added term is effective in ensuring the existence of moments, first partition

z =

(
z1
1×1
, z′2·
1×(n−1)

)′
and consider the decomposition

M = H⊥H⊥′,

where

H⊥

n×(n−1)
=

(
−z′2·/z1
In−1

)[
In−1 +

z2·z′2·
z21

]−1/2
∈ Vn−1,n

and where

Vn−1,n =

{
X

n×(n−1)
: X ′X = In−1

}

denotes the Stiefel manifold. Consider the transformation v∗ = (n− 1)−1/2H⊥′v and ζ∗ = (n− 1)−1/2H⊥′ζ,

and it is easily verified that in the present case

(
ζ∗,i
v∗,i

)
≡ i.i.d.N

(
0, (n− 1)−1 I2

)
,

where v∗,i and ζ∗,i are the ith element of v∗ and ζ∗, respectively. Moreover, v∗ and ζ∗ are independent

of π̂ and φ̂ in this case. Using this change of variables, we can rewrite the Fuller estimator in the

representation

δ̂FULL =
π̂φ̂+ (1− 1/n) (C/n) (v′∗ζ∗)

π̂2 + (1− 1/n) (C/n) (v′∗v∗)
.

Next, define

ξ1 =
1√
n
z′ζ, ξ2 =

1√
n
z′v,
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so that

φ̂ = φ0 +
1√
n
ξ1, π̂ = π0 +

1√
n
ξ2,

and we can further represent the Fuller estimator as

δ̂FULL =
π̂φ̂+ (1− 1/n) (C/n) (v′∗ζ∗)

π̂2 + (1− 1/n) (C/n) (v′∗v∗)

=
π20δ0 + π0

(
n−1/2ξ1

)
+ π0δ0

(
n−1/2ξ2

)
+ n−1ξ1ξ2 + (1− 1/n) (C/n) (v′∗ζ∗)

π20 + 2π0
(
n−1/2ξ2

)
+ n−1ξ22 + (1− 1/n) (C/n) (v′∗v∗)

. (7)

Note that (7) makes clear that the Fuller estimator can be written as a function of several random

components, some of which are linear in the error vectors such as n−1/2ξ1 and n−1/2ξ2 while others

are bilinear such as v′∗ζ∗ and v′∗v∗. To show the existence of moments for the Fuller estimator, we

divide the domain of integration into a region where all of these random components are in some

small neighborhood of their asymptotic limit (denoted by the event A below) and the complement

of this region (denoted by AC). More precisely, let

A1 =
{∣∣v′∗ζ∗

∣∣ < η1
}
,A2 =

{∣∣v′∗v∗ − 1
∣∣ < η2

}
,A3 =

{∣∣∣n−1/2ξ1
∣∣∣ < η3

}
,A4 =

{∣∣∣n−1/2ξ2
∣∣∣ < η4

}
,

A = A1 ∩A2 ∩A3 ∩A4

for constants η1, η2, η3, η4 > 0 and η4 < |π0| /2. Now,

∣∣∣δ̂FULL
∣∣∣ IA

=

∣∣∣∣∣
π20δ0 + π0

(
n−1/2ξ1

)
+ π0δ0

(
n−1/2ξ2

)
+ n−1ξ1ξ2 + (1− 1/n) (C/n) (v′∗ζ∗)(

π0 + n−1/2ξ2
)2

+ (1− 1/n) (C/n) (v′∗v∗)

∣∣∣∣∣ IA

≤ π20 |δ0|+ |π0|
∣∣n−1/2ξ1

∣∣+ |π0| |δ0|
∣∣n−1/2ξ2

∣∣+
∣∣n−1/2ξ1

∣∣ ∣∣n−1/2ξ2
∣∣+C |v′∗ζ∗|

π20 − 2 |π0|
∣∣n−1/2ξ2

∣∣

≤ π20 |δ0|+ |π0| η3 + |π0| |δ0| η4 + η3η4 +Cη1
π20 − 2 |π0| η4

.

It follows that for any fixed p > 0 and any true parameter value (δ0, π0) there exists a positive

constant C1, possibly depending on (δ0, π0) and p, such that

E
[∣∣∣δ̂FULL

∣∣∣
p
IA

]
≤ C1 <∞. (8)

Moreover, suppose that the parameter space of (δ, π) is some bounded set D ⊂ R2, then (8) holds

under some constant not depending on the true value (δ0, π0)
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Next, consider what happens under the event AC . In this case, we first form the upper bound

∣∣∣δ̂FULL
∣∣∣ =
∣∣∣∣∣
π̂φ̂+ (C/n) (v′∗ζ∗/n)

π̂2 + (C/n) (v′∗v∗/n)

∣∣∣∣∣ ≤

∣∣∣π̂φ̂
∣∣∣+ (1− 1/n) (C/n) (|v′∗ζ∗|)
(1− 1/n) (C/n) (v′∗v∗)

=

(
n

n− 1

) n
∣∣∣π̂φ̂
∣∣∣

Cv′∗v∗
+
|v′∗ζ∗|
v′∗v∗

.

By Loève’s inequality, we have for any fixed p > 0

E
[∣∣∣δ̂FULL

∣∣∣
p
IAC

]
≤ cp





(
n

n− 1

)p
E

∣∣∣∣∣∣

n
∣∣∣π̂φ̂
∣∣∣ IAC

Cv′∗v∗

∣∣∣∣∣∣

p

+E

[ |v′∗ζ∗|
v′∗v∗

IAC

]p


 . (9)

To analyze the first term in (9), note that, by the Cauchy-Schwarz (CS) inequality, we have

E

∣∣∣∣∣∣

n
∣∣∣π̂φ̂
∣∣∣ IAC

Cv′∗v∗

∣∣∣∣∣∣

p

≤ np

Cp

√
Pr {AC}

√√√√√E

∣∣∣∣∣∣

∣∣∣π̂φ̂
∣∣∣

v′∗v∗

∣∣∣∣∣∣

2p

.

Moreover1,

Pr
{
AC
}

= Pr
{
AC1 ∪AC2 ∪AC3 ∪AC4

}

≤ Pr
{
AC1
}

+ Pr
{
AC2
}

+ Pr
{
AC3
}

+ Pr
{
AC4
}

= Pr
{∣∣v′∗ζ∗

∣∣ ≥ η1
}

+ Pr
{∣∣v′∗v∗ − 1

∣∣ ≥ η2
}

+ Pr
{∣∣∣n−1/2ξ1

∣∣∣ ≥ η3
}

+ Pr
{∣∣∣n−1/2ξ2

∣∣∣ ≥ η4
}

≤ E |v′∗ζ∗|4p

η4p1
+
E |v′∗v∗ − 1|4p

η4p2
+
E
[
n−1/2ξ1

]4p

η4p3
+
E
[
n−1/2ξ2

]4p

η4p4
(by Markov’s inequality)

<
Cp

n2pη4p1
+

Cp

n2pη4p2
+

Cp

n2pη4p3
+

Cp

n2pη4p4
(by Lemma 1 below and by the fact that both ξ1 and ξ2 are N (0, 1) random variables)

<
C

n2p
. (10)

Turning our attention now to the expectation E
∣∣∣
∣∣∣π̂φ̂
∣∣∣ / (v′∗v∗)

∣∣∣
2p

, note that

E

∣∣∣∣∣∣

∣∣∣π̂φ̂
∣∣∣

v′∗v∗

∣∣∣∣∣∣

2p

= E
∣∣∣π̂φ̂
∣∣∣
2p
E
∣∣v′∗v∗

∣∣−2p ,

1These moment bounds are obtained by using fairly standard arguments commonly used to establish certain
large deviation inequalities. See in particular Chapter 2 of Tao (2012). For completeness sake, we give the explicit
calculations of these bounds in the proof of Lemma 1 below. Note, however, that more complicated bounds are
actually needed for the more general IV regression setting considered in Hausman et al (2012) and so a different
method of proof is used there.
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where the equality above follows from the fact that v∗ is independent of π̂ and φ̂, as noted above.

Given the joint normality of the OLS estimators as noted in (4) and given that π̂ and φ̂ are

independent, it is trivial to show (since all moments of the normal distribution exist) that there

exists a constant Cp such that

E
∣∣∣π̂φ̂
∣∣∣
2p

= E |π̂|2pE
∣∣∣φ̂
∣∣∣
2p
≤ Cp <∞ (11)

for any fixed p > 0. Next, we consider E |v′∗v∗|−2p. To evaluate this expectation, it is helpful to

change into (generalized) polar coordinates, viz

v∗ = hr with h = v∗
(
v′∗v∗
)−1/2

and r =
(
v′∗v∗
)1/2

, (12)

where h ∈ V1,n−1, so that h′h = In−1. The Jacobian of this transformation is given by

(dv∗) = cnr
(n−2)dr [dh] , (13)

where [dh] denotes the exterior differential form of the normalized invariant measure on the Stiefel

manifold V1,n−1 and where

cn =
2π(n−1)/2

Γ
[
1
2 (n− 1)

] . (14)

(See, for example, Lemma 1.5.2 of Chikuse, 2003). We show in Lemma 2 below that

E
∣∣v′∗v∗

∣∣−2p = 1 +O
(
n−1
)
, (15)

so that the first term in (9) is bounded for all n sufficiently large, i.e.,

E

∣∣∣∣∣∣

n
∣∣∣π̂φ̂
∣∣∣ IAC

Cv′∗v∗

∣∣∣∣∣∣

p

≤ np

Cp

√
Pr {AC}

√√√√√E

∣∣∣∣∣∣

∣∣∣π̂φ̂
∣∣∣

v′∗v∗

∣∣∣∣∣∣

2p

=
np

Cp

√
C

n2p

√
E
∣∣∣π̂φ̂
∣∣∣
2p
E |v′∗v∗|−2p

≤ np

Cp

√
C

n2p

√
Cp (1 +O (n−1))

= O (1) . (16)

Moreover, it is easy to show that the second term in (9) is also bounded for all n sufficiently

large, i.e., E [{|v′∗ζ∗| / (v′∗v∗)} IAC ]p = O (1). In particular, by making use of various forms of the
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CS inequality, we have that

E

[ |v′∗ζ∗|
v′∗v∗

IAC

]p
≤
√

Pr (AC)

√

E

∣∣∣∣
|v′∗ζ∗|
v′∗v∗

∣∣∣∣
2p

≤
√
E
[
|v′∗v∗|−p |ζ ′∗ζ∗|p

]
≤
(
E
∣∣v′∗v∗

∣∣−2p
)1/4 (

E
∣∣ζ ′∗ζ∗
∣∣2p
)1/4

.

Now, since ζ∗ has the same multivariate normal distribution as v∗, we can apply Lemma 2 (given

below) for the case q = −p < 0 to obtain

E
∣∣ζ ′∗ζ∗
∣∣2p = 1 +O

(
n−1
)
. (17)

Using this result in conjunction with (15), we have that

E

[ |v′∗ζ∗|
v′∗v∗

IAC

]p
≤
√

1 +O (n−1)
√

1 +O (n−1) = O (1) . (18)

It follows from (8), (16) and (18) that

E
[∣∣∣δ̂FULL

∣∣∣
p]

= E
[∣∣∣δ̂FULL

∣∣∣
p
IA

]
+E
[∣∣∣δ̂FULL

∣∣∣
p
IAC

]

≤ E
[∣∣∣δ̂FULL

∣∣∣
p
IA

]
+ cp





(
n

n− 1

)p
E

∣∣∣∣∣∣

n
∣∣∣π̂φ̂
∣∣∣ IAC

Cv′∗v∗

∣∣∣∣∣∣

p

+E

[ |v′∗ζ∗|
v′∗v∗

IAC

]p


 = O (1) ,

which yields the desired existence of moments result for the Fuller estimator.

Remark:

Looking back at expression (14), note that

cn =
2π(n−1)/2

Γ
[
1
2 (n− 1)

]

is the normalization factor for the invariant (uniform) measure on the sphere, and it gives the surface

area of the unit sphere (i.e., a sphere with unit radius) in Rn−1. By Stirling’s approximation one

can show that

cn =
2π(n−1)/2

Γ
[
1
2 (n− 1)

] ∼
(

2eπ

n

)(n−2)/2
,

so that this surface area is very small in high dimension; i.e., when n is large. Moreover, the volume

of the unit sphere is proportional to (n− 1)−1 cn, so that it is also small. It follows that in high

dimension, the probability of landing within a fixed neighborhood of the origin under the invariant

uniform measure is very small. This basic fact of high-dimensional convex geometry provides an
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intuition for why the Fuller modification is effective in solving the moment problem2. In particular,

in our simple setting here, the denominator of the Fuller estimator is given by

π̂2 + (1− 1/n) (C/n) v′∗v∗ ∼ π̂2 + (C/n) ‖v∗‖2 .

Moreover, the denominator of the 2SLS estimator is simply a special case of the expression above

with C = 0. Hence, the 2SLS has denominator that is the square of an one-dimensional random

variable π̂, so that, in particular, its probability of being zero is relatively high given its low

dimensionality. This, in turn, leads to the non-existence of moments of the 2SLS, as we have

already shown in (5) above by explicit calculations. On the other hand, as noted above, the Fuller

modification amounts to a ridge-regression-type perturbation of the denominator of the 2SLS, so

that the denominator of the modified estimator is now dependent on the square of the norm of a

high-dimensional vector v∗, in addition to π̂2 . In consequence, the probability of the denominator

being zero is now very small for finite n sufficiently large, leading to the existence of moments.

IV. Q3: Is normality required for the Fuller estimator to have moments?

Note that although the results here are shown under a Gaussian error assumption as in Fuller

(1977), the existence of moments of the Fuller estimator is not hinged upon such an assumption. In

particular, such an assumption is not needed to establish the boundedness of the inverse moment

E |v′∗v∗|−2p even though in proving Lemma 2 below, we have evaluated an integral of the form
∫ ∞

0
(2π)−1/2 (n− 1)1/2 r(n−4p−2) exp

{
−(n− 1)

2
r2
}
dr,

which may suggest that we need distributions with exponentially decaying tails in order to ensure

the existence of all moments as n becomes large. Note, however, that we can easily modify the

proof of Lemma 2 by a truncation argument since the existence of E |v′∗v∗|−2p depends only on the

behavior of the high-dimensional random vector v∗ near the origin. More specifically, note that

E
∣∣v′∗v∗

∣∣−2p = E
[∣∣v′∗v∗

∣∣−2p I
{∣∣v′∗v∗

∣∣ < 1
}]

+E
[∣∣v′∗v∗

∣∣−2p I
{∣∣v′∗v∗

∣∣ ≥ 1
}]

≤ E
[∣∣v′∗v∗

∣∣−2p I
{∣∣v′∗v∗

∣∣ < 1
}]

+ 1.

2The study of high-dimensional spheres with unit radius has a long history. An elegant modern account can be
found in Ball (1997). Our paper, however, seems to be the first to apply the basic results and concepts of high-
dimensional convex geometry to provide an intuitive explanation for the eixtence of moments of the Fuller estimator.
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Hence, changing into polar coordinates, i.e., v∗ = hr with h = v∗ (v′∗v∗)
−1/2 and r = (v′∗v∗)

1/2, we

have

E
∣∣v′∗v∗

∣∣−2p ≤ E
[
r−4pI

{
r2 < 1

}]
+ 1,

so that we really only need to specify conditions on the density of r near zero in order to ensure

the existence of E |v′∗v∗|−2p.
On the other hand, to show the existence of E

[∣∣∣δ̂FULL
∣∣∣
p]

for some p > 0 (possibly large) we do

of course need the error distributions of the IV regression model to have enough (positive order)

moments. The assumption of normality ensures that this is not a problem for any p. However, if

we are only interested in the existence of E
[∣∣∣δ̂FULL

∣∣∣
p]

for some fixed p, it is sufficient to specify

weaker moment conditions on the error distributions, as we do in Hausman et al. (2012).

V. Q4: Why do we need a condition such as Hausman et al. (2012), Assumption 9?

Assumption 9 ensures the existence of certain inverse moments3. Under Gaussian error assump-

tion, we show explicitly in Lemma 2 below that inverse moments of the form E |v′∗v∗|−2p (for p > 0)

do exist. However, in general under possibly non-normal distributions, it is not true that inverse

moments will necessarily exist.

To show that a condition such as Assumption 9 is not superfluous, we give an example of a

pathological density under which inverse moments do not exist. To proceed, let w be an (n− 1)×1

random vector, and consider the family of densities

fn (w) =
Γ
[
1
2 (n− 1)

]

21/2πn/2
1

(w′w)(n−2)/2
exp

{
−1

2
w′w

}
, for w ∈ Rn−1.

First, we show that fn (w) is indeed a density. To proceed, we again change into polar coordinates,

3Hausman et al. (2012), assumption 9 reads as follows. Proving the existence of moments of HFUL requires
showing the existence of certain inverse moments of det [S∗,n], where S∗,n = X

′

∗MX∗/ (n−K) and X∗ =
[
ε X

]
.

We shall explicitly assume the existence of such inverse moments below.

Assumption 9: There exists a positive constant C and a positive integer N such that

E
[
(det [S∗,n])

−2p(1+η)/η
]
≤ C <∞ (19)

for all n ≥ N , where η > 0 is as specified in Hausman et al. (2012) Assumption 8.

11



viz

w = hr, where h = w
(
w′w
)−1/2

and r =
(
w′w
)1/2

;

(dw) = cnr
(n−2)dr [dh] , where cn =

2π(n−1)/2

Γ
[
1
2 (n− 1)

] .

It follows that

∫

Rn−K

Γ
[
1
2 (n− 1)

]

23/2πn/2
1

(w′w)(n−2)/2
exp

{
−1

2
w′w

}
(dw)

=
Γ
[
1
2 (n− 1)

]

21/2πn/2

∫

V1,n−1

∫ ∞

0

1

r(n−2)
exp

{
−1

2
r2
}
cnr

(n−2)dr [dh]

=
Γ
[
1
2 (n− 1)

]

21/2πn/2
2π(n−1)/2

Γ
[
1
2 (n− 1)

]
∫

V1,n−1

∫ ∞

0
exp

{
−1

2
r2
}
dr [dh]

=

√
2

π

∫

V1,n−1

∫ ∞

0
exp

{
−1

2
r2
}
dr [dh]

= 2

∫

V1,n−1

∫ ∞

0

1√
2π

exp

{
−1

2
r2
}
dr [dh]

=

∫

V1,n−1

[dh] (since

∫ ∞

0

1√
2π

exp

{
−1

2
r2
}
dr =

1

2
)

=

∫

V1,n−1

[dh] = 1 (since [dh] defines the differential form for the normalized Haar measure).

Moreover, it is easy to see that the inverse moment E
[
(w′w)−1

]
does not exist in this case,

since by previous calculations

E
[(
w′w
)−1]

=

∫

Rn−K

Γ
[
1
2 (n− 1)

]

23/2πn/2
1

(w′w)n/2
exp

{
−1

2
w′w

}
(dw)

=
Γ
[
1
2 (n− 1)

]

21/2πn/2

∫

V1,n−1

∫ ∞

0

1

rn
exp

{
−1

2
r2
}
cnr

(n−2)dr [dh]

=
Γ
[
1
2 (n− 1)

]

21/2πn/2
2π(n−1)/2

Γ
[
1
2 (n− 1)

]
∫

V1,n−1

∫ ∞

0

1

r2
exp

{
−1

2
r2
}
dr [dh]

=

√
2

π

∫ ∞

0

1

r2
exp

{
−1

2
r2
}
dr

∫

V1,n−1

[dh]

≥
√

2

π

∫ ε

0

1

r2
exp

{
−1

2
r2
}
dr for some ε such that 0 < ε < 1

≥
√

2

π
exp

{
−1

2
ε2
}∫ ε

0

1

r2
dr = +∞,
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so that without ruling out pathological cases such as this one, we will not in general be able to

establish the existence of moments of the Fuller estimator.

V. Q5: Why do we have the adjustment formula α̂ = [α̃− (1− α̃)C/n] [1− (1− α̃)C/n]−1 in

HFUL, and what are the effects of C on the asymptotic properties of HFUL?

Consider here the more general IV regression model given in Hausman et al. (2012, section 2)

with G endogenous regressors and K instruments. Let X denote the regressors and let Z denote

the instruments. In this case, the HFUL estimator has the form

δ̂ =
(
X ′ [P −DP ]X − α̂X ′X

)−1 (
X ′ [P −DP ] y − α̂X ′y

)
(20)

where P = Z(Z′Z)−1Z ′, DP = diag (P11, ..., Pnn) with Pii being the ith diagonal element of P , and

α̂ = [α̃− (1− α̃)C/n] [1− (1− α̃)C/n]−1 , (21)

with α̃ being the α value which appears in HLIM, the heteroscedasticity robust version of LIML,

which was introduced by Hausman et al. (2012). To better understand the adjustment formula

(21), note that in Lemma B1 of a supplementary technical appendix to Hausman et al. (2012)

(available on the web at http://econweb.umd.edu/˜chao/Research/research.html), we show that

the HFUL estimator (20) has an equivalent representation of the form

δ̂ =

(
X ′ [P −DP ]X −

{
κ̃− C

n

}
X ′ [M +DP ]X

)−1(
X ′ [P −DP ] y −

{
κ̃− C

n

}
X ′ [M +DP ] y

)
,

(22)

where M = In − P and κ̃ is the smallest root of the determinantal equation

det
{
X
′
[P −DP ]X − κX ′

[M +DP ]X
}

= 0,

with X =
[
y X

]
. From (22), it is apparent that the adjustment factor α̂ allows HFUL to be

rewritten in a form where the “denominator” also contains a ridge-regression-type perturbation

term (i.e., the term (C/n)X ′ [M +DP ]X) analogous to that of the Fuller estimator (6). As we

have shown earlier, this additional term leads to the existence of moments.

C does not affect the first-order asymptotic properties of HFUL as can be seen from Theorem

2 of Hausman et al. (2012) and the surrounding discussion. It will have higher-order effects, but

that is beyond the scope of this paper.
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VII. Lemmas and Proofs:

Lemma 1: Suppose that v∗ ∼ N
(
0, (n− 1)−1 In−1

)
and ζ∗ ∼ N

(
0, (n− 1)−1 In−1

)
; and v∗ and

ζ∗ are independent. Then, for any positive integer p, the following results hold:

(a) E [v′∗ζ∗]
4p ≤ Cp/n2p;

(b) E [v′∗v∗ − 1]4p ≤ Cp/n2p;

where Cp is a constant which may be different in parts (a) and (b) above and which may depend

on p.

Proof:

Define ṽ = (n− 1)1/2 v∗ and ζ̃ = (n− 1)1/2 ζ∗, so that ṽ ∼ N (0, In−1) and ζ̃ ∼ N (0, In−1).

Now, to show part (a), note first that

E
[
v′∗ζ∗
]4p

= (n− 1)−4pE
[
ṽ′ζ̃
]4p

=
1

(n− 1)4p
E

[
n−1∑

i=1

ṽiζ̃i

]4p

≤ 1

(n− 1)4p
E

[
n−1∑

i=1

ṽiζ̃i

]4p

=
1

(n− 1)4p

∑

1≤ i1,...,i4p≤ n−1

E
[∏4p

j=1

(
ṽij ζ̃ij

)]
. (23)

Observe that, E
[
ṽij ζ̃i	

]
= 0 for all j �= 3, since E

[
ṽij
]

= E
[
ζ̃ij

]
= 0 for all ij and ṽij is inde-

pendent of ζ̃i	 for all j �= 3. In consequence, each ṽij ζ̃ij must appear at least twice in the product
∏4p

j=1

(
ṽij ζ̃ij

)
; otherwise, the expectation of this product is equal to zero. Hence, at most 2p

distinct factors of the form ṽij ζ̃ij will appear in the product
∏4p

j=1

(
ṽij ζ̃ij

)
if its expectation is

nonzero. To account for the different cases, consider a product with 2p− r distinct factors, where

r = 0, 1, ..., 2p− 1; and let Nr be the number of such products, i.e., Nr is the number of ways that

one can assign i1, ..., i4p from the set {1, ..., n} such that each ij appears at least twice and such

that exactly 2p−r different integers are selected. Moreover, note that since ṽij and ζ̃ij are normally
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distributed, so that, in particular, moments of all order exist. From these facts, we deduce that

there exists some positive constant Cp (depending on p) such that

E
[
v′∗ζ∗
]4p

≤ 1

(n− 1)4p

∑

1≤i1,...,i4p≤n

E
[∏4p

j=1

(
ṽij ζ̃ij

)]

≤ Cp

(n− 1)4p

2p−1∑

r=0

Nr.

Now, a crude upper bound for Nr is given by

Nr ≤
(

n

2p− r

)
(2p− r)4p ≤ n2p−r

(2p− r)! (2p− r)4p ≤ (en)2p−r (2p− r)2p+r ≤ (en)2p−r (2p)2p+r ,

where the third inequality above has made use of the inequality (2p− r)! ≥ (2p− r)2p−r e−(2p−r).
Applying this upper estimate of Nr, we obtain

1

(n− 1)4p
E
[
ṽ′ζ̃
]4p

≤ Cp
1

(n− 1)4p

2p−1∑

r=0

(en)2p−r (2p)2p+r

= Cp
(2pen)2p

(n− 1)4p

2p−1∑

r=0

(
2p

en

)r

= Cp

(
n

n− 1

)4p(2pe

n

)2p 2p−1∑

r=0

(
2p

en

)r

≤ Cp

(
n

n− 1

)4p(2pe

n

)2p(
1− 2p

en

)−1
(for n sufficiently large so that

2p

n
< 1)

< 2Cp

(
n

n− 1

)4p(2pe

n

)2p

≤ Cpn
−2p. (24)

To show part (b), note that

E
[
v′∗v∗ − 1

]4p
=

1

(n− 1)4p
E

[
n−1∑

i=1

(
ṽ2i − 1

)
]4p

=
1

(n− 1)4p

∑

1≤i1,...,i4p≤n

E
[∏4p

j=1

(
ṽ2ij − 1

)]
.

Moreover, observe that E
[(
ṽ2ij − 1

) (
ṽ2i	 − 1

)]
= 0 for all j �= 3 by mutual independence of the

elements of the subsequence
{
ṽ2ij

}
and by the fact that E

[
ṽ2ij

]
= 1 for all ij . It follows again that
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each
(
ṽ2ij − 1

)
must appear at least twice in the product

∏4p

j=1

(
ṽ2ij − 1

)
for this product to have

a nonzero expectation. Hence, we can bound E [v′∗v∗ − 1]4p in a way similar to done in the proof

of part (a) to obtain

E
[
v′∗v∗ − 1

]4p ≤ Cp

(n− 1)4p

2p−1∑

r=0

Nr ≤ Cpn−2p for n sufficiently large. �

Lemma 2: Suppose that v∗ ∼ N
(
0, (n− 1)−1 In−1

)
. Then, for any real constant q,

E
∣∣v′∗v∗

∣∣−2q = 1 +O
(
n−1
)
.

Proof: Making use of the change-of-variable formulae (12)-(14), we can evaluate E |v′∗v∗|−2q as

follows:

E
∣∣v′∗v∗

∣∣−2q

=

∫

Rn−1

∣∣v′∗v∗
∣∣−2q (n− 1)

1
2
(n−1)

(2π)(n−1)/2
exp

{
−(n− 1)

2
v′∗v∗

}
(dv∗)

=

∫

V1,n−1

∫ ∞

0

∣∣rh′hr
∣∣−2q (n− 1)

1
2
(n−1)

(2π)(n−1)/2
exp

{
−(n− 1)

2
rh′hr

}
cnr

(n−2)dr [dh]

=

∫

V1,n−1

∫ ∞

0
r−4q

(n− 1)
1
2
(n−1)

(2π)(n−1)/2
exp

{
−(n− 1)

2
r2
}

2π(n−1)/2

Γ
[
1
2 (n− 1)

]r(n−2)dr [dh]

=

∫

V1,n−1

2−(n−4)/2π1/2 (n− 1)
1
2
(n−2)

Γ
[
1
2 (n− 1)

]
∫ ∞

0
(2π)−1/2 r(n−4q−2) (n− 1)1/2 exp

{
−(n− 1)

2
r2
}
dr [dh] .

Now, the integral

∫ ∞

0
(2π)−1/2 (n− 1)1/2 r(n−4q−2) exp

{
−(n− 1)

2
r2
}
dr

=
1

2

∫ ∞

−∞
(2π)−1/2 (n− 1)1/2 |r|(n−4q−2) exp

{
−(n− 1)

2
r2
}
dr

=
1

2
(n− 1)−(n−4q−2)/2

2(n−4q−2)/2Γ
[
1
2 (n− 4q − 1)

]
√
π

=
2(n−4q−4)/2 (n− 1)−(n−4q−2)/2 Γ

[
1
2 (n− 4q − 1)

]
√
π

,
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for n sufficiently large. Plugging this into the original multiple integral we have

E
∣∣v′∗v∗

∣∣−2q

=

∫

V1,n−1

2−(n−4)/2π1/2 (n− 1)
1
2
(n−2)

Γ
[
1
2 (n− 1)

]
∫ ∞

0
(2π)−1/2 r(n−4q−2) (n− 1)1/2 exp

{
−(n− 1)

2
r2
}
dr [dh]

=
2−(n−4)/2π1/2 (n− 1)

1
2
(n−2)

Γ
[
1
2 (n− 1)

] 2(n−4q−4)/2 (n− 1)−(n−4q−2)/2 Γ
[
1
2 (n− 4q − 1)

]
√
π

∫

V1,n−1

[dh]

= 2−2q (n− 1)2q
Γ
[
1
2 (n− 4q − 1)

]

Γ
[
1
2 (n− 1)

]

where the last equality follows from the fact that

∫

V1,n−1

[dh] = 1.

Next, note that by the Stirling approximation

Γ

[
1

2
(n− 4q − 1)

]

=

(
4π

n− 4q − 1

)1/2(n− 4q − 1

2e

)(n−4q−1)/2 (
1 +O

(
n−1
))

= (4π)1/2 n(n−4q−2)/2 (2e)−(n−4q−1)/2
(

1− 4q + 1

n

)n/2 (
1 +O

(
n−1
))

= (4π)1/2 n(n−4q−2)/2 (2e)−(n−4q−1)/2 e−(4q+1)/2
(
1 +O

(
n−1
))

=
( n

2e

)(n−4q−2)/2( 2π

e2(2q+1)

)1/2 (
1 +O

(
n−1
))
.

Similarly,

Γ

[
1

2
(n− 1)

]
=
( n

2e

)(n−2)/2(2π

e2

)1/2 (
1 +O

(
n−1
))
.
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Putting things together, we have

E
∣∣v′∗v∗

∣∣−2q

=

∫

Rn−1

∣∣v′∗v∗
∣∣−2q (n− 1)

1
2
(n−1)

(2π)(n−1)/2
exp

{
−(n− 1)

2
v′∗v∗

}
(dv∗)

= 2−2q (n− 1)2q
Γ
[
1
2 (n− 4q − 1)

]

Γ
[
1
2 (n− 1)

]

= 2−2q (n− 1)2q
( n

2e

)(n−4q−2)/2( 2π

e2(2q+1)

)1/2 ( n
2e

)−(n−2)/2(2π

e2

)−1/2 (
1 +O

(
n−1
))

= 2−2q (n− 1)2q
( n

2e

)−2q
e−2q
(
1 +O

(
n−1
))

=

(
1− 1

n

)2q (
1 +O

(
n−1
))
.

= 1 +O
(
n−1
)
. �
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