
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s  i n s t i t u t e  o f  t e c h n o l o g y,  c a m b r i d g e ,  m a  0 213 9  u s a  —  w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2013-029 December 3, 2013

Bridging Utility Maximization and Regret Minimization
Alessandro Chiesa, Silvio Micali, and Zeyuan 
Allen Zhu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/18321731?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Bridging Utility Maximization and Regret

Minimization

Alessandro Chiesa

alexch@csail.mit.edu

MIT CSAIL

Silvio Micali

silvio@csail.mit.edu

MIT CSAIL

Zeyuan Allen Zhu

zeyuan@csail.mit.edu

MIT CSAIL

December 3, 2013



1 Introduction

Rational players have been modeled in two main ways.

• A utility-maximizing player U eliminates all his dominated strategies to compute

his set of undominated ones, UD. Notice that U cannot further refine UD based on

utility maximization. If UD consists of a single strategy s (necessarily a dominant

one), then U of course chooses s. But, if UD contains multiple strategies, which

one should U choose?

• A regret-minimizing player R eliminates all his non regret-minimizing strategies

so as to compute his set of regret-minimizing strategies, RM. He might even

continue this process k times, until he is satisfied or no further elimination is

possible. Let us denote the final set of strategies he obtains this way by RMk. If

RMk consists of a single strategy s, he of course chooses s. But, if RMk contains

multiple strategies, which one should R choose?

In both cases, “a random strategy” or “the lexicographic first strategy” are certainly

possible answers. But another answer is that, when he is ‘no longer able to apply

his favorite way of reasoning’, even a die-hard utility maximizer U will resort to

regret minimization to refine UD, and even a die-hard regret minimizer R will resort

to utility maximization to refine RMk. In principle, the two final sets of strategies

obtained by such different refinement procedures could be vastly different. Our next

structural theorem, however, guarantees that they coincide.

Abusing notation a bit, consider UD and RM also to be “operators” acting on

sets of strategies. In this case UD(UD) = UD, while RM2 def
= RM(RM) may be a strict

subset of RM. Then, we prove that, whether or not the players are Knightian,

Theorem 1 (Informal). The set of strategies obtained after applying, in arbitrary

order, k times the operator RM and at least once the operator UD coincides with

RMk ∩ UD.

For instance, RM(RM(UD(RM(RM(UD))))) = RM4(UD) = RM4 ∩ UD.
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Whether players are utility maximizers or regret minimizers is an old question. In

particular, iterated regret minimization (using beliefs) has recently been advocated as

a valid solution concept, indeed the only one capable of explaining the actual behavior

of the players in some settings [HP12].

Theorem 1 has an immediate but significant consequence for mechanism design.

Namely,

For all mechanisms M and social choice correspondences f ,

if M implements f in RM strategies or in UD strategies,

then M is automatically guaranteed to implement f also in RM(UD) strategies.1

2 Preliminaries

We prove our theorem in the language of decision theory: namely, for a single player

“against Nature”. Results for n-player (strategic or pre-Bayesian) games follow as

corollaries. This is because the definitions of dominance and regret are universally

quantified over other players’ strategies, (and the player’s true valuation in his can-

didate set if it is the Knightian case,) which can be treated as Nature’s strategies.

Let S be a compact set of strategies of a player, and T a compact set of states of

Nature.2 We denote by U the (continuous) utility function of the player, where U(s, t)

is the utility under strategy s ∈ S when Nature’s state is t ∈ T . Regret-minimizing

strategies and undominated strategies are defined as follows:

• Given a menu S ⊆ S of strategies, the player’s (maximum) regret for a strategy

s ∈ S in menu S, denoted by RS(s), is the maximum difference, taken over all

1Indeed, for i = 1 Theorem 1 implies that RM(UD) = RM ∩ UD ⊆ RM. Of course, to enforce the
same guarantee one could just demand that M implements f in RM ∪ UD strategies, but this is a
very strong demand. Indeed RM ∪ UD could be a much larger set than RM ∩ UD.

2For instance, in the Knightian setting of the VCG (see Section ??), when analyzing a player
i, S consists of all possible bidding strategies of player i, and T is the cartesian product of (1) all
possible bidding strategy sub-profiles of i’s opponents and (2) all possible true valuations of player
i in his set Ki.

Both S and T may be infinite, and S may be convex in order to allow arbitrary mixed strategies
to be considered.
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possible Nature’s states t ∈ T , between the utility the player gets by playing

s, and that he could have gotten by “best responding” to t; formally, RS(s)
def
=

maxt∈T

(
maxs∗∈S U(s∗, t)− U(s, t)

)
.

Therefore, the regret-minimizing strategies with respect to a menu S ⊆ S, de-

noted by RM(S), is the set of strategies that minimize the regret: RM(S)
def
=

arg mins∈S RS(s).

• Given two strategies s, s′ ∈ S, by definition s′ weakly dominates s, denoted by

s′ � s, if

∀t ∈ T, U(s′, t) ≥ U(s, t) and ∃t ∈ T, U(s′, t) > U(s, t) .

Given a menu S ⊆ S of strategies, the player’s undominated strategies consist

of those that are not weakly dominated by any weakly undominated strategy.3

Formally,

UD(S)
def
= S \ {s ∈ S : ∃s′ ∈ S s.t. (s′ � s) ∧ (@s′′ ∈ S, s′′ � s′)}
= {s ∈ S : @s′ ∈ S s.t. (s′ � s) ∧ (@s′′ ∈ S, s′′ � s′)}

We now state two simple facts which follow easily from the above definitions:

Fact 2.1. For any menu S̃ ⊆ S,
(a) if s ≺ s′ for some s, s′ ∈ S̃, then RS̃(s) ≥ RS̃(s′), and

(b) the regret values of a strategy with respect to S̃ and UD(S̃) are the same,

3In many cases of interest (e.g., when the set of pure strategies is finite, or when the mechanism
is the VCG), weakly undominated strategies coincide with undominated ones, and this is why we
directly adopted that simpler notion in Section ?? for Knightian auctions. As argued by Jack-
son [Jac92], however, the above level of precision is required when handling the general case. In
particular, it may happen that every pure strategy is weakly dominated by another one in an infinite
chain, and in such a case all strategies are undominated but weakly dominated.
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namely:4

RS̃(s) = max
t∈T

(
max
s∗∈S̃

U(s∗, t)−U(s, t)
)

= max
t∈T

(
max

s∗∈UD(S̃)
U(s∗, t)−U(s, t)

)
= RUD(S̃)(s) .

3 Formal Statement and Proof of Our Theorem

Established our language, we prove our theorem as a corollary of the following lemma.

Lemma 1. For any menu S ⊆ S, UD(RM(S)) = RM(UD(S)) = RM(S) ∩ UD(S).

Proof. We divide the proof into six steps:

1. RM(UD(S)) ⊆ RM(S).

For any s ∈ RM(UD(S)), we show that s ∈ RM(S) by proving that s has minimum

regret among all strategies in S. Indeed:

• For any other strategy s′ ∈ UD(S), it holds that RUD(S)(s) ≤ RUD(S)(s
′). By

Fact 2.1b, we deduce that RS(s) ≤ RS(s′).

• For any other strategy s′ ∈ S \ UD(S), it holds that s′ ≺ s′′ for some s′′ ∈
UD(S) and RS(s) ≤ RS(s′′). By Fact 2.1a, we deduce that RS(s) ≤ RS(s′′) ≤
RS(s′).

2. RM(UD(S)) ⊆ UD(RM(S)).

Given that RM(UD(S)) ⊆ RM(S) (proved above), if there is some s ∈ RM(UD(S))

with s 6∈ UD(RM(S)), then s must be weakly dominated by some other strategy

s′ ∈ RM(S), namely s ≺ s′, but s′ cannot be weakly dominated by any other

strategy in RM(S), by definition of UD.

Now we show that s′ cannot be weakly dominated by any strategy in S as well.

Suppose not, that is s′ ≺ s′′ where s′′ ∈ S. Then s′′ 6∈ RM(S) as we have just

4The equality in the middle is since any strategy s∗ ∈ S̃ \ UD(S̃) must be weakly dominated by
some s∗∗ ∈ S̃, giving at least as good utilities as s∗ for any t ∈ T . Therefore, such choices of s∗∗

can be ignored in the inner max.
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argued. However, using Fact 2.1a we have RS(s′) ≥ RS(s′′), implying that s′′ ∈
RM(S) since s′ ∈ RM(S), giving a contradiction to s′′ 6∈ RM(S).

In sum, we showed that s is weakly dominated by s′ ∈ S, and in addition s′ cannot

be weakly dominated by any strategy in S, contradicting the fact that s ∈ UD(S).

3. UD(RM(S)) ⊆ UD(S).

Suppose not, that is, there exists some s ∈ UD(RM(S)) that is not in UD(S). By

the definition of UD(S), the strategy s must be weakly dominated by some s′ ∈ S,

and in addition s′ cannot be weakly dominated by any other strategy in S. There

are two cases here.

• The first case is when s′ ∈ RM(S). This case is impossible because s ∈
UD(RM(S)) implies that if s is weakly dominated by s′ ∈ RM(S), then s′

must also be weakly dominated, contradicting the fact that s′ cannot be

weakly dominated by any strategy in S.

• The second case is when s′ 6∈ RM(S). Since s ≺ s′, by Fact 2.1a we have

RS(s) ≥ RS(s′). However, because s ∈ UD(RM(S)) implies that s ∈ RM(S),

it must hold that s′ is a regret minimizer with respect to S, contradicting the

fact that s′ 6∈ RM(S).

4. UD(RM(S)) ⊆ RM(UD(S)).

Given that UD(RM(S)) ⊆ UD(S) (proved above), consider any strategy s ∈
UD(RM(S)), and suppose that s 6∈ RM(UD(S)). Then there exists some s′ ∈
UD(S) satisfying RUD(S)(s) > RUD(S)(s

′). This implies, through Fact 2.1b, that

RS(s) > RS(s′), contradicting the fact that s ∈ RM(S).

5. RM(UD(S)) ⊆ RM(S) ∩ UD(S).

Trivial given the previous steps: RM(UD(S)) ⊆ UD(S) and RM(UD(S)) = UD(RM(S)) ⊆
RM(S).
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6. RM(S) ∩ UD(S) ⊆ RM(UD(S)).

Take any strategy s ∈ RM(S) ∩ UD(S), and suppose that s 6∈ RM(UD(S)). Then

there exists some s′ ∈ UD(S) satisfying RUD(S)(s) > RUD(S)(s
′). This implies,

through Fact 2.1b, that RS(s) > RS(s′), contradicting the fact that s ∈ RM(S).

It is not hard to see that Lemma 1 implies our theorem. That is,

Theorem 1 (restated). From any menu S ⊆ S, a player who applies, in arbitrary

order, i times the operator RM and at least once the operator UD, always obtains the

same set of surviving strategies:

RMi(S) ∩ UD(S) .

4 Pure vs. Mixed Strategies

So far we have been ambiguous, when discussing undominated strategies and regret-

minimizing ones, about whether or not the players consider only pure strategies or also

mixed ones. When only pure strategies are allowed, a utility maximizer compares only

between his pure strategies for the notion of dominance and plays a pure undominated

one, while a regret minimizer picks a pure strategy that minimizes regret among his

pure strategies.

Our theorem and lemma are stated for pure strategies.

When mixed strategies are allowed, the definitions of UD and RM need more

careful attention. It is easy to see that, when considering mixed strategies for regret

minimizers, the only change needed is to allow such a minimizer to choose a mixed

strategy that minimizes his expected regret among all his mixed ones (see e.g., [HB04,

HP12]). Note that, it is easy to construct examples in which a mixed strategy yields

strictly smaller regret than any pure strategy.

It is important to realize, however, that if we allow regret minimizers to consider

mixed strategies, we should also allow utility maximizers to consider mixed strategies.

For instance, our structural lemma (Lemma 1) would have difficulty to equate a set
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of pure strategies and a set of mixed ones. A utility maximizer may consider mixed

strategies when determining that a strategy s is weakly dominated by another strategy

s′. The two interesting cases to consider are (1) s is pure and s′ is mixed; and (2)

both s and s′ are mixed. Traditionally, most attention has been devoted to the first

case, but the second has been studied too (see for instance [CS05, RS10]). Clearly,

UD can be defined in both cases, and yields a more “refined” set of strategies in the

second case.5 It is actually under this more refined case that our structural lemma

holds. In a sense, we have nothing to lose and something to gain by adopting a more

flexible definition, after all the right notions are those yielding the right theorems.

Comparison with the Notion of Hyafil and Boutilier. Hyafil and Boutilier [HB04]

studied the notion of minimax-regret equilibrium in a setting where players have be-

liefs, and provided an LP-based solution for constructing mechanisms in certain re-

stricted cases. At high level, they study a notion of regret that is based on beliefs

about possible types of the opponents, and then consider a notion of equilibrium

based on regret. Let us explain.

Hyafil and Boutilier assume that each player i forms a belief T−i about his oppo-

nents’ possible types. Given this belief, player i can compute, for any strategy σi of

his, strategy profile σ−i of his opponents, and his own type θi, the maximum regret

Ri(σi, σ−i, θi) with respect to his opponents’ possible types in T−i. Then, Hyafil and

Boutilier define a minimax-regret Nash equilibrium to be a strategy profile (σ1, . . . , σn)

in which no player can deviate to increase his maximum regret.

The above solution concept of minimax-regret equilibrium coincides with ours

when players have no belief about other players’ types. Indeed, if a player has no prior

knowledge about his opponents, the notion of maximum regret Ri(σi, σ−i, θi) will not

depend on σ−i in general (at least for non-degenerate strategies whose range coincides

5Let UDpure be the set of (pure) undominated strategies in the first case, and UD be the set of
(possibly mixed) undominated strategies in the second case. Then, UD is a more “refined” notion of
undominated strategies than UDpure because UDpure ⊆ UD ⊆ ∆(UDpure), i.e., UDpure coincides with
the support of UD. For this reason, there is no difference in choosing between the two notions in
most of the literature (see [CS05, footnote 2]).
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with all possible actions), and therefore in any minimax-regret Nash equilibrium a

player simply chooses the strategy that minimizes maximum regret, like we do in this

paper.

Comparison with the Notion of Renou and Schlag.

Renou and Schlag [RS10] also proposed a solution concept called minimax-regret

equilibrium, with respect to possible beliefs about the other players’ actions. They

studied strategic games (in which each player only has a single type). Their solution

concept does not coincide with Hyafil and Boutilier. In fact, although their solution

concept is called an “equilibrium”, the strategies of a player’s opponents are con-

sidered all on the regret level, that is, they assume that a player always chooses a

strategy minimizing the maximum regret over all possible strategies (according to his

beliefs) of the his opponents. When players have no beliefs of their opponents, this

notion trivially coincides with ours (after suitably generalizing it to allow players to

have types).
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