
QUANTILE MODELS WITH ENDOGENEITY

V. CHERNOZHUKOV AND C. HANSEN

Abstract. In this article, we review quantile models with endogeneity. We focus on

models that achieve identification through the use of instrumental variables and discuss

conditions under which partial and point identification are obtained. We discuss key con-

ditions, which include monotonicity and full-rank-type conditions, in detail. In providing

this review, we update the identification results of Chernozhukov and Hansen (2005). We

illustrate the modeling assumptions through economically motivated examples. We also

briefly review the literature on estimation and inference.
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1. Introduction

Quantile regression is a tool for estimating conditional quantile models that has been

used in many empirical studies and has been studied extensively in theoretical economet-

rics; see Koenker and Bassett (1978) and Koenker (2005). One of quantile regression’s

most appealing features is its ability to estimate quantile-specific effects that describe

the impact of covariates not only on the center but also on the tails of the conditional

outcome distribution. While the central effects, such as the mean effect obtained through

conditional mean regression, provide interesting summary statistics of the impact of a

covariate, they fail to describe the full distributional impact unless the conditioning vari-

ables affect the central and the tail quantiles in the same way. In addition, researchers are

interested in the impact of covariates on points other than the center of the conditional

distribution in many cases. For example, in a study of the effectiveness of a job training

program, the effect of training on the lower tail of the earnings distribution conditional

on worker characteristics may be of more interest than the effect of training on the mean

of the distribution.

In observational studies, the variables of interest (e.g. education or prices) are often

endogenous. Just as with the conventional linear model, endogeneity of covariates renders

Date: First version: September 2011, this version March 6, 2013. We would like to thank the editor,

Isaiah Andrews, Denis Chetverikov, and Ye Luo for excellent comments and much help.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/18321719?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 CHERNOZHUKOV HANSEN

the conventional quantile regression inconsistent for estimating the causal (structural)

effects of covariates on the quantiles of economic outcomes. One approach to addressing

this problem is to generalize the instrumental variables framework to allow for estimation

of quantile models. In this paper, we review developments in instrumental variables

approaches to modeling and estimating quantile treatment (structural) effects (QTE) in

the presence of endogeneity.

We focus our review on the modeling framework of Chernozhukov and Hansen (2005)

which provides conditions for identification of the QTE without functional form assump-

tions. The principal identifying assumption of the model is the imposition of conditions

which restrict how rank variables (structural errors) may vary across treatment states.

These conditions allow the use of instrumental variables to overcome the endogeneity

problem and recover the true QTE. This framework also ties naturally to simultaneous

equations models, corresponding to a structural simultaneous equation model with non-

additive errors. Within this framework, estimation and inference procedures for linear

quantile models have been developed by Chernozhukov and Hansen (2006), Chernozhukov

and Hansen (2008), Chernozhukov, Hansen, and Jansson (2009), and Jun (2008); non-

parametric estimation has been considered by Chernozhukov, Imbens, and Newey (2007),

Horowitz and Lee (2007), and Gagliardini and Scaillet (2012); and inference with discrete

outcomes has been explored by Chesher (2005). Moreover, the modeling framework pro-

vides a foundation for other estimation methods based on IV median-independence and

more general quantile-independence conditions as in Abadie (1997), Chernozhukov and

Hong (2003), Chen, Linton, and Keilegom (2003), Hong and Tamer (2003), Honore and

Hu (2004), and Sakata (2007). It is also important to note that the modeling framework

we review can be used to study nonparametric identification of structural economic mod-

els in cases where quantile effects are not necessarily the chief objects of interest. Berry

and Haile (2010) provide an excellent example of this in the context of discrete choice

models with endogeneity.

We also briefly review other modeling approaches for quantile effects with endoge-

nous covariates. Abadie, Angrist, and Imbens (2002) consider a QTE model for the

sub-population of “compliers” which applies to binary endogenous variables with binary

instruments. Imbens and Newey (2009), Chesher (2003), Lee (2007), and Koenker and

Ma (2006) use models with triangular structures and show how control functions can be

constructed and used to estimate structural objects of interest. While these models share



IVQR 3

some features with the model of Chernozhukov and Hansen (2005), the three approaches

are non-nested in general.

Quantile models with endogeneity have been used in many empirical studies in econom-

ics. See Abadie, Angrist, and Imbens (2002); Chernozhukov and Hansen (2004); Hausman

and Sidak (2004); Forbes (2008); Eren (2009); Kostov (2009); Maynard and Qiu (2009);

Wehby, Murran, Castilla, Lopez-Camelo, and Ohsfeldt (2009); Lamarche (2011); Autor,

Houseman, and Kerr (2012); and Somainiy (2012) among others. We do not provide a

review of empirical applications but note these papers provide further discussion of how

the instrumental variables quantile model relates to their specific framework and illustrate

some of the rich effects that one can estimate using quantile methods.

2. An IV Quantile Model

In this section, we present an instrumental variable model for quantile treatment effects

(QTE), its main econometric implication, and the principal identification result.

2.1. Framework. Our model is developed within the conventional potential (latent) out-

come framework, e.g. Heckman and Robb (1986). Potential real-valued outcomes which

vary among individuals or observational units are indexed against potential treatment

states d ∈ D and denoted Yd. The potential outcomes {Yd} are latent because, given the

selected treatment D, the observed outcome for each individual or observational unit is

only one component

Y := YD

of the potential outcomes vector {Yd}. Throughout the paper, capital letters denote

random variables, and lower case letters denote the potential values they may take. We

do not explicitly state various technical measurability assumptions as these can be deduced

from the context.1

The objective of causal or structural analysis is to learn about features of the distri-

butions of potential outcomes Yd. Of primary interest to us are the τ -th quantiles of

potential outcomes under various treatments d, conditional on observed characteristics

X = x, denoted as

q(d, x, τ).

1 For simplicity, we could assume that d takes on a countable set of values D or make separability

assumptions which imply that the stochastic process {Yd, d ∈ D} is defined from its definition over a

countable subset D0 ⊂ D. See van der Vaart and Wellner (1996).
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We will refer to the function q(d, x, τ) as the quantile treatment response (QTR) function.

We are also interested in the quantile treatment effects (QTE), defined as

q(d1, x, τ)− q(d0, x, τ),

that summarize the differences in the impact of treatments on the quantiles of potential

outcomes (Lehmann (1974), Doksum (1974)).

Typically, the realized treatment D is selected in relation to potential outcomes, induc-

ing endogeneity. This endogeneity makes the conventional quantile regression of observed

Y on observed D, which relies upon the restriction

P [Y 6 θ(D,X, τ)|X,D] = τ a.s.,

inappropriate for measuring q(d, x, τ) and the QTE. Indeed the function θ(d, x, τ) solving

these equations will not be equal to q(d, x, τ) under endogeneity. The model presented

next states conditions under which we can identify and estimate the quantiles of latent

outcomes through the use of instruments Z that affect D but are independent of potential

outcomes and the nonlinear quantile-type conditional moment restrictions

P [Y 6 q(D,X, τ)|X,Z] = τ a.s.

2.2. The Instrumental Quantile Treatment Effects (IVQT) Model. Having con-

ditioned on the observed characteristics X = x, each latent outcome Yd can be related to

its quantile function q(d, x, τ) as2

Yd = q(d, x, Ud), where Ud ∼ U(0, 1) (2.1)

is the structural error term. We note that representation (2.1) is essential to what follows.

The structural error Ud is responsible for heterogeneity of potential outcomes among

individuals with the same observed characteristics x. This error term determines the

relative ranking of observationally equivalent individuals in the distribution of potential

outcomes given the individuals’ observed characteristics, and thus we refer to Ud as the

rank variable. Since Ud drives differences in observationally equivalent individuals, one

may think of Ud as representing some unobserved characteristic, e.g. ability or prone-

ness.3 This interpretation makes quantile analysis an interesting tool for describing and

2This follows by Fisher-Skorohod representation of random variables which states that given a collection

of variables {ζd}, each variable ζd can be represented as ζd = q(d, Ud), for some Ud ∼ U(0, 1), cf. Durrett

(1996), where q(d, τ) denotes the τ -quantile of variable ζd.
3Doksum (1974) uses the term proneness as in “prone to learn fast” or “prone to grow taller”.
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learning the structure of heterogeneous treatment effects and accounting for unobserved

heterogeneity; see Doksum (1974), Heckman and Smith (1997), and Koenker (2005).

For example, consider a returns-to-training model, where Yd’s are potential earnings

under different training levels d, and q(d, x, τ) is the conditional earnings function which

describes how an individual having training d, characteristics x, and the latent “ability” τ

is rewarded by the labor market. The earnings function may be different for different levels

of τ , implying heterogeneous effects of training on earnings of people that have different

levels of “ability”. For example, it may be that the largest returns to training accrue

to those in the upper tail of the conditional distribution, that is, to the “high-ability”

workers.4

Formally, the IVQT model consists of five conditions (some are representations) that

hold jointly.

Main Conditions of the Model: Consider a common probability space (Ω, F, P ) and

the set of potential outcome variables (Yd, d ∈ D), the covariate variables X , and the

instrumental variables Z. The following conditions hold jointly with probability one:

A1 Potential Outcomes. Conditional on X and for each d, Yd = q(d,X, Ud),

where τ 7→ q(d,X, τ) is non-decreasing on [0, 1] and left-continuous and Ud ∼ U(0, 1).

A2 Independence. Conditional on X and for each d, Ud is independent of instru-

mental variables Z.

A3 Selection. D := δ(Z,X, V ) for some unknown function δ and random vector V .

A4 Rank Similarity. Conditional on (X,Z, V ), {Ud} are identically distributed.

A5 Observed random vector consists of Y := YD, D, X and Z.

The following is the main econometric implication of the model.

4It is important to note that the quantile index, τ , in q(d, x, τ) refers to the quantile of potential

outcome Yd given that exogenous variables are set at X = x and not to the unconditional quantile of Yd.

For example, suppose that one of the control variables in the earnings example is years of schooling. An

individual at the 30th percentile of the distribution of Yd given say 20 years of schooling is not necessarily

low income as even a relatively low earner with that level of education may still earn above the median

earnings in the overall population.



6 CHERNOZHUKOV HANSEN

Theorem 1 (Main Statistical Implication). Suppose conditions A1-A5 hold. (i) Then we

have for U := UD, with probability one,

Y = q(D,X,U), U ∼ U(0, 1)|X,Z. (2.2)

(ii) If (2.2) holds and τ 7→ q(d, τ) is strictly increasing for each d, then for each τ ∈ (0, 1),

a.s

P [Y 6 q(D,X, τ)|X,Z] = τ. (2.3)

(iii) If (2.2) holds, then for any closed subset I of [0, 1], a.s.

P (U ∈ I) 6 P [Y ∈ q(D,X, I)|X,Z] , (2.4)

where q(d, x, I) is the image of I under the mapping τ 7→ q(d, x, τ).

The first result states that the main consequence of A1-A5 is a simultaneous equation

model (2.2) with non-separable error U that is independent of Z,X , and normalized

so that U ∼ U(0, 1). The second result considers econometric implications when τ 7→

q(D,X, τ) is strictly increasing, which requires that Y is non-atomic conditional on X

and Z. In this case, we obtain the conditional moment restriction (2.3). This implication

follows from the first result and the fact that

{Y 6 q(D,X, τ)} is equivalent to {U 6 τ},

when q(D,X, τ) is strictly increasing in τ . The final result deals with the case where Y may

have atoms conditional on X and Z, e.g. when Y is a count or discrete response variable.

The first two results were obtained in Chernozhukov and Hansen (2005), and the third

result is in the spirit of results given in Chesher, Rosen, and Smolinski (2011); Chesher

(2005); and Chesher and Smolinski (2010). The latter results are related to random

set/optimal transport methods for identification analysis; see Beresteanu, Molchanov,

and Molinari (2011); Ekeland, Galichon, and Henry (2010); Galichon and Henry (2009);

and Galichon and Henry (2011).

The model and the results of Theorem 1 are useful for two reasons. First, Theorem 1

serves as a means of identifying the QTE in a reasonably general heterogeneous effects

model. Second, by demonstrating that the IVQT model leads to the conditional moment

restrictions (2.3) and (2.4), Theorem 1 provides an economic and causal foundation for

estimation based on these restrictions.



IVQR 7

2.3. The Identification Regions. The conditions presented above yield the following

identification region for the structural quantile function (d, x, τ) 7→ q(d, x, τ). The identi-

fication region for the case of strictly increasing τ 7→ q(d, x, τ) can be stated as the set Q

of functions (d, x, τ) 7→ m(d, x, τ) that satisfy the following relations, for all τ ∈ (0, 1]

P [Y < m(D,X, τ)|X,Z] = τ a.s. (2.5)

This representation of the identification region Q is implicit. Nevertheless, statistical

inference about q ∈ Q can be based on (2.5) and can be carried out in practice using

weak-identification robust inference as described in Chernozhukov and Hansen (2008),

Marmer and Sakata (2012), Jun (2008), Santos (2012), or Chernozhukov, Hansen, and

Jansson (2009). Under conditions that yield point identification, these regions collapse

to a singleton, and the aforementioned weak-identification-robust inference procedures

retain their validity.

The identification region for the case of weakly increasing τ 7→ q(d, x, τ) can be stated

as the set Q of functions (d, x, τ) 7→ m(d, x, u) that satisfy the following relations: For

any closed subset I of (0, 1],

P (U ∈ I) 6 P [Y ∈ m(D,X, I)|X,Z] a.s., (2.6)

where m(D,X, I) is the image of I under the mapping τ 7→ m(D,X, τ). The inference

problem here falls in the class of conditional moment inequalities and approaches such as

those described in Andrews and Shi (2013) or Chernozhukov, Lee, and Rosen (2013), for

example, can be used. The sets I to be checked could be reduced by determining approx-

imate core-determining subsets; see Chesher, Rosen, and Smolinski (2011), Galichon and

Henry (2009), Galichon and Henry (2011) for further discussion.

2.4. Discussion of the Model. Condition A1 imposes monotonicity on the structural

function of interest which makes its relation to the QTR apparent. Condition A2 states

that potential outcomes are independent of Z, given X , which is a conventional indepen-

dence restriction. Condition A3 is a convenient representation of a treatment selection

mechanism, stated for the purposes of discussion. In A3, the unobserved random vector

V is responsible for the difference in treatment choices D across observationally identical

individuals. Dependendence between V and {Ud} is the source of endogeneity that makes

the conventional exogeneity assumption U ∼ U(0, 1)|X,D break down. This failure leads

to inconsistency of exogenous quantile methods for estimating the structural quantile
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function. Within the model outlined above, this breakdown is resolved through the use

of instrumental variables.

The independence imposed in A2 and A3 is weaker than the commonly made assump-

tion that both the disturbances {Ud} in the outcome equation and the disturbances V

in the selection equation are jointly independent of the instrument Z; e.g. Heckman and

Robb (1986) and Imbens and Angrist (1994). The latter assumption may be violated

when the instrument is measured with error as discussed in Hausman (1977) or the in-

strument is not assigned exogenously relative to the selection equation as in Example 2

in Imbens and Angrist (1994).

Condition A4 restricts the variation in ranks across potential outcomes and is key for

identifying the QTR and associated QTE. Its simplest, though strongest, form is rank

invariance, when ranks Ud do not vary with potential treatment states d:5

Ud = U for each d ∈ D. (2.7)

For example, under rank invariance, people who are strong (highly ranked) earners without

a training program (d = 0) remain strong earners having done the training (d = 1).

Indeed, the earnings of a person with characteristics x and rank U = τ in the training

state “0” is Y0 = q(0, x, τ) and in the state “1” is Y1 = q(1, x, τ).6 Thus, rank invariance

implies that a common unobserved factor U , such as innate ability, determines the ranking

of a given person across treatment states.

Rank invariance implies that the potential outcomes {Yd} are jointly degenerate which

may be implausible on logical grounds, as pointed out by Heckman and Smith (1997).

Also, the rank variables Ud may be determined by many unobserved factors. Thus, it is

desirable to allow the rank Ud to change across d, reflecting some unobserved, asystematic

variation. Rank similarity A4 achieves this property while managing to preserve the useful

moment restriction (2.3).

Rank similarity A4 relaxes exact rank invariance by allowing asystematic deviations,

“slippages” in the terminology of Heckman and Smith (1997), in one’s rank away from

some common level U . Conditional on U , which may enter disturbance V in the selection

5Notice that under rank invariance, condition A3 is a pure representation, not a restriction, since

nothing restricts the unobserved information component V .
6Rank invariance is used in many interesting models without endogeneity. See e.g. Doksum (1974),

Heckman and Smith (1997), and Koenker and Geling (2001).
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equation, we have the following condition on the slippages7

Ud − U are identically distributed across d ∈ D. (2.8)

In this formulation, we implicitly assume that one selects the treatment without knowing

the exact potential outcomes; i.e. one may know U and even the distribution of slippages,

but does not know the exact slippages Ud − U . This assumption is consistent with many

empirical situations where the exact latent outcomes are not known before receipt of

treatment. We also note that conditioning on appropriate covariates X may be important

to achieve rank similarity.

In summary, rank similarity is an important restriction of the IVQT model that allows

us to address endogeneity. This restriction is absent in conventional endogenous hetero-

geneous treatment effect models. However, similarity enables a more general selection

mechanism, A3, and weaker independence conditions on instruments than often are as-

sumed in nonseparable IV models. The main force of rank similarity and the other stated

assumptions is the implied moment restriction (2.3) of Theorem 1, which is useful for

identification and estimation of the quantile treatment effects.

2.5. Examples. We present some examples that highlight the nature of the model, its

strengths, and its limitations.

Example 1 (Demand with Non-Separable Error). The following is a generalization of

the classic supply-demand example. Consider the model

Yp = q (p, U) ,

Ỹp = ρ (p, z,U) ,

P ∈ {p : ρ (p, Z, U) = q (p,U)},

(2.9)

where functions q and ρ are increasing in the last argument. The function p 7→ Yp is

the random demand function, and p 7→ Ỹp is the random supply function. Additionally,

functions q and ρ may depend on covariates X , but this dependence is suppressed.

Random variable U is the level of demand and describes the demand curve at different

states of the world. Demand is maximal when U = 1 and minimal when U = 0, holding p

fixed. Note that we imposed rank invariance (2.7), as is typical in classic supply-demand

models, by making U invariant to p.

7Conditioning is required to be on all components of V in the selection equation A3.
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Model (2.9) incorporates traditional additive error models for demand which have Yp =

q(p) + ǫ where ǫ = Qǫ(U). The model is much more general in that the price can affect

the entire distribution of the demand curve, while in traditional models it only affects the

location of the distribution of the demand curve.

The τ -quantile of the demand curve p 7→ Yp is given by p 7→ q(p, τ). Thus, the curve

p 7→ Yp lies below the curve p 7→ q(p, τ) with probability τ . Therefore, the various

quantiles of the potential outcomes play an important role in describing the distribution

and heterogeneity of the stochastic demand curve. The quantile treatment effect may be

characterized by ∂q(p, τ)/∂p or by an elasticity ∂ ln q(p, τ)/∂ ln p. For example, consider

the Cobb-Douglas model q(p, τ) = exp (β(τ) + α(τ) ln p) which corresponds to a Cobb-

Douglas model for demand with non-separable error Yp = exp(β(U) + α(U) ln p). The

log transformation gives lnYp = β(U) + α(U) ln p, and the quantile treatment effect for

the log-demand equation is given by the elasticity of the original τ -demand curve α(τ) =
∂QlnYp (τ)

∂ ln p
= ∂ ln q(p,τ)

∂ ln p
.

The elasticity α(U) is random and depends on the state of the demand U and may

vary considerably with U . For example, this variation could arise when the number of

buyers varies and aggregation induces a non-constant elasticity across the demand levels.

Chernozhukov and Hansen (2008) estimate a simple demand model based on data from

a New York fish market that was first collected and used by Graddy (1995). They find

point estimates of the demand elasticity, α(τ), that vary quite substantially from −2 for

low quantiles to −0.5 for high quantiles of the demand curve.

The third condition in (3.3), P ∈ {p : ρ (p, Z, U) = q (p,U)}, is the equilibrium con-

dition that generates endogeneity; the selection of the clearing price P by the market

depends on the potential demand and supply outcomes. As a result we have a represen-

tation that is consistent with A3, P = δ(Z, V ), where V consists of U and U and may

include ”sunspot” variables if the equilibrium price is not unique. Thus what we observe

can be written as

Y := q(P, U), P := δ(Z, V ), U is independent of Z. (2.10)

Identification of the τ -quantile of the demand function, p 7→ q(p, τ) is obtained through

the use of instrumental variables Z, like weather conditions or factor prices, that shift the

supply curve and do not affect the level of the demand curve, U , so that independence

assumption A2 is met. Furthermore, the IVQT model allows arbitrary correlation between

Z and V . This property is important as it allows, for example, Z to be measured with
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error or to be exogenous relative to the demand equation but endogeneous relative to the

supply equation.

Example 2 (Savings). Chernozhukov and Hansen (2004) use the framework of the IVQT

model to examine the effects of participating in a 401(k) plan on an individual’s accumu-

lated wealth. Since wealth is continuous, wealth, Yd, in the participation state d ∈ {0, 1}

can be represented as

Yd = q(d,X, Ud), Ud ∼ U(0, 1)

where τ 7→ q(d,X, τ) is the conditional quantile function of Yd and Ud is an unobserved

random variable. Ud is an unobservable that drives differences in accumulated wealth con-

ditional on X under participation state d. Thus, one might think of Ud as the preference

for saving and interpret the quantile index τ as indexing rank in the preference for saving

distribution. One could also model the individual as selecting the 401(k) participation

state to maximize expected utility:

D = argmax
d∈D

E
[
W{Yd, d}

∣∣∣X,Z, V
]
= argmax

d∈D
E
[
W{q(d, x, Ud), d}

∣∣∣X,Z, V
]
, (2.11)

where W{Yd, d} is the random indirect utility derived under participation state d.8 As a

result, the participation decision is represented by

D = δ(Z,X, V ),

where Z and X are observed, V is an unobserved information component that may be

related to ranks Ud and includes other unobserved variables that affect the participa-

tion state, and function δ is unknown. This model fits into the IVQT model with the

independence condition A2 requiring that Ud is independent of Z, conditional on X .

The simplest form of rank similarity is rank invariance (2.7), under which the prefer-

ence for saving vector Ud may be collapsed to a single random variable U = U0 = U1. In

this case, a single preference for saving is responsible for an individual’s ranking across all

treatment states. The rank similarity condition A4 is a more general form of rank invari-

ance. It relaxes the exact invariance of ranks Ud across d by allowing noisy, unsystematic

variations of Ud across d, conditional on (V,X, Z). This relaxation allows for variation

in rank across the treatment states, requiring only an “expectational rank invariance.”

Similarity implies that given the information in (V,X, Z) employed to make the selection

of treatment D, the expectation of any function of rank Ud does not vary across the treat-

ment states. That is, ex-ante, conditional on (V,X, Z), the ranks may be considered to

8It may depend on both observables in X as well as realized and unrealized unobservables. Only

dependence on Yd and d is highlighted.
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be the same across potential treatments, but the realized, ex-post, rank may be different

across treatment states.

From an econometric perspective, the similarity assumption is nothing but a restriction

on the unobserved heterogeneity component which precludes systematic variation of Ud

across the treatment states. To be more concrete, consider the following simple example

where

Ud = FV+ηd(V + ηd),

where FV+ηd(·) is the distribution function of V +ηd and {ηd} are mutually iid conditional

on V , X , and Z. The variable V represents an individual’s “mean” saving preference,

while ηd is a noisy adjustment.9 This more general assumption leaves the individual

optimization problem (2.11) unaffected, while allowing variation in an individual’s rank

across different potential outcomes.

While we feel that similarity may be a reasonable assumption in many contexts, impos-

ing similarity is not innocuous. In the context of 401(k) participation, matching practices

of employers could jeopardize the validity of the similarity assumption. To be more con-

crete, let Ud = FV+ηd(V + ηd) as before but let ηd = dM for random variable M that

depends on the match rate and is independent of V , X , and Z. Then conditional on

V = v, X , and Z, U0 = FV (v) is degenerate but U1 = FV+M(v+M) is not. Therefore, U1

is not equal to U0 in distribution. Similarity may still hold in the presence of the employer

match if the rank, Ud, in the asset distribution is insensitive to the match rate. The rank

may be insensitive if, for example, individuals follow simple rules of thumb such as target

saving when they make their savings decisions. Also, if the variation of match rates is

small relative to the variation of individual heterogeneity or if the covariates capture most

of the variation in match rates, then similarity may be satisfied approximately.

Example 3 (Discrete Choice Model with Market-Level Data). Berry and Haile (2010)

show that a general model for market-level data realized from a discrete-choice problem

can fit within the IVQT model. To keep notation and exposition simple, we consider a

much-simplified version of the model from Berry and Haile (2010) in which consumer i’s

indirect utility from choosing product j is

Uijt = u(Xjt, Pjt, ξjt, Vijt) = u(δj(Xjt, ξjt), Pjt, Vijt),

where t indexes markets, Xjt are observed exogenous product-market characteristics, Pjt

is the observed price of product j in market t which is treated as endogenous, ξjt are

9Clearly similarity holds in this case, Ud

d
= Ud′ given V , X , and Z.
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product-market specific unobservables, and Vijt are individual-product-market specific

unobservables that have density f(·). Thus, the model imposes that unobserved product-

market specific effects and observed variables Xjt may only affect utility through the index

δjt = δj(Xjt, ξjt), where δj(·, ·) may differ arbitrarily across products but is the same across

all markets. That unobserved product characteristics affect utility only through a scalar

index is a substantive restriction but is common in the literature on discrete choice models

where, for example, one can interpret the index as an aggregate representing product

quality.

An individual will then choose the product that maximizes individual utility. Letting

Yit denote the observed choice of individual i, we have that

Yit = argmax
j≤J

Uijt,

where we assume the same J products are available in each market for simplicity.10 The

market share of each product will then be given as

Sjt =

∫
1{u(δjt, Pjt, v) = max

k6J
u(δkt, Pkt, v)}f(v)dv

:= sj({δjt, Pjt}
J
j=1) = sj(δt, Pt),

where δt = (δ1t, ..., δJt)
′ and Pt = (P1t, ..., PJt)

′.

To fit this model into the instrumental variables quantile regression model, Berry and

Haile (2010) make several assumptions to produce a structural relationship which is mono-

tonic in a scalar unobservable. First, they assume that the utility function u(δjt, Pjt, Vijt)

is strictly increasing in δjt. This assumption is standard in the discrete choice literature

and coincides with the interpretation of δjt as product quality where higher quality prod-

ucts are associated with higher utility all else equal. Monotonicity of the utility function

is not sufficient due to the fact that all that is observed is the market share which depends

on the utility of each potential choice. Thus, Berry and Haile (2010) make an additional

assumption that they term “connected substitutes.” Intuitively, this condition implies

that an increase in the quality of every good within some strict subset of the available

choices will be associated with the total market share of all goods not in the subset de-

creasing as long as the quality of no good outside of the subset increases. Berry and Haile

10Obviously, identification of the model requires normalizations. For example, the utility from one

of the options is generally normalized to zero. As this model is not the focus of this review, we do not

discuss these normalizations which are discussed in detail in a more general context in Berry and Haile

(2010).
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(2010) show that the connected substitutes condition is satisfied in usual random utility

discrete choice models and that it can hold fairly generally. Using these assumptions,

Berry and Haile (2010) use a result from Gandhi (2008) which shows that the system of

equations

Sjt = sj(δt, Pt)

has a unique solution for the vector δt as long as all goods present in equilibrium have

positive market shares. Thus, we may write

δjt = gj(St, Pt) (2.12)

for some function gj where St = (S1t, ..., SJt)
′.

From (2.12), we have that δj(Xjt, ξjt) = gj(St, Pt). To complete the argument, Berry

and Haile (2010) assume that the function δj(Xjt, ξjt) is strictly increasing in its second

argument, ξjt, which represents unobserved product attributes. This condition rules out

the case where ξjt can represent attributes that would increase utility for some individuals

but decrease utility for others and again corresponds to the notion that ξjt represents

unobserved product quality in which an increase unambiguously makes the product more

desirable. With the assumed monotonicity in the function δj , one obtains

ξjt = δ−1
j (gj(St, Pt);Xjt) = hj(St, Pt, Xjt).

It is also clear that hj(Xt, Pt, St) is strictly increasing in Sjt, which is proven in Lemma 5

of Berry and Haile (2010), from which it follows that

Sjt = qj(S−jt, Pt, Xjt, ξjt),

where S−jt denotes the set of market shares for each product in market t excluding prod-

uct j and qj is an unknown function that is strictly increasing in ξjt. Then, qj can be

taken as the structural function in the instrumental variables quantile model after the

normalization that ξjt follows a U(0, 1), assuming that ξjt has an atomless distribution.

The model is then completed by assuming the existence of instruments, Zt, that are in-

dependent of ξjt conditional on Xjt and are related to the endogenous variables through

(S ′
−jt, P

′
t)

′ = ∆(Zt, Xjt, Vt) for some function ∆ and unobservables Vt. Finally, note that

the model assumes rank invariance in its construction.

3. The Identifying Power of IV Quantile Restrictions

The purpose of this section is to examine the identifying power of conditional moment

restrictions (2.3). Specifically, we give various conditions for point identification in this
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section, summarizing and updating some of the results known in the literature. We

remark here that point identification is not required in applications in principle as there

exist inference methods that apply without point identification. However, it is useful to

know and understand conditions under which moment conditions are informative enough

that the identification region shrinks to a single point; in such cases the inference methods

will also produce very informative confidence sets. We present point-identifying conditions

first for the binary case, D ∈ {0, 1} and Z ∈ {0, 1}, and then consider the case of D taking

a finite number of values, and finally consider the continuous case.

3.1. Conditions for point identification in the binary case. Here we consider the

cases where D ∈ {0, 1} and Z ∈ {0, 1}. The following analysis is all conditional on

X = x and for a given quantile τ ∈ (0, 1), but we suppress this dependence for ease of

notation. Under the conditions of Theorem 1, we know that there is at least one function

q(d) := q(d, x, τ) that solves P [Y 6 q(D)|Z] = τ a.s. The function q(·) can be equivalently

represented by a vector of its values q = (q(0), q(1))′. Therefore, for vectors of the form

y = (y0, y1)
′, we have a vector of moment equations

Π(y) :=
(
P [Y 6 yD|Z = 0]− τ, P [Y 6 yD|Z = 1]− τ )′ (3.13)

where yD := (1−D) · y0 +D · y1. We say that q is identified in some parameter space, L,

if y = q is the only solution to Π(y) = 0 among all y ∈ L.

We require that the Jacobian ∂Π(y) of Π(y) with respect to y = (y0, y1)
′ exists and

that it takes the form

∂Π(y) :=

[
fY (y0|D = 0, Z = 0)P [D = 0|Z = 0] fY (y1|D = 1, Z = 0)P [D = 1|Z = 0]

fY (y0|D = 0, Z = 1)P [D = 0|Z = 1] fY (y1|D = 1, Z = 1)P [D = 1|Z = 1]

]

=:

[
fY,D(y0, 0|Z = 0) fY,D(y1, 1|Z = 0)

fY,D(y0, 0|Z = 1) fY,D(y1, 1|Z = 1)

]
. (3.14)

For local identification, we take L as an open neighborhood of q = (q(0), q(1))′. For

global identification, we shall use some definitions from Mas-Collell to define L. In what

follows, for every proper (non-null) subspace L ⊂ R
l, let projL : Rl 7→ L denote the per-

pendicular projection map. A convex, compact polytope is a bounded convex set formed

by an intersection of a finite number of closed half-spaces. Such a polytope is of full

dimension in R
l if it has a non-empty interior in R

l. A face of a polytope L is the inter-

section of any supporting hyperplane of L with L, so that faces of a polytope necessarily

include the polytope itself. For instance, a rectangle in R
2 has one 2-dimensional face
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given by itself, four 1-dimensional faces given by its edges, and four 0-dimensional faces

gives by its vertices. A subspace spanned by a non-empty face of L is the translation to

the origin of the minimal affine space containing that face.

Theorem 2 (Identification by Full Rank Conditions). Suppose that Π(q) = 0, the support

of D is {0, 1} and the support of Z is {0, 1}. Assume that the conditional density fY (y|D =

d, Z = z) exists for each y ∈ R and (d, z) ∈ {0, 1} × {0, 1}. (i) (Local) Suppose the

Jacobian ∂Π given by (3.14) is continuous and has full rank at y = q, then the τ -quantiles

of potential outcomes, q = (q(0), q(1))′, are identified in the region L given by a sufficiently

small open neighborhood of q in R
2. (ii) (Global) Assume that region L contains q and

can be covered by a finite number of compact convex 2-dimensional polytopes {Lj}, each

containing q. Assume that for each j, ∂Π is a C1 Jacobian of Π : Lj → R
2 , and that,

possibly after rearranging the rows of ∂Π, for each y ∈ Lj and each subspace L ⊂ R
2

spanned by a face of Lj that includes y, the linear map

projL ◦ ∂Π(y) : L 7→ L

has a positive determinant. Then q is identified in L.

The first result is a simple local identification condition of the type considered in

Rothenberg (1971) which we provide to fix ideas. The second result is a global iden-

tification condition which extends the result in Chernozhukov and Hansen (2005) by

allowing non-rectangular sets L. This result is based on the global univalence theorems

of Mas-Colell (1979). As explained below, the positive determinant condition requires

the impact of instrument Z on the joint distribution of (Y,D) to be sufficiently rich. In

particular, the instrument Z should not be independent of the endogenous variable D.

We note that existence of the conditional density fY (y|D = d, Z = z) is only required

for (d, z) in the support of (D,Z). Outside the support we can define the conditional

density as 0, so the existence condition is not very restrictive. Moreover, the condition

is formulated so that L can take on relatively rich shapes that can carry useful economic

restrictions. For instance, in the training context, a useful restriction on the parameters is

that training weakly increases the potential earning quantiles. This restriction can be im-

plemented by taking some natural parameter space and intersecting it with the half-space

H = {(y0, y1) ∈ R
2 : y1 > y0}. Specifically, a cube C = {y ∈ R

l : ‖y‖∞ 6 K} intersected

with the halfspace H is an example of a region L permitted by the global identification

result (ii).
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Comment 3.1 (Simple Sufficient Conditions). To illustrate the conditions of the theorem,

let us consider the parameter space L as either L = q + C, i.e. a cube centered at q, or

L = (q+C)∩H , i.e. intersection of a cube centered at q with the halfspace H . Consider

the trivial covering of L by itself, i.e. Lj = L. Then the positive determinant condition

of the theorem is implied by the following simple conditions:

fY,D(y1, 1|Z = 1)

fY,D(y0, 0|Z = 1)
>

fY,D(y1, 1|Z = 0)

fY,D(y0, 0|Z = 0)
for all y = (y0, y1) ∈ L, (3.15)

and

fY,D(y1, 1|Z = 1) > 0, fY,D(y0, 0|Z = 0) > 0, for all y = (y0, y1) ∈ L. (3.16)

Alternatively, since we can rearrange the rows of ∂Π, which corresponds to reordering

elements of vector Π, the positive determinant condition of the theorem is implied by the

following simple conditions:

fY,D(y1, 1|Z = 1)

fY,D(y0, 0|Z = 1)
<

fY,D(y1, 1|Z = 0)

fY,D(y0, 0|Z = 0)
for all y = (y0, y1) ∈ L, (3.17)

and

fY,D(y1, 1|Z = 0) > 0, fY,D(y0, 0|Z = 1) > 0, for all y = (y0, y1) ∈ L. (3.18)

The proof that these are sufficient conditions is given in the appendix, and below we

discuss the economic plausibility of these conditions.

Comment 3.2 (Plausibility of (3.15) and (3.16)). The condition (3.16) seems quite mild,

so we focus on (3.15). We can illustrate (3.15) by considering the problem of evaluating

a training program where Y ’s are earnings, D’s ∈ {0, 1} are training states, and Z’s

∈ {0, 1} are offers of training service. Condition (3.15) may be interpreted as a monotone

likelihood ratio condition. That is, the instrument Z should have a monotonic impact

on the likelihood ratio specified in (3.15). This monotonicity may be a weak condition

in some contexts and a strong condition in others. For instance, if L is a cube q + C,

then this condition may be considered relatively strong. On the other hand, if we impose

monotonicity of the training impact on earning quantiles, so that q(0) 6 q(1), i.e. q ∈ L =

(q+C)∩H , then condition (3.15) would be trivially satisfied in many empirical settings.

Indeed, it would suffice that the instrument Z, the offer of training services, increases the

relative joint likelihood of receiving higher earnings and receiving the training service. In

many instances, we also have P [D = 1|Z = 0] = 0; e.g. those not offered training services

do not receive that training. When P [D = 1|Z = 0] = 0, the right-hand side of (3.15)
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equals 0 which makes the identification condition (3.15) satisfied trivially even for the less

convenient parameter sets such as L = q + C.

3.2. Identification with Multiple Points of Support. We generalize the result of

Theorem 2 to more general discrete treatments with discrete instruments. Consider the

case when D has the support {1, ..., l} and Z has the support {1, ..., r} (l 6 r < ∞). Note

that function q(·) can be represented by a vector q = (q(1), ..., q(l))′ ∈ R
l. Under the

conditions of Theorem 1, there is at least one function q(d) that solves P [Y 6 q(D)|Z] =

τ a.s. Therefore, for vectors of the form y = (y1, ..., yl)
′ and the vector of moment equations

Π(y) =
(
P [Y 6 yD|Z = z]− τ, z = 1, ..., r)′, (3.19)

where yD :=
∑

d 1[D = d] · yd, the model is identified if y = q uniquely solves Π(y) = 0.

We define matrix ∂Π(y) as the r×lmatrix with (d, z) element given by fY (yd|D = d, Z =

z)P [D = d|Z = z] where z = 1, ..., r and d = 1, ..., l. We require this to be the Jacobian

matrix of the map y 7→ Π(y) and impose full-rank-type conditions on submatrices of this

Jacobian. To this end, let m denote any permutation of l distinct integers from {1, ..., r},

called l-permutations, andM be a collection of all such permutations. Let Πm := (Πj)j∈m,

which maps Rl to R
l, be a subvector of Π formed by selecting j-th elements of Π according

to their order in m.11 Let ∂Πm denote the corresponding l × l Jacobian matrix of Πm.

The following theorem generalizes Theorem 2.

Theorem 3 (Identification for Discrete D). Suppose Π(q) = 0, the support of D is

{1, ..., l} and of Z is {1, ..., r}. Assume that the conditional density fY (y|D = d, Z = z)

exists for each y ∈ R, and (d, z) ∈ {1, ..., l} × {1, ..., r}. (i) (Local) Suppose the Jacobian

∂Π(y) defined above is continuous and has rank l at y = q. Then the τ -quantiles of

potential outcomes, q, are identified in the region L given by a sufficiently small open

neighborhood of q in R
l. (ii) (Global) Assume that region L contains q and can be covered

by a finite number of compact convex l-dimensional polytopes {Lj}, each containing q and

having the following properties: For each j there is an l-permutation m(j) ∈ M, such

that ∂Πm(j) is the C1 Jacobian of Πm(j) : Lj → R
l, and for each y ∈ Lj and each subspace

L ⊂ R
l spanned by a face of Lj that includes y, the linear map

projL ◦ ∂Πm(j)(y) : L 7→ L

has a positive determinant. Then q is identified in L.

11Note that this formulation allows reordering elements of Π which may be needed to achieve the

required positive determinant condition as discussed in the binary case.
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We note that in the theorem existence of the conditional density fY (y|D = d, Z = z) is

only required for (d, z) in the support of (D,Z). This density can be defined to take on an

arbitrary value for (d, z) outside the support. The first result is a simple local identification

condition provided to fix ideas. The second result is a global identification condition based

on Global Univalence Theorem 1 of Mas-Colell (1979). This result complements a similar

result given in Chernozhukov and Hansen (2005) based on Global Univalence Theorem 2 of

Mas-Colell (1979). The positive determinant condition requires the impact of instrument

Z on the joint distribution of (Y,D) to be sufficiently rich.

Comment 3.3 (An Alternative Sufficient Condition). Here we recall an alternative suf-

ficient condition from Chernozhukov and Hansen (2005), which is based on the Global

Univalence Theorem 2 of Mas-Colell (1979). Assume that region L contains q and can be

covered by a finite number of compact convex l-dimensional sets {Lj}, each containing

q and having the following properties: (i) For each j, there is a permutation m(j) ∈ M

such that ∂Πm(j) is C
1 Jacobian of Πm(j) : Lj → R

l; (ii) for each y ∈ Lj,

det[∂Πm(j)(y)] > 0;

(iii) Lj possesses a C1-smooth boundary ∂Lj ; and (iv) for each y ∈ ∂Lj , l
′(∂Πm(j)(y) +

∂Πm(j)(y)
′)l > 0 for each l ∈ T (y) : l 6= 0 where T (y) is the subspace tangent to Lj

at point y. Then q is identified in L. This condition seems to require slightly stronger

conditions on the boundary than the condition used in Theorem 3. The advantage of the

conditions from Chernozhukov and Hansen (2005) is that they more transparently convey

the full-rank nature of the conditions imposed.

3.3. Identification with general D. Finally we consider conditions for point identi-

fication in the case of more general D and Z that may take on a continuum of values.

We let d denote elements in the support of D and z denote elements in the support

of Z. Without loss of much generality, we restrict attention to the case where both Y

and D have bounded support. We require the parameter space L to be a collection of

bounded (measurable) functions m : Rk 7→ R containing q(·). We say that q(·) such

that P [Y 6 q(D)|Z] = τ a.s. is identified in L if for any other m(·) ∈ L such that

P [Y 6 m(D)|Z] = τ a.s., m(D) = q(D) a.s. Below, we use ‖ · ‖p,P to denote the Lp(P )

norm.

Theorem 4 (Identification with General D). Suppose that P [Y 6 q(D)|Z] = τ a.s. and

both Y and D have bounded support. Consider a parameter space L which is a collection

of bounded (measurable) functions m : Rk 7→ R containing q(·). Assume that for ǫ :=
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Y −q(D) the conditional density fǫ(e|D,Z) exists for each e ∈ R, a.s. (i) (Global) Suppose

that for each ∆(d) := m(d)− q(d) with m(·) ∈ L, ω∆(D,Z) :=
∫ 1

0
fǫ(δ∆(D)|D,Z)dδ > 0

a.s. and

E [∆(D) · ω∆(D,Z)|Z] = 0 a.s. ⇒ ∆(D) = 0 a.s. (3.20)

Then q(·) is identified in L. (ii) (Local) Suppose that ω0(D,Z) := fǫ(0|D,Z) > 0 a.s.

and for each ∆(d) := m(d)− q(d) with m(·) ∈ L,

E [∆(D) · ω0(D,Z)|Z] = 0 a.s. ⇒ ∆(D) = 0 a.s., (3.21)

and, for some 0 6 η < 1 and 1 6 p,

‖E [∆(D) · {ω∆(D,Z)− ω0(D,Z)}|Z] ‖p,P 6 η‖E [∆(D) · ω0(D,Z)|Z] ‖p,P . (3.22)

Then q(·) is identified in L.

Condition (i), mentioned in Chernozhukov and Hansen (2005), states a non-linear

bounded completeness condition for global identification. The condition (3.20) required is

not primitive, but it highlights a useful link with the linear bounded completeness condi-

tion: E [∆(D)|Z] = 0 a.s. ⇒ ∆(D) = 0 a.s. used by Newey and Powell (2003). The latter

condition is needed for identification in the mean IV model E[Y − q(D)|Z] = 0 under the

assumption of a bounded structural function q. The latter condition is known to be quite

weak, as shown in D’Haultfoeuille (2011), and there are many primitive sufficient condi-

tions that imply this condition. Andrews (2011) shows that linear completeness is generic

under some conditions. Although condition (3.20) is not primitive, it is not vacuous ei-

ther since the previous theorems provide primitive conditions for its validity. The local

identification condition (ii), obtained by Chen, Chernozhukov, Lee, and Newey (2011),

provides yet another sufficient condition for condition (i). The result (ii) replaces the non-

linear completeness condition (3.20) by the linear completeness condition (3.21) which is

easier to check. The result (ii) also implicitly requires that the set L is a sufficiently small

neighborhood of q and that functional deviations m(·)− q(·) and the conditional density

fǫ(·|D,Z) are sufficiently smooth. This is explained in detail in Chen, Chernozhukov,

Lee, and Newey (2011) where further primitive smoothness and completeness conditions

are also provided.

4. Other Approaches to Quantile Models with Endogeneity

There are, of course, other sets of modeling assumptions that one could employ to

build a quantile model with endogeneity. In this section, we briefly outline two other
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approaches that have been taken in the literature. The first, due to Abadie, Angrist, and

Imbens (2002), extends the local average treatment effect (LATE) framework of Imbens

and Angrist (1994) to quantile treatment effects. The second, considered in Imbens and

Newey (2009) and Lee (2007), uses a triangular structure to obtain identification.

4.1. Local Quantile Treatment Effects with Binary Treatment and Instrument.

In fundamental work, Abadie, Angrist, and Imbens (2002) develop an approach to esti-

mating quantile treatment effects within the LATE framework of Imbens and Angrist

(1994) in the case where both the instrument and treatment variable are binary. The

use of the LATE framework makes this approach appealing as many applied researchers

are familiar with LATE and the conditions that allow identification and consistent es-

timation of this quantity. Importantly, the extension proceeds under exactly the same

monotonicity requirement as needed for LATE.

Specifically, Abadie, Angrist, and Imbens (2002) show that the QTE for a subpopulation

is identified if

1. (Independence) the instrument Z is independent of the potential outcome errors,

{Ud}, and the errors in the selection equation, V ;

2. (Monotonicity) P (D1 ≥ D0|X) = 1 where D1 is the treatment state of an individ-

ual when Z = 1 and D0 is defined similarly, holds;

3. and other standard conditions are met.

The subpopulation for whom the QTE is identified is the set of “compliers,” those in-

dividuals with D1 > D0. In other words, the compliers are the set of individuals whose

treatment is altered by switching the instrument from zero to one. Monotonicity is key in

this framework. The monotonicity condition rules out “defiers,” individuals who would

receive treatment in the absence of the intervention represented by the instrument but

would not receive treatment if placed into the treatment group. The effects for individuals

who would always receive treatment or never receive treatment regardless of the value of

the instrument are unidentified.

Looking at these conditions, we see that the model of Abadie, Angrist, and Imbens

(2002) replaces the monotonicity assumption (A1), the independence assumption (A2),

and the similarity assumption (A4) with a different type of monotonicity and a stronger

independence assumption and identifies a different quantity: the QTE for compliers. The

LATE-style approach has not yet been extended beyond cases with a binary treatment and
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a single binary instrument while the instrumental variable quantile model of Chernozhukov

and Hansen (2005) applies to any endogenous variables and instruments. Note that neither

set of conditions nests the other, and neither framework is more general than the other.

Thus, the frameworks are best viewed as complements, providing two sets of conditions

that can be considered when thinking about a strategy for estimating heterogeneous

treatment effects.

Of course, the two sets of conditions may be mutually compatible. One such case is

discussed in Chernozhukov and Hansen (2004). In this example, the pattern of results

obtained from the two estimators is quite similar, and the difference between the estimates

appears small relative to sampling variation. Further exploration of these two approaches

and their similarities and differences may be interesting to consider.

4.2. Instrumental Variables Quantile Regression in Triangular Systems. An-

other compelling framework is based on assuming a triangular structure as in Imbens

and Newey (2009). See also Chesher (2003), Koenker and Ma (2006), and Lee (2007) for

related models and results. The triangular model takes the form of a triangular system

of equations

Y = g(D, ǫ),

D = h(Z, η),

where Y is the outcome, D is a continuous scalar endogenous variable, ǫ is a vector of

disturbances, Z is a vector of instruments with a continuous component, η is a scalar

reduced form error, and we ignore other covariates for simplicity. It is important to note

that the triangular system generally rules out simultaneous equations which typically have

that the reduced form relatingD to Z depends on a vector of disturbances. For example, in

a supply and demand system, the reduced form for both price and quantity will generally

depend on the unobservables from both the supply equation and the demand equation.

Outside of η being a scalar, the key conditions that allow identification of quantile effects

in the triangular system are

1. (Monotonicity) The function η 7→ h(Z, η) is strictly increasing in η, and

2. (Independence) D and ǫ are independent conditional on V for some observable or

estimable V .

The variable V is thus the “control function” conditional on which changes in D may

be taken as causal. Imbens and Newey (2009) use V = FD|Z(d, z) = Fη(η), where Fη(·)
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represents the CDF of η, as the control function and show that this variable satisfies the

independence condition under the additional condition that (ǫ, η) is independent of Z.

They show that one may use D = h(Z, η) to identify V under the assumed monotonicity

of h(Z, η) in η. Using V obtained in this first step, one may then construct the distribution

of Y |D, V . Then integrating over the distribution of V and using iterated expectations,

one has
∫

FY |D,V (y | d, v)FV (dv) =

∫
1(g(d, ǫ) ≤ y)Fǫ(dǫ)

= Pr(g(d, ǫ) ≤ y) := G(y, d).

It then follows that the τ th quantile of Yd is G−1(τ, d).

As with the framework of Abadie, Angrist, and Imbens (2002), the triangular model

under the conditions given above is neither more nor less general than the model of Cher-

nozhukov and Hansen (2005). The key difference between the approaches is that Cher-

nozhukov and Hansen (2005) uses an essentially unrestricted reduced form but requires

monotonicity and a scalar disturbance in the structural equation. The triangular system

on the other hand relies on monotonicity of the reduced form in a scalar disturbance. In

addition, the triangular system, as developed in Imbens and Newey (2009), requires a

more stringent independence condition in that the instruments need to be independent of

both the structural disturbances and the reduced form disturbance. That the approaches

impose structure on different parts of the model makes them complementary with a re-

searcher’s choice between the two being dictated by whether it is more natural to impose

restrictions on the structural function or the reduced form in a given application.

The triangular model and the model of Chernozhukov and Hansen (2005) can be made

compatible by imposing the conditions from the triangular model on the reduced form

and the conditions from Chernozhukov and Hansen (2005) on the structural model. Tor-

govitsky (2012) considers identification and estimation when both sets of conditions are

imposed and shows that the requirements on the instruments may be substantially relaxed

relative to Chernozhukov and Hansen (2005) or Imbens and Newey (2009) in this case.

5. Estimation and Inference

In the previous sections, we have outlined results that are useful for identifying quantile

treatment effects and structural functions that are monotonic in a scalar unobservable.

In the following, we briefly review the literature on estimation and inference. We focus
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on estimation of the model of Chernozhukov and Hansen (2005) presented in Section 2

using the moment conditions derived in Theorem 1. For estimation of the triangular

model, see Imbens and Newey (2009) for nonparametric estimation and Lee (2007) for

a semiparametric approach. Abadie, Angrist, and Imbens (2002) provides results for

estimating the QTE for compliers within the LATE-style framework. Also, we only review

approaches for estimating parametric quantile functions: q(D,X, τ) = g(D,X, τ ; θ) for

θ ∈ Θ ⊂ R
m. Horowitz and Lee (2007) and Gagliardini and Scaillet (2012) present

nonparametric estimation and inference results for the IVQT model using condition (2.3).

There are two practical issues that make estimation and inference based on condition

(2.3) challenging. The first is that the sample analog to condition (2.3) is non-smooth,

and the GMM objective function that would be formed by using (2.3) as the moment

conditions is also generically non-convex, even for linear quantile models. The second

problem is that the model may suffer from weak identification as in the standard linear

IV model; Stock, Wright, and Yogo (2002) provides a useful introductory survey to weak

identification and related inference methods in the linear IV model. In the quantile case,

the problem of weak identification is more subtle than in the linear model in that some

quantiles may be weakly identified while others may be strongly identified. The relevant

object for defining the strength of identification of a given quantile is the covariance

between D and Z weighted by the conditional density function of the unobservable at

the given quantile. See Chernozhukov and Hansen (2008) for a formal definition of this

object and related discussion.

While the non-smoothness and non-convexity of the GMM criterion complicates opti-

mization, it does not render the approach infeasible, especially when the dimension of D

and X is not too large. Abadie (1997) considered this approach for estimating an income

model and provides further discussion. One could also estimate the model parameters

using the Markov Chain Monte Carlo (MCMC) approach of Chernozhukov and Hong

(2003). This approach bypasses the need for optimization, instead relying on sampling

and averaging to estimate model parameters. Note that this approach is not a cure-all

since MCMC requires careful tuning in applications. It is also worth noting that standard

samplers may perform poorly in even simple linear instrumental variables models when

identification is not strong; see Hoogerheide, Kaashoek, and van Dijk (2007). In an ap-

proach related to optimizing the GMM criterion function directly, Sakata (2007) proposes

estimating the parameters of an instrumental variables quantile model by optimizing a

different non-smooth, non-convex criterion function.
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To partially circumvent the numerical problems in optimizing the full GMM criterion,

Chernozhukov and Hansen (2006) suggest a different procedure termed the inverse quantile

regression for the linear quantile model q(D,X, τ) = D′α(τ)+X ′β(τ). The basic intuition

for the inverse quantile regression comes from the observation that if one knew the true

value of the coefficient on D, α(τ), the τ th quantile regression of Y − D′α(τ) onto X

and Z would yield zero coefficients on the instruments Z. This observation allows one

to effectively concentrate β(τ) out of the problem and leaves a non-smooth, non-convex

optimization problem over only the parameters α(τ). Since D is low-dimensional in

many applications, one can usually solve this optimization problem using highly robust

optimization procedures such as a grid-search.

Algorithmically, the inverse quantile regression estimates for a given probability index

τ of interest can be obtained as follows using a grid search over α(τ):

1. Define a suitable set of values {αj, j = 1, ..., J}, and estimate the coefficients β(αj, τ)

and γ(αj , τ) from the model Y −D′αj = X ′β(αj, τ)+Z ′γ(αj, τ)+ǫ by running the ordinary

τ -quantile regression of Y − D′αj on X and Z. Call the estimated coefficients β̂(αj , τ)

and γ̂(αj, τ).

2. Save the inverse of the variance-covariance matrix of γ̂(αj, τ), which is readily avail-

able in any common implementation of the ordinary QR. Denote this variance-covariance

matrix Â(αj, τ). Form Wn(αj , τ) = γ̂(αj , τ)
′Â(αj , τ)

−1γ̂(αj , τ). Note Wn(αj) is the Wald

statistic for testing γ(αj, τ) = 0.

3. Choose α̂(τ) as a value among {αj , j = 1, ..., J} that minimizes Wn(α, τ). The

estimate of β(τ) is then given by β̂(α̂(τ), τ).

Chernozhukov and Hansen (2006) and Chernozhukov and Hansen (2008) provide con-

ditions under which the resulting estimator for α(τ) and β(τ) is consistent and asymp-

totically normal and provide a consistent variance estimator. Marmer and Sakata (2012)

provide a similar multi-step algorithm that circumvents the same numeric problems using

the objective function of Sakata (2007).

The good behavior of the asymptotic approximations obtained in Chernozhukov and

Hansen (2006) and Chernozhukov and Hansen (2008) rely on strong identification of

the model parameters just as in the linear IV case. Intuitively, strong identification for a

quantile of interest requires that a particular density-weighted covariation matrix between

D and Z is not local to being rank deficient and that the impact of Z is rich enough

to guarantee that the moment equations have a unique solution. The first condition is
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analogous to the usual full rank condition in linear IV analysis, and the second condition is

required because of the nonlinearity of the problem. Checking these conditions in practice

may be difficult, and it is therefore useful to have inference procedures that are robust to

violations of these conditions.

Fortunately, there are several inference procedures that remain valid under weak iden-

tification. A nice feature of the algorithm defined for estimating α(τ) above is that

it produces a weak-identification-robust inference procedure naturally as a byproduct.

Chernozhukov and Hansen (2008) show that the Wald statistic, Wn(α, τ) converges in

distribution to χ2
dim(Z) under the null that α = α0 where we let α0 denote the true value

of α(τ) without needing either of the conditions discussed in the preceding paragraph.

Thus a valid (1− p)% confidence region for α(τ) may be constructed as the set:

{α : Wn(α, τ) 6 c1−p} (5.23)

where c1−p is such that Pr(χ2
dim(Z) > c1−p) = p, and the set is approximated numerically

by considering α’s in the grid {αj , j = 1, ..., J}. Chernozhukov and Hansen (2008) show

that confidence region in equation (5.23) is valid when the model parameters are strongly

identified and remains valid when the model is weakly identified or even unidentified.

Marmer and Sakata (2012) provide a similar procedure and result for their procedure

as well. Jun (2008) provides yet a different approach to performing weak-identification-

robust inference in models defined by conditions (2.3). Finally, Chernozhukov, Hansen,

and Jansson (2009) show that one can form statistics for inference about the entire param-

eter vector θ that are condtionally pivotal in finite-samples for models defined by quantile

restrictions such as (2.3). Since the statistics do not depend on unknown nuisance param-

eters in finite samples, the exact distributions of these statistics can be calculated and

inference can proceed without relying on asymptotic approximations or statements about

the strength of identification. The distributions produced in Chernozhukov, Hansen, and

Jansson (2009) are not standard and so must be calculated by simulation.

6. Conclusion and Directions for Future Research

In this paper, we have reviewed approaches for building quantile models in the pres-

ence of endogeneity, focusing on conditions that can be used for identification. We have

also briefly reviewed some of the practical issues that arise in estimation of instrumental

variables quantile models and approaches to dealing with these issues. The models and
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estimation strategies outlined and cited in this review have already seen use in empiri-

cal economics where they have mostly been used for their ability to uncover interesting

distributional effects. In this review, we have also noted that the identification strategy

employed in this paper can be used to uncover structural objects even if quantile effects

are not the chief objects of interest as in Berry and Haile (2010).

While the results reviewed in this paper are useful in a variety of contexts, there remain

interesting areas for research in quantile models with endogeneity. In some applications,

features of the conditional distribution are not the chief objects of interest and researchers

are interested in effects of treatments on unconditional quantiles. Given the set of con-

ditional quantiles, such unconditional effects may be uncovered. In recent work, Froelich

and Melly (2008) propose a different approach, related to Abadie, Angrist, and Imbens

(2002), to estimating structural effects of endogenous variables on unconditional quantiles

directly. It would also be interesting to think about quantile-like quantities for multivari-

ate outcomes with endogenous covariates. The results reviewed in this paper offer one

possible approach for quantile modeling with endogeneity, but there remain many inter-

esting directions and other approaches to be explored in further research.

Appendix A. Proofs

A.1. Proof of Theorem 1. Conditioning on X = x is suppressed. For P almost every

value z of Z,

P [UD 6 τ |Z = z]
(1)
=

∫
P [UD 6 τ |Z = z, V = v] dP [V = v|Z = z]

(2)
=

∫
P
[
Uδ(z,v) 6 τ |Z = z, V = v

]
dP [V = v|Z = z]

(3)
=

∫
P [U0 6 τ |Z = z, V = v] dP [V = v|Z = z]

(4)
= P [U0 6 τ |Z = z]

(5)
= τ.

(A.24)

Equality (1) is by definition. Equality (2) is by the representation A3. Equality (3) is

by the similarity assumption A4 and representation A3: Conditional on (V = v, Z = z),

D = δ(z, v) is a constant, so that by A4, Uδ(z,v) has the same distribution as U0, where

“0” denotes any fixed value of D. Equality (4) is by definition, and equality (5) is by the

independence assumption A2. This shows the first result.
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The second result follows from the first and the equivalence of the events {q(D,U) 6

q(D, τ)} = {U 6 τ} under u 7→ q(d, u) strictly increasing for each d on the domain [0, 1].

To show the third result we note that

{U ∈ I} ⊆ {{u : q(D, u) = q(D,U)} ∩ I 6= ⊘}.

Since Y = q(D,U), the latter event is equivalent to the event {Y ∈ q(D, I)}, where

q(D, I) denotes the image of I under the mapping u 7→ q(D, u). The third result then

follows from the first result. �

A.2. Proof of Theorems 2 and 3. The local identification results follow by a standard

argument, introduced in Rothenberg (1971), which we omit for brevity. The global iden-

tification result is obtained as follows. By assumption q ∈ L. Hence, we need to check

whether y = q is the only solution to Π(y) = 0 over L. Consider a covering set Lj and

the l-permutation m(j) corresponding to it, as defined in the theorem. By assumption

Πm(j)(q) = 0. By assumption q ∈ Lj. The stated rank conditions, compactness, and

convexity of the polytope Lj imply that the mapping y → Πm(j)(y), which maps Lj ⊂ R
l

to R
l, is a homeomorphism (one-to-one) between Lj and Πm(j)(Lj) by the global univa-

lence theorem, Theorem 1 of Mas-Colell (1979). Thus, y = q is the unique solution of

Πm(j)(y) = 0 over Lj. Since this argument applies to every j and {Lj} cover L, it follows

that y = q is the unique solution of Π(y) = 0 over L. �

A.3. Proof of Theorem 4. We have that q solves P [Y 6 q(D)|Z] = τ a.s., and q ∈ L by

assumption. Hence we need to check whether q is the only solution to P [Y 6 q(D)|Z] = τ

a.s. in L. Suppose there is m ∈ L such that P [Y 6 m(D)|Z] = τ a.s. Define ∆(d) :=

m(d)− q(d), and write

P [Y 6 m(D)|Z]− P [Y 6 q(D)|Z]
(1)
= E[E[

∫ 1

0

fǫ(δ∆(D)|D,Z)∆(D)dδ|D,Z]|Z]

(2)
= E[

∫ 1

0

fǫ(δ∆(D)|D,Z)∆(D)dδ|Z]

(3)
= E[∆(D) · ω∆(D,Z)|Z].

(A.25)

Noting that (1) follows by the fundamental theorem of calculus, (2) by the law of iterated

expectations, and (3) by linearity of the Lebesgue integral. For uniqueness we need that

(A.25)=0 a.s. ⇒ ∆(D) = 0 a.s., which is assumed. The result (i) follows.

Result (ii) is immediate from (i) by the triangle inequality for ‖ · ‖p,P . �
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A.4. Proof of Sufficiency of (3.15) and (3.16). Here show that (3.15) and (3.16)

are sufficient for identification over the parameter space L = (q + C) ∩ H . Note that in

general L has at most up to five edges: the left and the right edges, parallel to each other,

the top and the bottom edges, also parallel to each other, and the edge generated by the

intersection of L with the 45 degree line. Let e1 and e2 be coordinate vectors in R
2, and

let Lk denote the various subspaces spanned by faces of L containing y. In particular, we

have that L1 := R
2 for all y in the two-dimensional face F1 := L, L2 := span(e2) for all y

in the one-dimensional faces given by the left and the right edge of L, denoted both by F2,

L3 := span(e1) for all y in the two-dimensional faces given by the top and bottom edges

of L, denoted both by F3, and L4 = span(e1 + e2) for all y in the one-dimensional face F4

given by the edge generated by the intersection of L with the 45 degree line. The subspaces

spanned by vertices, which are zero-dimensional faces of L, are null spaces; so we do not

need to consider them. We compute the projections of the Jacobian map onto these

subspaces: projL1
◦ ∂Π(y)[l] = ∂Π(y)l, projL2

◦ ∂Π(y)[l] = fY,D(y0, 0|Z = 0)l, projL3
◦

∂Π(y)[l] = fY,D(y1, 1|Z = 1)l, projL4
◦ ∂Π(y)[l] = {[fY,D(y1, 1|Z = 1) + fY,D(y0, 0|Z =

1) + fY,D(y1, 1|Z = 0) + fY,D(y0, 0|Z = 0)]/2}l, for y ∈ Fk and l ∈ Lk in each of the cases.

We then compute the corresponding determinants of the maps

projLk
◦ ∂Π(y) : Lk → Lk,

where determinants are computed with respect to the coordinate systems of Lk, as

det[∂Π(y)] for k = 1, fY,D(y0, 0|Z = 0) for k = 2, fY,D(y1, 1|Z = 1) for k = 3, [fY,D(y1, 1|Z =

1) + fY,D(y0, 0|Z = 1) + fY,D(y1, 1|Z = 0) + fY,D(y0, 0|Z = 0)]/2 for k = 4. Theorem 2

requires that these determinants are positive for values of y ∈ Fk. This condition is im-

plied by the simpler conditions (3.15) and (3.16). For the case of L = q + C, verification

is analogous except that we do not need to consider L4. Thus, the positive determinant

condition of Theorem 2 is implied by the conditions (3.15) and (3.16) for L = q + C as

well. �
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