
Vol. 29 no. 21 2013, pages 2765–2773
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btt486

Systems biology Advance Access publication September 17, 2013

Optimizing a global alignment of protein interaction networks
Leonid Chindelevitch1,2, Cheng-Yu Ma3, Chung-Shou Liao1,4,* and Bonnie Berger1,2,*
1Computer Science and Artificial Intelligence Laboratory and 2Department of Mathematics, Massachusetts Institute of
Technology, Cambridge, MA 02139, USA, 3Department of Computer Science and 4Department of Industrial Engineering
and Engineering Management, National Tsing Hua University, Hsinchu 30013, Taiwan

Associate Editor: Burkhard Rost

ABSTRACT

Motivation: The global alignment of protein interaction networks is a

widely studied problem. It is an important first step in understanding

the relationship between the proteins in different species and identify-

ing functional orthologs. Furthermore, it can provide useful insights

into the species’ evolution.

Results: We propose a novel algorithm, PISwap, for optimizing global

pairwise alignments of protein interaction networks, based on a local

optimization heuristic that has previously demonstrated its effective-

ness for a variety of other intractable problems. PISwap can begin with

different types of network alignment approaches and then iteratively

adjust the initial alignments by incorporating network topology infor-

mation, trading it off for sequence information. In practice, our algo-

rithm efficiently refines other well-studied alignment techniques with

almost no additional time cost. We also show the robustness of the

algorithm to noise in protein interaction data. In addition, the flexible

nature of this algorithm makes it suitable for different applications of

network alignment. This algorithm can yield interesting insights into the

evolutionary dynamics of related species.
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1 INTRODUCTION

Protein–protein interactions (PPIs) are crucial to a wide variety
of cellular processes, and the interacting proteins are likely to
evolve with high correlation during the evolution of species

(Barabási and Oltvai, 2004; Guo and Hartemink, 2009). Thus,
the use of PPI information can help detect functional orthologs,
while sequence homology alone is often not sufficient to identify

conserved protein complexes (Kelley et al., 2003; Sharan et al.,
2005; Zaslavskiy et al., 2009).
Ever since high-throughput experimental screening techniques

such as yeast two-hybrid analysis (Formont-Racine et al., 1997;
Ito et al., 2001; Uetz et al., 2000), mass spectrometry (Aebersold
and Mann, 2003; Bader and Hogue, 2002; Ho et al., 2002) and

tandem-affinity purification (Gavin et al., 2002) made protein
interaction networks available for several species, efforts have
been made in the bioinformatics community to extract useful

biological information from these networks. Protein interaction

networks provide a more complete and higher-level representa-

tion of molecular components than has been available before,

and also enable genome-scale understanding of the cell from a

systems perspective (Tan and Ideker, 2007). One important goal

has been to produce accurate alignments of two or more of these

networks, with the expectation that this would help in establish-

ing the biological function of unknown proteins by exhibiting

their correspondence with the proteins of another species with

known biological function and providing insight into evolution-

ary dynamics.
Alignments of protein interaction networks can be broadly

classified into two categories: local and global alignments. The

distinction is similar to the one made for sequence alignment

algorithms. More specifically, local network alignment is con-

cerned with identifying a subnetwork of one species closely

matching a subnetwork of another species or having a certain

topology (Sharan et al., 2005). Typically, multiple closely match-

ing subnetworks are identified by such algorithms, which may be

mutually inconsistent (Singh et al., 2008). On the other hand,

global network alignment attempts to map two or more net-

works as a whole, and their output is a single mapping between

the vertices of the networks (Singh et al., 2008). Furthermore, the

objective of global alignment of PPI networks is to search for the

best consistent mapping between all vertices across the networks,

which can reveal evolutionarily conserved functions at the system

level. In contrast to local network alignment, relatively little

attention has been paid to global network alignment. In the pre-

sent article, which deals with the global alignment problem, we

view this mapping as a bipartite matching, where the vertices on

one side of the bipartite graph are the proteins in one network,

and the vertices on the other side are the proteins in the other

network.
Following the rapidly increasing availability of large PPI net-

works, many analytical and algorithmic approaches have been

developed for their comparative analysis. Previous work on the

problem of PPI network alignment includes NetworkBLAST-M

(Kalaev et al., 2008), Graemlin 2.0 (Flannick et al., 2009),

IsoRank (Singh et al., 2008), IsoRankN (Liao et al., 2009),

PATH (Zaslavskiy et al., 2009) and GRAAL (Kuchaiev et al.,

2010), although a number of other techniques exist as well

(Aladağ and Erten, 2013; Berg and Lässig, 2006; Dutkowski

and Tiuryn, 2007; Guo and Hartemink, 2009; Kelley et al.,

2003, 2004; Koyutürk et al., 2006; Patro and Kingsford, 2012;

Sharan et al., 2005; Srinivasan et al., 2006). A couple of these

(Aladağ and Erten, 2013; Patro and Kingsford, 2012) build on a*To whom correspondence should be addressed.
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preliminary version of our work (Chindelevitch et al., 2010).

Moreover, some of these methods can handle more than two

networks.

NetworkBLAST-M uses a new data representation of

networks and computes a local alignment by greedily finding

regions of high local conservation based on inferred phylogeny.

Graemlin 2.0 provides a network aligner to compute both local

and global alignments by training a network inference algorithm

on a known set of alignments, and then optimizing the learned

objective function on the set of all networks. IsoRank first finds

pairwise alignment scores across all pairs of networks, obtained

by a spectral method on a product graph; it then uses these

scores in a greedy algorithm to produce the final global align-

ment. The more recent IsoRankN uses a different method of

spectral clustering on the multiple alignment graph to compute

a global alignment of multiple PPI networks. PATH formulates

the pairwise network alignment as a graph matching problem

and solves its convex and concave relaxations by iteratively

updating the weights and following the path of solutions thus

created. GRAAL, in contrast, computes a sequence-free pairwise

alignment by using the notion of graphlet degree signatures.

As pointed out in the literature (Liao et al., 2009; Zaslavskiy

et al., 2009), one of the main difficulties faced by network align-

ment algorithms is the lack of an accurate and reliable gold

standard for evaluation purposes. Another challenge is the com-

putational complexity of network alignment algorithms. The

problem of network alignment is a generalization of the intract-

able subgraph isomorphism problem. A biological challenge is

that a network alignment algorithm must efficiently and

effectively identify biologically conserved functions.

1.1 Contribution

We propose a novel tool, PISwap, based on local optimization,

for computing pairwise global alignment of protein interaction

networks. The algorithm begins by identifying an optimal global

alignment based purely on sequence data, which correctly deter-

mines functionally orthologous proteins in many, but not all,

cases. To adjust this initial alignment, PISwap uses the intuition

that biologically conserved interactions can compensate for map-

ping proteins whose sequences are not particularly similar to one

another. In this way, the topology of the networks is taken into

account, and information is propagated from each vertex to its

neighbors.

Using the protein interaction networks available for five spe-

cies, namely, yeast, fly, worm, human and mouse, we pairwise

align the first three networks, as well as the human and mouse

networks. The results demonstrate the usefulness of the local

search technique as well as the functional effectiveness of topo-

logically optimizing the global alignment. Furthermore, we sug-

gest that PISwap can topologically refine other global alignment

algorithms at almost no additional cost. More precisely, the local

search technique can efficiently fine-tune other approaches when

used as a postprocessing step. We also test PISwap on pairs of

yeast and fly networks, as well as their randomized versions. The

results also demonstrate the algorithm’s robustness to noise in

network data. Finally, we explain how specific information pro-

duced by PISwap can produce insights into the evolutionary

dynamics of protein interactions.

2 METHODS

2.1 Problem formulation

We consider the global alignment of a pair of protein–protein interaction

(PPI) networks. Each network is represented by a graph whose vertices

correspond to proteins, and there is an undirected edge between two

vertices if and only if the corresponding proteins interact. Given a pair

of PPI networks and a list of pairwise sequence similarities between pro-

teins in the two networks computed according to some criterion, global

alignment aims to find an optimal mapping between the proteins of the

two networks that best represents conserved biological function. We for-

mulate network alignment as a graph-theoretic problem as follows.

Consider two PPI networks GX ¼ ðX,EXÞ and GY ¼ ðY,EYÞ whose

edges represent protein interactions. Let G ¼ ðX [ Y,EÞ be an edge-

weighted complete bipartite graph consisting of the vertex subsets X

and Y, with each edge e ¼ ðx, yÞ 2 E associated with a non-negative

edge weight s(e), which represents the sequence similarity between vertices

x 2 X and y 2 Y, bounded by the length of protein sequences. That is,

s : E! Zþ denotes a non-negative integer sequence similarity function

on the edges of G, where the sequence similarity of a pair of proteins

could be, for instance, the BLAST Bit-value of the sequences as retrieved

from Ensembl (Hubbard et al., 2009).

A mappingM � E of G is defined to be a subset of edges such that no

two edges in M share an endpoint. In addition, given a mapping M, we

define a non-negative integer topology similarity function t : E! Zþ.

For an edge, e ¼ ðx, yÞ 2M, tðeÞ represents the topology similarity be-

tween the neighborhoods of x 2 X and y 2 Y, i.e. the number of edges in

these neighborhoods conserved by the mapping M. To be more precise,

for each edge, e ¼ ðx, yÞ 2M, tðeÞ is the number of edges between the

neighborhoods of x and y, NGX
ðxÞ and NGY

ðyÞ, respectively, which are

also in the mapping M, i.e. tðeÞ ¼ jfðx0, y0Þ 2Mjx0 2 NGX
ðxÞ and y0

2 NGY
ðyÞgj. Our objective is to find a mapping M such that the following

weight function w is maximized:

wðMÞ ¼
X
e2M

�
�tðeÞ þ ð1� �ÞsðeÞ

�
, ð1Þ

where � 2 ½0, 1� is a parameter that controls the importance of the net-

work topology similarity relative to sequence similarity.

The above weight function is a convex combination of two terms: the

topology similarity function t and the sequence similarity function s.

Tuning the parameter � allows us to change the relative importance of

PPI network data in finding the optimal global alignment. At one ex-

treme, � ¼ 0 implies that no network data are used, whereas at the other

extreme, � ¼ 1 indicates that only network data are used. This formula-

tion of the problem is known to be NP-hard in general, not only to solve,

but also to approximate (Sahni and Gonzales, 1976), which means that it

does not admit a polynomial-time algorithm unless P¼NP.

Because the size of the search space grows exponentially with the

number of proteins in each network, we use a local search technique

adapted from other NP-hard optimization problems, which is described

in detail in the following subsection.

2.2 Algorithm

Here, we simply explain the basic idea of our method, leaving its analysis

to the Appendix (Supplementary Information). The main purpose of the

algorithm is to refine any global alignment of pairwise PPI networks via

local optimization techniques. Based on conserved functional properties

within PPI networks, our algorithm can fine-tune arbitrary pairwise

global alignments. The key concept of our method is to apply a local

search heuristic, which is widely used in the combinatorial optimization

field, to iteratively improve the initial mapping while taking into account

both the sequence score and the topology score of the mapping.

From a variety of local search methods, we make use of the idea of the

2-Opt algorithm, which was first proposed by Croes (1958), and also
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generalize to the 3-Opt algorithm. The 2-Opt algorithm is one of the

most famous heuristics for the well-known Traveling Salesman Problem,

(Lawler et al., 1985). Given a set of cities, the Traveling Salesman

Problem (TSP) is to find an ordering of cities that minimizes the total

length of the tour when visiting all the cities in some order and returning

to the starting city. The basic concept of the 2-Opt algorithm is simple.

A move deletes two edges of the original tour, thus breaking the

tour into two paths, and then reconnects those paths by swapping

these edges.

Furthermore, 2-Opt outperformed almost all the local search and

greedy algorithms in experimental results for TSP (Johnson and

McGeoch, 1997). More precisely, 2-Opt (or k-Opt) gave better final

tours than other local search algorithms for TSPLIB instances (Johnson

and McGeoch, 1997) with respect to both approximation ratio and run-

ning time. The 3-Opt technique considers three, rather than two, edges

of a mapping in each round and determines whether the objective func-

tion can increase by swapping these edges. The details of the 3-Opt

technique are presented in the Appendix (Supplementary Information).

We use a local search approach to the pairwise PPI network alignment

problem in a manner similar to 2-Opt as follows: when given a max-

imum weighted bipartite mapping M� in G ¼ ðX [ Y,EÞ, we define a

vertex subset preferYðxÞ for each x 2 X, which consists of the c highest-

weighted neighbors of x in Y (where the weight of a neighbor of x is given

by its sequence similarity to x). Similarly, for every y 2 Y, a vertex subset

preferXðyÞ � X is defined to consist of the c highest-weighted neighbors of

y in X. The c is some relatively small constant chosen ahead of time. It

can be shown (Johnson andMcGeoch, 1997) that c¼ 20 suffices for most

practical applications. Our aim is to repeatedly find a candidate

e0 ¼ ðu, vÞ, v 2 preferYðxÞ, u 2 preferXðyÞ to swap with e ¼ ðx, yÞ, where

e, e0 2M�, such that the weight of the new mapping,

wðM�nfe, e0g [ fe1, e2gÞ, where e1 ¼ ðx, vÞ and e2 ¼ ðu, yÞ are the edges

obtained by swapping e and e0, is higher than wðM�Þ.

3 RESULTS

In this study, we began by comparing the performance differ-

ences between 2-Opt and 3-Opt when using PISwap to refine

the mappings obtained by the well-known Hungarian algorithm

(Kuhn, 1955), which only depends on sequence similarity. Next,

we examine the performance of PISwap on initial mappings pro-

duced by other popular global alignment algorithms, GRAAL

(Kuchaiev et al., 2010), IsoRank (Singh et al., 2008) and PATH

(Zaslavskiy et al., 2009). Finally, we verify the robustness of

PISwap to noise in PPI data. We do so by testing PISwap on

the yeast and fly networks as well as their randomized versions to

refine the initial mappings derived from the three global align-

ment tools above.
The key concepts of the above global alignment algorithms are

quite different. GRAAL is a sequence-free global network align-

ment tool. Every vertex in a PPI network is associated with a 73-

component graphlet degree vector, which counts the number of

different graphlets that the vertex touches; this vector can be

considered a signature of the vertex. GRAAL uses a greedy al-

gorithm to find a pairwise alignment maximizing the total simi-

larity of the vectors corresponding to the pairs of matched

vertices in two PPI networks. On the other hand, IsoRank uses

spectral graph theory to compute an alignment score for each

pair of vertices in two PPI networks. It considers two vertices to

be a good match if their respective neighbors are also good

matches. Hence, the score of a pair depends on the score of its

neighbors, which in turn depends on the score of its neighbors,

and so on. IsoRank combines topology scores and sequence-

based BLAST bit scores and extracts a matching in a greedy

manner. Like IsoRank, the PATH algorithm also combines the

number of conserved interactions with a sequence similarity

score. Based on the techniques of concave and convex relax-

ations, it aligns two PPI networks by solving a convex relaxation

in the beginning. Next, a linear combination of the convex and

concave relaxations is solved iteratively by increasing the weight

of the concave relaxation and following the path of feasible so-

lutions thus created. The algorithm stops when the solution

reaches a corner of the set of doubly stochastic matrices.
We selected the following five eukaryotic species for our

experimental analysis: Caenorhabditis elegans (worm),

Drosophila melanogaster (fly), Saccharomyces cerevisiae (yeast),

Homo sapiens (human) and Mus musculus (mouse), each of

which has complete PPIs available. For convenience, we abbre-

viated each of the five species as follows: CE¼C.elegans,

DM¼D.melanogaster, SC¼S.cerevisiae, HS¼H.sapiens and

MM¼M.musculus. We tested PISwap on four pairs: DM versus

SC, CE versus SC, CE versus DM and HS versus MM. Note

that, because human and mouse are at a substantial evolutionary

distance from SC, CE and DM, we did not perform a compari-

son between them and the other three species.

Recall that the goal of PISwap is to topologically refine a global

network alignment while maintaining its functional consistency.

The topological information in PPI networks can help identify

conserved functions that protein sequence homology alone

cannot easily detect. In biological systems, the function of a pro-

tein depends on its 3D structure, which is usually determined by its

protein sequence. However, in some cases, proteins with similar

functions and 3D structures might have different sequences. For

instance, a circular permutation is the rearrangement of a protein

sequence. The N-terminal and C-terminal regions of a protein

might be interchanged while their 3D folding structures remain

the same. The rearranged sequences cannot be easily detected by

sequence alignment. Several natural examples of circular permu-

tation have been reported in the literature (Lindqvist and

Schneider, 1997), such as bacterial �-glucanases, swaposins, glu-
cosyltransferases, �-glucosidases, etc. Thus, the functions of these
proteins cannot be annotated by sequence alignment alone. On the

other hand, topological properties of a PPI network could be

helpful for understanding the possible functions of these proteins

(Komili et al., 2007; Kuchaiev et al., 2010; Memišević et al., 2010).
For these reasons, we examine the similarity of topological

neighborhoods and functional consistency for evaluating a

global network alignment. For the former, we use the edge

correctness (EC) ratio (Kuchaiev and Pržulj, 2010), but modify

the definition’s normalization because the size of the PPI net-

works varies considerably in this study. The EC ratio is defined

as follows:

EC ¼
1

2

 
jfðu, vÞ 2 EX ^ ðfðuÞ, fðvÞÞ 2 EYgj

jEXj

þ
jfðu, vÞ 2 EX ^ ðfðuÞ, fðvÞÞ 2 EYgj

jEYj

!
� 100%,

ð2Þ

where EX and EY are the edge sets of GX and GY, respectively,

and f(u) and f(v) are the vertices in GY that are aligned with u and
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v, respectively, in GX via a network alignment f. A higher EC

ratio means that the alignment between two organisms preserves

more interactions.

We also use the functional coherence (FC) value to measure

the functional consistency of the mapped proteins following the

method proposed by Singh et al. (2008). The FC value of a

mapping is computed as the average pairwise FC of the protein

pairs that are aligned. A higher FC score indicates that the pro-

teins in the mapping perform more similar functions. The

method for computing FC values can be summarized as follows.

First, the Gene Ontology (GO) terms corresponding to each pro-

tein are collected. GO terms are a hierarchical description of

protein functions. Then, each GO term is mapped to a subset

of the so-called standardized GO terms, which in this case are its

ancestors lying within a distance five from the root of the GO

tree. Finally, the similarity between each pair of aligned proteins

is computed as the median of the fractional overlaps of their

corresponding sets of standardized GO terms. The FC of each

protein pair is defined as:

FCðx, yÞ ¼
jSx \ Syj

jSx [ Syj
, ð3Þ

where Sx and Sy are the GO term sets of protein x and protein y,

respectively, for x 2 GX and y 2 GY. Note that only 60–70% of

the proteins in any of the aligned networks have an annotated

GO ID, comparable with the fraction of all known proteins

included in GO.

3.1 Implementation

All the PPI networks we used were constructed by combining the

data from BioGRID (Breitkreutz et al., 2008), Database of

Interacting Proteins (DIP; Salwinski et al., 2004), Human

Protein Reference Database (HPRD; Keshava Prasad et al.,

2009), and retrieved from the Isobase Web site (Park et al.,

2011). In total, these five PPI networks contained 87 737 proteins

and 114 897 known interactions. The number of vertices (edges)

in each PPI network is 19756 (5853), 14 098 (26 726), 6659

(38 109), 22 369 (43 757) and 24 855 (452) for CE, DM, SC, HS

and MM, respectively. We take into account both raw and nor-

malized sequence data, retrieved from the Isobase Web site as

well. The raw BLAST scores used are computed as

sði, jÞ ¼ Bði, jÞ þ Bðj, iÞ, where Bði, jÞ is the value given by

BLAST on input i and j (this is because BLAST sometimes pro-

duces asymmetric results). The normalized scores were computed

as sði, jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sði, iÞsðj, jÞ
p (Singh et al., 2008), and resulted in values between 0

and 1. For PISwap, the ratio of � to 1� � can be thought of

giving the relative weight of sequence information to topology

information. We found that choosing � to make this relative

weight half of what it is for the initial mapping was a good

rule of thumb. In other words, as the initial mapping was

based purely on sequence information, we chose � to favor the

topology twice as much as the initial mapping did, in the first

reported experiment. More precisely, we used the equation

� ¼ 2S
2SþT to adjust the � value in our experiments to achieve

the best setting, where S ¼
P

e2M sðeÞ is the total sequence simi-

larity score and T ¼
P

e2M tðeÞ is the total topology similarity

score. Hence, the equation determines the � value depending

on the fraction of sequence score and topology score of an initial

mapping. In the other experiments without sequence informa-

tion, the � value is set to 1.

In addition to performing our experiments on the five PPI

networks based on the 2010 releases of the underlying databases,

we also performed all of our experiments on the less recent 2008

releases, using the networks at Isobase (Park et al., 2011). We

provide the detailed results of these experiments in the

Supplementary Materials. Because the new networks remain

similar to their earlier versions, these results are qualitatively

very similar to the ones reported in the main text. The FC

values changed by 50.02 in all of the experiments, with the

exception of the alignments of the CE and DM networks by

GRAAL and PATH, where it increased by 0.024 and 0.027,

respectively, as well as PISwap’s refinement of their alignment

by PATH, where it increased by 0.025. The EC ratios did not

change by 42% in either direction, except in the case of the

refinement of IsoRank’s network alignment, where they

increased by 2.2 (for the CE–DM alignment) to 3% (for the

HS–MM alignment). The numbers of edge swaps required in

each case remained within a factor of 2 across the experiments,

with the exception of the HS–MM network alignment, where

they decreased from 476 to 185 during the refinement phase.

Interestingly, the fractional improvement of IsoRank with

PISwap decreased substantially, from an average of 35% in the

more recent network pairs to 19% in the less recent network

pairs. The running times required to perform the alignments

and the refinements frequently increased, sometimes by as

much as 100%, whereas a handful of experiments ran faster by

at most 25%.
The algorithm was implemented in Python 2.6 using the

NetworkX (Hagberg et al., 2008) package, as well as Joris van

Rantwijk’s implementation of the maximum-weight mapping al-

gorithm based on the blossom method for finding augmenting

paths and the primal–dual method for finding a maximum-

weight matching (Galil, 1986). All experiments were performed

on a desktop with a 64-bit architecture running Windows 7 with

an Intel Core i7-2600 CPU and 16-GB of RAM.

3.2 Performance of 2-Opt and 3-Opt

We first compared 2-Opt with 3-Opt when using PISwap on

the initial topology-free mappings produced by Hungarian algo-

rithm. The result of the first experiment is summarized as follows.

PISwap improves the EC ratio in each pair while at the same

time maintaining consistency of their FC values. This shows that

our algorithm is performing its goal of achieving a higher top-

ology similarity while retaining a consistent sequence similarity.

Because 3-Opt considers more candidate edges for swapping

than 2-Opt, 3-Opt results in higher EC ratios and compares

favorably with 2-Opt.
Table 1 illustrates the results of 2-Opt and 3-Opt when using

the output of theHungarian algorithm as the initial mapping with

the raw sequence similarity data (the results with normalized

similarity data are qualitatively very similar). The number of

swaps required is 81 (49) for the mapping between DM and

SC, 41 (66) for that between CE and SC, 53 (173) for that

between CE and DM and 26 (31) for that between HS and

MM. In each pair, the first number is the number of swaps
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made by 2-Opt and the second, by 3-Opt. Note that these are

significantly higher than the diameter (length of the path between

the two most distant nodes) of the PPI networks, which are 14,

11, 9, 14 and 10 for CE, DM, SC, HS and MM, respectively,

meaning that information may have had a chance to propagate

to all of the vertices.
The resulting EC ratios clearly show substantial improvement

in each pair; meanwhile, there are only slight differences between

the FC values of the initial mappings and of those refined by

PISwap (for both 2-Opt and 3-Opt). We note that the EC ratio

is affected by the number of edges in the networks by its defin-

ition. This is the reason why the EC ratio of HS–MM is larger

than those of the other pairs, as the mouse PPI network only has

452 edges.
Moreover, despite the analysis presented in the Appendix

(Supplementary Information), the running-time of our algorithm

is actually dominated by the preprocessing step, that of finding a

maximum weight bipartite matching. This is because the running

time is cubic in the size of the input, whereas the number of

iterations in the main loop of the algorithm is typically52000

even when we use 3-Opt. Thus, the upper bound presented in

the analysis is overly pessimistic. We use the value c ¼ 200 for

our experiments, as this is close to the maximum degree � of the

input networks (which is 184, 190, 323, 243 and 11 for C.elegans,

D.melanogaster, S.cerevisiae, H.sapiens and M.musculus,

respectively).
Based on the above discussion, the 3-Opt technique performs

a better refinement of global alignments of protein interaction

networks, with only minimal time cost relative to the expensive

initial alignment step. In the rest of this article, we focus on the

performance of 3-Opt PISwap when using initial mappings pro-

duced by different types of global alignment algorithms, such as

sequence-free alignment and integrated approaches, which com-

bine sequence data with topology information.

3.3 Refining GRAAL, IsoRank and PATH

In this experiment, we apply the 3-Opt PISwap to refine the

initial mappings derived from GRAAL, IsoRank and PATH,

respectively. As mentioned above, GRAAL is a sequence-free

network alignment algorithm based purely on topology informa-

tion, whereas IsoRank and PATH integrate sequence data with

network information to produce their mappings.
The three alignments are computed using the default settings.

For GRAAL, the � value, which determines the contribution of

the graphlet signature of each vertex, is set to 0.8. Because

GRAAL begins with an initial pair of vertices randomly, we

run each test 30 times and average the results over the 30 runs.

In addition, we set the IsoRank parameter �, controlling the

weight of topology similarity relative to sequence similarity, to

0.6. The maximum number of iterations, K, for the Power

Method procedure of IsoRank, is set to 3. On the other hand,

the � value, similar to � in IsoRank and PISwap, is set automat-

ically in PATH. The constraints on the largest steps allowed and

the minimal increment in � are set to �M ¼ 10 and �min ¼ 10�5

for the iterative relaxation in PATH.
Figure 1 shows the performance of PISwap on refining the

initial mappings obtained by GRAAL, IsoRank and PATH.

Note that the results are produced with normalized sequence

data because IsoRank suggests that normalized BLAST scores

be used. The increase in the EC ratio for each pair of species in

Figure 1 represents a significant improvement over GRAAL,

IsoRank and PATH. In particular, the results demonstrate

that the 3-Opt PISwap can even identify more conserved inter-

actions than were preserved by the initial mapping from

GRAAL, which is based purely on network information. We

remark that the HS–MM alignment for PATH is omitted be-

cause the program runs for too long.

The numbers of swaps required were 1351, 191 and 650 for the

mapping between DM and SC, 453, 240 and 162 for that

Table 1. Evaluation of alignments based on the initial mappings produced by Hungarian algorithm

DM–SC CE–SC CE–DM HS–MM

Initial 2-Opt 3-Opt Initial 2-Opt 3-Opt Initial 2-Opt 3-Opt Initial 2-Opt 3-Opt

Number of swaps 0 81 49 0 41 66 0 53 173 0 26 31

EC ratio 0.49% 0.67% 0.68% 0.69% 1.02% 1.16% 0.48% 0.91% 1.39% 24.66% 31.97% 32.28%

Functional coherence 0.596 0.595 0.593 0.294 0.294 0.294 0.395 0.394 0.393 0.46 0.469 0.469

Running time (seconds) 264 6 15 296 4 20 1791 16 86 28 145 97 917

Note: CE: C.elegans; DM: D.melanogaster; SC: S.cerevisiae; HS: H.sapiens; MM: M.musculus.

Fig. 1. Evaluation of the refinement of the initial mappings obtained by

GRAAL, IsoRank and PATH; each of the blue-series and red-series bars,

respectively, represents the result before and after refinement by PISwap
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between CE and SC, 473, 156 and 25 for that between CE and

DM, and 71, 476 for that between HS and MM. In each pair, the

first number corresponds to GRAAL, the second, to IsoRank

and the third, to PATH; there are only two numbers for the

HS–MM alignment because PATH exceeded the time limit on

this pair of networks. (The numbers of pairs produced by the

three alignment tools were 4928, 4254 and 4928 for DM–SC;

2745, 3691 and 2745 for CE–SC; 2745, 7508 and 2745 for

CE–DM; and 218, 18387 for HS–MM. Note that GRAAL

and PATH map all the nodes in the smaller network, whereas

IsoRank may leave some nodes unmapped because these nodes

may not be able to make a non-zero contribution to the objective

function guiding the alignment). Although the results show re-

finement on all initial mappings, the refining effects on the three

alignment tools are different. Because GRAAL is a sequence-free

global alignment algorithm, we select preferYðxÞ for each vertex

x 2 X based on the topology similarity between neighbors of x in

Y and x instead (preferXðyÞ for each vertex y 2 Y is defined simi-

larly). For every pair, the refined EC ratios are almost twice as

large as those of the initial mappings obtained by GRAAL

(1.42% versus 7.85% for DM and SC, 5.57% versus 11.57%

for CE and SC, 5.47% versus 11.79% for CE and DM and

15.53% versus 28.92% for HS and MM). In contrast, the EC

ratios of the refined mappings, originally derived by IsoRank,

increase relatively modestly. The results show at least a 20%

improvement on the EC ratios (32.8% for DM–SC, 31.5% for

CE–SC, 52.4% for CE–DM and 21.6% for HS–MM). On the

other hand, compared with GRAAL and IsoRank, the initial

mappings obtained by PATH have small EC ratios. Figure 1

demonstrates a substantial improvement over the EC ratios in

PATH. For each pair, the refined EC ratio is at least five times as

large as the original one (0.25% versus 2.72% for DM–SC,

0.41% versus 2.22% for CE–SC and 0.05% versus 0.25% for

CE–DM). This suggests that the performance of PISwap may

differ based on the properties of the initial mapping. We defer

the discussion of the possible reasons for these differences to

Section 4.
Similar to the previous experiment, the FC values remain

stable with only about 1% change for each pair when we

refine GRAAL, IsoRank and PATH (except in the case of

CE–DM derived by GRAAL, where we see a 2% change). For

example, the FC values for the pairwise alignment of yeast and

fly produced by GRAAL, IsoRank and PATH were 0.506, 0.572

and 0.505, respectively. After our swap operations, the FC values

of the refined mappings were 0.499, 0.571 and 0.505, respectively,

compared with the original ones. In other words, the 3-Opt
PISwap retains the functional consistency of the initial

mappings.

In addition, the running time of the entire procedure of

PISwap is dominated by the initial alignment algorithms as

well. For example, GRAAL, IsoRank and PATH spend �77,

57 and 513 minutes, respectively, to obtain the initial mappings

in the DM–SC case. On the other hand, PISwap takes only 4, 0.5

and 1.8min, respectively, for the three algorithms.

3.4 Robustness

One of the challenges for protein network alignment is

that known PPI networks are both incomplete and inaccurate

(Liao et al., 2009). The technical false-positive errors arise from
limitations of the experimental procedures, such as yeast two-
hybrid analysis (Han et al., 2005). Moreover, a significant per-

centage (nearly 20%) of interactions observed by the two-hybrid
method might not be biologically relevant (Barabási and Oltvai,
2004). Thus, it is critical to measure the fault tolerance of net-

work alignment algorithms.
To verify the robustness of PISwap to noisy PPI data, we

evaluate the performance of our algorithm when it aligns PPI
networks with their randomized versions. More precisely, we test

PISwap on pairs of yeast, fly and their randomized versions. In
this experiment, we evaluate robustness based on how much
similarity and consistency the swap operations preserve com-

pared with the original PPI network alignments. We refer to
(Kuchaiev et al., 2010; Przulj et al., 2004) and select the geometric
random graphmodel to generate the randomized networks. Other

random network models, such as scale-free networks, which pre-
serve the power-law degree distribution of the PPI networks,
might not represent the data appropriately in this experiment

because they are strongly constrained in their structures; such
constraints might transfer topology similarity to the models for
yeast and fly. On the other hand, the PPI networks are known to

be well represented by the geometric random graph model
(Kuchaiev et al., 2010; Przulj et al., 2004). The intuition behind
this model is based on the observation that proteins interact with

other proteins in some biochemical space, which implies that
proteins closer together in this space are more likely to have an
interaction. This theoretical model, in which proteins are repre-

sented by vertices in a metric space and are connected by an edge
if they lie within a specified distance of each other, requires only
a few tunable parameters.

For the PPI networks of yeast and fly, we used the geometric
random graph model (Higham et al., 2008) by applying the
igraph package (Csardi and Nepusz, 2006) to generate 10 rando-

mized networks, each of which contains the same number of
vertices and edges as SC and DM, respectively. We aligned
each random network with a real PPI network by using

GRAAL and IsoRank—more precisely, a randomized network
for DM versus the real PPI network for SC (DMrand-SC) and the
real PPI network for DM versus a randomized network for SC

(DM-SCrand). Then, we performed 3-Opt PISwap on these ini-
tial mappings obtained by the two alignment tools to evaluate
the performance of our algorithm. Because a randomized net-

work does not have sequence information, we selected
preferYðxÞ and preferXðyÞ for each vertex based on topology simi-
larity instead. In this experiment, we ran every alignment tool on

each pair 10 times and averaged results over the 10 runs. We note
that the experimental results for PATH were skipped because the
program ran for too long without sequence similarity scores.

Figure 2 illustrates the performance of PISwap. The results of
this experiment show that our algorithm can still consistently
improve the EC ratio even if one of the two aligned networks

is randomized. The numbers of swaps required were 1508 (32)
for the mapping between DMrand and SC and 1057 (164) for that
between DM and SCrand. In each pair, the first number corres-

ponds to GRAAL, and the second, to IsoRank. In the case of
GRAAL, the EC ratios refined by PISwap are at least twice as
large as those of the initial mappings (3.82% versus 10.71% for

DMrand-SC and 2.43% versus 5.49% for DM-SCrand).
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Compared with the refinement of the pairwise alignment of real
PPI networks (the number of swaps required is 1960 and the

improvement on EC ratio is 1.65% versus 9.6% for DM-SC),
the refining effect is acceptable. On the other hand, the EC ratios
of the refined mappings that were originally derived by IsoRank

can still gain at least a 4% improvement (4.2% for DMrand-SC
and 18.6% for DM� SCrand), compared with the 12.7%

improvement for DM-SC. This suggests that the refining effects
are similar to those of the real PPI network alignment between
DM and SC. Thus, these simulation experiments suggest that our

algorithm is robust to errors in PPI data.

4 DISCUSSION

4.1 PISwap

We have presented an algorithm, PISwap, for refining an arbi-

trary global alignment of protein interaction networks while
maintaining its FC. In PISwap, the parameter � plays an import-

ant role because it determines the relative importance of the top-
ology data and the sequence data. Although our objective
function is identical to that used in the IsoRank algorithm

(Singh et al., 2008), there are a number of important differences.
IsoRank performs a random walk on the graph G ¼ GX � GY,

the tensor product of the two networks, where at each step, the
walk is restarted with probability 1� � at a node v ¼ ðx, yÞ in G
chosen at random from the distribution proportional to the

sequence similarity sðx, yÞ. On the other hand, PISwap can be
thought of as performing a walk on the set of all matchings in the
complete bipartite graph, and this walk is not random, but has

the property that every step increases the value of the objective
function. Another difference from IsoRank is that the output

of IsoRank in terms of the pairwise alignment scores Rij

changes continuously with �, whereas in PISwap, the set of
possible matchings is discrete and the interval [0,1] can be

subdivided into non-overlapping subintervals such that on each
one, the resulting matching is the same. Finally, PISwap is

not based on a spectral method unlike both IsoRank and
IsoRankN.

4.2 Detailed settings

In this study, we intend for PISwap to be used as a booster to any
kind of initial alignment program and demonstrate that the tool
can effectively refine mappings obtained by state-of-the-art align-

ment algorithms; however, the refining effects on these initial

mappings are different. The major cause of the difference is the

nature of these network alignment tools whose algorithmic prin-

ciples mean that PISwap begins with different quality mappings.

Moreover, these starting solutions may be crucial for our local

search technique even though 3-Opt is powerful enough to

vastly improve on them. Note that Table 1 shows that 3-Opt
is much better than 2-Opt; however, k-Opt, k 	 4, is not

sufficiently better than 3-Opt to justify the additional running

time. This result is analogous to the scenario of TSP.
Another reason for a distinct improvement over these initial

mappings is the selection of preferXðyÞ and preferYðxÞ, which

determine the candidates to be swapped, i.e. the search space.

Better candidate neighborhoods for each vertex lead to better

local optima. For example, we tested PISwap on the mappings

derived by IsoRank by using both sequence and topological simi-

larity to select the candidates for swap operations. Our results

show that the candidate neighborhood selected by sequence simi-

larity produces better performance.
For the evaluation of FC, the FC value depends on GO terms,

many of which are annotated by sequence alignment. Thus, the

refinement of PISwap can be thought of as a topological im-

provement, which can compensate for a sequence-based align-

ment and discover functional orthologs that are not derived by

sequence-only approaches. This would be the reason that the FC

values sometimes decrease slightly after the mappings are refined

by our algorithm. We note that the FC value that GRAAL gets

for aligning the human and mouse networks is low because the

number of matched proteins in the mapping obtained by

GRAAL is only 290, and most of these are not annotated by

GO terms.

4.3 Evolutionary model

Finally, although the edge-swapping technique was originally

inspired by the field of combinatorial optimization, one can

speculate that it can actually give us insights into the way two

networks evolved from a common ancestor. If the networks

belong to two closely related species, it is conceivable that at

the outset, the proteins of the two networks were essentially

identical in sequence, and hence, their correspondence could be

determined exclusively on the basis of sequence information.

Suppose, however, that as the two species evolve, a pair of pro-

teins in one of them have traded functions relative with one an-

other. In that case, reconstructing the initial correspondence

would require precisely an edge swap. Hence, the number of

edge swaps required to recover the biologically ‘correct’ mapping

from the initial matching based purely on sequence information

could possibly tell us about the number of such evolutionary

events that have taken place since the initial divergence of the

species.
Comparing the network alignment problem with the (simpler)

sequence alignment problem, one could say that edge swaps at

the network level are the analog of compensatory mutations at

the sequence level. One could then argue that, just as compensa-

tory mutations can provide important clues for the evolutionary

history of the sequences, function exchanges (represented by edge

swaps) can provide important indications for the evolutionary

history of the protein interaction networks. Unfortunately, func-

tion exchanges are much more difficult to detect than

Fig. 2. Simulation experiments for robustness of PISwap; each of the

blue-series and red-series bars, respectively, represents the result before

and after refinement by PISwap

2771

Optimizing a global alignment of PPI networks

to
vs.
which
four 
percent
-
functional coherence
,
S
that is,
functional coherence
M
``
''
to


compensatory mutations, as network data are noisy, incomplete

and unreliable (Singh et al., 2008). Nevertheless, an algorithm

such as PISwap could be adapted to estimating the number of

function exchange events that have taken place during the evo-

lutionary process.
Although evolutionary events other than exchanges of func-

tion, such as duplications, insertions and deletions of proteins,

have certainly taken place (Koyutürk et al., 2006), this approach

can still yield useful knowledge. In addition, the evolutionary

distance between two species could in principle be computed

from the number of evolutionary events (including function

exchanges) that have taken place, and could perhaps provide a

more accurate estimate than the (appropriately defined and

weighted) edit distance between two orthologous sequences pre-

sent in those two species, as it would in some sense encompass all

the protein sequences at once.

Recently, a considerable amount of research explored system

approaches for computing evolutionary distances between or-

ganisms by using metabolic pathway information. In particular,

several studies investigated the topology of metabolic networks

between organisms to speculate on their phylogenetic relation-

ships. Zhang et al. (2006) compared the topological properties of

metabolic pathways to define an evolutionary distance between

organisms. Mano et al. (2010) considered the topology of path-

ways as chains and used a pathway alignment method to classify

species. Furthermore, Kuchaiev et al. (2010) defined a distance

metric between two species by using the EC ratio of pairwise

metabolic network alignments and reconstructed phylogenetic

trees. Global alignment of biological networks may reveal the

evolutionary relationship from a systems-level perspective

(Ma et al., 2013). It would be of great interest to have a better

understanding of phylogeny by using our global alignment

algorithm on biological networks.
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