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Abstract

This paper develops a new theory of fluctuations—one that helps accommodate the notions
of “animal spirits” and “market sentiment” in unique-equilibrium, rational-expectations, macroe-
conomic models. To this goal, we limit the communication that is embedded in a neoclassical
economy by allowing trading to be random and decentralized. We then show that the business
cycle may be driven by a certain type of extrinsic shocks which we call sentiments. These shocks
formalize shifts in expectations of economic activity without shifts in the underlying preferences
and technologies; they are akin to sunspots, but operate in unique-equilibrium models. We
further show how communication may help propagate these shocks in a way that resembles
the spread of fads and rumors and that gives rise to boom-and-bust phenomena. We finally
illustrate the quantitative potential of our insights within a variant of the RBC model.
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1 Introduction

Fluctuations in macroeconomic activity and asset markets are tied to aggregate shifts in market
expectations. Consider, for example, the recent crisis. The earlier boom in housing markets has been
attributed to exuberant beliefs about future prices; the subsequent bust came with a fast reversal in
these beliefs; and the ongoing recovery is said to hinge on how quickly firms and households regain
their confidence in the economy.

These observations are commonplace; they merely pinpoint to the apparent co-movement of
market expectations and market outcomes. The challenge for the macroeconomist is to formalize,
and then quantify, the deeper forces that might be driving this co-movement.

In the standard paradigm, these forces are modeled as exogenous random shocks to preferences
and technology, the stock of capital, or other payoff-relevant fundamentals.1 To many economists,
this is unsatisfactory: shifts in market sentiment and aggregate demand often appear to obtain
without obvious innovations in people’s tastes and abilities, firms’ know-how, and the like. Moti-
vated by this conviction, a long tradition in macroeconomics has therefore sought to rationalize the
observed fluctuations as the product of “animal spirits” in models that feature multiple equilibria,
while another approach has opted to explain the same phenomena as departures from rationality.2

In this paper, we are motivated by the same theme but follow a different methodological route,
shifting the focus on the communication and the coordination that is facilitated by the market
mechanism. In particular, we show that as long as frictions in communication prevent agents from
reaching exactly the same expectations about economic activity, aggregate fluctuations in these
expectations may be driven by a certain type of extrinsic shocks which we call sentiments. These
shocks are akin to sunspots, but operate in unique-equilibirium economies.

The main body of the paper develops the key ideas within a stylized Walrasian economy, while
an extension illustrates the quantitative potential within a richer, RBC-like model. Moving beyond
these particular models, the broader contribution is to show how extrinsic variation in market
expectations and forces akin to animal spirits can be accommodated in the modern DSGE paradigm
without abandoning the discipline of either rational expectations or equilibrium uniqueness.

Model. We consider a convex neoclassical economy in which agents are rational, markets are
competitive, the equilibrium is unique, and there is no room for randomization devices. To sharpen
our results, we also rule out aggregate shocks to preferences, technologies, or any other payoff-
relevant fundamentals. More crucially, we depart from the standard paradigm by introducing a
trading friction. This serves precisely two roles in our model: it introduces idiosyncratic trading
uncertainty, and it limits the communication that takes place through markets or other means.

1To avoid confusion, let us fix some terminology. By “standard paradigm” we refer to the class of micro-founded,
unique-equilibrium, rational-expectations, general-equilibrium models that have dominated academic research since
the RBC revolution. By “fundamentals” we refer to any payoff-relevant variable, such as preferences, endowments,
technologies, and government policies, or news thereof. Finally, by “extrinsic shocks” we refer to any residual, payoff-
irrelevant, random variable.

2For the first approach, see, e.g, Azariadis (1981), Benhabib and Farmer (1994), Cass and Shell (1983), Diamond
(1982), Cooper and John (1988), and Guesnerie and Woodford (1992); for the second, Akerlof and Shiller (2009).
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The economy is thus split into multiple islands (Lucas, 1972), which are heterogeneous in terms
of TFP, information, and trading opportunities. Each island specializes in production of a certain
good but wishes to consume also the good of at least one other island; this gives rise to trade.
Importantly, this trade is decentralized and takes place through random matching: in each period,
each island meets and trades with only one other, randomly selected, island. Furthermore, certain
employment and production choices are made in anticipation of these trading opportunities but
before the observation of the actual terms of trade. Finally, communication is impeded in the sense
that the islands may be unable to talk to one another or otherwise reach the same expectations
about relevant economic outcomes, such as the terms of their trade, prior to their physical meeting.

These modeling choices seek to capture a simple but important fact. When a firm makes
her employment and production decisions, she does not have the option to communicate with all
the potential consumers whom she may meet and trade with later on, and whose decisions will
ultimately determine the firm’s own profitability. Similarly, consumers face uncertainty about the
beliefs and intentions of other agents whose choices will ultimately determine their own employment
and income. Of course, some communication does take place through markets, social networks, the
media, and other means. However, this communication is far from perfect, leaving agents with
diverse beliefs about current and future economic conditions. What is essential for our results is
the imperfection of this kind of communication, not the precise details of how we model it.

Results. As with any other rational-expectations framework, the equilibrium of our economy is
defined as the fixed point between market outcomes (actual allocations and prices) and market ex-
pectations (expectations of allocations and prices). Furthermore, any variation in these endogenous
variables must ultimately be driven by some sort of exogenous shock. The question of interest for
us, as for the literature on coordination failures and sunspot fluctuations, is whether the equilibrium
variation in market expectations is spanned by the variation in exogenous payoff-relevant variables
and beliefs thereof, or whether there is also some residual, extrinsic variation.

Theorem 1 establishes that the aforementioned fixed point exists and is unique, ruling out the
usual formalization of self-fulfilling fluctuations. Theorem 2 establishes that extrinsic variation in
market expectations is nevertheless possible as long as these expectations remain imperfectly aligned
across different agents—which, in turn, can be true as long as communication is imperfect.

To understand this result, take any two islands i and j that are about to meet and trade. Next,
note that the output of each island is pinned down by the local preferences and technologies, and
the local belief about the upcoming terms of trade: other things equal, an island produces more if
it expects its terms of trade to improve. Finally, consider the following question: can there exist
states of Nature in which both islands expect their terms of trade to improve?

Clearly, this cannot be the case if communication is perfect: if island i expects its terms to
improve, and if both islands share the same beliefs about market outcomes, then island j must
expect its own terms to deteriorate. As we show in Theorem 1, this logic guarantees that, whenever
equilibrium expectations are homogeneous across agents, actual macroeconomic outcomes are pinned
down by the underlying fundamentals, even if the latter are not per se known.
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Now consider the case where communication is imperfect, so that the two islands are holding
heterogeneous beliefs about the terms of their trade. This means that there can exist states of
Nature in which they both expect their terms to improve, as well as states of Nature in which
they both expect their terms to deteriorate. What is more, these events can be correlated in the
cross-section of the economy, giving rise to aggregate fluctuations.

During a boom, each island produces more because it expects its trading partner to produce
more and hence the demand for its own product to increase. During a recession, each island expects
its demand to be low and acts in a way that drives down the demand for other islands. These
fluctuations therefore have the same flavor, and the same empirical content, as the self-fulfilling
fluctuations that obtain in models with multiple equilibria.

What drives these fluctuations is a particular kind of aggregate shocks, which we call “sentiment
shocks”. These shocks impact the information that is available to each island, without however
affecting the latter’s beliefs either about the aggregate fundamentals (which are fixed) or about the
idiosyncratic fundamentals of its trading partner (which are random). In this sense, these shocks
are extrinsic. These shocks nevertheless impact equilibrium expectations, because they effectively
alter the equilibrium belief that each island forms about the choices of other islands. One can thus
think of, say, a positive sentiment shock as a shock that rationalizes the optimism of one island by
making that island receive news (signals) that other islands are themselves optimistic.

These shocks can thus also be understood as shocks to higher-order beliefs. By imposing that
the aggregate fundamentals are fixed and common knowledge, we rule out the particular type of
higher-order uncertainty that has been the focus of previous work (e.g., Morris and Shin, 2002, 2003,
Woodford, 2003). Nevertheless, by introducing trading frictions and imperfect communication, we
open the door to higher-order uncertainty at themicro level: when two islands are matched together,
they are uncertain, not only about each other’s productivities, but also about each other’s beliefs
of their productivities, each other’s beliefs of their beliefs of their productivities, and so on. The
fluctuations we document reflect correlated variation in this kind of higher-order beliefs.

That being said, we prefer to interpret our sentiment shocks as shocks to first-order beliefs
of endogenous economic outcomes. In the theory, agents never need to form higher-order beliefs.
Rather, they need only to form first-order beliefs of the relevant equilibrium allocations and prices.
Furthermore, surveys contain evidence merely on this kind of first-order beliefs. Finally, there are
multiple specifications of the belief hierarchy that are consistent with the same joint distribution
for the model’s equilibrium outcomes, which means that the former cannot be uniquely identified
by data on the latter. By contrast, what can be identified is the extrinsic variation in first-order
beliefs of economic activity—this is what we are after in this paper.

Complementing this perspective, we argue that correlation in the relevant expectations may
emerge endogenously as agents learn from realized market outcomes or otherwise exchange their
beliefs. Furthermore, we show that such communication may serve as a powerful propagation
mechanism for the type of fluctuations we formalize—leading to contagion effects akin to the spread
of fads and rumors, and giving rise to boom-and-bust cycles like those experienced in recent years.
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Finally, to illustrate the broader applicability and the quantitative potential of our theory, we
embed a tractable variant of our sentiment shocks in the RBC framework. We then show that
our theory appears to have no serious difficulty in matching key business-cycle facts such as the
co-movement of employment, output, consumption, and investment, or the cyclicality of measured
labor wedges and output gaps.

Layout. The rest of the paper is organized as follows. Section 2 introduces our framework. Sec-
tion 3 characterizes the equilibrium. Section 4 contains our main results regarding the possibility of
extrinsic fluctuations. Section 6 shows how communication helps generate fad dynamics and boom-
and-bust cycles. Section 7 explores the quantitative potential. Section 8 concludes. Appendices A
and B contain the proofs and a detailed analysis of the model of Section 7.

2 Model

The economy consists of a continuum of islands, indexed by i ∈ I = [0, 1]. Each island is populated
by a representative household and a representative, locally-owned firm. All agents are price-takers.
Each island produces a single good, which can either be consumed at “home” or be traded for a
good produced “abroad” (by some other island). Production exhibits constant returns to scale with
respect to local labor, which is supplied elastically by the local household, and local land, which
is in fixed supply. Time is discrete, indexed by t ∈ {0, 1, ...}, and each period contains two stages.
Employment and production are set in stage 1, while trading and consumption occur in stage 2.
Finally, and importantly, trading takes place through random pair-wise matching.

Firms and technologies. Consider the firm of island i. Its technology is given by

yit = Ai(nit)
θ(kit)

1−θ, (1)

where yit is the quantity produced, Ai is the local total factor productivity (TFP), nit is the labor
input, kit is the land input, and θ ∈ (0, 1) parameterizes the income share of labor. The profit
of this firm is πit = pityit − witnit − ritkit, where pit denotes the local price of the local good, wit
denotes the local wage, and rit the local rental rate of land.

TFP varies across islands but not over time, thus ruling out both aggregate and idiosyncratic
shocks. The cross-sectional distribution of TFP is described by a p.d.f. FA : A → (0, 1), where A is
a compact subset of R+. This distribution is invariant over time and common knowledge—and so
is the exact mapping from the identity i of a particular island to its idiosyncratic productivity Ai.

Households and preferences. Preferences on island i are given by

Ui =

∞∑
t=0

βt [U (cit, c
∗
it)− V (nit)]

where β ∈ (0, 1) is the discount factor, cit ∈ R+ and c∗it ∈ R+ are the consumptions of, respectively,
the “home” and the “foreign” good,3 U(cit, c

∗
it) is the utility flow from these two forms of consumption,

3To have well-defined preferences over the entire commodity space, we can think of the home agents as either
being indifferent among the goods of all other islands, or as liking only the good of their current random match.
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nit ∈ R+ is labor supply, and V (nit) is the implied disutility. U and V are given by

U(c, c∗) =

(
c

1− η

)1−η (c∗
η

)η
and V (n) =

nε

ε
,

where η ∈ (0, 1) parameterizes the extent to which there is specialization and trade (the fraction
of “home” expenditure that is spent on the “foreign” good), while ε > 1 parameterizes the Frisch
elasticity of labor supply. Finally, the period-t budget constraint is given by

pitcit + p∗itc
∗
it ≤ witnit + ritK + πit (2)

where pit and p∗it denote the local prices of, respectively, the home and the foreign good, and K is
the fixed endowment of land. In equilibrium, kit = K.

Matching, timing, and information. To simplify, the matching is assumed to be uniform and
i.i.d. over time: each island has an equal probability of being matched with any other island. Nature
draws all the matches at the beginning of time, but does not reveal who is matched with whom and
when. Thus fix a period t and a pair of islands that have been matched together in that period.
In stage 2, the two islands meet, figure out that they were in the same match, and trade. The two
islands, however, choose their employment and production levels in stage 1, before observing either
their identities or the terms of their trade. Key economic decisions are thus made in anticipation
of future trading opportunities, and with incomplete information about these opportunities.

Our results do not depend on the precise details of how we model the information structure. To
be concrete, however, we will assume (i) that exogenous information arrives only in stage 1 of each
period and (ii) that every island shares its information with its trading partner once the two meet
in stage 2. The flow of information and the timing of choices are thus as in the following figure.

t" t+1"

!"receive"exogenous"signals"
!"choose"employment/produc7on"
"

!"meet"current"trading"partner"
!"share"informa7on"
!"trade"and"consume"

stage"1" stage"2"

More formally, for each t, we fix a compact set Xt ⊂ Rn and let xit be a random variable drawn
from Xt. This variable represents the signal(s) that island i receives in stage 1 of that period and can
be quite arbitrary. For instance, it may contain information, not only about the TFP of i’s trading
partner, but also about the information that the latter has acquired either by Nature or by past
trades. We will consider specific examples in due course. For now, we only impose a certain form of
symmetry: the signal received by a particular island does not depend per se on either its own “name”
or the precise identities of its trading partners. It follows that all the relevant information that is
available to an island in stages 1 and 2 of period t can be summarized in, respectively, the variables
ωit ∈ Ωt and zit ∈ Zt, which are defined recursively as follows: for all t ≥ 0, ωi,t = (zi,t−1, xi,t)

and zit = (ωit, ωmt(i),t), where mt(i) henceforth denotes i’s match in period t and where zi,−1 ≡ Ai.
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That is, information sets (or “types”, or “local states”) are updated either by the arrival of exogenous
signals in stage 1 or by the endogenous information exchange during stage 2.4

Sentiment shocks. The joint distribution of the signals xit in the population of islands is
allowed to depend on an exogenous random variable ξt drawn from a compact set Ξ ⊂ Rn. This
variable is akin to a sunspot in the sense that it affects information sets without affecting either the
true aggregate fundamentals or any agent’s beliefs about these fundamentals (for the latter are fixed
and common knowledge). As will become clear in due course, we can further refine the notion that
this variable is extrinsic by imposing that variation in ξt does not cause variation in any island’s
belief about the TFP level of either its own current and future trading partners, or of any other
match in the economy. This variable will thus permit us to introduce aggregate variation in beliefs
of equilibrium outcomes without any variation in beliefs of fundamentals. To fix language, we refer
to ξt as a “sentiment shock”. The history of this shock is denoted by ξt ≡ (ξ1, ...ξt).

Asset markets. When two islands meet, they trade their specialized goods, but are not allowed
to trade any financial assets. Given the specification of matching we have assumed, this is without
any loss of generality: since the probability that these islands will meet again the future is zero,
such trading would not take place even if it were allowed. But even if we were to modify the model
so that the aforementioned probability is non-zero, the essence of our results would not change:
such trades would facilitate risk-sharing, but would not eliminate the communication friction.5

Equilibrium definition. The underlying probability space of our model is quite rich, as it
involves the realizations of all matches and signals in the population. For our purposes, however,
it suffices to focus on the joint distribution of the history ξt of the sentiment shock and of the pair
of information sets (ωit, ωjt) of an arbitrary match (i, j). We assume that this distribution is repre-
sented by a continuous probability density function, which we henceforth denote by Pt(ωit, ωjt, ξt).
Next, note that any allocation and price system can be represented with a collection of functions
{nt, kt, yt, wt, rt, pt, p∗t , ct, c∗t }

∞
t=0 such that, for all islands, dates, and possible states, nit = nt(ωit),

kit = kt(ωit), yit = yt(ωit), wit = wt(ωit), rit = rt(ωit), pit = pt(zit), p∗it = p∗t (zit), cit = ct(zit),
and c∗it = c∗t (zit), with zit = (ωit, ωjt) and j = mt(i).6 We require that these functions be contin-
uous; this guarantees that all relevant expectations are well defined and permits us to apply the
contraction mapping theorem to prove existence and uniqueness of the equilibrium. Modulo these
qualifications, a competitive equilibrium is defined in an otherwise conventional manner.

Definition 1. An equilibrium is a collection of continuous allocation and price functions such that
(i) given current prices and expectations of future prices, the allocations are optimal for households
and firms; (ii) prices clear all markets; and (iii) expectations are rational.

4Accordingly, the sets Ωt and Zt are compact and constructed recursively by letting Z−1 = A and Ωt = Zt−1×Xt
and Zt = Ωt × Ωt for any t ≥ 0.

5What would, of course, eliminate the friction is the introduction of complete and centralized markets, for then all
relevant information would get perfectly aggregated (Grossman, 1981). Our notion of extrinsic fluctuations hinges
on departing from this unrealistic extreme, but not on the precise details of how this departure takes place.

6Note that the price functions pt and p∗t must satisfy pt(ω, ω′)/p∗t (ω, ω′) = p∗t (ω
′, ω)/pt(ω

′, ω) for all ω, ω′ ∈ Ωt.
This simply means that any two islands that trade face, of course, the same the terms of trade.
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3 Equilibrium characterization

We now characterize the equilibrium.7 Consider first the consumption decisions of the household
of island i during stage 2 of period t. Let λit denote the Lagrange multiplier on its budget and
normalize the local nominal prices so that λit = 1. Optimal consumption choices satisfy

Uc (cit, c
∗
it) = pit and Uc∗ (cit, c

∗
it) = p∗it. (3)

By trade balance, p∗itc
∗
it = pit(yit − cit). By market clearing, cit + c∗jt = yit. Combining these

conditions with the corresponding ones for i’s trading partner (denoted here by j), and using the
Cobb-Douglas specification of U , we obtain the following:

cit = (1− η)yit, c∗it = ηyjt, and pit = y−ηit y
η
jt. (4)

The interpretation of these results should be familiar from international trade theory: a fraction
1− η of the good of each island is consumed at “home”, while the rest is “exported”; and the terms
of trade increase with the “foreign” supply relative to the “home” one.8

Consider now the labor-supply and labor-demand decisions that the local household and the
local firm take during stage 1 of period t. These are given by the following first-order conditions:

V ′(nit) = wit and wit = Eit [pit] θ
yit
nit
, (5)

where Eit[·] is a short-cut for the rational expectation conditional on ωit. In words, workers equate
the wage with the expected marginal disutility of effort, while firms equate the wage with the
expected marginal revenue product of labor. It follows that the local marginal disutility of labor is
equated with expected local marginal revenue product of labor.

This last finding means that we can understand the local equilibrium of any given island as the
solution to the problem of a (benevolent) local planner that takes as given the local beliefs of terms
of trade. The general equilibrium is then pinned down by requiring that these beliefs are consistent
with the local equilibrium behavior of each island, that is, by requiring pit to satisfy (4).

Proposition 1. The equilibrium production levels and the equilibrium terms of trade solve the
following fixed-point problem:

yt(ω) =
(
θϑAt(ω)K1−θ

) 1
1−ϑ

(∫
Ωt

pt(ω, ω
′)Pt(ω′|ω)dω′

) ϑ
1−ϑ

(6)

pt(ω, ω
′) = yt(ω)−ηyt(ω

′)η (7)

where ϑ ≡ θ
ε ∈ (0, 1), At(ω) identifies the productivity of an island of type ω ∈ Ωt, and Pt(ω′|ω) is

the probability that this island attaches to meeting an island of type ω′ ∈ Ωt.
7The derivations that follow presume that an equilibrium allocation exists and is interior. Interiority follows for

the Inada conditions on V and on the technology; existence is verified along with uniqueness in Theorem 1.
8Island i’s terms of trade are given by Rit ≡ pit

p∗it
(the ratio of “export” to “import” prices). Note then that

Rit =
yjt
yit

= p
1/η
it . Since this is an increasing function of pit. we henceforth interpret pit also as the terms of trade.
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Proposition 1 is an example of the fixed-point relation between equilibrium outcomes and equi-
librium expectations that is endemic to any rational-expectations economy. This fixed point is
particularly simple here, and is essentially static because there is no savings technology or other
intertemporal payoff linkages. However, as illustrated by the dynamic variant that we study in
Section 6, our insights apply more generally.

Interestingly, this fixed point can also be understood as the perfect Bayesian equilibrium of a
fictitious game among the islands. To see this, substitute (7) into (6) to get the following:

log yit = (1− α)fi + αEit[log yjt], (8)

where fi ≡ 1
1−ϑ log

(
θϑAiK

1−θ) summarizes i’s fundamentals, α ≡ η
η+(1−ϑ)/ϑ ∈ (0, 1) is a scalar

that is pinned down by preference and technology parameters, and Eit is an adjusted expectation
operator defined by Eit[X] ≡ H−1 (Eit [H(X)]), with H(X) ≡ exp(ηX), for any random variable
X. It follows that we can represent our economy as a game in which the players are the islands (or
their local planners), their choices are their output levels, their best responses are described by (8),
and the coefficient α is, in effect, the degree of strategic complementarity.

This game-theoretic interpretation reveals an important connection between our micro-founded
business-cycle economy and the class of more abstract coordination games studied by Morris and
Shin (2002) and Angeletos and Pavan (2007): it is as if the islands are trying to coordinate their
production choices. We will revisit this connection in Sections 4.3 and 4.4. For now, we note that
conventional general-equlibrium effects are the sole origin of what looks like strategic interaction: our
model is a Walrasian economy, not a game; the actual agents (firms and households) are infinitesimal
price-takers, not strategic players; and the interdependence of incentives across islands is a by-
product of competitive market interactions, not a symptom of production externalities, market
failures, and the like.9 Indeed, the kind of strategic interdependence that is stylized by (8) is endemic
to the market mechanism: the choices of any given firm or consumer hinge of her expectations of
future market conditions, which in turn hinge on the choices of other firms and consumers.

Putting aside these interpretations, we can show that condition (8) defines a contraction mapping
over the space of continuous functions that map the local state of an island, ωit ∈ Ωt, to its
equilibrium output, yit ∈ R+. The following is then immediate.

Theorem 1. The equilibrium exists and is unique.

The proof of this result rests on the assumption that Ωt is compact. Without this, we cannot
generally guarantee existence. Yet, whenever an equilibrium exists, it has to be unique by the fact
that α ∈ (0, 1). In the closed-form examples we consider in the sequel, Ωt is not compact, but the
unique equilibrium is obtained by guessing and verifying.

9The property that output levels are strategic complements (α > 0) rather than strategic substitutes (α < 0)

hinges on the partial-equilibrium property that an island’s employment and output responds positively to its terms of
trade. This property is hard-wired in our model by the particular preference specification we have assumed, but seems
to be the empirically relevant case even if we move outside our model. Furthermore, even if α had been negative, the
possibility of extrinsic fluctuations would remain. The only difference is that in this case pessimistic beliefs would
stimulate labor supply and economic activity, which seems counterfactual.
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4 Extrinsic Fluctuations

We now proceed to study whether the equilibrium can exhibit extrinsic fluctuations, that is, whether
economic outcomes can vary with the sunspot-like shock ξt.

As we show below, answering this question does not require one to know the precise details
of the information structure. Rather, it suffices to inspect the endogenous expectations that the
different islands end up forming about one another’s level of economic activity. With this in mind,
we define perfect communication as follows.

Definition 2. The economy exhibits perfect communication if and only if the following property
holds along the unique equilibrium: for any period t, any state of nature, and any given match, the
two islands within that match share the same belief about each other’s output levels.

Accordingly, we find it useful to introduce the following aggregate measure of the relevant
expectations. Let Eit[log yjt] measure an island’s forecast of the output of its trading partner and
let logBt be the average of these forecasts in the cross-section of islands. We henceforth interpret Bt
as a proxy of the average optimism or pessimism in the economy.10 Finally, we measure aggregate
output, Yt, by the logarithmic average of local output in the cross-section of islands.11

We can then state our key result as follows.

Theorem 2. Along the unique equilibrium, aggregate output Yt and the average expectation Bt can
vary with the extrinsic shock ξt if and only if communication is imperfect.

In the remainder of this section we prove this theorem in two steps, starting with the “only if”
part and then proving the “if” by specific example. In the next section we then proceed to discuss
the broader insight and its empirical content.

Perfect communication. Since each island knows its own output, if two islands have reached
the same beliefs about their output levels, they must know each other’s output. It follows that we
can drop the expectation operator in condition (8) and solve for the equilibrium output of the two
islands as a function of the local fundamentals. Aggregating across islands then gives the following.

Proposition 2. When communication is perfect, Yt and Bt are invariant to ξt. Furthermore,

log Yt = logBt = κ+ 1
1−ϑ ā (9)

where ā ≡
∫

logAFA(A)dA measures aggregate TFP and κ ≡ 1
1−ϑ log(θϑK1−θ).

To reach this result, we have effectively imposed that the islands reach common knowledge of
each other’s output levels, which in turn implies that they also reach common knowledge of each
other’s TFP levels. This property can be relaxed without affecting the essence of the result. In

10Another plausible proxy is the average forecast of aggregate output. The results we present in the sequel do not
hinge on which of the two proxies one uses for empirical purposes; see footnote 15.

11Whenever we refer to the cross-sectional average of some island-specific variable, we mean the expectation of that
variable conditional on the aggregate state. For example, log Yt ≡

∫
log yitdi ≡

∫
yt(ω)P(ω|ξt)dω.

9



particular, to get the above result it suffices to impose that logEitpit = − logEjtpjt. Intuitively, this
means that whenever an island expects its terms of trade to improve, its partner expects the exact
opposite. As long as this is true, the joint output of the two islands continues to be pinned down
by their fundamentals, even though the islands may have not reached common knowledge of them.
Finally, the above result extends directly to the case of aggregate TFP shocks, irrespectively of the
information that the islands might have about these shocks.12 These facts underscore that the key
issue is the beliefs that agents form about the relevant equilibrium outcomes (output levels or terms
of trade), not the information they may, or may not, have about one another’s fundamentals.

Imperfect communication. We now show that allowing for heterogeneity in the aforemen-
tioned kind of beliefs opens the door to extrinsic fluctuations. The example we use for this purpose
is intentionally hard-wired; it also rules out any persistence in equilibrium beliefs by imposing that
the sentiment shock is i.i.d. over time.13 A discussion of the broader insight follows in Section 5;
an example with richer belief dynamics is developed in Section 6.

The land endowment is normalized to K = 1. The cross-sectional distribution of TFP is log-
normal: logAi ∼ N (0, σ2

A), σA > 0. The extrinsic shock is i.i.d Normal over time: ξt ∼ N (0, σξ),
σξ > 0. Finally, the exogenous signal received by i is given by the pair xit = (x1

it, x
2
it), where

x1
it = logAj + u1

it and x2
it = x1

jt + ξt + u2
it,

where j = m(i, t) is i’s trading partner, and where u1
it ∼ N (0, σ2

u1) and u2
it ∼ N (0, σ2

u2) are
idiosyncratic noises, with σu1, σu2 > 0. Note that x1

it represents a private signal that i receives
about j’s TFP, while x2

it represents a private signal that i receives about j’s information about its
own TFP. The shock ξt then introduces an aggregate noise component in the second type of signals.

Notice here that the posterior belief of island i about the TFP of its trading partner is pinned
down by the signal x1

it alone, which is itself invariant to the sentiment shock ξt. It follows that ξt
does not affect beliefs of either aggregate or idiosyncratic fundamentals. Yet, as we verify below, ξt
triggers aggregate fluctuations, in both aggregate output and forecasts of economic activity.

Proposition 3. Consider the equilibrium of the economy described above.
(i) log Yt and logBt are increasing linear functions of ξt.
(ii) There exist scalars φ0, ψ0 ∈ R and φa, φ1, φ2, ψa, ψ1, ψ2 ∈ R+ such that, for all (i, t, ωit),

log yit = φ0 + φa logAi + φ1x
1
it + φ2x

2
it

Eit log pit = ψ0 − ψa logAi + ψ1x
1
it + ψ2x

2
it

Part (i) characterizes the aggregate behavior of the economy: variation in ξt triggers positive
co-movement in aggregate economic activity, as measured by Yt, and in the average sentiment, as
measured by Bt. Part (ii) reveals the micro-level behavior that rests beneath these fluctuations: an

12In particular, if we let F be time-varying and relax the assumption that the latter is common knowledge,
Proposition 2 continues to hold as soon as we replace the constant ā with the corresponding time-varying āt.

13This explains why the equilibrium aggregates we characterize in Proposition 3 below are functions of only the
current shock ξt as opposed to its entire history.
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increase in either x1
it or x

2
it leads island i to expect an improvement in its terms of trade, which

explains why yit increases with either of these signals, and thereby also with ξt.
To build intuition for this result, suppose for a moment that the output of island i depended

only on local TFP. It would then be optimal for island j to condition its own output, not only on
its own TFP, but also on x1

jt: a higher x1
jt signals that i’s output is likely to be higher and hence

that the demand for j’s product is also likely to be higher (equivalently, that its terms of trade
will improve). But then it would become optimal for island i to raise its own production when it
observes either a higher x1

it or a higher x2
it, for either observation would now signal that island j

is likely to produce more and hence that the demand of i’s product is likely to be higher. This
explains why an island’s expected terms of trade and its output increase with either signal.

The above intuition is based on recursive reasoning—equivalently, on iterating the contraction
mapping behind Propositon 1. While illuminating, this is not strictly needed. A simpler intuition
emerges once one focuses directly on the fixed point. In equilibrium, either of the two signals serves
as a signal of the likely level of demand. The fact that one signal is intrinsic while the other is
extrinsic is irrelevant to the decisions of firms and households. Rather, all that matters for them
is simply that either signal contains “news” about the level of economic activity in other islands,
and hence about the likely level of demand for the local product. Whenever a positive innovation
occurs in ξt, all islands receive “good news” of the extrinsic type. For firms, this means an increase
in expected marginal returns, which motivates them to expand their production and raise their
demand for labor and land. In equilibrium, this stimulates employment and output, while also
raising the wage and the rental rate (and thereby land prices). All in all, the economy ends up
experiencing a boom that may appear self-fulfilling in the eyes of an outside observer.14

The insight that emerges is more general than the example. Since the aggregate fundamentals
are fixed, any boom or recession in our model necessarily reflects a random shift in one island’s
optimism or pessimism about another island’s employment and production. The particular infor-
mation structure we have assumed in the preceding example in order to engineer such random shifts
in beliefs of economic activity is not meant to be realistic; it is only a simple illustration of the
broader insight. We elaborate on this point in the sequel.

5 Discussion and broader insights

In this section we elaborate on the generality, applicability, and empirical content of our insights.
First, we explain how our extrinsic fluctuations can be understood as the symptom of aggregate
variation in higher-order beliefs of exogenous fundamentals. Next, we discuss the theoretical and
empirical reasons that motivate us to side-step this game-theoretic representation and, instead,
interpret our sentiment shocks as shocks to first-order beliefs of endogenous economic outcomes.
Finally, we discuss the modeling role that trading frictions play in our environment.

14Note here how our theory formalizes news of economic activity in terms of extrinsic forces rather than news about
fundamentals. We revisit this point, which connects to the recent work on “news shocks”, in Section 7.
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Higher-order beliefs vs sentiments. Consider the following generalization of the example
studied in the previous section. Fix a finite H > 1 and suppose that the signal xit that is received
by island i in period t is given by xit = (x1

it, x
2
it, ..., x

H
it ), where

x1
it = logAj + ε1

it and xhit = xh−1
jt + εhit ∀h ∈ {2, ...,H}

That is, islands receive signals of the signals... of the signals of others. Suppose further that the
error terms εhit have both idiosyncratic and aggregate components: εhit = ξht + uhit, where ξ

h
t is the

aggregate component and uhit is the idiosyncratic one. These components are uncorrelated across h
and t, as well as with one another, and are drawn from Normal distributions with zero means and
variances (σhξ )2 and (σhu)2, respectively. Finally, to contrast our sentiment shocks to conventional
technology shocks, let us also introduce aggregate TFP shocks: logAit = ai + āt, where ai is a
Normally distributed island-specific fixed effect and āt is a commonly-known aggregate shock.

Consider now the implied hierarchy of beliefs within a particular match (i.e., i’s belief of Aj , i’s
belief of j’s belief of Ai, and so on). Variation in ξht causes variation in beliefs of order h and above,
but not in beliefs of order lower than h. Each of these shocks therefore has a distinct effect on the
hierarchy of beliefs about the fundamentals. Nevertheless, as shown in the next proposition, these
shocks are completely indistinguishable when it comes to equilibrium behavior: the entire aggregate
variation in macroeconomic outcomes and in expectations of economic activity is spanned by a
single composite of all these shocks, which we denote below by ξ̄t. It is then only this composite
shock that we wish to think of as the proper measure of what a “sentiment shock” is.

Proposition 4. Consider the equilibrium of the economy described above. There exist scalars Φ > 0

and Ψ > 0 such that

log Yt = Φ āt + Ψ ξ̄t and logBt = Φ āt + ξ̄t (10)

where ξ̄t is a linear combination of (ξ1
t , ..., ξ

h
t ).

To understand this result, recall from condition (8) that the equilibrium output of each island
depends only on its first-order beliefs of the level of output in other islands—not on the details of
the information structure upon which these beliefs are formed. It follows that the entire extrinsic
variation in aggregate outcomes can be captured in a single random variable ξ̄t, which summarizes
the combined impact of all the exogenous shocks {ξht }Hh=0 on either aggregate output, Yt, or the
average expectation, Bt. One can thus think of ξ̄t as the sentiment shock.

This result clarifies two points. First, there are multiple ways to shock the information structure
so as to obtain the extrinsic fluctuations we are interested in: any of the ξht shocks serves our goals.
And second, what matters for the observables of the theory is only the equilibrium variation in
the first-order beliefs of economic activity. The precise details of how the variation in this kind
of expectations is engineered by certain signals, or by shocks to, say, tenth-order beliefs of one
another’s TFP, is neither of particular interest to us, nor of any empirical relevance.

Indeed, suppose that an “econometrician” views the available data on aggregate employment
and output, perhaps along with surveys of economic forecasts, through the lens of our model. This
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data may well permit the econometrician to identify separately the composite extrinsic shock ξ̄t

from the technology shock āt. For example, the technology shock āt can first be identified by data
on the Solow residual, and the composite sentiment shock ξ̄t can then be identified by the residual
variation in observed output. Survey evidence on market expectations could the be used either as
alternative source of identification, or for testing the model.15 By contrast, the information structure
and the hierarchy of beliefs about the underlying fundamentals are not uniquely identified: there
are multiple specifications of these objects that give rise to exactly the same joint distribution for
equilibrium expectations and equilibrium outcomes.16

The insight that emerges here is quite general: the empirical content of any rational-expectations
model rests exclusively on the joint distribution of equilibrium expectations and equilibrium out-
comes. Proposition 4 illustrates this insight in a particularly stark way: a single number, the
composite shock ξ̄t, happens to summarize the entire aggregate extrinsic variation in equilibrium
expectations. Clearly, this stark property hinges on a number of simplifying assumptions that are
embedded in the micro-foundations of our model.17 In richer models, one often needs a larger state
space in order to keep track of the equilibrium dynamics. Yet, the broader insight survives: for ap-
plied purposes, the key issue is the equilibrium variation in first-order beliefs of economic outcomes,
not the underlying belief hierarchies.

These points explain why we insist to interpret our “sentiment shocks” as extrinsic movements
in (first-order) expectations of economic activity rather than as shocks to higher-order beliefs of
fundamentals. To reinforce this interpretation, it is useful to study a variant model that departs
from rationality in order to introduce exogenous shocks to this kind of expectations.18 Thus suppose
that an island’s forecast of its trading partner’s output obeys the following ad hoc law of motion:

Êit log yjt = log y∗jt + ζt, (11)

where log y∗jt denote the equilibrium output levels that obtain in the perfect-information, rational-
expectations benchmark19 and ζt is an exogenous shock that perturbs the agents’ expectations away
from this benchmark. One may thus think of ζt as irrational shifts to “market psychology.”

15The most natural empirical counterpart for the type of expectations that matter in the theory seems to be the
forecasts that firms make about their own sales (or demand). In the absence of such data, one could also proxy Bt
by the average forecast of aggregate output. Indeed, as shown in the proof of Proposition 4, these two distinct kinds
of forecasts are positively correlated within our model, which justifies this point.

16Here, and throughout the paper, we use the term “equilibrium expectations” as synonymous to “first-order beliefs
of endogenous economic outcomes”. This is consistent with the spirit of the entire rational-expectations literature.

17First, there is no capital and matching is pairwise, guaranteeing that the only first-order beliefs that matter are
those that each island forms about the contemporaneous output of a single other island. Second, preferences are
homothetic and technologies are CRS, implying the corresponding reduced-form game features linear best responses.
Third, the information structure is Gaussian, so that any belief (probability distribution) can be captured by its mean
and its variance, and all variances are held constant, so that ultimately only means vary. Finally, all the exogenous
shocks are i.i.d. over time, ruling out complicated learning dynamics as in, say, Townsend (1985).

18Expectations of economic outcomes are themselves endogenous in any rational-expectations context. If one wishes
to introduce exogenous shifts to this kind of expectations, some departure from rationality is inevitable.

19For the purposes of the present exercise, y∗jt is merely a particular function of the exogenous fundamentals
(Ait, Ajt), not an endogenous element of the equilibrium.
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Proposition 5. Consider the equilibrium of the non-rational-expectations variant described above.20

There exist scalars Φ > 0 and Ψ > 0 such that

log Yt = Φ āt + Ψ ζt and logBt = Φ āt + ζt

Furthermore, the scalars Φ > 0 and Ψ > 0 are the same as those in Proposition 4.

The present variant is therefore observationally equivalent to the example we studied in the
beginning of this section. But whereas the present variant violates rational expectations, our earlier
example did not. In this sense, our notion of sentiment shocks provides an exact rationalization of
random, and seemingly irrational, shifts in expectations of economic activity.

Trading frictions and extrinsic volatility. By impeding the ability of economic agents to
coordinate their beliefs and actions on those that would have obtained in the frictionless Arrow-
Debreu benchmark, trading frictions permit us to accommodate the Keynesian notion that recessions
are the product of some kind of “coordination failure”. This is similar in spirit to Diamond (1982).
But whereas Diamond formalized the aforementioned notion by tying trading frictions to thick-
market externalities and multiple equilibria, we achieve the same objective merely by letting trading
frictions impede communication along the unique equilibrium of the economy.

Trading frictions also permit us to sustain aggregate volatility in equilibrium outcomes without
any aggregate shocks to fundamentals such as preferences and technologies. While the latter prop-
erty is not strictly needed,21 it helps sharpen our theoretical contribution relative to the pertinent
literature; it also adds a degree of flexibility for quantitive purposes.

To elaborate on this last point, consider the class of games studied in Morris and Shin (2002) and
Angeletos and Pavan (2007); the observations we make below extend more generally to the pertinent
macroeconomics literature on informational frictions. In this class of games, the equilibrium can be
represented as the fixed point to the following relation:

yi = (1− α)Ei[A] + αEi[Y ] (12)

where yi is the action of agent i, Y is the corresponding aggregate, A is the aggregate payoff-relevant
fundamental, and α ∈ (0, 1) is a scalar parameterizing the degree of strategic complementarity.22

The literature then proceeds by specifying a particular information structure—sometimes exogenous,
sometimes endogenous—and characterizing the resulting equilibrium. But even if we do not spell
out the details of the information structure, we can obtain a tight upper bound on the equilibrium
level of aggregate volatility as follows. First, aggregate condition (12) across i and iterate over the

20Since beliefs are hereby treated as exogenous, the definition of the equilibrium must be adjusted accordingly: an
equilibrium is now a collection of allocations that are optimal for the households and the firms taking as given the
aforementioned, exogenously-specified, beliefs, along with the wages and prices that clear the various markets.

21In fact, if we add unobservable aggregate shocks to fundamentals, we can engineer additional extrinsic volatility
from higher-order uncertainty about these shocks.

22The precise interpretation of these variables varies from application to application. For example, the relevant
fundamental is an aggregate monetary shock in Woodford (2003), Mankiw and Reis (2002), and Mackowiak and
Wiederholt (2009), whereas it is an aggregate TFP shock in Angeletos and La’O (2009) and Lorenzoni (2009).
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expectation operator to obtain the the equilibrium aggregate action as a weighted average of the
hierarchy of beliefs about the aggregate shock:

Y = (1− α)
∑∞

h=1
αh−1Eh[A] (13)

where Eh[.] denotes the h-th order average forecast. Next, recall that the variance of the forecast of
any random variable is necessarily no larger than the variance of the variable itself. It follows that
V ar(Eh[A]) ≥ V ar(Eh+1

[A]) for all h. Using this fact along with (13), we infer that

V ar(Y ) ≤ V ar(A).

That is, the aggregate volatility in economic activity is bounded from above by the aggregate
volatility in fundamentals. As the latter vanishes, the former also vanishes.

These facts are true no matter whether the macroeconomic volatility is driven by actual changes
in the fundamentals (say, TFP shocks) or by noise in signals about them (“noise shocks”). Fur-
thermore, the upper bound is attained, namely V ar(Y ) = V ar(A), when the fundamentals are
perfectly known. In practical terms, this means that introducing incomplete information about
aggregate shocks to technology or other fundamentals is likely to be counter-productive on its own
right if the ultimate goal is to explain the observed business cycle with smaller such shocks.

Our theory offers a simple resolution to this conundrum. Contrast condition (8) in our model
with condition (12) above. The key formal difference is that an agent’s best response hinges on
his forecast of the idiosyncratic action of a random trading partner rather than his forecast of the
aggregate action.23 As a result, even if there are no aggregate shocks to fundamentals, we can
always sustain an arbitrarily high level of aggregate volatility by (i) assuming sufficiently large
idiosyncratic risk and (ii) engineering enough correlation in the agents’ beliefs of their idiosyncratic
economic outcomes. The precise quantitative value of this added flexibility remains to be explored.

6 Communication, Contagion, and Boom-and-Bust Cycles

Our fluctuations hinge on the existence of correlated movements in agents’ beliefs of economic
activity. In our preceding analysis, this correlation was hard-wired in exogenous signals. More
naturally, such correlation may emerge as the by-product of how agents communicate through, say,
the markets, social networks, or the media—communication means correlation.

We illustrate this idea in this section by considering an example in which an exogenous sentiment
shock hits only a few agents in the beginning, but then spreads endogenously in the rest of the
economy as these agents trade and communicate with other agents. The resulting belief dynamics
resemble the spread of fads and rumors and give rise to phenomena akin to boom-and-bust cycles.24

23Another difference between (8) and (12) is that the idiosyncratic fundamental Ai, or fi, shows up in (8) instead
of the aggregate fundamental A in (12). This difference, however, is not crucial on its own right.

24To be clear, the particular aspect of boom-and-bust phenomena that we seek to accommodate in this section
is the underlying waves in market expectations, not the interplay between financial markets and the real economy.
Adding such an interplay—as, e.g., in La’O (2010)—could enrich the propagation of the belief waves we document.
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Setup. Consider the following variant of our model. At t = 0, the islands are split into two
equally-sized groups. TFP is the same within a group but differs across groups. Think of these
groups as “North” and “South”, let AN and AS be the respective TFP levels, and assume that these
are i.i.d. draws from a log-Normal distribution.

Each of these two groups is then split into two subgroups. Islands in the first subgroup observe
nothing more than their own productivities; we refer to them as “uninformed”. Islands in the second
subgroup, which we refer to as “partially informed”, get to see two additional signals. Similarly as
in Section 4, these signals are given by x1

N = logAS + εN and x2
N = x1

S + ξ for the North, and
x1
S = logAN + εS and x2

S = x1
N + ξ for the South, where εN , εS and ξ are all Normally distributed,

independent of one another, and independent of the TFP draws. The initial fraction of partially
informed islands is given by χ ∈ (0, 1/2); the rest are uninformed.

The exogenous aggregate state is summarized in s̃ = (AN , AS , εN , εS , ξ). Once Nature draws
s̃ at t = 0, no other aggregate shock ever hits the economy, and no further exogenous information
ever arrives—islands learn only in an endogenous manner, as they meet and “talk” to one another.
The entire dynamics we document below are thus the sole product of this kind of communication.

To obtain a closed-form solution of the equilibrium, the random matching is assumed to take
the following form. First, an uninformed island can meet either a similarly uninformed island from
its own productivity group, in which case it learns nothing, or a partially informed one from it own
productivity group, in which case it learns the latter’s information and hence turns into a partially
informed island next period. Second, a partially informed island can meet either an uninformed
one from its own productivity group, in which case it learns nothing itself, or a partially informed
one from the other productivity group, in which case they both learn the entire state s̃ and turn
into a third category, which we call “fully informed”. Third, a fully informed island can only meet
with a fully informed from its own productivity group. And finally, each island knows beforehand
(in stage 1) whether it is matched with an island of the same or different information category.

This structure defines a three-step “information ladder”. The uninformed islands are at the
bottom, the partially informed in the middle, and the fully informed at the top. In each period,
an island ascends at most one step in this ladder, depending on the information of its match.
Eventually, all islands reach the top, but this takes time. The dynamics we document below are a
manifestation of how the population ascends this ladder.

Results. It is easy to check that the only islands whose employment and production choices are
sensitive to the initial sentiment shock, ξ, are partially informed islands that expect to be matched
with other partially informed islands. These islands behave in essentially the same way as in the
example of Section 4. But, whereas in this earlier example all the islands behaved in that fashion,
here only a fraction does. Furthermore, this fraction evolves over time, due to the communication
that takes place as islands meet and trade.

To fix ideas, we henceforth focus on positive realizations for ξ, which translates to a wave of
optimism. We accordingly refer to the partially-informed islands as “exuberant” and let µt be the
fraction of such islands in the population.
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Figure 1: Contagion and boom-and-bust cycle. The left panel illustrates the response of aggregate
output to a positive sentiment shock (solid line), along with that of the average of the beliefs that each
island holds about either the output of its trading partner (dashed line) or aggregate output (doted line).
The right panel illustrates the underlying population dynamics.

Proposition 6. (i) The economy experiences a “fad”: the fraction of “exuberant” islands, µt, initially
increases, but later on falls and eventually converges to zero.

(ii) There exists a scalar Φ > 0 such that the dynamic response of aggregate output to the initial
sentiment shock is given by

∂ log Yt
∂ξ

= Φµt, ∀t.

These results are illustrated in Figure 1. The left panel documents the dynamic response of
aggregate output, and of the islands’ forecasts, to the sentiment shock. The right panel reveals the
underlying population dynamics (i.e., the evolution of the distribution of islands along the afore-
mentioned information ladder). It is evident that the dynamics of actual and expected output track
the dynamics of the fraction of “exuberant” islands, which is first increasing and then decreasing.
A similar result holds for wages and employment, as well as for asset (land) prices, which are, in
effect, forecasts of future economic activity. The economy thus experiences a “wave of optimism”
that builds up force for a while, only to fade away later on—there is a boom followed by a bust.

During the boom phase, more and more islands receive “good news” about the level of economic
activity in other islands, and hence about their terms of trade. For those islands that were born
exuberant at t = 0, this news arrives exogenously, from Nature. For those islands that become exu-
berant in any subsequent period, these news arrive endogenously, as these islands meet islands that
were already exuberant. Finally, as time passes, more and more islands become fully informed. The
bust phase is thus associated with a “correction” in previously exuberant beliefs. Communication
causes the fraction of exuberant islands first to increase and then to fall.

The contagion effects behind these population dynamics are reminiscent of those discussed, inter
alia, in Shiller (2005) and Akerlof and Shiller (2009): “irrational exuberance” is said to spread in
the economy as one agent hears “stories” from other agents. In fact, our dynamics are very similar
to those found in Burnside, Eichenbaum, and Rebelo (2011), in a study of the recent boom-and-
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bust cycle in housing prices. But whereas these authors model the contagion between different
agents as the product of behavioral (irrational) heuristics, here we show that it may be merely the
symptom of the (imperfect) communication that takes place via the market mechanism and other
social interactions. Exuberance then spreads because of rationality.

Putting aside any interpretation, three additional remarks are worth making regarding the me-
chanics of our theory, as illustrated in the above example. First, although our theory—like any other
theory—requires an exogenous initial trigger for fluctuations in endogenous economic outcomes to
kick off, this trigger may rest in a small fraction of the population and nevertheless give rise to a
pervasive wave of optimism or pessimism in the entire economy. Second, as long as communication
is imperfect, more communication may actually amplify our fluctuations: markets, macroeconomic
statistics, the media, and the blogosphere may serve as channels of contagion. Finally, to the extent
that communication gets finer and finer with time, equilibrium beliefs must eventually converge,
which guarantees that the impact of any given extrinsic shock eventually vanishes. The fluctuations
we formalize in this paper therefore embed, not only a natural propagation mechanism, but also a
natural mean-reverting mechanism: booms must be followed by busts, recessions by recoveries.

7 A Quantitative Exploration

Although our contribution is primarily methodological, we also wish to illustrate its quantitative
potential. Towards this goal, we consider a variant of the RBC model that replaces the conventional
notion of technology shocks with our notion of sentiment shocks.

Setup. To accommodate capital accumulation, we reinterpret the specialized goods that are
traded across the islands as intermediate inputs into the production of a local final good, which in
turn is used either for consumption or for investment. Trade takes place in terms of these inputs.

The local resource constraint of island i (equivalently, the market-clearing condition for the final
good) is given by cit + iit = yit, where cit is consumption, iit is gross investment, and yit is the
output of the local final-good sector. Capital accumulates according to the following law of motion:

ki,t+1 = (1−∆ (eit)) kit + iit,

where kit denotes the local capital stock, ∆ (eit) is the rate of capital depreciation, and eit is the rate
of capital utilization. As in King and Rebelo (2000), capital depreciation is an increasing convex
function of capital utilization: ∆(e) = δ

µe
µ, with δ > 0 and µ > 1.25

The intermediate-good sector makes its input and production choices prior to observing the
relevant terms of trade; this introduces essentially the same type of terms-of-trade uncertainty as
in our baseline model. The production of the local intermediate input is given by

qit = Ai(eitkit)
1−θ(nit)

θ,

25By introducing variable capital utilization, we are able to generate procyclical labor productivity despite the
absence of aggregate technology shocks. If we remove this feature, labor productivity becomes counter-cyclical in
response to sentiment shocks, but the rest of the cyclical properties of the model are not seriously affected.
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where nit denotes local employment. Profits are given by πqit = pitqit − witnit − (rit + ∆(eit))kit,

where pit is the price of the local intermediate good, wit is the local wage, and rit is the local rental
rate of capital net of depreciation costs.

The production of the final good is given by

yit = 1
ζ (hit)

1−η (h∗it)
η

where hit and h∗it are the “home” and “foreign” intermediate inputs and ζ ≡ (1 − η)(1−η)ηη is a
constant. Profits are given by πyit = yit − pithit − p∗ith∗it; in equilibrium, profits are zero because the
technology is constant returns to scale and the final producers adjust production after observing
all prices. Market clearing for intermediate inputs imposes qit = hit + h∗jt, where j stands for i’s
trading partner during period t.

Finally, consider the representative household of island i. Its preferences are standard:

Ui =
∞∑
t=0

βt [U(cit)− V (nit)] .

where U(c) = 1
1−γ c

1−γ , V (n) = 1
εn

ε, γ > 0, and ε > 1. Its budget constraint is given by

cit + iit = πyit + πqit + witnit + ritkit.

Characterization. As in our baseline model, a partial characterization of the equilibrium can
be obtain without spelling out the details of the information structure.

Proposition 7. Any equilibrium allocation solves the following system:

V ′(nit) = θζEit
[
U ′(cit)

yit
nit

∣∣∣∣ωit]
∆′ (eit) eit = (1− θ) ζEit

[
U ′(cit)

yit
kit

∣∣∣∣ωit]
U ′(cit) = βEit

[
U ′(ci,t+1)

(
1 + (1− θ) ζ µ

1+µ

yit+1

kit+1

)∣∣∣∣ zit]
cit + kit+1 = yit + (1−∆ (eit))kit

yit = q1−η
it qηjt

qit = Ait(eitkit)
1−θ(nit)

θ

The top four conditions should be familiar: they are the optimality conditions for labor and
capital utilization, the Euler condition, and the resource constraint. The remaining two conditions
specify the production levels of the various goods. Compared to the standard RBC model, the only
essential novelties are (i) that the income of each island depends on the production choices of another
island, through the relevant terms-of-trade effect; and (ii) that expectations are heterogeneous.

The key mechanism thus remains the same as in our baseline model: booms and recessions are
driven by extrinsic shocks to beliefs about “demand” (about the output of other islands). Interest-
ingly, however, these fluctuations now manifest, not only in employment, but also in investment
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and capital utilization. What is more, as all these decisions are infinitely forward-looking, economic
activity in one period may respond to extrinsic belief shifts about economic activity far in the
future—it is as if the islands are playing a dynamic game in which an island’s optimal employment,
consumption and investment choices during one period depend on the expected output of its likely
trading partner, not only in the current period, but also in all future periods.

Priors and sentiments. While the aforementioned characterization of the equilibrium is
conceptually straightforward, a numerical solution remains challenging in the case of persistent
sentiment shocks, because of an infinite-regress problem similar to that in Townsend (1983). To
bypass this challenge, we introduce a heterogeneous-prior variant of the information structure that
permits us to embed persistent belief shocks while ruling out complicated learning dynamics.26

Under this variant, each island receives a single signal about its trading partner, given by

xit = logAjt + εit, (14)

where εit is an error term. The islands continue to share a common prior about the underlying
fundamentals, but have heterogeneous priors about these error terms. In particular, each island
believes (i) that its own error is unbiased, drawn from a Normal distribution with zero mean and
variance σ2

ε > 0, and (ii) that the errors of all other islands are biased, drawn from a Normal
distribution with the same variance but a mean equal to ξt, where ξt follows a Markov process.

This variable plays the same modeling role as in the preceding analysis: a positive innovation
in ξt raises the islands’ higher-order beliefs of one another’s fundamentals without affecting the
corresponding first-order beliefs. The key change with this variant is therefore the computational
gain: if we assume that ξt is commonly known to all agents, then (see Appendix B) the log-linearized
dynamics of the economy can be summarized in a linear policy rule Γ : R2

+ → R+ such that

K̃t+1 = Γ(ξt, K̃t).

where the tilde indicates log-deviation from steady state. This is akin to the policy rule of the
standard RBC model, except that the conventional TFP shock has been replaced by our sentiment
shock. The numerical implementation thus becomes straightforward.

Numerical results. We work at quarterly frequency and set β = .99, γ = 2, θ = .65, ε = 2,

and µ = 2; these values are consistent with King and Rebelo (2000). Next, we assume that ξt
follows an AR(1) process: ξt = ρξt−1 + νt, where ρ ∈ (0, 1) and νt is i.i.d. Normal with mean zero
and variance σ2

ξ . We set ρ = .98, which builds strong persistence in our fluctuations. The remaining
parameters (η, σA, σε and σξ) then matter for aggregate dynamics only through a single composite
coefficient, which itself scales up and down all aggregate outcomes. Exploiting this property, we fix

26This variant is in tension with the strong version of rational expectations, which requires that the prior of each
agent coincides with the objective truth. Before opting for this variant, we thus experimented with few alternatives
that maintained the common-prior assumption. One was to guess a low-dimensional state space as in Woodford
(2003). Another was to let the shock become common knowledge with a lag of T ≥ 2 periods. Unfortunately, neither
of these attempts worked out. A remaining possibility which we did not explore is to restrict the state space and
search for a “myopic equilibrium” as in Krusell and Smith (1998).
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std.�dev corr(X,Y) std.�dev corr(X,Y)

Y 1.67 1.00 1.67 1.00

N 1.41 1.00 1.43 0.87

C 1.21 0.98 1.27 0.80

I 4.14 0.96 5.48 0.82

Y/N 0.26 0.99 0.82 0.51

LW 4.95 Ͳ1.00 4.98 Ͳ0.82

The�Model U.S.�Data

Table I. This table documents the business-cycle statistics of our model along with those of the US economy.
All quantities are in quarterly frequency and HP-filtered. See Appendix B for details.

η = 1 and σa = σε = σξ = σ, and then set σ = 0.038, which induces the variance of the HP-filtered
aggregate output in our model to match the corresponding moment in the US data.27 We then
simulate the dynamics of the economy and report the model’s HP-filtered business-cycle statistics
in Table I, along with the corresponding statistics for the US economy.

Given that the volatility of output is matched by design, the question of interest is whether
our model also matches the relative volatility and the co-movement of all the other macroeconomic
variables. As evident in Table I, our model is quite successful in this respect. Sentiment shocks
cause employment, consumption, investment, and labor productivity to co-move with output, as in
actual business cycles. Furthermore, the quantitative effects are in the ballpark of the actual data.

Relative to the standard RBC model, we do worse in that we generate little pro-cyclicality
in labor productivity. This is simply because we have ruled out technology shocks.28 But we
also do better in that we match the observed counter-cyclicality of the labor wedge, which is an
important feature of the data (Chari, Kehoe and McGrattan, 2007; Shimer, 2009).29 To understand
this property, consider the stripped-down version of our model where capital and utilization are
fixed. As a negative sentiment shock causes firms to turn pessimistic about their profitability, labor
demand and employment fall. As this happens, the average labor productivity actually goes up.
Standard business-cycle accounting will thus register the resulting recession as an increase in the
implicit tax on labor. By the same token, the recession may manifest as an increase in the measured
output gap—and can thus be interpreted as the symptom of “insufficient aggregate demand”.

It is also worth contrasting the cyclical properties of our theory with those of the literature on
“news shocks”. Bound by conventional DSGE practice, this literature formalizes news of economic
activity as news of future technology. In so doing, it faces a significant difficulty in generating the

27Our calibration strategy is consistent with standard DSGE practice, where the various shocks are estimated so
that the model matches the data.

28If capital utilization were fixed, labor productivity would have been countercyclical, due to diminishing returns;
employment, consumption and investment would, however, remain procyclical. Also, note that the procyclicality of
labor productivity in the data has actually vanished during the last two decades (Gali and van Rens, 2010). If we
focus on this period, the quantitative performance of our theory improves.

29The wedge is defined, in logs, by LWt ≡ log
[
U′(Ct)
V ′(Nt)

θ Yt
Nt

]
, so that a positive wedge maps to a tax on labor.
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observed joint procyclicality in employment, consumption, and investment (Beaudry and Portier,
2006). The usual fixes involve exotic preferences (Jaimovich and Rebelo, 2009), a suboptimal
monetary policy that responds to noise by stimulating aggregate demand (Lorenzoni, 2010), or some
combination of the two (Christiano, Ilut, Motto, Rostagno, 2008). By contrast, our theory permits
one to formalize news of economic activity as extrinsic forces that induce optimistic beliefs about
both current and future firm profitability and consumer income. This helps stimulate employment,
consumption and investment in a similar fashion as a conventional technology shock, which explains
why our theory has no serious difficulty in capturing the observed co-movement in these variables.

8 Concluding remarks

Are business cycles and fluctuations in asset markets driven by changes in preferences and tech-
nologies? Or are they driven by “animal spirits”, “market psychology”, and self-reinforcing waves of
optimism and pessimism?

This question is not just an empirical matter. To address it, one must first propose a precise
theory that formalizes the popular but vague notions of “animal spirits” and the like; to paraphrase
Lucas (2001), one needs equations that explain what these words mean.

This paper makes a contribution in precisely this direction: we develop a novel formalization of
extrinsic movements in market expectations, one that requires neither a departure from rationality
nor the introduction of multiple equilibria.

To achieve this, we relax the conventional assumption that all agents share the same beliefs
about the state of the economy. We then show that, once this is true, economic outcomes and
market expectations may co-move in response to a certain type of extrinsic shocks which we call
“sentiments”. These shocks are akin to sunspots, but operate in unique-equilibrium models. They
rationalize random, and seemingly inexplicable, shifts in the optimism or pessimism that economic
agents may hold about one another’s choices and thereby about future market conditions.

To outside observers, the resulting fluctuations might look as “self-fulfilling”, or as the product
of mysterious “demand shocks” that are disconnected from preferences and technologies. In this
respect, they have a genuinely Keynesian flavor. They are nevertheless consistent with the neo-
classical paradigm, resting merely on the heterogeneity of people’s expectations and the consequent
misalignment of their choices.

The combination of these points underscores what, in our view, is the relative strength of our
theory. Not only is our theory capable of matching key business-cycle facts, as illustrated in the
previous section; it also helps accommodate within the dominant macroeconomic paradigm a set
of popular notions about the “real” workings of the economy that have so far been considered
inconsistent with this paradigm.

Introducing our notion of shocks in richer DSGE models, and estimating their contribution to
observed business cycles, is a natural direction for future research. Translating our insights in the
context of asset markets and studying their policy implications are two other possible directions.
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Appendix A: proofs

Proof of Proposition 1. From the the optimality condition for labor (5), we get

nit = (Eit[pjt]θyit)
1
ε

Substituting the above into the production function yields

yit = AiK
1−θ (Eit[pjt]θyit)

θ
ε

Finally, solving the above for yit, and letting ϑ ≡ θ/ε, we obtain

yit =
(
θϑAiK

1−θ
) 1

1−ϑ
(Eit [pit])

ϑ
1−ϑ

which gives the first condition in the proposition. The second condition follows directly from
condition (4).

Proof of Theorem 1. Substituting (7) into (6) and rearranging, we get

yt(ω)1+η ϑ
1−ϑ =

(
θϑAt(ω)K1−θ

) 1
1−ϑ

(∫
Ωt

yt(ω
′)ηPt(ω′|ω)dω′

) ϑ
1−ϑ

Taking logs, we reach the following condition

log yt(ω) =
1

1−ϑ

1 + η ϑ
1−ϑ

log
(
θϑAt(ω)K1−θ

)
+

ϑ
1−ϑ

1 + η ϑ
1−ϑ

log

(∫
Ωt

yt(ω
′)ηPt(ω′|ω)dω′

)
This reduces to condition (8) in the main text once we let α ≡ η

η+(1−ϑ)/ϑ ∈ (0, 1) and H(x) ≡
η exp(x). It also means that we can recast the equilibrium allocations in period t as the solution to
the above fixed point problem.

In particular, for each t, let Yt be the set of real, bounded, and continuous functions with
domain Ωt, and endow this set with the sup-norm to obtain a complete metric space. Next, define
the operator Tt : Yt → Yt as follows: for any f ∈ Yt and any ω ∈ Ωt,

Ttf(ω) = (1− α)
{
κ+ 1

1−ϑ logAt(ω)
}

+ α

{
H−1

(∫
Ωt

H
(
f(ω′)

)
Pt(ω′|ω)dω′

)}
(15)

where κ ≡ log(θϑK1−θ) is a constant, At(ω) identifies the productivity of an island of type ω ∈ Ωt,
and Pt(ω′|ω) is the probability density with which this island meets an island of type ω′ ∈ Ωt.30

Now, take any equilibrium and let yt ∈ Yt be the equilibrium output function in period t, for any
t. Then, and only then, log yt is a fixed point of Tt.

Existence and uniqueness of the equilibrium then follows from the fact that, for all t, the operator
Tt is a contraction with modulus equal to α ∈ (0, 1). We verify this fact below by showing that Tt
satisfies Blackwell’s sufficiency conditions.

30The functions At and Pt are pinned down by the primitives of the economy: At is simply the function that, for
any ω ∈ Ωt, returns the first element of ω, while Pt follows from the exogenous stochastic structure of the economy.
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(i) Monotonicity. Suppose f, g ∈ Yt and f (ω) ≥ g (ω) for all ω ∈ Ωt. First, note that

Ttf(ω)− Ttg(ω) = α

{
H−1

(∫
Ωt

H
(
f(ω′)

)
Pt(ω′|ω)dω′

)
− H−1

(∫
Ωt

H
(
g(ω′)

)
Pt(ω′|ω)

)
dω′
}

Note that α > 0 and that H−1 (x) = log (x/η), which is a monotonically increasing function. We
infer that Ttf(ω)− Ttg(ω) ≥ 0 if and only if∫

Ωt

η exp
(
f(ω′)

)
Pt(ω′|ω)ω′ ≥

∫
Ωt

η exp
(
g(ω′)

)
Pt(ω′|ω)ω′. (16)

Now, note that f (ω) ≥ g (ω) for all ω ∈ Ω implies that η exp (f(ω′)) ≥ η exp (g(ω′)) for all ω ∈ Ωt.
This immediately implies that condition (16) is always satisfied. Therefore, f ≥ g implies Ttf ≥ Ttg,
which proves that Tt is monotonic.

(ii) Discounting. Let a ≥ 0 be a constant. Then, using the fact that H is an exponential
function, we have:

Tt [f(ω) + a] = (1− α)
{

1
1−ϑ logAt(ω)

}
+ α

{
H−1

(∫
Ωt

H
(
f(ω′) + a

)
Pt(ω′|ω)dω′

)}
= (1− α)

{
1

1−ϑ logAt(ω)
}

+ α

{
H−1

(∫
Ωt

H
(
f(ω′)

)
Pt(ω′|ω)dω′

)}
+ αa

Therefore, Tt [f(ω) + a] = Ttf(ω) +αa, where α ∈ (0, 1), which proves that Tt satisfies discounting.
As Tt satisfies both monotonicity and discounting, Blackwell’s theorem applies, guaranteeing

that the operator Tt is a contraction and completing the proof.

Proof of Theorem 2. That perfect communication rules out extrinsic fluctuations is proven in
Proposition 2. The converse follows either from the simple example in Proposition 3 or from the
generalized example in Proposition 4.

Proof of Proposition 2. As mentioned in the main text, perfect communication guarantees that
the two islands within any given match know each other’s output levels. Using this fact in condition
(8) for island i and in the corresponding condition for island j, we obtain the total output of the
two islands as

log yit + log yjt = fi + fj ,

where, recall, fi ≡ 1
1−ϑ log

(
θϑAiK

1−θ) identifies the local fundamentals of island i (and similarly
for fj). The result then follows from aggregating the above finding across all matches.

Proof of Proposition 3. In the proposed equilibrium, the period-t output of island j is log-
normally distributed conditional on the information of island i, for any i, j, and t. Furthermore,
the conditional variance V ar(log yjt|ωit) is invariant to ωit:

V ar(log yjt|ωit) = σ2
y ≡ φ2

aσ
2
a + φ2

1σ
2
u1 + φ2

2(σ2
u2 + σ2

ξ )
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It follows that Eit log yjt = Eit log yjt + 1
2η

2σ2
y . The fixed-point condition (8) thus reduces to

log yit = const+ (1− α) 1
1−ϑ ai + αEit [log yjt] (17)

where ai ≡ logAi and where const is a scalar that is invariant with ωit and that we henceforth
ignore without any loss of generality.

We guess and verify a log-linear equilibrium under the log-normal specification for the shock
and information structure. Suppose the equilibrium production strategy of the island of type ωjt
takes a log-linear form given by

log yjt = const+ φaaj + φ1x
1
jt + φ2x

2
jt, (18)

for some coefficients (φa, φ1, φ2). It follows that i’s posterior about log yjt is log-normal, with

Eit[log yjt] = const+ φaEit[ajt] + φ1

(
ai + Eit[u1

jt]
)

+ φ2

(
x1
it + Eit[ξt] + Eit[u2

jt]
)

We henceforth ignore the constant terms (const) in order to simplify the exposition.
Let γ1 ≡ σu1/σA, γ2 ≡ σu2/σA, γξ ≡ σξ/σA denote the relative noise ratios. Then,

Eit[ajt] = 1
1+γ21

x1
it, Eit[u1

jt] =
γ21

γ21+γ22+γ2ξ

(
x2
it − ai

)
, Eit[ξt] =

γ2ξ
γ21+γ22+γ2ξ

(
x2
it − ai

)
, Eit[u2

jt] = 0

Substituting these expressions into (17) gives us

log yit = 1−α
1−ϑ ai + α

[
φa

1
1+γ21

x1
it + φ1

(
ai +

γ21
γ21+γ22+γ2ξ

(
x2
it − ai

))
+ φ2

(
x1
it +

γ2ξ
γ21+γ22+γ2ξ

(
x2
it − ai

))]
By symmetry to (18), i’s output must satisfy log yit = φaai + φ1x

1
it + φ2x

2
it. For this to coincide

with the above condition for every z, it is necessary and sufficient that the coefficients (φa, φ1, φ2)

solve the following system:

φa = 1−α
1−ϑ + αφ1 − φ2, φ1 = α

(
φa

1
1+γ21

+ φ2

)
, φ2 = α

(
φ1

γ21
γ21+γ22+γ2ξ

+ φ2
γ2ξ

γ21+γ22+γ2ξ

)
The unique solution to this system gives us the following equilibrium coefficients.

φa =
(1−α)(1+γ21)((1−α2)γ21+γ22+(1−α)γ2ξ)

(1−ϑ)((1−α2)(γ41+γ22+(1−α)γ2ξ)+γ21(1−α2+γ22+(1−α)γ2ξ))
> 0 (19)

φ1 =
(1−α)α(γ21+γ22+(1−α)γ2ξ)

(1−ϑ)((1−α2)(γ41+γ22+(1−α)γ2ξ)+γ21(1−α2+γ22+(1−α)γ2ξ))
> 0 (20)

φ2 =
(1−α)α2γ21

(1−ϑ)((1−α2)(γ41+γ22+(1−α)γ2ξ)+γ21(1−α2+γ22+(1−α)γ2ξ))
> 0 (21)

Furthermore, the expected equilibrium price must satisfy Eit log pit = 1−ϑ
ϑ log yit − 1

ϑai. Using
the above results, we have that Eit log pit = −ψaai + ψ1x

1
it + ψ2x

2
it, with

ψa = −
(

1−ϑ
ϑ φa − 1

ϑ

)
, ψ1 = 1−ϑ

ϑ φ1 > 0, and ψ2 = 1−ϑ
ϑ φ2 > 0.

To sign the coefficient ψa, it is straightforward to check the following: (i) ψa is strictly decreasing
in γ2, and (ii) limγ2→0 ψa > limγ2→∞ ψa > 0. Together, this implies that ψa is everywhere positive.
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Given the log-linear structure of equilibrium output and the log-normal specification for pro-
ductivity and the noises, we find that aggregate output is given by log Yt = χ0 + χξξt, where
χ0 ≡ φ0 + 1

2

(
(φa + φ1 + φ2)2 + (φ1 + φ2)2 γ1

)
and χξ = φ2.

Next, due to the log-normal shock and information structure, we can infer that logEityjt =

Eit log yjt + const, where const. Furthermore, from (17) we have that island i’s belief j’s log output
must satisfy

Eit [log yjt] = 1
α

(
log yit − (1− α) 1

1−ϑ ai

)
Aggregating the above across islands and using the fact that the cross-sectional average of ai is
fixed, we get that logBt = const+ 1

α log Yt, which verifies that logBt is also a linear function of ξt.

Proof of Proposition 4. Let xit ≡
(
ai, x

1
it, x

2
it, ..., x

h
it

)′ and note that

xit = Mξt + m1uit+m2ujt + maaijt

where ξt ≡
(
ξ1
t , ..., ξ

h
t

)′
,uit =

(
u1
it, ..., u

h
it

)′
,ujt =

(
u1
jt, ..., u

h
jt

)′
, and aij = (ai, aj)

′, and where
M,m1,m2,ma are some fixed matrices full of zeros and ones.

We guess and verify a log-linear equilibrium under the log-normal specification for the shock
and information structure. Suppose the equilibrium production strategy of the island of type ωjt
takes a log-linear form given by

log yjt = χāt + φxjt

for some coefficients χ ∈ R and φ =(φa, φ1, φ2, ..., φh) ∈ RH+1
+ . It follows that i’s posterior about

log yjt is log-normal, with

Eit [log yjt] = χāt + φEit [xjt] (22)

Furthermore, i’s conditional expectation of xjt is simply the projection of xjt on xit: Eit [xjt] = Hxit,

where H is the relevant projection matrix. Substituting these expressions into (17) gives us

log yit = (1− α) 1
1−ϑ (ai + āt) + α [χāt + φHxit]

For this to coincide with log yit = χāt + φxit for every ωit, it is necessary and sufficient that the
coefficients χ and φ are given the solution to the following system:

χ = (1− α) 1
1−ϑ + αχ and φ = (1− α) 1

1−ϑe1 + α (φH)′ , (23)

where e1 is a column vector of length h+ 1 composed of zeros except for a unit in the first position.
Finally, noting that

∫
xitdi = Mξt,31 we find that aggregate output is given by

log Yt = χāt + φMξt. (24)

31Whenever we refer to the cross-sectional average
∫
Xitdi of some island-specific variable Xit = X(ωit), we mean

the expectation of X(ωit) conditional on the aggregate state. That is,
∫
Xitdi ≡

∫
X(ω)P(ω|ξt, āt)dω.
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Furthermore, solving condition (8) for Eit[log yjt], we have that i’s belief of j’s output satisfies
Eit[log yjt] = 1

α(log yit − 1−α
1−ϑ (ai + āt)). The corresponding aggregate therefore satisfies

logBt = 1
α

(
log Yt − 1−α

1−ϑ āt

)
= 1

α

(
χ− 1−α

1−ϑ

)
āt + 1

αφMξt = χāt + 1
αφMξt (25)

where we abstract from the constant (see the proof of Proposition 3) and where the last equation
uses the fact that χ = 1/(1 − ϑ) from (23). The result then follows from (24) and (25) once we
define the composite shock as ξ̄t ≡ 1

αφMξt and let Φ ≡ χ = 1
1−ϑ and Ψ ≡ α.

Finally, let us characterize the average forecast of aggregate output, defined as

logB′t ≡
∫

Eit[log Yt]di.

The goal is to show that this average forecast, which may be easier to observe in survey evidence,
can be thought as a noisy empirical proxy of Bt, which is the relevant belief aggregate in the model.
By projecting ξt on xit, we get E [ξt|ωit] = Bxit for some matrix B. It follows that

Eit[log Yt] = Φāt + φMBxit

and therefore logB′t = Φāt + φMBMξt. Since ξ̄t ≡ 1
αφMξt and φMBMξt are both functions of ξt,

and the latter is orthogonal to āt, we can regress φMBMξt on ξ̄t to obtain φMBMξt = Λξ̄t + vt,

where Λ ≡ Cov
(
φMBMξt,

1
αφMξt

)
/V ar

(
1
αφMξt

)
is a scalar and where υt is a linear function of

ξt that is orthogonal to both ξ̄t and āt. We thus get

logB′t = Φāt + Λξ̄t + vt,

which represents a noisy signal of logBt.

Proof of Proposition 5. Once we fix the local beliefs of an island as in (11), the characterization
of the local employment, wages, and output in that island follows the same steps as in our baseline
model. It follows that the equilibrium output of each island is given from condition (8) after
replacing the rational expectations Eit log yjt with the ad-hoc beliefs specified in (11). That is,

log yit = (1− α) 1
1−ϑ logAit + αÊit log yjt,

where logAit = āt + ai is the local TFP. Aggregating this condition across all islands (and ignoring
as always the constants) gives log Yt = (1 − α) 1

1−ϑ āt + α logBt, where āt is the aggregate TFP
shock, while aggregating (11) gives logBt = log Y ∗t + ζt, where log Y ∗t is the aggregate level of
output in the frictionless, rational-expectations benchmark. The result then follows for noting that
log Y ∗t = 1

1−ϑ āt and letting Φ ≡ 1
1−ϑ and Ψ ≡ α, which are the same coefficients as those in

Proposition 4.
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Proof of Proposition 6. Part (i). For any period and any history up to that point, the type of
an island belongs to the following set:

Ω̄ ≡
{
ωNU , ω

N
U+, ω

N
P , ω

N
P+, ω

N
F ;ωSU , ω

S
U+, ω

S
P , ω

S
P+, ω

S
F

}
,

where, for each group g ∈ {N,S}, ωgU are uninformed islands that are matched with a uninformed
island from their group, ωgU+ are uninformed islands that are matched with a partially informed
island, ωgP are partially informed islands that are matched with an uninformed island; ωgP+ are
partially informed islands that are matched with a partially informed island from the other group;
and ωgF are fully informed that are matched with a fully informed island from their group.

The period-t cross-sectional distribution of types is thus summarized in a vector mt ∈ ∆(Ω̄),
with the n-th element of this vector giving the fraction of islands whose types is the n-th element
of Ω̄. The dynamics of mt follows directly from the presumed matching technology.

Clearly, ωNF and ωSF are absorbing states for, respectively, the North and the South. Along with
the fact that µ0 = χ > 0, this proves that µt must eventually decrease and must converge to zero as
t→∞. Finally, the fact that µt must initially increase follows from the assumption µ0 = χ < 1/2.

Part (ii). To understand the determination of equilibrium output, consider first all the matches
between islands of types ωNP+ and ωSP+. These matches are, in effect, identical to those featured in
Section (4). The equilibrium output for these types must therefore satisfy log y(ωNP+) = φaaN +

φ1x
1
N + φ2x

2
N and log y(ωSP+) = φaaS + φ1x

1
S + φ2x

2
S , where the coefficients (φa, φ1, φ2) are given

in (19)-(21). For all other matches, on the other hand, it is straightforward to check that output is
given either by φaaN (for the Northern islands) or φaaS (for the Southern islands), where φa = 1

1−ϑ .
We thus infer that local output is given as follows:

log yit =


φaaN + φ1x

1
N + φ2x

2
N if ωit = ωNP+,

φaaS + φ1x
1
S + φ2x

2
S if ωit = ωSP+,

φaai otherwise
(26)

Aggregating this across all islands, we obtain

log Yt = φaā+ µt [φ1ε̄+ φ2ξ]

where ā ≡ 1
2(aN + aS) and ε̄ ≡ 1

2(ε1 + ε2), and where µt is the fraction of islands with types either
ωNP+ or ωSP+. The result then follows by letting Φ ≡ φ2.

Proof of Proposition 7. By combining the optimality conditions for the final-good firms with
market clearing (trade balance), we get

hit = (1− η)qit, h∗it = ηqjt, pit = q−ηit q
η
jt, and p∗it = q1−η

it qη−1
jt

This is similar to the baseline model; we only have to re-interpret the consumption goods in that
model as the intermediate inputs in the present model.
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Consider now the behavior of the intermediate-good firms. The first-order conditions with
respect to labor, the capital stock, and the rate of capital utilization are, respectively, as follows:

Eit [λitwit] = Eit [λitpit] θ
qit
nit

Eit [λit(rit + ∆ (eit))] = Eit [λitpit] (1− θ) qit
kit

Eit
[
λit∆

′ (eit) kit
]

= Eit [λitpit] (1− θ) qit
eit

where λit is the marginal value of wealth on island i. These conditions simply state that the expected
marginal costs of labor, capital, and capital utilization are equated with their respective expected
marginal revenue products, which in turn depend on the island’s expected terms of trade.

Next, on the household’s side, the Envelope condition, the optimality condition for labor, and
the Euler condition give the following:

λit = U ′(cit)

V ′(nit) = Eit [λitwit]

U ′(cit) = E2
it

[
βU ′(ci,t+1) (1 + ri,t+1)

]
where, recall, E2

it denotes the expectation conditional on stage-2 information.

Combining the aforementioned conditions, using pitqit = q1−η
it qηjt = ζyit where ζ = (1− η)1−ηηη,

and adding the local resource constraint, we get the system of equations in the proposition.

Appendix B: numerical solution of the RBC variant

To simulate the equilibrium dynamics of the RBC variant of Section 7, we first log-linearize condi-
tions in Proposition 7 to get the following linear dynamic system:

εñit = E1
it [ỹit − γc̃it] (27)

(1 + µ) ẽit = E1
it

[
ỹit − k̃it

]
(28)

c̃it = E2
it

[
c̃i,t+1 − (1−β)

γ

(
ỹit+1 − k̃i,t+1

)]
(29)

c̄c̃it + k̄k̃i,t+1 = ȳỹit +
(

1− 1−β
βµ

)
k̄k̃it − (1 + µ) 1−β

βµ k̄ẽit (30)

ỹit = (1− η)q̃it + ηq̃jt (31)

q̃it = ait + θñit + (1− θ)
(
ẽit + k̃it

)
(32)

where the bars denote steady-state values and the tildes denote log-deviations from steady state.

Let ρ̃it = ρ(ỹit, k̃it, ẽit) denote the right-hand side of condition (30); this identifies the overall
resources that are available in stage 2, measured in terms of log-deviation from steady state. We
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conjecture the following island-level policy rules, along with a rule for aggregate capital:

(ẽit, ñit, q̃it) = f
(
ait, xit, ξt; k̃it, K̃t

)
(c̃it, ki,t+1) = g

(
ρ̃it; ξt, K̃t

)
K̃t+1 = Γ

(
ξt, K̃t

)
where the functions f, g, and Γ are linear. This guess is justified by the following considerations.
First, an island’s employment, utilization, and production choices during stage 1 depend on its own
productivity, its current signal of the productivity of its trading partner, and on the perceived bias in
the latter’s signal for essentially the same reasons that it does in our baseline model; but now it also
depends on its own capital stock, and on the aggregate capital stock, because the former enters local
production while the latter is i’s best forecast of the capital stock of its trading partner.32 Second,
an island consumption and investment during stage 2 are pinned down by realized resources, for
the usual reasons, and by the aggregate state of the economy, for the latter determines i’s beliefs
of its future terms of trade, local income, and local prices. Finally, the aggregate policy rule for
capital obtains from aggregating the corresponding individual policy rules and noting that the cross-
sectional average of resources is ultimately pinned down by the current sentiment shock ξt and the
current aggregate capital K̃t.

We then solve the equilibrium by the method of undetermined coefficients: we write the policy
rules in terms of arbitrary coefficients; we next plug these rules in the aforementioned log-linearized
system (27)-(32) along with the definition of ρ̃it and the aggregation consistency between g and Γ;
we then arrive to a system of equations in the aforementioned coefficients, which can be solved for
the equilibrium. This procedure is, in effect, quite similar to the way one solves the log-linearized
version of the RBC model, except for the extra complication that our log-linearized system embeds
also a fixed point between island-specific and aggregate policy rules.

Once we have the policy rules, we create 1000 random time series for the sentiment shock, each
of length 1250 periods. For each of these series, we compute the equilibrium time series of all the key
macroeconomic variables. We next drop the first 1000 periods, in order to get rid of any dependence
on initial conditions, and apply the HP-filter on the last 250 periods (which is approximately as
many quarters as in our data), using the conventional weight (1600). We next compute the relevant
business-cycle statistics on the HP-filtered series. We finally take averages of these statistics across
all 1000 series, and report these averages in the left two columns of Table I in the main text.

Finally, to obtain the empirical counterparts of these statistics, we use the actual U.S. time
series data as documented in Smets and Wouters (2007), except for two minor changes. First, we

32To understand why the aggregate capital stock Kt is i’s best forecast of j’s capital stock, recall that we have
assumed that the idiosyncratic productivity of an island is i.i.d. over time and across islands. Learning about j’s
current productivity therefore gives no information about j’s history of past productivity shocks and hence also about
its capital stock. If, instead, productivity were persistent, then i’s best forecasts of j would be a linear combination
of the aggregate capital stock and i’s signals about j’s productivity. This would complicate a bit the solution, but is
unlikely to affect the results.
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extend the data through 2012. Second, we correct the population series for the problem identified
in Edge and Gürkaynak (2010).33

Our data therefore covers the period 1948Q3-2012Q2, are at a quarterly frequency, and are
seasonally adjusted. Output, consumption, and investment are measured by, respectively, GDP,
Personal Consumption Expenditures, and Fixed Private Investment; these variables are taken from
the BEA, are deflated by the BEA’s GDP Price Deflator, and are normalized in per-capita terms.
Employment is measured by Nonfarm Hours, as taken from the U.S. Department of Labor. Finally,
the population series we use is the smoothed Civilian Noninstitutional Population aged 16 and
over, provided by Edge, Gürkaynak, and Kisacikoğlu (2012) and obtained from the Federal Reserve
Board. The same HP-filter is applied to this data as with the model’s simulated data, and the
corresponding statistics are finally reported in the right two columns of Table I.
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