
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2013-028 November 19, 2013

GenBase: A Complex Analytics Genomics Benchmark
Rebecca Taft�*, Manasi Vartak�*, Nadathur
Rajagopalan Satish, Narayanan Sundaram, Samuel
Madden, and Michael Stonebraker

GenBase: A Complex Analytics Genomics Benchmark

Rebecca Taft∗
MIT CSAIL

rytaft@mit.edu

Manasi Vartak∗
MIT CSAIL

mvartak@mit.edu

Nadathur Rajagopalan
Satish

Intel Parallel Computing Lab

nadathur.rajagopalan.satish
@intel.com

Narayanan Sundaram
Intel Parallel Computing Lab

narayanan.sundaram
@intel.com

Samuel Madden
MIT CSAIL

madden@csail.mit.edu

Michael Stonebraker
MIT CSAIL

stonebraker@csail.mit.edu

ABSTRACT
This paper introduces a new benchmark, designed to test database
management system (DBMS) performance on a mix of data man-
agement tasks (joins, filters, etc.) and complex analytics (regres-
sion, singular value decomposition, etc.) Such mixed workloads
are prevalent in a number of application areas, including most sci-
ence workloads and web analytics. As a specific use case, we have
chosen genomics data for our benchmark, and have constructed a
collection of typical tasks in this area. In addition to being repre-
sentative of a mixed data management and analytics workload, this
benchmark is also meant to scale to large dataset sizes and mul-
tiple nodes across a cluster. Besides presenting this benchmark,
we have run it on a variety of storage systems including traditional
row stores, newer column stores, Hadoop, and an array DBMS. We
present performance numbers on all systems on single and multiple
nodes, and show that performance differs by orders of magnitude
between the various solutions. In addition, we demonstrate that
most platforms have scalability issues. We also test offloading the
analytics onto a coprocessor.

The intent of this benchmark is to focus research interest in this
area; to this end, all of our data, data generators, and scripts are
available on our web site.

1. INTRODUCTION
There have been many benchmarks proposed by the DBMS com-

munity over the years including the Wisconsin Benchmark [18]
(general data management), Bucky [19] (data type support), Lin-
ear Road [17] (streaming support), as well as the TPC benchmarks
[15]. All have served to focus the attention of the community on a
specific class of DBMS issues.

∗These authors contributed equally

At the present time we see a sea change occurring in DBMS ana-
lytics. Specifically, the previous focus has been on traditional busi-
ness intelligence (BI) where commercial products offer an easy-
to-use GUI for standard SQL aggregates (COUNT, SUM, MAX,
MIN, AVERAGE with an optional GROUP BY clause). This fo-
cus is epitomized by TPC-H and TPC-DS. Going forward, we see
the DBMS analytics market shifting quickly and dramatically to
more complex analytics. This is the domain of data scientists, and
constructs include predictive models, data clustering, regressions,
discrimination networks, and the like. To focus the reader, we give
three examples of this class of analytics.

Automobile insurance companies are following the lead of Pro-
gressive and putting a sensor in clients’ cars to measure how they
drive (fast starts, abrupt braking, speeding, etc.), how much they
drive, and what time of day they drive (4 AM is presumably less
safe than 10 AM). Current systems report sensor measurements ev-
ery second and data is kept for many months. Once this data is pro-
cessed, a driver can be characterized by several thousand variables.
These are added to current data (home address, make of car, etc.)
and other possible information (credit score, marital status, etc.).
The goal is mass personalization of rating. This task requires fit-
ting some sort of risk-of-loss model to (perhaps various subclasses
of) drivers. This is clearly a task for a data scientist that entails both
data management (filtering to the subclasses) and complex analyt-
ics (the modeling).

A second example concerns satellite imagery. Various satellites
orbit the earth collecting sensor data of the area underneath. Be-
cause the sensor scans a swath of the earth as the satellite orbits,
the collected data resembles a wide piece of scotch tape that is
wrapped continuously around the earth. A workflow of process-
ing steps turns a week or two worth of data into a vector of values
for the various grid cells covering the surface of the earth. The
“best” (e.g. minimum cloud cover) data is used from the multiple
times the satellite passes over a given cell, and typical cell size is
between 10 meters and 1000 meters on a side. An earth scientist
wants to compute some surrogate from this vector to represent a
study phenomenon (snow cover, vegetation index, etc.) for some
area of interest. This represents data management activity. In ad-
dition, multiple satellites cover the same area, but are invariably
gridded differently. Making use of multiple satellites requires a
“regridding” operation whereby one co-ordinate system is trans-
formed to the other one; in the process forming a vector of values
for this derived cell structure from multiple overlapping physical

1

cells. This interpolation/regridding is an example of a complex an-
alytical calculation.

Finally, consider a “quant” on Wall Street charged with con-
structing an electronic trading program. This program will watch a
feed of trades and/or bid/ask quotes, looking for patterns of inter-
est. If a pattern is seen, then trading is activated based on the pattern
observed. Of course, the quant must discover interesting patterns
to base his trades on, based on the closing price of every stock for
every trading day for (say) the last 20 years. There are about 15,000
publicly traded securities in the US and about 4,000 trading days in
20 years. The data is thereby a 4,000 by 15,000 array, which we
call S. As a first step, he might compute the covariance between
the time series of all pairs of securities. This is a 15,000 by 15,000
matrix with cell values between -1 and +1. Stocks with substantial
correlation (either positive or negative) would then be subjected to
further scrutiny. Ignoring a constant and the requirement of sub-
tracting off the mean of each time series, this all-pairs covariance
is:

S × ST

This is clearly complex analytics. In addition, a quant might want
to focus on stocks with a market capitalization over $1B or on
stocks of companies headquartered in New York State, again re-
quiring traditional data management operations to be interspersed
with complex analytics.

In summary, we believe it is important to focus the DBMS com-
munity on this new class of data science problems, which we can
characterize by the following two requirements:

1. Data management. i.e. traditional DBMS operations preva-
lent in previous benchmarks.

2. Complex analytics. This is commonly a sequence of linear
algebra or statistical operations on array data, as in the Wall
Street example above.

Historically, such data science problems have been addressed by
using a DBMS (or custom code) for the data management with
some sort of custom code or a statistics package for the analyt-
ics. Clearly, there should be better support for data scientists in
system software packages, and they should not have to copy and
reformat their data to make use of multiple packages to accomplish
their objective. In other words, a single software system should be
capable of performing both kinds of operations, and we hope the
proposed benchmark will focus attention in this area. In addition
to calling for an integrated approach, we also see a need for such
software systems to scale to data sizes large enough to span multi-
ple nodes in a datacenter/cluster. As data sizes grow dramatically
with the advent of cheap sensors and measurement techniques, so-
lutions that can handle large datasets and that scale well on both
data management and complex analytics tasks are essential.

A second issue concerns performance. Linear algebra operations
are computationally intensive. For example, matrix multiply is cu-
bic in the size of the arrays, and performance can vary by several
orders of magnitude depending on the choice of implementation
language or matrix algebra library. DBMS researchers are accus-
tomed to sleuthing out data management inefficiencies; however,
they must extend their reach to computationally intensive tasks. For
example, simulating linear algebra operations in SQL, as proposed
in [17, 22] will result in code that is largely interpreted, and may
have performance problems. Obtaining good performance on our
proposed benchmark will require carefully optimizing both data
management and statistical/array operations.

A third issue concerns specialized hardware. There has been re-
cent interest in performing data management on accelerators such
as GPUs, FPGAs or Intel

R©
Xeon PhiTM coprocessors1 [23]. Obvi-

ously, such accelerators are more adept at the computations found
in complex analytics than they are at routine data management.
Hence, there is a clear opportunity to involve specialized hardware
in the process of turbocharging the analytics found in our bench-
mark.

To focus the community attention on all three issues, this paper
presents a data science benchmark composed of both data manage-
ment and complex analytic operations. As noted above, use cases
for such operations exist in many domains but we have chosen a
genomics use case for exposition here. As such, in Section 2, we
present a short primer on genomics, followed in Section 3 by a de-
scription of the data sets and queries that comprise our benchmark.

Then, we continue in Section 4 by presenting experimental re-
sults of running the benchmark on a variety of processing engines,
including R, Postgres, a popular column store, SciDB, and Hadoop.
We find several orders of magnitude difference in performance be-
tween the various systems. We explain the reasons for the vari-
ations, both when run on a single node as well as when run on
multiple parallel nodes. Lastly, in Section 5 we show an example
system with an assist from specialized hardware, and indicate the
advantages of this approach, especially when large scale problems
are tackled. Sections 6 and 7 conclude with some comments on the
results and suggestions for future experiments.

2. GENOMICS PRIMER
DNA is commonly thought of as the blueprint for all living or-

ganisms. In humans, it is contained in the nucleus of each cell in
our bodies, and encodes the instructions for how each cell should
grow and operate. Interest in genomics data is skyrocketing as the
cost of sequencing a human genome decreases. Specifically, the
cost of sequencing a human genome is approaching $1000, down
from hundreds of thousands of dollars five years ago [6].

The DNA (or genome) for an individual is a sequence of about
a billion values from an alphabet of size 4 (A, C, T, G). A, C, T
and G stand for Adenine, Cytosine, Thymine and Guanine, which
are the four molecules, also known as “nucleotides” or “bases”,
that make up DNA. These bases are linked together into a strand
of nucleic acid by a phosphodiester backbone, and are bound to a
complementary strand by hydrogen bonds. The sequences are com-
plementary because each A in one strand is replaced with a T in the
other strand, and each C is replaced with a G. These pairs, A-T
and C-G, are often referred to as base pairs. The two complemen-
tary strands of DNA naturally spiral around each other, creating the
well-known double helix.

Genes are special subsequences of base pairs interspersed through-
out the genome that are responsible for encoding traits inherited
from our ancestors. When activated, genes produce RNA and pro-
tein, which are the workhorses of cells and carry out the “instruc-
tions” of the DNA. RNA is a single-stranded nucleic acid similar
to DNA, but with Thymine (T) replaced with Uracil (U). Inside the
nucleus of cells, genes are “transcribed” into RNA, and in most
cases, the RNA transcript is then “translated” into protein. Each
sequence of three bases in the RNA represents one of 20 different
amino acids, the building blocks of protein. Biologists have identi-
fied about 20,000 different genes in the human genome that encode
such protein [20].

It is important to note that not every gene is transcribed and trans-
lated into protein in every cell. In reality, some genes are active
1

Intel, Xeon, and Intel Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries.

2

and create high volumes of RNA and protein, while other genes are
less active. Which genes are active at any given time varies by cell
type. For example, genes responsible for cell growth are likely to
be more active in cancer cells than in normal cells. Likewise, genes
responsible for producing the oxygen-carrying protein hemoglobin
will be more active in blood cells than in skin cells. Even though
almost all cells in the human body contain the entire genetic code,
only a subset of genes are actually active at any given time in any
given cell. The level of activity or “expression” of a gene can be
almost as important as the gene itself for determining phenotype
(the physical manifestation of a gene). As a result, mechanisms
for regulating the expression of certain genes are an active area of
research.

Microarray technology supports the measurement of the expres-
sion level of thousands of genes at the same time with a single
chip. For example, Affymetrix [1] sells quartz chips containing tens
of thousands of microscopic probes designed to detect the pres-
ence and relative amount of specific segments (subsequences) of
RNA. Biologists often collect microarray data for thousands of tis-
sue samples from different patients in order to perform some sort
of statistical analysis. This data collection results in a large dense
matrix of floating point values, in which the columns correspond to
different genes and the rows correspond to tissue samples of differ-
ent patients.

3. BENCHMARK SPECIFICATION
In this paper we present a genomics benchmark developed for

microarray data. As described in the previous section, microarrays
are used to measure expression values for several thousand genes
at the same time. This data is then used for a variety of analyses
to identify gene function, disease pathways (sequences of molecu-
lar actions involved in the manifestation of a disease) and potential
drug targets. Queries selected for the benchmark have been iden-
tified in collaboration with biologists and bioinformaticians from
Novartis and the Broad Institute. These queries represent oper-
ations such as SVD, regression and statistics that are most com-
monly executed on microarray data. While the benchmark does not
include an exhaustive list of operations relevant in genomics, we
believe that the queries are a good representative set. Finally, while
this work focuses on microarray data, the data representations and
operations discussed can be extended to include other types of ge-
nomic data such as sequencing data.

Genomics data can be extremely large scale. With 104−5 gene
expressions per sample and up to 108−10 samples (multiple sam-
ples can be taken from one patient), we are looking at a problem
that can scale to 102−5 nodes of a large cluster with each node han-
dling 104−5 samples. For the purpose of this paper, however, we
look at much smaller datasets (with one sample per patient).

3.1 The Data
The benchmark consists of four types of data sets: microarray

data, patient metadata, gene metadata and gene ontology data, as
described below.

3.1.1 Microarray data
This is our main dataset for all operations and is commonly rep-

resented as a matrix with rows representing samples (or patients)
and columns representing genes. An example matrix, M, is shown
below, where Mi,j contains the expression value for gene j in pa-
tient i. We represent this matrix as follows:

1. Relational form: Microarray data (gene id, patient id, ex-
perimental value)

2. Array form: experimental value[patient id, gene id]

Gene 1 Gene 2 . . . Gene n
Patient 1 0.34 1.56 . . . 0.008
.
Patient m 2.32 0.99 . . . 0.007

We use microarray data matrices of four different sizes to exer-
cise the capabilities of the hardware and study how the algorithms
work under varying workloads.

1. Small: 5K genes for 5K patients

2. Medium: 15K genes for 20K patients

3. Large: 30K genes for 40K patients

4. Extra large: 60K genes for 70K patients

We found that none of the systems could run on the extra large
data set, so we do not provide experimental results for this data
set. We supplement microarray data with the following additional
datasets.

3.1.2 Patient metadata
For each patient whose genomic data is available in the microar-

ray dataset, the patient metadata array contains demographic and
clinical information as noted below. Specifically, it contains the pa-
tient age, gender, zipcode, and the drug response for their disease
(assuming only a single disease). For ease of computation, disease
is represented numerically, (e.g. diabetes = 1, bipolar disorder = 2)
and our data set contains 21 diseases. We represent this matrix as
follows:

1. Relational form: Patient Metadata (person id, age, gender,
zipcode, disease id, drug response)

2. Array form: (age, gender, zipcode, disease id, drug response)-
[patient id]

Age Gender Disease Drug
Response

Patient 1 85 F 77071 1 0.45
.
Patient m 90 M 01192 2 3.2

3.1.3 Gene metadata
For every gene in the microarray, the gene metadata array con-

tains information about the gene, specifically the target (the id of
another gene that is targeted by the protein from the current gene),
position (number of base pairs from the start of the chromosome to
the start of the gene), length (in base pairs) and function (coded as
an integer, for example, cell division = 10 and photosynthesis=12).
We represent this matrix as follows:

1. Relational form: Gene metadata (gene id, target, position,
length, function)

2. Array form: (target, position, length, function)[gene id]

Target Position Length Function
Gene 1 Gene 39 156 170 10
.
Gene m Gene 232 89 90 12

3

3.1.4 Gene Ontology (GO) data
Genes are organized into an ontology depending on the biologi-

cal functions they serve. For instance Gene 1 and Gene 2 may be
involved in respiration, while Gene 2 and Gene 3 deal with cell di-
vision. These categories form a tree structure, and a gene is placed
at the appropriate place(s) in the tree. The gene ontology is repre-
sented as below:

1. Relational form: Gene ontology(gene id, go id, 0 or 1)
where 1 implies that the gene with the given gene id belongs
to the GO category with id=go id while 0 indicates that it
doesn’t.

2. Array form: belongs to[gene id, go id]

GO 1 . . . GO k
Gene 1 0 . . . 1
.
Gene m 1 . . . 1

The sizes of the supplementary datasets are chosen to match the
sizes of the microarray matrix. To protect privacy and to ensure
that datasets of all four sizes are consistent, we use synthetically
generated data. This data has been modeled on existing microar-
ray and patient data, and generated using the tool available on our
benchmark website [7].

3.2 The Queries
Our benchmark consists of 5 queries, which are run against the

schema described in the previous section. The queries represent a
mix of data management, linear algebra and statistical operations
that are representative of genomic workloads.

3.2.1 Query 1: Predictive Modeling
An important use case for genomic data is predicting drug re-

sponse based on gene expression and using this information to de-
termine drug regimens for patients. One way of determining drug
response is to build a regression model predicting drug response
based on gene expression data. In this query, we select the expres-
sion data for a subset of genes with a particular set of functions,
an example of which is shown below. Then we construct a linear
regression model where the target variable is the patient drug re-
sponse and the independent variables are expression values. In our
implementation, we use a QR decomposition technique to solve the
linear regression problem.

Gene 1 . . . Gene k Drug Response
Patient 1 0.34 . . . 0.008 5.12
.
Patient m 2.32 . . . 0.007 3.78

We adopt the following workflow:

1. Select genes with a particular set of functions (since func-
tions are encoded numerically, for example, function < 250)

2. Join the result with the microarray data and project out the
patient drug response and microarray data values

3. Restructure the information as a matrix (if required)

4. Build a regression model to predict drug response

3.2.2 Query 2: Covariance
Genes that have similar expression patterns (e.g. they are under

or over expressed together) and those that have opposing expres-
sion patterns (e.g. they are under expressed when others are over
expressed) are likely to be functionally related (e.g. part of the same
pathway, located near one another etc.) Therefore, the covariance
between expression values can be used to identify biologically re-
lated genes. An example covariance matrix is shown below.

Gene 1 . . . Gene n
Gene 1 0.34 . . . 5.89
.
Gene m 2.32 . . . 3.78

The query workflow is as follows:

1. Select patients with some disease (e.g. cancer)

2. Join the selected patients with the microarray table

3. Compute the covariance between the expression levels of all
pairs of genes

4. For all pairs of genes with covariance greater than a threshold
(e.g. top 10%), join the results with the gene metadata table
to obtain gene information for further analysis.

3.2.3 Query 3: Biclustering
An important goal of genomic analyses is to identify groups of

genes and patients that show similar behavior. Genes with simi-
lar behavior are likely to be biologically related, and therefore can
help understand disease pathways and identify new drug targets.
One way to identify genes with similar behavior is via bicluster-
ing. Biclustering allows the simultaneous clustering of rows and
columns of a matrix into sub-matrices with similar patterns. For
instance, biclustering a microarray matrix would cluster together
all the instances of genes and patients with expression values less
than normal, as shown in bold below.

Gene 1 Gene 9 Gene 13 . . . Gene n
Patient 5 0.564 0.005 0.001 . . . 0.988
Patient 12 0.113 0.003 0.0009 . . . 0.185
.
Patient m 0.655 0.008 0.556 . . . 0.340

The query structure is as follows:

1. Select patients with specific age and gender (e.g. male pa-
tients less than 40 years old)

2. Join the results with the microarray data on sample id

3. Restructure the result into a matrix if required

4. Run the biclustering algorithm on the matrix

3.2.4 Query 4: SVD
As with much experimentally collected data, genomic data is

quite noisy. In order to perform various analyses, e.g. compar-
isons between gene expressions across different diseases, we need
to reduce the noise in the experimental data. A popular approach
for performing this task is through the use of singular value decom-
position (SVD) [14]. SVD is a factorization of a matrix M as:

M = UΣV

where Σ is a diagonal matrix containing singular values, and U and
V respectively contain the left and right-singular vectors. The top

4

singular values in Σ represent the signal in the data. For the bench-
mark, we use the Lanczos algorithm, which is a power method that
can iteratively find the largest eigenvalues of symmetric positive
semidefinite matrices.

The query is structured as follows:

1. Select genes with specific functions (since functions are en-
coded numerically, for example, function < 250)

2. Join the gene data table with the gene metadata table on gene id

3. Restructure the resulting subset of the gene data table as a
matrix (if required)

4. Run the Lanczos SVD algorithm to find the 50 largest eigen-
values and the corresponding eigenvectors

3.2.5 Query 5: Statistical tests (enrichment)
An extremely common operation in genomic analysis is called

enrichment. Consider a set of genes G that all participate in the
same biological process (e.g. cell division). To determine if the set
of genes G is related to a particular disease (e.g. cancer), the entire
known set of genes (covering all biological functions) is ranked
based on their expression values for cancer. Statistical tests are
then used to find out where the members of G tend to occur in that
ranking (i.e. at the top or bottom of the list [24]). If the members
of G do occur at the top or bottom of the list, G is said to correlate
with cancer and merits closer analysis for potential drug targets.

The query described below replicates the enrichment operation
using GO ontology data. The Wilcoxon Rank-Sum statistical test
is used to determine if a gene set ranks at the top or bottom of the
ranked list.

1. Select a subset of samples from the microarray data (e.g.
0.25% of patients)

2. Join the results of the select query with the GO data table
based on gene id

3. For each go term g, separate the genes based on whether they
belong to the GO term or not (value is 1 vs. 0)

4. Perform the Wilcoxon test to determine if the genes belong-
ing to term g occur at the top or bottom of the ranked set of
genes.

All of the code for all of the systems tested along with the various
data sets appears on our website [7].

4. BENCHMARK RESULTS
In this section we describe the single-node and multi-node sys-

tems that we tested, and then present results for each of them.

4.1 Single-Node Systems Tested
The first system we evaluated was R [11]. This popular statis-

tics package implements a variety of linear algebra operations on
arrays. The current released version (3.0.2 as of this writing) as-
sumes data is main memory resident and has a hard limit of 231−1
cells in an array. It also runs single threaded on one core, regardless
of the number of CPUs in our test configuration. For linear alge-
bra, R uses BLAS [5] and LAPACK, a state-of-the-art linear alge-
bra package. It contains a join operation (called merge) that uses
a hash join algorithm. One would expect the main issues with this
solution would be scalability and its inability to operate on multi-
node hardware. As such, there are no multi-node results for this
configuration.

The second system we tested is Postgres [10]. It is a conven-
tional RDBMS, which will happily execute the data management
portion of the benchmark. However, to execute the linear algebra,
we need to augment Postgres with an analytics add-on. We tested
two different approaches. The first one, which we term configu-
ration 2, uses Madlib [8] for the linear algebra operations that it
supports. Madlib augments Postgres with UDFs for linear algebra
and a limited set of other analytic functions. Some of the UDFs are
written in C++, while some of them use a combination of plpython
and SQL. As such, configuration 2 will be able to perform only part
of our benchmark. To execute the entire benchmark, we added con-
figuration 3, which uses a combination of Postgres and R. Here, the
data management was performed in Postgres and then the data was
exported and reformatted so the linear algebra could be performed
in R. In effect, this is our first candidate system, with Postgres do-
ing the data management instead of R. Of course, this system has
no integration between the two subsystems, and a human must do
the heavy lifting in this area. Moreover, the data will have to be
reformatted and copied between the two systems, which will be
costly. Lastly, Postgres does not have multi-node support, so there
will be no multi-node results for configurations 2 and 3.

The third system we tested is a popular column store DBMS. It,
of course, can execute the data management operations, but must
be augmented with linear algebra support. Configuration 4 uses
the same architecture as Postgres + R, exporting data to R to do
the linear algebra. The 5th configuration uses the column store
combined with user-defined functions inside the database. These
functions are also implemented in R. Hence, this system tests the
desirability of a column store for our benchmark, as well as the
benefits of calling R from inside the DBMS. This system runs both
single-node and multi-node.

Configuration 6 uses SciDB [13]. This is a native array DBMS
that will store all of the data in our benchmark as arrays and not as
tables. Use of this system will test whether a native array system
will outperform an RDBMS simulating arrays. It supports some of
the linear algebra operations directly, relying on ScaLAPACK for
the remainder. Like the column store, this system runs both single-
node and multi-node.

Our 7th and final configuration is Hadoop [4], which has substan-
tial marketing buzz as a good solution for many analytic functions.
We coded the data management in Hive [2], and analytics opera-
tions in Mahout [3]. Mahout executes in the MapReduce frame-
work and does not benefit from a sophisticated linear algebra pack-
age, such as BLAS or ScaLAPACK. As such, performance may
be quite poor. Lastly, with this configuration we can only run the
portion of the benchmark that is possible in Mahout.

4.2 Multi-Node Systems Tested
Of the systems discussed in Section 4.1, SciDB, Hadoop and the

column store run multi-node, so we tested these three across clus-
ters of size 2 and 4. In addition, we tested pbdR [9], a set of pack-
ages that extend R to run on a cluster and allow some of the ana-
lytic functions to call the matrix package ScaLAPACK [12]. These
functions reformat and export data to ScaLAPACK, ingesting the
returned answer. ScaLAPACK is a multi-node parallel version of
BLAS. For pbdR, we evenly partitioned the data between nodes
to allow the system to scale to the large dataset, and performed
data management operations by combining local filters and joins
on each node with MPI send and receive calls between nodes (built
into pbdR). We also ran our column store augmented with pbdR for
parallel analytics.

The next section presents single-node results for our benchmark,
followed in Section 4.4 by multi-node results. In each chart, we

5

0

2000

4000

5k x 5k 15k x 20k 30k x 40k
Dataset size

Ti
m

e
in

 s
ec

on
ds

Linear Regression Query Performance

(a)

0

2000

4000

6000

5k x 5k 15k x 20k 30k x 40k
Dataset size

Ti
m

e
in

 s
ec

on
ds

Biclustering Query Performance

(b)

0

2000

4000

6000

5k x 5k 15k x 20k 30k x 40k
Dataset size

Ti
m

e
in

 s
ec

on
ds

SVD Query Performance

(c)

0

2000

4000

6000

5k x 5k 15k x 20k 30k x 40k
Dataset size

Ti
m

e
in

 s
ec

on
ds

Covariance Query Performance

(d)

0

2000

4000

6000

5k x 5k 15k x 20k 30k x 40k
Dataset size

Ti
m

e
in

 s
ec

on
ds

Statistics Query Performance

(e)
0

2000

4000

6000

5k x 5k15k x 20k 30k x 40k
Dataset size

Ti
m

e
in

 s
ec

on
ds

Systems
Column store + R
Column store + UDFs
Hadoop
Postgres + Madlib
Postgres + R
SciDB
Vanilla R

Linear Regression Analytics Performance

Figure 1: Overall performance of the various systems

6

plot results for all systems capable of running the given benchmark
query. Therefore, some plots do not show results for systems in
which the required functionality is missing. For example, Hadoop
and Postgres + Madlib do not provide sufficient analytics functions
to run the biclustering query. For all systems capable of running
each query, we cut off all computation after two hours, as some of
the systems would otherwise compute for a very long time. Also, in
many systems, temporary space allocation failed on the large data
sizes. We treat memory allocation failure and excessive computa-
tion length as “infinite” results, and indicate this with horizontal
lines across the top of the charts.

Each of the four machines in our cluster had Intel
R©

Xeon
R©

E5-
2620 processors with 2-sockets of 6 cores each and 48 GB of RAM.
Each machine had 6 2-TB disks, configured as 3 4-TB virtual disks
(RAID 0).

4.3 Single Node Results
Figures 1a through 1e plot the performance of the 7 systems

tested on the three data set sizes for each of the benchmark tasks.
In all cases, the y-axis measures elapsed (wall clock) time in sec-
onds to complete the benchmark task. Figure 2 follows by breaking
down the data management and analytics portions of the bench-
mark tasks separately for a sample task (regression). This break-
down is not available for Postgres, so only results from the other
systems are presented.

First, note the values for Vanilla R and Postgres + R. In gen-
eral, R alone will perform well on small datasets, but cannot scale
to the large dataset. The addition of Postgres as a backend gener-
ally increases total query time because of the cost of reformatting
and exporting the data as well as the overhead of DBMS features.
However, as data sets get larger (e.g., on the 30K x 40K data set),
it is sometimes beneficial, for example in regression, to have a data
management backend as R by itself cannot load the data into mem-
ory.

Now consider Postgres plus Madlib. This configuration executes
four of the five tasks, but only two within the 2 hour window. Com-
pared to Postgres + R, it saves the cost of moving/reformatting data
between systems, but in some cases it will have a less efficient ex-
ecution of the analytics. The Madlib analytic functions written in
C++, such as linear regression, tend to be faster than the corre-
sponding functions in R. The others, such as SVD, in effect sim-
ulate matrix computations in SQL and plpython, rather than per-
forming them natively. Hence, Postgres + Madlib is sometimes
better and sometimes worse than Postgres + R. Of course, both
have better scalability properties than R alone.

Moving on to the popular column store + R, we should note
that this system has very similar performance to Postgres + R. The
conventional wisdom is that column stores beat row stores on data
warehouse-style benchmarks. However, our tables are very narrow
and we retrieve several columns in some of our tasks, a situation
where column stores do not excel. Moving the analytics inside
the DBMS as user-defined functions should always improve per-
formance, and as expected, the column store + UDFs configuration
generally performs slightly better than the column store + external
R. This improvement is presumably due to the tighter coupling be-
tween the column store and R in the UDF interface. However, there
seem to be some issues with this interface as there are a few situ-
ations, such as the biclustering query, in which the column store +
UDFs configuration performs sigificantly worse.

As you would expect, an array DBMS like SciDB is very com-
petitive on this benchmark, since there is no need to recast tables to
arrays and no data copying to an external system. Also, note that it
performs some of the analytics tasks (wilcoxon, biclustering) much

0

2000

4000

6000

5k x 5k 15k x 20k 30k x 40k
Dataset size

Ti
m

e
in

 s
ec

on
ds

Linear Regression Data Management
Performance

(a)

0

2000

4000

6000

5k x 5k 15k x 20k 30k x 40k
Dataset size

Ti
m

e
in

 s
ec

on
ds

Linear Regression Analytics Performance

(b)

0

2000

4000

6000

5k x 5k15k x 20k 30k x 40k
Dataset size

Ti
m

e
in

 s
ec

on
ds

Systems
Column store + R
Column store + UDFs
Hadoop
Postgres + Madlib
Postgres + R
SciDB
Vanilla R

Linear Regression Analytics Performance

Figure 2: Data management and analytics performance of the vari-
ous systems

faster than R. This is due to its use of custom code (that is more in-
volved that just calling pre-existing ScaLAPACK routines). In gen-
eral, there is a huge benefit from using high performance analytics.

Lastly, Hadoop is good at neither data management nor analytics.
Data management is slow because Hive has only rudimentary query
optimization and analytics are slow because matrix operations are

7

2000

4000

6000

1 2 4
Number of nodes

Ti
m

e
in

 s
ec

on
ds

Linear Regression Query Performance,
30k x 40k Dataset

(a)

0

2000

4000

6000

1 2 4
Number of nodes

Ti
m

e
in

 s
ec

on
ds

Biclustering Query Performance,
30k x 40k Dataset

(b)

0

2000

4000

6000

1 2 4
Number of nodes

Ti
m

e
in

 s
ec

on
ds

SVD Query Performance,
30k x 40k Dataset

(c)

2000

4000

6000

1 2 4
Number of nodes

Ti
m

e
in

 s
ec

on
ds

Covariance Query Performance,
30k x 40k Dataset

(d)

0

2000

4000

6000

1 2 4
Number of nodes

Ti
m

e
in

 s
ec

on
ds

Statistics Query Performance,
30k x 40k Dataset

(e)

2000

4000

6000

1 2 4
Number of nodes

Ti
m

e
in

 s
ec

on
ds Systems

Column store + pbdR
Column store + UDFs
Hadoop
pbdR
SciDB

Linear Regression Analytics Performance,
30k x 40k Dataset

Figure 3: Overall performance of the various systems, varying num. nodes.

8

not done through a high performance linear algebra package. In
general, Hadoop runs only a subset of the tasks and offers between
one and two orders of magnitude worse performance than the best
system.

In most cases, the benchmarks are super-linear in the size of the
data for all systems. SciDB appears to be approximately linear,
but the plots for all other systems rise sharply as problem size is
increased. In Figure 2a, we break out the data management time for
the regression benchmark. Notice that all curves rise approximately
linearly as problem size increases, but the slope varies considerably
from system to system. Figure 2b shows a comparable plot for the
analytics portion of the regression benchmark, and we note similar
scalability.

Also, note that for most of the systems, analytics tends to in-
crease with size faster than data management. Hence, many of the
tasks spend the majority of their time in data management when
problem size is small. However, as the problem size gets larger, the
fraction of the time spent on analytics increases. To be competi-
tive over all problem sizes, a system must be good at both kinds of
operations and scale to problems that are larger than main memory.

4.4 Multi-Node Results
Figure 3 shows the performance of the various multi-node sys-

tems as we increase the number of nodes from one to four. To econ-
omize space, we present results only for the large data set. Again
we break down the time into data management and analytics for the
regression task in Figure 4.

Note that the scalability of all systems is less than ideal. If there
is no locality between the data and the computation, then scaling is-
sues are almost guaranteed. SciDB often has worse performance on
two nodes than on one, perhaps due to the increased movement of
data when one goes from one node to two. In addition, no systems
offered linear speedup between 2 and 4 nodes. Lastly, regression
was the only task that all systems could reliably finish within the
allotted time for 2- and 4-node clusters. Even when we breakout
data management separately from analytics in Figure 4, we see a
suboptimal scaling. Somewhat surprisingly, pdbR scales the best
of the systems, because when moving to multiple nodes it is able
to employ ScaLAPACK’s parallelizing techniques to optimize ana-
lytics.

Because we are testing specialized hardware as reported in the
next section, we could only assemble a 4 node configuration. If
this paper is accepted, we will test our code on a similar 48 node
configuration at a national supercomputing center.

5. HARDWARE ACCELERATION

5.1 System Tested
We tested the recently announced Intel

R©
Xeon PhiTM coproces-

sor from Intel. We use the Intel
R©

Xeon PhiTM 5110P coprocessor
that has 60 cores on a single chip with 8 GB of on-board memory
and provides large computational bandwidth. We performed data
management on SciDB, as in the previous section. The linear al-
gebra operations are performed with routines specific to the Intel
Xeon Phi coprocessor that are a mix of ScaLAPACK and custom
code. Due to the current model of Intel Xeon Phi coprocessor, data
must be copied into the memory of the Intel Xeon Phi coprocessor
before it is operated on. Obviously, there is setup overhead to load
the data. Hence, this system will show the acceleration of a state-
of-the-art co-processor, but only if the arrays are large enough to
overcome the setup time. Since the percentage of analytics as a
fraction of overall runtime goes up as data set size increases, this
should be especially attractive on larger data configurations. At the

0

2000

4000

6000

1 2 4
Number of nodes

Ti
m

e
in

 s
ec

on
ds

Linear Regression Data Management
Performance, 30k x 40k Dataset

(a)

2000

4000

6000

1 2 4
Number of nodes

Ti
m

e
in

 s
ec

on
ds

Linear Regression Analytics Performance,
30k x 40k Dataset

(b)

2000

4000

6000

1 2 4
Number of nodes

Ti
m

e
in

 s
ec

on
ds Systems

Column store + pbdR
Column store + UDFs
Hadoop
pbdR
SciDB

Linear Regression Analytics Performance,
30k x 40k Dataset

Figure 4: Data management and analytics performance of the vari-
ous systems, varying num. nodes.

same time, the memory available on the coprocessor is limited, and
data sets that do not fit in this memory will suffer excessive data
movement costs during computation. In our experiments, we find
that the large data set can fit in the memory of a single Intel Xeon
Phi coprocessor, and hence we show results for up to the large con-
figuration. We compare these results with the Intel

R©
Xeon

R©
E5-

2620 system in the previous section. Future coprocessors will not
have these limitations [21].

9

5.2 Benchmark Results
Figure 5 shows single-node results23, for SciDB with an Intel

Xeon Phi coprocessor compared to the execution on the Intel Xeon
system previously described as problem size is increased. We im-
plement the various operations using a combination of ScaLAPACK
calls to the Intel

R©
Math Kernel Library (Intel

R©
MKL) [16] and

custom code. We use an internal release of Intel
R©

MKL11.1.x to
allow automatic offloading of the ScaLAPACK pdgemm routine
(used in covariance) to the coprocessor without any code changes.
Linear regression is also available as a ScaLAPACK operator, but
the Intel

R©
MKL automatic offload of this operation is currently not

fully supported and is a work-in-progress. Hence we do not show
linear regression results here.

For the large data sets, the Intel Xeon Phi coprocessor-based sys-
tem is faster than the Intel Xeon system by a problem-specific fac-
tor of up to 1.7X. For small data sets, the runtimes of the operations
are small enough that memory management and data transfer over-
heads to the Intel Xeon Phi coprocessor dominate overall runtime
and lead to minor fluctuations in performance. If we consider just
the analytics measurements, the Intel Xeon Phi coprocessor-based
system performs about 1.4-2.6X better than our Intel Xeon sys-
tem in three of the four operations considered: covariance, SVD
and statistics for the medium and large data sets. This speedup in
analytics time is expected due to the computation and bandwidth
resources available on the respective systems. The only exception
is biclustering, which takes very little computation time and cannot
be expected to show significant speedup on any accelerator.

These performance benefits clearly depend on the fraction of
time spent in the analytics portion of each task. Among the five
tasks this varies from almost all of the time (statistics task) to very
little (biclustering). Hence, the advantage of specialized hardware
depends on data set sizes and the fraction of the time spent on ana-
lytics. Of course, these tradeoffs will change considerably if an ac-
celerator shares memory with the main processor, rather than being
accessed through a bus. In summary, a task-specific co-processor
is definitely worth including in a hardware configuration.

Table 1 shows the speedups of the analytics portions of the bench-
mark on the Intel Xeon Phi coprocessor-based system versus the
Intel Xeon based system as number of nodes is increased from one
to four on the large data set. For our multi-node runs, an additional
bottleneck – the time spent in inter-node communication – can limit
performance on certain operations. Wherever the time spent in ac-
tual computation is large enough, however, we still see benefits
from using the Intel Xeon Phi coprocessors. These speedups, how-
ever, will be lower than on single node systems due to the commu-
nication time. The best improvements come for the large data set
for 1 node, which gives the maximum amount of data per node. For
this configuration, the Intel Xeon Phi coprocessor provides about
1.4-2.3X performance improvement (except for biclustering, which
spends too little time in analytics for any coprocessor to accelerate
significantly). In terms of overall time, the speedups are problem
specific with speedups up to 1.5X with an average of around 1.3X.
When we run the same data set on 4 nodes, the per-node computa-

2
Software and workloads used in performance tests may have been optimized for performance only on Intel micro-

processors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,
components, software, operations and functions. Any change to any of those factors may cause the results to vary.
You should consult other information and performance tests to assist you in fully evaluating your contemplated pur-
chases, including the performance of that product when combined with other products. For more information go to
http://www.intel.com/performance
3

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors These optimizations include SSE2, SSE3, and SSE3 instruction sets and other opti-
mizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors
not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel micro-
processors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please
refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets
covered by this notice. Notice revision #20110804

Benchmarks 1 node 2 nodes 4 nodes
Covariance 2.60 1.55 1.54
SVD 2.93 2.30 1.37
Statistics 1.40 1.43 1.21
Biclustering 1.18 1.05 1.02

Table 1: Analytics speedup of the Intel
R©

Xeon PhiTM 5110P
coprocessor-based system versus an Intel

R©
Xeon

R©
E5 based sys-

tem on SciDB+Scalapack

tion falls, and hence the improvement due to the coprocessor is less
pronounced. However, in reality, the genomics data should scale in
size with the number of nodes in the cluster (“weak scaling”). We
intend to run our benchmarks on larger scale clusters using weak
scaling, and we expect benchmark performance to scale on such
runs.

6. DISCUSSION
The above experiments raise a number of discussion points.

6.1 End-to-end Issues
In order to perform well on our benchmark, a platform must be

good at both data management and analytics. Any system that only
does one or the other will fail badly.

If N is the size of the table holding the microarray informa-
tion, then data management tasks are either O(N) or O(NlogN).
Treating this table as a dense array yields an 2-D array with each di-
mension of size N

1
2 . Hence analytics that are cubic in array dimen-

sion size means they run in O(N
3
2). At a smaller scale, data man-

agement will dominate, because of the size of the constant terms,
while at large scale analytics will quickly dominate due to asymp-
totic effects. Again to deal well with scale, any platform must be
facile at both kinds of tasks. Lastly, at large scale one must run
in parallel over a collection of cores on multiple nodes, to avoid
the super-linear decrease in performance as data sets grow. Any
single-node system will fail badly.

6.2 Analytics
BLAS/LAPACK/ScaLAPACK are known to be amongst the most

efficient linear algebra packages, as they have been tuned over the
years to be highly efficient. Similarly, processor-specific libraries
such as the Intel

R©
MKL libraries for Intel Xeon and Intel Xeon Phi

processors are further tuned to take advantage of hardware features
such as cache hierarchies and vectorization of operations. With-
out the same level of tuning, new versions of these routines will
be much slower. Hence, the general wisdom is to use the existing
codes rather than build new ones. This approach is being followed
by most DBMSs that we are aware of.

However, use of these packages introduces a serious issue. Namely,
DBMSs have their own formatting conventions for disk-based data.
Tabular row stores invariably store relational tuples in highly en-
coded form on storage blocks. Column stores encode disk blocks in
a different way for efficiency on their use cases. Similarly, SciDB
heavily encodes rectangular “chunks” of data onto disk blocks.
Moreover, SciDB and other platforms utilize range or hash-based
partitioning schemes to allocate objects to compute nodes. Lastly,
SciDB chunks are rather large, typically in the Mbyte range. In all
cases, DBMSs employ a custom formatting scheme for storage of
blocks, and carefully select both block size and partitioning strat-
egy to maximize performance.

10

0

100

200

5k x 5k 15k x 20k 30k x 40k
Dataset size

Ti
m

e
in

 s
ec

on
ds

Biclustering Query Performance,
SciDB v. SciDB + Intel® Xeon Phi™ coprocessor

(a)

0

100

200

300

400

5k x 5k 15k x 20k 30k x 40k
Dataset size

Ti
m

e
in

 s
ec

on
ds

SVD Query Performance,
SciDB v. SciDB + Intel® Xeon Phi™ coprocessor

(b)

0

200

400

600

5k x 5k 15k x 20k 30k x 40k
Dataset size

Ti
m

e
in

 s
ec

on
ds

Covariance Query Performance,
SciDB v. SciDB + Intel® Xeon Phi™ coprocessor

(c)

50

100

150

200

250

5k x 5k 15k x 20k 30k x 40k
Dataset size

Ti
m

e
in

 s
ec

on
ds

Statistics Query Performance,
SciDB v. SciDB + Intel® Xeon Phi™ coprocessor

(d)

0

200

400

600

5k x 5k15k x 20k30k x 40k
Dataset size

Ti
m

e
in

 s
ec

on
ds

Systems
SciDB
SciDB + Intel® Xeon Phi™ coprocessor

Statistics Query Performance,
SciDB v. SciDB + Intel® Xeon Phi™ coprocessor

Figure 5: Overall performance of SciDB and SciDB + Intel
R©

Xeon PhiTM coprocessor

11

In contrast, ScaLAPACK operates on data arranged in a block-
cyclic layout over a collection of nodes. Moreover, ScaLAPACK
chunks are quite small, i.e. Kbytes, and are stored unencoded, so
they can be unpacked and operated on easily.

Hence, there are good reasons for the DBMS and the linear al-
gebra package to choose different storage formats. As such it is an
O(N) operation to convert from one representation to the other.
Since the constant is fairly large, this conversion can dominate
computation time if the arrays are small to medium size.

As a consequence, we see two different analytics scenarios. When
the arrays are large, it will pay to convert the data to ScaLAPACK
format. With smaller arrays, an in-DBMS suite of analytics should
be used to avoid the conversion cost. Of course, such an approach
introduces a number of complexities: two codebases have to be
maintained, and those codebases can produce inconsistent answers,
particularly with respect to numerical stability and roundoff errors.

6.3 Algorithms
It is, of course, essential to have high-speed implementations of

basic array operations. More important is the choice of algorithm.
First, algorithms differ in their accuracy (approximate versus ex-
act) and in their error bars (preciseness). Also, there are usually
a substantial number of ways to compute any given quantity. A
good algorithm can make a huge difference in the performance of
any computation. Particularly for many matrix factorization and
statistical optimization problems, there exist efficient approximate
algorithms that parallelize well. It is likely that such algorithms
will be critically important as dataset sizes grow – for example, in
our benchmark, approximation algorithms may have allowed us to
scale to the 60K x 70K dataset that none of the systems we tested
could process in under two hours.

7. CONCLUSIONS
The purpose of this benchmark is to draw community attention to

the needs of data scientists, namely for high performance, scalable
data management and analytics. The results presented in this paper
show that real-world systems have lots of room for improvement.
We can easily conclude that only systems that are good at both
kinds of tasks will excel at this benchmark. Moreover, some of
the configurations we tested required “glue” code to copy/reformat
data back and forth between multiple systems, and required several
hours of programmer effort.

All of the code and data is available on our web site, noted ear-
lier, and we hope other systems will try out this benchmark.

8. ADDITIONAL AUTHORS

9. REFERENCES
[1] Affymetrix. http://www.affymetrix.com.
[2] Apache hive(tm). http://hive.apache.org.
[3] Apache mahout: Scalable machine learning and data mining.

http://mahout.apache.org.
[4] Apache (tm) hadoop (r). http://hadoop.apache.org.
[5] Blas (basic linear algebra subprograms).

http://www.netlib.org/blas/.
[6] Dna sequencing costs.

http://www.genome.gov/sequencingcosts.
[7] Genbase. http://web.mit.edu/ mvartak/www/genmark.html.
[8] Madlib. http://madlib.net.
[9] pbdr - programming with big data in r.

https://rdav.nics.tennessee.edu/2012/09/pbdr/.

[10] Postgresql. http://www.postgresql.org.
[11] The r project for statistical computing.

http://www.r-project.org.
[12] Scalapack - scalable linear algebra package.

http://www.netlib.org/scalapack/.
[13] Scidb. http://www.scidb.org.
[14] Singular value decomposition for genome-wide expression

data processing and modeling.
www.pnas.org/content/97/18/10101.abstract.

[15] Tpc transaction processing performance council.
www.tpc.org.

[16] Intel math kernel library (intel mkl) 11.1, 2013.
[17] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S. Maskey,

E. Ryvkina, M. Stonebraker, and R. Tibbetts. Linear road: a
stream data management benchmark. In Proceedings of the
Thirtieth international conference on Very large data bases -
Volume 30, VLDB ’04, pages 480–491. VLDB Endowment,
2004.

[18] D. Bitton, C. Turbyfill, D. J. Dewitt, and D. J. Dewitt.
Benchmarking database systems: A systematic approach.
pages 8–19, 1983.

[19] M. J. Carey, D. J. DeWitt, J. F. Naughton, M. Asgarian,
P. Brown, J. E. Gehrke, and D. N. Shah. The bucky
object-relational benchmark. In Proceedings of the 1997
ACM SIGMOD international conference on Management of
data, SIGMOD ’97, pages 135–146, New York, NY, USA,
1997. ACM.

[20] M. Clamp, B. Fry, M. Kamal, X. Xie, J. Cuff, M. F. Lin, and
E. S. Lander. Distinguishing protein-coding and noncoding
genes in the human genome. Proc. National Academy of
Sciences of the United States of America, 104(49):19428–33,
2007.

[21] R. Hazra. Driving industrial innovation on the path to
exascale: From vision to reality, 2013.
http://newsroom.intel.com/servlet/JiveServlet/download/6314-
25051/Intel ISC13 keynote by Raj Hazra.pdf.

[22] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang,
E. Fratkin, A. Gorajek, K. S. Ng, C. Welton, X. Feng, K. Li,
and A. Kumar. The madlib analytics library: or mad skills,
the sql. Proc. VLDB Endow., 5(12):1700–1711, Aug. 2012.

[23] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen,
T. Kaldewey, V. W. Lee, S. A. Brandt, and P. Dubey.
Designing fast architecture-sensitive tree search on modern
multicore/many-core processors. ACM Trans. Database
Syst., 36(4):22, 2011.

[24] A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee,
B. L. Ebert, M. A. Gillette, A. Paulovich, S. L. Pomeroy,
T. R. Golub, E. S. Lander, and J. P. Mesirov. Gene set
enrichment analysis: A knowledge-based approach for
interpreting genome-wide expression profiles. Proc. National
Academy of Sciences of the United States of America,
102(43):15545–50, 2005.

12

