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Abstract

Electromagnetic formation flight is the process of using electromagnetic actuators (coils)

on multiple spacecraft to produce relative (internal) forces in order to control the relative

position and orientation of the spacecraft. This thesis demonstrates the ability to experi-

mentally generate the relative internal electromagnetic forces in a short duration full 6DOF
environment. Next the thesis limits itself to a two-satellite system and thus is able to per-

form a state reduction that constrains the motion to an arbitrary two-dimensional plane in

3-dimensional space showing that this is not actually a constraint on the real system for a

two satellite formation. A feedback control law is propsed and simulated in this constrained

space demonstrating position control of the underactuated system. Some theoretical guar-

antees are derived from contraction analysis. Finally time and energy optimal paths for a

series of maneuvers are conceived by application of the GPOPS - HI numerical optimzation

software. The results show further that the underactuated system is capable of arbitrary

position control with the limitation being that it is unable to simultaneously control attitude

and position to desired states because the attitude is used to "steer" the magnetic dipole

therefore the desired angle is set by the position controller rather than an external reference.

Overall this thesis shows the viability from the controllability perspective of underactuated

electromagnetic formation flight for future space missions.
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Title: Professor

Thesis Supervisor: Alvar Saenz-Otero
Title: Principal Research Scientist
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Mathematical Syntax

The mathematical syntax used within this thesis aims to be highly consistent and clear. To

that end the meaning of several formatting choices will be laid out in advance.

. X, X: regular italic variables denote scalar quantities (such as energy or mass)

. x, X: bold italic variables denote euclidiean vector quantities (2 or 3-dimensional

vectors)

. ;:, X: the ^ symbol denotes unit vectors (vector 2-norm equals 1)

. x, X: bold upright variables denote matrix quantities (MxN matricies, can be column

or row matricies). Scalar values and euclidian vectors are allowable. As such this is

the most general class of variables.

Capital (X) and lower case (x) letters are considered distinct variables but they still

follow the above rules for determining what type of variable they are.

Variables that do not vary with time are referred to as parameters. All of the previous

notation applies to parameters. Variables that do vary with time are still referred to as

variables. As appropriate the following notation convetion applies.

. x (-), x (.): the (.) denotes the full time series of a variable, i.e. the function x (-).

. x (t), x (t): the (t) denotes the value of x (.) at time t.

. x 0 , xf: (.)o and (.)f denote fixed initial or final values of the x.

. x(to), xf: (to) and (.)f denote free initial or final values of the x. Note: x(to) = xo

. x: ~denotes the error value of a particular variable, its value w.r.t. a reference xr.

Variables with the same time series can be grouped as [x (.) u (-)] and done typically to

describe a trajectory, or an association between the variables at any time step.

Subscripts i and j denote the ownership of the variable i.e. xi denotes the value of

x evaluated for object i. Subscript , denotes the nth value of the variable, typically in

reference to some discrete variable i.e. xz, is the nth value of x.
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Chapter 1

Introduction

To cross the seas, to traverse the roads, and to work ma-

chinery by galvanism, or rather electro-magnetism, will cer-

tainly, if executed, be the most noble achievement ever per-

formed by man.

- Alfred Smee, Elements of Electro-Metallurgy, 1851

1.1 Motivation

The ability to control the relative position of multiple objects in orbit

is very useful, and has been done so regularly since the Apollo era and

the first orbital rendezvous. The ability to control the relative position

of multiple objects indefinitely, continually, and without refueling is new

and is an enabling ability for a variety of space applications.

1.1.1 Why Formation Flight

Fractionated Space Systems

There are shifting trends in space system design. The predominant sin-

gle monolithic spacecraft design is losing ground to fractionated system

architectures. Distributed space systems, an extension of satellite for-

mations, have numerous advantages over large monolithic satellites. By

spreading the functional components of a spacecraft system across sev-

eral smaller discrete systems, either homogenously or heterogeneously,

the overall system is more tolerant of risk and uncertainty. The system

is also more flexible and robust that any single point designed spacecraft.

15



Chapter 1. Introduction

The Value Proposition for
Fractionated Space

Architectures, Brown and
Eremenko 2006

Fractionated systems, as described by Browni, have 6 main aspects:

networking, wireless communication, distributed computing, distributed

payload operations, wireless power transfer, and cluster operations.

The final aspect is of particular importance, where before a satel-

lite perhaps needed to control its attitude for payload operations, for

instance, to point an antenna or telescope, under a fractionated architec-

ture it now needs to potentially control the attitude of many spacecraft

and control the relative positions of many spacecraft (i.e. the cluster).

This has created a new requirement for methods of providing linear ac-

celerations (AV). Conventionally this requirement is filled by thrusters.

However, if the the AV requirement for the fractionated system is high

enough, the propellant mass requirement can become infeasibly large,

leading to either a descoping of the system capabilities and the asso-

ciated reduction in AV requirement or the outright infeasiblity of the

system overall.

The Terrestrial Planet Finder
(TPF) : a NASA Origins

Program to search for habitable
planets, Beichman, Woolf, and

Lindensmith 1999

Phoenix: Initial Technical
Elements and Interfaces,

Barnhart 2011

Formation Flying: The Future
of Remote Sensing from Space,

Leitner 2004

One such concept that has a very high AV cost is the distributed

telescope array 2 : a rotating array of telescopes create a spase telescope

array which can image objects with a resolution similar to that of a

monolithic aperture of the same length scale as the telescope array size.

A rotating array requires constant centripetal accelerations. Relying on

consumable propellant inheritly puts an upper limit on the useful life of

the telescope array. Once the propellant stores are emptied, the array

will cease rotating and drift apart.

Other applications that possibly have high maneuver requirements

are satellite inspection, repair, or salvage 3 and remote sensing space-

craft formation control 4 . At present these operations (if done at all) use

thrusters to achieve their maneuvering requirements. Electromagnetic

formation flight (EMFF) is an emerging technology that can satisfy the

cluster operations aspect of fractionated and distributed space systems

by enabling relative position control without propellant consumption.

16



1.1. Motivation

1.1.2 Why Electromagnetic Formation Flight

Propellantless Formation Flight

Mass is at the center of every spacecraft. This is especially true for

any vehicle designed to propel itself as the rocket equation is a power-

ful and unforgiving enemy. If spacecraft propulsion did not entail mo-

mentum transfer via particle exhaust then one could simply circumvent

the rocket equation. This sounds like cheating but it is precisely what

electromagnetic formation flight provides if the system requires relative

position control. The electromagnetic propulsive forces are internal to

the system so the overall system center of mass cannot be moved, only

the relative position of spacecraft within a system can be modified.

No Plume Ejecta

Further benefit of not using conventional thrusters to perform relative

maneuvering is that there is no plume ejecta to interfere with sensors or

payloads on the source spacecraft or other nearby spacecraft. This is of

clear benefit to a distributed telescope system, whose prime payload is

a host of sensitive optics. It is also a concern for other satellite systems

as plume contamination can deposit exhaust onto other, more common,

sensitive spacecraft components such as solar panels and thermal control

surfaces and degrade system performance over time5 . Eliminating the "Interactions Between
Spacecraft and Thruster

thruster eliminates this concern. Plumes", Boyd and Ketsdever

2001

Wireless Power TFransmission

Finally, and of note as this ability is another of the 6 aspects of fraction-

ated space systems, a system capable of producing a strong, time varying

magnetic field, as is used for EMFF, can use that same magnetic field

generation system to transmit power wirelessly via resonant inductive

coupling6 . A simple way to generate a time varying magnetic field is to

construct an RLC circuit and drive the system at the resonant frequency.

This type of oscillating field can still be used for electromagnetic force

interaction, though it creates a new requirement: controlling the rela-

tive phase between two or more signals. Assuming the frequency of the

sinusoidal field is sufficiently fast relative to the rigid body motion, the

"Wireless Power Transfer via
Strongly Coupled Magnetic
Resonances", Kurs et al. 2007

" L

The RLC circuit is an
electrical circuit with resonant
frequency I

17



Chapter 1. Introduction

Tx -* Rx
Wireless power transmission

via resonant inductive
coupling is when the natural
resonance of a secondary coil

aligns with the driving
frequency of the primary coil

such that the induced voltages
due to the time varying

magnetic field oscillate at its
own resonant frequency. The

result is a much stronger
output signal in the secondary.

"Dynamics of Multi-Body
Space Interferometers

Including Reaction Wheel
Gyroscopic Stiffening Effects:

Structurally Connected and
Electromagnetic Formation

Flying Architectures", Elias
2004

"Dynamics and Thermal
Control of an Electromagnetic

Formation Flight Testbed",
Neave and Sedwick 2005

"Electromagnetic Formation
Flight of Satellite Arrays",

Kwon and Miller 2005

time averaged result is equivilant to a non-oscillating system driven at

the RMS level of the sinusoidal system.

Therefore, while still satisfying the requirements for EMFF, if the

field generation system is designed to create a time-varying magnetic

field the system can perform wireless power transfer (WPT) as well.

When actuating one satellite in the system, the transmittere, power can

be transferred into the receiving coil of any number of nearby passive

satellites via resonant inductive coupling. This could be a further en-

abling factor in fractionated or distributed space systems, allowing for

power to be wirelessly transmitted within the formation.

1.2 Background

Research into EMFF systems has been conducted in the past several

years. This research has been both about how to design an EMFF system

and how to control one.

All prior work has only considered a fully actuated EMFF system (i.e.

three orthogonal electromagnetic coils). In the fully actuated system the

magnetic dipole is steerable independent of the spacecraft attitude. This

thesis considers the most underactuated case, where there is only a single

electromagnetic coil. In the underactuated system the dipole is no longer

steerable independent of spacecraft attitude.

1.2.1 EMFF as a Concept

Elias studied the space interferometer in detail, with one possible solu-

tion being a set of free-flying satellites coupled through electromagnetic

forces. By application of Kane's method Elias described the equations of

motion and then demonstrated fully actuated closed loop controllability7 .

Neave studied the EMFF and its many subsystems while also vali-

dating the model of a small single axis EMFF system operating on the

ground to fit well with experimental data from a variety of control meth-

ods including linear feedback control and sliding mode control8 .

Kwon took the first in-depth look at EMFF. In his thesis Kwon laid

out a baseline system design for an EMFF system, considering multi-

satellite formations and formations with vehicles of disparate size 9 . An

18



1.2. Background

example EMFF system for the Terrestrial Planet Finder mission is com-

pared to various micro-thruster system designs. This work does not

address the control algorithms for utilizing an EMFF system.

Schweighart demonstrated the controllability of an N-satellite forma-

tion of fully actuated satellites10 . His thesis also develops three models

for electromagnetic force and torque: far-field, mid-field and near-field.

Schweighart provides analytic solutions for the far- and mid-field models.

Finally this work provides methods for determining the necessary mag-

netic dipoles to achieve arbitrary set of forces for an N-satellite array,

some consideration is given to angular-momentum management maneu-

vers.

AhsuniI presented two trajectory generation methods and two trajec-

tory tracking methods for the N-satellite fully actuated formation flight

problem. The trajectory generation methods are artificial potential func-

tion motion planning with dipole inversion and pseudospectral optimal

control methods. The tracking algorithms demonstrated are an applica-

tion of adaptive control and receding horizing optimal contol.

Wawrzazek showed how to apply linear control theory to the re-

stricted case of a spun-up fully actuated two satellite formation 12 . He

shows how the uncontrolled system, using only feed forward centripetal

forces is unstable and that while the linear controller developed stabilizes

the system, it does so insufficiently for interferometric mission require-

ments.

"Electromagnetic Formation

Flight Dipole Solution
Planning", Schweighart 2005

"Dynamics and Control of

Electromagnetic Satellite
Formations", Ahsun and

Miller 2007

"Control and reconfiguration

of satellite formations by
electromagnetic forces",
Wawrzazek and Banaszkiewicz

2007

1.2.2 Contraction Theory

Created

1.2.3 Optimal Control

Optimal control theory deals with the class of problems that ask to find

the control law or history of control inputs that satisfy an optimality

requirement, that is, they minimize some cost function, while subject to

arbitrary state and input path and boundary constraints. There only

exist analytic solutions for a very small set of problems, and most real-

world problems require numerical methods.
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Chapter 1. Introduction

"Nonlinear Programming",
Kuhn and Tucker 1951

"Dynamics and Control of
Electromagnetic Satellite
Formations", Ahsun and

Miller 2007

The sufficient conditions for optimality provide a boundary value

problem (BVP) that often is very difficult to solve numerically. Methods

that attempt to find approximate solutions to the BVP are called indirect

methods.

In recent years alternative methods for finding solutions to optimal

control problems have been developed. In particular, and of recent pop-

ularity, are direct pseudospectral methods. Conceptually this class of

solution method is finding the coeffients for a special set of polynomial

basis functions that approximate the state and control histories and ex-

plicity enforcing the optimality criteria (Karush-Kuhn-Tucker, KKT 13 )
at a set of points called collocation nodes.

Pseudospectral methods have been applied to electromagnetic for-

mation flight before" however prior work has been limited to the fully

actuated case when the system has as many electromagnetic actuators

as translational degrees of freedom.

1.3 RINGS EMFF Testbed

It will be useful for the reader to be familiar with the basic functionality

and geometry of an EMFF system. To that end a brief overview of the

RINGS EMFF system is presented.

1.3.1 Appearance

An electromagnetic formation flight system is at its core simply an elec-

tromagnet. To have a basic level of functionality it also requires inde-

pendent attitude control, such as reaction wheels or thruster pairs. The

magnetic dipole is a function of the area of the electromagnet, the number

of turns or windings in the electromagnet and the amount of electrical

current flowing in the wires of the electromagnetic coil, t = fNIA.

The direction of the dipole is determined by the vector ft normal to the

plane defined by the coil of wire. To a basic level, it is thus desireable

to have a large area, many turns and high current as stronger dipoles

allow for stronger interaction and larger forces or torques. The geometry

that maximizes the area for a given length of wire is a circle, thus when

free of other restrictions an electromagnet used for EMFF should look
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1.3. RINGS EMFF Testbed

K

Figure 1-1: The fully actuated EMFF system has three coils of wire that produce magnetic

dipoles Aj, Ayj, and Agk. These unit vectors form a basis set that spans the space R3. Therefore
any vector yL E R3 can be created in component parts by this configuration.

something like a large bundle of wire coiled into a circular shape.

To be able to point the dipole in any direction, three coils are required

whose normal vectors ij are linearly independent, that is the basis set

[Ai, nyj, nk) spans the space of R 3. The obvious choice if free from other

restrictions is to orient the three coils in mutually orthogonal directions.

Thus a fully actuated electromagnetic formation flight system might look

something like Figure 1-1.

1.3.2 Electrical Operation

The system can operate using either direct or alternating current. In

the case of direct current there will be a coupling with Earth's magnetic

field (and any other static magnetic fields in the area) that must be dealt

with. In the case of alternating current, both the phase and frequency of

the signal must be matched across all units to be coupled. Units driving

at a non-identical frequency (f z,/ g) will net to zero average force.

7rN

sin(27ft) sin(27gt)dt = 0

Regardless of the frequencies there will be beat-frequency vibrations of

If ol g Hz. For f = g the beat frequencies shift to Hz and 2fHz. The

"oHz vibration" is the bulk motion of the satellites. Units driving with

some non-zero phase angle between them (A# 0) will have a force
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-- Flat response of Factuai = F 0 o cos(A#). The force rolls off as the cosine

of the phase error therefore very precise phase control is not important
Cosine Rolloff because the curve is flat ( = 0) around zero phase angle difference

The cosine waveform is flat in A
the viscinity of 0. which means. However lack of phase control altogether results in the sys-

tem drifting randomly in phase relative to each other, with zero average

net force.

1.4 Overview

This thesis discusses the prior electromagnetic force models developed

and reproduces the results in the near-field. A limit is found to how

discritized the model needs to be before losing precision as a function

of range. Then experimental data is collected on a Reduced Gravity

Aircraft (RGA) with the goal of validating the electromagnetic force

models. Then the underactuated system is examined in a linear control

sense and feedback position control is achieved. Finally optimal control

theory is used to generate time or energy optimal paths for more complex

maneuvers.

In Chapter 2 the electromagnetic force and torque near-field model

are described. The far-field model is stated for comparison, having been

thoroughly developed in prior work. A limit is found for the discretiza-

tion level in the near-field model such that machine precision is reached.

Also common geometries are introduced alongside small glyphs that may

appear in parts of the remainder of the text.

Chapter 3 attempts to verify and validate the near-field model. The

model is compared to far-field for verification, with the expectation of

the two converging at roughly 6.67 radii. Validation is conducted ex-

perimentally with data collected from step responses and the response is

compared to near-field model. Difficulties with data collection and tra-

jectory reconstruction have hampered this effort. The process described

should be sufficient with a more complete data set.

Chapter 4 takes an underactauted system with only a single elec-

tromagnetic actuator and applies Lyapunov stability analysis and con-

vergence theory to produce a dipole-steering feedback control law. This

control law is then simulated and evaluated within the near-field region.



1.4. Overview

This method proves the ability of a single actuator system to achieve po-

sition control, though it cannot simultaneously achieve arbitrary attitude

control due to the nature of the position control.

Chapter 5 uses the same underactuated system from Chapter 4 and

applies optimal control theory along with a numerical optimzation tool,

GPOPS - lili, to find time and energy optimal trajectories for a series of

maneuvers. The maneuvers tested are: axial step, lateral step (slew), a

collision-avoidance maneuver, and a formation spin-up maneuver. These

maneuvers are selected for their gradual increase in complexity (in order

to assist in developing tools for generating optimal trajectories) and for

their application to real scenarios, the axial and lateral step test basic

position control, the collision-avoidance demonstrates a crucial ability

when operating a multi-satellite formation in close proximity and the

formation spin-up is an essential manevuer for a system such as a sparese

telescope array.

23



Chapter 1. Introduction24



Chapter 2

Force & Torque Modelling

One of the foremost contributions this thesis makes is examining the un-

deractuated EMFF system, that is, when there are fewer electromagnetic

coils than translational degrees of freedom. The transfer function from

electrical current (dipole strength) to electromagnetic force and torque

is the same, but in the underactuated model only the strength of the

dipole is controllable, while its orientation is defined by the spacecraft

attitude vector. This means the control input is not the electromagnetic

dipole vector, but rather is the intensity of the magnetic field and torque

inputs to rotate the field direction. We begin by a careful examination

of the approximate near field force model.

2.1 Electromagnetic Force Model Development

The force and torque interaction exploited by an EMFF system derive

from the effect known as the Lorentz force. This is the interaction of

moving charged particles and a magnetic field resulting in a force orthog-

onal to both the field and velocity vectors. When the charged particles

are constrained to a conductor (a wire) this is sometimes known as the

Laplace force, and when the external magnetic field is itself caused by

electrical current in a wire (thus the interaction between two conductive

wires) this is often known as Ampere's force law. The forces and torques

created by an EMFF system all derive from this effect.
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Chapter 2. Force & Torque Modelling

2.1.1 Common Geometries

There are a few geometries that continually show up when talking about

near-field electromagnetic forces/torques. Between these maneuvers al-

most any more complex maneuver can be composed so it will help to

properly define them before using them. Often there will be small glyphs

shown in the margin to make clear which geometry is relevant to the dis-

cussion at hand.

1. Axial: When the coil plane normal vectors are co-axial

2. Shear: When the coil plane normal vectors are orthogonal

3. Skew: When the coil plane normal vectors are not coplanar

The first two orientations span the range of planar motion: the ax-

ial case causes motion along the relative position vector (attraction or

repulsion), the shear case causes transverse motion orthogonal to the

relative position vector and a strong rotation around the planar normal

axis. Importantly, any torques produced by these first two orientations

do not cause the spacecraft dipole to leave the plane. That feature is

what sets the planar orientations apart from the skew orientation.

2.2 Near-Field

Ampere's force law is expressed as the infinite summation of forces on

infinitesmal lengths of conductor di with current Ii due to the magnetic

field generated by infinitesimal lengths of conductor dej with current Ii.
It is assumed that the structure of each conductor is rigid meaning forces

between lengths of conductor within the same object are ignored. When

the conductors are circular in shape the result is as shown in Figure 2-1

on the next page. Extending this by noting that r = r x F defines

the near-field torque equation as well, where Ri is the position vector of

element dfi relative to the center of mass (CoM) of object i.
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2.2. Near-Field

dfj

Figure 2-1: The Ampere Force Law computes the total force on a current carrying wire due
to the magnetic field generated by electrical current in a nearby wire.

Ftj =Po Iidi x (Ijdj X (2.1 a)
F 4 = (2.1a)11

ij=Po R idei x (Ijdty x Pjj)
riJ - j I x2 (2.1b)

47r j ||r||

This integral has no known analytic solution. It is however useful

to use this as the truth model for simulations, as it is a very accurate

description of the physical system. In order to implement Equation (2.1)

on the facing page numerically it must be discretized first.

F =Po Ni Nj ie ldiX'j)(.a
47r r (2.2a)

i=1 j=1

Po Ni Nj Jxdti x (Idtj x (2.2b)
rg=47r E " Rjr x12 (.b

i=1 j=1

There are two important parameters in this model, Ni and Nj. These

parameters determine how discritized the problem is. Specifically they

determine how many segments to approximate each circular coil as. Us-

ing more coil segments should result in a more accurate result, but it

comes at the cost of increased computation.

There are three distinct levels of detail for electromagnetic force/-
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Chapter 2. Force & Torque Modelling

torque models.

1. Far Field: Ignore geometry of conductor, consider as a point

dipole, 0(1)

2. Near Field: Consider simple geometry of conductor, O(NiNj)

3. Nearest Field: Consider full geometry of conductor, O(NiNjMiMj)

The decision reduces to a trade of computational cost for numerical

accuracy. The cost is O(NiNjMiMj) for N segments per turn and M

loops per vehicle i, j. Therefore both the number of turns per coil and the

number of segments per turn are very important to the computational

intensity of the problem and should be carefully set to appropriate values.

2.2.1 Turns per coil reduction

Applying the second level requires integration of the full geometry. If

the system consists of two circular coils with 10 turns each, that requires

integration from [0, 207r] on both integrals, which is a 100x increase in

computation cost! While this is the most precise way of computing the

electromagnetic forces, it only becomes relevant in the extremely near-

field. The first level allows for an equivilance in amp-turns which elim-

inates the quadratic increase in computational cost from adding turns.

By assuming all turns occupy the same physical space the integration

can again be over a single turn with a larger multiplier out front.

0)
N = 5, IA N =1= 5A

Figure 2-2: Amp-turn equivilance

2.2.2 Segments per turn convergence

Let us next look at how many of the infinitesemal differential length

elements in the near field model we actually need to use. The near field

model is very accurate and for that it is desirable to use, either as ground

truth for a simulation or other analysis or as the process model used for
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2.2. Near-Field

real hardware. The primary reason to not use the near field model is

the computational intensity of doing so. However, if it were possible

to smoothly and dynamically switch between low cost computation at

large ranges and higher cost but arbitrarily accurate results at very close

ranges then this would perhaps be the best of both worlds. This proposed

method offers precisely that best-of-both-worlds outcome.

Intelligent Discretization

There are four steps involved in the process of creating an intelligent

discretization strategy. The final step will vary depending on the appli-

cation specific details of the hardware and software thus it will not be

described in detail. The first three steps are more generalizable and thus

the process through these steps is described.

1. Evaluate the magnitude, MF = |IFH| and M, = ||r||, of the near-

field model electromagnetic force and torque over various distances

normalized radial r and various coil discritization levels N = Ni =

2.

3.

4.

N-.

Perform a first order central difference to determine the slope am

Approximate the levelcurve of m = Edes with some function N(r)

Modify near-field model to use N(r) segment discretization instead

of a predified fixed number.

The first two steps were completed and the resulting graph of O for both

force and torque is show in Figure 2-3 on the next page for two different

orientations (resulting in 4 charts). Looking at the four results we can

see behavior that is dependent both on range and orientation. Across

these dimensions the bounds imposed by force convergence (charts a,c)

is stricter than those from torque convergence (b,d). Furthermore, the

shear case imposes stricter bounds than the axial case (again, for both

force and torque), therefore we can conservatively pick the number of

coil segments based off the worst case scenario, which is the shear force

orientation (c). With futher analysis the effect of orientation could be

quantified to take advantage of looser bounds in the axial orientation.

Arbitrarily accurate in the
range Edes G [Em cc). This
thesis does not claim to be
magical in any way, the
physical limitations of the
machine being used still apply.

There is no consideratiun in
this method fur different
discritzation levels Ni for each
satellite. The method
explicitly assumes Ni = N
etc... Note: While unique
discretizations are dissallowed
the cuils may geometrically be
unique. The size and shape of
each cull is irrelevant as the
final result is based only un
the output of the model, i.e.
magnitude of force and torque.

The first order central
difference is defined as:
dy | YiY+1 -Y i1

dyij Xi+i5 5-
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Log A between N and N+1 Segments: Force, Axial Log A between N and N+1 Segments: Torque, Axial

U

10 a0 so 40 So 0o 70 so 2 10 0 40 We so e a O y s
Number of Segments Number of Segments

(a) Axial Force (b) Axial Torque

Log A between N and N+1 Segments:Force, Shear Log A between N and N+1 Segments:Torque, Shear

0 2W so 40 o ao 70 9o Wo 'D 20 so 40 5o DD 7o 8o 90
Number of Segments Number of Segments

(c) Shear Force (d) Shear Torque

Figure 2-3: Change in vector norm with with increasing segments. Columns: Force vs Torque.
Rows: Axial vs Shear.

The final step is to approximate the levelcurve - = as a func-
The normalized range is the

absolute range ra divided by tion of the normalized range r, by an inverse quadratic polynomial
the coil radius Recit. The coil

radius provides a scale factor
that helps discuss these

electromagnetic systems in a N (2.3)
more general fashion. P2 (2.3)

Therefore the normalized

range r is R-a
cost where Edes is a precision level from +oo to machine precision inclusive.

The particular application may not require full machine precision and

thus this method can be used to find the levelcurve that satisfies some

different precision value.

The main conclusion is that in practice for numerical computations

there can be quantified a boundary beyond which there is sufficient dis-

cretization that the computation does not suffer loss of precision due to

coil discretization. Once there are enough segments to reach the desired

precision, using any more is wasted computation. The method to find

this boundary is a numerical method and given the initial computation



2.3. Far-Field

cost to find the desired precision level curve, this method is only advised

if a large number of calculations are to be done such that the initial

computational investment can be recouped subsequently by the more

efficient discretization.

The remainder of this thesis leverages this result when computing

near-field forces and torques. In this way, when in the far-field the com-

putational cost of the near-field model is the same order of magnitude

as the far-field model and when in the near-field the full force precision

of the near-field model is readily available.

2.2.3 Parallelization

The near-field model was not parellelized but it is possible to peform

massive parallelization of Equation (2.1) on page 26. The near field force

equation is an all-to-all type problem where every segment on coil A must

be evaluated against every segment on coil B. Thus the top level can be

parallelized, evaluate every segment of coil A in parallel. Given that

the number of segments is essentially always greater than the number

of hardware cores available there should be considerable speed improve-

ments seen proportional to the how parallelized the hardware is (i.e. how

many computing cores are available).

2.3 Far-Field

Prior work in EMFF has developed and used far field models'' 10 . Ref-

erencing this prior work we show the far-field electromagnetic force and

torque models in Equation (2.4). These equations assume each object is

a point magnetic dipole. All physical dimension of each object is ignored.

When sufficiently far away this is a valid assumption.

Fj=3CM' 7jp (5 (#i . ?ij) (ftj. -Pj fi - (At2 - j) jf2j - (ftt - fij1 ) ft3

rij = Cm (fAs x [3ij (Aj -fij) - ftj)

The expression g occurs in essentially all equations relating to electro-

All to all:

A B

"Dynamics and Control of

Electromagnetic Satellite
Formations", Ahsun and
Miller 2007

"Electromagnetic Formation

Flight Dipole Solution
Planning", Schweighart 2005

(2.4a)

(2.4b)
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magnetic force and torque. As such we give this expression a special

symbol, Cm. The vector form of the far-field equations are useful and

very concise way to describe the full 3-dimensionally relationship but

they are not terribly informative or insightful analytically. Therefore we

can also confine the dynamics to two dimensions (as is often the case)

and show a much simpler form of Equation (2.4) on the preceding page.

Fj- 30 ipt 2 cos(a) cos(3) - sin(a) sin(#)

rig [- cos(a) sin(#) - sin(a) cos()

Cm Pitt (2 sin(a) cos() + cos(a) sin())
ij r3

(2.5a)

(2.5b)

Note the subscript order for
relative vectors is defined as

rij ri rj.
The angles a and # are the dipole angles of satellites i and j respectively.

Note: the angles a and #3 are measured relative to the relative position

vector rij, not the inertial axes. Therefore there is a vector rotation

required to express these forces in terms of an inertial X-Y plane.
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Verification & Validation

Essentially, all models are wrong, but some are useful

- George E. P. Box, 1987

The goal of verification and validation is to demonstrate two important

facts:

1. The model was developed correctly

2. The model developed is correct

Once both have been established, the model becomes useful. Without

validation the model may produced the results we intended (per the

model algorithm) but have no relation to the reality it claims to model.

Without verification a model may produce results consistent with reality

but no conclusions based off its results can be drawn as the implemented

model is not necessarily the intended theoretical model.

3.1 Verification

Verification is the process of assessing whether something was correctly

built or developed. In the case of a model of a physical system a good

way to do this is to be able to predict the behavior of the real system

under known conditions.

To verify the near-field algorithm properly computes forces and torques

we compare against a known and proven algorithm, the far-field model.

We evaluate both our near-field algorithm and the far field model from

literature over several ranges and orientations. For brevity we only
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present the axial force and shear torque cases as the most illustrative.

The vector norm of the resultant force or torque vector is graphed for

the given geometries.

Note, the value plotted in the Y-axis is Force or Torque per Amp2

They are presented this way because in both the force models there is an

12 multiplier. The force scales linearly with the product of current in both

coils. In the far-field (Equation (2.4) on page 31) it is contained within

pipj = (NIA)j(NIA)j. In the near-field (Equation (2.1) on page 26) it is

expressly in the integral cross product, Iidti x (I d1i x fji). In practice

what this means is for two coils of wire the distribution of electrical

current is unimportant, all that matters is the product IiI.

Near vs Far Field Electromagnetic Force

101
Near Field

100 - -Far Field

10-

Axial )i
3

10-4

10-5

1060 1 2 3 4 5 6 7 8 9 10

Separation Distance (radii)

Figure 3-1: Near and far field forces for the axial dipole case

The near and far field models converge at around 6.67 radii, which

is the expected range at which the two models converge. This visual

comparison of the two models is useful, but the metric we are concerned

about when deciding to use near-field or far-field is the relative error.

This should converge to zero and be within roughly 10% at 7 radii. The

dip in the relative torque error near 2 radii is because the near-field

model predicts torques slightly larger than the far-field model at large

separation distances. At precisely 2 radii (1 diameter) the near-field and

far-field models are equal. Inside of 2 radii the near-field torques are

lower than the far-field, which asymptotically goes to infinty due to the
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Near vs Far Field Electromagnetic Torque

1 2 3 4 5 6 7
Separation Distance (radii)

+
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Figure 3-2: Near and far field torques for the shear dipole case

Relative Error of Far Field Force and Torque Model
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Separation Distance (radii)

+
Force

+
Torque

8 9 10

Figure 3-3: Relative error of the far field model in axial force and shear torque

term.

The relative force error gradually diverges as the range decreases.

Just like as it did for torque, the far-field force model diverges to infinity

at zero range due to the term.

It is worth presenting one more chart. From the view of Figure 3-2 it

appears that the far-field torque model is accurate to within about 1.5

radii. This is simply coincidental. Due to the symmetry involved in the
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pure shear geometry the far-field model does a good job approximating

this particular case. However, when we rotate one coil 450 rather than

90' this symmetry is broken and it is very apparent that the far-field

torque model doesn't converge to the near-field solution until at least 7

radii, roughly the same length scale required for force.

Near vs Far Field Electromagnetic Torque

101
-e-Near Field

100 --- Far Field

~ 10-1

102

Axial-Shear i0-

10-4
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10-6 0 1 2 3 4 5 6 7 8 9 10

Separation Distance (radii)

Figure 3-4: Near and far field torques for the 450 dipole case

3.2 Validation

To validate the model to the RINGS system hardware, we compare the

force/torque model output to experimental data collected by operating

the RINGS in a reduced gravity environment. The RINGS system will

eventually operate in the permanent microgravity environment of the

International Space Station (ISS)

For operating on the ground, the RINGS are placed into an air car-

raige which allows for 3 degrees of freedom (DOF), two translational and

one rotational. This reduction in DOF's eliminates much of complexity

in the dynamics, additionally the air-carriage introduces additional mass

and surface friction that is not present in the full 6-DOF system (i.e. in

microgravity). Short of actually sending the payload into orbit, one way

to achieve an environment momentarily similar to microgravity is the

Reduced Gravity Aircraft (RGA). This was the method used to achieve
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the short-duration microgravity environment needed for model V&V.

3.2.1 Data Collection: Zero G

The RGA is a Boeing 727-200 Series aircraft. The RGA is operated by

the ZeroG corporation and flies out of Ellington Field, TX. The flight is

provided by the NASA Flight Opportunities Program: Reduced Gravity

Office (RGO).

The aircraft flies a series of parabolic arcs as shown in Figure 3-5.

After each reduced gravity parabola (durations vary with gravity re-

duction), there is a 1.8g pull up maneuver that lasts approximately 40

seconds. The transitions between reduced gravity and 1.8g are approx-

imately 2-4 seconds long. 14 . Each flight lasts 2 hours, during which the

RGA flies 40 parabolas. Each flight consists of 4 sets of 10 parabolas

with short 5 minute breaks between each set.

Figure 3-5: Zero G aircraft and parabola

The RGA can simulate Martian, Lunar and micro-gravity levels. The

number of each type of reduced gravity parabolas on a flight is dependent

on the manifest and payload requirements which varies week to week.

Data collection for the EMFF model validation requires a microgravity

(0g) environment. Each flight during the week of data collection flew 30

zero gravity parabolas and 10 lunar gravity parabolas.

The work area onboard the aircraft is similar in volume to that of

the ISS working volume, as seen in Figure 3-6 on the next page. Us-

ing the supplied camera posts the SPHERES beacons were set-up in a

known configuration. During each parabola up to three types of data

are collected as seen in Table 3.1 on the following page.

Data is collected for an 8 second period during the 17 second mi-

crogravity parabola. This provides time before and after for deployment

Interface Control Document:
Boeing 727-200, Lichtenberg
2009
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Figure 3-6: Inside of the Zero G aircraft with the RINGS hardware operating

Abbrev. Name Rate

US Ultrasound ranging measurements 5Hz

IMU Inertial measurement unit sensors 1kHz

HE Time resolved and RMS hall effect values 30 samples

Table 3.1: Three sources of measurement data were collected in the RGA
listed with their respective sampling rates.

flights. They are

and stowage prior to the 1.8g pull up maneuver.

3.2.2 Data Processing

The method for validating the electromagnetic force/torque model in-

volves measuring the trajectory of both spacecraft, recording linear and

angular accelerations (IMU) and control inputs (HE) along the trajec-

tory and finally computing the model predicted forces and torques based

on the recorded relative trajectory and control inputs.

Model Predictions

Eslinger has shown how to reconstruct the trajectories of both RINGS

satellites based on ultrasound ranging data 15 . The important piece of

information as far as the dynamics are concerned is the relative position

and the inertial attitudes. Each trajectory is expressed inertially. To

determine the relative position simply difference the two positions.

"Dynamic Programming for
Electromagnetic Spacecraft

Actuation", Eslinger 2013
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There were complications with the data collection during the tests

such that the HE data from one or both satellites was not recorded. Each

conductive coil was being driven at the same intensity during the course

of a single test. Each test was driving at the same intensity as well. If

electrical current readings from one coil were not recorded, for purposes

of data analysis, it is assumed that both coils had the same current. If

readings from neither coil were recorded, it is assumed that the coils had

the overall average value of current, or 14 Amps.

Given a relative position, independent attitudes, and electrical cur-

rent input, the model can be evaluated to determine the forces and

torques, and by application of mass properties, the linear and angular

accelerations expected.

Recorded Accelerations

During each test the IMU recorded the body-frame linear accelerations

and angular rotation rate. The linear acceleration data is noisy, with

noise amplitudes several times the magnitude of the constant term in-

duced by accelerated motion. The source of this noise is the largely the

vibration due to the EM interaction. Given that the current signal in

each coil is roughly I sin(27rf) with f = 83Hz and the electromagnetic

force is oc 12 (t) then the force is oc sin 2 (27rf). Applying trigonometric

identities and it is seen that the force is oc (' - 1 cos(47f). For a base

frequency f of 83 Hz we expect that the vibration due to the force in-

teraction should be at double that, or roughly 166 Hz. This is exactly

what the accelerometer data shows. Figure 3-7 on the next page is the

peak power spectral density of all accelerometers during the RGA test-

ing. There is also a smaller peak at 130Hz which may be a structural

frequency as it does not correpsond to the electromagnetic forces.

Knowing the spectral content of the IMU signal should allow for more

intelligent filtering, since the problem frequencies are now known. Prior

to the addition of RINGS there was a known 333Hz signal in the ac-

celerometers, however it appears that operating the RINGS introduces

energy at the 130 and 166Hz frequencies. Filtering is essential because

the unfiltered IMU data (Figure 3-8 on the following page) is essentially

unusable. Using a butterworth pattern lowpass filter design with a pass
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Periodogram Peak Power Spectral Density Estimate
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Figure 3-7: This is an aggregate of all IMU data collected during the RGA. The peak power
spectral density at every frequency over all runs is recorded. The vibration due to the al-
ternating magnetic field force interaction is at twice the base frequency, there is a very large
spike in the accelerometer data at this frequency.

frequency of 1Hz, a stop frequency of 4 Hz (there is a 5Hz vibration due

to IR sync), a pass band of 0.1dB, and a stop attenuation of 60dB the

result is the steady line in Figure 3-8, which is zoomed-in in Figure 3-9
on the facing page. This filter was chosen as the motion itself is slow

(<1Hz) and there is expected to be a 5Hz vibration source due to the

Infrared synchronization scheme which causes the 83Hz waveform to "re-

set" every 5Hz. The pulse is because the 83Hz and 5Hz do not line up.

The electrical current is 66.7% of the way through its 17th cycle when

the IR flash occurs causing the drive electronics to jump back to 0%
through a cycle. This discontinuity results in a descrease in current and

a corresponding pulse in IR.

Accelerometer Noise: Y-axis example

-0.2

0 1 2 3 4 5 6
Time (seconds)

Figure 3-8: The accelerometer readings are very noisy and thus must be filtered.

40



3.2. Validation

Filtered Accelerometer: Y-axis example

2

0

0 1 2 3 4 5 6
Time (seconds)

Figure 3-9: The accelerometer readings are still unstead even at low frequencies.

The problem with this result is that the filtered acceleration (with the

end clipped off) has a mean of E = 0.0045m/2 and a standard deviation

o- = .0032m/82. That relative level of variance makes it very difficult to

discern any sort of pattern in the data.

Recorded Angular Rates

The angular rotation rate is fairly clean in comparison, except there is

often significant data loss in the rate-gyro data. Also the requisite nu-

merical differentiation (on the already sparse data) increases the noise

level as well. Savitsky-Golay methods for smooth numerical differentia-

tion were applied 16 ,17 to improve the differentiated result.

SG smoothing and differentiation is a type of least-squares polyno-

mial fitting smoothing function. At point x* the signal x(.) is approx-

imated locally as a polynomial of order m using n points before and

after. The span of data points included in each approximation is the

frame. SG filters can use arbitrary lead-lag frame sizes however using an

asymmetric frame (unequal sample points before and after x*) induces

a phase change into the data (either lead or lag, depending on direction

of imbalance). As such, using a symmetric frame makes SG a zero-phase

filter. The frame size must be chosen sufficiently large (in time, not in-

dex) such that the period of the frame is larger than the period of the

noise frequencies being filtered out.

SG methods can be used for arbitrary order differentiation, including

0 th order (i.e. data smoothing, no differentiation). SG 0-order smooth-

ing was used to smooth the linear accelerations and 1st-order smooth

differentiation was used to determine the angular accelerations. Using

"Smoothing and
Differentiation of Data by
Simplified Least Squares
Procedores.", Savitzky and

Golay 1964

"Properties of Savitzky-Golay
digital differentiators", Luo
et al. 2005
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Figure 3-10: Savitzky-Golay smooth differencing produces a much smoother result than that
achieved by central differencing.

smooth differentiation is essential, as seen in Figure 3-10.

Unfortunately while the rate gyro data is cleaner it also did not

record properly and so much of it is missing as in Figure 3-11. Over all

the tests where data was received from both satellites essentially none

of them have good rate gyro data. Furthermore, even when filtered the

accelerometer data (Figure 3-9 on the previous page) does not provide a

steady reading of the acceleration experienced on the satellite.

Going Forward

The trajectory reconstruction does not dynamically constrain the state

meaning adjacent time steps are unrelated numerically which is impor-

tant for model validation. If the state was dynamically constrained then

it must have been constrained using a model of the dynamics. The model

.10-2 Rate Gyro Data Gaps: Y-axis example

4

-2

0

'--2

-4

0 1 2 3 4 5 6
Time (seconds)

Figure 3-11: There are significant gaps in the rate gyro data, rendering it unusable
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can't be used in the process of validating the same model, to do so would

be circular logic with no clear proof the model is actually correct.

This means the measurement system must be very good because they

are the only data available. State estimation can be robust because it has

both a measurement model and a process model that it can integrate. In

this case there is only a measurement model. Furthermore as discussed

by Simon Nolet 1 8 using the ultrasound beacons for measurements is a

fairly difficult process, even more so when the ultrasound sources are

attached to 2m tall x 2 inch diameter posts only fixed at one end. As

stated earlier Eslinger has done this though further improvements in the

estimation algorithm will translate directly into improvements in this

model validation.

"Development of a Guidance,
Navigation and Control
Architecture and Validation
Process Enabling Autonomous
Docking to a Tumbling
Satellite", Nolet 2007
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Chapter 4

Underactuated Closed Loop

Position Control

For the objective of position control of a two satellite system a 2-dimensional

underactuated system is considered. The reduction to two dimensions

can be done because any initial and final positions for a two satellite

define a plane, therefore the trajectory between an initial and final posi-

tion lies within that plane. For position r = (x y, z) and final position

rtt the plane normal vector is t = f x ftgt as shown in Figure 4-1 on

the following page. The coordinate system (i,, k) of the planar motion

is defined by the normal vector = ft and the target vector i = ftqt.

Their cross product completes the right-hand set, j = h x ftt. This

coordinate system is ill defined as f approaches figt which is acceptable

because it is only undefined when f = itgt, that is, when the satellite is

already where it is trying to go.

One possible way to avoid this ill defined system is to define the

normal vector ft from the initial position and the target position, not

the current position. For any non-trivial problem fi 4 fi 9t therefore

ft will remain well defined. This method is susceptible to out of plane

drift, that is, any drift induced in the ft direction will cause the system

to depart the plane defined by ft.
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Chapter 4. Underactuated Closed Loop Position Control

(x, y, z)

Figure 4-1: For any 2 satellite array, the current and final positions define a plane, so all
motion can be described in 2 dimensions.

4.1 State Representation

Given that the system can be reduced to a two dimensional problem

the position vector can be expressed in just its x and y components

in the plane as in Figure 4-2 on the next page which reduces the state

representation to x = [x, y, ai, aj]T.

The kinematics are a second order integrator, that is, the kinematics

of a rigid body in free space.

mjx 2 - F(xi, x, ..., pi, pg, ... ) - 0
~ =0 (4.1)

The dynamics are thus goverened by Equation (4.1) where F is the

electromagnetic force, described in the near-field by Equation (2.1) on

page 26 and in the far-field by Equation (2.4) on page 31. In a fully

actuated system both dipoles pi and pj are fully controllable thus the

direction and magnitude of F is fully controllable by setting the dipoles

appropriately.
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(Lj

Target .

F
0

F'

Figure 4-2: Visual definition of the relevant angles and unit vectors for the 2-dimensional
system. The whole system is symmetric around the origin due to conservation of momentum.
The direction of force 0 is defined by ai, a3 and fij.

4.2 Fully Actuated Control

The direction of force is uniquely defined by the dipole vectors of each

spacecraft in the system. However, the converse is not true. The dipole

vectors of every satellite in a system are not uniquely defined by a given

or desired force direction. This is because there is a linear dependence in

Equation (4.1) on the preceding page caused by the constraint F +Fj =

0. This provides two unconstrained degrees of freedom (one for each

dimension). These solutions are referred to as the dipole solutions as

they are the set of magnetic dipole vectors that fully define the formation.

The dipole solutions arise by solving the force model equations for dipole
10vectors given a desired force vector

If the system is fully actuated, that is, if there are as many electro-

magnetic coils as there are translational dimensions of interest, there is

at least one pair of dipole orienations that produce the desired forces at

any moment in time. As such a system is fully actuated there always

exists a set of two control inputs [px, p] per spacecraft that can produce

the desired dipole vector, y = px+ -1yJ. Assuming the dynamics of the

electrical current within a coil is fast relative to the rigid body motion

and attitude dynamics, the dipole vector itself is taken as the control

"Electromagnetic Formation
Flight Dipole Solution
Planning", Schweighart 2005

Fully Actuated in R3

Underactuated above R
1
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input. Fast means sufficiently fast that the settling time of the system

is negligible on the timescales of interest.

A linear control law can regulate position for this system. This can

be seen easier by ignoring the real force model and just thinking of the

system in terms of two inputs, F and 0.

'; Cos (0)mz - F [cs(0) = 0 (4.2)
[sin(9)J

Viewed this way the system is very easy to control. There are two

unknowns (F and 0) and two equations (x and y). If the controlled

state response is designed such that

x = -AdX- - Ae (4.3)

the system will have an equilibrium point at i = 0. This is simply a

system of two equations with two unknowns (F and 0). Solving for the
The forced response is defined

as the fo llowing: inputs gives the control law.

This is the desired response of
the system under control

atainF = (Adx + Api )T(Adx + Ap.;) Vx}Txf (4.4a)

0 = tan AdX + A. (4.4b)

In this fully actuated system the position dynamics and control system

do not depend on the attitudes a and /. Thus to achieve total state

control a second linear controller could apply PD feedback control to

the angles. Unlike position the angle states are decoupled therefore each

angle would have its own scalar feedback control law.

4.3 Underactuated System Controllability

Unfortunately the single coil EMFF system does not satisfy linear con-

trollability. The question of linear controllability, tested by evaluating

the rank of the controllability matrix

Mc = [B AB A2 B ... (4.5)
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4.3. Underactuated System Controllability

is one that asks, in the linearized system, is there any combination of

control inputs that can take me to any arbitrary point within the state

vector? Upon thinking this is clearly not the case, the matrix math will

soon follow to show this.

The force at any moment in time is uniquely defined by the attitudes

of each spacecraft, e.g. when aligned axially it is impossible to directly

move in the cross-track direction. Thus the linearization about the state

at any moment in time results in only one direction of force application.

Thus any linearized system should end up with at least one uncontrolled

mode (velocity in the cross track direction) and if the linearization was

about a stationary point it should have two uncontrolled modes (position

and velocity in the cross track direction).

Now the math to support this. The state vector x is

x = Ix, y, a,1 #, "I, y, d, (4.6)

The three inputs are
with control inputs composite dipole intensity,

pipj, the thruster torque on

u = [p-Iip, T, To] (4.7) satellite ot and the thruster
torque on satellite /3

for which a linearized system of the form

5 = Ax + Bu (4.8)

is found by linearizing the nonlinear model dynamics

x = f (x, u) (4.9)

such that

= Ox + Ou (4.10)

If we now evaluate each of these terms around the linearized conditions

(axial alignment, arbitrary separation distance, stationary):

x* [1, 0, 0, 0, 0, 0,0] (4.11)

u* [0, 0,0]
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The l's in the upper corner of
of -5are simply an artifact of

transforming the second order
system of N states into a first

order system of 2N states.
Otherwise there are no

unforced dynamics in this
system. The only motion

comes from control input, as
seenin

This results in the following
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(4.12a)

(4.12b)

It is now obvious there is a problem. There is no way for the control

inputs to effect the Q state. This is not just a side effect of the state we

chose to linearize around, there is a coupling between x and y such that

it is not possible to have arbitrary x and y control. As the linearization

point changes the values of the 5th and 6th row of B will indeed change,

but in a linearly dependent way.

The result is that the controllability matrix loses rank, in this case

having rank 6 while the required rank for full controllability is rank 8.

This is because the system is underactuated and the linearized B matrix

only contains information about pushing the system in a single direction.

Information about the orthogonal direction is lost during linearization.

This means to properly control the full two-dimensional position of the

system will require that the dynamics are not linearized. One way to

approach this problem is to use the attitude state as a pseudo-control

input to help drive the position error to zero.

50



4.4. Heirarchical System Convergence

F g(.) is the generalized
C . controller function. g(-) for

F Xc 1 F 1 X different inputs is a different

r + g z) CL F(Fc, 0) PX > function.
Xr + g(~~ C (~O S S P is the generalized plant,

IL;_ P(.) is the plant for the

variable described.

9 0) TPO 1

Figure 4-3: Representative diagram of heirarchical close loop position control. Steer 0 to

particular value that moves x in the desired direction. Note that many of these blocks are in

fact non-linear

4.4 Heirarchical System Convergence

When the dipole angle is not an input but rather is itself a state being

controlled there is a heirarchy of control. Looking at the block diagram

of this system in Figure 4-3 shows how the position controller is wrapped

around the angle controller. Note, 9 isn't a real angle, the real angles are

a - [a, a.]T so 9 needs to be converted to a by solving for the dipole

solutions. Additionally, the commanded force Fc is not real and needs

first to be translated to commanded currents Ic, which can be considered

the real input to the EMFF plant.

In the construct of Figure 4-4 on the next page the desired rates . and

& are treated as zero. It not true that these rates are zero however they

were not explicitly solved here so they are assumed zero. The desired

translational rates can be easily found given a smooth (C) trajectory

x(t). To properly reflect this in the block diagram the rate feedback

would be compared against the reference rate and the error fed to the

controller.

The desired angles are a function of x and + indirectly through 0.

Therefore the desired angular rates are dependent on the position and

velocity, though deriving what the angular rates should be is much less

direct. This remains a task to be completed. Tracking a while providing

the correct & will improve angle tracking performance beyond the results

presented here.

The result is a heirarchical relationship between the angle control
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Xr a (0c) k g T a Pa -

Figure 4-4: Representative diagram of heirarchical close loop position control for the EMFF
system. Steer c = a a T such that the force direction 0 is such that x moves in the
desired direction. Note that many of these blocks are in fact non-linear

and the position control. Contraction analysis will allow us to state

some properties of this heirarchical system.

4.4.1 Contraction Analysis

Contraction analysis states that for a system with generalized Jacobian

F8 =)O 8-1 (4.13)

"On Contraction Analysis for
Non-linear Systems",

Lohmiller and Slotine 1998

where E is a square uniformly p. d. matrix the system is said to be

Contracting if F < 0 or F is negative definite uniformly' 9 . Contract-

ing means that trajectories "forget" their past. Properly it means that

all trajectories tend towards an equilibrium by means of all trajectories

tending towards each other. If the virtual separation between trajecto-

ries vanishes in effect this means they tend towards a common state (an

equilibrium, a limit cycle, etc). In the case of the underactuated EMFF

system the identity matrix is a transformation matrix that allows for

a n.d. generalized Jacobian. Different transforms (9) may be useful

for future analysis as the theory can guarantee convergence to within a

ball of some radius around the equilibrium where the size of the ball is

determined by the transformation matrix E and the magnitude of the

disturbance signals.

For the entire position-attitude control system expressed as a first
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order system the state vector is

x= [d ,,) , d , z, y,]T (4.14)

which can be broken into the component pieces xi and x 2 defined as

x x 1 , x 2 I

Xi = T, (4.15)

x 2  [x,, y,] y

with the derivative functions f =. split in the same manner. The

Jacobian of this partitioned system is structured as follows.

Of Ofi  Ofi F1  F 1 2  (- - (9xi 19x9 (4.16)
Ox [ f F 2 1  F2 .

If it can be shown that F 12 is zero and that F 2 1 is bounded then the entire

system is contracting for F1 and F 2 contracting under the heriarchical

principle19 of contraction analysis. "On Contraction Analysis for
Non-linear Systems",
Lohmiller and Slotine 1998

Angle Subsystem

First we note that the angle subsystem is two systems in parallel, a and

f and therefore it too can be split into xi [x0 , xp]T whose Jacobian is

Of F 0 1(4.17)
Ox 1  0 F(4

Which has eigenvalues A, and A, therefore it is contracting for F0 and

Fp3 contracting. Therefore it is safe to consider the single case of F0 and

know that F0 is contracting under the same principles.

If we assume that the torque available, T, is always greater than the

electromagnetically induced torque r by some margin r/

Assume: (T - 4-1 > r
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and further that controller gains Ad and A, are chosen such that

-Add - Apal <= 7 (4.19)

it can then be known that the angle controller will always have excess

torque T' =T - T sufficient to satisfy the control law equation (4.20). A

proposed angle controller is a simple PD control law on the angle error

signal.

T' = -Add - And (4.20)

The real applied torque T would then be T = T' - T such that the

resultant torque on the system when the electromagnetic torque is added

is just T'. The angle dynamics are then

dIzz = -Apd - Ada (4.21)

Under these dynamics the angle error d has an

[6, a] = [0, 0]. The Jacobian O is then

Ofa 0

F X, -AP

equilibrium point at

Ad1
(4.22)

which has eigenvalues

Ad P 4Ap

2 2

The assumption
T - r = T' > h7 allows us to

effectively decouple the
attitude system from the

position system. The
statement means that the

attitude control system always
has sufficient control authority

to go where it needs to
regardless of what the position

controller is trying. This is a
conservative assumption and

systems that violate it may
still he stable

For AP < 0 the eigenvalues A, are always negative.

the angle system, F 1 is contracting.

Equation (4.21) also leads us to show the off

I = 0 as there is no dependence on position.

Jacobian is then

=f Fc F3 0

F 21  F 2L F~ .1

Therefore for A, < 0

diagonal block term

The updated overall

(4.24)

The lower two blocks (the position subsystem and its coupling with angle

error) now need to be analyzed.

(4.23)
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Position Subsystem

The position subsystem is not as separable as the angle subsystem is due

to the dependence of force on range, r2 = 2 + y2 . This couples the x

and y dynamics. The position subsystem x 2 thus has dynamics

f 2 (x 2 ) =

Ly
--

x
Fr x Fo y

(X
2

±y
2

)1/2 (X2+y2)1/2

FrXly2)- + (x
2

±y
2

)l/2j

The forces F, and FO are the forces described in the rotating coordinate

frame fixed aligned with the inertial orientation of the satellite pair. F,

could also be called Faxiai and FO could be called Ftransverse. The sines

and cosines rotate these forces into the inertial X-Y coordinate frame,

see Figure 4-2 on page 47.

Referencing the far-field model in Equation (2.5) on page 32 the mag-

nitude of the force vector [Fr, F] is

Fr 3Cmpip
= mI 3 7,2 + 72 (4.26)Fo 16(X2 + Y 2)2 r 60 (.6

where -y, and -yo are sine and cosine parts of the far field model Equa-

tion (2.5) on page 32 as restated in Equation (4.27) with some modifi-

cation. In the mode as originally stated the angles were with reference

to the rotating reference frame. The angles a and # here are inertially

defined, so there is an offset of 0 required.

7 (3 cos(a + #-2) + cos(a -))
2

7-y= sin(a + #-20)

Chapter 2 discussed how the

forces Fr and FO are aligned

in the rotated reference RE.

The two frames are rotated by
angle 0 relative to each other

Note that Cm is the constant
variabel that encapsulates
several other commonly
occuring constants in
electromagnetic force and
torque expressions. It is
defined in Chapter 2.

(4.27)

(4.28)

Therefore the force model restated is

F -F 3Cmpipj [r (
FO 16(X 2 + y2)2 O

(4.25)
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Inserting Equation (4.29) into Equation (4.25) yields

z
3Cmptisj

f 2 (X 2 ) = 64,,2 (XYr + WYO) (4.30)

3Cmpijj-t
..16(X2+y2)72 (Y-r - XYO)

Now it is time to find a dipole solution magnitude pipj and directions

a and /. Prior work has described in length how to do this for N satellite

formations or to do it for arbitrary extra constraints. As this work is

limited to two satellite systems, and because it is interesting that this

solution exists, the dipole solution used will be based on assuming # = 0

(the second satellite is controlled to point directly at the first, the angle

in the rotating reference frame Oro = 0) from which there is an analytic

solution for ac, the commanded angle. See Appendix A on page 95 for

more information. With this assumption we have

y, = 2 cos(ac) (4.31)

yO = sin(ac) (4.32)

Updating the dynamics f 2 yields

1((2+) (2x cos(ac) + y sin(ac))
f 2(X2) = 6X+y)/ (4.33)

2 22(2y cos(ac) - x sin(ac))

Now to find the value of pip combine Equation (4.26) on the previous

page and Equation (4.4) on page 48

T 16(X2 + y2)2
aipj = if Xf (4.34)

3 Cm 72 + 73O

This then recreates the linear control law described in Equation (4.4)
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on page 48 which leads to a Jacobian

0 1 0 0

F 2 = AP -Ad 0 0 (4.35)
0 0 0 1

o 0 - AP -Ad-

that has eigenvalues

Ad + (4.36)
2 2

which are always less than 0 for A, < 0. Therefore for A, < 0 the position

system, F 2 is contracting.

Note that the angles a and 3 are not precisely ac and fc (the com-

manded angles) therefore the error signals d and 9 are nonzero. This

adds in bounded disturbances that show up in F 21 = (i.e. the lower
OX1

left hand quadrant in the overall Jacobian). The precise analytical ex-

pression of F 2 1 has not yet been fully described, however knowing that

Jacobian precisely is not important in the context of contraction analysis.

Contraction theory states that for a Jacobian such as Equation (4.37) so

long as F 2 1 is bounded the overall system is contracting.

Of F 1  0 (437)

Ox G F 2

We can say that F 21 is bounded by noting that it consists of terms from

Equation (4.33) on the preceding page multiplied by sines and cosines of

small angles d and /. Further evidence to support the claim that F 21 is

bounded is that numerical simulation of this control law demonstrates

its stability.

The way to interpret Equation (4.37) is that system 1 is exponentially

convergent to its equilibrium and system 2 is contracting subject to a

decaying disturbance signal thus is also convergent to its equilibrium.
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4.5 Step Response

The control priniples just described were implemented in simulation and

the following results are based off of this simulation. The scenarios being

tested are for a step input trajectory which is actually a worst case for

a controller of this form as the desired trajectory has a discontinuity.

One feature not described above that was added to the controller im-

plementation was a so-called "Force Roll-off" whereby the commanded

current rolls off with the cosine of angle error. As described at the end

of Section 4.4 on page 51 the bottom left quadrant of the Jacobian G is

composed of the residuals from angle errors. The effect of G is that it

acts as a disturbance on F 2 . The smaller G the smaller the disturbance

and thus the faster F 2 converges. By having the command roll-off with

the angle error it reduces the effect of angle errors. The formal statement

is

Iactual cos & cos /des (4.38)

The mass properties were chosen similar to that of the RINGS hard-

ware units, though this choice was arbitrary.

For large angle controller gains the trajectory is essentially a straight

line from the initial to final point. This is expected because when at rest

the desired force is determined purely by the position error (the velocity

error is zero when at rest) thus it will point directly at the target. As the

system accelerates in that direction the vecocity error increases but still

along the same vector so the direction of motion doesn't change. However

when the P-D tradeoff occurs, that is, when the control input needs to

reverse and begin slowing down the system, due to the 2-dimensional

nature of this the dipole vector does not necessarily decrease to zero

magnitude but rather "swings" by the origin as in Figure 4-5 on the facing

page.

The consequence of this "swing" is that the commanded angle ac

changes very rapidly and the angle controller will try to track it. This

angle can swing arbitrarily fast depending how close to the origin the

vector passes (this actually means the "better" the flip, that is, the closer

it is to actually flipping directly over the origin, the faster the angle

swings). This would be a bad thing if a had to track ac mod 27r.
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4.5. Step Response

a

Figure 4-5: Dipole Swing caused by the two dimensional nature of the problem. The dipole
vector doesn't pass directly over the origin, instead the dipole angle swings very fast from a
to a + 180. The rate is fastest when closest to the origin (red arrows).

However, this is not the case for a system that can drive p < 0.

For a direct current system that means flowing current in the opposite

direction from the "positive" direction. For an alternating current system

that means driving at phase angle # = 7r such that

pipj = cos(27rwt) cos(27rwt + 7) = - cos 2 (27wt) (4.39)

By driving at the opposed phase the resultant force is the negative of

the in-phase value.

The ability to actuate with "negative current" means the system only

needs to track to ac mod 7r. In these simulations this is implemented

by going to whichever angle, ac mod 7r or (ac + 7r) mod 7r is closer. This

could be made more intelligent by including the angle rate in this consid-

eration. The most intelligent solution is to detect when the angle starts

to swing around and not track it until it settles on the far side of the

origin, at which point if (a - ac)before (a - ac)after. Essentially if the

system can detect an almost 180 degree swing, instead of tracking the

full swing around it can short circuit and instead wait until ac + pi is

closer than ac and track to it instead. That being said, such a heuristic

is not included in these results, and it is visible as large torque "spikes"
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when the system passes by the target point and x approaches zero.

4.5.1 Unbounded Controls: Fast Angle Control

The first result (Figure 4-6 on page 63) is a step from x = 0.5 0 .5 ]T to

x = 1 0 ]. This is run with no control saturation. To keep position

and angle gains distinct position gains will be A and angle gains will be

k. The gains used are [A, Ad k, kd = 0.1 2 25 10. The values

were selected arbitrarily as the contraction analysis has shown that for

A, > 0 and k, > 0 the systems are contracting. Therefore so long as the

gains remain positive the precise value is merely a matter of the desired

performance, which is of little concern for now as this work is intended

to demonstrate convergence, not particular performance metrics.

With the given parameters this system has exceptionally good per-

formance, within seconds the angles are tracking the desired values and

the angle error is very low. When the control inputs can exactly satisfy

the feedback control law the performance is exceptional.

4.5.2 Saturated Controls: Fast Angle Control

The next result (Figure 4-7 on page 64) is the exact same problem run

with the control inputs bounded to -1 < r < 1 and 18 < I < 18. As

expected the overshoot is larger. For large angle gains even with the

saturation the angle converges much faster than the position such that

the rajectory remains very straight. There is more of a spiral in the

phase plane as this system converges onto the target slower. Note the

spikes in the angle and angle rates. This is possibly the most prominent

impact that saturation has, it prevents the angles from tracking the

commanded angles all the way around as in Figure 4-5 on the previous

page. By saturating the torque as the commanded angle starts to swing

around the dipole follows (the initial spike in angle) but at some point

the angle error exceeds 7r/ 2 and a is now closer to the opposite angle

ac + 7r at which point it starts tracking that opposite angle and flips

the sign of the control input. Note that the control current in Figure 4-

6 on page 63 is always positive, this is because the angle system has

sufficient control bandwidth to track ac. The saturated system does
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not have sufficient bandwidth and so when it switches from tracking c

to ac + r there is a corresponding switch in the sign of the electrical

current. Additionally, the current always passes smoothly through zero

due to the "Force Rolloff" feature described in Equation (4.38) on page 58,

otherwise it would have a discontinuity when the angle switches where

it is tracking.

4.5.3 Unbounded Controls: Slow Angle Control

The previous two scenarios almost felt like cheating when talking about

underactuated control because the angle controller was so fast that there

was very little interaction between the angle dynamics and position dy-

namics. In the extreme, the angle dynamics are so fast that they are

assume instantaneous relative to the position dynamics. At that point

the system is hardly "underactuated". So in the spirit of not cheating, if

the angle controller is slowed down significantly such that the gains are

now

A, Ad k, kd = 0.1 2 .04 .4]

which should reveal a stronger coupling between the angle and position

dynamics and really show off the underactuated controller.

Unsurprisingly Figure 4-8 on page 65 performs wonderfully despite

heavily overlapping the time-constants of the angle and position sys-

tems. Note the significantly longer timespan for this maneuver and note

the attempted rotation (and electrical current zero-crossing) around 20

seconds which it soon gave up on and decided to track the opposite

control angle instead.

This is about as "loose" as the system can get in the current configu-

ration. Subsequent slowing down of angle dynamics yields a system that

is still contracting but the satellites collide because the contraction is so

slow.

4.5.4 Bounded Controls: Slow Angle Control

Finally, for completeness, the bounded controls with slow angle controller

scenario is examined (Figure 4-9 on page 66). As it turns out this is

an interesting scenario for it violates the constraint that the requisite
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force be satisfiable. It fails this because of the - term. The trajectory

sends the system outwards and within the time-span simulated it never

recovers. It is possible to actually "escape" the formation. That is, there

is some speed vesc above which it is impossible to maintain formation,

the system will drift apart to infinity. This happens when the specific

mechanical energy of the system is larger than the potential energy well

defined by the magnetic field of the other satellite. This is not an aspect

considered in this controls analysis, further study could look at including

the escape velocity limit in the stability analysis.

4.6 Summary

Contraction analysis provides a very powerful method for demonstrating

the convergence of the underactuated EMFF system. This statement

holds up under simulation very well providing convergent behavior in

position and attitude. This still remains an underactuated system which

means there are not sufficient inputs to properly control both position

and attitude simultaneously therefore the angles themselves are used as

inputs to the position system, which then has sufficient control authority

to be fully controlled. This leads to a heirarchical control structure where

the angles track a commanded angle that guides the position to the

reference position with the desired dynamics, in this case the dynamics

of a heavily damped oscillator.

62



4.6. Summary

0.4

0.2

0
-0.2

-0.4

0 50 100 150

Time (s)

a, /3

2

0

4

4

2

0
-2

-4

0.6

0.4

0.2

0

-0.2
0

Q

2

2

1

0

-1

-2
0(

40
0 50 100 150 <

Time (s)

Control Torque

) 50 100 150

Time (s)

Trajectory

2

1

0-

-1

-2 -
.4 0.6 0.8 1 1.2 -0.5

X (m)

Figure 4-6: Unbounded control inputs. The performance

used are quite large at times. Start:@ End:O.

20

0

.102
x, y

50 100 150

Time (s)

2

0

-41
0 50 100 150

Time (s)

Control Current

-20

0 50 100 150
Time (s)

2Phase Plane

0 0.5 1 1.5

(m)

is very good but the control inputs

63

- IL



64

-'

J2

0 50 100 150
Time (s)

a, #

0.5

0

-0.5

-1
0 50 100 150

Time (s)

Control Torque

1-

0.5

0

-0.5

-
0 50 100 150

Time (s)

Trajectory

0.6

0.4

0.2

0

-0.2
0.4 0.6 0.8 1 1.2

X (m)

2

0_ii

-1
-2 L

0 50 100 150
Time (s)

2

14
0

-1 + -

-2
0 50 100 150

Time (s)

Control Current
20 -

10-

0

-10

-20 -
0

14
2

1

0

-1

-2
-0.5

50 100 150
Time (s)

0_Phase Plane

1.50 0.5 1

(m)

Figure 4-7: Bounded control inputs. The performance is still very good but the overshoot is

larger with the saturated controls. Start:@ End:O.

Chapter 4. Underactuated Closed Loop Position Control

x, y

0.4

0.2
0

-0.2

-0.4

7)



4.6. Summary

0.4

0.2

0
0.2

0.4

0 100 200 300 400

Time (s)

2 a, ~
2

0
-2

-4

-6
8

0 100 200 300 400<
Time (s)

Control Torque

0.15 -

0.1

5- 10-2

0

-5. 10-2
0

0.6 -

0.4

0.2

0

-0.2
0.4

100 200 300 400

Time (s)

Trajectory

0.6 0.8

2

0

-2

-10-2
X, y

0 100 200 300 400

Time (s)

0.1

0

-0.1

0 100 200 300 400
Time (s)

Control Current
20

0

-20

-40

2

0

-2

1 1.2 1.4

0 100 200 300 400
Time (s)

0 _2Phase Plane

0.5 1 1.5

(M)

-0.5 0
X (m)

Figure 4-8: Unbounded control inputs with a slow angle controller. The performance perfor-
mance is now rather poor, however, importantly, the system is still contracting (as expected).
Start:A End:O.

'-4

0

'-4

0,

65



Chapter 4. Underactuated Closed Loop Position Control

3-

2

0-

1
0

2

0

-2

100 200 300 400

Time (s)

a, 0
0.5

0
-0.5

-1

-1.5
0 100 200 300 400<

Time (s)

Control Torque

0.15 -

0.1

5- 10-2

0

5- 10-2 -
0 100 200 300 400

Time (s)

Trajectory

1 2 3
X (m)

2

0

-2

-4

.10-2 a

-41
0 100 200 300

Time (s)

d ,

0.2

0.1

0

0.1

-02

400

0 100 200 300 400

Time (s)

Control Current
20

10

0

-10

-20
0 100 200 300 400

Time (s)

. 1 0 2Phase Plane

0 2

(m)

4

Figure 4-9: Bounded control inputs with a slow angle controller. The performance perfor-

mance is now rather poor, in fact so poor the system appears to not converge. Start:@

End:O.

cJ~
0

k

0.6

0.4

0.2

0

-0.2

66

.2

-

-



Chapter 5

Underactuated Path

Planning with Optimal

Control

Space systems design is often about doing more with less. In such an

environment optimization is a wonderful tool to squeeze out every bit of

performance with the smallest cost. To that end, optimal control theory

is applied to the underactuated electromagnetic formation flight system.

5.1 Optimal Control

The Nonlinear Optimal Control Problem (NLOCP) is a problem that

asks to find the state-control trajectory, [x (-) , u (.)], and optionally the

terminal conditions, [xf, tf], that minimize the Bolza cost functional

/ifJ[x (.) , u (.) , t] = E(xj, tf) + j L (x, u, t) dt (5.1)
to

subject to dynamic constraints

' = f (x, u, t) (5.2)
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68 Chapter 5. Underactuated Path Planning with Optimal Control

that steer the system from initial conditions xo and to to the terminal

manifold

e(xf, tf) = 0 (5.3)

A Primer on Pontryagin's
Principle in Optimal Control,

Ross 2009

Applied Optimal Control:
Optimization, Estimation, and
Control, Bryson and Ho 1975

The cost function from Equation (5.1) on the preceding page is comprised

of a Meyer cost (Endpoint cost) and a Lagrange cost, which is integrated

across the timespan of interest 20 .

This process involves finding the cost functional inputs, [x () , (,
such that small perturbations in their values, [6x (-) , 6u (-)] only ever

cause a positive perturbation in the cost functional, 6J > 0. This is

described as finding the inputs that drive the first variation of the cost to

0, conceptually very similar to finding maxima and minima in standard

calculus.

Simply differentiating J is not enough because the minimal value

of J does not necessarily satisfy the dynamic or boundary constraints.

In order to enforce the constraints they must be "added" in to the cost

function 2 1 . This modification must still preserve the value of the cost

function, so the constraints are added in a value neutral way. Express

each constraint function as an expression equal to zero i.e. k-f(x, u, t) =

0 rather than x = f(x, u, t). Then augment the constraints from Equa-

tion (5.2) on the previous page and Equation (5.3) to the cost function

from Equation (5.1) on the previous page using Lagrange multipliers.

Ja[x ( , u (-), t] = E(xf, tf)+ j [L (x, u, t) + AT (f(X, u, t) - k)] dt+vTXf
t~o

(5.4)
This augmented Lagrangian explicitly enforces the constraints. Part of

the integrand shows up together often enough that it has earned itself

its own name: the Hamiltonian, defined in Equation (5.5).

'H (x, u, A) = L (x, u, t) + ATf (5.5)

With the constraints baked into the cost function so to speak, the result

from setting 6Ja = 0 will satisfy the constraints. The process of actually

taking derivatives is fairly mundane though does require integration by

parts. Once finished the result is a set of necessary conditions (differen-

tial/algebraic equations shown below) and a set ofboundary conditions
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(not shown for brevity).
i = -f

0 =Wu

Equation (5.6) forms a set of differential equations with an equal number

of boundary conditions whose solutions x, u, and A satisfy the necessary

conditions for optimality. The problem is that they are mixed inital

and terminal conditions thus the solution cannot simply be integrated

forward in time. This is where the NLOCP transforms into a numerical

problem solvable in a variety of ways. The method that has received

much attention of late is the pseudospectral direct transcription method.

5.1.1 Numerical Solution: Pseudospectral Method

The pseudospectral method of solving the NLOCP involves transcribing

the problem into a massive sparse nonlinear program (NLP). Rao and

Patterson have created a very powerful and user-friendly program that

operates in the MATLAB computing environment called GPOPS - H for

the exact purpoes of interfacing a NLOC problem statement with a NLP

solver such as IPOPT or SNOPT 2 2 ,2 3 . GPOPS - Hfff was designed so that

it could be used "blindly" however a solid understanding of the principles

of optimal control help significantly in properly posing the right problem

with the right constraints.

The user is required to supply: the requisite parameters for the prob-

lem being posed, such as initial/final state bounds, path constraints, con-

trol bounds; the dynamic constraint function; the cost function; linkage

information if the problem spans multiple phases; NLP options configu-

ration options; and various other assorted options. For a full reference on

how to set-up and use GPOPS - Hli refer to the user-guide. The source

code for one of the the spin-up trajectory is included in Appendix C on

page 111.

GWGWS: General
Pseudospectral Optimal
Control Solver

"SNOPT: An SQP algorithm
for large-scale constrained
optimization", Gill et al. 1997

"Line Search Filter Methods
for Nonlinear Programming:
Local Convergence", WSchter
and Biegler 2005
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5.2 Applied to Underactuated EMFF Systems

5.2.1 State Representation

As done in previous sections, the system will be described with 2-dimensional

dynamics, given that any initial and starting point define a plane. As

opposed to the state representation in Chapter 4 on page 45, it is more

convinient to represent position in polar co-ordinates rather than carte-

sian, in particular when dealing with minimum range constraints as is

done in Section 5.3.4 on page 81 the constraint is only on a single state, r

rather than a combination of x and y. Restricting the state to two dimen-

sions does rule out a class of maneuvers that are inheritly 3-dimensional.

The fully 3-dimensional state is 18 elements long, (3 positions, 3 posi-

tion rates, 6 angles and 6 angle rates). Finding the optimal solutions

to an 18 element state-vector is numerically very challenging. Reducing

the number of state variables is one way to simplify the problem and

make it more numerically tractible. For any planar maneuver (of which

there are many) many of these states are irrelevant so there is no loss of

generality in reducing to a 2-dimensional representation.

Figure 5-1: Visual definition of the relevant angles and unit vectors for the polar 2-dimensional
system. The whole system is symmetric around the origin due to conservation of momentum.
The direction of force 0 is defined by ai, aj and fij.

In this form the state vector is x = [0,r, ai, aj,,i,di, 6 ]. As

the [r, 0] coordinate frame is a non-inertial frame care must be taken to

properly account for the ficticious forces that arise from a non-inertial



5.2. Applied to Underactuated EMFF Systems

reference frame. These forces are the coriolis force, the centrifugal force

and the euler force.

fcoriolis -2Q x v (5.7)

rcentrifugal -2 x (Q x r) (5.8)

dQ
reuler - d x r (5.9)dt

The rotating reference frame is chosen so that state constraints and

boundary conditions can be more easily stated. For example if targetting

a final state where the satellites are "orbiting" their center of mass, in

cartesian coordinates this would be a complicated expression coupling

the x and y states together. In polar coordinates it is nicely separated

with a fixed target radius r and a fixed target angular rate 0.

5.2.2 Cost Metrics

Two different cost functions will be evaluated for each maneuver: minimum-

time and minimum-energy-fixed-time. Speaking generally these are the

most interesting cost metrics. A possible third interesting metric would

be a LQR type cost that is a quadratic state error and quadratic con-

trol effort cost function. This would produce faster results than the

minimum-energy solution but without being a bang-bang control like

the minimum-time solution. This remains a possibility for future work.

Minimum Time: Problem Formulation

The minimum time problem asks to step from an initial state to a final

state in the minimum time with bounded states and control inputs. This

makes the cost function very simple, simply minimize final time.

Minimize: J [tf] = tf

Subject to: x = f(x, u, t)

to = 0 (5.10)

x(to) = x0

e(x(tf)) = 0
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Minimum Energy Fixed Time: Problem Formulation

The minimum energy problem asks to perform a maneuver, stepping

from an initial state to a final state with bounded states and control

inputs within a fixed length of time and to use the least amount of

energy possible. Energy is the time integral of power (E = f P) and

power is c 12 so using a quadratic control integral cost is appropriate.

Minimize: J [to, tf, u (-)] uTRuuudt

Subject to: k = f(x, u, t)

(to, tf) = (to, t') (5.11)

x(to) = x0

e(tf, x(tf)) = 0

Where Ruu is the control weighting matrix, this allows for trading the

relative cost between the various control inputs. In this case that is

trading the cost of torquing against the cost of electrical current.

5.3 Path Planning Trajectories

A variety of maneuvers (Table 5.1 on the next page) of increasing diffi-

culty have been evaluated. The first is the simplest, numerically easiest

and also should produce predictable results, so it is a good maneuver to

start with to ensure the optimization software is working properly. From

there the trajectories move into two dimensional step. The primary in-

crease in complexity is the system must now handle angular rotations

of each satellite. Next an obstacle is added such that the solution must

route around a "keep-out-zone". Finally the spinup maneuver is evalu-

ated. The spinup and orbit are two maneuvers that EMFF excells at it

they requires continual force application to maintain a circular trajec-

tory. Such a maneuver performed with convetional thrusters would be

very mass costly.

For all maneuvers the control bounds are the same: |[ri, T, 2 <

[0.02mNm, 0.02mNm, 225A]. These limits were chosen due to their sim-

ilarity to the RINGS hardware testbed. This choice is arbitrary but may
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Maneuver
Axial Step
Formation Slew
Collision Avoidance
Formation Spin-up

Description
1-dimensional step
2-dimensional step
2-dimensional step with obstruction
2-dimensional dynamic target

Table 5.1: List of optimal control maneuvers

facilitate eventual hardware testing of this control principle.

5.3.1 Nuances of optimal trajectory solutions

While the cost functions described in Equation (5.10) on page 71 and

Equation (5.11) on the preceding page are conceptually the "minimum

time" and "minimum energy" cost functions, when implemented numer-

ically they sometimes yield poor results. When there is a dimension of

actuation or motion that very weakly affects the cost, sometimes the

NLP solver has difficulty finding the minimal trajectory along that di-

mension. In the results shown here this often resulted in solutions with

excessive satellite rotations, sometimes revolving a full 27r radians while

translating. Another case where this happens is when solving a minimal

time problem, there can be moments where the control input very weakly

affects the cost function so the NLP solver will find it difficult to find

the time minimal choice and the resulting control output might "float"

almost randomly for a short period of time as is seen in Figure 5-2 on the

following page between 20 and 40 seconds. What otherwise appears to

be a well formed minimum-time bang-bang control solution has a hiccup

where the control input does not strongly affect the outcome for a pe-

riod of time, thus the almost random control input for the duration. It

may be possible that such a maneuver is in fact time- or energy-optimal

however in practice is is undesirable when a similar trajectory with much

less rotation is feasible. This gives rise to an augmented cost function

by application of heuristics.

J(x)

.1

Xi] !
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Figure 5-2: Floating control input when weakly connected to cost function

Heuristics

Sometimes the NLP solver needs soem extra help arriving at the desired

solution. To that end terms can be augmented to the cost function to

help shape the solution space more favorably. Take the simplest time-

optimal cost function, J = tj, this cost does not care if the system

is rotating at 0.1, 1 or 10 d along the way so long as tf does not

change. However, given the option to choose from those options, it

would be preferred (usually) to have the lower rotation rate, therefore

an augmented cost term could be

Ja = tf + j kow 2 dt (5.12)

which would serve to steepen the gradient in cost with w. The tuning

parameter k, is used to vary how strongly the solution penalizes angular

rotations. If time-optimality is still the objective, k, should be chosen

such that the augmented cost is still small compared to tf. Experience

has shown that at a 10:1 ratio still produces results of approximately the

same tf but with reduced angular rates.

This gives rise to the use of the cost function to "penalize" certain

behavior. Suppose there is a certain motion that is undesirable, it isn't

necessarily a good idea to completely disallow the behavior but rather

penalize it in the cost function. This means its still permissable but only

if its really worth it, and the gain multiplier is the knob that determines

how worth it it needs to be.

A second augmentation is to slightly penalize control effort even in
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the time-optimal case (where control effort is not ordinarily part of cost).

The purpose of this is the same as penalizing angular rates, if control

effort momentarily does not map to cost function (or does so weakly) it

is preferred to have no control input.

Ja = tf + ff kow2 + uTR* udt
t"o

(5.13)

This addition enforces that even if J = 0 that ! > 0 for p. d. weightingdu d

matrix R* > 0. The use of (*) in this case is simply to differentiate this

matrix from the weighting matrix used in minimum energy maneuvers.

5.3.2 Axial Step

Minimum Time

Minimize:

Subject to:

J[tf| tf

5x= f(x, u, t)

to

XT
xo

x}g

0

[j,07,0,0,0, 0,0,0]

[2,0.4,0,0,0,0,0,0]T

(5.14)

The minimum time axial step should produce a bang-bang type

control. The actuators accelerate inwards at maximum force until the

switching point where they reverse and decelerate at max effort, coming

to a stop right at the target position, shown in Figure 5-3 on page 77.

Minimum Energy

Minimize: J [to, tf, u (-)] f uTR

Subject to: = f(x, u, t)

(to, tf) (0, 60)

xT= [E, 0.7, 0

xT = [, 0.4, 0f 2

uuudt

(5.15)

, 0 , 0 , 0 , 0 1

, 0, 0, 0, 0, 0] T
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The minimum energy solution was given 60 seconds to perform the

same maneuver that the minimum time solution performed in 20 sec-

onds. Because the cost is quadratic with current (P c 12) the cost favors

constant low current rather than large short spikes of high current. This

is seen in the roughly constant but low input in Figure 5-4 on page 78.

5.3.3 Formation Slew

The formation slew maneuver aims to rotate the entire formation relative

to inertial space. The inital and final orientations are unconstrained and

the final rates are enforced as zero.

Minimum Time

The minimum time slew maneuver demonstrates the benefit of using

optimization when working with non-linear systems. The target state is

a pure rotation of the formation with no change in range, however it is

more expedient to first decrease the range, whereby there is a larger force

available. Thus the resulting trajectory shown in Figure 5-9 on page 84

and in detail in Figure 5-6 on page 80 is an inward curving arc. There

are some numerical artifacts in the control input that are likely not part

of the true optimal solution. More time spent massaging the NLP solver

could help resolve small issues such as that. In absence of an improved

result, the control profile could be filtered or smoothed to remove the

spurious spikes and still retain a near optimal solution.

Minimize: J[tf] = tf

Subject to: x = f(x, u, t)

to = 0

[-,0.,-, , 0 , 0 ,0 , 0 T (5.16)

xT = [+ -E, 0. 5, ,- ,0,0 T

r7r]T < [a,, aj ] TJ< [7r, 7r]T

[-7r, - 7r] T < [ae, aj]T < [7r, 7r] T
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5.3. Path Planning Trajectories

Minimum Energy

Minimize: J [to, tf, u] = uTRuuudt

Subject to: x f(x, u, t)

(to, tf) (0, 60)

xT- [--, 0.5, .,, 0, 0, 0, o0 T (5.17)

xT [+--E, 0.5, -, -, 0, 0, 0, 0] T

[-r 7r] T < [a,, ] < [7, 7r]T

[7r, - 7r] T < [a,, aj]T < [7r, 7] T

The minimum energy slew maneuver (Figure 5-7 on the next page)

should produce a result visually similar to the minimum time. There

is less of an advantage to decreasing range but it remains because for a

given force magnitude the required current I can be lower, thus reducing

energy cost, so the trajectory arc inwards, possibly running into the lower

range bound.

5.3.4 Avoidance Maneuver

All of the previous maneuvers could have been accomplished (to some

level of similar performance) by the linear controller described in Chap-

ter 4 on page 45. The avoidance maneuver however is not directly achiev-

able through the feedback control law. This maneuver is defined by its

use of a "keep-out-zone". The keep-out-zone acts as a collision-avoidance-

zone for a two-satellite configuration. This allows for safely reconfiguring

a formation where the straight-line path to the final state would cause

the spacecraft to collide. As needed more complicated state path con-

straints can be formulated. Due to the state representation the lower
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5.3. Path Planning Trajectories

y

End

tart

Figure 5-8: Red "keep-out-zone". Set as a 40cm radius ball about the origin within which
the satellites cannot go. The direct path shown above is not allowed This means the closest
approach is 80cm or just under 3 coil radii.

bounded range constraint ends up being very simple to enforce.

Minimize: J[tf] tf

Subject to: x f(x, u, t)

to 0

xT [n 0.5, -, -, 0, 0, 0, 0] T (5.18)

xT [+-L, 0.5, -, -, 0, 0, 0, 0] T

[- 7r]T < [ai, aj] < [7r, 7r]T

[-7r, -7r]T < [ai, aj]) T [7r, -r]T

r > 0.4

The minimum energy problem statment is excluded for brevity. It follows

the same pattern as the axial and slew minimum energy maneuvers but

with the modifications specific to the collision avoidance case.

Minimum Time

The minimum time trajectory (Figure 5-9 on the next page) should get

as close as possible to have access to the largest forces then orbit around

at the minimum distance until close to the target where it will detatch

from the range lower bound and proceed to the target. The full detail

is shown in Figure 5-10 on page 85. This maneuver was found by using

the penalty augmented cost function in Equation (5.13) on page 75.
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Figure 5-9: Minimum collision avoidance maneuver trajectory.

Minimum Energy

The minimum energy trajectory is expected to behave similarly to the

slew maneuver with respect its minimum time trajectory. The path will

arc around the minimum bound. The trajectory looks very similar to

the minimum time path except the duration is much longer, indicative

of the slower pace for the minimum energy solution. Other than that

the two are in fact very similar. If the lower range bound was very low

it is possible for the minimum energy trajectory to only run against the

bound for a short time if at all, however for such a large minimum bound

the energy minimal trajectory rides the minimal range bound.

5.3.5 Spin-up Maneuver

This is perhaps the most interesting maneuver as it is directly applicable

to distributed telescope systems and other interferometry missions. It is

also one of the more numerically challenging. The spin-up maneuver is

where the system begins at rest and ends orbiting around the center of

mass. Therefore the final state is not a stationary state (constant posi-

tion/angle), but rather has constant rates. Note the trajectory presented

here is only the spinup not the orbit. This trajectory ends once the cor-

rect terminal conditions are satisfied such that orbiting could proceed.
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Figure 5-12: Minimum time spinup maneuver, starting from rest along the circle perimiter,
begin orbiting in minimum time. The final state is fixed at 0 = 0 and the inital state is free.
The inner dashed circle is the lower state bound on radius and the outer circle is the targetted
radius for the spinning formation.

Minimum Time

As is typically the case for minimum time maneuvers, the control inputs

(at least in electrical current) are fully saturated, shown in Figure 5-

15 on page 90. Furthermore the system steps inwards to decrease the

range temporarily and increase the available force so it can move faster

(Figure 5-14 on page 89). What is most interesting is that the system

first decreases range to have access to higher forces then it increases its

angular rate very quickly at which point it lets centrifugal acceleration

pull the satellite out to the desired radius while letting the angular rate

slow down as the radius increases.

Minimum Energy

Similar to the collision avoidance minimal energy trajectory the mini-

mum energy solution (Figure 5-14 on page 89) is similar in appearance

to the time minimal solution. The primary difference is the whole pro-

cess is slowed down in the energy minimal path, thus as the rotational

dynamics take hold there is a slightly different trajectory shape than the

time minimal case.
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Figure 5-14: Minimum time spinup maneuver, starting from rest along the circle perimiter,
begin orbiting in minimum time. The final state is fixed at 0 = 0 and the inital state is free.

5.4 Summary

Despite being underactuated this class of system is able to satisfy time

and energy minimal trajectories of interest. Solutions were presented for

this set of interesting trajectories where the physical parameters of the

simulated object are similar to those of the RINGS hardware unit. These

solutions demonstrate the ability to generate both feasible and optimal

trajectories with the underactuated system for a variety maneuvers. The

solutions, as contrasted with the resulting trajectories in Chapter 4, take

advantage of the nonlinearities in the dynamics. These trajectories are

targetted at both static and dynamic targets leaving the door open for

more sophisticated planar maneuvers with interesting and time varying

constraints. Extending this result into 3-dimensional maneuvers (such as

sweeping out a cone with the position vector) where there either isn't a

well defined plane using the method described above or the plane is itself

changing and rotating in space can go forward in one of two ways. It

can focus on mapping the effect of rotating the plane onto disturbances

within the plane such that any trajectory can be considered "planar" al-

beit with non-inertial dynamics, or it can focus on streamlining the NLP

solution for the expanded 18 vector 3-dimensional vector or reducing the

degrees of freedom of the expanded state to aid
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Chapter 6

Conclusions

Electromagnetic formation flight is becoming reality with the RINGS

hardware testbed launching to the International Space Station in late

summer 2013. In any real EMFF system it is ideal to have three fully

actuated magnetic actuators, however mass, power, volume or cost con-

straints might lead to a loss of one or more actuators. This thesis has

shown that depending on the mission attitude control requirements an

underactuated system may not be problematic.

6.1 Models & Validation

The thesis began by discussing the prior electromagnetic force models

developed and reproduces the results in the near-field. Importantly for

when using a near-field model, a limit is found to how discritized the

model needs to be before losing numerical precision as a function of

separation distance. Further, the same process as was used to find the

machine precision limit can be used to find the discretization limit for

any arbitrary required numerical precision up to machine precision. This

allows for trading computational run-time performance for numerical

precision depending on what the requirement is.

Chapter 3 attempts to verify and validate the near-field model. The

near-field model developed for this thesis agrees with the far-field model

outside of 6.67 radii and diverges in the expected manner in the near-

field. Validation is conducted experimentally with data collected from
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step responses taken in a very short duration 6DOF environment, the

reduced gravity aircraft. The process uses the reconstructed trajectory

based on ultrasound beacon ranging measurments as the state input for

the electromagnetic force model. The modelled force is then compared

to the measured linear and angular accelerations. The rate-gyro angular

rate sensors are far superior to the on-board accelerometers in noise char-

acteristics, however for many of the zero-g tests the rate-gyro data is very

sparesely populated rendering it largely unusable quantitatively. The re-

constructed trajectory did not readily generate results in alignment with

the measured linear acceleration data and no reasonable explanation for

this is presented. The process as described should be sufficient with a

more complete data set.

6.2 Underactuated Closed Loop Position Con-

trol

Chapter 4 first looks at what it would take to control a fully actuated

system. Then it describes how the system in question is not fully actu-

ated nor does it satisfy linear controllability. Next it applies contraction

analysis theory to produce a dipole-steering feedback control law that

stabilizes the position exponentially. This control law is then simulated

and evaluated within the near-field region, the contol method uses a dy-

namic inversion based on the far-field model and the system remained

stable. This proves the ability of a single actuator system to achieve

position control. The underactuated system is not capable of simulta-

neous arbitrary attitude and position control due to the nature of the

position control. This is proven by noting the force direction is uniquely

defined by the spacecraft attitudes, therefore at any moment in time

only disturbances along a single axis can be rejected without rotating

the spacecraft.

6.3 Path Planning with Optimal Control

Chapter 5 uses the same underactuated system from Chapter 4 and ap-

plies optimal control theory with a numerical optimzation tool, GPOIPS - 11Hl,
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and found time and energy optimal trajectories for a series of maneu-

vers. Modifications to the pure minimum time and minimum energy

cost functions are propsed and used to improve numerical convergence

to a well behaved optimal trajectory. The maneuvers tested were: axial

step, lateral step (slew), a collision-avoidance maneuver, and a formation

spin-up maneuver. These maneuvers were selected for their gradual in-

crease in complexity and for their application to real scenarios. The axial

and lateral step test basic position control, the collision-avoidance test

demonstrates a crucial ability when operating a multi-satellite formation

in close proximity and the formation spin-up test is an essential mane-

vuer for a system such as a sparese telescope array where the satellites

orbit the overall center of mass.

When it comes to performance, while the maneuvers themselves were

not exactly the same across Chapter 4 and Chapter 5, a quick comparison

of maneuver times reveals how much faster the optimal trajectories can

be than those guided by the feedback control law. For instance the

collision avoidance maneuver has the system moving roughly 1.4 meters

in about 75 seconds. Even for the fast angle controller the step maneuver

was 0.7 meters and it had a rise time of around 40 seconds and a settling

time of 70 seconds. Furthermore the optimal avoidance maneuver could

not take a straight-line path to the final state. All told the optimal

trajectory outperforms the feedback controller by a factor of 2.

6.4 Future Work

Overall the thesis shows that the underactuated system is controllable

however the attitude is not independently controllable as the dipole vec-

tor is driven by the attitude. In this sense the attitude of the electro-

magentic actuator is one of the control inputs to the position control

system. With this limitation the system proved controllable. There

yet remains useful work to be done pertaining to underactuated EMFF

systems such as solving for the desired angular rates derived from the

desired angle control based on position error. Including desired angular

rates in the feedback control law will improve angle tracking performance

which translates into faster position convergence.
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Other topics of future work include:

. Analyzing the effect of relative rotation angle on the discritization

limit.

. Collecting further (and cleaner) data for model validation.

. Deriving the desired angle rates & for the dipole steering position

feedback control.

. Consider the effects of escape velocity on nonlinear system stability.

. Multi-satellite (N>2) underactuated planar path planning.

. Apply a LQR type cost function for numerical optimzation, i.e.

J = f; xT Rxxx + uTRuudt. This should produce results some-

where inbetween min-time and min-energy.

. Conceiving hardware solutions that decouple the payload attitude

from the actuator attitude.

Final Remarks

This thesis sought to model and control a pair of underactuated elec-

tromagnetically driven satellites. The system has been modelled and

is awaiting improved validation, the system has been stabilized under

modest assumptions, and the system has had trajectories for complex

and intesting maneuvers planned all while operating in the near-field

domain. This research provides strong evidence that from the dynam-

ics and control standpoint the underactuated electromagnetic formation

flight system is a viable space system design.
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Appendix A

Dynamic Inversion

Note: Cm = 3 and rij = [-2x, -2y]T per the definition of x, y and r,

see Figure 4-2 on page 47.

Starting with the far-field equation

F = Cm 5 (fAi - ij) (ftj - ij) Ti (ft -A) fij( -(ft t f ij ) ft (ftj - ij) At

(A.1)

Setting the dipole ft equal to -fij.

Fri
= y p (Al -f ij) ('Pij - Pij)f i + (Ai -i +-) f i + (ftt ij) f ± (fa - fit)A

(A.2)

noting that fij - fij = 1 and combining like terms...

Fr ( (
CM = PiPi (Ai 3 (Ai . fij) f ij (A.3)

Now break the equation out into its components and apply the definition

of the dot product, A f = -i-x + pigry + plizrz.

Fx ri

Cm

Fyr~Fii

Cm

Fzr%

Cm

= pipj (pX
= pij (pgp

-3 (pixrx + piyry +

- 3 (pirx + piiyry +

-3 ( tixrx + piiyry +

tizrz) rx)

pizrz) r-

pizrz) 
rz)

(A.4)
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Group the terms by p components

Cmxii

Fyrz .

Cm

Fzr-

Cm"

= iPj (Wx (1- 3r ) - 3piyrery - 3[tizrxrz

3piur~ry + pNy ( I - 3r2) - 3pizryrZ

3pixrxrz - 3piyryrz + piz ( I

(A.5)

- 3r2)

Factor the vector y out of the set of equations

Fr 4 .

Cm

Whic reduces to

- 3r

= 1tip -rzry
-rzrz

-rrr --rzrz 1 [2]

1 - 3r2 -rrZ

-rYrz 1 - 3r yiz

Fr 4

Cm

And if it is assumed (reasonably) that the dipole magnitudes are equal,
i.e. pi = pi = y then

Fr

Cm
[13 - 3i . #Ap2 = Mp2 (A.8)

(A.9)
Fr 4 .

Cm 2

Which is valid so long as M is invertible.

det(M) = 1 - 3r2 - 3r 2 - 3r 2

det(M) = 1 - 3||f| 1 (A.10)
det(M) = -2

As shown, the determinant of M is always non-zero thus the matrix

is always invertible and there is always a vector yuj that produces force
F.

Further, applying the definition of rij = [-2x, -2y] shows a different

(A.6)

(A.7)
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look at this equation. Starting with M

1 -- 12X2 - 12xy(A1)
- 12xy 1 - 12y2

Now note that the direction of force is tan-' (f) and ft expressed in this

form is independent of the scalar magnitude, therefore for this purpose

the rij and Cm terms in Equation (A.9) on the facing page can be ignored

(they are all wrapped into scalar value K).

M-1-f = KAI (A. 12)

where F [cos(Oc), sin(Oc)]T and 0c is the desired force angle determined

by

0c = tan 1(Ad )APX (A.13)
Ady + Apy

Performing the inverse, multiplication and taking the inverse tangent

from Equation (A.12) to get the angle

o= tan-1 - 12Apx 3 - 12Ad±X 2 + 12ApXy 2 + 12Adyzy + Apx + Adi

12ApX 2y + 12AdzXy - 12Apy 3 - 12Adyy 2 + Apy + Ady
(A.14)

This is an algebraic expression for a as measured in the inertial ref-

erence frame.
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Appendix B

Near-field Model Matlab

Code

The following source files are also located on the SPHERES SVN at

http://ssl.mit.edu/svn/spheres/trunk/TestProjects/RINGS/projectUtilities

daeEM.m

1 function [FT1,FT2] = daeEM(X1,X2,IIradiusNt,inertialOutput)X%#codegen

2 assert(isa(Xl,'double'));

3 assert(all(size(X1,2)==13));

4 assert(isa(X2,'double'));

5 assert(all(size(X2,2)==13));

6 assert(isa(II,'double'));

7 assert(all(size(II,2)==1));

8 assert(isa(radius,'double'));

9 assert(all(size(radius)== [1 1]));

10 assert(isa(Nt,'double'));

11 assert(all(size(Nt)==[1 1]));

12 assert(isa(inertialOutput 'double'));

13 assert(all(size(inertialOutput)==[1 1]));

14 X X1 - State Vector 1

15 % X2 - State Vector 2

16 % II -I * 12 (electrical currents)

17 % radius - radius of coils

18 % Nt - Number of timesteps given

19 % inertialfutput - Flag to select body or inertial reference outputs

20

21 % Initialize Outputs

22 FT1 = zeros(Nt,6);

23 Fx1 = zeros(Nt,1); Fy1 = zeros(Nt,l); Fzl = zeros(Nt,1);

24 Tx1 = zeros(Nt,1); Tyl = zeros(Nt,1); Tzl = zeros(Nt,l);

25 FT2 = zeros(Nt,6);

26 Fx2 = zeros(Nt,1); Fy2 = zeros(Nt,1); Fz2 = zeros(Nt,1);

27 Tx2 = zeros(Nt,1); Ty2 = zeros(Nt,1); Tz2 = zeros(Nt,1);

28 x1 = Xl(:,l); x2 = X2(:,);

29 yl = X1(:,2); y2 =X2(:,2);

30 z1 = X1(:,3); z2 = X2(:,3);

31 vxl = X1(:,4); vx2 = X2(:,4);
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32 vyl = X1(:,5); vy2 = X2(:,5);
33 vz1 = X1(:,6); vz2 = X2(:,6);

34 q11 = X1(:,7); q12 = X2(:,7)
35 q21 = X1(:,8); q22 = X2(:,8)
36 q31 = X1(:,9); q32 = X2(:,9)
37 q41 = X1(:,10); q42 = X2(:,10);
38 wxl = X1(: 11); wx2 = X2(: ,11)
39 wyl = X1(:,12); wy2 = X2(:,12);

40 wzl = X1(:,13); wz2 = X2(:,13);
41

42 for i=1:Nt
43 Isq = II(i);

44 X Extract States
45 xA = [xi(i);y1(i);z1(i);vxl(i);vyl(i);vz1(i);...

46 ql(i);q21(i);q31(i);q41(i);wx1(i);wy1(i);wzi(i)];

47 xB = [x2(i);y2(i);z2(i);vx2(i);vy2(i);vz2(i);...

48 q12(i);q22(i);q32(i);q42(i);wx2(i);wy2(i);wz2(i)];

49 R1 = xA(1:3);

50 R2 = xB(1:3);

51 q = xA(7:10);

52 p = xB(7:10);

53 R = R2-R1;

54 nR = sqrt(sum(R.*R));

55 nRrad = nR/radius;

56 X See Alex Buck S.M Thesis for description of N-Segment ...
selection. This curve describes

57 X the polynomial 'w' such that the limiting curve, 'y' is y=1/w.
N should lie on this

58 X curve, but be no larger in order to ensure machine precision ...
without any excess

59 X computation.
60 LimPolyInv = [ -0.000871941889380 0.015960066294433 ...

-0.003414459128870 1;
61 N = uint32(1/polyval(LimPolyInv,nRrad));

62 F1 = zeros(1,3); F2 = Fl;

63 Ti = zeros(1,3); T2 = TI;

64 if C Isq-=0 ) X If either coil isn't driving, just skip ...
computation, output will be 0.

65 coder.ceval('EMWrapper',coder.ref(Fi),coder.ref(Ti),...

66 coder.rref(xA),coder.rref(xB),...

67 Isq,radius,N);

68 for ii=1:3

69 if isnan(FI(ii))

70 F1(ii)=0;

71 end

72 if isnan(T1(ii))

73 Tl(ii)=0;

74 end

75 end

76 F2 = -Fl;

77 T2 = -T1 - cross(R1(:),F1) - cross(R2(:),-F1);

78 if -inertialOutput

79 X Rotate to body frame coordinates

80 [F1,T1] = rotateToBody(F1,T1,q);

81 (F2,T2] = rotateToBody(F2,T2,p);
82 end

83 end

84 Fx1(i) = F1(1); Fyi(i) = F1(2); Fzi(i) = F1(3)
85 Tx1(i) = T1(1); Tyi(i) = T1(2); Tzi(i) = T1(3)
86 Fx2(i) = F2(1); Fy2(i) = F2(2); Fz2(i) = F2(3);

87 Tx2(i) = T2(1); Ty2(i) = T2(2); Tz2(i) = T2(3);

88 end

89 FT1 = [Fxl(:) Fyi(:) Fzi(:) Txi(:) Tyi(:) Tzi(:)];

90 FT2 = [Fx2(:) Fy2(:) Fz2(:) Tx2(:) Ty2(:) Tz2(:)];

91

92 function [F,T] = rotateToBody(F,T,q)

93 q1 = q(1); q2 = q(2); q3 = q(3); q4 = q(4);
94 RB2I = [q4*q4+ql*q1-q2*q2-q3*q3, 2*(qi*q2-q3*q4), 2*(ql*q3+q2*q4);
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95 2*(ql*q2+q3*q4), q4*q4-ql*ql+q2*q2-q3*q3, 2*(q2*q3-ql*q4);

96 2*(ql*q3-q2*q4), 2*(q2*q3+ql*q4), q4*q4-ql*ql-q2*q2+q3*q3];

97 RI2B = RB2I';

98 F = (RI2B * F(:))';

99 T = (RI2B * T(:))';

daeDyn.m

I function [dael = daeDyn(Xl,X2,IITtlTt2,radiusNtmass,IInvI)

2 X v,a,qd,wd,pdud
3 X#codegen

4 assert(isa(I,'double'));

5 assert(isa(InvI,'double'));

6 assert(all(size(I)==[3 3]));

7 assert(all(size(InvI)==[3 3]));
8 assert(isa(Nt,'double'));

9 assert(all(size(Nt)==[1 1]));

10 assert(isa(II,'double'));

11 assert(all(size(II,2)==1));

12 assert(all(size(X1,2)==13));

13 assert(all(size(X2,2)==13));

14 assert(all(size(Tt1,2)==3));

15 assert(all(size(Tt2,2)==3));

16 assert(isa(mass,'double'));

17 assert(isa(X1,'double'));

18 assert(isa(X2,'double'));

19 assert(isa(Tti,'double'));

20 assert(isa(Tt2,'double'));

21 assert(isa(radius,'double'));

22
23 m = mass; X kg
24 ' Initialize Outputs

25 dx=zeros (Nt ,1); dy=zeros (Nt ,1); dz=zeros (Nt ,1);

26 dvx=zeros(Nt,1);dvy=zeros(Nt,l);dvz=zeros(Nt,1);

27 dql=zeros(Nt,1);dq2=zeros(Nt,1);dq3=zeros(Nt,1);

28 dwl=zeros(Nt,1);dw2=zeros(Nt,1);dw3=zeros(Nt,1);

29 dpl=zeros(Nt,1);dp2=zeros(Nt,1);dp3=zeros(Nt,1);

30 dul=zeros(Nt,1);du2=zeros(Nt,1);du3=zeros(Nt,1);

31 x1 = Xl(:,1); x2 = X2(:,1);

32 yl = X1(:,2); y2 = X2(:,2);

33 z1 = X1(:,3); z2 = X2(:,3);

34 vxl = Xl(:,4); vx2 = X2(:,4)

35 vyl = X1(:,5); vy2 = X2(:,5)

36 vzl = Xl(:,6); vz2 = X2(:,6)

37 q11 = Xl(:,7); q12 = X2(:,7);

38 q21 = Xl(:,8); q22 = X2(:,8);

39 q31 = Xl(:,9); q32 = X2(:,9)

40 q41 = Xl(:,10); q42 = X2(:,10);

41 wxl = X1(: ,11); wx2 = X2(:,11);

42 wyl = Xl(:,12); wy2 = X2(:,12);
43 wz1 = Xl(: ,13); wz2 = X2(:,13);

44
45

46 for i=1:Nt

47 Isq = II(i);

48 X Extract States

49 xA = [xl(i);yl(i);zl(i);vxl(i);vyl(i);vzl(i);...

50 ql1(i);q21(i);q3l(i);q41(i);wxl(i);wyl(i);wzl(i)];

51 xB = [x2(i);y
2
(i);z2(i);vx2(i);vy2(i);vz2(i);...

52 ql2(i);q22(i);q32(i);q42(i);wx2(i);wy2(i);wz2(i)];

53 R1 = xA(1:3);

54 R2 = xB(1:3);

55 V1 = xA(4:6);

56 q = xA(7:10);

57 p = xB(7:10);



102 Appendix B. Near-field Model Matlab Code

58 w = xA(11:13);
59 u = xB(11:13);

60 R = R2-R1;
61 nR = sqrt(sum(R.*R));

62 nRrad = nR/radius;

63 X See Alex Buck S.M Thesis for description of N-Segment

selection. This curve describes

64 X the polynomial 'w' such that the limiting curve, 'y' is y=1/w.

N should lie on this

65 X curve , but be no larger in order to ensure machine precision

without any excess

66 X computation.

67 LimPolyInv = [ -0.000871941889380 0.015960066294433 ...

-0.003414459128870 ];
68 N = uint32(1/polyval(LimPolyInv,nRrad));

69 F1 = zeros(1,3); F2 = F1;

70 T1 = zeros(1,3); T2 = T1;

71 if ( Isq-=O ) XA If either coil isn't driving, just skip ...

computation, output will be 0.

72 coder.ceval('EMWrapper',coder.ref(Fl),coder.ref(T1),...

73 coder.rref(xA),coder.rref(xB),...

74 - Isq,radius,N);

75 for ii=1:3

76 if isnan(Fl(ii))

77 F1(ii)=0;

78 end

79 if isnan(Tl(ii))

80 T1(ii)=0;

81 end

82 end

83 F2 = -Fl;

84 T2 = -T1 - cross(R1(:),Fl) - cross(R2(:),-F1);

85 [F1,T1] = qrotate(F1,Tl,q);

86 [-,T2] = qrotate(F2,T2,p);

87 end

88 TT1 = T1+Ttl(i,1:3);

89 TT2 = T2+Tt2(i,1:3);

90

91 dq = quatDeriv(q,w);

92 dp = quatDeriv(p,u);

93 dw = (InvI * (TT1' - cross(w,I*w)))';

94 du = (InvI * (TT2' - cross(u,I*u)))';

95

96 dx(i) = V1(1); dy(i) = V1(2); dz(i) = V1(3);

97 dvx(i)= F1(1)/m; dvy(i)= F1(2)/m; dvz(i)= F1(3)/m;

98 dqi(i)= dq(1); dq2(i)= dq(2); dq3(i)= dq(3);

99 dwi(i)= dw(l); dw2(i)= dw(2); dw3(i)= dw(3);

100 dp1(i)= dp(1); dp2(i)= dp(2); dp3(i)= dp(3);

101 dul(i)= du(1); du2(i)= du(2); du3(i)= du(3);

102 end

103 dae = [dx(:) dy(:) dz(:) dvx(:) dvy(:) dvz(:)...

104 dql(:) dq2(:) dq3(:) dwi(:) dw2(:) dw3(:)...

105 dp1(:) dp2(:) dp3(:) dui(:) du2(:) du3(:)];

106

107

108 function qd = quatDeriv(q,w)

109 qd = zeros(1,3);

110 qd(1) = 0.5*( q(2)*w(3) - q(3)*w(2) + q(4)*w(1));

111 qd(2) = 0.5*( q(3)*w(1) - q(1)*w(3) + q(4)*w(2));

112 qd(3) = 0.5*( q(1)*w(2) - q(2)*w(1) + q(4)*w(3));

113

114 function [F,T] = qrotate(F,T,q)

115 q1 = q(1); q2 = q(2); q3 = q(3); q4 = q(4);

116 RB2I = [q4*q4+ql*qi-q2*q2-q3*q3, 2*(qi*q2-q3*q4), 2*(q1*q3+q2*q4);

117 2*(q1*q2+q3*q4), q4*q4-ql*qi+q2*q2-q3*q3, 2*(q2*q3-ql*q4);

118 2*(q1*q3-q2*q4), 2*(q2*q3+q1*q4), q4*q4-ql*ql-q2*q2+q3*q3];

119 RI2B = RB2I';
120 F = (R12B * F(:))';
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11121 T = (RI2B * T(:))';

EMWrapper.c

//
// EMWrapper.c

//
//
// Created by Alexander Buck on 11/19/12.

//

#ifdef __cplusplus

extern "C" {
#endif

#include
#include

#include
#include
#include
#include
#include

<math.h>
<stdio.h>
<string .h>

"globals.h"

"EMWrapper.h"

"utilities .h"

"EMForceTorque.h"

20 void EMWrapper(double* Fm,double *Tm, double *xl, double *x2,
21 double 12,double radiusunsigned int Nseg)
22 {
23 double coill[MAXSegments*3] = {O};

24 double coil_2[MAXSegments*3] = {O};
25 double dL_1[MAXSegments*3] = {O};
26 double dL_2[MAXSegments*3] = {0};
27 double coil-std[MAXSegments*3] = {0};
28 double dL.std[MAXSegments*3] = {o};

29 static double Z[3] = {0,0,0};

30 double dl;

31 unsigned int idx,N;

32 memset(coill,0,MAXSegments*3*sizeof(double));

33 memset(coil_2,0,MAXSegments*3*sizeof(double));

34 memset(dL_1,0,MAXSegments*3*sizeof(double));

35 memset(dL_2,0,MAXSegments*3*sizeof(double));

36

37 N = (Nseg>MAXSegments)?MAXSegments:Nseg;

38 dl = 2*pi*radius/N;

39 for(idx=0;idx<N;idx++){

40 coil-std[3*idx+O] = cos(2*pi*idx/N);
41 coilstd[3*idx+1] = 0;

42 coilstd[3*idx+21 = sin(2*pi*idx/N);
43 dL-std[3*idx+0] = -coil-std[3*idx+2];

44 dL-std[3*idx+1] = 0;

45 dL-std[3*idx+2] = coil-std[3*idx+0];
46 }
47

48 /* Rotate the standard coil and standard dL vectors */
49 mat-rotateScaleTranslate(coilstd, &xl[QUAT], radius, &xl[POS],

coil_1, N, 3);

50 mat-rotateScaleTranslate(coil-std, &x2[QUAT], radius, &x2[POS],
coil_2, N, 3);

51 matrotateScaleTranslate( dLstd, &x1[QUAT], dl, Z,
dL_1, N, 3);

52 mat-rotateScaleTranslate( dL-std, &x2[QUAT], dl, Z,
dL_2, N, 3);

53 /* Call the EMFF_3D subroutine. */
54 EMForceTorque(&x1[POS], (double*)coil_1, (double*)dL_1, N,
55 &x2[POS] , (double*)coil_2, (double*)dL_2, N,
56 12, Nturns, Nturns,

57 Fm, Tm);

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
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58 }
59

60 #ifdef __cplusplus

61 }
62 #endif

EMForceTorque.c

1 //
2 / EMForceTorque.c

3 //
4 //

5 // Created by Alexander Buck on 11/19/12.

6 //
7

8 #ifdef __cplusplus

9 extern "C" {
10 #endif

11

12 #include <math.h>

13 #include "globals.h"

14 #include "utilities.h"

15 #include "EMForceTorque.h"

16

17 /* Mex Function */

18 void EMForceTorque( double* R_1, double* coil_1, d

double Nseg_1,

19 double* R_2, double* coil_2, d

double Nseg_2,

20 double 12, double Nturns_1, d

21 double* F1, double* T1){

22 // coil_i and dL_i are (Ncoil-i)x3 arrays where

23 // Ncoili is the number of segments in coil-i

24 int ij;

25 double temp;

26 double Atemp [3];

27 double Btemp[3];

28 double dr[3];

29 double Tseg1[3]={O};

30 double Fseg1[3]={O};

ouble* dL_1,

ouble* dL_2,

ouble Nturns_2,

// Loop over each element on Coil 1

for(i=O;i<Nseg_1;i++) {
// Loop over each element on Coil 2

for(j=O;j<Nseg_2;j++) {

* NOTE: Do not multiply in constants yet, they

* computations that are not required until all

* are added up.

// Fseg = 1/ldri1^3 * dL_1

// ri - r-j

//dL2x ( )
// dL_1 x ( )
// ( ) / I|dri||2 = Ftemp
vec-sub( &coil_1[i*3], &coi

vec-cross( &dL_2[j*3], dr,

vec-cross( &dL_1[i*3], Atem

vec-div( Btemp, pow(

Fsegl , 3);
// Tseg = r x F

// ri-R1
// ( ) x Ftemp = Ttemp

vec.sub( &coil_1[i*3], R_1,

Atemp, 3);

are extra

the segments

x (dL_2 x dr)

l_2[j*3], dr,

vec-norm(dr,3),3),

3);
Atemp);

Btemp);

31
32
33
34

35

36
37

38

39
40
41
42

43

44

45

46

47

48

49

50

51

52

53
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54 vec-cross( Atemp, Fseg1, Tsegl);

55 // Accumulate the force contributions from each element

56 // Accumulate the torque contribution from each element

57 vec-add(F1, Fsegi, F1, 3);

58 vec-add(T1, Tsegi, T1, 3);

59 }
60 }
61 // Multiply constants after double sum

62 temp = km * 12 * Nturns_1 * Nturns_2;

63 // Multiply constants into Force and Torque (T = dr x F)

64 vec-scale(F1,temp,F1,3);

65 vec-scale(T1,temp,T1,3);

66 }
67

68 #ifdef __cplusplus

69 }
70 #endif

utilities.c

1 //
2 // utilities.c

3 //
4 /
5 // Created by Alexander Buck on 11/19/12.
6 //
7
8 #ifdef __cplusplus

9 extern "C" {
10 #endif

11

12 #include <math.h>

13 #include <stdio.h>

14 #include "utilities.h"

15 #ifndef DEBUG

16 #define printf(. .. ) do {} while(O)

17 #endif

18

19 /* Utility Functions */

20 /* c cannot be either a or b */
21 void vec-cross(double* a,double* b,double* c)

22 {
23 c[O] = a[l] * b[2] - a[2] * b(1;
24 c[l] = a[2] * b[0] - a[0] * b[2];

25 c[2] = a[0] * b[1] - a[l] * b[0];
26 }
27

28 // a and c can be the same

29 void vec-add(double* a,double* b,double* c,int len)

30 {
31 int i;

32 for(i=O;i<len;i++) {

33 c[i] = a[i]+b[i];

34 }
35 }
36
37 // a and c can be the same

38 void vec-sub(double* a,double* b,double* c,int len)

39 {
40 int i;

41 for(i=0;i<len;i++){

42 c[i] = a[il-b[i];

43 }
44 }
45
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46 // a and c can be the same

47 void vec-div(double* a,double b,double* c,int len)

48 {
49 int i;

50 for(i=0;i<len;i++) {
51 c[i] = a[i]/ b;

52 }
53 }
54 void vec scale(double* a,double b,double* c,int len)

55 {
56 int i;

57 for(i=0;i<len;i++) {
58 c[i] = a[i]*b;

59 }
60 }
61

62 double vec-norm(double* a,int len)

63 {
64 int i;

65 double tmp=O;

66 for(i=0;i<len;i++) {
67 tmp += a[i]*a[i];

68 }
69 return sqrt(tmp);

70 }
71

72 void vec-copy(double* a,double*b,int len)

73 {
74 vecscale(a,1,b,len);

75 }
76

77 // a and c can be the same

78 void matadd(double* a,double* b,double* c,int m,int n)

79 {
80 int i,j;

81 for(i=0;i<m;i++) {
82 for(j=0;j<n;j++) {
83 c[i*n+j] = a[i*n+j] + b[i*n+j];

84 }
85 }
86 }
87

88 // a and c can be the same

89 void mat-sub(double* a,double* b,double* c,int m,int n)

90 {
91 int i,j;

92 for(i=0;i<m;i++) {
93 for(j=0;j<n;j++) {
94 c[i*n+j] = a[i*n+j] - b[i*n+j];

95 }
96 }
97 }
98

99 // a and c can be the same

100 void mat div(double* a,double b,double* c,int m,int n)

101 {
102 int i,j;

103 for(i=O;i<m;i++) {
104 for(j=0;j<n;j++) {
105 c[i*n+j] = a[i*n+j]/b;

106 }
107 }
108 }
109

110 // a and c can be the same

111 void matscale(double* a,double b,double* c,int m,int n)

112 {
113 int i,j;
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114 for(i=O;i<m;i++) {
115 for(j=O;j<n;j++) {
116 c[i*n+j] = a[i*n+jl*b;

117 }
118 }
119 }
120

121 // a and c CANNOT be the same

122 void matmult(const double* a,double* b, double* c,int nra,int ...

nca,int ncb)

123 {
124 int i,j,k;

125 for(i=O;i<nra;i++) {
126 for(j=O;j<ncb;j++) {
127 c[i*ncb+j]=0.Of;

128 for(k=O;k<nca;k++) {
129 // The i'th row and j'th column of c is:

130 / k'th entry in the i'th row of a (TIMES) k'th entry in the .

j'th column of b

131 c[i*ncb+j] += a[i*nca+k] * b[k*ncb+j];

132 printf("Xf * Xf = ...
Xf\n",a[i*nca+k],b[k*ncb+j],c[i*ncb+j]);

133 }
134 printf("\n");

135 }
136 printf("\n");

137 }
138 }
139
140 // Adds a vector to the rows of a matrix

141 // a and c can be the same

142 void mat-vec-add(double* a, double* b, double* c, int m, int n)

143 {
144 int i;

145 for(i=O;i<m;i++) {
146 vec-add(&a[i*n],&b[0],&c[i*n],n);

147 }
148 }
149

150 // Rotate a matrix of M Nx1 vectors

151 /*
152 *a[ ]
153 * j = 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 <---- N

154 * i = 0 1 2 <---- M

155 */
156 void mat rotate(double* a, double* b, double* c, int M, int N)

157 {
158 int i,j,k;

159 for(i=0;i<M;i++) {
160 for(j=0;j<N;j++) {
161 c[i*N+j] = 0;
162 for(k=0;k<N;k++) {
163 c[i*N+j] += b[j*N+k]*a[i*N+k];

164 printf("Xf * Xf = %f\n",a[i*N+k],b[j*N+k],c[i*N+jl);

165 }
166 }
167 }
168 }
169

170 /*
171 * Scale Factor ------------------------------------------------
172 * Rotation (quaternion) --------------------------

173 * Input Matrix -------------------- \

174 *V V V...

175 void mat _rotateScaleTranslate( double* in, double* quat , double scale,

176 double* translate, double* out, int ...
M,int N)
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177 /* Offset Vector ----------------------------- /

178 * Output Matrix-- ----------------------------------------

179 * Input Matrix Row---------------------------------------------

180 * Input Matrix Cols -------------- ----------------------------------------------
181 */

182 {
183 double rotMat[3*3];

184

185 quat-rotation(quat,rotMat);

186

187 mat rotate(in,rotMatoutM,N);

188

189 mat-scale(out,scale,out,M,N);

190

191 mat _vec _add(outtranslate ,outM,N);

192 }
193

194

195

196 double mat-inv33(double* in, double* out)

197 {
198 double ml1, m12, m13, m21, m22, m23, m31, m32, m33;

199 double temp;

200

201 m11 = in[O];

202 m12 = in[1];

203 m13 = in[2];

204 m21 = in[3];

205 m22 = in[4]

206 m23 = in[5]

207 m31 = in[6];

208 m32 = in[7];

209 m33 = in[8];

210

211 temp = mll*m22*m33 - mll*m23*m32 + m12*m23*m31
212 - m12*m21*m33 + m13*m21*m32 - m13*m22*m31;

213

214 // must have non-zero determinant

215 if (temp == 0.0f)

216 return 1;

217

218 // make it multiplier to speed things up

219 temp = 1/temp;

220

221 out[0] = temp*(m22*m33-m23*m32);

222 out[l] = temp*(m13*m32-m12*m33);

223 out[2] = temp*(m12*m23-m13*m22);

224 out[3] = temp*(m23*m31-m21*m33);

225 out[4] = temp*(m11*m33-m13*m31);

226 out[5] = temp*(m13*m21-m11*m23);

227 out[6] = temp*(m21*m32-m22*m31);

228 out[7] = temp*(m12*m31-m11*m32);
229 out[8] = temp*(m11*m22-m12*m21);

230

231 return 0;

232 }
233

234 void quat-rotation(double* quat, double* mat)

235 {
236 double q1 = quat [0] , q2 = quat [1]

237 double q3 = quat [2) , q4 = quat [3]

238 double qn = sqrt(ql*ql + q2*q2 + q3*q3 + q4*q4);
239 printf("Quat norm: Xf\n",qn);

240 q1 = ql/qn;

241 q2 = q2/qn;
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242 q3 = q3/qn;
243 q4 = q4/qn;
244 // make the rotation matrix from the quaternion

245 mat[0] = q4*q4+ql*q1-q2*q2-q3*q
3
;

246 mat [1] = 2*(ql*q2-q3*q4);

247 mat[2] = 2*(ql*q3+q2*q4);

248 mat[3] = 2*(ql*q2+q3*q4);
249 mat[4] = q4*q4-ql*ql+q2*q2-q3*q3;

250 mat[5] = 2*(q2*q3-ql*q4);

251 mat[6] = 2*(ql*q3-q2*q4);

252 mat[7] = 2*(q2*q3+ql*q4);

253 mat[8) = q4*q4-ql*ql-q2*q2+q3*q3;

254 }
255

256 #ifdef __cplusplus

257 }
258 #endif
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Appendix C

GPOPS - RR: Spin-up

Trajectory Matlab Code

Main Function

1 function planarSpinupMain(nlpsolverinputSolminTtol)

2 % ---------------------------------------------------
3 X----------- planarSpinup Problem ------------------ X

4 X ---------------------------------------------------- X%

5 cle
6 if nargin<1

7 nlpsolver = 'ipopt';

8 end
9 if nargin<2

10 inputSol = []
11 end

12 if nargin<3

13 minT = 1;

14 end

15 if nargin<4

16 tol = [le-6;le-6];

17 end

18 XA---------------------------------------------------X%
19 X--------- Set Up Auxiliary Data for Problem --------- X%

20 XA---------------------------------------------------%
auxdata.radius =

auxdata.mu0 =

auxdata.m =
auxdata.Inertia =

auxdata.IInertia=

if minT

auxdata.ki

auxdata.kt

auxdata.ku3

auxdata.kui2

auxdata.kw

else XminE

auxdata.ki

auxdata.kt

auxdata.ku3

auxdata.ku12

auxdata.kw

end

0.31; %m

pi*4e-6;

17.2; % kg
diag([0.3742 1 0.5577]);
inv(auxdata.Inertia);

1;

1;

le-6;

100;
1;

1;

0;

le-4;

10000;
.5;
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39 auxdata.minr = [0.4;0.7];
40 X---------------------------------------------------X
41 X--- Set Up Bounds on State, Control, and Time ----- X
42 % -----------------------------------

to = 0;
tf = 120;
minr = 0.4;
rOu = [ pi

rOl = [-pi
aOl =-[pi
a0u = [pi
vO = [0
wO = [0
rmax = [3*pi
amax = [3

vmax = [1
wmax = [1

rmin = [-3*pi
amin = -amax;
vmin = -vmax;
wmin = -wmax;

T = 60;
w = 2*pi / T;

rfl = [pi
rfu = [pi
afl =-[pi
afu =-[pi

vfl = [w
vfu = [w

wfl = [w

wfu = [w

thrust = 0.1; XN

leverR = 0.1; Xm

.7]; XrO - [ th , r ]

.7]; XrO = [ th , r ]

pi]; XaO = [ at a2 ]
pi]; XaO = [ al a2 ]
0]; XvO = [vth , vr ]
0]; XwO = [ w1 w2 ]
2]; Xr = [thr
3]*pi;%a = [ al , a2 ]
1]*.2;Xv = [vth vr ]

1]; %w = wi , w2 ]
minrl; Xr = [ th r ]

a = [ al , a2 ]

Xv = [vth vr ]

Xw = [ wi w2 ]

% 2 minute period
X Required angular rate

.7]; Xr = th r ]

.71; Xr = th , r ]
pi]/2; Xa = [ al a2 ]
pi]/2; Xa = [ al , a2 ]

0]; Xv = [dth vr I
01; Xv = [dth , vr ]
W]; Xw = [ wi , w2 ]
W]; Xw = [ wi , w2 ]

= (2*thrust)*leverR;

= +tqlim;

= -tqlim;

= +tqlim;

= -tqlim;

= +225; % 15 Amps

= -225; X 15 Amps

bounds.phase.initialtime.lower = to;
bounds.phase.initialtime.upper = tO;

if minT

bounds.phase.finaltime.lower = to;
bounds.phase.finaltime.upper = tf;

else7minE

bounds.phase.finaltime.lower = tf;

bounds.phase.finaltime.upper = tf;
end

bounds.phase.initialstate.lower = [rOl, aOl, vO, wO];

bounds.phase.initialstate.upper = [rOu, aOu, vO, wO];

bounds.phase.state.lower = [rmin, amin, vmin, wmin];
bounds.phase.state.upper = [rmax, amax, vmax, wmax];

bounds.phase.finalstate.lower = [rfl, afl, vfl, wfl];

bounds.phase.finalstate.upper = [rfu, afu, vfu, wful;

bounds.phase.control.lower

bounds.phase.control.upper

= [ulmin, u2min, u3min];

= [ulmax, u2max, u3max];

bounds.phase.integral.lower = 0;
bounds.phase.integral.upper = 5000;

X--------------- Set Up Initial Guess --------------X

% ----------------------------------------------------- %
tGuess

rGuess

aGuess

= [to; tf];

= [(rOl+rOu)/2; (rfl+rfu)/2];

= [(aOl+aOu)/2; (afl+afu)/2];

tqlim

ulmax

u1min

u2max

u2min

u3max

u3min



vGuess = [vO; (vfl+vfu)/2];

wGuess = [wO; (wfl+wfu)/2];

u1Guess = [.2; 01;
u2Guess = [.2; 0);

u3Guess = [225; 225);

if isempty(inputSol)

guess.phase.time = [tGues

guess.phase.state = [rGues

guess.phase.control = [ulGue

guess.phase.integral= [ 50 1
else

guess.phase.time =

guess.phase.state =
guess.phase.control =

guess.phase.integral=

inputs

inputS
inputS
inputS

s] ;
s, aGuess, vGuess, wGuess];

ss, u2Guess, u3Guess];

ol.time;

ol.state;

ol.control;

ol.integral;

endX--------------------------------------------------
X ------------- Set Up Initial Mesh ----------------- 7.
%.---------------------------------------------------7.
N = 10;

meshphase.colpoints = 4*ones(1,N);

meshphase.fraction = ones(1,N)/N;

%.---------------------------------------------------'A
X.--------------- Set Up for Solver ----------------- X

% --------------------------------------------------- 7.
setup.name = 'Planar Spinup';

setup.functions.continuous = @commonContinuous;

setup.functions.endpoint = @commonEndpoint;

setup.method = 'RPMintegration';

setup.nlp.solver = nipsolver;
setup.auxdata = auxdata;

setup.bounds = bounds;

setup.mesh.phase = meshphase;
setup.guess = guess;

setup.derivatives.supplier = 'sparseCD';

setup.derivatives.derivativelevel = 'second';

setup.derivatives.dependencies = 'full';

setup.scales = 'automatic-bounds';

setup.mesh.method = 'hpl';

setup.mesh.tolerance = tol(1);

setup.nlp.options.tolerance = tol(2);

%.---------------------------------------------------7%
.------ Solve Problem and Extract Solution --------- X%

%.---------------------------------------------------7.
output = gpops2(setup);

assignin( 'base' ,'output' ,output);

-- X.

Dynamics Function

1 function [phaseout ,dvxy] = planarSpinupContinuous(input)

2

3 % input
4 X input.phase(phasenumber).state

5 % input.phase(phasenumber).control
6 X input.phase(phasenumber) .time

7 % input.phase(phasenumber).parameter
8 %
9 % input.auxdata = auxiliary information

10 X
11 X output

12 % phaseout(phasenumber).dynamics
13 7 phaseout(phasenumber).path
14 7. phaseout(phasenumber).integrand
15
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16 %Extract Auxdata

17 auxdata = input.auxdata;

18 radius = auxdata.radius;

19 m = auxdata.m;

20 Inertia = auxdata.Inertia;

21 ku3 = auxdata.ku3;

22 ku12 = auxdata.kul2;

23 kw = auxdata.kw;

24

25 XExtract States

26 t = input.phase.time;

27 th = input.phase.state(:,1);

28 r = input.phase.state(:,2);

29 a = input.phase.state(:,[3 4));

30 v = input.phase.state(:,[5 6]);

31 w = input.phase.state(:,[7 8]);

32 ul = input.phase.control(:,1);

33 u2 = input.phase.control(:,2);

34 u3 = input.phase.control(:,3);

35 z = zeros(length(t),1);

36 o = ones(length(t),1);

37

38 XRotate [th, r] to [x y]

39 [x,y] = pol2cart(th,r);

40 vr = v(:,2); vr

41 vth = v(:,1).*r; X dth * r = vth

42

43 %Rotate [vr vth] to [vx vy]

44 vxy = zeros(length(t),2);

45 for i=1:length(t)

46 vxy(i,:) = [cos(th(i)) -sin(th(i));sin(th(i)) cos(th(i))] *

[vr(i);vth(i)];

47 end

48

49 XCreate state vectors for daeEM mex function interface

50 x1 = [ [x y zI ...
51 [vxy z] ...
52 [ [z z ol.*(sin(a(:,1)/2)*ones(1,3)) cos(a(:,l)/2) I...

53 [z z w(:,1)]];

54 x2 = [-[x y z]...

55 -[vxy zI...

56 [ [z z o].*(sin(a(:,2)/2)*ones(1,3)) cos(a(:,2)/2) ].

57 [z z w(:,2)]];

58 [FT1,FT2] = daeEM(xl,x2,u3,radius,length(t),1);

59 fi = FT1(:,[1 2]);

60 f2 = FT2(:,[1 2]);

61 tql = FT1(:,6) + ul;

62 tq2 = FT2(:,6) + u2;

63

64 XF = m * a

65 dvxy = f1 ./ m;

66 dvrth = zeros(length(t),2);

67 XRotate [vx vy] back to [vr vth]

68 for i=l:length(t) X Note the Transpose ---- V

69 dvrth(i,:) = (cos(th(i)) -sin(th(i));sin(th(i)) cos(th(i))] *...

70 [dvxy(i,1);dvxy(i,2)];

71 end

72 XTransform dvth to dthdot by dividing by the radius

73 dv = [dvrth(:,2)./r dvrth(:,1)]; X [dth.dot dr-dot]

74 XT = I * a
75 dw = [tql/Inertia(3,3) tq2/Inertia(3,3)];
76 Y.Final Output!

77 dae = [ v w dv dw ];

78 phaseout.dynamics = dae;

79

80 phaseout.path = [];
81

82 %Cost Function
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83 phaseout.integrand = kul2*(ul.^2 + u2.^2) +...
84 ku3*(u3.^2) +...
85 kw*(w(:,1).^2 + w(:,2).^2);

Endpoint Function

1 function output = planarSpinupEndpoint(input)

2

3 X Inputs

4 X input.phase(phasenumber).initialstate -- row

5 % input.phase(phasenumber) finalstate -- row

6 % input.phase(phasenumber) .initialtime -- scalar

7 % input.phase(phasenumber) finaltime -- scalar

8 % input.phase(phasenumber).integral -- row

9 % input.parameter -- row

10 % input.auxdata = auxiliary information

11

12 X Output
13 % output.objective -- scalar

14 % output.eventgroup(eventnumber).event -- row

15 kt = input.auxdata.kt;

16 ki = input.auxdata.ki;

17 X cost
18 % output.objective = input.phase.integral;

19 output.objective = kt*input.phase.finaltime + ki*input.phase.integral;
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