
Achieving Broad Access to Satellite Control

Research with Zero Robotics

Jacob Gy. Katz ARCHNES
Submitted to the Department of Aeronautics and Astronautics MASSA I$JSE1us NSr E

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Aeronautics and Astronautics JUL 19 2013

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY LIBRARIES

June 2013 LlBRAR-ES
@ Massachusetts Institute of Technology 2013. All rights reserved.

Author .

Af
Department of Aeronautics and Astronautics

May 23, 2013

Certified by.

David W. Miller
Professor, Aeronautics and Astronautics

Thesis Supervisor

Certified by....

N)l
Alvar Saenz-Otero

Reseagh\egiist, Aeronautics and Astronautics
Thesis Supervisor

Certified
Jeffrey Hoffman

Professor of the Practice, Aeronautics and Astronautics
Thesis Supervisor

Certified by.................. .. i...r.........azz.... ... oli

I I a A

Professor, Aeronautics and Astronautics

A ccepted by
Eytan H. Modiano

Professor, Aeronautics and Astronautics
Chair, Graduate Program Committee

Thesis Supervisor

.......

Achieving Broad Access to Satellite Control Research with

Zero Robotics

by

Jacob G. Katz

Submitted to the Department of Aeronautics and Astronautics
on May 23, 2013, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Aeronautics and Astronautics

Abstract

Since operations began in 2006, the SPHERES facility, including three satellites
aboard the International Space Station (ISS), has demonstrated many future satellite
technologies in a true microgravity environment and established a model for devel-
oping successful ISS payloads. In 2009, the Zero Robotics program began with the
goal of leveraging the resources of SPHERES as a tool for Science, Technology, Engi-
neering, and Math education through a unique student robotics competition. Since
the first iteration with two teams, the program has grown over four years into an
international tournament involving more than two thousand student competitors and
has given hundreds of students the experience of running experiments on the ISS.

Zero Robotics tournaments involve an annually updated challenge motivated by
a space theme and designed to match the hardware constraints of the SPHERES
facility. The tournament proceeds in several phases of increasing difficulty, including a
multi-week collaboration period where geographically separated teams work together
through the provided tools to write software for SPHERES. Students initially compete
in a virtual, online simulation environment, then transition to hardware for the final
live championship round aboard the ISS. Along the way, the online platform ensures
compatibility with the satellite hardware and provides feedback in the form of 3D
simulation animations. During each competition phase, a continuous scoring system
allows competitors to incrementally explore new strategies while striving for a seat in
the championship.

This thesis will present the design of the Zero Robotics competition and supporting
online environment and tools that enable users from around the world to successfully
write computer programs for satellites. The central contribution is a framework for
building virtual platforms that serve as surrogates for limited availability hardware
facilities. The framework includes the elaboration of the core principles behind the
design of Zero Robotics along with examples and lessons from the implementation of
the competition. The virtual platform concept is further extended with a web-based
architecture for writing, compiling, simulating, and analyzing programs for a dynamic
robot. A standalone and key enabling component of the architecture is a pattern for

3

building fast, high fidelity, web-based simulations. For control of the robots, an easy
to use programming interface for controlling 6 degree-of-freedom (6DOF) satellites
is presented, along with a lightweight supervisory control law to prevent collisions
between satellites without user action.

This work also contributes a new form of student robotics competition, including
the unique features of model-based online simulation, programming, 6DOF dynamics,
a multi-week team collaboration phase, and the chance to test satellites aboard the
ISS. Scoring during the competition is made possible by possible by a game-agnostic
scoring algorithm, which has been demonstrated during a tournament season and
improved for responsiveness. Lastly, future directions are suggested for improving
the tournament including a detailed initial exploration of creating open-ended Monte
Carlo analysis tools.

Thesis Supervisor: David W. Miller
Title: Professor, Aeronautics and Astronautics

Thesis Supervisor: Alvar Saenz-Otero
Title: Principal Research Scientist, Aeronautics and Astronautics

Thesis Supervisor: Jeffrey Hoffman
Title: Professor of the Practice, Aeronautics and Astronautics

Thesis Supervisor: Emilio Frazzoli
Title: Professor, Aeronautics and Astronautics

4

Acknowledgments

This work encompasses four years of design and development of the Zero Robotics

program, none of which would have been possible without the efforts of a diverse

team spanning academia, government, and industry.

The original inspiration for Zero Robotics began with Dr. Gregory Chamitoff.

Following his chance to operate his own algorithms on SPHERES during Expedition

17/18 aboard the ISS, he returned with a challenge to us to give the same experience

to students around the country. Since then he has been a guiding influence on the

evolution of the program. I am personally grateful for his advice throughout the course

of my research, especially for his detailed feedback in preparing the final version of

this thesis.

Dr. Lorna Finman is directly responsible for making the concept of Zero

Robotics a reality by providing financial support for the first pilot season of the

competition in 2009. In that season our two founding teams, Absolute Zero from

Bonners Ferry, Idaho, and Team Delta from Post Falls, Idaho, helped to establish the

key components of the competition, including the first suggestion to create a fully

online environment for hosting the program. A special thanks to the mentors of these

teams, Brian Induni, Salvatore Lorenzen, and my father, Edward Katz, for

their patience while simultaneously teaching students and helping us to smooth out

the wrinkles in our structure.

Bringing Zero Robotics to a national scale involved an extensive collaboration with

two industry partners, Aurora Flight Sciences and TopCoder. Aurora created the

graphical programming interface for the Zero Robotics IDE and the initial prototype

of the 3D simulation visualization tool. I have had the privilege of working with

James Francis to design and improve these tools, and Wendy Feenstra, who

was instrumental in helping to manage the 2012 tournament and in launching a new

middle school tournament for the summer of 2013. I am also thankful for Aurora's

generous support during my tenure as an Aurora Flight Sciences Fellow in 2010. With

the assistance of many competing software developers, TopCoder took our prototype

5

online platform to a cloud-based production architecture in the course of four short

months. Thank you to Ira Heffan, Mike Lydon, Andrew Abbott, and Ambi

Del Villar for their strong enthusiasm for the program and for involving me firsthand

with all levels of the TopCoder crowdsourcing process.

At the government level, Zero Robotics has had strong support from both NASA

and DARPA, including funding, access to crew time for running the live tourna-

ments, publicity efforts, and operations support. I would like to thank Jason Crusan

at NASA for his steady support and constructive input for improving the program.

The Zero Robotics team at MIT has included both graduate research assistants

and undergraduates as part of the Undergraduate Research Opportunities Program

(UROP). Thank you to graduate students Dr. Swati Mohan for helping to run

the 2009 pilot season and assemble the first proposal for funding Zero Robotics,

Sreeja Nag for serving as the student lead during the 2011 tournament, Sonny

Thai for designing the first collaborative IDE for the online platform, and Prashan

Wanigasekara for his assistance with the 2012 season and the 2013 game design. A

special thanks to the many UROPs that have contributed designs for games during

each season and for giving me the opportunity to teach as well as learn.

More than 200 teams have participated in Zero Robotics tournaments, and many

have given invaluable feedback through surveys, online forums, and emails. I would

like to specially thank Rich Kopelow and his team yObOtics!, and Steven Pen-

dergrast and his team Kuhlschrank for never hesitating to give us candid feedback,

and for their dedication to improving the program. Thank you also to Anne Con-

tney and Team Rocket, also known as "The Sledgehammers," for battering our

servers on a consistent basis and calmly waiting for us to fix the problems.

My time in the Space Systems Laboratory has seen the fulfillment of many child-

hood dreams-working with astronauts, watching a space shuttle launch, controlling

a robot in space, and so many more-for which I owe an immense gratitude to my

advisors David Miller and Alvar Saenz-Otero. They have not only given me

once in a lifetime opportunities, but have also equipped me to keep pursuing them. I

have also worked excellent colleagues, including my officemates Brent Tweddle and

6

Jaime Ramirez, with whom I've been fortunate to share many discussions and the

occasional venting of steam.

To my loving parents Edward and Jill Katz, thank you for your unending sup-

port through 10 amazing years of MIT and experiencing, right along with me, the now

countless wonderful experiences here. Most of all, thank you for the joy of learning

and a life to pursue it.

To Betar Gallant, thank you for the gift of sharing this adventure with you

through every up, down, and sideways. May we have many more.

7

8

Contents

1 Introduction 23

1.1 Introduction . 23

1.2 Problem Statement and Objectives 24

1.2.1 Motivating Problem . 24

1.2.2 Scope . 25

1.2.3 Objectives . 25

1.3 Literature Review . 26

1.3.1 Competition Robotics for STEM Education 26

1.3.2 ISS Utilization for Education 28

1.3.3 Simulation and Games for Education 30

1.3.4 Automated Ranking Systems 31

1.3.5 Literature Gaps . 32

1.4 Broad Access Platform Design Principles 34

1.5 A pproach . 35

1.5.1 STEM Outreach Program . 36

1.5.2 Zero Robotics Platform . 38

1.5.3 Scoring Methods . 42

1.5.4 Collision Avoidance Algorithm 42

2 Zero Robotics Tournaments 43

2.1 Introduction . 43

2.1.1 Tournament Nomenclature . 43

2.2 Game Design Methodology . 44

9

2.2.1

2.2.2

2.2.3

2.2.4

2.2.5

Game Example: RetroSPHERES .

Recommended Components

Commonly Featured Components .

Implementing Decentralized Games

Game Balancing

2.2.6 Game Manual

2.3 Tournament Design Methodology

2.3.1 Season Timeline Overview

2.3.2 Game Design

2.3.3 Registration

2.3.4 K ickoff .

2.3.5 Competitions and Game Evolutions

2.3.6 Tournament Scoring

2.3.7 Alliance Phase

2.3.8 ISS Finals

2.3.9 Other Zero Robotics Tournaments

2.4 Tournament History

2.4.1 2009 Pilot

2.4.2 2010 SoI .

2.4.3 ZRHS2010: HelioSPHERES

2.4.4 ZRMS2011 and ZRHS2011: AsteroSPHERES

2.4.5 ZROC #1 Zero Robotics Autonomous Space

2.4.6 ZRHS2012 RetroSPHERES

2.4.7 Evaluation

2.5 Summary .

3 The

3.1

Capture

Zero Robotics Platform

Introduction .

3.1.1 Contributions of Industry Partners

3.1.2 SPHERES Software Architecture

10

challenge

44

45

55

57

60

66

66

66

67

67

68

68

69

70

74

77

78

78

82

85

89

94

99

102

104

107

107

108

109

3.2 Sphei

3.2.1

3.2.2

3.2.3

3.2.4

3.2.5

3.3 Detai

3.3.1

3.3.2

3.3.3

3.3.4

3.3.5

3.3.6

3.3.7

3.3.8

3.4 Zero

3.4.1

3.4.2

3.4.3

3.4.4

3.4.5

3.5 Zero

3.5.1

3.5.2

3.5.3

3.5.4

3.5.5

3.6 Zero

3.6.1

3.6.2

es Simulation History

Common Features

GSS, C GSP, and MATLAB Simulations

SWARM Simulation

v2009 MATLAB Engine

Overall Lessons

led Design of Current Simulation

Top Level Block Diagram Layout

Repeatable Seeding of Random Variables . . .

Dynam ics .

Sensors .

SPHERES Software Simulation

Dynamic Loader for Satellite Libraries

Code Generation Capability

SPHERES Code Profiler

Robotics API .

H istory .

Software Architecture

User-Facing API Design

Internal API Design

Catching Common C/C++ Coding Errors . . .

Robotics Simulation and Compilation Interfaces .

General Architecture

2009 Pilot: Downloadable Standalone Simulation

2010 Pilot: First Web-Based Simulation Service

2011 Onward: Current Design

Step-by-Step Simulation Outline

Robotics IDE .

Graphical IDE

Text-Based IDE

11

111

111

112

115

119

124

126

127

128

130

133

141

149

151

151

152

152

154

157

166

171

177

178

178

183

186

191

193

193

196

3.7 Data Analysis Tools . 201

3.7.1 3D Visualization . 201

3.8 Zero Robotics Website . 203

3.9 Sum m ary . 204

4 Zero Robotics Scoring Systems 207

4.1 Introduction . 207

4.2 Other Zero Robotics Ranking Systems 208

4.2.1 ZRHS 2010 and ZRHS 2011: Round-Robin Competitions . . . 208

4.2.2 ZROC 2012: Relative Scoring Leaderboard 209

4.3 ZRHS 2012: Whole History Rating Leaderboard 211

4.3.1 Overview of the WHR Algorithm 211

4.3.2 Improvements and Implementation Considerations 214

4.3.3 Presentation to Users . 222

4.3.4 Case Study: ZRHS 2012 . 224

4.3.5 Recommendations for Future WHR Competitions 238

4.4 Sum m ary . 239

5 Close-Proximity Collision Avoidance for Satellite Game Players 241

5.1 Introduction . 241

5.2 Steering Law . 242

5.2.1 Relative Kinematics . 242

5.2.2 Avoidance Controller . 244

5.3 Implementation Considerations . 246

5.3.1 Distance Threshold and Time Horizon 246

5.3.2 Distance Target . 246

5.3.3 Nominal Controller Override 247

5.3.4 Multiple Satellites . 247

5.4 Initial Development ISS Test Session Results 248

5.5 Conclusions . 251

12

6 Conclusions and Future Work

6.1 Thesis Summary

6.1.1 Engage and Educate

6.1.2 Accessibility

6.1.3 Incremental Difficulty

6.1.4 Efficient Inquiry

6.1.5 Authenticity .

6.2 Contributions .

6.3 Future W ork .

6.3.1 Research Directions

6.3.2 Monte Carlo Tools for the Zero Robotics Platform

6.3.3 Formal Evaluation Studies

6.3.4 Scaling Challenges

6.3.5 A Development Roadmap For Zero Robotics . . .

A Zero Robotics-Specific Implementation

A.1 Game Implementation

A.1.1 Scoring Systems

A.1.2 Code Size Limits

A.1.3 Standard Game Phases

A.1.4 Communications

A.1.5 Game Manual

A.1.6 Game Development Timeline

A.1.7 Code Preparation for ISS

A.2 Simulation Details

A.2.1 S-Function Interface

A.2.2

A.2.3

S-Function Interface Inputs and

Thruster Transient Modeling. .

Details

Outputs

B SPHERES Parameters and Uncertainty Quantification

B.1 SPHERES Thruster Geometry

255

255

. 255

. 256

. 256

. 257

. 257

. 257

. 259

. 260

. 261

. 261

. 262

. 263

265

265

265

265

266

270

271

272

274

274

274

276

277

281

281

13

B.2 Sources of Uncertainty in ISS Testing 282

B.2.1 Mass Properties . 283

B.2.2 Thruster Performance . 283

B.2.3 Metrology Errors . 287

C A Monte Carlo System for Open-Ended Robustness Analysis 293

C.1 Introduction . 293

C.1.1 M otivation . 293

C.1.2 Requirements . 294

C.2 Monte Carlo Robustness Testing . 295

C.2.1 A Note About Parameter Sampling 295

C.2.2 Overview of Method . 295

C.2.3 Response Surface Fitting . 298

C.2.4 Choosing a Constraint Function 302

C.2.5 Additional Implementation Considerations 303

C.2.6 Multi-Dimensional Data Display with Parallel Coordinates . . 303

C.2.7 Algorithm Summary . 304

C.2.8 Phased Deployment to Zero Robotics Platform: 305

14

List of Figures

1.1 Two Components of Student Robotics Competition Taxonomy 26

1.2 NASA ISS Education Framework . 29

1.3 Approach Overview . 36

1.4 Software development cycle . 38

2.1 ZRHS2012 Game Layout . 46

2.2 A Well-Designed Strategy Landscape 63

2.3 2011 Alliance Selection Algorithm . 72

2.4 2012 Alliance Selection Method . 73

2.5 2012 Final Competition Bracket . 76

2.6 Summer of Innovation Game Layout 84

2.7 Satellite Initialization Circle for HelioSPHERES 86

2.8 ZRASCC Capture Zone Positioning 95

2.9 ZRASCC Capture Zone Alignment 95

2.10 ZRASCC Collision Avoidance Region and Avoidance Cone 95

2.11 ZRASCC Capture Area . 96

2.12 Strategy Landscape for RetroSPHERES 101

2.13 2012 Subject Area Self-Reported Skill Improvement Results 104

3.1 SPHERES Software Interface . 110

3.2 SPHERES Simulation Components 113

3.3 GFLOPS SPHERES Simulator Architecture 114

3.4 SWARM Simulation Architecture . 119

3.5 Software-In-the-Loop Implementation for 2009 MATLAB Simulation. 123

15

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

Top Level Layout of SPHERES Simulation 128

Accelerometer Noise Data . 136

Accelerometer Noise Model Comparison 137

Global Metrology Timing Diagram 138

Ultrasound Receiver Geometry . 142

Layers of the Software Model . 144

Thread Synchronization Example . 150

Web-Based Simulation Service Architecture 179

The 2009 Zero Robotics Simulation Interface 182

2010 Website Architecture . 186

The 2010 Graphical Editor Prototype 194

Example of a Waterbear Graphical Editor Program 196

The Zero Robotics 3D Visualization 202

The Zero Robotics Report Tool . 203

4.1 Effect of Minimum Time Period on Ranking History 220

4.2 Effect of Ranking System Improvements on 3D Competition 221

4.3 Leaderboard Match History View . 223

4.4 Leaderboard Histogram View . 224

4.5 Percentage of Teams Making at Least N Submissions 227

4.6 Percentage of Teams Submitting At Least Once By Days Before Deadline227

4.7 Percentage of Total 3D Competition Simulations Run Per Day in 2011

and 2012.. 228

4.8 Total 3D Competition Simulations Run Per Active Team by Day in

2011 and 2012..................................... 229

4.9 The Scaling of Win Percentage by Total Scored Matches 235

4.10 Filtered Ranking History vs. Experienced Ranking History 237

3-Satellite Test Trajectory for Collision Avoidance

Distance at Closest Point of Approach for Initial ISS Testing

2-satellite Collision Avoidance Trajectory

249

249

250

16

5.1

5.2

5.3

5.4 Planar View of Head-On Collision Avoidance . . .

5.5 3-Satellite Collision Avoidance Test

5.6 3-Satellite Uncooperative Avoidance

A.1 Simplified Model for Transient Thruster Response

B.1 ISS Thruster Attenuation Scatter Plot

B.2 Simulation Thruster Attenuation Scatter Plot . .

B.3 ISS Thruster Attenuation Time Histories

B.4 Initial Positioning Histograms for ISS Matches . .

C.1 Comparison Between Uniform Random Sampling and

Sam pling .

C.2 Illustration of Homothetic Deformation

C.3 Parallel Coordinates Example

. 252

. 252

. 253

279

286

288

289

290

Quasi-Random

296

297

304

17

18

List of Tables

2.2.1 ISS and Zero Robotics Boundary Limits 55

2.3.1 Tournament Timeline . 67

2.4.1 Team Participation Information from 2009-2012 103

3.2.1 Simulation History Overview . 125

3.3.1 Typical Values for Random Noise Variables 142

4.3.1 Match Outcome Prediction Performance 231

4.3.2 Effect of WHR Improvements on 3D Competition (42235 Matches) . 231

B.2.1Monte Carlo Parameters and Ranges 291

19

20

Nomenclature

AMI Amazon Machine Image

CRTP Curiously Recurring Template Pattern

DSP Digital Signal Processor

EC2 Elastic Compute Cloud

GFLOPS Generalized FLight Operations Processing Simulator

GSP Guest Scientist Program

GSS GFLOPS SPHERES Simulator

IDE Integrated Development Environment

IMU Inertial Measurement Unit

IR Infrared

JPM Japanese Pressurized Module

LCG Linear Congruential Generator

SVM Support Vector Machine

SVR Support Vector Regressor

SWARM Self-assembling Wireless Autonomous Reconfigurable Modules

TLC Target Language Compiler

21

WHR Whole History Rating

22

Chapter 1

Introduction

1.1 Introduction

Starting with the rapid change of the American educational system following the

launch of Sputnik in 1957, space exploration has a long history as a driving source

of educational inspiration. There is growing evidence that we are in need of another

transformational change in education to preserve the ingenuity built in the years

since Sputnik. The 2005 Gathering Storm report 111] brought attention to a looming

threat in the form of declining skills in Science, Technology, Engineering, and Math

(STEM) among students and the general population. The followup report in 2010

noted a number of actions taken in response to the original report, but classified the

storm as having grown to an even more perilous "category 5" [12]. In this work we will

examine a platform for using a space research facility for achieving broad educational

impact.

Since its inception NASA has worked to promote education, an effort that is of

general benefit to society, but also vitally important to an agency whose mission is

highly dependent on a skilled workforce. With the completion of the International

Space Station (ISS) in 2011, the station has been designated a U.S. National Labora-

tory, accessible to public, private, and academic institutions for ongoing research. In

this new phase of utilization, both NASA and the Center for Advancement of Science

in Space (CASIS), the non-profit agency that will control research on the ISS, have

23

many possibilities to leverage this resource for education.

With the urgent need to raise the math and science proficiency of the American

public, innovative solutions to draw students to these topics and keep them engaged

are in high demand. Despite the level to which space captivates young students, there

are few national programs that use space as a context to engage students in substan-

tive problem-solving challenges. While NASA and many aerospace contractors are

heavily involved in funding high impact programs like student robotics competitions

and produce large quantities of educational materials, the ISS has primarily been

used as a demonstration platform. A driving factor is the relatively limited amount

of crew time available and the extremely high cost of sending experiments into space.

Achieving broad reach on the order of thousands or tens of thousands of students is

only possible through careful allocation of on-orbit resources.

This thesis will present a student robotics competition called Zero Robotics that

uses the SPHERES nanosatellites aboard the ISS both as robots and as a motivating

tool for STEM education. More generally, the central contribution is a framework for

building virtual platforms that serve as surrogates for limited availability hardware

facilities.. This system includes high fidelity physics models, control algorithms, and

software tools that, applied to SPHERES, have opened the ISS to thousands of young

students and members of the general public.

1.2 Problem Statement and Objectives

1.2.1 Motivating Problem

The MIT Space Systems Laboratory's SPHERES facility is compelling enough to en-

gage and educate broad swaths of young people because it involves space, astronauts,

and the ISS. The facility includes three volleyball-sized satellites that fly in the hab-

itable volume of the space station as well as three satellites on the ground. At the

graduate level, the technology has been proven to be accessible and understandable

while at the same time offering a platform for solving technically challenging prob-

24

lems. In the past seven years of operation, the SSL has used SPHERES to involve

dozens of undergraduate and graduate students in unprecedented levels of access to

microgravity for experimentation and analysis. The key question to be addressed by

this work is: how do we best leverage the ISS, and more specifically, SPHERES for

substantive educational impact on a national scale?

1.2.2 Scope

To reasonably constrain the scope, the research in this thesis will primarily examine

a model for outreach and education based on a student robotics competition. While

there are other ways of engaging students, robotics competitions have been shown

148, 65, 47] to have an effective blend of excitement and difficulty to draw students in,

keep them coming back, and along the way deliver many valuable social and technical

skills. Furthermore, the inherent structure of a tournament-style competition with a

series of down-selection phases is an initial step toward achieving broad reach from

a limited resource. For application to the ISS and SPHERES, on-orbit time is only

used in the final phase of the competition while the ISS and space still prominently

serve to attract students to the competition.

1.2.3 Objectives

There are three main objectives of this research:

1. Identify the best structure for extending the capabilities of a low availability

research facility to a wide audience.

2. Identify supporting algorithmic tools for effective use of the infrastructure.

3. Utilize the ISS for substantive, broad-impact outreach.

(a) Leverage the inherent draw of space and the ISS to create an engaging and

educational program.

(b) Maximize the number of students that get the experience of running an

experiment in space.

25

Figure 1.1: Miller, Nourbakhsh, and Siegwart defined a taxonomy for classifying
student robotics competitions in [49]. Example student competitions are shown for
two of the main components: Autonomous vs. Remote Control, and Opposition vs.
Performance.

1.3 Literature Review

1.3.1 Competition Robotics for STEM Education

A significant portion of this study will be devoted to the design, implementation, and

operation of a student robotics tournament for educational outreach. The review by

Miller, Nourbakhsh, and Siegwart in [49] covers the history of robotics in education as

well as the origins of competition robotics as an educational tool. Enhanced interest

in engineering and science, improved teamwork, and better problem solving are listed

as direct consequences of participating in robotics activities. The authors also include

a useful taxonomy for classifying robotics competitions.

Autonomous vs Teleoperated The level of autonomy of the robot, ranging from

fully autonomous to purely remote controlled. Teleoperated robotics competi-

tions tend to have more focus on hardware design while autonomous robotics

competitions have a focus on algorithms and software, though even most mod-

ern teleoperated competitions include some level of programming to configure

the robot controller. Examples range from BEST (only teleop) [35] to FIRST

(mixed autonomy and operator control) [37] to BotBall (fully autonomous) [36].

26

Performance vs Opposition Participants either compete head-to-head in matches

or they are scored against an absolute performance measure, such as time to

completion. With a consistent environment, performance-based competitions

can result in more complex strategies, while opposition matches tend to add

more excitement.

New Game vs Old Game Some competitions unveil a new game at the start of

each season while others have a recurring challenge to be optimized over several

seasons. Recurring challenges can also be enhanced with additional features

from year to year.

The tournament model has been highly successful for FIRST (For Inspiration and

Recognition of Science and Technology) robotics. FIRST began in 1992 and consists

of four programs in different age groups that motivate young people to pursue career

opportunities in STEM fields. Through a unique combination of hands-on hardware

design activities and arena events, the program brings more than 25,000 teams, over

300,000 students, and 100,000 mentors to participate every year. A report by Melchior

et al. 148] lists many statistics showing clear benefit to students, a small subset of

which include:

" "Almost all participants felt FIRST had provided them with the kinds of chal-

lenging experiences and positive relationships considered essential for positive

youth development

" "Significantly more likely to attend college on a full-time basis than comparison

students (88% vs. 53%)

" Overall satisfaction with the program was high. Ninety-five percent of the

alumni rated their experience as 'good' or 'excellent' "

In additional to full spectrum studies, another way to evaluate the impact of robotics

programs is by examining a measure called self-efficacy, the self-confidence in one's

ability to perform a specific task [3, 4]. In an academic context, subject-specific

27

self-efficacy evaluations have been shown to be predictors of academic performance

[5].

To see why robotics programs are particularly effective in improving STEM skills,

we can look to ways that self-efficacy is influenced. In a study by Lucas et al. of

undergraduate engineering student internships, one of the most important factors in

improving self-efficacy is participation in authentic experiences [43]. Students that

have an active role in building or creating something that they believe is represen-

tative of a realistic engineering task and receive feedback are more likely to improve

confidence in their abilities. A second influencing factor is vicarious experience, or the

opportunity to observe positive behaviors from expert demonstrators. Robotics pro-

grams tend to combine both components, immersing students in realistic, challenging

problems, under the guidance of expert mentors that can instruct and demonstrate

good engineering practices.

1.3.2 ISS Utilization for Education

In [64], we give a brief overview of the current efforts for utilizing the International

Space Station for educational outreach. A key component of the plan outlined in the

2006 International Space Station: National Laboratory Education Concept Develop-

ment Report [39] is a pyramid of activities related to reaching students at various

levels of interest (see Figure 1.2). For the broadest reach, materials promoting aware-

ness of space-based activities will be used to inspire students, of which a subset will

be engaged in hands-on activities that make use of NASA and ISS resources. At the

top of the pyramid are educate activities, which are targeted at specific populations.

While this pipeline of activities makes effective use of limited ISS resources, NASA

has had limited success in building broad reach programs that extend beyond the

inspire level of the pyramid. Through video conferences and on-orbit demonstrations,

many students have had the opportunity to get a brief picture of life in space, but

they have not had the chance to engage directly with the research. A NASA report

by Thomas et al. lists fewer than 15 activities in the period of 2000-2006 which have

allowed students to engage directly (i.e. send hardware to ISS or affect experiments

28

Figure 1.2: NASA's framework for utilizing the ISS for education. Image from John-
son [39].

on the ISS) in space activities.

Part of the problem is the arduous process of deploying new hardware to the

ISS. With an extensive design and safety qualification process, it may take years for

an experiment to go from concept to final demonstration. The long time scale cuts

down the pool of potential participants because a dedicated team must be created to

carry out the effort over multiple school years. Furthermore, unless the opportunity

to develop the experiment is shared between schools, only a select few have the

opportunity to have a hands-on role. Modular facilities such as NanoRacks and

the CubeLab standard [44] are tackling this problem by providing a small, standard

experiment container with simplified power and data interfaces. The experiments can

be easily swapped out by crew members and transported in significant quantities (10-

20) to the ISS by manned and unmanned cargo vehicles. These new approaches are

making progress in cutting down development time and directly engaging students on

the order of thousands of participants. One limitation is the small footprint restricts

the exploration of space dynamics and robotics experiments.

In [63], Saenz-Otero enumerated the core principles for creating well-designed

microgravity research facilities by examining the history of ISS experiments and the

29

ISS National Laboratory Education Framework
'nput/Resources PROCESSESr

InstructionalAssm n

Pr ofessionai Developmen t

EDUCATE oi Atsseesrc

ENGAGE

INISP1IRE

development of SPHERES. Since an objective of ISS educational outreach is to engage

students in authentic research experiences, educational platforms should be built on

the same principles if they are not already re-using an existing facility. Of particular

importance are:

Principle of Focused Modularity This principle includes the ability to reconfig-

ure the facility to accommodate new experiments. This is very important for

educational efforts because many participants can use the same facility without

replacing the facility itself.

Principle of Remote Operation and Usability If the facility is designed to be

remotely operated by a non-expert user, there is an explicit framework for

preparing reliable experiments and conveying qualitative and quantitative re-

sults of experiments to researchers.

While it is possible to build an educational platform from an existing research facility,

the design principles do not address the additional features necessary for achieving

broad access to younger students. For instance, SPHERES, one of the embodiments

of the principles, has opened access to tens of graduate students and multiple principal

investigators, but until the beginning of Zero Robotics, there was no clear avenue for

thousands of students to use the facility.

1.3.3 Simulation and Games for Education

For learning science, Honey et al. 1331 introduces a useful picture of a continuum

between games and simulations. Simulations are defined as computational models

used to clarify or expose processes that would otherwise be difficult to interpret.

Games, while often built on some form of simulation, are usually distinguished from

simulations by incorporating rules and explicit goals beyond the basic physical laws in

the simulation. While games are predominantly focused on casual and enjoyable play,

there are many types of serious games where the goals may include self-improvement,

learning, or training.

30

The report also surveys a broad literature base to arrive at several important

features that affect learning:

e A clear focus on learning goals

9 Scaffolding or support structures to help users gain confidence

9 Representations focused on learning goals, not necessarily graphical realism

e Carefully balanced level of user control

9 Some form of narrative or motivation for the task

* Detailed feedback about performance

e Adaptive features to cater to different learning abilities

The report concludes there is moderate evidence that simulations can advance learn-

ing goals, while for games, the literature is somewhat inconclusive. Nonetheless it

notes there is a strong potential for carefully designed simulations and games to have

a meaningful impact when paired with specific educational goals.

1.3.4 Automated Ranking Systems

An interesting issue that arises in large scale competitions is the efficient and effective

ranking of competitors. Absolute performance measures like scoring systems have to

be carefully crafted to give accurate results and not be subject to exploitation by the

competitors. An alternative approach used by competitive board game and online

gaming communities is the use of a "skill" rating to predict expected match outcomes,

then update the skill rating based on the outcome of a game. The classic method

used for chess ratings is called the Elo method after Arpad Elo[20], which assumes

an average skill and fixed variance of performances around that skill. Elo is a specific

form of a generic paired comparison model known as the Bradley-Terry model 161.

A more advanced version class of Elo ranking systems use Bayesian estimation to

achieve more accurate updates of the model. An algorithm called TrueSkill@ is used

31

by Microsoft in the Xbox Live online gaming community[31]. Instead of carrying only

a skill rating, to rank a player, it includes both a mean y and standard deviation -,

both of which are updated by the outcome of a match. Glickman introduced the idea

of a dynamic Bradley-Terry model for estimating time varying parameters via paired

comparisons in 126]. Coulom created another form of Bayesian skill rating system

based on the Bradley-Terry model called Whole History Rating [15], which incor-

porates information from the full history of match outcomes instead of incremental

updates. This work will examine applying the Whole History Rating algorithm to

ranking autonomous algorithms created by students in the competition.

1.3.5 Literature Gaps

Under the scope of applying a student robotics competition format to the ISS, the

following gaps have been identified.

1.3.5.1 Student Robotics Competitions

The existing structure for many robotics competitions, including an annual season,

a scoped challenge or game, and a model built around local mentors to guide teams,

can be applied. The main gaps to address are:

Accessibility Many robotics competitions require entry fees and center around hardware-

based designs with parts kits. For the higher tier competitions like FIRST, the

startup, entry fee, and participation costs climb into the tens of thousands of

dollars. There are many fewer robotics competitions with a focus on low cost

and low startup time.

6DOF At the college level there are several instances of autonomous robot compe-

titions using flying vehicles, but the only 6DOF competitions available to high

school students are submarine based 1451.

Simulation-Based Robotics While some competitions include experience with CAD-

based robot designs, there are no secondary school competitions based on dy-

32

namic simulations (there are some for college students, such as RoboCup Res-

cue). More specifically, there are no competitions which prepare in simulation

for a hardware-based competition.

Competition Robotics and Space There are no competition robotics programs

involving space and the ISS.

1.3.5.2 ISS Outreach Programs

We wish to utilize the already established appeal of space and the ISS for attracting

students to the competition while improving upon the following gaps:

Limited Interaction Outreach efforts usually manage to reach many students, but

only a small number of finalists in outreach competitions (e.g. 8 total in

YouTube Space Lab 172]) get a chance to run experiments in space.

Dynamics Experiments Many of the opportunities for the general public to per-

form experiments on the ISS are limited to constrained volumes that prevent

interaction with microgravity dynamics. From a robotics perspective, this is

one of the most compelling aspects of space.

1.3.5.3 Related Questions

Merging the two preceding sections to create a new robotics competition raises the

following related questions to be addressed in this work:

" Starting from a brand new architecture for a robotics competition:

- How do we build a broadly accessible platform usable by thousands or tens

of thousands of users?

- How do we maintain a meaningful tie to the ISS resource it represents?

" With a competition, based on SPHERES, students do not have direct access to

the hardware platform:

33

- What are the robotics?

- How do students learn and interact?

- How do we make it fun and engaging?

e Given the high cost, and more importantly, high expectations of using an ISS

resource:

- What simulation and controls technologies are required to ensure non-

expert users have some level of success during the allocated time?

- How do we maximize the number of students that get to run experiments

on the ISS?

1.4 Broad Access Platform Design Principles

At its core, Zero Robotics achieves broad access to the SPHERES facility through an

online platform hosting a simulated representation of the satellites and a repeating

robotics tournament. The effective implementation of this model is driven by several

unifying design principles that extend the laboratory design principles described in

[63] and incorporate many of the educational goals described by Honey et al. in [33].

They serve as the framework for answering the questions in the preceding section,

and throughout this thesis, will be used as touchstones to generalize the lessons from

creating and running the Zero Robotics program. The intent is to contributed both

the framework of principles and concrete examples to guide the creation of other

outreach efforts based on limited availability research facilities or other difficult to

test dynamic robots.

Engage and Educate An effective platform creates an exciting challenge without

sacrificing educational value. The platform should strive to draw students in with

exciting problems and attractive awards while clearly identifying which skills are

intended to be learned by participants and providing ways to acquire them. Feedback

34

from users and impact evaluations should be a significant guiding factor for improving

the platform.

Accessibility An effective platform minimizes barriers to entry. Concerted efforts

should be made to minimize entry costs and facilitate access by novice teams.

Incremental Difficulty An effective platform accepts a range of skill levels and

progressively challenges all participants.

Efficient Inquiry An effective platform facilitates the process of asking questions

and minimizes the time required to supply an answer. The platform should include

multiple ways of evaluating performance and providing feedback, some driven by user

inquiry and some provided automatically.

Authenticity An effective platform provides an accurate enough surrogate for the

resource it represents. Assuming participants don't have access to the real hardware

or iterative testing on the hardware is so difficult it impairs Efficient Inquiry, the

platform should provide a model on which experiments can be performed. As noted

in [43], Authenticity, is also a key factor in building self-efficacy In Zero Robotics, while

only a limited number of teams can participate in the final championship, all teams

use the online simulation environment to test programs and compete. Making the

simulation tools as realistic as possible will improve the satisfaction with competing

in the tournament and prepare finalist code for hardware testing.

1.5 Approach

The full approach is summarized in Figure 1.3 along with major elements. The

following sections will elaborate each of these components.

35

Figure 1.3: There are three main components of this study: an outreach tournament
for students and a user interaction cycle, both tied together by an online platform.

1.5.1 STEM Outreach Program

1.5.1.1 Overview

Chapter 2 presents a structure for annual, nationwide tournaments to extend the

experience of operating SPHERES on the ISS to high school and middle school stu-

dents around the country. The main contribution of the chapter is a progressively

challenging tournament structure for 6DOF robotics competitions, including a unique

multi-week collaboration phase. Students investigate the physics of satellite motion,

learn to program the satellites, and fine-tune their algorithms, all while vying for a

place in the championship rounds that take place live from the ISS.

Successful robotics programs like FIRST have demonstrated incredible power to

enhance student skills by directly involving them in cross-disciplinary problem-solving

challenges and surrounding them with knowledgeable mentors to guide their solutions.

Zero Robotics follows a similar approach, structuring the competition season around

a challenging technical problem to solve, and the same mentor-based team structure.

As a primarily software simulation competition for programming satellites, there are

also several important differences:

1. The engineering process is entirely model-based. Students implement and test

their solutions on virtual models before taking them to real hardware. This

process parallels model-based design processes followed by engineers for many

aerospace systems where complicated dynamics and a high cost of demonstra-

36

Partici pantt Interaction Cycle

Game P Usr Simulation Scoring

Des~ign Programming Systemn

tion missions necessitate simulated study to achieve a high probability of suc-

cess. This approach is not meant to compete with hands-on hardware compe-

titions, rather it teaches a complementary skill set.'

2. There is a heavy focus on applying math and physics. On a day to day basis,

students must program solutions using vector math, trigonometry, and basic

calculus. The simulation environment can be used at a basic level to verify

fundamental principles such as F = ma and at the same time demonstrate

non-idealities due to sensor noise and thruster disturbances.

3. Most if not all other robotics competitions use 2D drivable robots with three

degrees of freedom. In many competitions, the drive systems are also heav-

ily geared so dynamics are not as important in autonomous control. In Zero

Robotics, the robots have second order dynamics and move with full motion in

six degrees of freedom. This is particularly interesting because it introduces the

challenge of learning about and controlling 3D rotations, a topic not typically

covered in high school curricula.

In the taxonomy introduced in 149], Zero Robotics is a purely autonomous, head-to-

head opposition competition, with a new game each year.

As a software competition, Zero Robotics also crosses over into the world of sim-

ulation and games. It sits in the middle of the spectrum described in [33]. As

a simulation, the tools are quite advanced. Users have full control over the satel-

lite's motion, and the simulation environment implements complex, accurate physics.

However, in comparison to commercial games, the interaction is quite limited, the

graphics are simple, and the development cycle shown in Figure 1.4 introduces a de-

lay between creating a program and seeing the results. Nonetheless, as evidenced

by the dedication of teams to participating in our initial seasons, the combination

of the competition and the programming environment are sufficient to keep students

engaged. This is an interesting development because combining a competition game

1A long-term goal of Zero Robotics should be to bring hardware and software worlds together.
Students would then have an opportunity to model and simulate systems they have designed on
their own.

37

Com pilation
and _j Data Storage

_ Simulation - _ _ _

Figure 1.4: A typical software development cycle for a Zero Robotics user.

with a simulation allows us to invert a common pattern in games for education where

learning effectiveness is sometimes sacrificed in favor of maintaining interest. While

Zero Robotics games often contain some fictionalized game components to enhance

their appeal, every step toward solving the challenge requires students to engage with

fundamental concepts in programming, math, and science before they see the exciting

results.

Achieving Broad Reach: Zero Robotics Tournaments Zero Robotics depends

on a competitive structure to leverage the limited availability of time available to

perform tests in space. A tournament format is a natural template for achieving all

levels of the pyramid shape in Figure 1.2 because a broad base of competitors are

drawn by the opportunity to make it to the top, and the narrowing of teams due to

down-selection allows for a target experience (ISS championship) in the final stages.

Development for a Zero Robotics high school tournament consists of a series of

successive phases that span the entire year. The tournament itself lasts from Septem-

ber to December with the ISS finals taking place at the end of December or in early

January.

1.5.2 Zero Robotics Platform

Chapter 3 presents the central enabling component of Zero Robotics, an online plat-

form for community building and hosting the annual tournament. The web environ-

38

nj

ment consists of five primary modules:

1. A community site for hosting challenges, learning, sharing ideas, and tracking

progress

2. A high fidelity SPHERES simulation for running program simulations

3. A simplified Application Programming Interface (API) to provide easy access

to satellite controls and sensors

4. An Integrated Development Environment (IDE) for programming the SPHERES

satellites

5. A visualization front end for viewing the results of simulations

These components address the principles of Engage and Educate by providing a tool

for exploration of math, physics, and programming concepts; Efficient Inquiry by

accelerating the process of writing and evaluating programs; Accessibility by mak-

ing the tools easily available online, and Incremental Difficulty through a variety of

ways to program the satellites. Combined, the components contribute a web-based

architecture for writing, compiling, and simulating code for a dynamic robot.

1.5.2.1 SPHERES Simulation Back End

The ability to test and optimize code in simulation is critical to achieving reliable

test sessions, and this is especially important with student-developed code. For de-

velopment on a simulation platform to be possible it is important that the system as

thoroughly as possible model:

1. The dynamics of the system. In the case of SPHERES, the entire system is

accurately modeled down to the level of individual thruster firings and variations

in thrust due to multiple thrusters being opened.

2. Sources of noise. In many cases it is either not possible or not worth the

computational effort to model small variations from the basic model of the

39

system. In these cases, the simulation must appropriately compensate with

additive noise to represent uncertainty in the dynamic model.

3. The operation of the onboard software and the way it interacts with the hard-

ware system. The Zero Robotics simulation models the SPHERES software

down to millisecond ticks of the internal clock, sufficient to model the funda-

mental time cycle of the internal software.

Instead of working to create a downloadable simulation package, where it must be

either very compact for downloading at each use or pre-installed on the user's com-

puter, it is advantageous to make the simulation run as a service on a web server

that communicates with a user's web browser. As a service, the simulation can be

easily upgraded without requiring redeployment. Users don't have to worry about

configuring software to compile their code, and the data from simulation runs can be

archived for later analysis. There is also no installation or startup time involved in

the development cycle; users just log on to the website and begin programming.

Several enhancements to the compilation and simulation system help to ensure

students produce successful code for hardware testing. SPHERES has an extremely

limited amount of program memory for storing programs, so teams are given a tightly

controlled allocation of space to use. Code is compiled by the exact Texas Instruments

compiler used to build code for SPHERES, providing an accurate estimate of the total

consumption of code space used by the program. During simulation, the user code

is checked for illegal memory access outside of array boundaries, and other runtime

checks help prevent errors during testing on the ISS. Integrated together these steps

contribute a pattern for fast, highly detailed, web-based simulations.

1.5.2.2 Zero Robotics API

For the wide range of skill sets that will be interacting with the Zero Robotics

programming environment, it is important to provide an a skill-appropriate set of

tools for commanding the SPHERES. The Zero Robotics API contributes a set of

commands that simplify the process of reading a satellite's positioning information

40

and commanding motion. For example, the API provides simplified commands like

setPositionTarget() to instruct the satellite to move to a 3D position in the test

volume. The API also includes a reduced attitude representation using a 3D unit

vector as a pointing direction, allowing users to connect math they will already be

learning for position control with attitude control. More advanced users can choose

to access lower level functionality such as commanding the satellite with forces and

torques or specifying attitude with quaternions.

The ZR API is also intended to be useful for Zero Robotics game developers. With

multiple seasons to draw on as examples, common functions needed for implementing

any Zero Robotics game have been folded into the API, and a framework has been

established so developers can focus specifically on implementing the game logic, not

reproducing utilities.

1.5.2.3 Integrated Development Environment

Daily interaction with the Zero Robotics website revolves around an online Integrated

Development Environment (IDE). To be compatible with the SPHERES hardware,

user programs are ultimately written in C++, but the environment offers two ways

to create programs: a traditional text editor, and a block diagram graphical editor

that converts to C++.

1.5.2.4 Visualization Tools

The visualization front end provides an animated 3D visual representation of the

trajectories and data returned from the output of the simulation service. Users can

control playback speed, change perspectives, and view game-specific scoring data.

Information can also be plotted in a series of 2D line charts. Like the rest of the Zero

Robotics tools, both components are accessed from a web browser.

41

1.5.3 Scoring Methods

Chapter 4 briefly reviews the history of scoring methods used for the Zero Robotics

platform, then presents the most recent implementation of a continuous scoring sys-

tem based on the Whole History Rating Algorithm [15]. A main contribution of

this thesis is the application of the algorithm to improve student interaction with

the website under the principle of Efficient Inquiry. This includes improvements to

the algorithm for better stability and faster responsiveness along with experimental

results from the 2012 season.

1.5.4 Collision Avoidance Algorithm

Chapter 5 contributes a low-level control algorithm for preventing collisions between

players in Zero Robotics games. Originally developed for SPHERES as an always-on

supervisory guard in close proximity formation flight, it has been part of all Zero

Robotics challenges. The method is based on predicting the future closest point of

approach of two vehicles and performing a correction maneuver if the trajectories will

travel too close together. The implementation is lightweight and ideally suited for

the computationally constrained environment of Zero Robotics and SPHERES.

42

Chapter 2

Zero Robotics Tournaments

2.1 Introduction

Zero Robotics tournaments are the fundamental structure for extending the experi-

ence of using the SPHERES satellite research facility to thousands of students. Each

tournament consists of a scoped challenge, or game, designed prior to the start of

the season, and a series of individual simulated competitions to select finalists for the

championship round aboard the ISS.

This chapter begins by covering the design methodology for Zero Robotics games,

specifically the components necessary for a game that moves between simulation and

hardware. The next part examines the structure of the tournament season and the

considerations for creating a fair and enjoyable experience. The final sections present

an overview of all Zero Robotics tournaments to date and their associated design

lessons.

2.1.1 Tournament Nomenclature

Throughout this discussion, a specific meaning has been assigned to the following

terms:

Game The challenge created for each tournament season

Competition A single scored event during the tournament season

43

Tournament A collection of competitions that form the annual season based on a

single game design.

Alliance A group of teams that collaboratively produce a single player in the latter

part of the tournament season.

Tournaments are named according to the following guidelines:

ZRHSYYYY Zero Robotics High School Tournament

ZRMSYYYY Zero Robotics Middle School Tournament

ZROC# Zero Robotics Open Challenge

2.2 Game Design Methodology

The design of engaging and challenging games has been studied extensively as ev-

idenced by the existence of several entire industries predicated on producing them.

Zero Robotics has the unique situation of transferring a game that takes place mostly

in a fictional environment to a real hardware platform. In keeping with principle of

Authenticity, many of the design constraints of Zero Robotics games are dominated

by the hardware requirements. Having completed the design of six separate chal-

lenges, the Zero Robotics program has accumulated enough experience to establish

guidelines for creating tournament games. This section is not intended to supplant

formal or informal methods of game design, many of which are directly applicable.

Rather, the goal is to complement them with considerations for producing an exciting

and educational virtual challenge while respecting constraints of a hardware platform.

2.2.1 Game Example: RetroSPHERES

To frame these guidelines with a motivating example, we will start with a brief

overview of the 2012 high school tournament and the game RetroSPHERES. The

44

remaining notes about the game design will be provided in each of the following sec-

tions as examples of the design methodology, and the lessons from the design of other

tournaments will be included in Section 2.4.

The 2012 game was motivated by the problem of cleaning up orbital space de-

bris. Players competed by writing programs for fictional RetroSPHERES, specialized

SPHERES satellites designed to de-orbit debris by releasing clouds of dust. The satel-

lites raced through a virtual obstacle course divided into three zones shown in Figure

2.1. In the first zone, both SPHERES had the opportunity to release one or more

dust clouds, produced by spinning in place. The second zone was a shared region

containing virtual power-up items. The optional supply packs contained extra fuel

and supplies to help reach the finish line. As a checkpoint in the mission, players were

required to visit a virtual disabled satellite before proceeding into the the last zone.

In the final zone, the two SPHERES switched sides and attempted to detect the dust

clouds deployed by the other player while navigating to reach the finish line. Entering

a dust cloud resulted in a significant reduction in velocity, consuming additional time

and fuel. Players could use charge (obtained in the re-supply packs) to boost their

ability to identify the location and size of a dust cloud or to shrink a dust cloud. The

fastest player with the most fuel at the end of the match was declared the winner.

2.2.2 Recommended Components

This section will review the features of Zero Robotics games that have been present

in all seasons or have been added based on lessons learned during the seasons. While

not all of the items are strictly required, the following components are strongly rec-

ommended for all games.

2.2.2.1 Number of Satellites

All Zero Robotics games to date have been played with two satellites. The choice is

firm enough that much of the online platform has been structured with the assumption

that two satellites will always be used. Without significant re-design of the Zero

45

Diagram not to scale

Figure 2.1: In the 2012 game RetroSPHERES, satellites started on opposite sides
of the Y-Z plane and moved through 3 zones. In Zone 1, players created obstacles,
moved to Zone 2 to pick up special Re-Supply Packs, then navigated through the
opponent's obstacle field in Zone 3.

46

Robotics platform, two satellites will be required in all games.

It is important to note that there are several compelling ideas for other configu-

rations. With three satellites, interesting tournament structures could be created to

allow more teams to participate in the ISS finals. Games could also include more com-

plicated interactions where teams have the possibility of briefly joining forces during

a match. The third satellite could even behave as an independent actor to disrupt

the game play.

Nonetheless, there are strong reasons for choosing to restrict the game to two

players. Of primary concern is the ISS competition, where the game must run on the

SPHERES hardware. During any given test run, the satellites consume battery charge

and CO 2 propellant, and may deplete these resources at any point during the session.

The propellant tanks are not replaced at the beginning of the session, so it is possible

a tank may have be partially consumed before the competition starts. Satellites

may also reset occasionally due to infrared interference. Combined, these factors

result in a historical reliability of approximately 70%-90% for each test. All satellites

must complete the test run to retrieve scoring information, so adding a third satellite

can significantly increase the probability of a test failure if the individual satellite

reliability is low. Other operational costs include the time necessary to bootload the

third satellite, the added complexity of positioning three satellites at the beginning

of the test run, and additional consumable changeout time.

To generalize these observations, for a competition involving n robots, assuming

the probability of failure is independent of other robots

P(match success) = (1 - P(sat fail))". (2.1)

The dependence on reliability introduces a trade between running competitions ef-

ficiently and increasing participation. Hardware competitions with high robot relia-

bility can afford to involve more players in each match, while lower reliability com-

petitions must decrease players unless time is available for match re-runs. Applying

the principle of Authenticity, the virtual environment should keep the same number

47

of robots as the final hardware competition. This restriction will ease the transition

between virtual and hardware phases since the game software will not have to be

modified and re-tested for a different set of competitors.

In the Zero Robotics tournaments, two player games are also advantageous for

the scoring system because they clearly distinguish the relative performance between

the competitors through a win-loss outcome. In contrast, single player games can be

judged against a common performance benchmark but lack the excitement of head to

head competition, while multiplayer games enhance excitement at the cost of complex

scoring methods. More detailed match scoring methods are covered in Chapter 4.

2.2.2.2 Symmetric Play

For all virtual and ISS competitions, players may be assigned to any satellite with no

guarantee of playing the same number of matches in a satellite role. It is therefore

essential that the game is symmetric to all players. Symmetry is typically achieved by

making players equidistant from important game features such as items or power-ups

at the beginning of the simulation. For example, in the 2012 game RetroSPHERES,

players started on opposite sides of the Y-Z plane and moved towards "Supply Packs"

located on the Y-Z plane (see Figure 2.1). Each pack could be reached by either

player in the same amount of time.

2.2.2.3 Multiple Winning Strategies

Much of the excitement of competing in a Zero Robotics challenge comes from creating

an innovative solution to the game. If a game has an obvious optimal solution strategy,

it is very likely that the competing teams will discover it and the entire competition

will converge to a single behavior. In 168], Sylvester labels this a degenerate strategy.

This outcome can be both dull and frustrating as games with a single solution tend

to be determined by small random variations in the simulation or slight differences

in implementation.

The same experience can result from a game that is perfectly balanced with many

possible strategies. Sylvester supplies the example of a 5-way Rock-Paper-Scissors-

48

(Spock-Lizard) game. Every one of the many potential options is exactly balanced

by another strategy[68], but in truly simultaneous play, winning, losing, or ending in

a draw is determined by random chance.

Ideally, in keeping with the principle of Incremental Difficulty, potential strat-

egy options should span a range of skill levels with a higher payoff for greater skill.

Ensuring the existence of multiple, interesting strategy options is part of the game

balancing process covered in Section 2.2.5.

In the example game, RetroSPHERES multiple winning strategies were available

with different paths to completing the race. Players could spend more time deploying

dust clouds to make an opponent's navigation through the obstacle field more chal-

lenging, rush to complete the race very quickly and sneak past the opponent's clouds

under creation, or focus on a mixed strategy of dust clouds and item retrieval. This

approach successfully offered multiple winning options, but the rewards were very

similar for all strategies. More details are discussed in Section 2.4.

2.2.2.4 Visual Elements

Much of the Zero Robotics competition takes place in an online environment where

rich data visualization is possible during simulation playback, but the final ISS com-

petition takes place using only the satellite hardware. The only visual feedback while

a match runs is the motion of the satellites. As a result, it is necessary to make

any virtual components of the game observable in some way through the satellite

behavior. SPHERES have strong control authority over rotation, so indicators with

short time spans tend to involve a change to the satellite rotation. For example, the

completion of a game is usually indicated by inducing a rotation about one of the

satellite axes. Velocity changes can be used to indicate spatial transitions such as

running into an obstacle or a virtual wall.

When adding motion visualization to a game, it is usually better to make the

desired behavior part of the game rules. In the 2011 game AsteroSPHERES, users

retrieved special bonus items from the center of the playing volume by moving to

the item locations. The items were retrieved by slowing below a specified velocity

49

limit, after which an external torque was applied to show a slight rotation. The item

locations were clear from the satellite trajectories, but the unexpected rotational

disturbance was viewed as an annoyance, especially if it disrupted a subsequent re-

orientation maneuver. With the user controller occasionally fighting the disturbance

torques the additional motion was sometimes difficult to observe in the ISS test ses-

sion. For the following season, in RetroSPHERES, item pickup changed to requiring

the users to perform a maneuver (turn at least 90 degrees from a starting condition)

resulting in much clearer indicators and fewer complaints. Other visual elements in

RetroSPHERES included reorienting the satellite to deploy a dust cloud, scanning for

obstacles by pointing the satellite in different directions, slowing down when passing

through obstacles, and performing a right angle trajectory turn and spin at the end

of the match to signal completion.

2.2.2.5 No Ties and Scoring Continuity

All games should result in a win-loss outcome without the possibility of ties. During

the highly time-constrained ISS final competition, all efforts must be made to avoid

match replays. Constraining the game to produce a win or a loss guarantees a score

will be available for a match, and replays can be saved for operational problems like

exhaustion of consumables instead of breaking ties.

Eliminating ties is also important for the virtual component of the tournament.

During the online competition phases, the Leaderboard scoring system introduced in

2012 ranks players by win-loss outcomes. While it is possible to incorporate penalties

for ties into the scoring system or explicitly account for tie outcomes, results from

the 2012 tournament indicate that it is best to avoid ties unless the likelihood of ties

can be carefully modeled. See Chapter 4 for more details.

Another important consideration in the scoring design is the balance between

continuous scoring values and one-shot bonuses. Games can be easier to understand

and strategize for if the scoring system has a gradually changing, continuous score,

especially if the value is monotonically increasing. On the other hand, discrete jumps,

or bonuses can add significant excitement to the gameplay. Discrete jumps are best

50

saved for a high intensity moment or a difficult to achieve objective, while continuous

scores are useful for scoring overall performance. For example, AsteroSPHERES

awarded most of the match points for performing the main mission objective, but

included additional bonus points for winning a finale race at the end of the game.

2.2.2.6 Code Size, Fuel, and Time Limits

Following the principle of Authenticity, games must adhere to several constraints im-

posed by the SPHERES hardware and the final ISS competition. First, Zero Robotics

user programs, game implementation code, and the SPHERES operating system all

share a flash memory space of approximately 230KB, of which approximately 64KB

is available to be divided among all 9 user programs for a typical game. Game designs

are implemented with careful monitoring of the code occupied by the game imple-

mentation. In some cases it is necessary to sacrifice game enhancements in favor of

preserving space for the user implementation.

For general competitions following the Zero Robotics model, code size restrictions

are not likely to play a strong role because storage space for robotics hardware has

dramatically improved since SPHERES was deployed to ISS. However, from a ped-

agogical view under the principle of Engage and Educate, program size restrictions

can encourage careful attention to what is truly necessary to include in the program.

This skill is still relevant for development of embedded systems and increasingly so

for modern web applications where entire micro-frameworks are transmitted when a

user loads a web page.

To preserve consumable resources like propellant and batteries, the game design

can include virtual limits as part of the game rules. Zero Robotics games typically

have an upper fuel consumption limit of about 10% of a full propellant tank, or

about 50 thruster-seconds of thruster firing time. Instead of a hard limit, the re-

source restrictions can also be incorporated as part of the game scoring system. In

RetroSPHERES, teams were scored by the amount of propellant remaining when

crossing the finish line to emphasize efficient motion.

When utilizing a remote laboratory like the ISS for a championship competition,

51

the time available may be tightly constrained. For Zero Robotics a full competition

must fit into a specific block of time allocated for running the ISS finals, usually with

no more than 2 hours of actual testing time. The main game design decision related

to this constraint is choosing the duration of matches. Matches that are too short

do not give the competitors enough time to perform meaningful actions in the game,

while matches that are too long consume valuable time and can become tiresome

to watch and analyze (Efficient Inquiry). For Zero Robotics, matches are usually

3 minutes, which gives enough time to traverse the volume in both directions with

several additional actions along the way. With deployment of the satellites in the

work volume, initial positioning, game time, and transition time between tests, a 3

minute match takes about 6 minutes per test run. This translates to about 20-24

maximum tests in a test session, including replays of failed matches. The overall

number of matches available affects the format of the final competition, discussed in

Section 2.3.8.

2.2.2.7 Collision Avoidance

While collisions between the hardware satellites will generally not cause damage, they

can cause significant perturbations to the state estimation system, sometimes result-

ing in divergence of the state estimate. More importantly, collision dynamics are not

modeled in the SPHERES simulation. In the virtual environment it is possible to pro-

duce unrealistic behaviors such as passing through an opponent's satellite. Unless the

game specifically requires contact between the satellites, such as the docking demon-

stration during the Autonomous Space Capture Challenge, some means of preventing

collisions should be implemented to adhere to the principle of Authenticity.

All games except the Capture Challenge have used the algorithm covered in Chap-

ter 5, which runs as an always-on supervisory control layer to interrupt the user's

program if a potential collision is detected. Collision avoidance can also be used to

ensure exclusive physical access to a shared resource like an item pick-up. In Retro-

SPHERES, the two shared re-supply items could not be picked up at the same time

because collision avoidance prevented satellites from occupying the same space.

52

The algorithm can be incorporated into the game's scoring system to award or

penalize collision events. When layering game rules on top of collision avoidance game

designers must be wary of forcing the users to avoid the avoidance system as it may

result in overly conservative trajectories. In all applications the user should have a

way of knowing that the avoidance algorithm has activated on the previous control

cycle so additional corrective action may be taken if necessary.

Adding an avoidance system protects against collision events, but it may also

introduce uncertainties in the simulation and ISS test outcomes. Small changes in

the initial conditions going into a avoidance event can lead to significantly different

outcomes, and there may be situations where the algorithm activates in one simula-

tion but not another due to random variations in the satellite trajectories. Though

these situations are complex, they are still highly preferable to losing control of the

vehicle. As an aid to analyzing collision avoidance scenarios, under the feedback side

of Efficient Inquiry, users should have clear indications that the algorithm is active

in both the game API and in the 3D game visualization.

2.2.2.8 Boundary Limits

Most robotics competitions are constrained to occur within a defined field of play,
sometimes limited by a hard boundary such as a wall, or by a soft boundary such

as a penalty for crossing the outer limit. For Zero Robotics, the playing field is

physically limited to a roughly 2 m cube in the Japanese Pressurized Module (JPM),
but collisions with the wall can disrupt the state estimate and must be carefully

avoided. To give a clear indication of this constraint in the virtual competitions and

prevent users from crashing into the walls on the ISS, the game usually implements

a boundary limit in software. Like the collision avoidance system, the boundary

limits impose a game constraint to prevent a potentially problematic behavior from

occurring.

Two types of boundary limits have been used in competitions to date. The first

is an active limit that partially overrides the user's controller. Instead of guiding

the satellite back into the volume, the limit only attempts to prevent the user from

53

colliding with the wall. Assuming the boundary limits are specified with a global

direction e = ex ey e , the following operations are applied to each component
-T

i of the user's force vector f = fy f, f when they leave the boundary:

f = fi fi -ei < 0 ,i = {x,y,z (2.2)

0 fi ei > 0

fi Vi ei < 0
= , i = {x,y,z}. (2.3)

{fi - KVi vi ei > 0

Equation 2.2 nulls any forces directed along the boundary limit, preventing an out-

of-bounds player from continuing to accelerate away from the volume. Equation 2.3

applies a velocity controller to the forces to slow motion out of the volume. After the

limits are applied, it is still the responsibility of the user to guide their satellite back

into the volume.

Additional incentive to return to the volume can be applied by the second type of

boundary limit: a scoring penalty for leaving the volume. Scoring penalties should

be large relative to the total score, but not catastrophic if the user briefly exits the

volume. One way to achieve this is to apply a penalty based on the total time the

boundary conditions are violated.

Table 2.2.1 contains the boundary limits based on data from SPHERES Test

Session 22, where the wall locations were determined by slowly moving the satellite

until it collided with a wall or exited the volume in the indicated direction. The limits

usually include a buffer region to implement the bounding behavior. Example values

are also shown in Table 2.2.1, but are sometimes adjusted on a game-by-game basis

after analysis of the boundary limit behavior. Note that the boundary limits are the

same as those imposed in the RetroSPHERES game example in Figure 2.1.

54

Table 2.2.1: The boundary limits for Zero Robotics games should include a buffer
around the wall limits to implement the boundary limit behavior. The recommended
value is about 20 cm on each side, but additional analysis may relax this limit.

Direction Wall Limit Recommended
x k0.85 m k0.64 m
y ±1.0 m ±0.8 m
z i0.85 m ±0.64 m

2.2.2.9 Space Theme

In addition to running on satellites flying in microgravity aboard the ISS, Zero

Robotics games usually draw upon a realistic motivation from space research as a

theme. It is not essential to determine the theme at the beginning of the game design

process, and in general the theme should not constrain the possibilities for interesting

game dynamics. Nonetheless choosing a theme can supply interesting ideas for game

components or behaviors. Like good science fiction, imagining a compelling scenario

can stimulate creative, realistic implementations.

2.2.3 Commonly Featured Components

The following sections describe components of games that have been used in many or

all competitions. They are provided as examples of interesting features that can be

added to games.

2.2.3.1 Items

Many games have included special items to be picked up by the satellites from desig-

nated locations in the volume. An item retrieval usually involves moving to a location,

then meeting a set of motion requirements to acquire the item. Items can be optional

"power-ups" that add enhancements to the satellite's capabilities or required check-

points. In RetroSPHERES, the two shared items in the middle of the playing field

awarded different levels of virtual fuel and virtual charge and each could only be ac-

quired by one of the satellites. The other items located outside of the Y-Z plane had

to be obtained before proceeding to the final phase. Adding items to a game helps to

55

improve the visual features of the game because it is usually easy to recognize when

an item is being acquired.

2.2.3.2 Randomization

Nearly all Zero Robotics games to date have incorporated an element of randomness

in the challenge:

" HelioSPHERES: Random starting locations of the satellites and random loca-

tion of a virtual solar panel.

" AsteroSPHERES: Randomized orientation of the asteroid competitors circled

around or drilled on.

" RetroSPHERES: Placed power-up items in random, symmetric locations in a

shared zone.

Random item locations or initial positions, help to emphasize strengths and weak-

nesses in the player programs by forcing the users to try different scenarios. With a

wide variety of possibilities, users are encouraged to build more generalized approaches

to solving the associated programming challenges, leading to better modularization

of programs.

Random behaviors are also helpful for the Leaderboard scoring system described

in Chapter 4 because the scoring algorithm assumes players win or lose with a certain

probability based on their program's skill at solving the challenge. Instead of supply-

ing many duplicate scenarios to the system, randomized challenges give the algorithm

a more accurate picture of the program's skill in many different scenarios.

2.2.3.3 Endgame Finale

While it is perfectly valid to construct a game with a simple continuous scoring

system that gradually accrues over the course of a game, adding a last-minute, high

stakes action, or finale, at the end of the match can greatly improve the overall

excitement of participating in and viewing a tournament. For maximum excitement,

56

the finale should ideally be both high value and difficult to solve. Unfortunately,

heavily weighting a challenging problem can make the match results less repeatable

if the solution is affected by random variations. The best designed finales should

admit robust implementations, but pose a significant problem to write as computer

program.

The finale can be a normal part of the game if the overall challenge is structured

like a race. For the 2010 Summer of Innovation tournament, players raced from one

end of the test volume to the other, and the first player to cross the line won the

match. A race component can also be appended to a game with a different structure,

like in AsteroSPHERES where a brief race at the end of the match awarded additional

bonus points. The RetroSPHERES finish maneuver was similar to the Summer of

Innovation race with a right angle turn at the finish to clearly indicate the satellites

approaching the end of the match.

2.2.4 Implementing Decentralized Games

In contrast to other robotics competitions, a unique aspect of the Zero Robotics archi-

tecture is the fully decentralized nature of the game management software. SPHERES

was originally designed to have a distributed processing system in which the ground

station laptop primarily starts tests and initiates cycles of the time-division commu-

nication method. Beyond this basic synchronization method, all other game updates

must be tracked independently on the individual robots. This section discusses and

addresses several of the challenges introduced by the decentralized architecture.

2.2.4.1 Choosing Data to Transmit

If the players have any interactions in the game, such as the exclusive item pickups

or user-defined obstacles in RetroSPHERES, a mechanism for sharing game data be-

tween satellites is required. Zero Robotics uses the SPHERES RF communication

system which presents the additional difficulty of extremely limited bandwidth. All

shared game information is limited to a maximum effective throughput of approxi-

57

mately 480 Bps. A recommended practice for choosing the data to transmit under

the principle of Authenticity is to use only telemetry data to construct visualizations

of simulation results. If a game feature cannot be visualized with the available data

it is likely that additional information should be added to the telemetry packets.

In addition to game-specific information, it is highly recommended that all games

transmit at least the following items:

" Commanded forces and torques sent to the actuators. These values are the

lowest level representation of the commands requested by the users and can be

used in a wide variety of analysis scenarios.

* Current score. Having a real time picture of the score is useful feedback in the

visualization and can be used for debugging problems in the scoring system.

* Flag to indicate status of the collision avoidance algorithm (if used). Can be

used to clearly display collision avoidance events in the visualization and for

analysis purposes.

If a vacant space in the telemetry packets remains, adding a data version identifier can

be helpful in case the format of the packets changes mid-season. When performing

data analysis, the version identifier can be used to properly parse the values. In

general, it is not a good idea to re-arrange the telemetry unless absolutely necessary

because it complicates post-processing and season-wide data analysis.

2.2.4.2 Delay and Fault Tolerance

Game information packets transmitted during a control cycle cannot be acted upon

until the following game update cycle. For Zero Robotics this means that any infor-

mation that affects the behavior of the opponent satellite will have at best a 1 second

delay. Furthermore, the SPHERES RF communication system may occasionally drop

packets. All game implementations must assume both the delay and the unreliability

of data transfer1 .
1If bandwidth allows, an acknowledged packet transmission system can greatly simplify the im-

plementations described here.

58

A simple strategy for maintaining synchronization between satellites is to transmit

all key features of the game state at each time step. If intermediate packets are lost,

all data can be reconstructed by both satellites at a future time step. This approach

greatly simplifies the implementation of animations based on the game telemetry

because the visualization can be stateless. At any point in time, enough information

is available to completely render a view of the game without keeping track of the

game history.

One feature that is readily described using a continuously transmitted state is a

synchronized event time. When a satellite achieves an objective, it transmits the game

time of completion in a telemetry packet. If the objective can only be accomplished

by one of the two satellites, such as picking up an exclusive power-up or winning

a race, the time stamp can be used to decide which satellite achieved the objective

first. In these situations it is important to make users aware of the possibility that

due to time delays, the API may briefly indicate that the objective was achieved,

then indicate otherwise.

In complicated games, compressing the entire game state into the available band-

width can prove challenging. An alternate approach is to implement a partially

stateless telemetry scheme. Instead of repeatedly transmitting the entire game state

in every cycle, part of the information can be spread out and repeated over multiple

time steps. In other words, it is slowly streamed with repetitions to ensure delivery.

This method induces a lag in the updates because the full game state takes multiple

cycles to transmit, and if a packet is dropped in the middle, it may take several cycles

to restore.

Streaming information is best applied when the component of the state being

distributed does not affect the game until later. For example, in RetroSPHERES,

users could create up to 10 virtual obstacles with unique sizes and locations, far more

information than could fit into a single set of data packets. As the users created the

obstacles, the telemetry transmitted the position and size of the obstacle during and

after its creation. The game took advantage of the time between creating obstacles

to repeatedly send the final sizes and locations.

59

Ephemeral data transmissions between the players such as activating a weapon

are more complicated because there is a chance for packet loss. The 2010 Summer

of Innovation game used a simple acknowledgment system to confirm the message

was received. The attacking player transmitted a number indicating which weapon

to activate, and the opponent replied with the same number to indicate that the

message had been received. In most cases this method worked, but in about 3 of 24

ISS matches, there were significant dropout delays between start of transmission and

acknowledgment.

While the acknowledgment method works, it can introduce a non-deterministic

delay between the start of the command and its effect on the opponent. Other games

have simply used best effort delivery, relying on the user to transmit multiple times

if the intended effect failed. This method should only be used if temporary data is

expected to be transmitted on nearly every cycle and the overall effect of a single

packet loss is minor. It is not a good approach if consistency with simulation results

is a high priority.

2.2.5 Game Balancing

Ensuring the balance between potential strategic paths is vitally important to any

game design. Even the most intriguing game concepts can become dull if only a single

optimal strategy exists, and the nature of the game can rapidly shift away from the

intended goals. As with any game design process, Zero Robotics game development

includes a tuning phase where rules and scoring systems are adjusted to promote

multiple, interesting strategic options. The balancing process is complicated by the

fact that the game is fully autonomous and rigorous play-testing requires enough

time to develop fully autonomous players. This section provides several steps toward

achieving game balance both through simple numerical methods and hands-on testing.

60

2.2.5.1 Preliminary Parametric Analysis

The initial balance analysis should take place early in the design to allow sufficient

time for game changes that might arise as a result of intently studying the gameplay.

Before starting the balancing process it is important to identify the core components

of the game that should remain distinguishing features of the game concept. These

items can include special power-ups, puzzles to solve, or even fragments of potential

winning strategies. Sylvester suggests turning up the influence of these elements

as much as possible, then "locking" them in place to preserve the character of the

game[68]. There can of course be further adjustment in later phases, but having

several strongly influencing features will help diversify the strategy options.

The next step is to establish a rough scoring system as a basis for the remaining

analysis. The game design usually includes several challenges to solve or outcomes

that are intended to be expressed by the players during the game. A simple but

effective guideline to follow is to place scoring emphasis on the desired behaviors.

If it is expected to see players accomplishing a specific objective, there should be a

positive effect on the score for completing it. Likewise, if a behavior is discouraged,

adding a scoring penalty will make it less prominent. For examples of scoring systems

from past Zero Robotics games, see Section 2.4.

Following the scoring process, it should be possible to construct the outlines of

several complete strategies for solving the game. The strategies should span a range

of skill levels from approaches to score "easy points" for beginners to very difficult

but conceptually feasible ideas for advanced players. With the strategy outlines the

game can be discretized into a set of actions, such as "move to location A," "pick up

item," "move to location B." Each action is then parameterized by important design

parameters such as the location of items, or the point value awarded for accomplishing

a task. Combining the actions together into a sequence produces an estimate of

the completion time for the strategy and the expected reward. Several branching

alternatives might also be considered based on assumed actions of the opponent.

Once several strategies have been decomposed in this way, the game designer can

61

adjust parameters and see a holistic picture of the changes.

When attempting shift emphasis in the game, it is important to remember both

points and skill level can be adjusted. Scaling point values is easily accomplished, but

changing skill level tends to involve modifications to the game mechanics. Difficulty

can often be modulated by imposing constraints such as a fuel limit, or by adding

an additional required task to complete. There should not necessarily be a smooth

relationship between skill and point values since incremental refinement can be less

satisfying than a leap to a much higher level. Sylvester describes this characteristic as

a "strategic landscape" with "peaks of incredible effectiveness alongside deep troughs of

failure" 1681. In other words, an engaging game will have several clearly separated local

optima, with increasing reward for higher difficulty, as shown in Figure 2.2. These

goals can sometimes be at odds with challenges strictly based on real-life engineering

performance metrics like fuel consumption or tracking accuracy, which tend to have

slowly varying improvements. Combining engineering metrics with heavily weighted

fictional elements like weapons can introduce more significant variations between

strategic options while preserving the educational content (Engage and Educate) and

the ability to improve with better algorithms (Incremental Difficulty).

The final step is to group the strategy outlines by expected difficulty and adjust

the parameters until the options match a desired strategy distribution. If the in-

tended landscape cannot be achieved the game may require additional modifications.

Throughout the process it is important to remember that the example strategies are

only representatives of more complex combinations, some of which may break the as-

sumptions of the initial analysis. The best way to avoid these problems is by creating

real implementations.

2.2.5.2 Play-Testing with Autonomous Players

As the game matures, it is critical to write hand-coded players that complete the

challenge objectives. Without playing the game first-hand it is difficult to find nuances

of the rules that may be out of balance or unfair from parametric analysis alone. To

start with, the players should be based on the strategies outlined in the preliminary

62

balanced strategies at
different skill levels

multiple levels of skill,
increasing reward

peak separation

Risk/Difficulty

Figure 2.2: A well-designed game will not necessarily have a smooth relationship
between skill and reward. Separation of the peaks of reward can encourage players
to strive for making leaps in performance.

analysis, and after running through the game, the parametric analysis should be

updated to reflect the true strategy performance. Keeping in mind the notes above

about maintaining several strategies of varying difficulty, the game rules and scoring

should be adjusted to balance the strategies.

For the purpose of benchmarking it is not always necessary to fully implement the

strategies because the game developers can access the game's internal API functions.

For example, in the second half of the RetroSPHERES tournament, the locations

of virtual items in the volume were only available using distance measurements, but

using the internal API it was still possible to access the full 3D item locations directly.

These shortcuts can speed player development without compromising the broader

theme of the strategy.

For the beginning of each competition phase, several of the benchmarking players

should be refined into more competitive strategies. These implementations will be-

come standard players, initial opponents released to all teams as generic examples of

potential strategies. Contributing to the principle of Accessibility, supplying the play-

ers lowers the barrier to entry by eliminating the startup task of developing additional

implementations for opponents.

63

2.2.5.3 Hardware Unit Tests

The last phase of game design involves testing on the final hardware platform. If

testing time on the hardware platform is extremely limited as it is with SPHERES, a

successful strategy has been to use hardware demonstrations to perform targeted unit

tests to prove key features of the game. As with software unit tests, it is best practice

to only exercise one game feature during each test, though with a pair of players

it is often possible to perform two separate tests in parallel. The most appropriate

tests are those that involve the physical motion of the robot and depend on the

true dynamics of the system, such as rotating to pick up an item, testing boundary

limiting behavior, or testing the effect of a "navigational disruptor" that changes the

opponent's trajectory.

Though most of the session should focus on specific game elements, it is still

important to run at least one head-to-head match to test the entire game sequence.

In general the players developed for the game balancing phase should be used in the

matches to anchor the simulation results, but it may be desirable to further customize

the players to have thorough coverage of the game features in the limited time. If the

session takes place during the competition season, it is also possible to use code from

competitors in the tournament.

2.2.5.4 Addressing Imbalances and Game Problems During the Season

Despite the best of intentions, it is incredibly difficult to build a game without un-

foreseen strategies or hidden loopholes. The problem is compounded in the case of

an annually re-designed game because only a short time is available for balancing.

Initial play testing helps immensely but is inherently limited to the size of the team

available to run through scenarios. When the game is suddenly subjected to study

by thousands of bright students, weaknesses are often brought to the surface in short

order. In many ways, a wide selection of unexpected strategies is exactly what is

desired because it keeps the game exciting and challenging, but in some cases an un-

known degenerate strategy can be introduced that completely changes the intended

64

character of the game. In these situations, it is helpful to have a formal mechanism

that allows the game designers to correct the game in response to bugs or imbalances.

Any adjustments to the game must be approached with extreme caution. A hasty

decision or overreaction risks offending competitors that may see changes as attacking

their strategies, while letting an uncorrected vulnerability go unaddressed may result

in widespread frustration. Each situation must be studied on a case-by-case basis,

but useful generic preparations are possible. In advance of the tournament, the game

design team must establish a set of guidelines to follow about updates to the game

balance during the tournament. These guidelines should be made available to the

participating teams to set expectations for the season. The following items are rules

of thumb on which to base the guidelines:

" Establish an expectation that the game may change during the season based on

observations of the competitions.

" In general, refrain from making any changes to the rules close to submission

deadlines. Teams will have little time to react to any updates before the com-

petition ends. The best time to make adjustments is between competitions

when the game may already be changing due to the tournament structure.

" Immediately announce and detail any changes. A thorough justification must

be provided for the change, supported by the guidelines established at the be-

ginning of the season.

" Attempt to clearly establish the intent of each game rule in the manual. In the

event of a contradiction between the intent of the game and the behavior of the

game, clarify the rule and change the manual or code accordingly to keep the

intent.

" Establish an expectation that teams report bugs in the game, where a bug is

defined as a contradiction between the game manual and the game behavior or

any action that allows a team to bypass a rule.

65

Constructing these rules will bind both the competitors and the game designers to

a consistent set of steps for solving problems. If changes are necessary, they will

be much easier to justify if they are traced directly to one of the guidelines. Just

as important, changes outside the guidelines should be avoided at all cost and only

considered if the issue at hand threatens the success of the ISS competition.

2.2.6 Game Manual

A detailed manual is released at the beginning of each tournament with a thorough

guide to both the game and the tournament. An example of the manual format for

Zero Robotics is described in A.1.5.

2.3 Tournament Design Methodology

Though considerably less flexible than the game design, the tournament season also

requires several design decisions. This section will outline the standard tournament

structure and highlights the decisions that must be made for preparing the season.

Most of the components discussed here are based on the high school tournament. The

final sections will discuss middle school and open challenges.

2.3.1 Season Timeline Overview

Building and running a Zero Robotics high school tournament is a year-long process

that starts immediately after the completion of the previous tournament season. Prior

to the start of the tournament the first months are dedicated to game design and

testing, followed by the tournament sequence. Each tournament starts with a kickoff

event followed by four phases: 2D competition, 3D competition, Alliance competition,

and ISS championship competition. Table 2.3.1 summarizes the full sequence of events

and dates presented in the following sections.

66

Table 2.3.1: Tournament Timeline

Dates Event Description
Jan-Aug Game Development Design and programming of the

tournament game
Early- to Mid-April Registration Opens Launch of online registration and

publicity efforts
Early Sept Kickoff Live webcast announcing the

release of the game
Sept-Oct 2D Competition First tournament round

constrained to 2 dimensions
Oct-Nov 3D Competition Second tournament round with

full 6-DOF motion. First
down-selection round.

Nov (1st week) Alliance Selection Top 54 teams join into 18
alliances of 3 teams

Nov-Dec Alliance Semi-Finals Alliances compete for 9 ISS
competition slots

Dec (2 weeks) Finalist Code Prep Winning alliances prepare code
for ISS

Late Dec / Early Jan ISS Finals Live competition aboard ISS

2.3.2 Game Design

To maximize the time available for designing, balancing, and testing the game, de-

velopment starts immediately after the completion of the ISS tournament. For Zero

Robotics, much of the game development is performed by undergraduate researchers,

so the schedule is centered around an academic calendar. The early part of the year

(spring semester) is dedicated to brainstorming and concept exploration, followed by

prototyping, and eventually the first rounds of game tuning. By the summer a pro-

totype is completed, and the final refinements occur during the months prior to the

tournament kickoff. Additional details of the specific process for Zero Robotics are

summarized in Appendix A.1.6.

2.3.3 Registration

Each season opens with an initial registration phase. For Zero Robotics, teams inter-

ested in participating are required to register with basic team details including the

67

number of mentors available, the size of the team, and a short student essay. Since

the tournament is free of charge, the registration form serves as a minimal filter to

provide some assurance that the team is prepared to participate. While it slightly

reduces Accessibility, establishing a local support base of dedicated mentors for the

team is critical to the principle of Engage and Educate. The mentors help to keep the

students involved with the project and provide lessons beyond what is learned from

the platform.

2.3.4 Kickoff

The kickoff event marks the beginning of the official competition phase of the tour-

nament. Each season starts with a live broadcast from MIT to unveil the season's

game. Anticipation of the kickoff builds excitement for the season, and keeping the

game details a secret starts all teams out on an even footing.

2.3.5 Competitions and Game Evolutions

A typical Zero Robotics season has four main competitions: 2D, 3D, Alliance Semi-

Finals, and ISS Finals. Following the principle of Incremental Difficulty, at each

change between competitions there are opportunities to update the game with new

challenges. Introducing changes keeps the tournament from getting stale, and a grad-

ual increase in difficulty helps rookie teams establish comfort with programming be-

fore the challenges become too complex. Updates can also be targeted at fixing

balancing issues since scoring modifications fit naturally with the shift in game type.

Between the first two competitions, the transition from two dimensions to three

dimensions may be a significant enough challenge to warrant only making slight ad-

justments to the rest of the game for balancing. For the alliance phase more significant

changes can be introduced for two reasons. First, the teams have likely carefully honed

their solutions over the course of the 2D and 3D competitions. Without making up-

dates at this point the game can become a repeat of the 3D competition with little

additional innovation. Second, with multiple collaborating teams it is desirable to

68

release a large challenge that motivates the alliance to distribute the work among all

the members. This gives all of the teams a chance to contribute to the final program

instead of replicating the lead alliance code.

Modifications of the game usually have a significant effect on game balance. Ide-

ally, the game evolutions will be considered during the pre-season balancing activities,

but it is sometimes necessary to perform the analysis for the next phase while a com-

petition is running. A helpful strategy, employed for the 2012 season, is to focus

initial balancing efforts on the 3D game, then adjust the game parameters for proper

balance in 2D prior to the tournament launch. With the 3D game requiring only a

small number of updates, efforts can be focused over the span of two full competitions

to incorporate lessons from the 2D and 3D phases into the Alliance phase. Of course

as much balancing as possible should be performed prior to the tournament start.

The RetroSPHERES game modifications between 2D and 3D mainly involved

adjusting the game parameters to account for the additional dimension. Virtual

obstacles were allowed to grow larger to fill the significantly increased space, and

items were moved to maintain symmetry while also having a Z axis component. For

the Alliance phase, more significant challenges were introduced. Items could only be

located by using slightly inaccurate distance measurements, and a gravity field was

added to the dust clouds to distort the trajectories of the satellites when moving

through the third phase.

2.3.6 Tournament Scoring

Tournament scoring has two parts: competition scoring, and elimination scoring.

Competition scoring is the process for evaluating team performance during an indi-

vidual competition. Chapter 4 examines several options to rank and score teams in

competitions.

Elimination scoring is the process for selecting teams for the Alliance phase and

the alliances that will ultimately proceed to the ISS. For the Alliance phase, most

Zero Robotics tournaments to date have used a weighted average of the 2D and 3D

scores for determining the seeding rank going into the alliance selection process.

69

Due to differences in game difficulty and player skill between the phases, the

absolute point totals received in each phase are not directly comparable. When

weighting the competitions it is important to decouple the phases by normalizing the

scores:
score - scoremin (2.4)

scorener-mal =(24
scoremax - scoremin

The values score{min,max} are the minimum and maximum scores in the competition.

The normalization preserves the relative distribution of scores but re-scales it to a

fixed range of [0, 1]. This way, teams are judged by how well they performed relative

to the best player instead of by an absolute point scale. The final score is then

a convex combination over the competitions under consideration with competition

weights wi:

scorefinal = w1 score1 + w 2score2 + ... + wnscoren
n

w;= 1,i=

which also guarantees that the final scores fall in the range [0, 1].

2.3.7 Alliance Phase

2.3.7.1 Overview

Starting in the 2011 season, Zero Robotics introduced an Alliance phase inspired

by the cooperative components in FIRST's FRC and FTC competitions. Unlike

FIRST, where multiple alliances are form temporarily during a single competition

event, the Alliance phase in Zero Robotics is a large component of the tournament

season, spanning approximately four weeks. During this period, the top 54 teams

from the 2D and 3D competition phases form 18 alliances of 3 teams each and work

collaboratively to improve their satellite programs. The work is facilitated by project

sharing tools on the online platform, allowing teams with large geographic separations

to work on the same program. Forming alliances also triples the number of teams

that experience the ISS finals (Accessibility) and promotes useful cooperation skills

70

(Engage and Educate).

2.3.7.2 Selection Methods

Alliances have been selected with two approaches in the two seasons where they have

been part of the tournament. In 2011, alliances were assigned with an automated

selection algorithm under the assumption that it would be impractical to form the

alliances through a live event. Figure 2.3 outlines the pairing algorithm. Teams are

divided into three tiers, and each team creates a list of their desired partners from

the tier below. (a) Based on the preference ranking the last team in the second tier

is awarded first choice of a team in the third tier. The second to last team in the

second tier is awarded their first available choice and so on proceeding up the tier.

(b) Next, the first team in the first tier is awarded their first choice of a team in the

second tier, forming an alliance of three. The selections proceed down the first tier

until all alliances are formed. An example selection is shown in (c) if the teams rank

their preferences in seed order.

Many teams found the automated alliance selection process to be too impersonal

and resulted in selections far from the initial preference ranking. Teams also raised

the concern that half of the top 18 teams were guaranteed not to attend the finals

while lower ranked teams would be promoted by the ranking system. To address these

concerns, the 2012 event used a live teleconference to pick alliances. The selection

rules were modified to follow a modified serpentine selection pattern shown in Figure

2.4. This process is similar to the selection process used in the FIRST Robotics

Competition, except that the top 9 teams are excluded from picking each other to

spread out the skill levels more evenly. The steps are:

1. (a) Team Rank 1 selects their partner from anyone between Rank 10 and Rank

54.

2. Team Rank 2 selects their partner from the remaining Rank 10 - 54, proceeding

until the first 18 pairs are created.

71

TIER 3 TIER 1

- Sced2
- Seed3

- Seed4
* Seed 5

- eed6

-Seed 7

- Seed 8

+ Seed9- Seed 10
- Seed11
* Seed12

- Seed13
* Seed 14
- Seed 15

- Seed16

*Seed 17

-Seed 18

(a)

TOP TIER

Seed I
Seed2

Seed3

Seed 5

Seed5

Seed 6

Seed 7

Seed B

Seed 1

Seed 10

Seed 11

Seed 12

Seed 13

Seed 14

Seed 15

Seed 16

Seed 17
Seed 18

MIDDLE TIER

- Seed19
- Seed20

e Seed21

- Seed22
- Seed23

e Seed 24
* Seed25

* Seed26

" Seed27

TIER 2

- Seed19
- Seed20
- Seed2l
- Seed22
- Seed23
- Seed24
* Seed25
- Seed26
* Seed27
- Seed28
- Seed29
- Seed30
- Seed31
- Seed32
- Seed33
- Seed34
* Seed35
- Seed36

(b)

BOTTOM TIER

TIER 3

* Seed37
* Seed38
* Seed39
- Seed40
* Seed41
- Seed42
* Seed43

* Seed44
* Seed45

Seed46

- Seed47
Seed48

* Seed
4
9

* Seed50
* Seed51
* Seed52

- Seed53

Seed54

Seed39

Seed40

Seed 41

Seed 42

Seed 43

Seed 44

Seed 45
Seed 46

Seed 4
7

Seed 48

Seed 49

Seed50

Seed 51

Seed52

Seed53

Seed54

(c)

Figure 2.3: 2011 Alliance Selection Algorithm

3. A break takes place for the new pairs to discuss their selection for the 3rd

Alliance team.

4. (b) The lowest ranked pair then selects their 3rd team from the remaining 18

teams.

5. The 2nd lowest rank pair make the next selection, proceeding until 18 alliances

are formed (c).

Based on experience with the 2012 selection process, it is best practice to enforce

a rule that only the top 18 teams may decline an invitation (in order to lead their

own team). Allowing declines beyond the top 18 may result in a stalemate if a team

intentionally declines to be picked by a higher ranked team. Instead, if a lower ranked

72

TIER 2TIER 1

Seed 1
Seed2

Seed 3

Seed4
Seed 5

Seed6

Seed7

Seed8

Seed 9

Seed 10
Seed 11

Seed 12

Seed 13
Seed 14

Seed 15
Seed16

Seed 17

Seed 18

1 19 37 1 10 28 1 10 42

2 20 38 2 47 30 2 47 44

3 21 39 3 54 31 3 54 43

4 22 40 4 13 32 4 13 45

5 23 41 5 35 33 5 35 52

6 24 42 6 11 34 6 11 46

7 25 43 , 7 29 38 7 29 39

8 26 448 49 39 a 49 41

S 9 27 45 9 53 40 9 53 31

10 28 46 12 15 41 12 15 30

1-1 29 47 13 16 42 13 16 38

12 30 48 14 18 43 14 18 34

13 31 49 17 50 44 17 50 48

14 32 50 19 22 45 19 22 51

15 20 24 46 20 24 40

3421 26 -21 26 33

17 35 53 51 23 36 32

1 18 3525 27 52 25 27 28

(a) (b) (c)

Figure 2.4: 2012 Alliance Selection Method

team declines an invitation, they lose the chance to participate in the tournament and

an alternate is inserted into the ranking system. If tournament participation is lower

than 54 teams, alliances of 4 teams are allowed to absorb the remainder of n/3 teams.

This is preferable to making smaller alliances because there is a higher likelihood of

more teams reaching the final ISS competition.

2.3.7.3 Challenges

An ongoing challenge for the Alliance phase is ensuring adequate participation by

all the team members. The game evolutions from Section 2.3.5 were introduced in

part to introduce enough of a change at the Alliance phase that all teams would be

required to contribute to the solution. This approach introduces a motivation for

collaboration, and based on the initial trial in 2012, it has been received favorably

by the teams. However, the process for collaboration is still mostly unstructured.

Beyond providing the collaborative programming tools, the Zero Robotics program

does not impose additional constraints about how the collaboration should take place.

If alliance participation remains a problem, it may be helpful to introduce specific

tasks for each team to complete, though giving teams as much freedom as possible

remains preferable.

73

2.3.8 ISS Finals

2.3.8.1 Event Priorities

The ISS final event is the most distinguishing feature of the Zero Robotics competi-

tion. In this last phase of the tournament, alliances finally have a chance to view their

programs running on real satellite hardware in space. Achieving a successful ISS event

requires extensive planning and a careful balance of priorities. Since Zero Robotics

strives to give as many students as possible a chance to see their work tested in space,

the tournament should focus heavily on ensuring all teams get at least one chance

to run their code. For the 2011 and 2012 tournaments, the stated prioritization has

been:

1. Running all submissions aboard the ISS at least once

2. Completing the tournament bracket

3. Running all submissions during live video

This arrangement ensures that all teams will have at least one match containing real

ISS data. The live video priority drops below completing the tournament because

matches are recorded during loss of signal periods.

Occasionally, due to time pressure during the tournament it is necessary to substi-

tute live matches from the ISS with simulation results. A full round-robin tournament

of simulation results should be prepared in advance of the live session with the same

codebase that is sent to the ISS. If a simulation match is used, the corresponding

match animation should be displayed to indicate the results.

2.3.8.2 Championship Formats

Several championship bracket formats have been used for the final competition. Each

has the objective of selecting a champion while constraining the number of tests to

the time allotted for the finals.

74

Single Elimination Standard elimination bracket with one loss leading to disqual-

ification. Has the disadvantage of only running some teams once while running

others several times in a row.

Modified Single Elimination A custom elimination structure used for the Sum-

mer of Innovation that guaranteed two live test runs. Adds an additional "loser"

bracket to the single elimination format without consuming the 2N-1 matches

for a double elimination format. Unfortunately, it is somewhat unfair because

some teams have sudden death losses, while others have a double elimination.

The format also requires 15 matches for 10 teams, which is too long for the time

constraints.

Mini Round-Robin This format has been used in the 2011 and 2012 finals. Instead

of running a full round robin, the teams are divided into 3 groups of 3 teams

each. Each group runs a round robin of three matches, and the winner by

number of matches proceeds onward. If all teams have the same number of

wins, a tie breaker (such as score) is used. Figure 2.5 shows the 2012 bracket.

2.3.8.3 Final Competition Emphasis

With the extremely limited time available for final testing aboard the ISS, the Zero

Robotics program has struggled with the balance between demonstrating code in

space and ensuring a completely fair competition. In multiple final competitions,

matches have gone undetected where the satellites exhausted their CO 2 supply, or

time limits have required the substitution of simulation results for live test results.

While simulation results tend to correspond very well with the general motion of

the satellites, there can be mismatches between the scores in simulation and the

scores on ISS. All of these events can make the final competition disappointing to the

participants despite the unusual opportunity it represents.

Some of the challenges can be solved with better algorithms and tools for the

students. The ability to detect low gas levels on the satellites is becoming a critical

issue for the SPHERES program in general and must be addressed before the next

75

9 Scoring Matches

#1vs#4

#4vs#7

#7vs#1

#2 vs #5

#5 vs #8

#8vs#2

#3 vs #6

#6 vs #9

#9 vs #3

Figure 2

1 Chamoionshio Match

Hig

-.

Most Wins
or

hest Total Score

Bracket4
Top 2 Alliances

Champion

of win in orgnlbace0hm iosi ac

BR1 BR2 BR3

2 2 2 Top 2 scorers in original bracket

2 2 1 BR1&BR2

2 1 1 BR1& top scorer between BR2 and BR 3

1 1 1 Top 2 scorers in original bracket

.5: 2012 Final Competition Bracket

76

Bracket 1
Alliances:
#1, #4, #7

Bracket 2
Alliances:
#2, #4, #8

Bracket 3
Alliances:
#3, #6, #S

Zero Robotics finals. Mismatched simulation and ISS results are less problematic as

long as they are explainable by real-life discrepancies. The simulation tools should be

improved to better highlight sources of randomness and give users to explore a wider

range of test cases.

Operational issues such as skipping scheduled matches and missing depleted tanks

are more problematic because they are often due to time pressure. One solution is to

reduce the number of matches in the tournament. A single elimination competition

for 9 teams can be completed successfully with extra margin but usually only gives a

single test run to 4 of the teams. With the extra time non-critical matches could be

performed for additional demonstrations. Along the same line, it might be reasonable

to shift the emphasis of the final competition to performance related metrics, such as

how well the teams do against a standard player or award several performance prizes

in addition to the championship.

2.3.8.4 Virtual Finals

Teams that don't qualify to compete on the ISS have the chance to compete in an

alternate track of the tournament in the online environment. A champion is also

selected from the virtual competition. Though previous seasons have kept this event

separate from the ISS finals, the Virtual Finals could be combined with the ISS finals

to build an even larger event.

2.3.9 Other Zero Robotics Tournaments

The preceding discussion has covered the design features of the Zero Robotics High

School tournament based on four years of development. Pilot programs for two ad-

ditional tournament types of tournaments that utilize the same platform have been

executed during the same period. A discussion of the design lessons from these tour-

naments will be part of the tournament history in Section 2.4.

77

2.3.9.1 Middle School Tournaments

Two pilot programs have taken place for the creation of a Zero Robotics program for

middle school students, each following a format heavily centered around a curriculum

that introduces students to the necessary math, physics, and programming concepts

to compete. At 5 weeks in length, the programs have been much shorter than a

typical high school season and take place during the summer. Students spend 2-3

weeks programming the satellites, and the final tournament takes place several weeks

after the completion of the curriculum. With the small scale of the pilot programs,

students did not compete in virtual competitions, but future tournaments will use a

single competition at the end of the competition period to perform a down-selection

for ISS.

2.3.9.2 Open Challenges

The Zero Robotics platform has been designed with the intent of eventually open-

ing the full capabilities of programming SPHERES to anyone. Zero Robotics Open

Challenges are tournaments open to the general public targeted at solving a spe-

cific algorithmic problem relevant to satellite control research. The first and only

open challenge to date is the Zero Robotics Autonomous Space Capture Challenge

discussed in Section 2.4.5.

2.4 Tournament History

Zero Robotics has been directly shaped by its history. This section will review the

game and tournament designs from each season along with the key lessons that have

contributed to the program.

2.4.1 2009 Pilot

The Zero Robotics team was privileged to receive seed funding to create a pilot

program during the fall of 2009. The pilot program consisted of two schools from

78

North Idaho: Bonners Ferry High School and Post Falls School District.

2.4.1.1 Game Design

Gameplay As the first experimental step toward creating a software interface for

high school students to program SPHERES, the 2009 game was intentionally limited

in complexity. The game involved a helper assistant, which must reach a goal and the

other, a blocker, which tried to prevent the helper from reaching the goal. Students

developed programs for both helper and blocker roles. During all maneuvers, the

satellites conserved fuel to reach the target before exhausting out of a virtual fuel

allocation. A collision avoidance algorithm aboard the Blocker satellite forced the

Helper to move away if the satellites came in proximity. A major component of the

challenge was determining how to use the avoidance algorithm for offense maneuvers.

Scoring The game score was awarded to the helper based on its performance in the

game.

" Goal Bonus (100 pts) The Helper satellite received up to 100 points for reaching

the goal zone before the match time limit expired as a percentage of the time

remaining.

g = 100 x 1 -- tgoal

ttotal

" Blocking (-100 pts) During the game, the Helper satellite tracked each second

it was blocked by the Blocker satellite (avoidance algorithm active) and divided

this by the total elapsed time. The percent of time that it was blocked was

subtracted from the score.

p = -100 X tblocked (2.5)
ttotal

" Fuel (30 pts) The helper was penalized 30 points for running out of fuel and

79

received a 30 point bonus if the blocker ran out of fuel.

-30 helper fuel exhausted
fhelper =

0 otherwise

+30 blocke fuel exhausted
fblocker =

0 otherwise

e Other Penalties Teams were penalized 10 pts for running into the walls, 5pts

for exiting and re-entering the volume, and disqualification for faulty software

causing a test termination.

MIT Standard Players During the 2009 year, a competition interface was not

available for the teams to compete online. To give the teams a sense for how their

opponents were progressing strategically, the Zero Robotics team released standard

helper and blocker players to both teams. The players were updated over several itera-

tions to incorporate strategies from the competitors, thereby distributing information

to the teams by a third party.

2.4.1.2 Tournament Design

The 2009 pilot established the initial template for the standard tournament structure

presented in Section 2.3.1. There were several differences of note with the current

tournament structure.

" With only two schools there were no elimination rounds and no alliances, but

scores in each phase were kept for all phases to study the strategy for elimination

in future competitions.

" Just following the kickoff, teams were provided with an introductory practice

game prior to the launch of the tournament game. This was mostly driven

by delays in the tournament implementation, but the slow ramp-up helped to

establish a pattern of gradually increasing difficulty in the tournament.

80

" The initial 2D phase was implemented as a ground demonstration on the SPHERES

flat floor facility with the intent that the 2D hardware phase could be used as a

down-selection round. For the 2009 season, teams simply submitted their cur-

rent strategies under development in the 3D simulation, and the Zero Robotics

team restricted the motion to 2D. During the matches, the teams watched a

live webcast of the flat floor matches.

* The ISS event did not use a bracket. Instead, all permutations of helper and

blocker pairs were tested. A full analysis of the ISS test results is available in

the SPHERES ISS Test Session 21 Report[51].

2.4.1.3 Lessons

Ground Demonstration Difficulties Despite attempts to provide a realistic en-

vironment for ground testing, feedback from the high school teams suggested that it

was very difficult to use the results from 2D testing to extrapolate the 3D behavior of

the satellites. The satellites were occasionally disrupted by friction effects and colli-

sions between air carriages, and the 3D trajectories programmed by the satellites were

only followed approximately. The flat floor testing gave students a realistic picture of

ISS testing with downtime associated with changing consumables as well as a limited

idea of how environmental disturbances affect the motion of the satellites.

Based on these results it was clear a change was necessary to successfully utilize

the flat floor as an intermediate elimination round. The conclusion was to alter the

structure of the initial phase of the competition in the same pattern as SPHERES

research with a separate 2D implementation in simulation and hardware.

Game Balance Leading up to the final ISS competition, it became clear that with

many strategies, the blocker could easily overpower the helper in the game. This was

a strong initial indication that the Zero Robotics program would require carefully

studied game designs for future seasons. The unintended imbalance also highlighted

the pitfalls of relying exclusively on MIT-developed players for initial testing. After

just a few weeks, the students were able to best the initial strategies released by the

81

Zero Robotics teams. This pattern has continued in subsequent seasons and is likely

due to the significant amount of time the competitors spend analyzing and testing

the games.

While the blocker player was indeed overly strong in the game, it was not com-

pletely unstoppable. For the final event, MIT specifically prepared a helper strategy

to defeat each of the high school blockers based on knowledge of the teams' source

code and successfully demonstrated them on-orbit. This situation is also important

because it shows that just ensuring that a winning strategy is available is not always

sufficient to ensure teams will find it.

Control Updates The API for the pilot was limited to supplying simple position

target commands to move the satellite to an intended position. An internal PD con-

troller moved the satellites to the target. Both teams found this interface too limited

and implemented their own ways of modifying the targets to make the satellites go

faster. This prompted the creation of a more detailed control API.

Key Programmatic Suggestions Several pieces of feedback from the pilot season

proved critical to the subsequent design of Zero Robotics:

e Online Interface: Throughout the pilot season, students used an executable

downloaded from a server. Posting any update required teams to re-download

and re-install the tools. Even with two teams, it was difficult to ensure all par-

ticipants were running the latest version. Teams strongly suggested centralizing

the competition by moving the tools to an online interface.

e Opportunities for Collaboration: Even in small teams, competitors in the pilot

found it difficult to collaborate on writing software. Future competitions should

focus on facilitating collaboration within teams.

2.4.2 2010 SoI

The 2010 Summer of Innovation (Sol) tournament was the second Zero Robotics

tournament and the first pilot of a Zero Robotics middle school program. Based

82

on suggestions from the pilot season and proposals made for DARPA's InSPIRE

program, Sol debuted the first web-based prototype for programming SPHERES.

2.4.2.1 Game Design

Gameplay The Sol game was a fictional race constrained to a 2D plane shown in

Figure 2.6 with both competitors stacked vertically in the test volume. The players

started on one side of the volume and were required to race to a region on the

other side, called the dock zone then return, taking a right angle turn to finish the

game. Going toward the dock zone, virtual obstacles obstructed the path of the

satellites, requiring trajectories without a straight paths. If a player collided with

an obstacle or one of the walls, their satellite was forcefully returned to a known

holding position, then released to continue onward. Returning from the dock zone,

the obstacles disappeared for a higher speed return.

Three types of single-use power-up items were available by traversing the playing

field in through certain regions. If the satellite passed through the +X side of the

volume, it picked up a magnet, which could be activated to pull toward the player

for several seconds. On the -X side of the volume, the player retrieved a bomb, which

pushed the opponent away when activated. Picking up both the bomb and the magnet

created an EMP, which temporarily disabled the opponent satellite and allowed it to

drift freely.

Scoring The first player to cross the finish line won the match. The satellites

synchronized finish times to ensure the correct winner was selected.

2.4.2.2 Tournament Design

Middle school participants from 10 Boston area schools spent five weeks learning to

write programs for the satellites. As part of the program, a ground demonstration

took place at the MIT flat floor, though the competition was not scored. The ISS

final event used a modified single elimination bracket.

83

+- Sample Race

MAGNET!

BOMB

Figure 2.6: The 2010 Summer of Innovation game had a 2D layout with the teams
competing in two layers. Competitors raced around two obstacles, picked up optional
power-ups, then raced to the finish zone.

2.4.2.3 Lessons

Flat Floor Demonstration Of all the ground-based hardware events from the

Zero Robotics seasons, the SoI demonstration best fulfilled the purpose of illustrating

the differences between the online simulation environment and the hardware platform.

Some of the factors contributing to the success were:

" Instead of running the satellites together on the same playing field, the two

satellites were allocated physically separated regions on the flat floor in a side-

by-side configuration. This allowed them to move about the volume without the

issue of air carriage collisions. Internally, the Zero Robotics software virtually

re-centered the satellites, so they appeared to one another to be using the same

coordinate system.

" Students viewing the demonstration were present at the event instead of viewing

via webcast. In person, students could watch both the real satellites moving on

the floor and a real time virtual version of the game.

" The relatively simple game rules with limited interaction between the satellites

and a race format were more clearly visible.

84

ISS Time Allocation The Sol final competition used a modified single elimination

bracket with 15 matches for 10 teams. While all matches were completed, several were

not completely successful because the satellites exhausted their fuel supplies before

the end of the test. There was not enough time to re-run the matches, so the Zero

Robotics team used the partial match result to declare a winner. This event motivated

the need to prepare backup simulation results ahead of time in the final competition.

2.4.3 ZRHS2010: HelioSPHERES

The 2010 tournament was the first nationwide version of Zero Robotics, executed as

a limited pilot program in preparation for future open registration tournaments. The

online web platform initially developed under Summer of Innovation was retrofitted

for higher user capacity and text-based code editing features. The game, Helio-

SPHERES began a tradition of naming the tournaments based on the theme of the

game.

2.4.3.1 Game Design

Gameplay The background motivating theme for HelioSPHERES was an on-orbit

assembly mission where a assembler satellite was tasked with maneuvering a large

solar array to a space-based solar power station. Both satellites were initialized in

the center of the volume at a random position along the perimeter of a circle shown

in Figure 2.7. At the beginning of the match the location of the solar panel was

partially unknown, requiring the competitors to scan for its position using a limited

field of view sensor. Once the panel was located, the satellites performed a docking

maneuver to attach themselves to the panel, then moved to the other side of the

volume to deposit the panel at the power station.

As an antagonistic element, the satellites were provided with a navigational dis-

ruptor, capable of applying a strong force to an opponent along the vector between

the two satellites. The disruptor required virtual charge to deploy, and the resource

could only be replenished by pointing the back of the satellite away from the "sun"

85

0.35m

(range. -r2 to w/2)

Figure 2.7: Players in HelioSPHERES started at random opposite positions around
the perimeter of an initialization circle.

at the center of the volume.

If players exited the volume while carrying the panel, it was dropped close to the

point of exit, and a new docking maneuver was required to pick it up again.

Scoring A HelioSPHERES game ended when one of the players docked with the

power station, the match timeout expired, or both players expended their fuel allo-

cations. The winner was determined by a prioritized set of rules to break any ties:

1. The first player to finish docking to the station won immediately.

2. If the game ended before either team docked to the station, the team with

longest time holding the panel won.

3. If neither player docked with the panel, the player that discovered the panel

first won.

4. If neither player found the panel, the player closest to the panel at the end of

the match won.

2.4.3.2 Tournament Design

The HelioSPHERES season followed the same pattern as a standard Zero Robotics

tournament, but the 2D competition was conducted a live event from the MIT flat

86

floor facility. At the time, Zero Robotics ground events were still being considered

as a potential way to down-select teams. To run the competition a live double elim-

ination bracket competition was performed for three regions via webcast on three

separate days. In addition to the live video feed, telemetry from the satellites was

streamed to a modified version of the simulation's 3D visualization tool with the ob-

jective of replicating the positive flat-floor experience from the Summer of Innovation

tournament.

The 2D competition also featured an experimental hybrid co-simulation model

where the satellite hardware on the flat floor provided X and Y position states, while

an onboard simulator modeled the Z axis and attitude dynamics. From the live video

view one could view the satellite position in a slice of the playing volume, while the

3D animation showed the game view of the tournament. In this way students did not

have to develop a separate 2D version of the program for the 2D phase.

The 3D phase took place in simulation, ending in a round-robin tournament. Out

of the 24 participating teams, 10 were selected for the ISS finals with a weighted

score, weighting simulation results 60% and ground results 40%.

2.4.3.3 Lessons

Attitude Representation The 2010 tournament was the first to allow control of

the satellite's orientation in three dimensions. A simplified attitude representation

based on a unit vector pointing direction helped to make controlling attitude acces-

sible to the student competitors. Teams were able to successfully scan for the panel

location, point the disruptor at opponents, and configure the satellite in the correct

orientation to dock with panel. Details of the representation are discussed in details

of the Zero Robotics API under Section 3.4.3.

Ground Demonstration While the 3D co-simulation tools and live view of the an-

imation added additional depth to the live ground demonstration, the Zero Robotics

team still struggled to make the results meaningfully reflect the simulations. Though

SPHERES researchers have quite successfully used the 2D air bearing facilities to

87

perform research and prepare for ISS testing, experiments are usually carefully tai-

lored to working with the irregularities of the system, and experiments often take

10s of iterations before an algorithm is adequately demonstrated. In addition, the

task of preparing and executing a live broadcast in the middle of the season puts

a significant strain on the team. From team evaluation surveys, only 27% of 240

students surveyed found the ground demonstration to be essential or thought that

it contributed to their ZR experience, and 38% didn't view the demonstrations at

all. Without additional control layers such as adaptive friction compensation and an

immense amount of testing to ensure better repeatability, flat floor demonstrations

are best left out of Zero Robotics tournaments.

Game Balance One of the strongest lessons from HelioSPHERES involved an im-

balance in both the the game dynamics and the scoring rules. The navigational

disruptor tool supplied by default to all teams was originally designed to have limited

effectiveness due to the need to recharge from the virtual sun at the center of the

volume. However, by positioning the satellite between the sun and the opponent it

was possible to replenish charge fast enough to nearly continuously repel an opponent.

A team could spend most of the time during a match repelling until an opponent's

fuel was exhausted, then win by triggering one of the secondary tie breakers without

completing the mission. During the ISS finals only one of the competitors completed

the full docking scenario.

The result from HelioSPHERES was a clear indication that game designers must

be cognizant priority inversions, especially due to tie breaking. The solution of al-

lowing but discouraging ties by applying a penalty was attempted during Retro-

SPHERES, but led to difficulties with the competition scoring system. Future games

can avoid repeating the balance problems by making easy win strategies less reliable

and attempt to counter powerful game elements with others of similar strength.

88

2.4.4 ZRMS2011 and ZRHS2011: AsteroSPHERES

The 2011 tournament was the first open-registration national tournament and the

first international tournament. 113 teams in the US and 13 teams from the EU

participated in the program. During the game development phase, an early version

of the game was used for a second small-scale middle school pilot program.

2.4.4.1 Game Design

Gameplay Based on the aggressive nature of the 2010 competition, the 2011 com-

petition attempted to introduce a component of collaboration into the tournament

structure. For the game AsteroSPHERES, teams were tasked with collaboratively

extracting minerals from virtual asteroids. In many of the game objectives, more

points could be achieved by cooperation between the players.

In the game scenario teams worked to extract Helium-3 from the surface and

interior of two asteroids, Indigens and Opulens, during three phases of 60 seconds each.

During the first phase, competitors acquired power-up items to assist in the remaining

steps: one of two lasers to melt ice on one of the asteroids, a disruptor upgrade

to enhance repelling and attracting, and a shield to protect against an opponent's

disruptor. In the second phase, SPHERES could mine the asteroids by revolving

around the asteroid to perform surface collection or spin at the location of the asteroid

to gain ore by drilling. The plane of revolution and axis of rotation were randomized

for each match. Opulens, contained a richer ore deposit but started the game covered

in a thick layer of ice. Players could cooperate in the second phase to melt the ice

for a point bonus and also expose the high value deposit. The ice disappeared in the

final phase.

For the final 60 seconds of the match, the satellites could continue mining or race

to independent mining stations to deposit the collected ore. Mining stations appeared

in the last 10 seconds of the match. Using a laser the teams could signal completion

of the mission to earth ending the match up to 10 seconds early. Matches could also

end early if both players ran out of virtual fuel.

89

Scoring

" Melting Ice Sheet: Each time both satellites succeeded in hitting the ice sheet

on Opulens, both satellites were awarded 0.1 points. (Max 1.5 pts)

" Drilling and Surface Collection: Points for mining were maximized by spinning

or revolving closest to a target angular velocity, linearly decreasing away from

the target. Spinning at 300/s on Indigens awarded the maximum of 0.06pts/s,

while revolving at a radius of 10-40 cm with an angular velocity of 8 0/s resulted

in 0.066pts/s. Mining Opulens multiplied revolving and rotating scores by 1.3.

" Cooperation Bonus: If the teams simultaneously revolved and rotated about

the same asteroid, the point acquisition rate was doubled.

" Race Bonus: The first satellite to reach one of the mining stations received

up to 4 bonus points. If the second satellite reached the mining station, the

second satellite received 2 bonus points and the first satellite to finish received

an additional 2 bonus points.

" Penalties: Points were deducted at a rate of 0.06 pts/s for leaving the interaction

zone. If the collision avoidance algorithm activated within 15 cm of any mining

station during Phase 3, both satellites lost 1 point per second. This penalty

was intended to prevent teams from pushing each other off the mining zone

locations before the final 10 second period when the stations appeared.

2.4.4.2 Lessons

Game Balance During development, the intent of the game was to give both

mining approaches equal chances to win albeit with different strategies. Revolving,

because it required trajectory planning and more fuel, was awarded significantly more

points. A spinning satellite could win by leaving the match early to gain bonus points

in the race phase, potentially using the disruptor to delay the other satellite. Two

major issues arose at the start of the season:

90

1. There was a significant imbalance between the spinning and revolving points.

The team that managed to revolve effectively was nearly guaranteed to win the

match.

2. The strong emphasis on collaboration led teams to assume that the imbalance

was intentional. Teams quickly began to organize ways of trading turns at

spinning and revolving using the side of the playing field the satellites were

initialized on as a lightweight way to make the decision. The competition focus

shifted to performing the best possible rotations and revolutions.

The first item was the result of limited parametric analysis of the scoring system

during game testing, which mainly focused on the creation of standard players. For

the remainder of the season, the game design team attempted to bring the strategies

back into balance by de-emphasizing revolving and increasing the final race bonus.

Unfortunately, in light of the second issue, the adjustments began to weaken existing

strategies and were perceived negatively by some of the competitors.

To avoid this situation, the design team should have either:

1. Made more aggressive changes to the game parameters to set up a broader range

of strategies. Too much concern was paid to making as small of a change as

possible to the game rules and making the strategy alternatives nearly equally

balanced. The main alternative of leaving drilling or surface collection early to

race to the mining station provided nearly the same points as revolving with

much higher risk. Teams did not even consider antagonistic strategies because

there was little incentive to follow them and also risked losing points in the

collaborative part of the game.

2. Directly embraced the performance challenge that the teams latched to at the

beginning of the tournament. Instead of attempting to guide the game back to-

ward the initial intent of a mixed competition and collaboration in each match,

the competitive aspect could have been pushed even more heavily into the com-

petition scoring system with additional challenges to make the collaboration

91

component harder. Part of achieving a successful tournament season is real-

izing that the game can be shaped by the competitors as well as the game

designers.

Better Processes for Bug Management During the season two notable bugs re-

sulted in lessons for future tournaments. The first bug, eventually labeled "instamelt,"

allowed a team to instantaneously melt the ice layer around Opulens. The bug was

discovered after the official 2D competition results were released when a single team

made use of the issue. The final results of the competition were not modified because

the game manual did not explicitly contradict the game behavior, and the team had

believed the bug was a hidden strategy. Other teams found this decision to be unfair.

The second major bug was reported privately just a few hours before the final

submission deadline for the ISS phase. It involved an inconsistency between the

behavior of the game code and the rules described in the manual. The game design

team chose to leave the game code in place because making a change to the program

would introduce risks for the ISS finals and would not give teams much time to

react to changes in a behavior they had been testing against throughout the season.

Nonetheless, the reporting team expressed concern that reporting the bug to the

rest of the competitors indirectly broadcast a hidden strategy and represented a last

minute change of the game rules.

Both incidents highlighted the need for an official policy for addressing bugs in the

game code. The game manual guidelines for changes to the game under Section 2.2.5

were established for this purpose, along with a code freeze deadline for submitting

bug reports. The Leaderboard scoring system in Chapter 4 has also helped to bring

bugs to light earlier in the competition period and prevent the last minute changes

that tend to least to the most contentious outcomes.

Alliance Phase Two significant issues from the alliance phase had an important

effect on future seasons. First, some teams found the automated pairing algorithm

for assigning alliances unfair. There was no option to decline participation in the

92

finals, and some teams simply dropped out of the competition without notifying their

partners.

Second, the challenge remained exactly the same between 3D and Alliance phases

except for small adjustments to the game balance. Without a new challenge to solve,

many alliances replicated the led team's best-performing code and ceased additional

development work. This outcome motivated the need for game evolutions throughout

the tournament season, especially at the Alliance phase.

Collaboration and Competition in Zero Robotics An examination of the 2011

season was performed by Nag in [53] from a broader perspective of combining collabo-

ration and competition to achieve an objective through crowdsourcing. In the current

context of tournament and game design, it is important to be aware that adding a

cooperative element to the game may induce a coupling with the competition and

tournament scoring systems. At a match level, cooperation is not meaningful unless

it confers a benefit to both of the competitors. In AsteroSPHERES, cooperating

teams were awarded higher scores, which in turn resulted in the need for a com-

petition structure that recognized teams with high scores. The coupling drastically

changed the way the game was played because teams attempted to optimize cumu-

lative points, not necessarily strategies that outperformed opponents in each match.

For future tournaments, game designers must be aware that adding a cooperative el-

ement at the competition level will require additional effort balancing the game rules

with the competition scoring system.

There are approaches to introducing cooperation with a limited dependence on

the overall scoring system. A cooperative element can be introduced to scale the

complexity of the challenge. If the teams choose not to cooperate during a limited

portion of the match, the rest of the game is more difficult and it becomes harder

to gain a competitive edge. This does not link to the competition scoring system

beyond which team wins or loses, and it opens up the strategy space. Another option,

sometimes used in FIRST Robotics Competitions, is to award a small additional

bonus in the overall scoring system to teams that accomplish an easily identified

93

cooperative task. In the FRC 2012 game Rebound RumbleSM , teams were ranked in

qualification rounds by number of wins plus bonus points for each match where teams

cooperated at the end of a match by balancing on a bridge at the center of the field

[24]. This method strongly encouraged teams to complete the cooperative task while

preserving the incentive to win.

2.4.5 ZROC #1 Zero Robotics Autonomous Space Capture

challenge

The Zero Robotics Autonomous Space Capture Challenge (ZRASCC) was launched as

an experiment in crowdsourcing for the development of spacecraft control algorithms.

The Zero Robotics platform was opened to the general public for the first time, and

additional enhancements were added to the Zero Robotics API to access lower levels

of the SPHERES control system.

2.4.5.1 Challenge Design

Challenge The Autonomous Space Capture Challenge consisted of synchronizing

rotational and translational motion of a spacecraft, or Tender, with a tumbling space

object, or POD, thereby setting up the conditions to "capture" it. The challenge

specifically focused on producing a control algorithm to minimize the propellant cost

to capture the object. Competitors were tasked with identifying the most challenging

docking conditions by specifying several parameters of the space object's motion. To

complete the challenge, the Tender was required to:

1. Maneuver to a Capture Zone located 25 t 1 cm along the -X axis in the 7'

Approach Cone of the space object (see Figure 2.8).

2. Align for capture by orienting the -X axis of your satellite within ±2.50 of the

space object's -X axis (see Figure 2.9)

3. Stay within the capture zone for 5 seconds with a relative velocity of less than

5 mm/s

94

25 cm

Capture:Zone

2 cm Approach Con

Figure 2.8: ZRASCC Capture Zone Positioning

Tender+

Space Object

Figure 2.9: ZRASCC Capture Zone Alignment

while avoiding the following constraints:

1. The Tender must maintain a 30 cm collision avoidance distance from the center

of the space object except when in the approach cone (see Figure 2.10). The

approach cone ends at the boundary of the capture zone at 24 cm from the

object.

2. Docking must occur while the centers of both the Tender and the space object

are within the Object Capture Area. The boundaries are shown in Figure 2.11.

It is important to note that the absolute position of the tender within the test

Figure 2.10: ZRASCC Collision Avoidance Region and Avoidance Cone

95

+Y

Q

1.8 m

1.5m
bject daptUdre

Figure 2.11: ZRASCC Capture Area

volume will have a high uncertainty.

3. The Tender must complete the challenge without running out of a virtual tank

of propellant. Each time the Tender fires a thruster, a counter records the total

time it is open. An allocation of 30 thruster-seconds is allowed for completing

the challenge. The total propellant remaining in thruster-seconds is available

through the API function ACGetFuelRemaining() and is displayed in the visu-

alization.

4. The Tender must complete the capture maneuver within a time period of 210

seconds.

Scoring During the scoring process, submissions ran in head-to-head matches against

the top performing projects on a competition leaderboard (see Chapter 4). For each

pairing, the scoring system executed matches with the players in the roles of both

SPH1 and SPH2, and both players used the space object parameters specified by

SPH1. If SPH1 did not specify parameters, the parameters from SPH2 were used,

and SPH1 was not scored. Both competitors were initialized in the same positions

and performed the same capture challenge with the same object parameters simul-

taneously. The final score for the match was the difference in propellant consumed

between the two players.

score1 = propUsed2 - propUsed1

score2 = propUsed1 - propUsed2

96

If only one competitor completed the challenge in the allotted time without vi-

olating constraints, the score for the successful tender (+) was automatically set to

the maximum 5 points, and the score for the unsuccessful tender (-) was set to -5.

score+ = 5

score = -5

As an extra incentive for attempting to complete the challenge, if the unsuccessful

tender managed to reach the capture zone for at least one second, and the relative fuel

consumption between the satellites is within 1 unit, the unsuccessful tender received

0 points instead of -5.

score+ = as above

score_ = 0

If neither satellite completed the challenge their scores were both be set to 0.

2.4.5.2 Tournament Design

Due to the open challenge nature of ZRASCC, the tournament followed a different

structure than other Zero Robotics tournaments. The tournament took place over

the course of 4 weeks, with each week representing its own mini competition called a

milestone. Competitors made submissions to the leaderboard system, and at the end

of the week, the top ranked player on the leaderboard was selected as a finalist. The

code from the winning team was released publicly for all teams to use in the next

phase of the tournament with the objective of raising the collective performance of all

competitors in the algorithmic challenge. Modifications to increase the difficulty of

the challenge were also added at the end of each milestone. The incremental challenge

updates were incorporated into the 2012 high school tournament and will become a

regular part of the high school tournament (see Competitions and Game Evolutions

in Section 2.3.5).

97

2.4.5.3 Lessons

Test Session 33 completed the final phase of the Zero Robotics Autonomous Space

Capture Challenge with a live ISS demonstration. From the online competition and

the ISS demonstration, there are a number of important conclusions for the capture

problem and also for future algorithmic challenges. Full analysis of the results specific

to the algorithmic challenge are covered in the SPHERES Test Session 33 Report [52].

As a trial of crowdsourcing algorithms for spacecraft, ZRASCC highlighted im-

portant considerations for future open tournaments. Crowdsourcing caters well to

general software development challenges because there is a relatively large commu-

nity of professional and amateur programmers capable of writing functional software.

In ZRASCC, drawing on the same community to robustly solve challenging control

problems proved more difficult. Competitors were able to produce algorithms that

achieved the docking objectives in isolated cases, but the competition did not produce

robust solutions to a wide variety of scenarios as intended. Part of the problem is that

on the time scale of a short competition, participants mainly have a chance to focus

on algorithm sequencing, or piecing together and adjusting parameters of existing

algorithms, as opposed to algorithm development. Crowdsourcing applications like

protein folding have been successful at translating or at least comparing sequences of

high level actions to state of the art algorithms [41], but the results of ZRASCC were

not competitive with potential solutions from the literature.

Given that building new control algorithms requires a specialized knowledge base,

producing a high performing solution may not be accessible to many of the com-

petitors in an algorithm development challenge. There are two alternatives that are

directions of research for future competitions:

1. Instead of relying on teams to independently implement a solution, create an

open source challenge where participating teams work together to create the

solution. This reduces the competitive motivation for the tournament, but the

draw of an ISS event at the conclusion may be sufficient to draw many to

participate. The teams could also be divided into multiple large conglomerates

98

that still share code but try different approaches.

2. Further develop the Zero Robotics API in a way that allows users to build

complex control approaches with relatively simple building blocks along with

tools to ensure the applicability of the algorithms.

A second reason for low performance in the challenge was a mix between low partici-

pation and a lack of tools for thoroughly testing programs. ZRASCC was designed to

encourage robust solutions by pitting competitors against a wide variety of scenarios

posed by opponents. Though nearly 100 teams registered for the competition, at

most 15 made submissions at the milestone deadlines. Without a large number of

opponents, teams did not experience many variations in the missions scenarios. In

addition, in absence of opponents to test against, the teams did not have access to

tools to run batch simulations over a variety of parameter values and analyze the

resulting performance. This deficiency has motivated the development of the Monte

Carlo tools covered in Appendix C.

2.4.6 ZRHS2012 RetroSPHERES

2.4.6.1 Game and Tournament Design

The game and tournament design for RetroSPHERES has been covered throughout

the preceding sections, but there are several more items to note from the season:

9 The 2012 tournament introduced a continuous scoring system called the Leader-

board, covered in detail in Chapter 4.

e This tournament removed the ground demonstration completely based on feed-

back from the 2011 season that the demonstration videos were not of much

benefit.

e The alliance selection phase used a live teleconference for virtually gathering

the teams, which proved to be a favorable improvement over the automated

selection method from the 2011 season.

99

2.4.6.2 Lessons

Game Balance Prior to the season a strong effort was made to balance the game

with both parametric and standard player approaches, and there were relatively few

problems with balance during the season aside from small bug fixes. However, related

to balance, many of the teams converged to very similar approaches. The game had

been explicitly designed with at least 4 major strategies:

a Rush: Don't create any obstacles, pick up required item, dash for finish before

opponent can make it there.

e Mixed: Create at least one obstacle, pick up at least one additional item to

assist with the obstacle field.

* Builder: Focus on creating many obstacles, then pick up the required item and

finish.

9 Hoarder: No obstacles, attempt to pick up all items.

Most players chose either the mixed strategy with at most one obstacle or the rush

strategy. Despite attempts at making obstacle creation more attractive, few teams

chose to make more than one. In this case, the game may have been too balanced-

not enough separation between the strategy options or insufficient incentive to choose

alternative solutions, as illustrated in Figure 2.12. Given the problems during Aster-

oSPHERES with a single dominant strategy emerging early in the competition, there

was a heavy focus on making strategies in RetroSPHERES have almost exactly the

same expected performance. In light of the more nuanced view of a strategy landscape

from 1681 discussed in Section 2.2.2, trying to make the strategies so close may have

forced teams to choose the strategy that was easiest to implement and gave any small

performance advantage over the others. The resulting lesson is that is acceptable to

have different levels of payoff for strategies as long as higher scoring approaches also

entail higher risk or difficulty. For instance, if creating obstacles could have almost

completely blocked off all paths to finishing the race but required extreme conserva-

100

Mixed Hoarder

Rider

Risk/Difficulty

Figure 2.12: The strategy options in RetroSPHERES were well balanced, but increas-
ing difficulty did not result in a clear reward payoff. As a resutl, most competitors
chose to pick a reliable strategy over a more risky approach.

tion of fuel to make it to the end, more teams may have gravitated to the builder

approach.

Game Evolutions The 2012 tournament was the first season to experiment with

game updates at each of the main competition phases. The additional challenges

were generally received positively by the competing teams, and in contrast to the

previous season kept teams actively solving problems throughout the alliance phase.

The only item of concern was that the additional challenge of locating items with

only noisy distance information may have been too difficult to solve. Specifically,

teams commented that the noisy measurements made it difficult to apply known

algorithms to the problem, and the solutions were beyond the background knowledge

that could be expected from high school level students. Most teams managed to solve

the problem in one way or another, so the example is mainly provided as a caution

for future tournaments to be sensitive to the difficulty of the game evolutions. The

new features do not always have to make the game significantly harder, just provide

enough of a challenge to require multiple teams to solve at once.

Execution Time Limit Some solutions to the item location challenge resulted in

long computation times that exceeded the capabilities of the SPHERES processor.

The problem was not discovered until late in the tournament when a test session was

performed on the ISS using student-developed code. Large gaps in telemetry were

traced to computational overruns in each cycle of the user program. The issue led

101

to hasty development of a profiling tool for measuring computational performance

in a single cycle of the code. All future tournaments should include code profiling

in preparation for the ISS phase, and it is recommended that teams get a sense for

computational limits early in the season, though requiring code profiling early in the

season is probably over restrictive. See Section 3.3.8 for details of the profiling tool.

Leaderboard This season was the first high school season to use a live leaderboard

scoring system. A full analysis of the leaderboard and its programmatic effects are

discussed in Chapter 4.

2.4.7 Evaluation

Periodic impact evaluations and feedback surveys are essential to the principle of

Engage and Educate because they help to determine if the program is meeting its

educational objectives, highlight potential problems, and help to guide future devel-

opment. Most of the Zero Robotics evaluations to date have focused on soliciting

platform-specific feedback from competitors to better enhance the experience of par-

ticipating in the tournament. Many of the lessons from the tournament summaries

in the preceding sections have been communicated by users from short answer survey

questions. Formal studies for quantitatively measuring the impact of Zero Robotics

on targeted STEM subject areas remain as future work (see Section 6.3.3), but the

sections below provide some initial observations.

2.4.7.1 Participation and Attrition

A coarse view of team participation statistics between years and during the tourna-

ment season helps to track program growth and identify potential problems. Table

2.4.1 shows team information across all four high school tournament seasons of Zero

Robotics. The first column shows overall team registration for the tournament mea-

sured by the total number of teams were created upon registration approval. The

second column tracks the number of returning teams as a percentage of the previous

year's registered teams. The third column indicates the number of teams that cre-

102

Year Teams Returning Created Proj. 2D 3D
Registered

ZRHS 2009 2 - 2 - -

ZRHS 2010 24 2 24 (100%) 22 (92%) 22 (92%)
ZRHS 2011 147 16 (67%) 135 (92 %) 87 (59%) 91 (62%)

(125 US / 22
EU)

ZRHS 2012 143 51 US (42%) 137 (96%) 94 (66%) 88 (62%)
(96 US / 47 EU)

Table 2.4.1: Team participation for the four years of the Zero Robotics High School
tournament. Percentages are with respect to the total number of teams registered.
Even though nearly all teams create at least one project, there is a high attrition rate
at the first submission deadline.

ated at least one project during the season, and the fourth and fifth columns show

the number of teams that entered a submission for the 2D and 3D phases.

Despite significant growth between the closed pilot program and the initial open

registration tournament in 2011, the overall registration remained flat between 2011

and 2012. The number of returning teams suggests that a low retention rate is a

significant problem. In 2012, 45 new teams were created in the US, but 74 teams

from 2011 did not register for the new season 2

Attrition is also high during the season. In both the open registration years, only

about 60% of the teams made a submission in the 3D phase before the first elimination

round. Although it appears most teams that register create at least one project, the

steep drop in participation occurs at the first submission. Nearly all of those that

remain are able to make the next submission. This indicates that the biggest hurdle

is difficulty getting started with the program.

Both statistics show that Zero Robotics is able to attract new teams to participate

but needs careful attention to supporting new teams and retaining old ones. Retention

can be improved by staying in contact with old teams, and targeted surveys to find out

why teams are departing. Additional support for both groups comes from additional

attention to Accessibility, especially improving learning resources like tutorials.

2 Returning team information was not available for the EU teams. The percentage in the table is
calculated with respect to the number of US teams in 2011.

103

Math: Algebra Math: Trigonometry Math: Generally Physics Programming
60 60 60 60 60

40 -- 40 - -.-.-. 40 40 40

20 ii.. 2: 20 iii.... 20 .i i.. 20 l
00 20

0 5 10 0 5 10 0 5 10 0 5 10 0 5 10

Figure 2.13: Histogram of survey responses for: On a scale of 0-10, rate your confi-
dence that Zero Robotics has prepared you for further study in the following subjects.
Among 113 surveyed students from 36 teams, at least 90% indicated a benefit for
each subject and at least 60% indicated a strong benefit (8, 9, or 10).

2.4.7.2 Subject Area Preparation Survey

As part of the end of tournament feedback survey in 2012, students were asked to rate

how confident they felt that Zero Robotics prepared them for future study in math,

physics, and programming. The results, shown in Figure 2.13 suggest that most of the

113 surveyed students strongly believe the program prepares them for the subjects,

especially in the area of programming. These initial findings are a positive sign that

the program is having the desired impact and motivates more detailed study.

2.5 Summary

This chapter has presented frameworks for creating the two central features of a

recurring robotics challenge: the game and the structure of the season. In both cases

the guidelines have been specialized for the case of running a competition without

physical hardware until the final event. In the game design, under the principle of

Authenticity, hardware constraints are transferred into the virtual environment, and

in some cases virtual limits are imposed to protect against difficult to simulate events.

As with all game design, strategy balance is a critical consideration, but the short time

for development and high complexity of the autonomous player solutions warrants

extra attention to balancing efforts. A mechanism for continuing adjustments during

the season helps to compensate when inevitable bugs surface.

104

Tournament design also prepares for hardware, following the principle of Incre-

mental Difficulty, by gradually ramping up the challenge. The multi-week Alliance

phase, unique among robotics competitions, gives students an extended experience

with collaborative software design and is made possible by the virtual nature of the

main competition season.For the crowning event of the season, the 1SS finals, much

has been learned about structuring time efficiently for a highly constrained time win-

dow, especially in appropriately scoping the expectations for the event.

From the participation among 6 challenges, and initial quantitative analysis, Zero

Robotics is succeeding at bringing thousands of students to solve interesting problems

while building confidence in STEM-related skills. Challenges remain to keep teams

participating through the season and between seasons. The remaining chapters will

examine how teams interact with the platform and several tools aimed at improving

the Zero Robotics experience.

105

106

Chapter 3

The Zero Robotics Platform

3.1 Introduction

This chapter will present the design of the online platform created to host and run

the Zero Robotics program. The platform consists of three main components:

1. A detailed simulation of the SPHERES satellites and internal software. It serves

as the robot for most of the tournament.

2. A software Application Programming Interface (API) for simplified control of

SPHERES and standardized implementation of Zero Robotics games, called the

Zero Robotics API.

3. A web-based infrastructure for writing, compiling, simulating, and reviewing

SPHERES programs.

The first component is central to carrying out the principle of Authenticity. The

high fidelity model gives participants a realistic experience of working with the satel-

lite hardware and helps to ensure their programs will work correctly on the real

SPHERES. The second component bridges Accessibility, Efficient Inquiry, and Incre-

mental Difficulty with a set of functions to control SPHERES at a wide range of skill

levels. Users can begin with telling the satellite where to move and which direction

to point, and proceed all the way to commanding applied forces and torques. The

107

last component centers on achieving Accessibility by making the platform available

to any team with a modern web browser.

3.1.1 Contributions of Industry Partners

Many components of the current production architecture for Zero Robotics were devel-

oped in collaboration with industry partners TopCoder and Aurora Flight Sciences..

This section details the roles of the two partners. 1

Aurora Flight Sciences

Aurora has served as a subcontractor to the Zero Robotics program since the ZRMS2010

Summer of Innovation challenge. Their primary responsibility has been to develop

the graphical editing mode of the Zero Robotics Integrated Development Environ-

ment detailed in Section 3.6 and the 3D visualization in Section 3.7. For the 2010

nationwide pilot, Aurora worked with MIT to develop specifications for the graphical

editor then delivered the editor as a standalone library, after which it was integrated

into the website by the author. The 3D visualization was delivered as a prototype

and was later enhanced by MIT with additional playback features.

TopCoder

TopCoder played an instrumental role in creating a scalable, cloud-based architec-

ture based on the 2010 platform prototype. TopCoder's main approach to developing

software is through a crowdsourcing model, where software developers compete to

submit components at each phase of the software development cycle. The process

began with MIT specifying a high level description of the desired website function-

ality, then proceeded through many competitions covering wireframe mockups of the

website, themes, detailed software architecture, and finally, assembly of individual

components. At the wireframe and theming level, MIT would define a set of desired

layouts and general color descriptions, then choose among the submissions. During

iComponents not explicitly noted in these sections were contributed by the author or others
where noted.

108

the initial production site development, the architecture and assembly levels would

usually flow down from the initial requirements, though the MIT reviewed most of

the code produced and occasionally requested additional functionality. Later, as ad-

ditional features like the Leaderboard scoring system from Chapter 4 were added,

MIT would either directly implement the algorithm in the production codebase or

launch a competition at the architecture and assembly levels to translate an initial

specification to an implementation. The code was then reviewed and deployed to the

production website by MIT.

3.1.2 SPHERES Software Architecture

This section presents a brief overview of components of the SPHERES software ar-

chitecture that will be referenced throughout the chapter. The complete design of

the software architecture is covered in 163].

Figure 3.1 summarizes the three main layers of the SPHERES software archi-

tecture. The lowest layer is a real-time proprietary kernel developed by Texas In-

struments called DSP/BIOS[69]. It provides basic operating system features like

hardware and software interrupts, threading, scheduling and prioritization, and con-

currency constructs. There are three main priority levels, starting with hardware

interrupts, triggered by pin-based hardware signals; software interrupts posted by

hardware interrupts or the software scheduler; and tasks, computationally intensive

procedures with less stringent real-time requirements.

The next level, known as SPHERES Core, is the satellite's operating system built

on top of the generic DSP/BIOS services. SPHERES Core implements the generic

routines for accessing all the satellite sensors and actuators and communicating with

other satellites. A major component of SPHERES Core is the SPHERES standard

estimator 1551, which uses measurements from Inertial Measurement Unit (IMU) and

ultrasound sensors to produce state estimates. It also serves as a buffer between

DSP/BIOS and the higher levels of the software stack, exposing simplified methods

for controlling the satellite through the Guest Scientist Program (GSP) API .

The final layer is dedicated to custom implementations provided on a test-by-test

109

+- - -+ Hidden Interfaces - User-accessible Inteiface

Figure 3.1: SPHERES has three main software layers: (1) a low level real-time op-
erating system from Texas Instruments called DSP/BIOS, (2) a layer implementing
the common routines and resources that run the satellite called SPHERES Core, and
(3) a layer of test-dependent functions implemented by the guest scientist with the
Guest Scientist Program (GSP) API. Image from [63].

110

basis by guest scientists using the GSP API. The main entry points to a SPHERES

program are callbacks fired by SPHERES Core:

gspInitProgram(Called when the satellite first turns on

gspInitTest() Called when a test starts

gspControl() Called at each user-defined control period (typically 1 second).

Additional sections can be added to process high speed inertial sensor data and ultra-

sound measurements. The GSP API also includes a library of functions for performing

common matrix/vector math operations and control laws. During and between con-

trol cycles, programs use a maneuver number as the state in a state machine to set

behaviors at different phases of execution. The satellite also automatically tracks

the time elapsed since the last maneuver change and the total elapsed test time.

At the end of each control cycle, the GSP implementation makes final calls back to

SPHERES Core layer to actuate thrusters and trigger additional cycles of the state

estimation system.

3.2 Spheres Simulation History

The SPHERES simulation component of Zero Robotics is the product of many years

of refinement, first driven by the requirements of the SPHERES graduate research

team, then by the needs of the Zero Robotics platform. Under Zero Robotics, the

simulation has had two major revisions, preceded by at least at least five versions

of the SPHERES research simulation with varying levels of fidelity. Each iteration

of the design has contributed design features to the current version used in the Zero

Robotics program.

3.2.1 Common Features

All versions of the SPHERES simulation have shared several basic components. The

high level data interfaces between these components are listed below and shown in

Figure 3.2.

111

SPHERES Software Models the satellite's onboard processor and software, includ-

ing SPHERES Core and the GSP API. The software component receives sensor

measurements in the form of register values (a software model of an FPGA

connected to analog sensors) and produces a set of thruster commands in the

form of solenoid command bits. Separately, the software component represents

communications through the SPHERES RF communication stack with a stream

of communication packets, denoted by x E R3, x E R3, q E R", and w E R3

respectively.

Dynamics Engine Simulates thrusters and rigid body dynamics. Upon activation

of individual solenoids, the thruster model applies forces to the satellite body,

resulting in linear and angular acceleration. The dynamics are integrated to

produce a 13-element state vector containing position, velocity, quaternion, and

angular rate states.

Sensor Model Simulates the onboard inertial measurement unit including 3 gyros

and 3 accelerometers to produce amea, and Wmeas, the true inertial measure-

ments. The global metrology model simulates the transmission and reception

of ultrasound pulses from fixed beacons in the testing area.

Timing Simulations timing models usually fall somewhere in the spectrum between

discrete events dispatched by a scheduling engine and a series of continuous

steps incremented by a simulation clock. Both ends have been used in versions

of the simulation. The most recent version of the simulation is based on a fixed

time step.

3.2.2 GSS, C GSP, and MATLAB Simulations

Three implementations of the SPHERES simulation were completed by other re-

searchers. During the design and construction of the SPHERES flight hardware, the

GFLOPS SPHERES Simulator (GSS) designed by Radcliffe 1581 was built upon the

real-time simulation framework GFLOPS developed by Enright 121]. The architec-

112

Communications

Thruster
CommandsState

SP(Soenoi Dy/1)c History

Sensor
Register x

Values C

Figure 3.2: The SPHERES simulation has three main components: a model of
SPHERES internal software, a dynamics model, and a sensor model.

the

ture included multiple single-board computers running a real-time operating system,

connected through an ethernet network. For each satellite SPHERES code was com-

piled into a wrapper and loaded into its own module. Additional modules provided

dynamics, sensor, and communications components. See Figure 3.3 for an overview

of the architecture.

While GSS provided a high fidelity model of the SPHERES distributed comput-

ing environment, its main application was the validation of flight code and required

use of laboratory hardware. Overlapping with GSS and following completion of the

SPHERES flight design, the Guest Scientist Program was created to make SPHERES

more broadly accessible to the scientific community. Hilstad developed a simulation

for personal computers to complement the GSP with the goal of making early algo-

rithm development independent of the SPHERES team [32].

In this version, SPHERES code was again wrapped with a set of supporting func-

tions, and each satellite executed in an independent process connected to a central

server process. Shared signals sent between satellites for ultrasound metrology up-

dates and communications passed through the central server using interprocess com-

munication pipes. In contrast to GSS, dynamics were simulated separately in each

SPHERES process. After a centralized simulation tick command from the server,

113

Satellite States

Figure 3.3: The GFLOPS SPHERES Simulator Architecture (GSS) used dedicated
real-time computing hardware to model the satellite code and dynamics on indepen-
dently executing modules. Graphic from Radcliffe [58].

114

each client advanced its state by one millisecond, then sent relevant status messages

back to the server. This version of the simulation had the desirable features of run-

ning nearly the entire SPHERES Core implementation along with user code in its

flight configuration while also being capable of running on personal computers. Data

analysis took place after running simulations by parsing telemetry outputs from the

simulation.

Following initial release of the GSP, extensive development and troubleshooting

took place on the SPHERES metrology system, requiring detailed analysis of each op-

eration in the onboard Extended Kalman Filter. For this effort, Nolet [55] designed a

new version of the simulation in MATLAB 1461, which modeled the metrology system

in detail and approximated the remaining components with MATLAB-based func-

tions. With the ability inspect states or variables of interest within SPHERES Core,

extend the simulation with m-file scripts, and the overall accessibility of MATLAB,

this version became the standard tool for preparing tests during ISS operations.

3.2.3 SWARM Simulation

Though the MATLAB simulation helped accelerate early prototyping, there were

several major limitations. Most importantly, the simulation lost its Software-In-

the-Loop capability, requiring a hand translation step from m-code to C prior to

laboratory and flight tests. Mistakes in the translation were only evident during

ground testing or in the worst case during ISS demonstrations. Any modifications

to SPHERES Core required corresponding updates to the MATLAB supporting files,

and the modified code could not be tested in simulation prior to use on the hardware.

Overall, runtime performance of the simulation was also marginal, approximately

one-to-one when running a full simulation of the estimator.

For the 2008/2009 Self-assembly Wireless Autonomous Reconfigurable Modules

(SWARM) program, a ground-based demonstration of docking and assembly of flex-

ible space structures 1401, it was necessary to create a new simulation incorporating

flexible dynamics into the simulation. With a heavy focus on laboratory testing, a key

objective of the new simulation was the ability to move rapidly between simulation

115

testing and hardware. Dynamics and control logic were implemented in Simulink,

and the automatic code generation capabilities of the Simulink Coder (formerly the

Real Time Workshop) were used to translate control diagrams to hardware-ready

C code. By reintroducing a Software-In-the-Loop capability, this approach dramati-

cally improved turnaround time. The Simulink implementation also greatly improved

the ease of modeling and switching between several concurrent configurations of the

flexible system.

While it met the requirements for SWARM, the simulation had a significant limita-

tion in the way it modeled SPHERES Core and the GSP, related to several mismatches

between the SPHERES Core implementation and Simulink diagrams. The first lim-

itation relates to the way concurrency is represented in Simulink. When running

on the satellite DSP, SPHERES Core consists of several independent hardware and

software interrupts as well as long-running tasks dispatched by a DSP/Bios. Model-

ing concurrent execution in Simulink usually involves placing several block diagram

elements called subsystems at the same level in the diagram hierarchy and assigning

each an inherent sample time. Unless deployed to a real-time operating system and

specifically configured to respond to run concurrently, the Simulink engine runs from

a single thread of execution. Calls to the subsystems are dispatched one at a time

when a base simulation timer reaches a multiple of the subsystem's sample time.

Algorithms and their associated code or block diagrams that run at different rates

therefore must be placed in different locations of the diagram.

At the same time, as with most software APIs, SPHERES Core and the GSP

are designed with a large library of function calls available, many of which access

variables computed in different components of the software stack, some of which

execute at different rates. In C this works well through the use of mutator functions

or less desirably through shared global variables all accessible from the user's code.

Simulink, on the other hand, assumes a somewhat rigid pre-definition of inputs and

outputs at each level of the block diagram. To route information from one spot to

another in the diagram requires either linking the subsystems by a signal connection

or communicating through global datastore memory, both of which require, at a

116

minimum, loose specifications of data types and signal sizes. This approach benefits

code generation applications because the data exchange interface is tightly controlled,

but for APIs with many external calls, quickly becomes an impractical challenge of

building a signal for every possible input and output required. Furthermore, since

the generated code assumes an input-output format, a wrapper must be built that

pre-populates the inputs with the API calls and reads the outputs at the end, also

impractical for a large number of possible functions.

There are, of course, several ways to avoid the outcomes above, but most re-

quire a shortcut that bypasses the Simulink environment. Each method has its own

limitations:

Re-Implement in Embedded MATLAB MATLAB/Simulink's code generation

suite 171] includes the ability to write functions in a subset of the MATLAB

language called Embedded MATLAB. Standalone library functions such as math

routines or control algorithms can usually be translated to m-code functions

and called from special user-defined MATLAB function blocks. Under normal

execution, the simulation engine will execute the code in interpreted mode, and

the Simulink Coder will generate C representations of the functions when the

diagram is autocoded. It is also possible to make calls to functions located in

C source code from the Embedded MATLAB blocks, but the calls can only be

made after the source code has been generated. This approach stays within the

Simulink hierarchy, but functions that require data transfers to or from other

locations in the diagram still need a signal connection to carry the information.

Communicate Through the MATLAB Workspace Embedded MATLAB allows

users to define extrinsic functions, explicitly indicated function calls that are

only executed with the MATLAB engine. As illustrated in Figure 3.4, it is possi-

ble to store and retrieve variables from multiple places in the diagram with a set

of extrinsic functions that replicate the desired API. However, because extrinsic

functions cannot be autocoded, an API using only extrinsic functions will break

the ability to generate code from the diagram. The solution is to implement

117

all simulated API functions with a switch that calls the extrinsic function when

running under the MATLAB interpreter and calls the C API function when

the diagram has been code generated. This dual-purpose API was used in the

SWARM simulation to enable code generation and simulation under Simulink.

This API eventually became part of the MATLAB-based implementation first

used in Zero Robotics.

Communicate Through Shared Memory The last shortcut involves passing in-

formation through shared memory in an externally loaded library. Both MAT-

LAB and Simulink support loading of C/C++ shared libraries. In Simulink,

the shared libraries are called S-Functions, which are attached to special blocks

in the Simulink diagram to implement low-level functionality. A single instance

of the S-Function library is shared between all instances of the block in the

diagram, and predefined gateway functions are called at model load, test start,

and at each block sample time. Inside the library a global variable, singleton

class, or shared memory region can serve as an conduit for data between areas

of the diagram. Simulink Coder's Target Language Compiler (TLC) can also

convert S-Functions to custom C code during code generation, and there is a

utility called the Legacy Code Tool for wrapping existing C/C++ code with

the S-Function gateway functions. While quite versatile, the main limitation

of this approach is that it is quite tedious to implement. It would be particu-

larly difficult to create a unique S-Function for every function in an API. More

practically, like the MATLAB workspace method, the best approach is to use a

single interface function as a wrapper around all code that needs to access the

API. More details about this approach will be covered in Section 3.3.

Following the MATLAB workspace approach, the SWARM simulation created a full

library of GSP and SPHERES Core API functions implemented in Embedded MAT-

LAB with the ability to call their C counterparts when generated into C. Though

the simulation was not used beyond the SWARM program, these libraries formed the

foundation of the next iteration of the simulation.

118

Figure 3.4: The 2008/2009 SWARM simulation utilized Simulink to append flexible
dynamics to the SPHERES rigid body model. Due to inherent limitations of Simulink,
calls to the GSP API passed through the MATLAB workspace.

3.2.4 v2009 MATLAB Engine

In 2009, a new effort began to combine the desirable features of previous simulation

versions into a new implementation for general use by the SPHERES team and exter-

nal researchers. From 2009-2012, this version was used by both the SPHERES team

and the Zero Robotics platform for simulations. Going into the design process, the

main objectives were:

" modularize the simulation components to promote extensibility,

e improve runtime performance to faster than real-time,

" re-introduce a Software-In-the-Loop pathway to testing code from the old GSP

simulation,

e allow users to write programs for SPHERES in C or MATLAB, and

" add a fast 3D visualization for qualitative evaluation of performance.

119

The first important decision was choosing a language for the main engine to execute

the simulation. The decision fell between reviving the GSP C/C++ simulation, adapt-

ing the SWARM Simulink simulation for general use, or building a new MATLAB

simulation using components from the earlier MATLAB implementation. MATLAB

was selected over C/C++ for broader accessibility to researchers and over Simulink

to avoid many of the limitations discussed above.

3.2.4.1 Modular Engine Implementation

The simulation was implemented with an object-oriented discrete event framework

with several basic components from which all other parts of the simulation extended:

Engine The core object linking all modules in the simulation. Manages the simu-

lation time, dispatches simulation events, and collects common information for

logging or transfer between modules.

Schedulable An object that can be added to the engine's schedule to receive a

simulation event. Each schedulable object defines a list of events that it can

respond to and their associated function callbacks.

Event A named signal triggered by the engine at scheduled times. Each event con-

tains a reference to an instance of a Schedulable object on which to trigger the

event.

To execute the simulation, an implementation of Engine is first instantiated and

populated with instances of Schedulable objects. The clock begins when an event is

posted to the Engine, which adds them to a priority queue sorted by the time of the

event. The engine then executes the following loop:

1. Poll the event queue for any remaining events. If no events remain, terminate.

2. Check the time of the retrieved event, and advance the simulation time to this

point.

3. Trigger the event on the specified Schedulable object.

120

4. Check for any simulation termination conditions, then loop back to beginning

In a simulation involving continuous dynamics, the discrete framework must be aug-

mented to propagate the continuous equations of motion between discrete event times

in Step 2.

In the SPHERES simulation, the main Schedulable objects were:

Dynamics Modeled the thrusters and 6-DOF rigid body motions of the satellite.

The simulation engine expected an implementation of the Dynamics object to

propagate continuous states.

Sphere Centralized data object for all parts of the satellite. Contained all compo-

nents of the satellite including current state, variables for SPHERES Core, and

communications information. Individual events and callbacks were defined for

each of the basic SPHERES Core interrupts.

Beacons Modeled the SPHERES global metrology system. Events corresponded to

triggering the ultrasound estimation system and the measurement receive times.

Animation Base object for implementing visualizations. Events triggered display

refreshes with new data from the simulation, allowing visualization during exe-

cution.

During the implementation it became apparent that achieving satisfactory runtime

performance would still be problematic, and several helpful optimizations were intro-

duced. First, the priority queue at the heart of the engine was particularly slow due

to adding, removing, and sorting operations, all slow when implemented in the MAT-

LAB engine. Much better performance was achieved by moving this functionality to

a Java library, then loading the library into a MATLAB wrapper. Next, to avoid

fine-grained updates to the continuous dynamics, events were further classified into

normal and dynamic events. Normal events did not require the most recent satellite

state, such as sending a communication packet or triggering the start of the global

metrology cycle. Dynamic events indicated to the engine to propagate the dynamics

forward to the latest event.

121

While many bottlenecks were eliminated, the most difficult component to simplify

was the model of the SPHERES estimator. To accurately model the operation of

the estimator, the satellite must receive IMU updates at 50 ms intervals as well as

ultrasound measurements every 200 ms for 9 beacons spaced at 20 ms intervals. The

combination of propagating the simulation to each of these dynamic events, and the

computational tasks performed at each event slowed the simulation considerably. To

meet the objective of improving runtime performance, a switch was added to the

simulation to enable a "fast mode" where the satellite's estimated state was replaced

with the true state directly from the dynamics propagation. Basic algorithmic testing

could be performed in fast mode, then checked out for ISS testing using the estimator

model. The addition of this feature proved to be critical for meeting Efficient Inquiry

objectives in the early stages of Zero Robotics, though it came at the cost of reducing

the authenticity of the simulation available to participants.

3.2.4.2 SIL Implementation

The most important feature of this version of the simulation was the reintroduction

of a Software-In-the-Loop approach to testing SPHERES projects. The simulation

design included two pathways for moving between SPHERES flight code and simu-

lation without modifying algorithms: generating code from MATLAB or loading a

standard C GSP code template. Figure 3.5 gives an overview of the implementa-

tion. For either pathway, when the appropriate SPHERES Core interrupts fired in

the schedule they triggered a special engine command for calling the researcher code,

callGspMainO. Based on the currently configured mode, m-code or compiled C code

would be executed for the standard GSP routine identified by a function identifier.

The MATLAB code generation pathway utilized the GSP and SPHERES Core

m-code libraries developed for the SWARM Simulation. Instead of representing the

researcher's algorithm as a block diagram in Simulink, Embedded MATLAB func-

tions for each of the standard GSP gateway functions were created. The functions

ran in interpreted mode while executing in the MATLAB environment but could be

autocoded into hardware-ready code with the MATLAB Coder.

122

From Interru t

|callGspMain(fcnid, ars

mode = c

MATLAB sphXmatlab.mex

S T i. mI gsi. C _ 9s.

.4 nt~.m SPEE Cor .4~nton s~ntet

* 77 ! T I
.4sp 4ro(

gsp~ntro~m -Funtios Spere
.4 -itefae

L ------------------------------------.-.. - ----------------

Figure 3.5: The 2009 MATLAB simulation had two pathways for Software-In-the-
Loop testing that could produce flight code. The MATLAB option used a set of GSP
m-functions with direct calls to SPHERES Core while the C option communicated
with MATLAB through a wrapper.

To make C code callable from the MATLAB engine required a MATLAB MEX

function, another form of shared library designed to mimic a call to an m-function

with C/C++ . MEX functions have a single gateway, mexFunctiono, activated when

a MATLAB command is issued with the same name as the MEX file. For the 2009

MATLAB simulation, a MEX interface followed the same pattern as gspMain.m func-

tion to dispatch calls based on function identifier to the correct GSP function residing

in the compiled gsp.c. A second interface, SpheresMatlabInterface.c, replicated most

the of the SPHERES Core API as a set of wrapper functions around calls back to the

MATLAB implementation.

3.2.4.3 Limitations

Despite significantly improving the process of developing flight code for SPHERES,

the 2009 MATLAB simulation had several significant limitations:

Speed As indicated previously, running the simulation with a complete model of the

estimation system resulted in very slow performance. For use in Zero Robotics,

the performance was slow enough to favor running the simulation without the

estimator in the online interface to improve Efficient Inquiry. SPHERES re-

123

searchers also rarely used the estimation model in the simulation.

SPHERES Core Simulation While the SIL upgrades enabled researcher code to

execute in a flight-like configuration, SPHERES Core remained a simulated

component in the MATLAB environment. For the sake of execution time or for

ease of implementation, small differences existed between the C implementation

and the MATLAB implementation. For the best simulation fidelity, it would

have been best to model the complete satellite software in C.

Code Generation Inefficiency While the capability existed to generate flight code

from MATLAB implementations, the functionality was only used in one ISS

test session 1501. Compared to hand-written code, MATLAB's code generation

tools can generally produce faster executing algorithms, but code size tends

to be much larger. Just as it is a dominant theme in Zero Robotics games,

the extremely limited Flash program memory available on SPHERES (approxi-

mately 230KB total) limits the efficacy of code generation. This is particularly

true when implementing algorithms containing a large number of basic matrix

and vector operations because each operation is expanded into a series of for

loops 2 . While it is possible to teach a user to write m-code that generates a

more efficient C code, users tended to gravitate toward using C code from the

start of the implementation.

3.2.5 Overall Lessons

Table 3.2.1 summarizes the chronological design of the SPHERES simulation from

the GSS simulation through the current implementation. The arc of simulation im-

plementations started with very high fidelity models in C/C++, moved to simplified

versions in MATLAB, and has returned to high fidelity models and C/C++ code with

more accessible interfaces and better performance. The development path highlights

several important lessons for the design of easily accessible research simulations:
2 More modern versions of the code generation tools allow the replacement of vector and matrix

operations with custom replacement functions to address some of the inefficiencies.

124

Version Architecture Timing User SPHERES Dynamics
Code Core

GSS Independently Discrete C/C++ C with C++
executing interrupts, C++

modules on propagated to wrapper
real-time OS most recent

thruster edge

GSP Server and 1 ms time step, C/C++ C with C++
individual commanded by C++

satellite clients server wrapper

MATLAB MATLAB m-file Discrete, MATLAE MATLAE MATLAB
scripts pre-configured

schedule,
discrete

dynamics

SWARM Simulink 1 ms simulation Simulink Calls Simulink
diagram, step / Em- via

autocoded bedded MAT-
controller MAT- LAB

LAB Workspace

v2009 MATLAB m-file Discrete events C MATLAB MATLAB
scripts with with dynamic via C

dynamic loading schedule wrapper
to

v2012 Multithreaded
C++ library

commanded by
MATLAB
wrapper

1 ms time step C/C++ C/C++ Simulink
generated
to C++

Table 3.2.1: Chronological view of SPHERES simulations. More recent versions
have switched from MATLAB to a primarily C++ implementation for performance
advantages.

125

" Modeling the true real-time behavior of the satellites in GSS came at the cost

of requiring a highly specific laboratory configuration. The GSS version would

not have been suitable for a highly accessible platform unless many instances

of the workbench could have been connected to the online platform. For the

purpose of a broadly accessible platform, a simulation should be designed to run

on general purpose computing platforms, and ideally across operating systems.

" The simplified MATLAB implementation of the simulation became favored over

the GSP simulation for ease of use but at the ultimate cost of a SIL capability

and a significant decrease in fidelity. For research simulations, especially in-

volving complicated code bases, simplified interfaces to analysis tools must be'

maintained along with efficient ways to change the model structure to adapt to

new requirements. The SWARM simulation used Simulink block diagrams, and

the 2009 simulation used an object-oriented framework in MATLAB.

" Some form of SIL capability is essential for eliminating mistakes in the trans-

lation of code. As shown by the SWARM simulation can significantly improve

the efficiency of iterative laboratory testing.

" Simulation speed and accuracy are closely linked and introduce a tradeoff be-

tween Efficient Inquiry and Authenticity. For example, first implementation of

the Zero Robotics simulation (based on v2009) focused on capturing the main

dynamic behavior of the satellites but eliminated the estimation model in favor

of speed.

The final major iteration of the simulation incorporates these lessons for a fast and

accurate model of SPHERES.

3.3 Detailed Design of Current Simulation

The most recent implementation of the SPHERES simulation addresses speed and

SPHERES Core simulation limitations of the previous version by moving all satellite

126

flight code to C/C++-based libraries. This change drastically improves the speed

of the estimator and allows it to run with the exact same code as the hardware

satellites. The simulation has also returned to a design based on a Simulink block

diagram which improves execution performance and allows the entire simulation to

be generated into independent C/C++ source code, further accelerating performance

and enabling many options for distribution. The following sections cover the detailed

design of the simulation and how it resolves many of the issues from previous versions

of the simulation.

3.3.1 Top Level Block Diagram Layout

Figure 3.6 illustrates the top level layout of the simulation block diagram model.

Starting from the left side of the model, the Global Metrology module simulates

timing information for the ultrasound global positioning system, covered in Section

3.3.4.3. The Satellites & Payloads section consists of 3 duplicate satellite models

connected to 3 payload systems. The payloads can create external forces and torques

on the satellite dynamics an supply baud-limited UART data to the satellites. Each

of the duplicate models can be switched on or off to simulate from 1 to 3 satellites

simultaneously.

As with many of the previous versions of the simulation, the block internals of the

satellite subsystems are divided into the three main components shown in Figure 3.2.

The dynamics and measurement models are both implemented with Simulink block

diagrams, but the SPHERES software is executed entirely in C/C++.

In the Termination Conditions section, the outputs from all satellites are moni-

tored for errors or test termination signals, and the Termination block will end the

simulation if any of the conditions for test end are detected. The Simulation Outputs

section can be optionally enabled to record high frequency information for verification

of the simulation, and the output port produces simulation data available to external

programs calling the simulation.

127

Termination Conditions

Global Metrology

Simulation Outputs

Figure 3.6: At the top level, the SPHERES simulation consists of a timing module for
ultrasound global metrology, a set of duplicated systems representing each satellite,
and subsystems for detecting termination conditions.

3.3.2 Repeatable Seeding of Random Variables

Simulations often contain many random sources to realistically model sensor noise and

perturbations to dynamics. Random sources are usually based on a pseudo-random

number generator initialized with a unique seed that determines the sequence of

numbers produced by the generator. To explore new random realizations at each

simulation run the seeds are usually generated by another random source. In other

cases, it is sometimes necessary to exactly reproduce a simulation using the same

sequence of random numbers, most frequently when locating bugs in user code that

may be dependent on an exact state of the simulation. The SPHERES simulation

uses an efficient method to recover the state of the random number generators by

storing the seeding information along with the telemetry produced by the simulation.

Instead of storing a long list of seeds for the generators, the simulation uses a single

32-bit integer seed for each satellite to generate a list of additional 32-bit seeds. A

configuration file keeps track of which seeds in the list are allocated to corresponding

random number number generators. New random elements added to the simulation

simply append additional seeds to the list for generation. Once seeded, Simulink

ensures that the random number generation runs consistently across platforms by

128

Satellites & Payloads

generating the random number generation algorithm along with the code for the

diagram.

Under a single environment such as MATLAB, generating a list of random integers

for the seeds can be performed in a repeatable way as long as the same algorithm

is used. However, in other environments, random number implementations tend to

vary wildly, even under the same general algorithm name. Since the Zero Robotics

version of the simulation is intended to be used outside of MATLAB, and future

versions of the SPHERES simulation may be distributed separately from MATLAB,

a simple, repeatable algorithm for generating the seeds is used instead of relying on an

inconsistent generation method. The algorithm is a Linear Congruential Generator

(LCG) , which has the general form 157]

I+ 1 = (aIj + c) mod m (3.1)

where a is a multiplier of the initial seed Ij and c increments the result, followed by

a modulus operation. LCGs tend to have poor properties when used for applications

like Monte Carlo integration, but for generating other seeds, it is extremely simple to

implement correctly in many languages. For 32-bit math, with the natural modulus

of m = 232, [57] recommends a = 1664525 and c = 1013904223. Therefore to generate

seeds for the simulation, the following steps can be performed:

1. For each satellite, select an initial 32-bit seed Io using a native random number

generator. This is the only value that needs to be stored to reproduce the

simulation.

2. Generate element j in the seed list iteratively using I = 1664525 * Ij_1 +

1013904223% 232

3. Repeat until the algorithm generates the number of seeds specified in the con-

figuration file.

In C the modulus operation is free due to the natural overflow behavior of integer

math. The process has been tested for consistent generation in Java, JavaScript,

129

C/C++, Python, and C# and should have analogs in nearly every language. This

means that any wrapper interface serving as a front end for generated code from the

simulation should be able to repeatably generate random seeds for the simulation.

3.3.3 Dynamics

The simulation operates at a 1 ms time step to match the frequency of the main

clock tick inside of SPHERES Core and the fastest rate at which commands to the

thrusters can change value. Since the time step of h = 0.001 is fixed and very short, a

4th order fixed-step (Runge-Kutta) solver with an accumulated error of O(h4) is used.

The time step and integration are also more than sufficient to integrate quaternions

(see Equation 3.12) without accumulating significant errors due to re-normalization

1J.

The satellites are individually modeled as six degree of freedom rigid bodies pro-

pelled by 12 individual thrusters. Thruster commands enter the dynamics module as

a vector u where each element

U -= {0, 1}i = 1, ... , 12 (3.2)

is a binary value indicating if the thruster is on or off. In most simulations, it has been

assumed that the thrusters instantaneously reach their full thrust after a configurable

delay with a negligible transient 3 . More detailed models may be appropriate for future

work, as discussed in Section A.2.3.

Converting the thruster on/off values into forces and torques is a two step process.

First, the binary vector is scaled to account for the total number of thrusters activated.

According to Chen in [9], there is approximately a 6% drop for each additional thruster

3The delay must be at least 1 ms to break an algebraic loop from the dynamics to the sensor
modules through SPHERES Core and back to the dynamics. The one step delay is appropriate here
because there is some delay between commanding the thrusters to open and the thrusters reaching
full force.

130

opened after the first:

uscaled = u -0.94"1. (3.3)

where n is the total number of thrusters opened. To model random variations in

thrust, additive noise is applied with a uniform distribution. A multiplicative, uniform

random perturbation of ±5% of the nominal thrust value is applied as suggested by

155] in the first MATLAB simulation. The noise factor qths,,,t is only changed once

each time an individual thruster transitions from closed to open.

qthrust = 1 + U(-0.05, 0.05) (3.4)

Ud,= U 'le - qthrust (3.5)

At this point, the thrust vector has been scaled to represent a ratio of its nominal

value. The next step converts the values into forces and torques by multiplying them

with a thruster matrix T where each column tU') is defined

fU) = f 0) f U) fi) T (3.6)

) r x f U) (3.7)

t) = (3.8)

where f are the body-frame thrust direction and magnitude of the j t h thruster,

and rcj is the location of the thruster with respect to the center of mass. In the

SPHERES dynamics model, the thruster location includes the ability to define an

offset pointing from the center of mass to the geometric center, denoted by rgc. The

complete thruster location is defined as

rcm = rgc + rt. (3.9)

The term rt is the location of the thrusters with respect to the geometric center,

131

and r,, is the location with respect to the center of mass. For normal SPHERES

operations, the geometric center is assumed to be co-located with center of mass. A

table of thruster locations is located in B.1.

Multiplying T with u,",, produces

f I= Tunoi (3.10)
T

a vector of forces and torques acting on the center of mass of the satellite body. From

here the equations of motion can be integrated as shown below.

= J-1 (T - W x JW) (3.11)
1

f = (w)q (3.12)
2

f
x = R(q)- (3.13)

m

This formulation assumes a quaternion representation of attitude of the form q =

e cos 2, sin 2 , with the scalar part as the fourth element. Equation 3.11 is Euler's

equation of motion for propagating body frame angular velocities with inertia matrix

J. Equation 3.12 describes the quaternion propagation equations where Q(w) is the

skew-symmetric matrix

0 Wo -wV wX

= z 0 W WY .(3.14)
WY -WX 0 Wz

-Wx -WY -Wz 0

Finally, Equation 3.13 represents the satellite's double integrator translational dy-

namics expressed in the global frame. The rotation matrix R(q) uses the current

132

quaternion to translate body frame thruster forces into the global (inertial) frame.

q4qa + qlq1 - q2q2 - q3 q3 2(q1 q2 - q3q4) 2(q 1 q3 + q2q4)

R(q) 2(qlq2 + q3 q4) q4q4 - q1q1 + q2q2 - q3q3 2(q2q3 - qlq4)

2(q1q3 - q2q4) 2(q2q 3 + qlq4) q4q4 - q1 q1 - q2q2 + q3 q3

(3.15)

where qi i = 1,... ,4 denote the components of the quaternion q.

To complete the dynamics calculations, the Equations 3.11 and 3.12 are passed

through integrators, and Equation 3.13 is double integrated to produce the true states

of the satellite. Assuming a given thruster configuration, mass, and inertia properties

are correct, the dynamics are an exact (to numerical accuracy) representation of the

satellites driven by noisy thrusters. Unmodeled components include:

* Aerodynamic forces due to airflow in the ISS test volume and plume impinge-

ment from other satellite thrusters. These effects are usually considered to be

negligible compared to the thruster strength unless the satellite is freely drifting

where at least plume impingement can have a significant effect on the satellite

motion.

" The transient in thrust levels when a solenoid valve opens and closes. Several

notes on this behavior are included in the Future Work under section A.2.3.

3.3.4 Sensors

This section presents the measurement and noise models of the gyros, accelerometers,

and ultrasound metrology system. The models are presented with generic parameters,

and Table 3.3.1 summarizes the assumed values used in the simulation.

3.3.4.1 Gyros

SPHERES satellites contain three rate gyros aligned with each of the body axes. To

simulate the measurements, the gyro model first applies additive zero-mean Gaussian

133

noise to the simulation's true body rates.

C = w + (0,of,) (3.16)

To model the analog to digital conversion of the SPHERES FPGA, the measurements

are scaled by k,, then biased in units of counts by b,. The bias term represents both

the center value of the ADC and the bias of the gyro. To represent an unanticipated

gyro bias, the bias term is simply changed to a different value than the expected

number in SPHERES Core. Following conversion to counts, the gyro samples are

saturated to 12 bits (4095), corresponding to roughly 80 a, then converted to un-

signed 32-bit integers zwfor transfer to the virtual FPGA.

zW 0 < z, 4095

zw = (uint32) 4095 z, > 4095 (3.17)

0 z, < 0

The gyro model captures both discretization error and random noise and provides

the SPHERES Core model with the same data values as the real satellite hardware.

The model does not include a known high frequency ringing mode present in the

gyro hardware or the frequency domain response characteristics. The ringing mode is

filtered out with a notch filter and measurements are aggregated over a 50 ms period

within SPHERES core, so there is a relatively small approximation error. Additional

fidelity for future work might be required if simulations involving high speed inertial

data are required. The only other potential inaccuracy is modeling misalignment of

the gyro with the body axes of the satellite, but this error is assumed to be very small

compared to the rotation rates for SPHERES.

134

3.3.4.2 Accelerometers

The accelerometer model has several additional considerations. First, the SPHERES

accelerometers are not located at the center of mass, so there is a rotational coupling

between acceleration and angular velocity. In vector form, the acceleration experi-

enced by accelerometer i at radius ri from the center of mass is

a = aat - a x ri - w x w x ri. (3.18)

where asat is the acceleration of the satellite in the body frame, and a is the angular

acceleration. Since each accelerometer only measures one axis, the final measurement

is obtained by dotting the acceleration with a sensitivity direction si,

ai,meas = ai s. (3.19)

The noise model also requires modification because there is a thruster-induced

ringing each time a thruster opens or closes, as shown in Figure 3.7. This is modeled

in the simulation as high variance random noise multiplied by a decaying exponential

envelope, reinitialized each time a thruster changes value.

O-a,on + -a,.inge-(t-to)/rring thrusters on (3.20)

o'a,off thruster off

Ai,meas = ai,meas + M(0,o) (3.21)

The initial time of the decay envelope, to, is reset to the current simulation time each

time a thruster changes value. The resulting model is a good fit to the observed

sensor measurements, as shown in Figure 3.8.

As with the gyro model, the final measurement is scaled, biased, and saturated to

model the ADC. The final vector Za contains unsigned 32 bit integers for transfer to

the virtual FPGA.

135

ringing transient

I I higher variance
while firing

I I

I I

same transient on
thruster off

-15I
800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

time (mS)

Figure 3.7: The SPHERES accelerometers have a noise response coupled to the firing
of thrusters.

= ai,meas + b

ka

[Za

4095

0

Za = (uint32)

0 < Za 4095

Za > 4095

Za < 0

Like the gyro model, the accelerometer model presents correctly discretized measure-

ment values to the SPHERES Core model, and the sensitivity and sensor location

parameters give the model sufficient flexibility to represent sensor misalignments. The

ringing noise model is only a rough approximation but should be sufficient for de-

veloping controllers with high speed inertial feedback based on the comparisons with

flight data.

136

16

10

E
.2

0a

6

0

-51

-101

Za

(3.22)

--_Actual
15 - Model

10 --

E
,a

S0C

-10 - -

-15

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
time (mu)

Figure 3.8: The accelerometer noise model uses a large noise magnitude multiplied
by a decaying exponential to model the thruster transient.

3.3.4.3 Ultrasound Global Metrology

The SPHERES global metrology system consists of up to 9 wall-mounted beacons and

24 receivers attached to the faces of each satellite. A synchronizing pulse of infrared

(IR) activates a schedule of ultrasound pulses, one per beacon, and the satellites

process the measurements as they are received. The timing for the sequence of pulses

follows the pattern shown in Figure 3.9. Each beacon is uniquely configured with an

identifier that selects the time to issue the pulse relative to the initial IR flash. After a

10 ms hold, beacons transmit once every 20 ms, and the FPGA records receiver times

during the first 10 ms after each pulse. Based on a speed of sound of approximately

343m this limits the range of the ultrasound system to at most 3.43m.
S

In the simulation, the metrology system is modeled in two parts, one for transmit-

ting, and one for receiving. On the transmission side, the logic follows the sequence

described in Algorithm 3.1 where each iteration through the outer while(true) loop

represents a 1 ms step of the simulation. When the irTx transmission flag is set by

any of the satellites, the counter cycleCount ticks off the initial 10 ms hold time, then

the 20 ms periods between beacon transmissions. When cycleCount reaches zero at

137

TOF recording period for each beacon
0 2 4 6 0I I I I 1 1

........................

9 h* -~ - -...... T

0 4a I-.-.....

~ Ifish

4 ..

cc 2 1 :...

0 20 40 60 80 100 120 140 160 180 200

Time, msec

Figure 3.9: Ultrasound pulses in the global metrology system start 10 ms after the
initial IR flash and repeat every 20 ms. The FPGA records Time of Flight measure-
ments during the 10 ms period following each pulse, then flags the DSP to retrieve
the measurements. Adapted from [551.

Line 9, the transmitter model produces two signals: bcnNum, the number of the cur-

rently transmitting beacon, and usTx, a flag set to 1 each time a beacon transmits.

The process continues until the 9th beacon completes its transmission then ends until

the next IR pulse.

The receiver side of the model executes independently for each of the satellites

in the simulation. Algorithm 3.2 summarizes the actions checked at each 1 ms step

of the simulation. At Line 4, when the incoming usTx flag from the transmitter

module is set by an ultrasound transmission event, the receiver model immediately

calculates the future time step at which the measurement will be received, tx. Since

the satellite is not expected to move significantly over the 10 ms maximum receive

window, calculateRxTime() on Line 5 estimates the reception time with the satellite

position at the time of transmission, r(tt.).

trx - |irsat(ttx) - rbcnlI + t (3.23)
a

The beacon position rben is fixed according to the beacon deployment in the virtual

test volume, and a is the speed of sound.

138

Algorithm 3.1 Beacon Transmission Timing
1: started +- 0
2: while true do
3: usTx +- 0
4: if not started and irTx then
5: started +- true
6: bcnNum <- 0
7: cycleCount <- 10
8: if started then
9: if cycleCount = 0 then

10: bcnNum <- bcnNum + 1
11: usTx +- 1
12: cycleCount +- 20
13: if bcnNum = 10 then
14: started <- false
15: cycleCount <- cycleCount - 1

Algorithm 3.2 Ultrasound Receiver Measurement
1: cycleCount <- 0
2: trx +- 00

3: while true do
4: if usTx then
5: trx +- calculateRxTime()
6: cycleCount <- 0
7: if t > trx then
8: for all ztof E distVec do
9: ztof +- calculateTOF(

10: trx <- 00
11: if cycleCount = 10 then
12: usFlag +- 1
13: cycleCount +- cycleCount + 1

139

On the time step where the simulation time, t, exceeds trx, the receiver model

triggers the calculation of the beacon receiver vector, distVec. distVec contains

receiver measurements, d, for each of the satellite ultrasound receivers, typically 24

for a standard SPHERES satellite. The function calculate TOF() on Line 9 computes

the time of flight from the beacon to the receiver and appends the receiver noise model.

The noise model, originally developed and validated by Nolet [55], is implemented

with the steps described in Algorithm 3.3 and described below. A diagram of the

relevant transmitter and receiver geometry is shown in Figure 3.10.

Random Measurement Loss Approximately 3% of ultrasound measurements are

corrupted or lost, registering 0 in the FPGA. On Line 1, the model generates

measurement losses by comparing a randomly drawn number from the range

[0,1] to the measurement loss probability.

Receiver Angle Bias Measurements have an angle-dependent bias, bo,r,, based on

the angle, 0 rx, between the relative vector, rrel, and the receiver normal, fn, .

The bias increases with the relative angle. Lines 4-7 calculate the receiver angle

bias by rotating the body-frame receiver normals into the global frame, finding

the receiver angle, then applying the bias. An additional random bias is either

added or subtracted with equal probability based on the bias sign term, sr..

Transmitter Angle Bias On Lines 8-10, measurements are also biased by the trans-

mission angle 6 tx. The bias, bo,tx, is calculated in a similar manner to the receiver

angle bias, this time using the angle between the beacon normal, ii, and rrel.

Distance Bias Lines 11-12 apply a bias base don the distance from the satellite to

the receiver. The bias includes a 4 th order polynomial, bdist, combined with a

uniform random noise term, bnoise, increasing with distance. The polynomial is

a fit to laboratory data collected from the receivers at increasing distances, and

the noise term accounts for an envelope around the data. Coefficients for the

polynomial are listed in Table 3.3.1. See [55], Appendix B for more details.

Random Noise After adding the measurement biases, an overall zero-mean Gaus-

140

Algorithm 3.3 Time of Flight Calculation

1: if U(0, 1) > P then
2: rrel +- rben - (rsat + R(q)rrx,bo1y)
3: d +- ||rreIll
4: n,, < R(q)nfrx,body
5: 0 rx + arccos rrel nrx

6: s,, + sgn U (- 1, 1)
0.007 + 0.001srxm Orx

7: be,rx +- 0.004 + 0.0005srx m 250 <

Om |Orxi
8: Otx < arccos -rr,, -fn

d
9: stx +-sgn U(- 1, 1)

0.011 + 0.002stx m |6 tx| >

0.005 + 0.001stx m 254 <
10: be0 to <-

0.0015 + 0.001stx m 150 <

0m IOtI <
11: bdist <- c4d4 + c3d3 + c2 d2 + c1d + co

0.004-U(-1,1)m d>2

bnose 0.003 -U(-1, 1) m 1 < d
0.002 U(-1, 1) m 0.5 <

0.001 U(-1, 1) m 0 < d
13: d' <- d + be,tx + berx + bdist + bnoise +
14: Ztof +- (uint32) (- ktof

15: else
16: Ztof +- (uint32) 0

> 350

,Orx| < 350

<254

350

|6x I < 350

|10t| < 250
150

< 2
d <1
< 0.5
N(0, o,2)

sian random noise term with standard deviation ad is applied to to the receiver

measurement on Line 13.

The final step converts the biased and noisy distance measurement into FPGA counts,

stored in the value ztof.

3.3.5 SPHERES Software Simulation

The SPHERES Software component of the simulation models the execution of soft-

ware running on the satellite's Texas Instruments TMSC6701 Digital Signal Processor

(DSP). As discussed in Section 3.2, the software has been modeled at varying levels

of detail, from duplication on a real-time operating system, to broad approximation

141

Figure 3.10: Ultrasound measurements are calculated from the time of flight to tra-
verse the vector r,.e. The receiver noise model uses the transmitter angle, 9 tx, and
the receiver angle, 6,x, to apply biases to the measurement.

Variable Description Typical

Ocr Gyro noise standard deviation 0.003 rad

kw Gyro scaling term (specific to each gyro) 0.70799e - 3, _a~n
bw Gyro bias term (specific to each gyro) 2026 counts

Ua,off Steady state accelerometer standard deviation 0.0008 m

when thrusters are off

o-a,on Steady state accelerometer standard deviation 0.003 m

when thrusters are on

o-a,ring Maximum magnitude of noise during thruster 0.05 m

transient

Tring Accelerometer ringing transient time constant 0.0467s
ka Accelerometer scaling term (specific to each accel) 0.1152e - 3 2

ba Accelerometer bias term (specific to each accel) 2418 counts

PrX Probability of null ultrasound measurements 0.03
0.0004633

-0.0003565
c(4 ,3 ,2 ,1 ,o} Polynomial coefficients for ultrasound receiver bias -0.006537

(function of distance between transmitter and 0.01937
receiver) 0.01051

cd Ultrasound receiver noise standard deviation 0.0033 m
ktof Ultrasound time of flight scale factor 25 x 106 "n8

Table 3.3.1: Typical values for simulation noise and bias parameters.

142

in MATLAB scripts. One of the major contributions of the current version of the

simulation is to strike a balance between these two extremes that preserves both high

fidelity to the SPHERES software model and high performance.

The best possible software model would be to exactly replicate the operation

of the SPHERES DSP in software. While cycle-accurate simulations of the C6701

DSP exist, execution time is slow enough that it is not practical to use in a simulation

without severely limiting the platform principle of Efficient Inquiry. The next possible

level of approximation is to attempt to simulate the behavior at an operating system

level. In the current simulation, the onboard software is modeled down to basic

operating system features such as tasks (threads), interrupts, and synchronization

constructs, at which point simulated, platform-specific libraries are used instead of

DSP/BIOS. At this level of detail the primary differences between satellite hardware

and simulation have been reduced to the total execution time and the relative timing

between concurrent threads. Considerations for both differences have been studied to

close the remaining gap. The approach to modeling concurrent execution is described

in Section 3.3.5.3, and execution time is discussed in Section 3.3.8. This approach

reaches the lowest practical level of simulation accuracy, and the remaining discussion

addresses achieving high performance with the selected implementation.

To enable the GSP and SPHERES Core APIs to communicate information be-

tween concurrent tasks as if they were executing on the satellite hardware, most of the

actions related to SPHERES Software are modeled in C++ instead of in the Simulink

block diagram. This is an implementation of the shared memory approach noted in

Section 3.2.3. There are three main layers in the simulated software model:

S-Function Interface Interface layer between the Simulink model and the satellite

code. This is the only layer that coordinates interactions between all the satel-

lites, including communications and IR interrupts. On each simulation step,

inputs and outputs in the form of pre-defined C data structures pass through

the interface to the lower layers. As shown in Figure 3.11, a single interface

is shared between all satellite instances. The interface has an internal library

loader responsible for loading a shared object containing the code for each satel-

143

Wrapper Wrapper

SPHERES Core FSPHERES Core
User Code & User Code

libCommManager.so

-PEESCr
sphl.so sph2.so sph3.so

Figure 3.11: There are three layers in the software model. The S-Function Interface
communicates with Simulink and coordinates software interactions between satellites,
the Wrapper replaces low-level software interfaces with simulation equivalents, and
SPHERES Core & User Code is flight-compatible software. The communications sim-
ulator is loaded separately from the satellites and models the flow of communication
packets.

lite. It also loads a separate communications simulator module to model the

ground station transmitter and flow of packets between satellites. More details

about the dynamic loader are discussed in Section 3.3.6.

SPHERES Core Wrapper Emulates the hardware and low-level software inter-

faces expected by SPHERES Core. This layer contains memory regions to

model the SPHERES flash memory and FPGA registers as well as simulated

replacements for basic features of the SPHERES operating system. The wrap-

per has convenient access to all SPHERES Core and GSP functions for setting

and retrieving internal values.

SPHERES Core and User Code Contains flight-compatible software for use in

simulation and on satellite hardware.

3.3.5.1 S-Function Interface

Each of the satellites are configured with a set of parameters that are static for the

duration of the simulation. They are used by the S-Function interface and lower

layers to model components of the satellite that are not part of SPHERES Core but

144

I

are accessed by the software. For a detailed example of the interface for the SPHERES

Simulation, see Appendix A.2.

3.3.5.2 SPHERES Core Wrapper and DSP/BIOS Model

Since it is not possible to use the proprietary, platform-specific DSP/BIOS execution

environment in the simulation, several commonly used components are mapped to

constructs in the C++ library Boost[18]. Boost is a well-established, cross-platform

utility library and is also serving as a reference for many of the components in the

C++11 standard. An important advantage of Boost is the ability to compile the same

code on multiple operating systems with minimal (if any) platform-specific customiza-

tions. This feature has been critical for Zero Robotics to enable easy development on

Windows and Linux systems, and ultimately it will be useful for potential releases of

the simulation as a downloadable library.

The following section describes DSP/BIOS components used by SPHERES and

their counterparts in the simulation:

Semaphores In SPHERES Core, Semaphores serve the dual purpose of mutually

exclusive locks and condition variables for event notification. A calling task

can SEM post to a Semaphore to atomically increment its counting variable,

SEM_ pend until the count is greater than 0, check the current value with

SEM_ count, or SEM_ reset to set the semaphore to a specific value. Since

Boost does not have a semaphore construct, a custom Semaphore class combines

a condition variable, a mutex, and a counting variable to replicate the behavior.

Mailboxes Mailboxes are concurrent queues containing fixed-length messages. Like

semaphores they have pend and post methods, but the post operation adds a

message to the queue while pend waits for a new message. The simulation im-

plements Mailbox by extending Semaphore, using the internal mutex to protect

a queue of messages. Just as in DSP/BIOS, the queue has a user-specified

maximum length.

Flash Memory and FPGA Registers In the SPHERES Core header files, the

145

memory addresses for flash storage and FPGA registers are redirected to regions

allocated by instances of the main satellite class. When components inside of

SPHERES Core write to the addresses, the data can be easily read and acted

upon following completion of the routine. The main challenge is performing

actions that normally occur on writes such as sending serial data or triggering an

IR pulse. For IR pulses, the value of the register is read after the SPHERES Core

update tick completes. Serial port and communications data are intercepted

with simulation-specific functions before reaching

Tasks DSP/BIOS tasks are concurrently executing threads dispatched by an internal

scheduler. Typically in SPHERES Core, tasks run at the lowest level of exe-

cution priority and have the most computationally intensive tasks. Tasks are

replaced in the simulation with Boost threads started when the satellite library

loads at the beginning of the simulation. Careful attention must be paid to

synchronizing the threads with the main simulation thread. See Section 3.3.5.3.

Software Interrupts Typically posted by SPHERES Core in response to a hardware-

based event, these interrupts run at slightly higher priority than Tasks, but they

may be delayed by higher priority hardware interrupts. In the simulation, soft-

ware interrupts are modeled with direct function calls from the main simulation

thread instead of a separate scheduled thread of execution. In general this is

a reasonable model because most software interrupts are dispatched within mi-

croseconds of being posted and are expected to complete within a 1 ms time

step. This assumption is not always valid, such as when the user control inter-

rupt, SWI Controller(), involves significant computation time.

Hardware Interrupts As with software interrupts, hardware interrupts are trig-

gered with direct function calls from the main simulation thread. Most hard-

ware interrupts run on each 1 ms time step of the simulation. This introduces a

very slight inaccuracy because the thruster timing interrupt and TDMA com-

munications manager interrupts are driven by a hardware timer with a period of

1.0078 ms 163]. The only interrupt not driven by a simulation tick is the IR re-

146

ceive interrupt, which is triggered for all satellites at the end of SPHERES Core

execution if any single satellite sets the transmit flag in the FPGA memory.

For most of the components, a set of C++ gateway functions function with the same

call interfaces replace the DSP/BIOS functions. Objects like Semaphores are referred

to by a handle, which in the simulation implementation is simply a pointer to an

array index that can be used to look up the requested object in a global instance of

a class representing a SPHERE. For example, for a call to the SEM pend() function

the following steps take place:

1. SPHERES Core calls the function SEM pend(handle, timeout). In the simula-

tion this function is implemented in C++.

2. The C++ SEM pend() function dereferences the pointer handle, which returns

an array index.

3. SEMpend() looks up the Semaphore instance at the specified index in the

global satellite instance and calls the pend() member function.

3.3.5.3 Thread Synchronization

On modern multi-core computing hardware, the concurrent threads of the simula-

tion have the potential of running at very different relative rates compared to their

behavior on the SPHERES hardware. When running faster than real time, or in

any situation where the threads are not monitored by a scheduler, it is important

to ensure the main thread does not run many steps ahead in the simulation while a

parallel thread is making more laborious computations. While it is not practical to

model the exact relative timing, it is possible to use a coarse model of execution to

make sure the threads stay in sync.

Background tasks in SPHERES Core follow a consistent pattern with an infinite

outer loop broken by a pause point to wait for new data, typically a SEM pend()

or MBX pendo. Assuming this structure, each iteration through the loop can be

synchronized with the main simulation thread with the following steps. Figure 3.12

illustrates the steps with satellite's state estimation thread as an example.

147

1. The process begins when SPHERES Core or GSP flight code initiate a call to

one of the DSP/BIOS synchronization constructs. In the example, new IMU or

global metrology data in the PADS hardware interrupt triggers an MBX post

to the estimator mailbox.

2. In the SPHERES Core Wrapper, the simulated implementation of the DSP/BIOS

function checks incoming events to see if they are bound for one of the threads

requiring synchronization. Before posting the signal or message to wake up the

target thread, the simulation records a future synchronization time based on the

expected total computation time, delta. The synchronization time is stored in

a map based on the target thread's unique identifier.

3. The main simulation thread continues normal execution, potentially completing

multiple time steps before reaching the synchronization time. At the end of each

time step, the waitForSync() operation checks to see if there are any threads

due to complete at the current simulation time. If a thread has not completed

but is due to do so at the current time step, the main thread blocks for a signal.

4. The target thread wakes up in response to the message and begins executing in

parallel with the main simulation thread.

5. At the end of the execution block, the thread calls a special simulation macro

SIM_ SYNC_ RELEASE(). Using the calling thread's unique identifier, this ac-

tion looks up the thread in the synchronization map, resets the synchronization

time to infinity, and signals the waiting main thread to wake up.

The approach works well to keep the simulation synchronized and could be generalized

for other simulations of hardware with multiple threads or asynchronous events. There

are also several important limitations:

9 The parallel task must provide some form of signal that can be intercepted by the

main simulation thread to signal synchronization. In the SPHERES simulation,

this requires modifying flight code to add synchronization annotations. When

148

compiled for hardware, the SIM_ SYNC_ RELEASE() macro is automatically

redefined to empty code.

e An accessible pause point must be present to initialize the synchronization pro-

cess. So far the required synchronization points in the SPHERES simulation

have always provided a natural pause point, but future applications may re-

quire additional annotation macros to be added to the flight code, such as a

SIM_ SYNC_ START() at the beginning of an execution block.

e Between the pause point and synchronization point there is no guarantee of

relative execution timing. If a parallel task is given several simulation steps to

complete its execution, the relative execution speed between the two tasks will

almost certainly not match the relative timing on the hardware.

9 Profiling on real hardware is required to set accurate computation time.

e The synchronization approach is "optimistic." The parallel thread begins com-

putation as soon as the message or signal arrives and may complete before the

synchronization point is reached. Any simulated time information the thread

accesses from the simulation may be earlier than on the real hardware. An al-

ternative "pessimistic" approach would be to wait until the main thread reaches

the synchronization point, execute the parallel thread, then resume the main

thread. This would result in slower, mostly single-threaded execution, but the

timing would always model the worst case execution time.

For all of the points, a detailed knowledge of the interaction between the threads is

important to correctly implementing their simulated behavior.

3.3.6 Dynamic Loader for Satellite Libraries

Following the principle of Efficient Inquiry it has been critical to reduce the time re-

quired for the sequence of compiling, running, and evaluating simulations. Since user

code represents only a small part of the overall simulation source code, it is excessive

149

Main Simulation Thread
HWI_pads rcv() { TSK_pads.estimator()

1) X_post (est, msg); while(true) {
//Pause point

} (4) msg = MBXpend(;
... other HW, SW interrupts ...
estThread.waitForSync (; (3) { ... computations..

MBXpost(target, msg) \
if (target = est) { (5) //Sync annotation

(2) estThread.setSyncTime(now + delta); SIMSYNCRELEASE(;

mailboxes [target] .post (msg);

Figure 3.12: (1) The thread synchronization process starts with a signal or data from

the main thread. (2) The simulated synchronization construct recognizes the target

and sets an expected finish time based on the current simulation time. (3) The main

simulation thread executes until the synchronization time is reached, then blocks if

the other thread is still running. (4) The target thread wakes up with new data,
performs, computations, then (5) releases the waiting main thread.

to recompile the entire simulation for each code update. In addition, since the sim-

ulation dynamic model changes much less frequently than satellite software or user

code, it is desirable to independently deploy the simulation from the satellite code.

The SPHERES simulation separates the simulation environment from the satellite

software by dynamically loading the satellite code as shared libraries at runtime.

The loading process is similar to traditional systems for loading shared library

plugins:

1. For each satellite in the simulation, a special library loader in the SPHERES

Software component of the simulation is passed a full path to a user library.

2. The loader makes an operating-specific call to load the library into memory

(dlopen for *nix and Mac, LoadLibrary on Windows).

3. The loader looks up a special function in the satellite library that can be used

to retrieve a pointer to the SPHERES Core wrapper. The pointer is stored in

a list containing entries for each satellite.

4. Using the SPHERES Core wrapper as an interface, the simulation can exchange

150

data with the satellite or call methods to advance the simulation state

The loader can also look up global variable names and write directly to their mem-

ory locations with new values. This ability is used extensively in Zero Robotics

for variables that change from run to run such as randomly placed game elements.

Since variables compiled in the code can be referenced by name, the game code does

not require an additional simulation-specific interface for modifying variables, and

most importantly, it can be pre-compiled for all simulation runs, further improving

turnaround time.

3.3.7 Code Generation Capability

A major reason for returning to a Simulink simulation implementation is the ability to

generate a fully C++-based version of the block diagram with identical outputs to the

interpreted block diagram. The compiled C++ simulation runs significantly faster (2-

3x) than the block diagram version and can be transferred as source code and compiled

into standalone executables on other computers and operating systems. Simulink

provides special utilities for creating interfaces between the C++ code running in the

S-Function interface and the Simulink simulation so that the interface works in both

the generated simulation and under the Simulink environment. This is particularly

useful for initial simulation verification because the model can be easily modified in

the block diagram format then converted to C++ for distribution with no additional

modifications.

3.3.8 SPHERES Code Profiler

With the significant difference in computational power between modern x86 personal

computers and the SPHERES DSP it is often possible to implement a program that

runs very fast in simulation but would be infeasible to execute on the hardware plat-

form. To prevent this situation from occurring, the Zero Robotics platform includes

a code profiling tool based on a cycle accurate simulator of the C6701 DSP. As noted

above, the simulator is too slow to run use in a complete dynamic simulation of

151

SPHERES, but it is possible to limit the scope to running a single iteration of the

user's control loop. The code is compiled into an image for the DSP and launched in

the simulator for a single cycle. The user has access to timing routines that print the

total time elapsed at any point in the code, and the tool reports the overall execution

time with warnings if the predicted time could result in problems. The approach does

require the cooperation of the users in configuring their code to identify the worst

case execution scenarios. Based on the 2012 RetroSPHERES tournament, the first to

raise the issue of computational complexity, users were able to effectively locate and

modify problematic code. All teams that proceeded to the ISS phase were able to

reduce execution times to within acceptable limits within a week of using the profiling

tool.

3.4 Zero Robotics API

The Zero Robotics API extends the GSP API with an additional layer of software

interfaces for simplifying the control of 6DOF satellites for student users and for easily

implementing Zero Robotics games.

3.4.1 History

The first Zero Robotics API was specifically configured for the pilot game. As de-

scribed in Section 2.4.1, the primary action in the game was to steer the helper or

blocker satellite to a position within the volume based on the motion of the opponent.

The relatively simple game could be played with a single interface API function:

void setTarget (f loat *myState , f loat *otherState , f loat time , f loat *targetOut);

To play the game, competitors implemented their code in the body of the set Target

function. The incoming arrays myState and otherState were the first attempts at

providing a simplified state representation for the high school students. The arrays

contained position, velocity, and a single attitude angle, representing the rotation

152

around the satellite's z axis,

myState, otherState = x y z vX vy vZ 0 w . (3.24)

For the implementation of time-triggered maneuvers, the time variable contained the

time in seconds since the beginning of the match. The last argument, targetOut,

provided a length 4 array,

targetOut = x y z G (3.25)

for the user to command position and attitude targets. Following execution of the

user code, targets were passed to a standard SPHERES PD controller for position

and attitude. In this season alone, a PID controller was used when errors dropped

below 10 cm or below 350. This behavior was later changed to consistently using

a PD controller for position and a PID controller for attitude for more predictable

responses. Only two utility functions were available, tailored to the game-specific

objectives of reaching the target while minimizing fuel consumption. No additional

utilities were available except for standard ANSI C math functions.

Development for the next Zero Robotics events, the 2010 Summer of Innovation

Tournament (SOI) targeted at Middle School students, and the 2010 High School

Tournament: HelioSPHERES started in parallel. Based on lessons from the 2009

pilot and the need to develop two games at once, the API began taking on a more

generic format. Two entry-point functions ZRInit o and ZRUser() were created to

separately initialize and update user code, and the user control options became more

expressive with the ability to command forces and torques. For the first time users

were also supplied with control over 3D satellite attitude using the representation

covered in Section 3.4.3.3. The 2010 API persisted into the 2011 season where it was

used in the AsteroSPHERES tournament. During this tournament a more formal

internal template was developed for creating new games.

With the higher complexity control algorithms of the 2012 ZRASCC tournament,

several new features were added to give users full control over the satellite from po-

153

sition control down to forces and torques as well as controlling the PD and PID

gains of the internal controllers. For the first time a mechanism was added to the

architecture for implementing the full range of SPHERES Guest Scientist Program

functions, though it has not been used in a tournament to date. This enhanced inter-

face has been maintained for future expansions of the platform to general SPHERES

programming.

The most recent version transitioned the code base for the API from C to C++

and set up an object-oriented architecture for the user and internal code develop-

ment. Though creative use of C++ is somewhat limited by code size and execution

performance on the satellite hardware, the new API lifts restrictions from the user

code and eases the process of creating new games.

3.4.2 Software Architecture

After several iterations, the Zero Robotics API has matured into a flexible library

with which many interesting games can be developed. Though every additional sea-

son will hopefully improve the functionality, the core components are stable and

generic enough to be reused in most games. There are two main parts to the software

architecture:

1. A standard set of control commands, controller implementations, and state

representations available in all games. To the users, this component is referred

to as the ZR API.

2. A changing set of functions and rules implemented by the game designer for

each tournament. To the users this is referred to as the Game API.

Both components of the architecture are split into a user-facing API, accessed through

a C++ object, and an internal implementation to process the actions triggered by

the users. An important challenge with this configuration is creating a game imple-

mentation where internal code remains hidden from access to the users while still

available for internal processing. For example, consider a game like HelioSPHERES

154

where the users consume a limited virtual resource like "charge," represented by a

private counting variable in the game object. The game also internally replenishes

the resource under certain conditions, such as facing toward the sun. If the variable

is private to the game object, the internal game rules can only update the resource

through a public mutator method or by residing in the object itself. A public method

will not work because the user could easily call the method to replenish the resource

outside of the game rules, and implementing the game rules inside the object is not

practical because at some point information must be passed into the object through

a public interface.

To solve the problem, the Zero Robotics API uses a programming idiom called

Pimpl for Pointer to Implementation 167]. The user-facing API is a class containing

public methods and fields intended for the user along with a private pointer to an

implementation class (pimpl). The implementation class contains the game logic

along with public fields for all of the internal game variables. When the user calls

an API member function, it can access the implementation fields through the private

pointer, but the user cannot modify them directly. Inside the game implementation,

all the fields are public and easily accessible for update.

In addition to the game-oriented features, the architecture has been designed with

an eye toward future expansion of Zero Robotics into a platform for programming

all features of the SPHERES Guest Scientist Program. Both the game and the

user code are implemented in classes that extend from a generic interface called

GSPBase. This class supplies empty implementations for all of the standard GSP

callback functions, allowing future iterations of Zero Robotics to have either optional

or required implementations of these functions.

Normally, allowing a set of optionally implemented functions is performed through

the use of virtual functions in C++. One commonly used feature of virtual functions

is dynamic polymorphism, where a specific class implementation is bound to a pointer

to its base class. Calling methods on the base pointer will refer to the appropriate

implementation in the derived class. Unfortunately, virtual functions also require

significant code space overhead because a hidden internal function table must be

155

1 class ZeroRoboticsGame {
2 public:

3 //The user can access this method

4 void useCharge() {
5 pimpl->charge--;

6 }
7 private:

8 //but not the pointer to the implementation

9 ZeroRoboticsGameImpl *pimpl;

10 }
11
12 class ZeroRoboticsGameImpl {
13 public:

14 //This field, and the addCharge method are

15 //only available to the game implementation

16 unsigned int charge;

17 void addCharge() {
18 charge++;

19 }
20 }

Listing 3.1: In this example of the Pimpl idiom, the user-facing game API class

ZeroRoboticsGame exposes the method useCharge(), which in turn accesses the

hidden charge field. The user cannot modify the implementation field directly.

156

generated for the dynamic binding of functions. With the extreme space limitations

of SPHERES, virtual functions are only used in Zero Robotics to dynamically assign

which team's code is running on the satellite via a pointer to the base class ZRUser.

For other use cases an alternate method is available.

As with GSPBase, virtual functions can also be used to enforce an interface con-

tract, where all classes that derive from the base are either required to implement a

method (also known as abstract methods), or the base provides an optional default

implementation for the method. To achieve a standard interface with minimal space

overhead, GSPBase avoids the use of a virtual function with a Curiously Recurring

Template Pattern (CRTP)[13]. As shown in Listing 3.2, in CRTP, derived classes

inherit from a C++ template base class while supplying themselves as a template ar-

gument, hence the recurring part of the name. In the template base class, a static cast

binds the methods to a derived implementation at compile-time instead of through

a virtual function table. The code usage savings comes at the cost of dynamic poly-

morphism. Classes deriving from the CRTP base cannot be referred to with a base

pointer.

3.4.3 User-Facing API Design

3.4.3.1 User Code Template

While many other robotics programs give students free access to writing source code

at the level of files, with the general requirement of maintaining a flight-like code con-

figuration, it is important to impose several restrictions on the way users implement

their programs. One of the most onerous requirements is maintaining a non-conflicting

set of variable and function symbols across all the user programs that share the same

program memory space on the satellite DSP. The most recent solution is to insert the

user code into a C++ class body, as shown in Listing 3.3. With this configuration,

the users are free to declare methods and fields with any name because they will be

constrained to the scope of the class.

Before the user's class the template declares two variables:

157

1 template<typename T> class GSPBase {
2 //A method that must be defined in the derived class (abstract)

3 void gspInitTest (unsigned int test _ number) {
4 static-cast<T*>(this)->init Test (test number);

5 }
6
7 //A method with a default implementation

8 void gspTaskRun(unsigned int gsp_ task_ trigger , unsigned int extra data) {
9 static-cast<T*>(this)->taskRun(gsptasktrigger , extra_data);

10 }
11 void taskRun(unsigned int gsp_task_ trigger, unsigned int extradata) {
12 //...Default implementation...

13 }
14 };
15
16 class Derived : public GSPBase<Derived> {
17 //Implementation of required method
18 void initTest (unsigned int testnumber) {
19 //...
20 }
21 //Override of default implementation
22 void taskRun(unsigned int gsptask_ trigger, unsigned int extradata) {
23 //...
24 }
25 };

Listing 3.2: In the Curiously Repeating Template Pattern (CRTP), a derived class in-

herits from a base template with itself as an argument. Methods in the base class per-

form a static cast to the derived type to achieve static (compile-time) polymorphism.

Methods without a default implementation like gspInitTest (must be implemented

in the derived class or compilation will fail.

158

1 #include <math.h>

2 //... Additional Includes

3 #include "ZRUser.h"

4
5 //Global references to game and ZR API

6 ZeroRoboticsGame &game = ZeroRoboticsGame::instanceo;
7 ZeroRoboticsAPI &api = ZeroRoboticsAPI::instance(;
8
9 class ZRUser0l : public ZRUser {

10 public:

11
12 ${codeBody}

13
14 };
15
16 ZRUser *zruser0l = new ZRUser0l;

Listing 3.3: User code is inserted into a template similar to the one above. The
template token ${codeBody} is replaced with the user code. Placing code into a class
body gives users access to object-oriented features while preventing method name
collisions.

game An imported global instance of ZeroRoboticsGame, the user-facing game API

class.

api A shortcut reference to the instance of ZeroRoboticsAPI, the user-facing ZR

API class.

These objects serve as the access point to the user API functions.

3.4.3.2 Entry Point Functions

As with the GSP API, users begin their programs by implementing entry point call-

back functions. All user classes extend from the parent class ZRUser, which defines

two abstract methods, init() and loop(), required in all implementations. The

names of the functions were selected with a similar intent to the Arduino API 121,

or the Processing Language 1591 which contain the methods setup() and loop() to

indicate the initialization and repeating phases. The API similarity gives students a

starting point to transition to or from the other platforms.

159

The init 0 method is called at the beginning of user code execution with the

intended purpose of resetting internal variables before entering into the game. Since

the user class is only constructed when the satellite first turns on, running the init 0

method is essential to resetting internal variables on repeated test runs. Failure to

initialize the variables is difficult to detect in software, but one approach is covered

in Section 3.4.5.3.

The loop() method is the main control loop for the user's program. It is triggered

once per second by the game, though where in relation to the rest of the game rules is

specific to the game implementation. From loop() the user may access API functions

or call other methods in the program.

3.4.3.3 State Representation

By querying the satellite state, users can build programs that dynamically react to the

position of their satellite and make choices based on the observed behaviors of their

opponents. The ZR API includes two different representations of the SPHERES state

vector to accommodate different skill levels. The first advanced version is a standard

SPHERES state vector, accessed through api.getMySphState(),

-T
statevector= r v q w . (3.26)

where r is the position of the satellite, v the velocity, q the quaternion attitude, and W

the body-frame angular rates. The quaternion representation follows the SPHERES

standard with the fourth component representing the scalar part. Since the stu-

dent programmers are not all expected to have familiarity with quaternions, the

Zero Robotics standard state vector has a simplified attitude representation, accessed

through api.getMyZRState(,

ZRState= r v ni w . (3.27)

160

T
The r, v, and w components are identical to statevector, but fi = n l nI

is a unit vector that points in the direction where the user would like the satellite to

point. Unlike other 3 parameter attitude formats such as Rodrigues Parameters or

Euler Angles, this representation is well suited for high school students because the

user can simply indicate a pointing direction without complicated transformations.

However, like all 3 parameter attitude representations, the system does not fully

define the attitude of the satellite. The pointing direction is defined by aligning a

reference vector, fref, in the body frame of the satellite 4 with the desired pointing

direction, but the satellite has complete freedom to rotate about this direction while

maintaining the same pointing vector. In some games, such as HelioSPHERES and

AsteroSPHERES, game induced torques about the pointing direction were used to

visually indicate an event in the game. When not used for these purposes, the internal

SPHERES controller that maintains the attitude will naturally damp residual angular

velocities around the pointing direction, though small perturbations may cause the

satellite to gradually rotate to different positions during a match.

Converting from the quaternion representation to the pointing vector representa-

tion is straightforward.

n = R(q)firef (3.28)

As usual, R(q) is a rotation matrix from the body frame to the global frame based on

the quaternion q. The pointing vector is calculated by rotating the reference vector

from the body frame to the global frame.

Converting from a pointing vector to a quaternion is more complicated because

there is an unconstrained degree of freedom and therefore an infinite number of quater-

nions for any pointing direction. To remove the ambiguity, the conversion algorithm

takes three arguments:

4The first game to use the simplified attitude representation was the 2010 HelioSPHERES tour-
nament. For this game, the pointing face of the satellite was defined to be the -X face where the
satellites have several patches of Velcro for docking. This face has been used ever since for the
attitude representation. Future games might consider switching to the +X face for consistency with
the SPHERES coordinate frame and any games that may use expansion items on the +X side of
the satellite.

161

refVec The body-frame reference vector, fie!

attVec The global frame attitude vector, fn, to convert to a quaternion.

baseQuat A quaternion representing the initial orientation of the satellite when nref

is aligned with the global frame.

The last argument, baseQuat, removes the rotation ambiguity because it sets a defined

initial orientation for the reference vector. The conversion algorithm first creates a

quaternion corresponding to the rotation between reference vector and the target vec-

tor about an axis perpendicular to both of them, then multiplies the base quaternion

by the result.

6 = fnef X f (3.29)

d = fire - fi

0 = atan2 (1|6||, d)

e sin 1
qrot = Co 2

Icos 6

q = qrOt 0 qbase

The most important consideration when converting the pointing vector to a quater-

nion for attitude control is making sure small angles between successive pointing vec-

tors are preserved as small relative rotations. The Zero Robotics API achieves this by

using the current pointing vector as the reference vector, and the attitude quaternion

as the base quaternion whenever the user commands a new pointing direction. Step-

ping through the conversion process, this results in applying a rotation quaternion

corresponding to the minimal rotation between the current attitude and the target

attitude.

In addition to retrieving the current satellite state, the user may also query the

state of their opponent's satellite with api.getOtherSphState () and api .getOtherZRState(.

A configuration option within the ZR API allows game implementation to modify or

disable access to either of the state vectors if some obfuscation of the state is required

162

within the rules of the game.

3.4.3.4 Control Options

Commands to change the satellite position and orientation are the fundamental build-

ing blocks of all Zero Robotics programs. To match the broad range of skill levels

using these commands, the control interface to SPHERES exposed through the ZR

API is designed to cover several levels of complexity.

The most basic type of control command is a position or orientation command.

Users can call api.setPositionTarget() or api.setAttitudeTarget() to direct

the satellite to a specific location in the test volume or point the satellite in a provided

direction. The attitude commands use the normal vector attitude representation from

Equation 3.27, but advanced users may also use api. setquatTarget () to command

a quaternion attitude. All of the commands are routed to internal closed loop PD

and PID controllers as described in Section 3.4.4.3.

The second level of closed loop control is for commanding velocity. The methods

api.setVelocityTarget() and api.setAttRateTarget() are the velocity equiva-

lents of the position commands. The velocity controllers can be layered together with

position control for the purpose of trajectory tracking instead of basic point-to-point

targets.

The finest grained layer available to Zero Robotics programmers applies open loop

force and torque commands to the satellites. The commands api. setForces () and

api. setTorques () will set global fame forces and body-frame torques respectively. In

general competitors are discouraged from using open loop commands because thruster

strength may vary significantly between the simulation and hardware. The commands

are occasionally useful when adding feedforward actuation for trajectory tracking. In

addition, advanced users may use the force and torque interface to implement their

own closed loop control algorithms.

Starting with the ZRASCC tournament, several additional advanced features were

added to make the Zero Robotics API suitable for algorithm development while pre-

serving the basic control interfaces. The following utilities can be used to modify the

163

behavior of the internal control algorithms:

setControlMode (posCtrl, attCtrl) Defines which internal controller will be used

for position and attitude control. Can be set to CTRL_PD or CTRLPID to

select PD or PID control.

setPosGains (P, I, D) Modifies the gains of the internal position PID controller. I

gains are ignored if the controller is configured in PD mode. As with force/-

torque commands, modifying the well-tested gains of the SPHERES control

system is discouraged for ISS tests, but teams have full access to these param-

eters for advanced usage.

setAttGains (P, I, D) Modifies the gains of the internal attitude PID controller. I

gains are ignored if the controller is configured in PD mode.

setCtrlMeasurement (sphState) Uses the specified SPHERES state vector as the

incoming measurement when calculating error: e = Xtarget - x. This command

is useful when performing control relative to another moving object.

spheresToZR(sphState, zrState) Converts a SPHERES state vector (13 elements)

to a ZR state vector (12 elements) with simplified attitude representation.

attVec2Quat(refVec, attVec, baseQuat, quatOut) Converts a 3 parameter at-

titude vector attVec to a unit quaternion. The refVec specifies a vector in the

body frame of the satellite that should be used as the pointing direction (such as

[-1 0 0] for the -X axis). The baseQuat input defines an additional rota-

tion to the satellite that should be applied to the global reference frame before

calculating the output quaternion. This function is normally used internally

within the API to translate a user target to a standard quaternion attitude.

quat2AttVec (refVec, quat attVec) Converts a unit quaternion to a Zero Robotics

pointing vector, using refVec to define the pointing direction corresponding to

no rotation.

164

With this library of functions, most control approaches that have been applied to

SPHERES can be implemented. The only levels of control that remain hidden are

the translation of forces and torques into thruster on/off firing times (usually known

as a "mixer"), and the activation of the thruster firing times. Since this functionality

involves more detailed knowledge of SPHERES Core, and game rules may perform

additional modifications of the user commands, the final thruster firing commands

are reserved for the game implementation.

3.4.3.5 Math Libraries

To perform mathematical computations, users have access to most of the functions

in the standard ANSI C standard floating point math library. To minimize code

space, users are encouraged to use the single precision floating point versions of the

math libraries. Double precision libraries have a significant overhead because the

SPHERES DSP does not natively support double precision operations and must add

significant wrapper code to double precision calls to do so. All double precision calls

have been carefully removed from the Zero Robotics API and SPHERES Core libraries

to conserve space for this reason.

Users also have access to the SPHERES matrix math library for performing matrix

and vector computations. Basic multiplication, addition, vector normalization, and

vector product operations are available. The matrix math library also includes several

quaternion operations, including quaternion multiplication and conversion to rotation

matrices.

3.4.3.6 Debugging

Zero Robotics users have two forms of runtime debugging options that are only avail-

able in simulation. At any point in the program, the macro DEBUG() may be invoked

to print text. The text is captured by the simulation engine and displayed in the 3D

visualization for playback. The macro and usage are defined as follows:

#ifdef ZRSIMULATION

#define DEBUG(arg) debugPrintf arg

165

#else
#define DEBUG(arg)

#endif

//Typical usage
int d = 3;
DEBUG(("Hello World, with format: Pd!", d));

Though it comes with a slightly awkward syntax compared to a typical printf

statement, the macro serves two purposes. First, it can be easily removed from the

code for hardware tests by defining the macro to empty text, as indicated by the

second definition in the code above. Second, it re-routes arguments to a custom

implementation of the printf function, debugPrintf, which captures the printed

text for storage in the simulation telemetry. The text can be viewed later in the 3D

simulation visualization tool covered in Section 3.7.

Users also have access to a second debugging option. By calling the function

api.setDebug, the user may supply an array of 7 floating point numbers that will be

appended to the satellite telemetry. After a simulation run, the values can be plotted

in the web-based report tool.

3.4.4 Internal API Design

After many iterations of Zero Robotics game development, a standard sequence of ma-

neuvers has been formalized to initialize, run, and terminate the game. An overview

of the standard maneuvers is discussed with game design in Section A.1.3, but this

section will elaborate on several important implementation details.

3.4.4.1 Game Base Implementation

Like the user-facing API, the internal API is split into standard ZR API compo-

nents and game-specific code implementations. The API also includes the class

ZeroRoboticsGamneBaseImpl, the base class for all game-specific code. As shown

in Listing 3.4, the class is a template using the CRTP pattern covered in Section

3.4.2. CRTP is used to require all base classes implement the game functions, init (),

166

sendDebugo, and update(), while supplying a default implementation for the re-

quired GSPBase functions initTest() and controlO.

The two GSP functions are the bridge between the SPHERES Guest Scientist Pro-

gram and the Zero Robotics API layer. As with all SPHERES tests, the initTest()

portion clears internal variables for the test run and initializes the SPHERES stan-

dard estimator. It also triggers the init () method of the derived game implemen-

tation, which has the same purpose for the game-specifc code. The 1 second loop of

control(), includes four distinct GSP maneuvers:

1. Estimator convergence and opponent selection

2. Initial positioning

3. Game execution

4. Termination

The first phase allows the ultrasound metrology system to converge and gives the

crew a chance to select an opponent. The second phase moves the satellites from

their deployment positions to their starting positions. In the online simulation envi-

ronment opponent selection happens immediately, and the initial positioning period

is skipped because the satellites are initialized at their starting locations. As the

program transfers from maneuver 3 to maneuver 4, the user's own init () function

is called. It is important to trigger the user's code at this point and not at test

initialization because the code may make use of the current satellite state.

The third phase drives the game and user updates. The following actions happen

in sequence:

1. The API takes a measurement of the current satellite clock time.

2. The update() performs a game-specific update in the derived class:

(a) Calls any game rule updates prior to triggering user code.

(b) Activates the user code by calling the loop() method.

167

(c) Determines force and torque values to apply based on user and game code

(d) Returns a boolean value indicating if the force and torque commands

should be actuated as thruster commands. If no firing commands are

to be applied during the current cycle, the method returns false.

3. A second measurement of the satellite clock time is taken and the measurement

from the first step is subtracted to determine the total elapsed computation

time for the game and user code.

4. Force and torque commands are mixed into thruster times by the SPHERES

mixer and scheduled to activate. The period available for actuation is shortened

by the elapsed computation time. This prevents the code from accidentally

attempting to fire thrusters during an estimation period if the student code

runs too long.

5. The game's sendDebug() method is triggered at the very end of the code to

send telemetry updates. Telemetry is used to synchronize game information

and animate the visualization.

During all maneuvers, state of health telemetry packets from the opponent satellite

are checked for an early termination of the test due to an error or reset. The program

ends immediately for either of these conditions to prevent wasted time in the event

of a problem.

All of the functionality is inherited by extending form ZeroRoboticsGameBa-

seImpl, so the game designer can focus specifically on how to structure the game

rules and interface functions.

3.4.4.2 Opponent Selection

As described above, each user's program extends from the base class ZRUser, and

each implementation file exports a global ZRUser pointer to a local instance of the

user class. The pointers are collected in a table in an order determined by the bracket

168

1 template <typename T>

2 class ZeroRoboticsGameBaseImpl : public GSPBase<T>{

3 public:

4 // Instance of the ZR API implementation

5 ZeroRoboticsAPIImpl apiImpl;

6
7 // Total runtime of user and update code

8 unsigned int compute-time_;

9
10 // Game initialization function

11 void inito{

12 static_cast<T*>(this)->initO;

13 }
14
15 // Rules update function to be called during control()

16 bool update(float forceTorqueOut[6]){

17 return staticcast<T*>(this)->update(forceTorqueOut);

18 }
19
20 // Called at the end of control() to send debug packets

21 void sendDebug({

22 staticcast<T*>(this)->sendDebugo;

23 }
24
25 void initTest() {
26 /... Standard ZR test initialization implementation.

27 }
28
29 void control() {
30 //... Standard ZR 1 Hz control loop implementation...

31 }
32 }

Listing 3.4: The ZeroRoboticsGameBaseImpl class is the base class for all
Zero Robotics games. The CRTP pattern requires methods init(), update()
and sendDebug() to be implemented by the game, while the GSPBase methods
initTest 0 and control() implement a standard test initialization and control loop
for all games.

169

structure of the competition. Accesor methods can retrieve any of the pointers based

on a 0-based team identifier.

At the start of a match, the crew member operator selects the first player through

the traditional test number interface. Inside the ZR API, the test number is translated

into a team identifier and an internal ZRUser pointer is bound to the associated

implementation on the primary satellite. In the first 10 seconds of the match, the

crew is also instructed to press a number on the keyboard to identify the second

player. The secondary satellite receives this command and binds the ZRUser pointer

to the user implementation associated with the number. In this way, any two teams

can be configured to compete on either of the two satellites involved in a test.

3.4.4.3 Position and Attitude Control

The internal Zero Robotics API contains the method getForceTorque 0 to automate

the calculations of forces and torques from the controller commands issued by the user.

Algorithm 3.4 compactly calculates all three levels of control (position, velocity, and

force/torque) in a single function through several steps. For the case of controlling

position, on Linel, the procedure initializes the target state to the state selected by

the user for control, with the current global metrology state as default. At Line 4, any

commanded user forces are copied into the force vector. Lines 5-9 check for position

and velocity commands. For only position commands, the target velocity is cleared

to implement traditional rate feedback servo control. For trajectory control, the user

can layer both position and velocity commands together.

The final block starting at Line 12 first computes the error between the targets

assigned above and the user-selected control state. Since the target state is initialized

to the control state at the beginning of the algorithm, any fields that have not been

modified will produce 0 error. This is the key to allowing all three levels of control.

Lastly, either PD or PID control forces are calculated based on the user control

selection and added to the force vector.

Following calculation of the user control forces, the game implementation may

choose to modify the forces based on constraints in the game. Typical applications

170

Algorithm 3.4 Compact Force and Torque Calculation

1: Xtarget . - a <- Xstate[V tar get ~Xtt
2: f <- 0
3: if userSetForces then
4: f +- fuser

5: if userSetPosTarget then
6: rtarget ruser
7: Vtarget < 0
8: if userSetVelTarget then
9: Vtarget +- Vuser

10: X + Xtarget - Xstate

11: if userSetPosTarget or userSetVelTarget then
12: if mode = PD then
13: f<-f+Kpi +K Di

14: else if mode = PID then
15: f <- f + Kpi + K1 f idt + KDir

include overriding the forces and torques to avoid collisions, preventing the users from

moving outside the game boundaries, visually signaling a condition in the game, or

disabling a satellite for a penalty.

3.4.5 Catching Common C/C++ Coding Errors

While C/C++ offers an efficient, expressive base for developing programs, several

common yet potentially fatal coding errors can go unnoticed in the simulation. The

Zero Robotics platform has several experimental safeguards to detect and warn against

these problems. Where possible, the platform explicitly warns users that an issue has

occurred, but frequently it is only possible to simply crash the simulation and issue

a generic warning. While not desirable from a usability standpoint, the experience is

similar to real-world debugging for embedded programming. The following sections

will describe the current solutions for catching the errors, while the polished versions

will remain for future work.

171

3.4.5.1 Compiler Flags and Banned Keywords

Though most of the challenging problems relate to runtime issues, several basic prob-

lems can be detected at compile-time with extra flags supplied to the compiler. Before

running any simulation, user code is compiled by both the SPHERES Texas Instru-

ments compiler and the gcc/g++ compiler. The following flags ensure that gcc throws

the same errors as the TI compiler and check for simple errors.

-Werror-=implicit-function-declaration Checks for functions that are called with-

out a declaration. Some C compilers, including gcc, will provide a default im-

plementation for a function even if it has not been declared. This can be very

confusing if a function implementation was missed or slightly misspelled.

-Werror=uninitialized Checks for the use of a local variable before it has been

initialized.

-Wall Sets the compiler to print all warnings. This is particularly useful for guiding

the users to making the code more efficient by printing information about unused

variables or function, as well as any other minor but helpful code warnings.

Prior to compilation the platform also checks for several keywords present in the user

source code. The following keywords may not be used:

static Static variables are explicitly banned because they can be used to create

non-resettable local variables in functions. The Zero Robotics API assumes

the user code can be run multiple times by calling the user function init ()

to re-initialize all variables. Any persistent variables that carry over from one

test without resetting could result in inconsistent behavior. Broadly banning

the static keyword comes at the cost of eliminating static member variables or

methods in the user code, but these are not widely used unless the user creates

inner utility classes.

new, malloc, calloc, and realloc SPHERES does not support dynamic memory

allocation from within the software interrupt where user code is activated. Re-

172

moving new is problematic because it is common to language that might be used

in comments. Better regular expression parsing would help with this issue.

3.4.5.2 Invalid Floating Point Computations

In some situations, it is possible to perform floating point computations that result

in Inf or NaN outputs. For example:

" Divide by 0

" Performing an inverse trigonometric operation with an out of range argument,

such as arccos(-1.1)

" Taking the square root of a negative number

In addition to causing undefined behavior in the user code, supplying invalid argu-

ments to API functions can result in corrupted internal game variables. A simple

strategy for detecting invalid operations is to perform comparison checks for valid

arguments since all comparisons involving NaN return false. For example, when

checking to make sure the users always supply forces that do not contain NaN, the

following check can be computed to alert the user:

1 float mag = mathVecMagnitude(forces, 3);
2 if (mag >=0) {
3 //. .. normal behavior ...
4 } else {
5 DEBUG(("ERROR: invalid forces have been commanded.

Check for invalid floating point operations"));
6 /... additional actions such as disabling control ...
7}

Although it has not been implemented on the Zero Robotics platform, on Linux

operating systems it is also possible to instrument code to throw exceptions for invalid

floating point operations. A handler is registered to respond to the SIGFPE signal,

which could in turn perform actions to alert the user.

173

3.4.5.3 Uninitialized C++ Member Variables

Although the uninitialized variable compiler flag will catch local variables that are

used before definition, it is not possible to determine at compile time if global vari-

ables or class member variables are used before definition. While users are explicitly

warned to initialize variables in the init() function, the advice is not always fol-

lowed. In the 2012 High School tournament, the tournament with C++, a third

of the teams competing in the ISS tournament did not initialize member variables,

requiring modification of the programs before they were flown on ISS.

In simulation the problem is difficult to detect because the user classes are con-

structed by declaring them as uninitialized global variables. Most compilers will, by

default, zero-initialize the data members of global classes, so users mistakenly assume

all the class members are automatically set to zero at the start of a test. While it

is not clear how to signal a warning message it is possible to emulate the behav-

ior of randomly initializing member variables. Instead of initializing the user classes

with global variables, the classes are constructed using the new operator. Invoking

new ZRUser0l; without the trailing parentheses constructs the C++ object without

zero-initializing the data members, and the current values occupying the memory

space where the object is constructed will set the initial values. The code stays flight-

compatible because the dynamic memory allocation is performed at the startup of

the SPHERES program, not during a software interrupt.

Simply constructing the variable is not enough to produce random initial values.

Much of the heap memory available for dynamic allocation on a personal computer

may already be zeroed, so even though the object has not reset the memory space,

the variables will still be zero. The solution in this case is to override the new op-

erator in the ZRUser class with a specific implementation to randomize the memory

space. Listing shows an example of overriding new with memory allocation directed

by malloc. To match the memory allocation type, the delete operator must use the

free 0 function. The override section is wrapped in preprocessor definitions because

it does not need to be executed in the flight code.

174

Combined with a warning in the user code template and reminders throughout the

season, this approach should give enough warning by the time of the ISS competition

to prevent unexpected behavior due to uninitialized member variables. It is also

broadly applicable to any learning situation where it is desired to instruct students

about the problems associated with variable initialization.

3.4.5.4 Array Access Overflows

One of the most frequent mistakes made by users is the incorrect indexing of arrays.

For example, during the 2D phase of a tournament, users may mistakenly provide a

length 2 array to the API function setPositionTarget 0 while it expects a length 3

array or they may provide the length 12 ZRState to the function getMySphState 0,

which expects an array of length 13. Reading or writing beyond the boundaries of

arrays can cause undefined behavior that may not manifest itself until the code is

changed slightly ,or in the worst case, until deployed to hardware. Neither C nor

C++ have native array bounds checking, so the task of ensuring correct memory

access quickly becomes intractable.

Several tools exist that incorporate array access checking. The general purpose

debugging tool Valgrind [54] can detect invalid memory allocation or violations of

array boundaries for dynamic memory allocated on the heap, but experiments with

Zero Robotics show that it does not catch the more frequent error of incorrectly in-

dexing arrays allocated locally on the stack. In addition, the execution time overhead

of running a program with Valgrind make it impractical for use in every simulation.

On Linux versions of the gcc compiler, a special library called Mudflap can detect

array allocation errors in programs that are explicitly compiled with flags to enable

runtime array access errors. Mudflap adds guards to memory allocated on the stack

and forcibly crashes the program if a violation is detected. This approach was used

during the 2011 season to alert users that their code had memory access problems.

There are two major limitations to Mudflap. First, it is not possible to use a pointer

to memory that exists outside of the code compiled with the Mudflap flags. Special

simulation-specific memory copy routines must be used to copy any inbound infor-

175

class ZRUser : public GSPBase< ZRUser >

//.. .ZRUser definition...

#ifdef ZRSIMULATION

//Set the memory for the user class to random non-zero

values at allocation

void *operator new(sizet size) {
//Manually allocate memory of the requested size

void *p = malloc(size);

if (!p) {
throw std::bad-alloc();

}

1
2
3
4
5
6

7
8
9

10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27

//To match malloc () , delete must

void operator delete(void *ptr)

free(ptr);

}
#endif

assign a random

char *) p;

use free()

throw() {

Listing 3.5: By overriding the new operator, it is possible to randomly initialize

the memory where the user's class will be constructed. This action will simulate

inconsistent initialization of member variables on the SPHERES hardware and give

advance warning that the user should explicitly initialize data members.

176

//Iterate through the memory and

non-zero byte at each location

unsigned char *memptr = (unsigned

srand((unsigned int)time(NULL));

for (int i = 0; i < size; i++) {
*memptr++ = rand() % 255 + 1;

}
return p;

}

mation into guarded memory regions. Second, like Valgrind, there is a smaller but

noticeable overhead associated with the memory checks, particularly in routines that

run in iterative loops. During the 2012 ZRASCC tournament, Mudflap was removed

because iterative algorithm implementations resulted in computations running over

the simulation timeouts and forcing a crash of the simulation. After the simulation

transitioned to a C++ version, Mudflap was abandoned due to a combination of hav-

ing to re-implement the special memory transfer operations and the computational

overhead.

The most promising solution to date is a special compiler called Safecode devel-

oped by researchers at the University of Illinois 119]. The compiler performs initial

static analysis of the code at compile-time to check for errors and optimize runtime

error checking, then monitors the code during execution. Like Mudflap, an access er-

ror will force a crash of the system. Initial tests show significantly better performance

compared to Mudflap and Valgrind, and the code is compatible with other parts of

the program that are not compiled with the tool, allowing for targeted error checking

in just the user code for maximum efficiency.

With an array bounds checking system in place, the simulation will be able to

provide additional confidence that user code will function as intended on the satellite

hardware. Additional improvements include isolating which satellite caused a sim-

ulation crash when two implementations are running and feeding back stack trace

information to the user to isolate the direct cause of the array access error.

3.5 Zero Robotics Simulation and Compilation In-

terfaces

Over the course of a Zero Robotics tournament, teams execute hundreds of thou-

sands of simulations in a deployed version of the SPHERES simulation. There have

been three distinct iterations of the simulation interface, each of which has had an

important impact on the most recent design. This section will examine the common

177

features of the simulation as well as details from each of the design iterations.

3.5.1 General Architecture

All simulation interfaces have had several common components with varying imple-

mentations. The architecture can be divided into the following pieces, outlined in

Figure 3.13:

Task Distributor This component is the main gateway between the simulation pro-

cesses and incoming requests. The task distributor is responsible for assigning

actions to an appropriate service. The distributor is also responsible for relaying

information back to the requesting client.

Compilation Service The compilation service turns user source code into libraries

that can be loaded by the simulation to command satellites.

Simulation Service Encapsulates the SPHERES simulation in a simplified interface

for initializing parameters and user code, advancing the simulation time, and

retrieving results.

3.5.2 2009 Pilot: Downloadable Standalone Simulation

3.5.2.1 Objectives

One of the main drivers for the first Zero Robotics interface was the short time scale

for development. The project started as a rough concept in July 2009, and most of

the development took place during August 2009 and early September 2009. The main

objectives of the simulation interface were:

9 For the dual objectives of constraining development scope and for the best

possible fidelity, use the existing SPHERES simulation as much as possible.

9 Only require users to obtain freely accessible software packages.

178

Requests Results

Task Distributor

Build Results Source Code

Compilation
Service

Da A

Dynamic Loader

Parameters I Simulation Results

Simulation Service I

MATLAB
*Compiler

Runtime

Figure 3.13: All Zero Robotics simulation architectures have featured three main
components: a compilation service for creating shared libraries, a simulation service
for loading the libraries and producing simulation results, and a task distributor for
routing requests to and from the services. The example pictured above represents the
web-based simulation architecture used in the 2010 pilot and the current simulation
architecture.

179

* Create a minimal interface appropriate for high school students to run and

analyze simulations without access the MATLAB command line.

Although later projects have increased development scope considerably, the first ob-

jective of giving users access to a high fidelity simulation has become a fundamental

part of the Zero Robotics program. The remaining objectives were related to be-

ing able to distribute the simulation to students unfamiliar MATLAB environment.

Looking toward the future and the desire to scale the program to tens and hundreds

of teams without complicated licensing agreements, the tools needed to be freely

accessible.

3.5.2.2 Architecture

The 2009 simulation was only loosely based on the general simulation interface archi-

tecture. In this case the user acted as the primary task distributor, and the compila-

tion and simulation services were implemented as separate, standalone modules.

One of the first major design decisions was choosing a packaging method for

the existing SPHERES simulation. The simulation, then in the v2009 configuration

covered in Section 3.2.4, was mostly implemented in object-oriented MATLAB files, so

achieving the objective of reusing the existing implementation meant finding a way to

package and distribute MATLAB code. A toolbox called the MATLAB Compiler fit

this purpose with the ability to generate either a standalone executable or a C++, C#,

or Java wrapper around existing MATLAB code. The MATLAB compiler relies on

a freely distributable library called the MATLAB Compiler Runtime, which contains

a limited, headless version of the MATLAB engine and toolboxes. At the time of

packaging, the constituent files of the application are placed in an encrypted archive

and embedded in the executable or library. At runtime the files are extracted, and

the user interacts with the program through the command line or through custom

graphical interfaces.

The next challenge was giving students the ability to change behavior of the

simulation with custom C code. As shown in Figure 3.5, the 2009 simulation design

used compiled MEX functions sphlmatlab or sph2matlab to communicate with the

180

simulation engine. However, the MATLAB Compiler requires that all files used by the

simulation are present at packaging, and the encrypted packaging makes it impossible

to replace the MEX functions with updated versions. The solution was to pre-compile

the MEX functions but link them to shared libraries representing the user code. As

long as the users libraries maintained the same set of exported symbols (e.g. the user

gateway function setTarget()), and the libraries were present at the launch of the

program, the implementation could be swapped out with different content.

Users developed code in the free IDE Visual C++ Express with a custom tem-

plate developed by the Zero Robotics team for initializing the project files and build

configuration. A typical development cycle included the following steps.

1. Initialize the project from the template.

2. Develop new code in the provided set Target.c source file.

3. Compile the code for testing.

4. Move the resulting shared library to the executable location.

5. Start the executable and run a simulation.

The simulation included a limited graphical interface for performing initial positioning

of the satellite and controlling the execution of tests. A 3D visualization ran during

the simulation run, and additional plots could be created to view the results after

completion of the tests. Figure 3.14 shows a screenshot from the simulation GUI.

The final component of the architecture was a pluggable zip archive containing

scoring scripts for various games. Although most of the behaviors of the game were

compiled into the simulation package, different scores could be calculated by interpret-

ing the motion of the satellites. The game archive was extracted by the simulation

executable at the start of a test run, then triggered at test initialization to reset

variables, at each step of the simulation to log information, and at the end of the

simulation to calculate the final score.

181

Figure 3.14: During the first Zero Robotics season, users ran simulations with a
downloadable GUI wrapper around the SPHERES simulation. The interface allowed
repositioning of the satellites in the test volume, simulation execution controls, and
basic data analysis with plotting tools.

3.5.2.3 Limitations and Lessons Learned

As an initial stepping stone, the first simulation interface was very successful in giving

high school students a gateway to program SPHERES, but it also illuminated many

significant weaknesses in the approach. The following items were important lessons

for designing the next simulation iteration.

Despite the convenience of a local simulation environment, many of the challenges

related to maintaining the code deployment. The setup procedure required installa-

tion of at least three different programs and required significant internal development

time to ensure a consistent, correct configuration. Furthermore, any updates to the

game or software required users to download and install the latest version. Even with

just two participating teams it was difficult to ensure all users had the latest versions

of the software running. At the end of the season, one of the main requests by the

pilot teams was to move the development environment online where minimal setup

would be required to jump into programming.

The difficulties with updating the simulation were further compounded by the

182

packaging method. Any change to the internal satellite code required recompilation

of the MEX functions and redistribution of the simulation. Users were also forced to

quit the simulation executable before replacing the shared library. The long load times

related to the startup of the MATLAB Compiler Runtime made the development cycle

overly tedious. Making the game implementation part of the simulation was a clear

mistake and ultimately motivated the development of the dynamic library loader now

used in the simulation.

The remaining problems were less critical but still important. Users were locked

into developing on the Windows operating system by the choice of Visual C++ as

a development environment. This approach also meant that some of the coding

limitations present in the SPHERES compiler were not enforced, and components

of the submitted code had to be modified to compile. Lastly, the data analysis

and playback tools were quite limited. With only start, pause, and stop commands,

repeating a portion of a simulation run required a restart of the simulation or playback

with a 2D recorded file.

3.5.3 2010 Pilot: First Web-Based Simulation Service

3.5.3.1 Objectives

The suggestion to move the Zero Robotics simulation to a web-based interface be-

came an integral part of the concept proposed for DARPA InSPIRE version of Zero

Robotics. Between the start of the DARPA InSPIRE program in 2011 and the end

of the 2009 pilot, two additional pilot programs took place as demonstrations of the

web-based architecture. The first program, a Zero Robotics middle school tournament

held as part of the Summer of Innovation 2010, debuted the first web-based version of

the simulation. The fall 2010 high school tournament, the first nationwide pilot, also

used the prototype simulation interface. Participation jumped from 10 teams in the

summer to 24 teams in the fall. To transition between a downloadable executable,

and a web-based, multi-user service, several new objectives were added:

9 Create a version of the simulation that can be distributed to a Linux-based

183

server environment.

" Separate the game implementation from the simulation and allow for multiple,

easily deployable games.

" Add the capability to handle multiple simultaneous requests for simulations

with minimal turnaround times.

" Robustly handle simulation crashes to maintain availability without manual

monitoring.

" At every point possible in the program, the code developed on the platform

should be compatible with the flight hardware and configured to run in the

final tournament.

3.5.3.2 Architecture

There are several features of the 2010 simulation architecture that have remained

key components of all future architectures. The first feature addressed the objectives

of creating a modular, distributable version of the simulation. Starting in 2010, the

SPHERES simulation incorporated the dynamic loader discussed in Section 3.3.6,

making it possible to load SPHERES programs outside of the simulation package

without any initial linking. To facilitate faster compilation times, the shared library

was split into several components detailed in the description of the current architec-

ture below. From this point forward it was possible to distribute games separately

from the simulation.

The second part of the system, the compilation and simulation service architec-

tures, addressed the objectives of supporting multiple users and robust simulation

execution. Instead of using the MATLAB Compiler to generate a standalone ex-

ecutable, the simulation was generated into a Java wrapper library with exposed

methods for initializing and stepping through the simulation. Crashes in user code

loaded in the simulation had the unfortunate side effect of propagating all the way

to the Java Virtual Machine running the library, so it became necessary to isolate

184

the process running the simulation from the web server. This naturally led to a dis-

tributed architecture where multiple participating processes were connected by an

interprocess communication link.

The layout of the 2010 prototype website architecture is shown in Figure 3.15.

Duplicate simulation processes, also called instances, were individually started and

supervised by an operating system process monitor. If any instance crashed, it was

restarted automatically by the process monitor. Java's Remote Method Invocation

(RMI) provided the interprocess communication architecture between the simulation

instances and the main web server. At startup, each process registered itself with a

centralized RMI registry, and the web server, acting as a task distributor, maintained

a pool of available simulation instances by periodically querying the registry. For each

incoming request, the web server atomically marked the instance as unavailable, then

dispatched a simulation job to the instance. If a failure occurred, the failed instance

would be removed from the pool.

Separate from the simulation process, the web server contained a module for

compiling user code, either for quick checks in the IDE or for full simulation runs.

The compilation process first invoked an external GNU makefile in a separate process,

then monitored the outputs of the compilation for errors. Successful completion of

the compilation produced a shared library in a temporary folder on the filesystem to

be used by an upcoming simulation request.

3.5.3.3 Limitations and Lessons Learned

The 2010 design successfully prototyped the key components of a distributed simu-

lation architecture. The main limitations of the system were related to scaling issues

with the prototype:

e The combination of RMI-based interprocess communication and the use of the

filesystem for transferring files from the compilation service to the simulation

service constrained the simulation system to operating on a single server.

e To preserve processing time for the web application server, at most 3 simulation

185

- libsphX.so (simulation shared lib)
. SPHERES DSP image (for code size)

Figure 3.15: The Zero Robotics 2010 website operated on a single server with com-
munication between several independent processes.

instances could be launched at once. This limited the simultaneous user capacity

of the website, especially during peak usage times.

3.5.4 2011 Onward: Current Design

3.5.4.1 Objectives

In addition to incorporating objectives and lessons from the previous architectures,

the primary objective of the present design is to provide a scalable simulation service

for Zero Robotics. The architecture is intended to accommodate growth in team

participation over many years.

3.5.4.2 TopCoder Simulation Farm

The current implementation is heavily integrated with a custom, distributed process-

ing framework developed by a TopCoder member, known as the Farm. For responsive

scaling, the Farm runs on virtual machine nodes instantiated on Amazon's Elastic

Compute Cloud (EC2). New nodes can be added or removed from the system at

will. This architecture is highly cost effective because the computing cluster can scale

to meet demand during the season and drop down to a minimal configuration for

186

off-season loads without the purchase of hardware.

When a new node is created from a template Amazon Machine Image (AMI) , it

can be configured to serve one of two roles:

Controller A single node dedicated to distributing requests. This node is equivalent

to the task distributor in the general architecture.

Processor Multiple nodes for executing simulation or compilation requests. Proces-

sors can provide both the compilation and simulation services in the general

architecture.

Once a controller has been activated, it can accept connections from clients over

a custom TCP/IP communication protocol accessible through a Farm API. Each

client identifies itself with a unique string, which is mapped to a database table on

the controller. By adjusting the client configuration in the database, clients can be

assigned different priority levels. For Zero Robotics, each server connected to the

simulation farm uses a separate client for compilation and simulation, allowing for

compilation and simulation requests to be scheduled with different priorities.

The controller node also typically runs another process called a deployer which

is responsible for distributing game libraries and common tools to the processors

when they start. A deployment starts by configuring a file and folder structure

on the deployer node to be replicated on all processor node, then incrementing a

configuration version. An update can be triggered by restarting the processor nodes,

each of which checks its latest configuration version with the deployer upon startup

and downloads the latest version if necessary.

3.5.4.3 Zero Robotics Simulation API

Just as with the GUI interface from the 2009 pilot, a simplified interface is necessary

for bridging the SPHERES simulation with external applications. The Zero Robotics

Simulation API is an additional layer around the MATLAB wrapper for the simulation

that collapses the steps for running the simulation into two basic operations:

187

init 0 Perform initial startup and loading of the simulation from a specified config-

uration set. Includes loading of the user's shared libraries.

step() Advances the simulation forward by a configured step time. Steps are ex-

ecuted until the simulation completes as indicated by a flag in the simulation

API.

Both functions operate on a set of simulation parameters that configure the specifics

of the simulation execution. The configuration is designed to be composed of mostly

optional arguments while giving fine-grained control over the behavior of the simula-

tion. For example, it is possible to correctly initiate a simulation by simply supplying

the location of the shared libraries containing SPHERES code and specify the starting

position of the satellites. Alternatively, for detailed control, it is possible to directly

modify any exported global variable in the memory of the loaded shared library,

constrain the dynamics from 3D to 2D, or change the total simulation time.

When the simulation completes, the API extracts a JSON-encoded telemetry

string from the simulation engine to be stored in the website database for review

by users. It also records the standard SPHERES test result numbers for immediate

feedback about the success of a test.

The Zero Robotics Simulation API and the MATLAB Java library are distributed

as archive files to all nodes of the Farm. Updates to these libraries are only necessary

when a component of the simulation or the API changes.

3.5.4.4 Game Libraries

Only user code is expected to change between simulation runs, so Zero Robotics

games are pre-compiled and deployed to the simulation farm as static libraries. The

libraries contain:

" SPHERES Core and SPHERES Core Wrapper

" Zero Robotics API

" Game-specific API

188

A separate library is compiled for each satellite and distributed to the farm processors

along with header files for the game implementation. At link time the Farm proces-

sor combines the game static library to produce a shared library for loading by the

simulation.

3.5.4.5 Code Size Estimation

The space allocated for user programs is tightly controlled to ensure the final imple-

mentations will fit in the available flash memory on the SPHERES satellites. A careful

search for an accurate code size estimation tool took place during the 2011 season

when code size constraints first became problematic. The first approached attempted

to determine a scaling ratio between the size of the object code for the user's program

from the simulation compiler and the size of the user code in the SPHERES images.

No consistent relationship could be determined that led to predictable results, likely

due to the very dissimilar processor architectures and compilers.

Ultimately, the only consistent way of creating a code size estimate was to follow

the exact same compilation steps used to prepare a SPHERES image for download

to the satellite. The implementation of this strategy, still in use on the current

architecture, requires executing the TI DSP compiler, a Windows executable on the

Linux-based processor nodes. The compiler runs under a Windows compatibility

layer called Wine , driven by the same GNU Makefile that compiles the user code.

The user's program is compiled and linked with a SPHERES Core and game static

library (also deployed along with the simulation static libraries), then converted into

a SPHERES flash image. The utility that prepares the flash image produces a total

size for the image.

Estimating the size of the user code requires several more steps:

1. Before deployment, the game developer compiles the SPHERES image with an

empty user program to calculate the base project size, sizebase. The initial code

allocation is

allocbase = (sizemax - sizebase) /n

189

where sizemaX is the largest possible SPHERES program, currently 57344 words,

and n is the total number of satellites in the final ISS image.

2. The game developer also compiles the project with a stub implementation con-

taining calls to all API functions and commonly used functions. This is required

because the compiler will not include the object code for these functions if they

are never called in the program. This may lead teams to the mistaken as-

sumption that calling specific API functions will result in more code usage than

others. The resulting code size is the additional implementation "cost" of the

API. Dividing by the total satellites gives an adjustment to the allocation

sizeapi = (sizestub - sizebase)/n

allocadjust = allocbase - sizeapi-

In this way, all users contribute to the overall cost of the API. This is the

most conservative approach, but it risks significantly overestimating the usage

and needlessly constraining the user allocation. For example, allocbase for the

game RetroSPHERES was approximately 1550 words, while sizeapi, amounted

to nearly 240 words per team. Nonetheless, students were allowed approxi-

mately 1600 words total due to careful monitoring of the code size of each

team as the final submission approached. The adjustment step requires care-

ful judgment from the game developer about which functions to include in the

API estimate. In general, it is best to start with a conservative estimate, then

periodically re-evaluate the code size based on tests with actual user code.

3. The static library distributed to the Farm processors should contain the stub

implementation. Once the user code is compiled and linked to the static library,

the code size estimate is determined using

sizeuser = sizeimage - sizestb.

The final code size is usually presented to the user as a percentage of the total

190

allocation

%alloc = sizeuser/allocadjust.

In addition to accurately determining the code size of the user program, the im-

age creation approach has the major benefit of checking for compatibility with the

SPHERES hardware during every code size estimate. This ensures that the final

code submitted by competitors for the ISS finals will be ready to begin testing on

hardware.

3.5.5 Step-by-Step Simulation Outline

To summarize the complete process for running a simulation on the distributed farm

interface, this section follows the actions from initial request to final results. Several

additional details have been added to clarify the actions of the web server.

1. A user makes a request to run a simulation from the web interface. On the

web server, the user's project is inserted into a code template. The selected

opponent's code is also assembled into a template.

2. The web server invokes a combined compilation and simulation request using

the Farm API. The templated code is passed to the Farm controller along with

specific parameters for the simulation run. After posting the request, the server

immediately returns a response to the user.

3. The Farm controller checks for available processor nodes to handle the request.

If no nodes are available, the request is queued, otherwise it is sent to the

processor node.

4. The processor node starts by compiling the user code into a shared library:

(a) Both code implementations are written to a temporary folder on the virtual

machine filesystem.

191

(b) The processor launches a shell process to execute a GNU Makefile. The

Makefile is supplied the temporary folder containing user-specific code and

the base folder for the game implementation.

(c) The user code is compiled into an object file, then linked with the game

object files in the game implementation to create a shared library.

(d) The user code is also compiled with the TI DSP compiler to ensure it is

valid for SPHERES. Code size limitations are not enforced at this stage.

5. Next, the processor invokes the simulation

(a) The processor launches a separate Java executable containing the SPHERES

simulation library. This process separation serves the same purpose as

the prototype RMI implementation for separating the simulation from the

calling process. If the simulation hangs, the processor will kill the child

process, and if it crashes, the processor will report an error.

(b) Simulation parameters, including the temporary location of the satellite

shared libraries are passed to the simulation.

(c) The processor remotely invokes init 0 then step() until the simulation

reports that it is done. At each step iteration, the processor node commu-

nicates the simulation time back to the controller, and in turn back to the

web server. An asynchronous handler on the server updates the status of

the simulation in the website database. The handler is also notified in the

event that the simulation crashes.

(d) The processor extracts the final telemetry results and remotely signals

the web server that the simulation has completed with specific test result

numbers. The web server updates the database with the full telemetry log.

6. The processor signals its availability and awaits the next request.

An important aspect of this process is the asynchronous nature of the requests passing

from the web server, to the controller and processors, and back again. By returning

192

a response when the user first posts a request for simulation, the web server releases

a thread it is consuming while the response is being handled. If it instead blocked

while waiting for the entire simulation to complete, the server could rapidly deplete

the pool of threads available for handling requests, leading to load-related crashes.

3.6 Zero Robotics IDE

A unique feature of the Zero Robotics platform is its built-in Integrated Development

Environment (IDE). Unlike most robotics programs, Zero Robotics code development

takes place entirely online, and the IDE has been gradually enhanced over time to

take advantage of its integration with the rest of the website. The editor can function

in two modes: a text-based IDE, primarily for high school students, and a graphical

block diagram editor, primarily for middle school students.

3.6.1 Graphical IDE

3.6.1.1 Overview

Two iterations of the graphical IDE have been designed and implemented by James

Francis of Aurora Flight Sciences, a Zero Robotics partner. The editing environment

contains a simplified block diagram programming language used to linearly construct

a sequence of actions for the satellite to follow during each iteration of the loop()

function. There are several basic goals of the programming language, aimed at helping

to introduce students to programming:

e Always produce compilable code.

e Prevent common coding mistakes like array overflows and infinite loops by con-

struction.

e Provide a way to preview the C representation of a block diagram program.

193

(gem

L OV. 0-0)

0.0 0.0
bw4ft

dOCkCVftV1OW,

X

Z
VX
V .. Y

0 C Cde

MoW *"n Waim *0

..-

..

Figure 3.16: The 2010 Summer of Innovation Graphical Editor was the first prototype
of the Zero Robotics graphical IDE. Users selected operations from a set of blocks
containing API commands and logical operations to construct a horizontal diagram
representing a single iteration of the loop 0 function.

3.6.1.2 2010 Summer of Innovation Prototype

The 2010 Summer of Innovation graphical editor was the first IDE launched on the

Zero Robotics website. The IDE ran as a standalone web application embedded

in a separate content management system (Joomla). A screenshot of the editing

environment is show in Figure 3.16. Users started with a simple project management

page (also accessed through the Project Menu button) where they could restore a

previous project or create a new one. Every time the user hit Save or executed a

simulation via RUN, the IDE would save a new revision of the project. Users could

access the full history of incremental saves.

To create a satellite program, users selected an empty box in the block diagram,

then clicked an item from the palette of available commands. The editor added

a line connecting the preceding control block to indicate the direction of program

flow. Conditional statements like if blocks created a branching structure in the

diagram. Arguments to API functions were selected from drop-down menus, and basic

expressions could be written by selecting operator symbols. Basic editing functions

194

I

like copy, paste, and undo could be used to manipulate the blocks in the diagram.

The graphical editor also dynamically generated C code from the block diagram in

real time. Users could view the C code representation of the program at any time by

expanding a drop-down panel at the bottom of the screen.

Several limitations of the initial prototype prompted further development of the

graphical editor:

" Each update to the diagram involved a complete redraw of the underlying

HTML table, resulting in slow performance for large programs.

* The horizontal format made long programs with many branching statements

run well off the screen requiring scrolling to place new blocks.

" The initial API limited implementations to very simple programs.

Despite these limitations, the prototype was very successful in its initial deployment.

Students as young as 5th grade were able to participate in developing code with the

interface.

3.6.1.3 Current Design: Waterbear Implementation

As part of the development for the 2011-2012 DARPA InSPIRE program, the graphi-

cal editor interface has been upgraded to address prior limitations. The new version is

built on top of Waterbear 5 , a block diagram programming language originally created

for writing JavaScript. The graphical elements and user interaction elements of Wa-

terbear have been modified to preserve the original code safety and code generation

features of the prototype graphical language.

In this version of the editor, the user drags puzzle piece shaped blocks onto a

blank canvas. Programs are constructed vertically with a similar layout to the under-

lying C++ code. Special blocks are available to wrap logical statements and iterative

operations, and the overall toolset has been significantly expanded to include most of

the Zero Robotics API. As part of the game configuration, game developers can list
5 http://waterbearlang.com

195

Figure 3.17: The current graphical editor is based on a JavaScript editing tool called
Waterbear. Programs are constructed by dragging puzzle-shaped blocks to form a ver-
tical program. Functions, arguments, and conditional statements are all represented
as different types of blocks.

all game-specific API functions, and they will also appear in the toolbox. Arguments

are represented as blocks that fit into vacant slots in the functions. The editor en-

forces type agreement when arguments are dropped into a space, and more complex

statements can be created by layering operators and additional arguments together.

An example user program is shown in Figure 3.17.

For improved modularity of the program, users may create multiple pages, each

containing its own diagram. Each page is a separate procedure that can be configured

with arguments and return types. Advanced users can even mix C++ and graphical

programs by adding pages containing text. When a user creates a new graphical

page, an additional block becomes available in the toolbox, and the user may supply

arguments to and receive values from the custom function, just like the rest of the

blocks.

Users may also declare global variables accessible on all pages of the diagram.

Variables can be the target of an assignment, or they can be dropped into slots as

arguments.

3.6.2 Text-Based IDE

3.6.2.1 2010 Prototype

The first Zero Robotics text IDE was deployed for the 2010 nationwide pilot. The

objectives of the editor were:

e Add support for editing, compiling, and simulating C code from an online editor.

9 Allow for multiple, user-defined functions.

e Maintain interoperability with the graphical editor.

196

The last two objectives were intended for giving users a natural progression between

editing in a graphical environment to editing C code directly, and in many ways,

dictated the initial design of the text editor.

Shortly after the end of the 2010 Summer of Innovation program, the prototype

graphical editor was enhanced with the concept of procedures, functions with a care-

fully controlled prototype declaration. Procedures were represented as separate tabs

of the IDE with their own graphical editing canvas. By default, each program initially

contained ZRInit () and ZRUser(), the original API entry points. Additional proce-

dures could be added to the program by filling out a dialog to create the function

prototype. Prototypes were validated with the graphical editor, then registered as

new blocks in the program.

To add text editing capability, the IDE extended the idea of procedures by replac-

ing the graphical editing canvas with a syntax-highlighting text editor. The process of

creating a new procedure remained the same, except users were provided the option

of selecting between graphical and text editing modes. In this way, text procedures

also appeared as blocks in the graphical editing toolbox.

This approach was not without drawbacks. While the user was free to specify

an arbitrary number of arguments, their types, and the return type of the procedure

were constrained to maintain compatibility with the simplified inputs and outputs

of the graphical editor. For example, during the 2010 tournament it was initially

impossible to pass an array as an argument to a procedure. Adding support for more

complicated types often broke compatibility with the graphical editor.

In retrospect, these objectives may have overly constrained the design. Most high

school participants have either elected not to use the graphical editor, or due to other

development priorities, it has not been possible to have both editing systems working

at the same time. In the transition to C++, compatibility with the graphical editor

was partially dropped in favor of releasing constraints on the text editing environment.

197

3.6.2.2 C++ Text Editor

The current text editing environment significantly simplifies the interface for con-

structing programs in the IDE. Instead of dividing the project into procedures, the

user is now given full control over function and variable declarations. Code is entered

onto a series of pages, user-defined logical divisions of the program. Before compila-

tion, the pages are sorted alphabetically and simply concatenated together. As noted

in Section 3.4.3, the user code is embedded in a C++ class body, so naming conflicts

cannot occur between user-defined functions. With this interface, users may access

many features of the C++ language, including declaration of custom classes6 .

Partial compatibility with the graphical editor is maintained with the philosophy

that users will tend to progress from graphical projects to text projects. When cre-

ating a project, a user may choose to start the project with the graphical editor or

the text editor. Text projects start immediately with a text editor containing empty

loop() and init() functions, while graphical projects start with the entry point

functions as graphical procedures. In both modes the user may append new pages to

the project with the option to make them text pages or graphical procedures. New

procedures still utilize the dialog-based function declaration system and are regis-

tered with the graphical editor to appear in the block diagram toolbox. Text pages

are simply appended to the project and their contents cannot be referred to from

graphical programs. However, if a graphical procedure is converted into a text page,

the function definition stays in the graphical toolbox, allowing for a mix of graphical

and text code.

3.6.2.3 Project Revision Control and Collaborative Editing

The latest editing environment implements a set of features to enable multiple users

to simultaneously edit a project, merge changes, and address conflicts. Several of the

initial concepts for collaborative editing were developed by Thai in [70].

'Since any declared class resides within the body of the surrounding code template class, it is
considered a C++ inner class and must be declared at the top of the program (first page alphabet-
ically).

198

Most web-based collaborative editing environments, such as Google Drive TM, focus

on synchronizing the state of the collaborators' screens with as little delay as possible.

In contrast, code editing poses a unique challenge because immediately synchronizing

text between editing screens will almost certainly break the ability to compile the

program. Even if compilation errors are resolved, if collaborating authors simulta-

neously change different regions of the same program, they may break each other's

assumptions about how the program is functioning, leading to complicated debug-

ging scenarios. In [281, Goldman partially addressed the compilation issue by only

merging changes from programs that compiled. The approach depends on continuous

compilation of the project by the server back end and must still address the program

behavior conflicts. In situations where the loop from making changes in the code to

seeing outcomes is on the order of seconds, this approach might be feasible. For Zero

Robotics, processing a single simulation takes approximately 10-30 seconds, and a

cursory review of the results can take a minute or more, so the loop hinders real-time

code merging.

The current approach relies on a mix between traditional repository-based version

control systems and real-time communication enabled by a web presence. First, the

editor implements a version control system similar in style to systems like Subversion

or CVS. When a user creates a new project, the server establishes a special version

of the project to be considered as the trunk or repository copy. Any user opening the

project for the first time triggers the creation of a separate working copy, based on

the latest revision of the project.

As the user works, the IDE periodically saves the project, preserving changes in

the event the user is disconnected from the website. The saves are persisted in the

user's working copy.

When the user is ready to share changes with other collaborators they issue a

commit command and select a list of pages they wish to post the server. The server

copies the specified pages into the project trunk and increments the revision number

of the project. Before a commit, the user is required to perform an update operation

to retrieve the latest code for the selected pages. Upon update, the IDE will attempt

199

to automatically merge any changes from the server into the local copy for the selected

pages. A simplified difference and merging tool is provided for completing this task,

including resolving conflicts between the procedure versions. At any time the user

may also choose to revert changes to a page to match the corresponding parent in

the trunk. Due to the ability to partially commit the project, different pages may

have parents at different revisions in the trunk. An indicator on the upper right side

of the page shows the user the revision number of their page and the latest revision

of that page.

For real-time collaboration, the editor takes advantage of the simultaneous pres-

ence of multiple users working online. Special indicators, based on the status lights

created by Thai, help to alert the user that changes are taking place. There are three

types of status lights, intended to convey consistent messages:

No Light No changes have been made.

Green (All Clear) Local changes exist, but the user may commit without conflict.

Yellow (Warning) Another user is currently editing the page.

Red (Potential Conflict) There have been simultaneous edits of the same page. It

may be necessary to address conflicts when merging the pages.

Since merging conflicting changes can be quite complicated, the general philosophy

of this approach is to provide full freedom to simultaneously edit the projects, while

providing guidance to the users that they may be entering into potential conflicts.

Editing status is communicated between clients via an asynchronous connection

to a websocket server. At IDE startup the client initializes the connection and sub-

scribes to a channel specifically designated for the current project, similar to a chat

room. Whenever a user edits a page, the client posts an update to the socket server

containing information about which pages are being actively edited. All other clients

asynchronously receive the update notifications and update their status lights based

on the information.

200

The clients also transmit a special patch, computed as the difference between the

current page and the parent revision in the trunk of the project. Other clients can

apply the patch to a page to construct a real-time preview of the text another user

is typing. The patching behavior can be problematic if users never commit their

projects and the patch ends up containing most of the text in the program.

3.7 Data Analysis Tools

3.7.1 3D Visualization

The Zero Robotics visualization is the primary tool available for reviewing simula-

tions'. The visualization is an essential tool for Efficient Inquiry because it allows

teams to review simulations without re-running the test.

After a simulation completes, the web server persists telemetry data produced by

the satellite, including:

State Estimates Telemetry from the SPHERES state estimator. Used to show the

user where the satellite thinks it is located.

Debug Data All Zero Robotics games transmit game state in 32 byte telemetry

packets known as debug packets. All information needed to synchronize the

game between satellites or update the visualization with game information is

transmitted here.

User Data The user may optionally send up to 7 floating point values for custom

analysis.

Text Data The simulation captures text printed by DEBUG statements and stores

it in the telemetry.

Separate time stamps are associated with the state, debug, and text data. To cre-

ate an animation, the visualization constructs a timeline starting with the first time
7The first online visualization was first created for the 2010 Summer of Innovation program by

Aurora Flight Sciences and later updated by the author.

201

Key Information:
Position, velocity,
rotation rates, game-
specific variables

Text Console:
Display custom text-
based information
for user-driven
analysis

Time controls: Replay or drag 3D Viewport: Review from different
back and forth with time bar perspectives, animations of game

elements

Figure 3.18: The Zero Robotics 3D Visualization

stamp and ending with latest time stamp. The sequence of states is pre-processed

to establish a set of keyframe points for each time the satellite transmitted a state

telemetry packet. During playback, a built in tweening engine automatically inter-

polates the states between the keyframe points to smooth the animation at each

rendering update. Debug telemetry is also inserted into the timeline as a series of

events. As the playback sweeps past the time when telemetry packet was sent, the

visualization triggers a callback in the game-specific animation code to perform an

action. Using the telemetry, any component of the display can be updated.

An example view of the visualization is shown in Figure 3.18, highlighting the

main user interaction features. The results can be viewed from multiple angles, and

the animation can be played at accelerated speeds. A slider bar at the bottom of the

viewport allows the user to drag time forward and back to repeat a specific slice of

time. User debug text is printed to a console at the time steps associated with the

text.

3.7.1.1 Report Tool

A second tool to aid Efficient Inquiry is the Report Tool. The tool complements

the 3D visualization with a more quantitative view of the data in the form of line

202

View SImulation Result Report

Show -SPHI SPH2

. Xl

- - -

Simulation Res&At Reoart

L.100

Figure 3.19: The Zero Robotics Report Tool

plots of telemetry data. The plots can include up to 7 different user-specified data

values as well as the satellite state. Important parameters for each game such as the

score can also be displayed. An example plot showing the X position versus time in

a simulation is shown in Figure 3.19. A user can select data for both X and Y axes

to analyze the behavior of a variable with respect to time or with respect to another

variable.

3.8 Zero Robotics Website

Since much of the activity for Zero Robotics takes place online, there is a unique

opportunity to centralize both the resources for the program and the online com-

munity. The main site contains resources for developing code, running simulations,

and analyzing results, and it is the dedicated launching point for the Zero Robotics

tournaments. The site includes:

Public Information Page Displays information about currently active tournaments,

basic information about the Zero Robotics program, and clear instructions

about how to get started. It is important to make this component of the website

easily readable and visually attractive to draw guests into the site.

203

SPell Coesol Log

Helo Wed" 0 39$436

Hello WOdd40 388269
Helo Wodd0, 388338
Hell Wodd 0,347876

$PH2 Congoe Los

Tutorials A collection of organized, sequential lessons to climb the learning curve of

programming for Zero Robotics. The tutorials also introduce relevant concepts

in math and physics, then tie them to programming examples.

Forums Dialog between users can greatly boost the ability of the site to respond

to user inquiries and build a sense of community around participating in the

activity. In a 2010 survey of FIRST robotics teams, 74 percent of participants

actively used the popular but independent forum Chief Delphi to exchange

information [651. By focusing on building an effective forum tool from the out-

set, Zero Robotics keeps discussion under the same organizational banner to

take advantage of site integration features like profile linking and tournament

performance statistics.

Support While user to user support facilitated by forums takes care of minor learning

curve issues, bugs and website performance problems need to be directed to the

website managers. A ticket-based support system allows support staff to track

and respond to requests initiated by users of the site.

Styling and implementation of the website were accomplished using TopCoder crowd-

sourcing competitions. These competitions created the cloud-based server architec-

ture for hosting the website along with the code implementations of the website com-

ponents. More information about the website components and their development can

be found in the Nag's study of crowdsourcing applied to the Zero Robotics platform

[53].

3.9 Summary

Through the design of the Zero Robotics platform this chapter has established the core

components necessary for a virtual robotics competitions based on a real hardware.

The components can be generalized as:

. A detailed model of the robot (the SPHERES simulation)

204

" A programming interface for controlling the robot (the Zero Robotics API)

" A user-friendly framework for connecting the model and programming interface

(the Zero Robotics website and compilation infrastructure)

While the components have been deployed to an online web-based environment for

the broadest possible access, it is important to note that a similar framework could

be developed for offline use as in the first Zero Robotics season, though it would lack

the benefits conferred by an online presence.

Based on accumulated lessons from many iterations of SPHERES simulations, the

current simulation contributes several essential characteristics for effective design of

simulations in the context of a robotics competition platform:

" Software-in-the-Loop Capability. To increase the chance of success on the hard-

ware platform, the code running in simulation must be easily transferable from

the simulation environment to the robot.

" Modularity and Dynamic Loading. Separating the simulation into a generic

core executable containing only the dynamics and minimal software interfaces

and a separate module to load user-specific code saves an immense amount of

compilation time for each simulation run. The modular implementation also

allows new games to be deployed without changing the simulation.

" Operating System Level Software Model. Timing and execution should be mod-

eled with sufficient detail to ensure consistent execution on the hardware. Based

on the thread synchronization method in section 3.3.5.3, the SPHERES simula-

tion closes the gap as much as possible between software running in simulation

and software running on the robot while preserving execution speed.

" Compromise Between Complexity and Ease of Future Expansion. The current

simulation makes use of the modeling framework Simulink for easier customiza-

tion of the satellite dynamics model. Where Simulink is overly restrictive,

mainly for the SPHERES Core model, workarounds are implemented in C++ to

205

provide better fidelity. This compromise helps to keep the simulation accessible

to the SPHERES research team and aids fast turnaround changes to the model.

s High Portability. By using code generation and cross-platform C++ libraries,

the simulation can be transferred between operating systems. This is critical

for simulations that run on cloud computing infrastructure primarily based in

Linux, or when making the simulation freely available for download by a broad

spectrum of PC users.

The Zero Robotics API contributes a simplified programming interface for controlling

6DOF satellites. The API includes a layered set of controllers that promote Incre-

mental Difficulty with options for selectively commanding position, velocity, or low

level forces and torques. Users have access to a simplified attitude representation or

can choose advanced control with quaternions. With a layer to emulate the double

integrator dynamics of the satellite the API should be general enough to apply to

other holonomic systems like quadrotors or mecanum-drive robots provided some of

the degrees of freedom are constrained.

Lastly, the combination of online programming and simulation environments is

still quite unique among modern web applications. In the years spanning the imple-

mentation of the Zero Robotics platform, a large variety of online IDEs have emerged

in a host of programming languages. The overall architecture for these programs

likely follows a similar pattern to the Zero Robotics IDE and back end processing

farm, but few if any connect the compiled code to a dynamic simulation. This addi-

tional integration enables the website to be a centralized, zero-configuration resource

for learning and experimentation.

206

Chapter 4

Zero Robotics Scoring Systems

4.1 Introduction

Chapter 2 established a set of guidelines for designing and scoring individual Zero

Robotics games and matches, but the issue of evaluating performance over the course

of a competition is the subject of this discussion. Each of the four years of Zero

Robotics tournaments has involved a different method of competition scoring, driven

by the growth of the program and shortcomings identified in previous seasons. One

of the main contributions of this thesis is the development of a continuous ranking

system for the platform called the Zero Robotics Leaderboard. The Leaderboard

improves upon previous Zero Robotics ranking systems by:

e Providing teams multiple opportunities to submit code, compete against oppo-

nents, and evaluate performance throughout the competition.

9 Spreading computational load for ranking teams throughout the competition

season.

9 Computing nearly instantaneous estimates of team standings.

9 Supplying teams with tools to analyze performance at each submission.

This chapter first reviews the history of Zero Robotics competition scoring sys-

tems, then presents the most recent Leaderboard scoring algorithm adapted from

207

Whole History Rating, a Bayesian skill rating system developed by Coulom in 115].

Implementation-specific details to improve the stability and responsiveness of the

algorithm are discussed. Performance of the algorithm is reviewed from the per-

spectives of accuracy, user experience and programmatic outcomes for the 2012 high

school tournament. The discussion concludes with recommendations for future im-

plementations based on the 2012 results.

4.2 Other Zero Robotics Ranking Systems

4.2.1 ZRHS 2010 and ZRHS 2011: Round-Robin Competi-

tions

In both 2010 and 2011 seasons, all-to-all round-robin competitions were used to rank

teams for ISS down-selection. Participants in the 2010 high school tournament first

competed in a live 2D competition from the MIT flat floor facility in a double elimi-

nation bracket, then competed in a simulated round-robin tournament in 3D. A mix

of scores based on rank in the 2D competition and the total wins in the round-robin

phase selected the finalists to proceed to ISS.

The 2011 game AsteroSPHERES included a cooperative component where teams

could work together to optimize scores in individual matches. For this to be a benefit,

the competition-wide scoring system had to reward high-performing teams based on

results from multiple matches. The solution was a single round-robin tournament per-

formed at the end of each competition period. Teams were ranked by their cumulative

score over all matches.

After running two full tournament based on the round-robin system, the following

drawbacks were identified:

9 The final batch simulation took many hours to run and resulted in thousands

of simulations to store on the website. For the number of teams in the 2011

competition, this did not present a problem, but it presented a concern for

future growth of the program.

208

" Teams only had one chance to make a strong submission. A small error or

unanticipated situation could result in poor performance. The likelihood of

these events was increased because the teams only encountered other team sub-

missions during the competition with no chance to revise code.

" Balancing issues and bugs in the game were not fully realized until after official

results were released to the teams. The first chance to observe real teams

competing in the competition came at the end of the competition period, and

any corrections to the game or scoring algorithm required a retraction of official

results.

While the system served its purpose for scoring HelioSPHERES and AsteroSPHERES,

the downsides warranted additional exploration of alternative scoring systems.

4.2.2 ZROC 2012: Relative Scoring Leaderboard

The main deficiencies of the round-robin competition format stemmed from the em-

phasis on a one-shot batch based on a single submission from the teams. To distribute

scoring over many matches other gaming environments implement real-time central-

ized scoring systems to rank participants as they compete. The list of rankings, or

leaderboard, gives competitors continuous feedback about their current performance

and motivates constant improvement while providing an opportunity to recover from

mistakes.

The 2012 Zero Robotics Autonomous Space Capture Challenge (ZRASCC) fea-

tured the first leaderboard-style scoring system used in a Zero Robotics tournament.

The Zero Robotics Leaderboard differs most with gaming leaderboards by the fact

that the competitors are autonomous programs. To compete on the Leaderboard

teams make a submission consisting of a program-alternatively called a player-to be

scored. The submission is paired with several other teams and simulated matches are

conducted to produce a sample of match outcomes. A ranking algorithm processes

the match outcomes to establish the scores. Once the submission has been entered

on the Leaderboard, it stays active to "defend" its position indefinitely. If the team

209

is matched with another submission, their player competes with the new submission,

and the ranks of both teams are updated.

ZRASCC was an algorithmic challenge to optimize fuel consumption while docking

with a tumbling target, but individual matches at each submission were run head-to-

head against an opponent. One of the teams in the match selected a set of parameters

for the tumbling target, then both players worked independently to complete the

docking maneuver. The final score used for ranking was the difference in the fuel

consumption between the two players. Teams were ranked on the Leaderboard by

their average point difference over all matches. At the end of each of the four weeks

in the tournament, the Leaderboard was reset and the challenge was modified to add

additional problems to solve.

The relative scoring format was intended to encourage teams to out-perform their

opponents by: 1) choosing difficult tumbling target parameters and 2) developing a

robust docking implementation that could match a wide variety of docking scenarios.

Promoting this behavior proved to be a struggle. Without absolute benchmarks, the

relative scoring system only awarded higher performance with respect to other com-

petitors. Many novice teams could not complete the challenge or could only complete

a basic scenario with low efficiency. When competing against these teams, it was

possible to advance in rank simply by performing well in the basic scenario, eliminat-

ing the incentive to try more difficult strategies. In the second week of competition,

nearly every team chose to compete in the same scenario and additional rules were

necessary to encourage more exploration.

The relative scoring system also highlighted the difficulty of ranking players based

on game-specific scoring metrics. As the tournament progressed the scoring system

had to be updated several times to account for small loopholes in the way points

were awarded. While it was usually clear from the match data which satellite per-

formed better overall in the challenge, choosing a scoring system that fairly weighted

performance in all scenarios took several trial and error attempts.

210

4.3 ZRHS 2012: Whole History Rating Leaderboard

As with ZRASCC, the 2012 high school tournament introduced a leaderboard scoring

system with the motivation of engaging students throughout the tournament season.

Based on the challenges with effectively ranking teams in ZRASCC, the scoring system

switched from a average point system to one based on win-loss outcomes. This form of

ranking is less susceptible to manipulation and has stronger theoretical underpinnings.

It also has broader applicability to Zero Robotics because the game rules are only

responsible for producing a winner and a loser in each match. For the most part,

the game scoring system can be developed independently of the tournament without

concern that the scoring system will be coupled into the competition dynamics.

The Leaderboard algorithm is based on the Whole History Rating (WHR) method

developed by Coulom in [151. WHR is a Bayesian rating system that accounts for

time-varying changes in the skill of the participating players. The probabilistic for-

mulation of the algorithm is particularly useful for rating games where the outcomes

are stochastic.

4.3.1 Overview of the WHR Algorithm

Individual matches in a competition are represented with a Bradley-Terry paired

comparison model 161, where the outcome of a match is predicted by the relative

ranks ri and rj of the two players. Let P be the probability that player i beats player

j, then the Bradley-Terry model predicts

en
P(i winsIri, rj) = . (4.1)

en + en

In the event that two players have the same ranks P = j, so the ranking number can

be interpreted for a given player as a dividing line between teams that will perform

(on average) better than the player and those that will perform worse.

Ranks are computed by observing the outcomes of games and performing an es-

timation algorithm based on Bayesian inference. Ultimately, we are interested in

211

computing p (rIG), the posterior distribution of probabilities of a player's rank given

the game outcomes G. The rank can be inferred from the the observations with

Bayes' Rule

p(rjG) = P (Gjr) p (r) (4.2)
P (G)

where p (r) represents a prior distribution of the rank, and P (G) can be viewed as a

normalizing constant. Instead of explicitly calculating the full posterior distribution,

the WHR algorithm computes the value of r that maximizes p (rIG), or the maximum

a posteriori (MAP) estimate of r.

One of the key components of WHR is its representation of the prior distribution

p(r). Instead of assuming ranks remain static throughout the competition, player

skill is assumed to vary with time following the random walk pattern of of a Wiener

process

r(t 2) - r(ti) ~ A (0, t2 - t1| w 2) . (4.3)

The times ti and t 2 are individual Epochs at which a rank is calculated and might

contain one or more matches. The parameter w is the main tuning parameter of the

model, which controls the growth in the rank variance with time. A high value of w

assumes that ranks will change quickly and heavily weights new match observations,

while the limiting case of w = 0 assumes that the ranks are static. A well-tuned

value of w will produce a compromise between previous match performance and new

outcomes. Qualitatively, this behavior is important for preventing wide swings of

ranks and helps to ensure a single set of bad matches or poor performance in the

early phase of the competition does not doom a player's prospects. The Wiener

process assumption is important because it is a Markovian process,

p (rkrk1, rk-2,. .. ro) = p(rkrk-1) - NV (rk - rk-1, Itk - tk-1 w 2)

With the models for individual match outcomes and the evolution of rank over

time, the next step is to calculate the ranks. As the name indicates, the WHR algo-

rithm performs the MAP optimization over the "Whole History" of ranking epochs.

212

Each update produces not only the current rank, but a revised history of the ranks at

all previous epochs. This is in contrast to other rating systems such as TrueSkill [31],

or the standard Elo rating system for chess 120], which compute recursive updates to

a rank based on new match outcomes 1 . The estimate is expected to be more accurate

than recursive estimates because it "corrects" errors in previous rank estimates with

the most recent information.

To compute the rank estimates, Equation 4.2 can be expanded as a Markov chain

at and between each epoch. Neglecting the normalizing factor, and using the short-

hand rk - r(tk),

P(GkIrk) = JP (g(' Irk,other (4.4)

p(r|G) = P (Gn|rn)p (rrn-1) P (Gn_1Irn_1)p (rn_1|rn- 2) .. .P (G1 |ri) p (rIro) p(ro)
n

= JP (gkIrk) p (rkIrk_1) (4.5)
k=1

Equation 4.4 is the probability over all matches M(k) with outcomes gf) = {won, lost} , i E

M(k) at an epoch k, and Equation 4.5 is the probability of the entire sequence, in-

cluding the variance evolution due to the Wiener prior. The final term p (ro) is the

initial rank prior. For this application, the prior was initialized to a win and a loss

to a player of rank 0, which sets the player's initial rank to 0. The estimation algo-

rithm optimizes over log probability of the sequence, which conveniently converts the

products into sums and avoids numerical problems with repeated multiplications of

small numbers.

The optimization for the MAP estimate of the rank vector r is performed running

several iterations of Newton's method

r <- r - 2 _1) 9 log (4.6)

until convergence of the gradient g = f92 to 0, the change in r is within a spec-

'There is a variant of TrueSkill called TrueSkill Through Time [17] that does incorporate the full
rating history.

213

ified tolerance, or a fixed number of iterations are completed. Typically, a second

order solver like Newton's method would be computationally prohibitive over large

sequences of matches and hundreds of teams, because each gradient computation in-

volves the costly 0 (n') inversion of a Hessian matrix. However, the WHR formulation

makes two important simplifying assumptions:

1. During a ranking update, all other ranks are fixed.

2. As noted above, the prior is Markovian.

With these two assumptions, at each epoch, the rank is related to at most the next

rank and the previous rank, leading to a Hessian with a tri-diagonal structure. Coulom

exploits this special structure with an O(n) LU decomposition to perform the com-

bined matrix inversion and solution of the linear system in 4.6.

To update all ranks, Newton iterations are performed one at a time for each rank,

keeping all other ranks constant. After several iterations through the entire set of

ranks, information from new match data propagates through the entire rating system

through the rank histories. Even if two players do not directly compete, relative

ranking information can propagate between the players through a third party proxy.

This is another significant advantage of updating the entire rank history.

An important feature of the formulation is the natural weight of match outcomes

by the relative rank of the players. If a match outcome is unexpected, either a win to a

higher ranked player or a loss to a lower ranked player, the optimization algorithm will

adjust the rank up or down to make the outcome more likely. The higher the disparity,

the greater the change in rank. This behavior addresses the issue of balancing "easy"

wins with "hard" wins experienced in the ZRASCC rating system.

4.3.2 Improvements and Implementation Considerations

4.3.2.1 Stability Improvements with Armijo Iteration

The Newton step H-1 g in Equation 4.6 is optimal in regions of the function that are

exactly or nearly quadratic. The update can be too aggressive when attempting to

214

run the algorithm in situations where the initial guess is far from the optimum such

as when a new epoch is added to the rank history or when attempting to reconstruct

rank history from previously unranked data. Coulom appears to have recognized this

in the formulation of the hessian, but the proposed solution to subtract a constant

(0.001) from the diagonal of the hessian for numerical stability (see B.1 in 115]) does

not work consistently.

The stability of the algorithm can be greatly improved by implementing a sufficient

increase2 criterion for the step size when performing the Newton updates. The Armijo

Rule criterion ensures that each step taken will result in an increase of the objective

function by at least some fraction, a < 1, of the increase predicted by a step of the

same size with normal gradient ascent. The procedure is described in Algorithm 4.1.

In each iteration through the inner loop, the condition on line 8 checks to see if the

current step size will result in a sufficient increase and terminates if the condition

is satisfied. If the condition is not satisfied, a step size reduction factor # < 1 is

applied to the step, and the iteration repeats. The sequence of trial steps is therefore

#0a, #1a, #2a,... , #"a. If the algorithm reaches an iteration limit, an error can be

triggered for safe handling and cleanup in the calling function.

To choose # and a, it is usually best to make # as close as possible to 1 to

take large step sizes and a very small to make sure even marginal increases are

accepted. The values used for the Zero Robotics ranking system, # = 0.9 and a =

10-6, have shown good performance with real ranking data. When reconstructing the

match ranking information for the 2D and 3D simulation competition analyses in the

remaining sections over approximately 70,000 matches, the algorithm never exceeded

the iteration limit. For faster convergence, it may be possible to raise # to a value

closer to 1 with some experimentation.

2The rule is more frequently stated as a sufficient decrease criterion in the context of function
minimization.

215

Algorithm 4.1 WHR Algorithm with Armijo Iteration
1: while NOT converged do
2: g <- gradient(r, At, G)
3: H +- hessian(r, At, G)
4: d- H-g
5: a -1
6: while iter < maxarmijo do
7: rtmp +- r - ad
8: if loglikelihood(rmp) - loglikelihood(r) ; uag'd then
9: r +- rmp

10: break;
11: a +- Oa

4.3.2.2 Penalty for Variance

The TrueSkill ranking algorithm presented by Herbrich, Minka, and Graepel in [31]

has the compelling feature of tracking both the mean y and variance o2 of a player.

A player's score for ranking is computed as p - 3-, representing a 99% certainty that

the player's true rank is higher than the score value. This is a useful addition to a

scoring system because it awards both higher performance and consistency. A player

that wins consistently against moderately high-ranked opponents (low variance) can

be ranked higher than a player that wins against high ranked players but loses to low

ranked players (high variance). To append a similar consistency metric to WHR, the

Zero Robotics Leaderboard calculates both the epoch's rank mean and variance, both

of which are provided by the WHR algorithm, then applies the TrueSkill weighting

for ranking on the leaderboard.

4.3.2.3 Matchmaking

One of the motivations for implementing the WHR algorithm is to reduce the number

matches needed to accurately score a team at each submission. If the number of

matches is smaller than the number of teams, we wish to choose matches in a way

that maximizes the amount of information content in the match outcomes. This

problem has been studied from the perspective of adaptive tournament design for

the Bradley-Terry model in [27], but has not been implemented on the ZR platform

216

due to the complexity of the algorithm. However, one of the observations from [271

is that the best matches tend to have means that are close together. Therefore, a

simple heuristic matchmaking method is to choose the n teams with the closest rank

mean score. A downside of this method is that it can prevent teams from competing

against high ranked teams to get the added benefit of prevailing in an unlikely match

outcome. This can be addressed by making n reasonably large, so each submission

spans a large breadth of team ranks, and the selection can be biased toward higher

ranked players.

4.3.2.4 Penalizing Ties

The WHR formulation only admits win/loss match outcomes in the probabilistic

model. To introduce ties in the model, an explicit probability must be assigned to

the possibility of a tie. In [38], Hunter suggests two options for incorporating ties

with a modification of the Bradley Terry model but both require changes to the

WHR algorithm. Typically these models assume tied outcomes represent an equal

matching of skill.

In the 2012 RetroSPHERES competition, tied outcomes were only possible if

neither competitor completed the challenge, so ties were not desirable from the per-

spective of the game intent and did not necessarily represent an even matching of

skills. In this case tied outcomes were allowed, but a penalty was introduced to dis-

courage intentional tying. In the WHR framework it is not possible to represent a tie

as a double loss (team A loses to team B and vice versa), because the probabilistic

model assumes one team wins and the other team loses. Using a double loss will

result in the each pass of the algorithm incrementally adjusting team A down in rank

to account for the loss to team B, then adjusting team B down to account for the loss

to team A, and the scores will ultimately diverge.

Since the objective of a penalty is to cause a reduction in the score of the offending

teams, an approach compatible with the WHR system is to introduce a fictional low

rank that will be below the skill level of all teams on the leaderboard. Penalties are

then scored as a win and a loss against a player with the fictional rank. Both win

217

and loss are necessary because if only a loss is used, the ranking algorithm will keep

adjusting the player's score down to account for the fact that the player never wins

against the fictional player. Because the fictional rank is fixed, the win and loss will

pull the tying teams toward the low value but not below it.

This method succeeded in lowering the scores, but the case study in Section 4.3.4

suggests ties are best avoided without an explicit representation in the algorithm.

4.3.2.5 Grouping Identical Submissions

When scoring autonomous players created by humans, the assumption that skill varies

with time is only valid if the program has been updated. If the program is updated,

it is reasonable to assume the humans programmers have had a change of skill based

on observing matches and making modifications to the program. If the program

has not been changed but instead repeatedly submitted, the additional submissions

should be grouped with the initial program submission since there has been no change

with time. Judging what constitutes a significant change to the program is nearly

impossible without detailed analysis of the simulation results because even a small

parameter change can have a large effect on the satellite behavior. Instead, for the

Zero Robotics platform, a submission is considered new if a new version of the program

has been saved regardless of any change.

Ideally there should be no need for users to make identical submissions to the

scoring system, but for large changes in the player performance it may take many

matches for the system to respond. Tuning the minimum epoch period will help to

improve the responsiveness, and additional enhancements have been suggested in the

future work section.

4.3.2.6 Minimum Time Period

As teams iteratively improve their programs, they may make many closely spaced

submissions as new problems are discovered or they encounter different opponents at

different rank levels. Many repeated submissions will decrease the uncertainty in the

rank with more samples, but it can also lead to the system becoming progressively

218

less sensitive to new match observations. This problem is similar to the issues faced

by a standard least squares parameter estimator attempting to track slowly time

varying parameters. Eventually the covariance of the parameters collapses to 0, and

future measurements are ignored. A common solution is to inject a small amount of

additional parameter certainty at each covariance update to keep the system sensitive

to new measurements. The Wiener process in the WHR algorithm provides a similar

effect over longer periods of time, but in several rapid submissions, the system may

respond slowly to sudden changes in rank.

A good solution is to put a floor on the variance by setting a virtual minimum time

twin between ranking epochs. This ensures that the variance growth from the process

will be at least tminw 2
, and the system will stay responsive to new measurements.

This is more desirable than simply increasing w because longer time periods do not

become overly sensitive. Teams may still be allowed to submit at intervals shorter

than tmin, but the algorithm will internally adjust the time between submissions.

Figure 4.1 shows the effects of the minimum time period for a fictional submission

scenario. The team switches from winning 50% of the time to winning 75% of the

time against a player anchored at rank 0 and attempts to increase rank by submitting

at 30 minute intervals. Without the minimum time setting, the rank takes over 30

additional submissions to rise to the new level. With the minimum time period in

place, the rise time is reduced to 10 submissions (200 matches). Setting the parame-

ters tmin and w involves balancing the response time with the level of noise. The final

line in the figure shows the ranking history when match outcomes are determined by

comparing two variables drawn from random exponential distributions with mean e'

and 1, which has the same probability distribution as the Bradley-Terry model 127].

Note that the model tends to track some of the short term noisy results, which is

part of the tradeoff for higher sensitivity. Based on feedback to date users appear

to favor the additional responsiveness over protecting against these shifts. For final

deployment it is best to use actual match data either from the warmup phase or from

previous competitions to set the values. The current standard on the Zero Robotics

Leaderboard of w = 0.15 and tmin = 1.0 provided a good balance during the Alliance

219

2
- -, .True Rank

min

-min- --- - - --

t =1.0, rand0) 1 t~min~lOrn

0

-0.5'
0 5 10 15 20 25 30 35 40 45 50

Submissions

100

80 - -. -. - -

o- 7 0 - - - -- -.- -.. -

60- -.. -.. -.. - .-

0 100 200 300 400 500 600 700 800 900 1000
Matches

Figure 4.1: A team makes repeated submissions (20 matches each) at 30 minute
intervals with a win performance of 50% against a rank 0 player. At the 10th epoch,
the team switches to winning 75% of the time. With a virtual limit on the time
between submissions, the rank responds much faster. The green profile shows the
ideal step response, and the red profile shows the response when the match outcomes
are drawn randomly with the win probability.

phase and should be the starting point for tuning future competitions. Another op-

tion for reducing sensitivity to noise is running more matches at each submission.

Figure 4.2 demonstrates the effect of the WHR algorithm improvements on the

ranking history of a team in the 2012 3D competition. Setting a minimum time for

the submission interval has the largest effect on the ranks, causing a much faster

rise time during the period of increasing score at approximately 45 submissions. At

approximately 100 submissions, grouping the identical submissions helps to prevent

swings in the rank for repeated submissions of the same code.

220

0 .4 -..-.-. .. -.-.-.

-0.2 - - -..-- -. w0.-0 4 -. - w =0.1,. t..=1.

-0.4 - -W = .

.. w=0.1, t =1, groupedmin
0.6 - --- - - -w=0.15, t =1, grouped

-0.6
0 20 40 60 80 100 120 140

submissions

Figure 4.2: Improvements to the WHR algorithm applied incrementally to ranking

data from the 2012 3D competition. Adding a minimum time interval allows the

ranking system to respond much faster to new submissions, while grouping identical

submissions prevents large swings for the same code revision.

4.3.2.7 Batch Optimizations

The backwards filtering effects of WHR are only beneficial if they have a chance

to propagate to other teams in the ranking system. In the current implementation,

each time a user makes a submission to the Leaderboard, the system runs a single

algorithm update only for the 20 teams that were involved in the new matches. As

other teams make submissions, the updated history will be used for any overlapping

matches, and the information will slowly propagate to all teams on the Leaderboard.

To speed up the propagation, it is important to periodically run batch optimizations

through all submissions. One or two passes over the all teams can be triggered after

a fixed number of matches, currently 1003.

Batches with more iterations should be executed on a daily basis and at the end of

the competition. An automated process can run nightly updates of 50 or more passes

3As an implementation caution, on days with significant activity, the individual passes may be
triggered frequently enough to cause an excessive computational burden and should be disabled or
raised to a largerr value.

221

through all teams to propagate information from the matches during the day. At the

end of the competition, the batch typically involves many passes over the data set, as

many as 500 to 2000. These passes are currently triggered and monitored manually.

The stopping criteria for ending the optimization are:

1. The change in the overall likelihood computed as sum of log likelihoods from

each of the rank histories.

2. The maximum change in any team's score.

When both of the items converge to small values, the optimization is stopped and

the resulting scores are used as the final results of the competition.

4.3.3 Presentation to Users

In comparison to simple ad-hoc scoring systems, probabilistic ranking methods like

WHR have a strong theoretical base, but the additional complexity introduces chal-

lenges in the way ranking results are conveyed to users. Without adequate informa-

tion users can either project their own interpretations of how the system should work

onto the results, or find the outcomes to be illogical, both of which lead to eventual

frustration.

One approach is to hide most of the ranking information from the participants

and display the teams in an ordered list. This is the strategy of some online computer

games where complex ranking and matchmaking algorithms are constantly evaluat-

ing user performance with the objective of keeping the game interesting. Hiding the

matchmaking calculations can also prevent users from trying to manipulate the sys-

tem for better ranks. This is not in the spirit of an educational platform like Zero

Robotics, where the objective is to provide participants with many tools to learn and

improve performance. Therefore, it is very important to create an effective system

for computing ranking results.

The approach for the Zero Robotics Leaderboard is to display three different views

of the ranking results:

222

1.500

1.400

1.00

.. ----- -- - - -- --

2012/09/19 2012/09/22 2012/09/25 2012/09/27 2012/09/30 2012/10/03 2012/10/05

Figure 4.3: The Leaderboard's Match History view displays a line chart showing the
filtered rank history of the player. Each point on the chart represents an epoch that
can be clicked to see all match results for the submission.

1. The current order of all teams on the Leaderboard and their associated ranking

score.

2. An interactive display showing the rank history for a specific team, including

the matches played at each epoch.

3. A view of a selected epoch that graphically describes the quantities involved in

computing the rank.

The first view is simply a list generated by ordering the teams by their scores. It

is meant primarily as a brief summary of the current standings and as an index

to access the remaining views. The second view, shown in Figure 4.3, allows users

to browse the full history of ranking epochs and select specific epochs to see the

associated matches. Every single match on the Leaderboard can be viewed in the 3D

visualization for detailed review.

The final view, shown in Figure 4.4, conveys several of the components responsible

for the the score at the currently selected epoch. The histogram bar chart shows

binned wins and losses on a horizontal scale of rank to show how the team's current

223

35

(0.

(V 0.0

::E 15-0.4

-3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Opponent Rank

Figure 4.4: The Leaderboard's Histogram view shows the quantities involved in cal-

culating a player's rank. The vertical bars are bins containing totaling wins and

losses for the players, and the plotted line shows the win probability as a function of

opponent rank. The shaded area is the 3a- uncertainty interval, and the cross-hairs

shows the adjusted rank at the current epoch.

ranking is reflected by wins and losses weighted by relative rank. The plotted line

is a trace of the team's win probability as a function of opponent rank. The shaded

region shows the 3a- uncertainty bound on the rank, and the cross-hairs show the

team's score as calculated by the variance penalty. In the example, we see that the

50% probability point shows roughly a dividing line between winning most matches

to losing most matches.

4.3.4 Case Study: ZRHS 2012

4.3.4.1 Overview

The 2012 high school tournament was the first opportunity to test the WHR-based

Leaderboard ranking system with an official tournament. The overall effectiveness of

the Leaderboard system can be judged from several perspectives:

Engagement How does the scoring system affect involvement of the teams?

224

Computational Cost How does the scoring system compare to a single round robin

tournament in the number of simulations required?

Prediction Accuracy Does the scoring system accurately predict the outcomes of

matches?

User Experience and Programmatic Outcomes The scoring system has a ma-

jor effect on how users interact with the tournament. How did the users respond

to using the system? How does using the system affect the Zero Robotics pro-

gram?

The Leaderboard was deployed for all phases of the competition. Each competition

started with a 1-week warmup to give teams a chance to compete without affecting

their final ranks, followed by the official competition. Teams were allowed unlimited

submissions up to the final day of competition after which only 10 submissions were

allowed. There were several differences between the phases to adjust the algorithm

as the competition proceeded:

" For the 2D and 3D phases, submissions were scored independently (not grouped

by code revision) with w = 0.1

" Between the 2D and 3D phase, the system switched from running against 10

opponents in both satellites to running against 20 opponents with even matches

in both satellites. This helped teams encounter a broader range of opponent

skills.

" At the Alliance phase, after analysis of results from the 2D and 3D phases, the

additional modifications of grouping identical submissions, setting a minimum

variance, and penalizing ties were appended. The prior standard deviation was

also changed to w = 0.15.

" The 3D and Alliance phases conducted the warmup round in parallel with the

official competition while the 2D phase did not launch officially until after the

warmup ended.

225

4.3.4.2 Engagement

One of the motivations for building a leaderboard system is to enable teams to get

an early start on solving the competition challenge and become more thoroughly

engaged with the program as a whole. To measure engagement we can examine

aggregate user simulation and submission activity. The first set of measurements are

related to submission activity on the Leaderboard and are intended as benchmarks for

future competitions. They cannot be directly compared to previous scoring systems

because the other tournaments did not involve continuous submissions. The second

set compares user simulation activity between seasons.

Figure 4.5 displays the percentage of teams that made at least n submissions

during each of the 2012 competitions. In all three competitions a majority of the

teams made had fewer than 12 submissions. This outcome is somewhat troublesome

because even in the event that teams submitted on the last day, they were still allowed

10 submissions. Figure 4.6 gives additional detail about when teams first submitted

projects to the system. In the best case, during the 3D competition, 50% of teams

provided a submission at least 5 days ahead of the deadline. In the 2D competition,

only 35% made a submission by the same time. These results are slightly more

encouraging because they indicate that some teams may submit early and leave their

player to be scored while privately improving the performance.

For comparison to the 2011 tournament, Figure 4.7 displays the number of private

user simulations per day as a percentage of the total private simulations during the

competition period for the 2011 and 2012 3D competitions. The plot indicates the

relative distribution of simulation runs throughout the competition. Both years have

very similar profiles with an extended period of lower activity followed by a week

of higher intensity and a final spike at the submission deadline. Whether working

with a Leaderboard or preparing for a single submission, teams appear to organize

their activity in a similar manner. If the Leaderboard simulations are included in

the comparison, the distribution is even more heavily weighted toward the final days.

Figure 4.8 show a different perspective with the simulation counts normalized by

226

U

100 101 102 1

- - 3D]

0 -.. -. -. .. .

10 1

10 1

102

102

103

103
number of submisstions

Figure 4.5: The cumulative percentage of teams having at least n submissions during
the 2012 tournament. Markers indicate the number of submissions for at least one
team. Approximately half of the teams made fewer than 10 submissions, while nearly
all of the remaining half made fewer than 100.

100

80

60

40

20

0 15
15 10 5

days before deadline
0

Figure 4.6: Percentage of teams submitting at least once vs. days before the submis-
sion deadline. At best, 50% of the teams made their first submission at least 5 days
or more in advance of the final deadline.

227

10 -

501

10
CD)
E
CO

0
-0

5

100

100

50

0

-0-Alliance

.-F: : .:.:.:.

100

(D
0

-0

.0

-2-]2
.~~~~~~~~~~~~~~ .

03

20

2 15 -. - ---- 2012 3D -- - - -
0-2012 3D w/ Leaderboard

E

0

0

0

0 5 10 15 20 25
day

Figure 4.7: Percentage of total user simulations per day during the 3D competition

in 2011 and 2012. Considering only simulations executed by the users, the trends for

2011 and 2012 are very similar with a heightened period of activity starting a week be-

fore the deadline, with a large spike near the end. Including Leaderboard simulations

weights the distribution toward the final deadline due to the late submissions.

the number of teams with a final submission in the competition (88 for 2012, 91 for

2011). Here we see that the number of simulations per team was significantly higher

throughout the competition without including the Leaderboard simulations.

Combined, the engagement results show some evidence of enhanced user partic-

ipation, but additional seasons will likely be required before it is conclusive. The

clearest indication is that teams tend to wait toward the end of the competition to

make submissions. This may point to larger problems with engagement in the tour-

nament and warrants significant attention. Given the similarities between the 2011

and 2012 3D competitions, the cause may be a natural team dynamic that can be

adjusted with changes to the competition structure. A small point bonus for sub-

mitting early or even a requirement to make at least one submission before the final

submission day may go a long way in encouraging teams to prepare earlier.

228

60

E 50 -2012 3D - -.-.-.-.-.-.-. -.- . - .- . -
ca~
.4 4 0 -..-.- .- .- .- . .- .-.-.-.-.-
CU

CU

0

0 5 10 15 20 25
day

Figure 4.8: Number of simulations per active team. Normalizing the simulations by
the total number of participating teams shows a more encouraging view of the user

involvement. The simulation rate is consistently higher than in the previous year

except for the deadline spike.

4.3.4.3 Computational Performance

For the purposes of evaluating computational performance, we will use the metric of

number of simulations executed 4. When executed in a single batch, the total number

of simulations dictates the processing requirements Table 4.3.1 includes the total

matches executed by the Leaderboard for all of the competitions. In comparison to a

single round robin competition, which requires " n-1) matches, or 3828 for 88 teams,

the Leaderboard system clearly involves many more simulations. Even running daily

round robins over the course of the entire 24 day span of the 3D competition would

have required only 14655 simulations assuming the same submission profile as Figure

4.6. This suggests it might be reasonable to add daily round robin batch simulations

and apply the match results to the WHR algorithm with a relatively small overhead.

One qualifying consideration is the number of submissions made by individual

teams. As shown in Figure 4.5, there were many teams with upwards of 100 submis-

sions over the course of the tournament. In the 3D tournament, one team, made over

4Note that the WHR algorithm does require at least daily batch updates that iterate over the
entire set of matches executed in a tournament. This update can take on the order of an hour but
the time is still small relative to running thousands of matches.

229

800 submissions, accounting for 17,483 simulations-more than 25% of the total. Mod-

est limits on the number of submissions per day would help reduce the total number

of simulations required. The separate issue of addressing the apparent need to submit

a large number of simulations led to several of the WHR algorithm modifications.

Ultimately, the main advantage of the WHR algorithm is the ability to provide

nearly continuous feedback to the teams about their current performance. For the

computational cost of running a single round robin simulation with 88 participants

(3,828 simulations), all teams could make two unique submissions over the course of

a day with 20 matches each and see results immediately. At 200 teams, one round

robin competition of 19,900 matches would be the equivalent of 5 submissions for

all teams. After the first submission, players stay on the Leaderboard, so additional

matches become available as others submit. Even at a computational loss to full

round-robins, the flexibility of being able to make updates to code and survey new

strategies is important for Efficient Inquiry.

4.3.4.4 Prediction Accuracy

The Leaderboard rankings ultimately determine the winners of each competition

phase, so it is important to have confidence that the ordering of teams produced

by the system accurately reflects their performance. Coulom uses match prediction

accuracy as a metric for comparing the WHR algorithm to other scoring methods,

and the same method is applied here. To arrive at the prediction values in Table

4.3.1, the complete scoring history of the competitions was reproduced by processing

submissions one at a time through the WHR algorithm, then running two full updates

of all ranks in parallel. This roughly approximates the history of ranks during the

competition, but it is slightly more accurate because a full batch update is performed

at each iteration. Prior to processing the matches associated with the submission,

the outcomes were predicted by the current rank of the player and the current rank of

the opponent in the match. For a win probability P > 50%, the match was predicted

to be a win a loss otherwise. The total number of correct predictions is tallied in the

table. Ties and failed simulations were not counted. The first prediction column is

230

Tournament w # Valid Matches Ties Correct by f (%) Prediction by f - 3- (%)
2D 0.1 26990 2770 15941 (59.1%) 15769 (58.4%)
3D 0.1 42235 15867 28523 (67.5%) 28215 (66.8%)

Alliance 0.15 4367 632 3298 (75.5%) 3230 (74.0%)

4.3.1: Match Outcome Prediction Performance

Configuration Correct by f (%)
w = 0.1 28523 (67.5%)

w = 0.1, grouped submissions 28511 (67.5%)
w = 0.1, grouped submissions, tmin = 1 day 29036 (68.7%)
w = 0.15, grouped submissions, twin = 1 day 29203 (69.1%)
w = 0.3, grouped submissions, tmin = 1 day 29389 (69.6%)

Table 4.3.2: Effect of WHR Improvements on 3D Competition (42235 Matches)

the match prediction percentage based on the team's rank mean, f, while the second

column uses the adjusted score based on the rank mean and 3- confidence interval.

Prediction performance increased as the tournament progressed. The prediction

accuracy is coupled with the matchmaking system, and in the current matchmaking

system matches are intentionally picked where the means are close together and the

match outcome is uncertain. Between the 2D and 3D competition, switching to

running against 20 opponents instead of 10 likely led to more encounters between

teams with larger differences in rank and therefore higher certainty in the predictions.

The equivalent increase in prediction accuracy between 3D and Alliance phases is less

clear, especially with the significantly smaller sample size. Some of the increases

may be attributed to the WHR algorithm improvements. Table 4.3.2 shows the

incremental effects of applying grouped submissions, a minimum interval between

epochs, and an increased variance on the prediction accuracy by re-processing the

3D tournament with each successive change. While the modifications account for a

small change in prediction accuracy, they are not as large as the overall gains between

competitions. Quite to the contrary it is significant to note that the changes have a

relatively limited impact on prediction accuracy while having a more significant effect

on the user experience.

Predictions based on the 3o- adjusted ranks were very close to predictions based

231

Table

on the means, but they performed slightly worse in all cases. This outcome on its

own does not impact the decision to use variance in the scoring system, but it should

be weighed along with other factors in the user experience.

Lastly, it should be noted that the prediction accuracies were significantly higher

than those reported in [15], which were at best 55.8% when applied to 2,331,757

games of Go. The disparity may be related to the system being used to rank (mostly)

human players and the significantly larger number of matches.

4.3.4.5 Effect of Tie Penalty

In the final Alliance phase of the competition, the tie penalty system was put in place

to discourage teams from intentionally tying matches to boost win percentage. The

effort reduced ties to some extent, but they remained a higher percentage (14.5%)

of the overall matches than in the 2D competition (10.3%). Not all ties were inten-

tional; sometimes teams failed to detect conflicts picking up items and ran out of fuel

repeatedly triggering collision avoidance maneuvers. Since most of the 24 competing

alliances experienced ties, or competed against other players that had many ties, the

tie penalty mainly drove all scores down toward the low rank of -4 set for the penalty

score. The highest mean rank on the Leaderboard was -3.10 in comparison to 2.88 in

the 3D competition. Due to the relative nature of the scoring system, the absolute

scale is not as important, but it is clear the absolute score applied to ties re-centers

the scale around the lower value. These results suggest that while the penalty may

have been effective in lowering scores of teams that tied matches without causing the

ranking algorithm to destabilize, it may be better apply penalties outside of the WHR

system and true ties should be avoided until they can be explicitly incorporated into

the probabilistic framework.

4.3.4.6 User Experience

After the 2D and 3D phases of the tournament were completed, it became clear from

user feedback and analysis of ranking results that there were two main problems with

the basic WHR implementation:

232

1. Repeated submissions were sometimes required to see a significant change in

rank.

2. The scoring system was complex and difficult to understand.

Repeated Submissions During the 2D and to a much greater extent during the

3D phase, many teams attempted to optimize their scores by increasing their overall

win percentages. The primary approach to doing so was to win against as many

opponents as possible, then force a tie in the remaining matches. Since ties were

not counted in the the 2D and 3D phases, the win percentages were higher, but only

based on a small number of matches. Scores were observed to move slowly, leading

to teams repeatedly submitting projects. To better understand how the number of

matches and win percentage affect the ranking algorithm, we will consider a simplified

example case. Suppose the user makes a new submission following heavy submission

period where the previous epoch had a large number of example matches. We will

assume for simplicity:

" the initial rank is ro = 0;

" due to the high number of previous submissions, the initial rank changes very

little, Aro 0; and

" all matches in the new submission are against players of the same rank ri.

For the epoch at t = ti , over a range of n matches in the set M, using -Y1 = en as the

rank being optimized, 7, = en as the opponent's (static) rank, and |WI the number

of wins in M, the gradient for the match outcomes, including the prior form to to ti

is
alnP 1 r1 - ro

= IW - el (4.7)
aiEM + -Y a

2

The term o.2 = I- tol w2 is shorthand for the variance of the prior. Applying the

simplifying assumptions ro = 0 and constant opponent rank, and noting the optimum

233

rank is found when the gradient amP is 0, the new rank can be calculated by solving
&rj

| , 71 r1= 0. (4.8)
71I +7 J2

Dividing by n, gives an interpretation based on the win percentage

win% - - r 2 = 0. (4.9)
71 +7i nO2

To further simplify, we can assume that the opponent has a rank of ri = 0, or -Y7 = 1,

then perform a Taylor series expansion about the initial guess (from the previous

epoch) of r1 = 0, then solve for Ari to find the new rank

win% - 71 r1 = 0 (4.10)
y1+1 no2

1 11
win% - - + -Ari Ari = 0 (4.11)

(2 4 no2

1
Ari ~ 1 1 win% - - (4.12)

From the linearized view in Equation 4.12, we see there are several contributing

factors to changing the rank. First is the difference between the win percentage

and the expected win probability. As intended, the rank increases when the team

outperforms expectations. The second factor is more significant. Figure shows a plot

of the leading term as a function of the number of matches for a fixed time period

of 1 day and w = 0.15. For a fixed win percentage, we see the influence of winning

increases nearly linearly from 1 to 20 scored matches. From this information, we can

conclude for the simplified case that forcing a tie to increase win percentage causes the

rank to change more slowly. Though the situation is more complex in practice with

varied opponents and the full ranking history, the results agree observations from the

tournament. In many ways the effect is desirable as it conveniently supplies one of the

benefits of the variance measure in the TrueSkill ranking system. Teams can improve

their scores either by playing more often (making more submissions) or by improving

consistency (higher win percentage). With this in mind, the main conclusion is that

234

0.4 - - - - -

0 .3 - -.-. .. .-. . .-. - .. . -.. . -

0
0 2 4 6 8 10 12 14 16 18 20

n

Figure 4.9: A plot of the leading term from Equation 4.12 for n = 1 to 20. The factor
scales the effectiveness of the win percentage based on the number of matches.

the system should avoid discarding matches to remain optimally responsive.

Another factor that affects the speed of change is the relative rank of the players.

If teams mostly won against lower ranked players, the scores only increased slightly

because the match outcomes were expected. For some teams, seeing an incremental

increase in score at each submission prompted them to repeatedly submit the same

project until reaching a steady state, while others saw the slowly changing scores as

a problem with the scoring system.

The final issue was due to the evolution of uncertainty between matches. The 2D

and 3D phases did not set a virtual minimum time between submissions, so repeated

submissions were considered to be in nearly the same epoch. Even if the code was

modified during the process, the system rapidly became insensitive to new match

outcomes. This can also be seen from the simplified model in Equation 4.12. If

the time step between submissions is dropped form 1 day to 5 minutes, the leading

term becomes 250 times smaller. This clearly motivates the minimum time step

modification.

These responsiveness issues were partially addressed through updates to the scor-

ing system and better presentation tools added between the 3D and Alliance compe-

titions. The grouped submission and minimum time enhancements from 4.3.2 were

developed to improve responsiveness when making closely spaced submissions. The

time deviation was also increased slightly from w = 0.1 to w = 0.15 to allow more

variation in the scores. The histogram tool was added to give more detailed informa-

235

05 9

tion about performance at each submission instead of the raw win/loss/tie statistics

that teams were heavily focused on. There were many fewer complaints about the

scoring system in the Alliance phase, but the number of participating teams was much

smaller. The enhancements will be best verified during the first competition of the

next tournament.

Scoring Complexity The second issue relating to complexity of the scoring system

is mostly anecdotal based on feedback. Several teams noted that it was difficult to

discern a relationship between match outcomes and changes in score, especially how

match outcomes affected uncertainty. Beyond displaying the 3- confidence interval

on the histogram plot, a concise representation of the factors affecting uncertainty

remains a challenge that should be addressed for future tournaments.

Another source of confusion is the difference between the filtered rank history

shown on the Leaderboard and the ranks displayed as the team makes submissions.

The full rank history is always displayed on the website, but it can change with each

submission as the full history is updated. This means that the teams observe one

sequence of ranks as they make submissions and see a different history shown on

the chart. A better data display might incorporate both views. This would require

explicit storage of the "experienced" rank history because the ranks are re-computed

at each update. One potential problem with this approach would be a large jump in

the rankings at the end of each day and the end of the tournament when the system

runs batch updates.

Finally, some teams conflated the significance of win percentage with performance

on the Leaderboard. Since the WHR algorithm takes into account both the win-loss

outcome of a match and the likelihood of that outcome, a higher win percentage does

not always translate to a higher score, especially if the win percentage is inflated by

unscored ties as in the 3D competition. The issue was partly exacerbated by the

way ranking epochs reports were initially summarized with a display of win/loss/tie

percentage. The histogram tool created at the end of the 3D competition was designed

to emphasize the importance of an opponent's rank on the score.

236

3
I I I I -Z12

2- Experienced

-- Filtered

0

8 10 12 14 16 18 20 22 24 26
days

Figure 4.10: The match history presented to users as shown in Figure 4.3 is the a
filtered version of the ranking history based on all match outcomes to date. This plot

shows a comparison between what a user would see if they plotted the observed mean

(f) scores throughout the competition and the filtered rank history. The large jump

at the end of the competition is due to adjustments in the final batch optimization.

4.3.4.7 Programmatic Outcomes

From the perspective of running a competition, the Leaderboard was a significant

improvement over formats in previous seasons. With many teams actively engaged

in creating submissions at an early point in the season, important bugs in the initial

game deployments were discovered and corrected well before the submission deadline.

The Leaderboard alone is not a replacement for thorough testing, but it is a useful

guard in the event that problems to do arise. More importantly, teams have a chance

to react to any changes that are released to fix the bugs. This prevents difficult

situations such as those experienced in the 2011 round-robin tournaments where bugs

were discovered when running the final batch competitions.

A live scoring system also provides continuous snapshots of user participation

throughout the competition period. Team performance can be easily monitored by

watching the public matches, and the number of active submitters can give the tour-

nament organizers a sense for how actively teams are participating. With this infor-

mation additional modifications to the game can be proposed for future rounds or

237

e-mails can be distributed to the teams with advice or encouragement.

A specific benefit of the WHR algorithm is the reconstruction of the full ranking

history at every algorithm update. If there is a bug in the ranking code or the

developers wish to make adjustments to the parameters, it is possible to trigger a re-

computation of the ranks and let the algorithm converge to the new ranking results.

The match outcomes do not have to be re-played through the algorithm because the

system already incorporates all match events in each update.

4.3.5 Recommendations for Future WHR Competitions

Based on the results of the 2012 competition, the following changes are recommended

for future seasons:

" Add a daily batch simulation during off hours consisting of a fixed number of

matches per team. The batch does not have to be a complete round-robin

tournament, but during slack periods additional matches can help the WHR

algorithm converge to the players true rank. If teams know that the system will

automatically run additional matches, they can focus on improving submissions

instead of making many submissions.

* Set a minimum time between submissions to the Leaderboard. In addition to

setting the virtual epoch spacing tmin, a real limit should be placed on how many

submissions a team can make within a specified time interval. Setting a spacing

limit will encourage teams to maximize performance for each submission instead

of repeatedly submitting the same projects. Spacing out the submissions will

also reduce load during high volume periods at the end of the competition. An

alternative limit might be to give teams a fixed number of submissions per day.

When implementing this change it will be important that the teams have high

confidence that the scoring system is responsive enough to significant changes in

performance that reflect code improvements. The additional batch simulations

will help to improve this aspect.

238

" Avoid using the tie penalty system. Until ties are formally modeled by the

ranking system, the method of penalizing ties remains an ad-hoc modification

of the algorithm that may be prone to problems in large competitions. Games

should be exclusively win-loss with no possibility for ties. The game should be

carefully tested to ensure that tie breakers do not result in significant shifts of

priority. See the lessons from HelioSPHERES in Section 2.4.3 for an example.

" Remove the variance penalty from the scoring system unless there is a clearer

way to calculate and convey it. As shown by the prediction performance num-

bers in Table 4.3.1, the adjusted score with a penalty for variance does not

improve ranking predictions, and in most cases performs slightly worse. The

additional confusion it added to the 2012 tournament suggests that the connec-

tion with consistency is either not being conveyed well or is not being applied

properly. Part of the problem is the relationship between time and the rank

uncertainty. If a team waits for several days to make a submission, then only

submits a single time, the variance will jump up briefly, resulting in a decrease

in rank. Until both issues can be studied more thoroughly, using the rank means

should simplify the interpretation of the ranking results.

" Improve visualizations and documentation to better explain ranking algorithm.

The confusion between win percentage and ranking performance indicates a

need for the users to better understand how the ranking system works. A very

powerful update would be a tool to allow teams to perform "what if" scenarios

by changing the match outcomes and observing the change in rank.

4.4 Summary

Several iterations of competition scoring systems have lead to the design and imple-

mentation of a scoring framework that will be robust to several seasons of growth.

Experience from the 2010 and 2011 seasons with all-to-all round-robin competitions

has shown that relying on a single one-shot tournament at the end of a competition

239

risks last minute bug surprises, and more importantly gives competitors only a single

change to prove their skill. A second class of scoring systems with continuous leader-

board scoring has enabled teams to enter submissions throughout the competition at

the cost of a higher computational cost spread throughout the season.

The most recent algorithm for the Leaderboard is an adaptation of the Whole His-

tory Rating system modified with improvements to integrate with the Zero Robotics

platform. The stability improvements added by an Armijo iteration in the Newton

solver have allowed the system to function with few problems over the course of nearly

100,000 matches. Additional modifications adding grouping of submissions and a vir-

tual minimum time interval have helped to increase the responsiveness of the system

to new match submissions.

It remains unclear if the objective of increasing active participation in the com-

petition has been improved by the addition of a real time scoring system. Up to

half of users made submissions 5 or more days in advance of competition deadlines,

while others still waited until the final day to make submissions. 77% of teams made

more than one submission in both 2D and 3D competitions, showing that teams are

at benefiting from the ability to make more than one submission. Total simulations

per active team were significantly higher than the 2011 tournament, though the over-

all distribution of simulation runs throughout the tournament remained the same.

Future competitions with the same system will help to support these initial hopeful

signs.

240

Chapter 5

Close-Proximity Collision Avoidance

for Satellite Game Players

5.1 Introduction

This chapter covers the details of a collision avoidance algorithm originally imple-

mented for close proximity formation flight. It has been used throughout the Zero

Robotics program to prevent collisions between satellites in the virtual simulation

environment and on the ISS.

Collision avoidance for satellites has been covered from several perspectives with a

strong emphasis on planning and mathematical programming methods. Pre-planning

a trajectory for collision avoidance is desirable because it saves propellant, but it often

comes at the price of steep computational requirements. Richards, Breger, and How

have demonstrated several variants of Mixed-Integer Linear Program formulations

for solving trajectory problems that include collision avoidance constraints[8, 61].

Mathematical programming carries a high computational burden, incurring a large

penalty for re-planning maneuvers or even requiring trajectories to be planned in

advance.

For online planning with obstacle avoidance, incremental methods such as Lavalle's

Rapidly-exploring Random Trees (RRT) 142] have been extended for moving obstacles

by Hsu, Latombe, and others[34]. Randomized planning can quickly discover feasible,

241

collision-free trajectories at a significantly lower computational cost than mathemat-

ical programming methods but still presents a challenge to implement on a tightly

constrained satellite system.

Furthermore, pre-planning trajectories may not be possible depending on the satel-

lite mission. A close-proximity inspector satellite might be directed by a human op-

erator but still require autonomous avoidance capabilities. For these applications,

reactive controllers that adjust trajectories in real-time to avoid collisions are desir-

able. Highly computationally efficient algorithms can be formulated in the form of

"steering behaviors" which command an acceleration to change the direction of the

velocity vector. In 160], the authors predict the closest point of approach (CPA) of

video game characters and steer the trajectories away from the potential collision.

More recently, in 125] a similar approach has been generalized and applied to assist

pilots in steering aircraft away from potential collisions.

The following sections present a formulation of the CPA steering behavior applied

to close proximity satellite operations. It is both compact and computationally effi-

cient and has been demonstrated successfully on SPHERES. Section 5.2 presents the

dynamic model and introduces the collision avoidance controller. Section 5.3 covers

important implementation considerations when applying the controller, and Section

5.4 presents experimental data from tests aboard ISS.

5.2 Steering Law

5.2.1 Relative Kinematics

For the entirety of the discussion we will assume the relative satellite motion is over

small enough distances, time scales, and relative velocities that the effects of relative

orbital dynamics can be neglected. The satellite dynamics are therefore of the form

R= f/m

242

where the external forces, f, are provided by a thruster propulsion system. This has

been a reasonable assumption for SPHERES operations aboard the ISS and double

integrator dynamics have been shown to be a reasonable approximation in other

close-proximity satellite studies110].

The steering law operates on the closest point of approach (CPA), defined as the

point in space and time in a relative trajectory when two objects are closest. For the

time being we will consider the relative motion of two satellites. To predict the CPA,

starting at time t = to, the motion of satellites 1 and 2 is assumed to continue along

the current velocity direction.

xi(t) = xi(to) + i (to)t (5.1)

x 2 (t) = x 2 (to) + k 2(to)t (5.2)

r 12 (t) = x 2 (t) - xi(t) (5.3)

u12(t) = * 2(t) - k1 (t) (5.4)

Defining the relative position from satellite 1 to satellite 2 as r 1 2 and relative velocity

as u 1 2 , the time evolution of the relative position is

r 12 (t) = r 1 2 (to) + U1 2 (to)t. (5.5)

For clarity, the time index and subscripts will be omitted from this point forward.

All values can be assumed to be from the perspective of satellite 1 at t = to unless

otherwise specified.

Taking the squared magnitude of the relative position and minimizing with respect

to time gives the time at closest point of approach tCPA-

d2 = r(tCPA)Tr(tCPA) (5.6)

dd2= 2(r'u) + 2tCPA(U'U) -0 (5.7)
dt

tCPA = - (5.8)
uTu

243

The expression for tCPA reveals several important characteristics about the point of

closest approach. First, at tCPA = 0, the relative velocity is perpendicular to relative

position. This is intuitive because if there is no velocity in the direction of the relative

position, then the two objects cannot get any closer. Second, it is possible for tCPA

to be negative if ri(to)Tui(to) > 0, meaning the CPA has already occurred and the

paths are diverging. When implementing the controller, it is important not to trigger

the avoidance maneuver for potential collisions in the past.

The distance at closest point of approach, dcPA, can be calculated by evaluating

Equation5.6 at tCPA and taking the square root.

dcPA = r(tCPA)Tr(tCPA)

= /rTr + (rTu)tCPA (5.9)

Potential collisions can be identified by examining the pair (dcPA, tCPA)- If

tCPA > 0 and dcPA < da, where da is a critical distance threshold, then the avoidance

controller should be activated to avoid the collision. Note that for trajectories where

the relative position and the relative velocity are exactly aligned

(rTU)tCPA = -r Tr (5.10)

dCPA = 0-

5.2.2 Avoidance Controller

The collision avoidance controller steers a pair of satellites away from a potential

collision by commanding a change in velocity that increases the magnitude of dcPA.

To minimize the required velocity correction, the thrust is directed along the gradient

244

of dCPAwith respect to the satellite's current velocity, X1.

0ntCPA 1 (2(rTU)UT _ (UT u)rT) (5.11)
19U (uTu)2

adCPA a 0OU
= VrTr + (rTu)tCPA

S1 au 01Cik
= dp1 tCPAr -+ r TuCPA (5.12)
2dCPA (n9

The gradient of dCPA can also be used in a linear approximation to select the thrust

magnitude. Assuming that the satellite provides an impulsive change in velocity along

T = ^dCpA with some magnitude, k, the approximation for dCPA is given by Equation

5.13. After specifying the desired dCPA target, dt, the resulting thrust magnitude is

calculated from Equation 5.14.

dcPA = dcPA,O + gT k (5.13)

k = dCPA - dt (5.14)

The avoidance controller in this form has the attractive property that the satellites

need only to synchronize their relative state information to perform consistent avoid-

ance. Using the definitions of relative positions and velocities in Equation 5.3 and

Equation 5.4 ensures that the gradients and therefore the thrust directions will have

opposite signs for both satellites.

There is a degenerate case for the condition in Equation 5.10 when the relative

velocity and relative position are exactly aligned. In this situation any thrust per-

pendicular to the relative velocity will increase dCPA, but there is no guarantee of

synchronizing the direction of thrust. In practice, there is always at least an infinites-

imal separation between the points of closest approach, and the controller will widen

it.

245

5.3 Implementation Considerations

In proximity operations with multiple satellites, it is expected that a nominal con-

troller receiving trajectory targets will provide most of the maneuvering commands.

The avoidance controller can be used to override this controller when an imminent

collision is detected. In this way, the upper levels of the control system do not need

to plan explicitly for collision avoidance maneuvers, though adding a notion of avoid-

ance will improve fuel usage. The following considerations will help improve the

performance of the basic controller from Section 5.2.

5.3.1 Distance Threshold and Time Horizon

The avoidance controller is activated by checking for the condition dCPA < da and 0 <

tCPA < ta, where da and ta are the distance and time horizon thresholds respectively.

da should be selected to be the minimum allowable miss distance with a buffer for

estimation estimation error. ta depends on the ratio of relative velocity to available

control authority as well as da. If the satellite is moving slowly and can easily change

velocity, then the time horizon can be shortened. Likewise if safety concerns dictate

large safety zones for avoidance, the time horizon should be lengthened to provide

sufficient time to reach the target dCPA. Also, if the maneuvers involve frequently

changing directions, the time horizon should be shortened to prevent avoidance of

unlikely collisions.

5.3.2 Distance Target

When considering cooperative and uncooperative avoidance scenarios, there is a dis-

tinction to be made between the avoidance threshold da and the controller distance

target dt from Equation5.14. In a cooperative avoidance situation, the satellites will

share the effort of increasing dCPA, so it possible to reduce the distance target. A

rough approximation is half the avoidance trigger distance with a scaling parameter

246

km for margin.

d
d2,coop = km (5.15)

km > 1 (5.16)

For uncooperative avoidance, the distance target should be set to at least the

avoidance distance threshold.

dtucoo, =kmda (5.17)

In both cases, the trigger distance, da, is unchanged because it indicates when a

potential collision is detected, not how to react to the information.

5.3.3 Nominal Controller Override

A nominal controller that is paired with the collision avoidance controller may have no

knowledge of an avoidance event and attempt to drive the satellite back toward toward

a collision course. This can be wasteful for fuel usage if the two controllers fight back

and forth until the threat is over, and in the worst case, the nominal controller can

force a collision to occur. One strategy is to disable the nominal controller for a brief

time period, letting the avoidance controller complete its change in direction then

coast to maintain the straight line trajectory assumptions. Taking the idea further,

if the nominal controller is disabled until tCPA = 0, the avoidance controller will first

correct the path then coast until the collision threat is over.

Depending on the application it might not be acceptable to override the nominal

controller for long periods of time to avoid collisions. In practice, a good approach

is to set another critical time horizon, tc < t,, such that if tCPA < t, , the nominal

controller is disabled and the satellite coasts maintaining the straight line assumption.

5.3.4 Multiple Satellites

The avoidance controller, as formulated in Section 5.2, only considers two satellites. In

[601, multiple agents avoid collisions using pairwise checks, prioritized by a calculation

247

of the most imminent threat. The approach works well for tens of 2D game characters

in confined spaces as well as simulations of large flocks of birds. Similarly, the satellite

avoidance controller can use pairwise checks between each of the satellites in the

group. Avoidance maneuvers are executed one at a time, prioritized by the smallest

value of tCPA. As shown in the ISS tests below, this approach works well in practice for

a three-satellite formation, and simulations with up to 10 satellites with closely spaced

avoidance events have been performed successfully. Further study is required to

provide a theoretical basis for the pairwise interactions or explicitly consider multiple

satellites.

5.4 Initial Development ISS Test Session Results

The collision avoidance controller was implemented and tested in several micro-

gravity sessions on the SPHERES testbed aboard the International Space Station.

SPHERES was developed to test advanced autonomy and formation flight algorithms

for satellites in a representative microgravity environment. The facility consists of

three nanosatellites flying inside the station with on-off C02 thruster propulsion, a

6DOF pseudo-gps estimation system based on ultrasound, and onboard processing

and telemetry systems[62, 56]. In all tests the nominal controller was a PD setpoint

controller operating at 1 Hz paired with the low level collision avoidance controller.

The first test in September, 2008 verified the the basic controller presented in Sec-

tion 5.2 applied to a 3-satellite collision avoidance problem. In this test, each satellite

started on the vertices of an equilateral triangle, then simultaneously attempted to

cross through the center of the triangle as shown in Figure 5.1. Figure 5.2 shows dcPA

and tCPA as a function of time during a representative avoidance event. At t = 150,

the satellite activates the collision avoidance maneuver as shown by a vertical line in

the dcPA plot. This was the first time the CPA distance was below the avoidance

trigger distance of 26 cm at the beginning of a control cycle. After each avoidance

event, tCPA times show a significant decrease because one way the controller attempts

to maximize dCPA is to move tCPA to the current time. Likewise, after each event

248

Figure 5.1: In the 3-satellite collision avoidance test, the satellites start at the vertices
of an equilateral triangle and attempt to cross through the center simultaneously.

'E -'-- I- ___ -- I --- T
< 0.2CL0

V

I48 150 152 154 156 158 160 162 148 150 152 154 156 158 160 162
t (s) t (8)

(a) (b)

Figure 5.2: The distance at closest approach (a) and time of closest approach (b)
during a collision avoidance maneuver. Each time the collision avoidance controller
is activated, dCPA is moved above the avoidance trigger threshold, while the nominal
controller tends to move the trajectory back toward collision. Each avoidance event
also drives tCPA closer to the present time.

dcPA distances increase. It is also interesting to note that near the end of this event,

the avoidance maneuver was activated every other control cycle. When tCPA finally

reaches zero, there is a slight grazing collision. Here we see that the PD controller

kept driving the satellite back toward a collision on every other-cycle. Results from

this test showed that the nominal controller could significantly interfere with the low

level collision avoidance maneuvers, to the point of causing a collision. For all fu-

ture tests, the nominal controller override described in Section 5.3 was added near

tCPA = 0-

249

14 tCPA
- - Future/Past CP

12 - Avoid Event

10

8.

6-

4,

2-

* --- - - - - - - ->0

Figure 5.3: The 2-satellite head-on avoidance test examined the behavior near the
degenerate case of exactly aligned relative velocity and relative position vectors.

Two more tests were performed in August, 2009. For these tests

ta = 10s

tc = 3s

da = 0.3m

dt = 0.33m.

The first of these tests examined the avoidance problem near the degenerate case

when the relative position and velocity vectors are exactly aligned. Figure 5.3 shows

the trajectory of both satellites in the X-Y plane. The inward facing arrows indicate

the direction of thrust commands issued by the nominal controller and the outward

facing arrows show the avoidance controller commands. The estimated CPA is also

plotted for the time steps that the avoidance algorithm was active.

The test results verify two important properties of the avoidance method. First,

the algorithm takes advantage of small separations in the projected CPA positions of

the satellites and increases them to achieve a safe trajectory. In the first avoidance

step there is a large thrust maneuver that significantly increases the CPA distance,

and the remaining CPA positions remain clustered at a point the trajectory eventually

passes through. Second, the controller can operate successfully even in the presence

of a nominal controller driving it in the wrong direction. Following the first maneuver

the back and forth exchange between the nominal controller and the avoidance con-

troller can be seen until the satellite reaches the CPA, where the nominal controller

is disabled for several seconds. The satellites coast safely past the CPA, then resume

a trajectory to the final target.

A repeat of the 3-satellite tests from the previous session was also performed to

see if the new parameters would help prevent grazing collisions. The first crossing is

250

pictured in Figure 5.5, where the arrows indicate the direction of the avoidance thrust

commands, and the nominal controller is omitted for clarity. This test included a

second crossing, where one of the satellites moved to the center of the test volume to

act as an obstacle, and another moved slightly out of plane to include a 3D component

in the initial trajectories. As shown in Figure 5.6, the two satellites attempting to

cross through the center successfully avoid the uncooperative obstacle.

In contrast to the 2-satellite Head On Avoidance test, the 3-satellite avoidance ma-

neuver performs pairwise calculations with each other satellite. Since the avoidance

algorithm only chooses the most imminent threat (smallest tCPA), these avoidance

events occasionally conflict. For instance, during the first crossing, SPH1 and SPH2

perform an avoidance maneuver indicated by the arrows in opposite coplanar direc-

tions. At approximately the same time, SPH3 performed a maneuver in the positive

Z direction. During the next time step, SPH2, now on a path clear of SPH1, per-

formed a maneuver to avoid SPH3. SPH3 had to correct its initial move by thrusting

in the negative direction. Similar behavior can be seen in the second crossing in Fig-

ure 5.6 when SPH2 initially attempts to go over the obstacle then changes direction

and flies below it. With three satellites there are sufficient degrees of freedom that

the pairwise conflicts do not pose a problem, and no collisions occurred. However,

certain carefully constructed cases could be imagined that force the satellites into a

collision trajectory. Though these test results indicate excellent avoidance behavior

they encourage an investigation into a multi-satellite version of the collision avoidance

algorithm that considers more than pairwise interactions.

5.5 Conclusions

This architecture is particularly well suited for close proximity science demonstration

missions where the nominal controller may not have the main objective of avoiding

collisions but still requires some form of avoidance. This is ideal for Zero Robotics

because the student users can focus on developing general control strategies without

additional code space consumed for avoiding their opponents. With only a few small

251

: : : : : --- SPH1
--- SPH2

-0.3 - - -- --- -- - Avoidance Controller
a Norninal Controller

-0.2-- - - - - - -e CPA

several seod until.... the... collsio threat is .oe.

- 0 .1 - -. . -. -. -.. -. -... . -.. . -.. .

0 ---
--

0.1 --- --.....

0 .2 4 -- - - - -.-.- .-

0 .3 - - -. -... . -.. - ---... -.. . . -. .. . --.

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
x

Figure 5.4: A planar view of the head-on collision avoidance test. Shortly after the
saeitres move toward the center the avoidance controller starts pushing the satellites
away from each other. The estimated CPA moves from the center of the volume to
a safe distance where it stays. Near the CPA, the nominal controller is disabled for
several seconds until the collision threat is over.

-SPH1
-0.3 - SPH2

-SPH3-

-- w-Avoidance
-0.2N- e CPA -.. -.. -...

-0.1

0.1

0.2 -. . .. :.

0 .4 -.. . -.. . ----..

0.2 -... . -- --... -. -..

-04 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

x y

Figure 5.5: In the 3-satellite test, all three satellites attempt to cross through the
center simultaneously. The pairwise avoidance events are clear from the coplanar
thrust commands.

252

. -03-0.2 01.... 0..01..02..03

0-.

-- -SPH1

0.1F : e t--SPH2 -e-o-e--uoei o c - SPH3
-Avoidance -ide

0.2 -- e- CPA

0.2

0

-0.2 -

0 -1 0.2 0.3

x -0.4 -0.3 -0.2 -0.1 0 0.

Y

Figure 5.6: When the satellites cross the test volume a second time, SPH1 becomes
an uncooperative obstacle, and SPH2 moves out of the initial crossing plane. The
collision avoidance controller effectively directs both satellites around the stationary
obstacle on opposite sides.

calculations, the algorithm is easy to implement in a computationally constrained

system and requires only a small overhead in code size. In several cases, the controller

trades performance for simplicity, particularly in terms of fuel consumption. Lastly,

it is important to note that for the purposes of Zero Robotics it has been sufficient to

assume that the limited horizon controller override will successfully prevent collisions

in most scenarios. Rare exceptions are permissible and will likely only result in grazing

collisions. More formal analysis of the switching behavior to exclude the possibility

of instabilities or limit cycle behavior and provide a formal guarantee of collision

avoidance remains as future work.

253

254

Chapter 6

Conclusions and Future Work

6.1 Thesis Summary

To conclude, we will return to the design principles introduced in Chapter 1 and

examine them from the context of the complete implementation.

6.1.1 Engage and Educate

To create a platform for both drawing students in and building an educational expe-

rience, this principle must play a role in the design of all components. At the most

basic level, Zero Robotics tournaments are built on the fundamental attraction of a

chance to run an experiment in space along with the inherent excitement of compe-

tition. Once students begin competing, the game design and tournament structure

covered in Chapter 2 serve to keep them involved and learning. With a link to a

realistic space-related theme, incorporating math and physics challenges, solving the

game requires a cross-disciplinary application of STEM subjects. Careful balancing

helps to keep the game interesting.

As an educational tool, the Zero Robotics platform presented in Chapter 3 is

not restricted to just the annual scoped challenges of the tournament. It can serve

as an open-ended tool for learning about programming and a wide range of physics

principles. On the programming side, students have access to most features of the C

255

programming language along with some support of C++. The programming concepts

can then be connected to exploring the concepts of force and torque, and how they

relate to the motion of a rigid body.

Lastly, with the Leaderboard scoring system in Chapter 4, efforts have been made

to supply several tools for the analysis of ranking information instead of hiding the

underlying implementation.

6.1.2 Accessibility

A virtual competition like Zero Robotics has the distinct advantage of being able to

utilize mature web-based technologies and the wide availability of internet access in

schools for opening access to a large audience of participants. The Zero Robotics

platform is the main embodiment of this principle with centralized resources for writ-

ing, compiling, and simulating programs for SPHERES. By operating completely in

a web browser, the system avoids the need to license expensive software, and users

can begin programming from any computer without obtaining installation privileges

or configuring software.

Accessibility is also achieved through the design of the tournament. By starting

out with a simplified problem in two dimensions and progressing to more difficult

challenges, the format provides an onramp for novice teams to get started and be

successful.

6.1.3 Incremental Difficulty

Incremental difficulty operates at two scales in Zero Robotics. The first is the progres-

sive increase in difficulty built into the tournament season and game design intended

to promote accessibility, keep teams engaged throughout the season, and keep flex-

ing their skills. The second is a spectrum of options to accommodate different skill

levels. The game balancing process includes considerations to ensure multiple diffi-

culty levels, and the Zero Robotics API provides a range of options for controlling

the satellites.

256

6.1.4 Efficient Inquiry

A concerted effort has been made throughout the design of the Zero Robotics platform

to minimize the round trip time from writing code to analyzing simulations. The

SPHERES simulation is designed with separate modular components so that each

simulation run only involves the compilation of user code, and the simulation has

been carefully optimized for runtime performance. Simulations are recorded to a

database for review at any time, and the 3D visualization tool can replay a match

from any perspective.

The Leaderboard system takes the same concepts and applies them to providing

scoring information throughout a tournament. Teams can submit a project and see

an updated ranking within a few minutes of submission, along with the full details of

each match performed.

6.1.5 Authenticity

Through a high fidelity simulation model, Zero Robotics gives students a realistic pic-

ture of the operation of a dynamic robot in space. Over many years, the SPHERES

simulation model has been refined to provide a close representation of the hardware

platform with a complete model of the sensor, actuator, and software subsystems.

The online compilation infrastructure enforces compatibility with the hardware and

challenges students with accurate though tightly constrained code size and computa-

tion time restrictions.

To achieve the most reliable results on the ISS and accurate simulation results,

restrictions are added to the virtual game in the form of a collision avoidance law

presented in Chapter 5 and boundary limits enforced by the game rules.

6.2 Contributions

Collectively, the design, implementation, and analysis of the Zero Robotics program

have resulted in the following contributions:

257

Created a framework for building virtual platforms as a surrogate for hard-

ware in student robotics competitions

The combined platform design principles and the example case of Zero Robotics rep-

resent a model for implementing virtualized hardware competitions with a simulation

in place of a robot. The same approach has applicability to other hardware platforms

and research laboratories with limited available testing time.

Created a versatile, easy to use programming API for controlling 6DOF

satellites

The Zero Robotics API provides generic control of double integrator dynamics at the

level of forces, velocities, or position targets or in any combination with a simplified

interface for access by students. In application, the API has allowed students to

successfully implement and demonstrate programs on SPHERES. Students have ac-

complished tasks such as obstacle avoidance, attitude scanning maneuvers, docking,

and formation flight, all using the interface.

Designed a web-based architecture for writing, compiling, and simulating

code for a dynamic robot

The architecture in this work links a highly accessible programming environment to

a dynamic simulation, all hosted online. Combined, these tools extend the elements

of the virtual platform framework to give anyone with a web browser the ability to

write programs for the simulated robot platform with very little startup time.

Developed a pattern for fast, highly detailed, web-based simulations

This work details the components required to make a sufficient simulation represen-

tation of a robot, including software-in-the-loop capabilities; modular, pre-compiled

components; dynamic loading; and operating system level modeling of execution.

The latest SPHERES simulation is the fastest (5x-1Ox real time) and most accurate

version of the SPHERES simulation to date. It is in use by not only thousands of stu-

258

dents on the Zero Robotics platform, but also by all SPHERES researchers developing

programs for ISS tests.

Designed a responsive, game-agnostic scoring system

The Zero Robotics Leaderboard scoring system is an improved implementation of

the Whole History Rating rating algorithm designed to give competitors continuous

feedback about their simulation performance. The algorithm has been updated with

an Armijo Rule guard to improve stability along with implementation modifications

to improve responsiveness.

Created a lightweight control law for close-proximity satellite avoidance

An always-on supervisory control law originally developed for close proximity satel-

lite formation flight with SPHERES has been used successfully in all Zero Robotics

tournaments as a basic guard against collisions. The implementation is compact in

size and requires little computational effort.

Co-founded and led the Zero Robotics STEM outreach program

Lastly, the Zero Robotics program itself has contributed to STEM education and the

world of competition robotics. It provides the unique features of model-based online

simulation, programming, 6DOF dynamics, a multi-week team collaboration phase,

and the chance to test satellites aboard the ISS. It is now an international program

with 6 iterations of unique challenges, over 2000 students to date, and has led over

200 students to "touch space" with the direct experience of running an experiment on

the space station.

6.3 Future Work

As an immense collection of interconnected components, generating hundreds of thou-

sands of simulations each year, the Zero Robotics program has many opportunities

259

for future exploration. This section will highlight several of the paths that could be

possible in the near term along with a number of pressing challenges.

6.3.1 Research Directions

Game Design

Though this work provides a set of game design guidelines there are many more

ways to improve the game design process for Zero Robotics. Interesting ideas include

developing automated tools for tuning game parameters or automated generation of

Al players to play against competitors.

Recent expansions to the SPHERES hardware, including a new single board com-

puter and cameras added for the recently launched VERTIGO program, open up

many interesting directions for future game designs. Incorporating these components

must be approached with careful attention to the original platform design principles.

For instance, ensuring a simulation of the new hardware components is available will

be essential before adding them to an official tournament. It is highly recommended

not to add a major hardware change to an official tournament without running a lim-

ited scale pilot competition first. Neglecting to do so risks frustrating and alienating

teams if the available tools are not at par with the rest of the infrastructure.

Innovative Interfaces for Web-Based Programming

The current tools for collaboration allow for project sharing and some real-time inter-

action. A frequently requested improvement is the addition of real-time editing shared

between browser similar to the functionality of Google Drive. Careful research will be

required to find a solution for preserving compilability of the code while collaborating.

Data Mining

During the course of a Zero Robotics season, hundreds of thousands of simulations are

run by the teams. Aggregate analysis of these simulations could provide a real-time

snapshot into how well teams are performing in the current challenge or lend insight

260

into the performance of control laws running underneath the student code. The large

data set could even be used to build gradually improving Al players from competitor

examples.

Visualization Tools for Simulation

The current 3D visualization is based on a flash library that is no longer supported by

the developer. The visualization should be improved with modern web technologies

such as WebGL and include new tools for more accessible data analysis.

6.3.2 Monte Carlo Tools for the Zero Robotics Platform

Appendix C presents a concept for a Monte Carlo simulation tool for exploring ro-

bustness to parameter variations in programs. Users could use the tool to explore

custom variations in a program and evaluate user-defined constraints to determine if

the simulations were successful. This tool would enable better understanding of the

effects of parameter changes over an ensemble of tests instead of from one simulation

to the next.

6.3.3 Formal Evaluation Studies

With the basic technical infrastructure completed, Zero Robotics urgently needs to

begin more formal studies of its impact on students. As part of the 2012 season, a

formal pre- and post-survey was designed to evaluate the impact of Zero Robotics on

measures of self-efficacy as well as career expectations. The initial results has a very

low response rate, and the overall results were inconclusive. Future studies will need

to find effective ways of increasing participation in the studies in accordance with

regulations on the use of humans as experimental subjects.

261

6.3.4 Scaling Challenges

ISS Dilution

As Zero Robotics grows and a smaller percentage of teams gets to proceed to the

championships, there will be a natural dilution of the effect of the final ISS tournament

on encouraging participation. Plans for growing the program need to account for this

in the way the tournament is structured. There are a number of paths to keeping the

program interesting:

9 Add in-person real-time programming competitions to the final event. Users

that don't reach the ISS could still travel to the championship to compete in

head-to-head live programming challenges. This model has been used success-

fully by TopCoder in the TopCoder Open programming event.

e Add a hardware component. Several ideas have been considered for enabling

a hardware phase of the competition. Users could program a ground-based

robot using the Zero Robotics API, then compete in local regionals using the

hardware. Winners from the regionals would proceed to the ISS phase.

Leaderboard Scoring and Cloud Infrastructure

As participation grows, the data storage and processing requirements will grow signif-

icantly. If 1000 teams run 20 matches per submission for 20 submissions, the 400,000

simulation runs over a single competition will equal the number all simulation runs

to date in Zero Robotics. With this many teams, it may be necessary to transfer up-

dates of the Leaderboard algorithm to a dedicated computer responsible for running

the algorithm updates. If at some point the competition becomes too large to effi-

ciently process all match results in the main algorithm updates, it may be necessary

to change to a different scoring algorithm or divide teams into regional tournaments

of a fixed size. The algorithm also admits a parallel implementation that could be

spread across a large cluster of computers.

262

6.3.5 A Development Roadmap For Zero Robotics

Based on user feedback and future planning, the following is a rough sequence of

priorities for new software development on the platform

1. Performance improvements for the ZR IDE. Users report sluggish behavior and

occasionally lose projects. This is critical for maintaining the accessibility of

the platform.

2. Separate ZR simulation deployment from MATLAB. To simplify updates of the

online simulation and pave the way for making the simulation freely available.

The main execution loop should be removed from MATLAB. This is possible

using the code generated version of the simulation.

3. Add a visualization plugin for the ISS GUI. To enhance the final tournament it

would be possible to implement a 3D visualization running as a plugin within

the SPHERES GUI, then use a camera to relay the view to the ground.

4. Implement an open API to the online project editing and simulation tools. Many

users request the ability to edit code offline or perform simulations independent

of the ZR infrastructure. A clearly defined web API such as a RESTful interface

would enable this capability.

5. Provide an in-browser version of the SPHERES simulation that allows line-by-

line debugging. It is possible to compile the simulation into a module loadable

by Google's Native Client, a tool for running C++ in a web browser. This

would allow students to run simulations in their browsers and maintain the

accessibility of the platform.

6. Create a downloadable version of the SPHERES simulation and game libraries.

The next step after a browser-based simulation is a downloadable version of the

simulation. This would allow teams interested in working separately from the

online environment to do so.

263

7. Open up programming interface for full SPHERES programming. The Zero

Robotics API can in principle support all functionality of the GSP interface.

This step would create a special "advanced" game that would allow any re-

searcher to use the Zero Robotics game for developing flight code.

264

Appendix A

Zero Robotics-Specific

Implementation Details

The following items are additional requirements for game and implementation that

are specific to the Zero Robotics Tournament.

A.1 Game Implementation

A.1.1 Scoring Systems

Scores will eventually need to be restricted to the range of [0, 22] due to the test result

value restrictions discussed in Section A.1.3.5, but it is possible to re-scale an arbitrary

scoring scheme to this range if needed. For the online visualization environment, any

range of scores can be displayed as long as it is possible to transmit them in telemetry.

A.1.2 Code Size Limits

Code allocation for a high school tournament game should not drop below about

6.4KB per user.

265

A.1.3 Standard Game Phases

The basic components of a Zero Robotics match have stabilized to the point that

a common outline can be used for all implementations. This section describes the

format of a typical Zero Robotics game. Except where noted, most of the actions

described here are automatically performed when a game is built using the Zero

Robotics API. Each of the phases are denoted maneuvers, a standard component of

the SPHERES Guest Scientist Program API that usually represent states in a state

machine controlling the behavior of the satellite.

A.1.3.1 Maneuver 1: Estimator Convergence and Opponent Selection

Prior to the start of an ISS match, the crew positions the satellites in the approximate

location where the program expects them to start. At the start of the test, the

satellites drift freely for 10 seconds while the SPHERES estimator converges close to

the true position of the satellites. During this period, the crew is instructed to press

a key on the keyboard to assign an opponent for the match. If the crew does not

select an opponent, the satellites automatically terminate the test run.

When the game runs in the online simulation environment, the initial estima-

tion period still takes place, but the logged telemetry automatically truncates the

10 second period of the simulation. where the satellites are in free drift. The oppo-

nent selection is also ignored because the simulation software automatically loads the

correct programs for each satellite.

A.1.3.2 Maneuver 2: Initial Positioning

Correct initial positioning is a critical assumption for achieving game symmetry and

ensuring a fair match on the ISS. The initial positioning phase moves the satellites

to the pre- programmed starting condition for the match with 30 seconds of time to

reach the target. The match starts immediately after the time limit expires. The

simulation places the satellites in their intended positions and skips the initial posi-

tioning maneuver. ISS tests will have some initial error in the positioning, so perfect

266

initial placement should not be critical to the game outcome. An analysis of initial

positioning errors is available in Appendix C.

A.1.3.3 Maneuver 3: Game Update Loop

The third maneuver contains the main updates of the game and actions by the user.

It typically executes in a 1 Hz loop inside the method update () (see Section 3.4.4.1).

The implementation is up to the game designer, but it usually includes the following

components:

1. Game rules update pre-user

2. Run user code

3. Game rules update post-user

4. Command thrusters

5. Check termination conditions

6. Send communication packets

The first step performs updates to the game code that must be propagated from

the previous control cycle. Any flag or setting that should be active for the current

control cycle should be set here. This can include adjusting the game state based

on the satellite's current position such as revealing hidden objects according to the

satellite orientation, or indicating the completion of an item pick-up from conditions

on position, velocity, and pointing direction.

The next step is to trigger a user code update by calling the loop() method in

the user's custom-designed class. It is up to the game designer to decide where in the

game update the user code is called. Triggering the user's program will result in calls

into the Zero Robotics and game APIs, which are processed in the third step. The

third and fourth steps perform final cleanup operations based on the user actions,

prepare for the next time step, and command the satellite thrusters based on the

desired forces and torques.

267

The fifth step checks for all conditions that might end the game. All Zero Robotics

games include a maximum duration timeout, but the games may end early for other

reasons like both satellites expending their allocated fuel or one or both of the satellites

completing all tasks in the challenge. An endgame finale can even be implemented in

such as way as to immediately terminate the match if it is achieved. The satellites

may also terminate if an error condition occurs. If one of the satellites resets during

a match the other will immediately terminate the test with an error indication so the

match can be restarted.

The last part of the game loop is to broadcast synchronizing game state infor-

mation to the other satellite in the match. The updates usually contain key shared

information about the final state of the game after the most recent update. Section

2.2.4 will discuss strategies for sharing this information.

A.1.3.4 Maneuver 240+: Termination Phase

Except when an error occurs, the satellites do not immediately terminate when game

end conditions are met. Instead, they enter a holding maneuver, usually numbered

240 or higher, and wait for the partner to do the same. The holding maneuver

can include additional visual motions to signify the completion of the game such as

adding a slight spin about a known axis. Entering a termination maneuver keeps

the satellite program active but stops the user code from running. This is especially

critical for keeping the global metrology system running because one of the satellites

is responsible for triggering the infrared updates that initiate each metrology cycle.

After both satellites enter a termination maneuver, they wait for several additional

cycles to ensure the final game state is in sync. This is very important when game

state values like the finish time in a race are set at the very end of a match and may

take an additional cycle to be processed on the partner satellite. Once synchronization

completes, the satellites terminate with a test result number.

Based on experience from several Zero Robotics test sessions, it is a good idea to

keep the game volume boundary limits active in the termination maneuver to prevent

the satellites from drifting out of the volume. Even though the satellite's user code

268

is disabled, it will continue sending state telemetry updates to the partner satellite,

allowing for collision avoidance events to take place if the other user is still active.

A.1.3.5 Test Result Value

The only feedback currently available from a hardware Zero Robotics match is a

standard 1 byte SPHERES test return value. Numbers 0-10 and 255 are reserved

for standard result codes. The current standard practice for Zero Robotics is to split

the result code into a rounded score value and a numeric identifier corresponding to

an assigned team number 1-9. The score part of the number indicates the winner of

the match and their performance, while the ID ensures the correct competitors were

selected by the crew. Though the identifier consumes a large portion of the number

space, it has proved to be essential in on-orbit testing and should not be omitted.

The test result value is computed with the following formula:

result = round(score - 10) + 10 + ID. (A.1)

Here score is the floating point score in the range of [0, 23]. To prevent the possibility

of ties, score, is first compared to the opponent's floating point score and awarded

an additional bonus point if it is larger. In this case, the score range is restricted to

[0, 22]. The final result is a number in the range [11, 249], within the 1 byte limit and

outside the range of the reserved test result numbers.

To give the highest fidelity of scoring performance, the [0, 22] range is often

mapped to the most likely subset of the possible scoring values. If a user happens to

score outside of the expected range, the score should simply be saturated at the max-

imum value of 22, and the same bonus point calculation can be applied to indicate

the winner of the match.

Simulated matches on the Zero Robotics website have more facilities available to

process the results of a match. At the completion of a simulation run, the website

receives all telemetry data sent from the satellite. As part of the website game

configuration, the game designer specifies a script to process the telemetry into a

269

numeric score. Any component or composite calculation from the telemetry may be

used to judge the performance, but it is best use something that can eventually be

calculated during the ISS finals.

A.1.4 Communications

A.1.4.1 Typical Uses for Standard SPHERES Packets

Standard practice for Zero Robotics to date has been to transmit only 3 packets per

second per satellite, corresponding to the 3 standard data types that can be overlaid

on the payload. The types and their common uses are explained below:

float Array of 8 single precision 4-byte floating point numbers. This packet often

contains quantities that require floating point precision instead of a rounded

integer representation. The score is usually stored and transmitted as a floating

point number to ensure ties are very unlikely.

unsigned short Array of 16 2-byte unsigned integers. This packet usually contains

simple counting variables or event completion times that do not require a sign.

short Array of 16 2-byte signed integers. The short packet is helpful for sending

approximations of continuous values that will not fit in the float packet. The

numbers are usually scaled by a multiplier to avoid truncation.

For visualization purposes, all packets sent by the game must use the first element of

the array as a time stamp, leaving 7 elements for the float packet and 15 elements for

the two integer packets. The time stamp should be in seconds for the floating point

packet and tenths of seconds for the integer packets. When processing the telemetry

after a run, the simulation software will replace packets with duplicate time stamps

with the most recently received packet.

Both the Zero Robotics visualization and the simulation report tool assume the

packet format is fixed for each game, so changes to the packet format should be

avoided during the season. Any updates must be propagated to the visualization and

report tool.

270

A.1.4.2 Improving Ephemeral Data Transmissions

For more consistent ephemeral transmissions, two additional approaches might be

implemented for future games. First, the packets could be sent multiple times during

the 1 Hz control cycle by adding an additional minor update period half or a quarter

way through the 1 second period. Second, the item in use could have a finite power-up

time, during which an incrementing sequence count with a known limit is transmitted

to the opponent. If the opponent receives the sequence at any point during the power-

up period, it can complete the sequence without receiving any additional packets.

Again, a delay is introduced, and the satellite must commit to using the item as soon

as the sequence starts.

A.1.5 Game Manual

A Zero Robotics game manual should contain at least the following items:

Challenge Statement It has been traditional in Zero Robotics games to craft a

fictional story based on the theme that summarizes the tasks in the game. This

statement is usually included at the beginning of the manual.

Gameplay A detailed description of each component of the game. The description

should start with a broad overview of the game, including diagrams to summa-

rize the layout of key features. The section covers the both the capabilities of

the satellite, including any restrictions, like time, fuel, charge, and code size,

and the steps necessary to complete the game. All steps should include scoring

information where relevant.

Scoring Summarizes the scoring information presented in the game game play overview

for quick reference.

Tournament Detailed description of the phases of the tournament and the overall

tournament scoring system.

Rules Summary of all rules presented in the preceding sections. Also outlines rules

for updating the game and a code of conduct.

271

Version History It is expected that the manual will undergo changes during the

season, and this section tracks all updates. A version number should be clearly

visible at the beginning of the document, and a dated change log should be

present at the end.

Throughout the manual it is useful to refer to elements of the game API with brief

summaries. Links should be available to documentation generated from the source

code of the API for more detailed usage information.

Prior to the game release, a careful examination of the entire manual is necessary

to ensure the rules are in sync with the programmed game implementation. The best

way to achieve this is to develop the manual in parallel with the game, using the

manual as a rough software specification. As updates are made to either manual or

implementation, the changes are kept in sync.

A.1.6 Game Development Timeline

The following schedule provides a framework to work toward a September launch of

the game:

Dates Name Description

Jan-Feb Brainstorming / Study results of the previous seasons and generate

Conceptualiza- ideas for a new game concept.

tion

March Concept * Choose one or two concepts for detailed

Selection study.

* Outline the game rules and scoring systems

as a basis for the manual.

272

April Prototyping 9 Implement components of the game rules as

modules.

9 Start assembling a complete game.

May Prototype e Complete the first prototype of the game.

Complete

e Perform preliminary balancing analysis.

* Ideally, the prototype should complete with

a brief design review to present the current

design.

e A draft manual should be completed.

June Game Updates 9 Based on feedback from the design review or

lessons from the initial analysis, implement

any additional updates to the game.

e Aim for a full game draft by the end of the

month.

July Standard 9 Develop standard players.

Players and

Final Tuning 9 Perform final balancing analysis with

standard players.

e Finalize manual details.

9 End month with completed game and final

readiness review.

273

1U6U V~U W e . In preparation for the game launch, freeze

code development as much as possible.

9 Deploy first game to website and test

functionality.

9 Address any last-minute bugs from final

testing.

A.1.7 Code Preparation for ISS

It is the responsibility of the Zero Robotics team to prepare the final code package sent

to the ISS for the competition season. Preparation of the code package typically starts

immediately after the finalist code submission deadline. At least one full round-robin

simulation should be conducted using the code in its flight configuration. Several

simulations from each competitor should be examined carefully for any potential

anomalies.

Since the users' solutions are full 6-DOF programs, the final checkout operations

are mostly limited to verifying that the software runs until the game times out. It is

usually possible to check that the satellites attempt to move their appropriate initial

conditions and that the satellite attempts to execute the first action specific to the

user program.

A.2 Simulation Details

A.2.1 S-Function Interface

Each of the satellites are configured with a set of parameters that are static for the

duration of the simulation. They are used by the S-Function interface and lower

layers to model components of the satellite that are not part of SPHERES Core but

274

A +t C dVF

are accessed by the software.

userLibraryName, commLibraryName Name and path to the shared object con-

taining SPHERES Core and user code and the communications simulation li-

brary. The library is dynamically loaded by the S-Function interface.

hardwareId Uniquely identifies the satellite. The hardware identifier is normally

stored in flash on the satellite, so this value is written to the virtual flash

memory in the SPHERES Core Wrapper.

logicalId An integer identifying the logical role of the satellite for the current pro-

gram, usually 1, 2, or 3. The logical ID is also compiled into the SPHERES

Core and User code layer, but it is passed to the S-Function layer so it can

identify which satellite to update in a simulation step.

testnumber The test number selected by the operator for the current test run.

At the start of a simulation, the test number is passed to the simulated com-

munications manager, which initiates a "start test" command packet from the

virtual ground station.

sphActive Indicates if the selected satellite is active in the simulation. Since the

Simulink simulation does not allow for a dynamic number of satellites, all satel-

lites are compiled into the simulation model. The sphActive flag turns off the

software model for inactive satellites so the S-Function interface does not at-

tempt to load their libraries.

nSph The total number of satellites in the simulation.

bcnPos, bcnDir Matrices containing the position and normal vector of the ultra-

sound beacons in the global frame. The beacon locations are normally transmit-

ted via communications packets to the satellite upon bootup and prior to tests,

but in the simulation, the SPHERES Core Wrapper skips the communication

and calls the function padsBeaconLocationSet directly to set the locations and

directions.

275

randSeed Among the random seeds computed in Section 3.3.2 is a value to ini-

tialize random number generators within the C/C++ code of the simulation.

This value is useful if the code being simulated must produce some form of

randomness such as in a Zero Robotics game.

A.2.2 S-Function Interface Inputs and Outputs

At each step of the simulation, the following inputs and outputs are passed from

Simulink to the S-Function interface for each satellite. The following input and output

elements are defined in the interface:

gyroCounts [in] The 32-bit values z, computed in the gyro measurement model.

The SPHERES Core Wrapper loads these values into the virtual FPGA register

A2DADDR.

accelCounts [in] The 32-bit values za computed in the accelerometer measurement

model. The SPHERES Core Wrapper loads these values into the virtual FPGA

register A2DADDR.

usFIag [in] Set to 1 when a new global metrology distance vector is available from

Line 12 of Algorithm 3.2. The SPHERES Core Wrapper uses this value to set

the FGPASTATFRAME flag in the virtual FPGA register FPGASTATADDR.

usMatrix [in] Configured with the distance vector computed on Line 9 of Algo-

rithm 3.3. When usFiag is set, the matrix will be read from the FPGA reg-

ister MATRIXADDR when the wrapper runs the SPHERES Core function

HWI pads_ rcvo.

runtimeCmd [in] Models a command sent from the ground station laptop key-

board. In the simulation the runtime command is static for the full simulation

and is sent in a command packet originating with the virtual ground station in

the communications simulator.

UARTRx [in] Incoming UART data from the SPHERES expansion port. The data

stream is byte limited to reflect the baud rate of this interface.

276

thrPtr [out] Array of values for activating each of the 12 satellite thrusters. This

array is the main input to the dynamics module.

irTx [out] Flag for activating a global metrology cycle described section 3.3.4.3. In

addition to passing the signal out of the software model, if at the end of a time

step any of the satellites have set irTx, the S-Function interface will signal each

SPHERES Core Wrapper to immediately fire the IR interrupt HWI_ IR_ rcv().

UARTTx [out] Outgoing serial data. Like the UARTRx channel, it is byte limited

to reflect the baud rate of the interface.

terminate [out] Set to 1 if the software model has encountered an internal error

and needs to signal the simulation to terminate immediately.

SPHERES Core Status Variables [out] Several standard values from SPHERES

Core are passed out of the software model for logging purposes, including the

current test time, current maneuver number, maneuver time, the estimated

state, and the latest test result number.

A.2.3 Thruster Transient Modeling

So far most SPHERES simulations have assumed a negligible transient when opening

and closing the thrusters. It is not entirely clear if this is a poor assumption because

the transient has been very difficult to measure with lab equipment. SPHERES

thruster characterization performed in [9] indicates an exponential rise time of ap-

proximately 10ms, though the estimate is very rough due to noise and vibrations on

the test stand. Future simulations might use a better thruster model with a delay

and transient as shown in Figure A.1 because it is very easy to implement and models

a varying impulse for very short thrust durations. To match an exponential rise time

with a delay and slope, an equivalent impulse can be used. The following derivation

matches the impulse of a linear slop and delay model to an exponential model for a

277

period of n time constants.

trise

2.197

JexP = jl(1 - e-t/r) dt = (n - 1)r + _re- (A.2)

Jiinear = -dt + nr -(t, + td) = nr - - + td (A.3)
JO tr 2

Equating Jexp and Jiinear and solving for the linear rise time in terms of the delay

results in

tr = 2-(1- -~) - 2td.

Taking the limit as n -+ oo, the best approximation is

tr = 2(r - td).

Note that this means the delay time must be shorter than the time constant of the

exponential, or the linear transient will provide less impulse than the exponential rise.

Example: suppose the thruster transient rise is indeed 10ms, resulting in an expo-

nential time constant of T = 0.0046s. Suppose we assume td = lms for the opening

delay

tr = 2(0.0046s - 0.001s) = 0.0036s.

To decide if the new model should be used, both approaches should be compared

in simulation to see if changing the delay model has a significant effect on fuel con-

sumption, dynamics, or control performance. It is likely that the approximation error

is small compared to other uncertainties such as the magnitude of the thruster forces

at each firing time.

278

command

response

td tr

Figure A.1: A useful approximation for thruster opening and closing dynamics is a
delay td followed by a linear transient with a specified rise time t,.

279

L

280

Appendix B

SPHERES Parameters and

Uncertainty Quantification

B.1 SPHERES Thruster Geometry

The configuration table from Hilstad 132] is reproduced below.

281

Thr # Thruster Resultant Resultant

Position Force Torque

[cm] Direction Direction

x y z x y z z y z

1 -5.2 0.0 9.7 1 0 0 0 1 0

2 -5.2 0.0 -9.7 1 0 0 0 -1 0

3 9.7 -5.2 0.0 0 1 0 0 0 1

4 -9.7 5.2 0.0 0 1 0 0 0 -1

5 0.0 9.7 -5.2 0 0 1 1 0 0

6 0.0 -9.7 -5.2 0 0 1 -1 0 0

7 5.2 0.0 9.7 -1 0 0 0 -1 0

8 5.2 0.0 -9.7 -1 0 0 0 1 0

9 9.7 5.2 0.0 0 -1 0 0 0 -1

10 -9.7 5.2 0.0 0 -1 0 0 0 1

11 0.0 9.7 5.2 0 0 -1 -1 0 0

12 0.0 -9.7 5.2 0 0 -1 1 0 0

B.2 Sources of Uncertainty in ISS Testing

The first step toward implementing the tool is creating a traditional Monte Carlo

system that interfaces with the Zero Robotics platform. A standard approach is

to identify a set of important simulation parameters and their uncertainties, then

generate random samples to apply to simulations. The resulting state trajectories or

dispersions are analyzed for conditions that violate constraints.

During the design and initial operations of SPHERES, both the ultrasound global

metrology system and the propulsion system were carefully characterized. Most of

these characterizations have been incorporated into the SPHERES simulation with

both deterministic and stochastic components, but the parameter are set to static,

282

nominal values (see Table 3.3.1 for a summary of the parameters). For Monte Carlo

analysis, it is necessary to determine which of these parameters to vary and how

much. This section identifies several sources of parameter variation that occur during

the hardware testing phase aboard the ISS.

B.2.1 Mass Properties

The mass of the satellite is well known based on measurements of the hardware before

launch to the ISS. The only variation in mass is due to the use of CO2 propellant,

totaling 170 g. In 2012, an expansion port was added to the satellites, bringing

the empty mass with a tank and batteries to 4.365 kg The mass range is therefore

physically limited to 4.365 kg < m < 4.535 kg.

The nominal inertia matrix for SPHERES is

0.0285 -8.37 - 10-' 1.4- 10-5

J = -8.37- 10-5 0.0283 -2.9- 10-4

1.4- 10-5 -2.9- 10-4 0.0245

The uncertainty bounds on the inertia matrix J have not been well characterized

to date. Recent additions of expansion items has prompted additional study of the

satellite mass properties, so this information may be further refined in the near future.

B.2.2 Thruster Performance

The preliminary SPHERES thruster analysis conducted by Chen in 19] includes the-

oretical and bench testing results and discusses the main factors affecting variations

in the thruster performance:

e Pressure regulator settings. Based on a linear fit of bench data, the pressure

regulator setting is related the thrust by T = 0.0033 -psia - 0.0049. The setting

on the pressure dial can vary as much as +2 psi from the actual value. In the

worst case we might also assume the crew may erroneously set the dial within

a i5psi range. This results in a thrust variation of up to 0.2N.

283

" Nozzle area variation. Changes in the profile of the thruster nozzle can

result in differences in thrust between individual thrusters. The overall standard

deviation is uarea = 0.004434 N. Differences between the thrusters are not

explicitly modeled in the simulation, but a uniform random thrust level of +5%

is applied each time the thruster opens. This captures up to 2crarea of the

variation, but it is averaged over the time history of the simulation. To better

capture the potential variation of nozzle areas, a random bias could applied to

all the thrusters once at the beginning of the test, or to more clearly relate to a

Monte Carlo parameter, a small torque bias could be applied to each thruster

pair.

" Number of thrusters activated. This is one of the most significant effects,

though a deterministic model is used in the simulation. The thrust is reduced

by about 6% for each thruster thruster opened after the first. See section 3.3.3

for details.

Though these known variations are incorporated in the simulation, multiple test ses-

sions have shown qualitative differences in thruster performance between simulation

and ISS. To better anchor the simulation, we can examine test data from the 2012

RetroSPHERES final competition. In this test session the telemetry included infor-

mation about the commanded forces to be applied to the satellites at each time step.

By matching up the force commands with background telemetry information from the

SPHERES estimator, we can determine a rough approximation of the ratio between

commanded and applied Av at each time step. The approximation procedure follows

this procedure at each time step n in the data:

1. Interpolate background telemetry data at the time step corresponding to the

force command telemetry. Extra care must be taken when interpolating the

velocity data because the background telemetry may fall in the middle of a

firing period when the velocity is changing rapidly. To avoid a mistake, the

most recent telemetry packet before the current timestep is used for the velocity

measurement.

284

2. Approximate the torques. Torque data was not present in the 2012 data (for

best results torques should be included in future telemetry), but the torque

(impulses) can be roughly approximated with the inertia matrix J and the

angular velocity changes:

Tn = JAw. (B.1)

3. Run a model of the mixer. After extracting forces and torques, the commands

are passed through the standard SPHERES mixer 1 . The mixer compensates

for thruster saturation and coupling between force and torque. After the mixer

model, the resulting firing times can be converted back into impulses:

AVem, - Fthruster Mu (B.2)
m

where u is a vector of thruster pulse widths, M is the mixing matrix, m is

the assumed satellite mass, and Fthruster is the assumed nominal thrust value.

Note that the thruster force and mass are not individually observable without

knowledge of one of the quantities.

4. Extract the velocity measurement from the next time step. Find the velocity

change

Avac = vn+1 - vn. (B.3)

5. Find the ratio of commanded to actual velocity. The ratio can be viewed as a

thrust attenuation factor kT

kT I A Vcommand (B4
kT,, = ||vomnl. (B.4)

IIAVcmdll

Figure B.1 shows all thrust command events from the US section of the 2012 finals,

excluding individual trajectories where the satellites were predicted to have run out

of propellant. The fit line is an approximation performed with the MATLAB Statis-

'Instead of using force and torque telemetry values, it is also possible to send the thruster pulse
widths directly to avoid this step.

285

xxx
E 0.1 X x _

0.006 - x0.0048- xxxx X X* X x x X-

0.00- X WXx xx" x X ,X

0.002- -

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
DV Cmd (m/s)

Figure B.1: Comparison of commanded velocity change to actual velocity change for
ISS data. Each data point represents an independent thrust event during the 2012
ISS US finals. The fit line shows a rough approximation of the thrust attenuation
factor.

tics Toolbox with a forced 0-intercept and a "Robust" linear regression that uses an

iterative method to re-weight outlier data points. The resulting line roughly predicts

the attenuation factor as kT,Iss = 0.875 with R2 = 0.93 and a standard deviation of

a = 0.0054 i based on evenly weighted data points (traditional least squares). The

low value of kT suggests that the on-orbit thrust performance was significantly lower

for this test session.

The result on its own is not meaningful without comparing to simulation results

where the true thruster performance is known. Figure shows a scatter plot of the

same matches executed in simulation overlaid with the ISS results after iteratively

adjusting the parameter controlling the thruster strength until the fit lines match.

The required scaling ratio was

Fthrust = 0.847 -0.112N,

286

to achieve an equivalent attenuation kTim = 0.877 in the simulation with R 2 = 0.95

and - = 0.0038. The difference between the thruster scaling ratio and attenuation

factor indicates is likely an additional component contributing to the thrust varia-

tions. 2 However, for the purposes of Monte Carlo testing, the results are close enough

to use the variations in attenuation factor as a range over which to vary the thruster

performance. To suggest the bounds, the attenuation factor was estimated using a

least squares estimator at each time step in the ISS tests. The results are shown

in Figure B.3. Most of the variation in the ISS tests is captured in the region of

0.6 < kr < 1 for a thruster strength of 0.112N, the current simulation default.

Based on this analysis, the default thrust value and parameter ranges should change

to:

FT = 0.875 -0.112 = 0.098 N

0.69 < kr K 1.24

B.2.3 Metrology Errors

In addition to the noise model applied by default in the simulation, the metrology

system is subject to other variations between test sessions.

Beacon Normal Misalignment Starting in Test Session 22, a bug in the SPHERES

Flight GUI prevented the beacon normal vector from being calculated correctly on

the ground station from readings of the two stage angles on the base of the beacons.

After analyzing beacon angle information from previous test sessions, it was deter-

mined that crew members, instructed to point the beacons toward the center of the

volume, usually managed to do so within about 7 degrees. This was deemed suffi-

2Note that we did not include variations in the thrust related to the number of open thrusters.
This effect was tested but because the internal process model of the estimator does not account
for changes in thruster force, and the velocity estimate is heavily weighted on this process model,
so attempting to account for the thrust reduction in the commanded Av analysis will introduce
more error. While performing this analysis, it became apparent that this missing factor in the
process model accounts for a significant amount of velocity error in the state estimate and should
be corrected in the estimator.

287

0.016

0.014-

0.012-

E 0.01 - x x

<c 0.008-x

0.006 - ^x '

0.004 -x x
x

0.002

0
0 0.002 0.004 0.006 0.

DV%

Figure B.2: Comparison of commanded
for simulation (red) and ISS data (blue).
adjusted to achieve the same attenuation

)08 0.01 0.012 0.014 0.016 0.018
Cmd (m/s)

velocity change to actual velocity change
The level of thrust in the simulation was

factor.

288

1.6

1.4

1.2

0 20 40 60 80 100 120 140 160 180
t (s)

Figure B.3: The thruster attenuation factor as estimated by a least squares filter at
each time step for all tests during the 2012 ISS finals. The family of time histories
suggests a reasonable bound on the thruster strength variation is 0.6 kr 1 for a
thruster strength of 0.112N.

289

50 50 60

40 40
40-

30 30

20 20 20

10 10

0 0 0
-0.05 0 0.05 -0.05 0 0.05 -0.05 0 0.05

x(m) y(m) z(m)

Figure B.4: The initial positioning distribution around the starting target
from 168 Zero Robotics ISS matches. The standard deviations are o -=
[0.0085 0.0062 0.0081].

ciently accurate to assume the beacons were pointed toward the center of the volume.

A full Monte Carlo analysis should include the beacon misalignment as a source of

potential variation.

ISS Temperature Variation Temperature affects the speed of sound in the esti-

mator's time of flight calculations. Starting in Test Session 22, the satellite temper-

ature has been assumed to remain constant at 210C. Data from sessions up to this

point show that the temperature can range from 21' to 250C.

B.2.3.1 Initial Positioning

Figure B.4 shows the expected positioning error based on the estimated state values

from all Zero Robotics test sessions except the 2010 Summer of Innovation finals where

initial positioning time was not sufficient to achieve the targets reliably. Standard

deviations on the order of 9 mm indicate that the positioning error is somewhat higher

than the usually assumed 1 cm positioning accuracy of the satellites. The suggested

Monte Carlo range is the 3o- positioning error.

Initial velocity errors are more problematic to include in the simulation because

the 10 second estimator convergence period is still preserved to ensure the virtual

estimator is stable at the start of a match. In the current simulation they will be

ignored. One strategy for including velocity errors would be to model the crew's

deployment errors and include an initial positioning phase in the simulation. This

290

Parameter Description Nominal Range

m satellite mass 4.45 kg [4.37, 4.54] kg,
(true physical

range)
FT thruster force 0.098 N (not varied, use

kT)

kT thruster force attenuation 1 [0.69, 1.24]

(AX0 , Ayo, Azo) initial positioning error 0 m [-0.027,0.027] m
aben beacon normal misalignment 00 [-7, 7] 0

Trss ISS temperature 210C I

Table B.2.1: Monte Carlo Parameters and Ranges

[21,25] 0C

would be more accurate but would increase simulation times by about 15%. Another

option would be to inject a velocity error following the estimator convergence period

by directly modifying the true state of the simulation. This option would require

careful study to prevent divergence of the estimator.

291

292

Appendix C

A Monte Carlo System for

Open-Ended Robustness Analysis

C.1 Introduction

C.1.1 Motivation

The Zero Robotics simulation incorporates many sources of random variations, from

modifications of thrust levels to sensor noise. In this way users experience variations

between simulation runs and have some sense for the effects of uncertainty when

developing programs. However, as highlighted by experiences with several final com-

petitions, student implementations are not always robust to large uncertainties. This

indicates that the fundamental update loop of write-test-update with the standard

simulation environment does not always reflect the full scope of variations in on-

orbit testing. This chapter presents a user-driven tool to better explore parameter

variations.

Under Efficient Inquiry, there is a middle ground between using randomness to

encourage robust implementations and causing frustration. Simply increasing the

random variation in the simulation environment may affect the competition scoring

and lead to a sense that game outcomes are decided by luck. Users see one simulation

at a time, and their primary means of viewing results is through a 3D animation, so

293

trends in an ensemble of simulations may not be immediately clear. Further com-

plicating analysis, all of the random components of the simulation are tied to time

varying features, such as random errors in global metrology measurements, sensor

noise from the inertial measurement units, and variation in thrust levels at each time

step. When troubleshooting the causes of a program problem due to one of these

variations, it is difficult to pinpoint the cause because the effects are spread out over

the full time history of the simulation, and the random perturbations are different at

every instant.

C.1.2 Requirements

The ideal solution is a dedicated tool for performing ensemble analysis of many sim-

ulations. The Leaderboard tool from Chapter 4 serves this purpose for comparing

performance against other competing teams, but no component of the Zero Robotics

platform is specifically targeted at assisting users in exploring how changes in param-

eters affect the performance of their programs. Such a tool should:

1. Highlight common variations found in ISS testing.

2. Allow users to define their own parameter ranges to vary.

3. Allow users to define custom constraints or success criteria to evaluate.

4. Provide feedback to a non-expert user about the relationship between parameter

variations and success criteria.

The ability to define custom parameters and success criteria is a key requirement for

ensuring the tool fulfills the principle of Efficient Inquiry. With this feature, users can

make use of the tool in the design of their own programs to analyze a range of options

for parameter tuning. The feature also complicates the implementation because the

tool must be capable of answering more open-ended queries than traditional Monte

Carlo systems, which are often analyzed by a topic expert.

294

C.2 Monte Carlo Robustness Testing

C.2.1 A Note About Parameter Sampling

One of the frequent reasons for turning to Monte Carlo simulation is the need to ex-

plore a high-dimensional parameter space where brute force gridding is not practical.

When the samples are generated by high fidelity, long-running simulations even cov-

erage of the space with a relatively small number of simulations becomes a significant

concern. It is well known that uniform random sampling over the parameter ranges

can lead to isolated clumps of sample points as demonstrated in Figure C.1. To cap-

ture the full parameter range, it is better to use a quasi-random sample generator

also known as a low discrepancy generator. Popular choices include Halton 129] and

Sobol [71 sequences.

This analysis uses a Halton sequence, which generates samples by reversing the

digits of an integer expressed in the base of a prime number. Each dimension uses

the next available prime number as a base. Better uniformity over high dimensions is

achieved by choosing a leap factor for the sample set that skips L samples from the

set at each draw. One method of choosing an appropriate leap factor is to choose L

greater than all the prime bases, or in other words greater than the (s + 1)" prime,

where s is the dimension of the parameter space. A specific type of Halton sequence

called a Hammersley set [30] chooses a better distribution over the parameters if

the total number of samples is known a priori. Halton sets are used here because

additional samples may be drawn during the Monte Carlo process.

C.2.2 Overview of Method

The analysis tools presented here draw heavily on the framework introduced by Cre-

spo, Kenny, and Giesy in 116], hereafter referred to as Crespo. This work shares the

goal of analyzing controller robustness by examining the outputs of high fidelity simu-

lations. The approach is not specific to Monte Carlo testing, but the implementation

in a package called UQTools for MATLAB includes support for results generated by

295

(a) (b)

Figure C.1: (a) Uniform random sampling (2000 points) over the parameter space
leads to clumps of data points. (b) Quasi-random sampling (2000 points, Halton,
L = 12) tends to fill the parameter space more evenly.

random sampling. The Monte Carlo approach presented here parallels the UQTools

approach for deterministic parameter models with several enhancements noted in the

successive sections. The remainder of this section is a brief summary of Crespo's

approach. It should be noted that the present discussion omits the extensive study

of failure probability analysis that leverages the same techniques. These advanced

methods might be appropriate for a future enhancement of the tools presented here.

The robustness analysis starts with the definition of a parameter vector p and one

or more requirements functions, expressed in the form of a constraint g(p) < 0. The

constraint function does not have to be explicitly specified and may be based on the

processed output of a simulation. Crespo defines the range of parameter values as a

hyper-rectangular set of the form

R(p, rm) = {p : p - m p 5 p + m}, (C.1)

where m > 0 are the half-lengths of the sides and p are the nominal parameter values.

Parameter robustness testing involves characterizing the size of the region where the

constraint function is satisfied and comparing it to the size of the original parameter

set. To aid this analysis, Crespo defines the concept of a Homothetic Deformation of

296

0O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1'0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure C.2: A Homothetic Deformation expands or contracts a set with respect to
its center p by the similitude ratio a. To explore robustness we wish to find the
largest deformation & such that the parameter region is fully contained within the
constraints. The corresponding intersection point is the Critical Parameter Value, p.

a set Q as

7A(Q a) = {P + a (p - 1P) : pE } (C.2)

The Similitude Ratio, a > 0, is a parameter that expands or contracts the reference set

with respect to the center point p. This can be visualized as shrinking or growing the

parameter set equally around its center point. We wish to find the largest homothetic

deformation such that the deformed parameter space is fully contained within the

constrained region. If the largest set, called the Maximal Set, Mp, corresponds to

a > 1, then the full expected parameter range is contained within the constraints,

and the system is deemed to be robust. The value of a that produces Mp, also called

the Critical Similitude Ratio (CSR), &, is a measure of the robustness. The parameter

value at the intersection of the constraint function and the maximal set is referred

to as the Critical Parameter Value (CPV), f. The CPV is not necessarily unique as

the parameter set may intersect with the constraint function at multiple locations.

Figure C.2 illustrates these quantities.

In the baseline approach, the critical parameter value is determined by solving

the nonlinear optimization problem

p = arg min {||p - p||2 : g(p) = 0} (C.3)
pM

297

where ||x||2 A maxiI, is the m-scaled infinity norm. For better compatibility

with numerical solvers, we can redefine the variable p as a normalized version p' =

diag(m)-1 (p - p) and re-cast the optimization with a linear cost function involving

a:

(p',) = argmin {a : g(p') > 0, -a < p' < a} (C.4)

After a critical parameter value is identified, additional samples of the constraint

function may be taken around the surface of the maximal set to better characterize

the constraint values. Several iterations of sampling and optimization will help to

ensure a valid value has been found. The final value and corresponding simulation

are highlighted to the user as a potential problem spot.

Two major caveats are important to highlight. First, the function g(p) is an

arbitrary nonlinear constraint function, which means a gradient solver may converge

to a local minimum before finding the true parameter boundary. Second, since g(p) is

the output of a simulation, evaluations of the constraint function are very expensive.

The local minimum issue can be partially addressed by additional sampling after a

CPV is located, and careful choice of the constraint function can also help, though in

general the choice should be left to the user to define constraints. The computational

issues are discussed next.

C.2.3 Response Surface Fitting

C.2.3.1 Fitting with Radial Basis Functions

To reduce the cost of evaluating the constraint function, the approach in UQTools is

to perform an initial Monte Carlo run, sampling the parameter space with a quasi-

random generator, then fit a response surface to the resulting constraint values for

each component of g(p). The response surface is a nonlinear function approximator

that acts as a surrogate for the constraint function during the optimization process.

UQTools supplies a toolbox of Radial Basis Function (RBF) approximators, which

298

are of the form

f(x) = c (||x -xill), (C.5)

where the function W is a kernel that operates on the radius between the function

input x and a feature point xi. ci are the weights corresponding to each data point.

A common kernel function is a Gaussian of the form

(r) = e- 2 . (C.6)

The parameter e controls the width over which each kernel function has influence on

the overall function output.

RBFs can be used as generic function interpolators to exactly represent the func-

tion at the data points i by solving the linear system

Ac = f, (C.7)

for the coefficient vector c, where A is a matrix of kernel functions evaluated at the

points xi and f is the set of interpolation points. This is the approach suggested by

UQTools, but initial experimentation with Gaussian RBFs showed that with noisy

data from stochastic simulations, the approximation becomes increasingly "bumpy"

as the approximation attempts to match every data point. The high variability of the

surface with many local minima makes for a poor landscape over which to perform

the optimization. The issues are compounded with a large number samples, where it

is known that the linear system in Equation C.7 becomes ill-conditioned.

One approach to rectifying the problem is to use an alternative RBF fitting ap-

proach called Iterated Approximate Least Squares (AMLS) [22]. Instead of attempt-

ing to fit the interpolant points exactly, the algorithm performs an iteration that has

the solution of the linear system above as its limit. The coefficient vector is computed

as
n

C = (I - A)k f.
i=o

299

If and only if |I - A1|2 < 1, the series converges to

oo

E(I - A)' = A-',
i=0

though in practice it is stopped well before it approaches A- 1 . The norm condition

on A can be satisfied for a family of kernel functions known as Laguerre-Gaussians

(see 122]). A slightly modified version of Equation C.6 is a Laguerre-Gaussians:

cp(r) = eE 2r 2 /h 2

where s is the dimension of the parameter space, and h is a fill-distance h = 1/ (n1/* - 1)

for n points. The stopping point of the iteration is determined by running a process

called at each iteration Leave-One-Out Cross Validation (LOOCV) and stopping the

iteration when the change in error falls below a specified threshold. An outer line

search optimization can be used to select the optimal shape parameter e using the

same error metric from the terminal point of the iteration. For more details, see [23].

AMLS serves to significantly smooth the surface in the presence noisy data, but it

still encounters problems when the number of data points grows large. With careful

pruning of the data points it may be possible to improve the performance of AMLS

to robustly fit the response surface for a wide variety of cases. However, a preferable

method is described next.

C.2.3.2 Fitting with Support Vector Regression

The optimization in Equation C.4 is primarily concerned with shape of the constraint

at the transition point g(p) = 0. The remaining part of the constraint function

should simply be a guide for the optimizer to locate the constraint boundary. Viewed

from another perspective, we wish to use boundary line as a separator that divides

the data points into two classes, one containing points that meet the constraints,

and another that does not. Such a problem is the motivation behind many machine

learning algorithms.

300

In particular, the Support Vector Machine (SVM) 114] shares similarities with the

RBF fitting problem. A nonlinear SVM uses an RBF approximator to create a classi-

fication function separating input data into two or more classes. The fitting process,

also called training, involves an optimization over labeled data points. In contrast to

an RBF interpolator, the SVM has the goal of minimizing the RBF coefficients while

simultaneously minimizing the level of misclassification. This tends to result in a

surface that is as "flat" as possible within the tolerances defined for misclassification.

The "support vectors" in the SVM are important data points identified by the opti-

mization that help define the decision boundary. Due to the objective of minimizing

the weights, the number of vectors is often smaller than the number of data points.

An initial approach is to simply train an SVM using the simulation data points,

labeling points as

1 g(pi) > 0
Yi =

-1 g(pi) < 0

then use the resulting RBF as an approximation of the constraint function. Due

to the abrupt transition between failure and success, this method tends to discard

important information about the shape of the decision boundary. Also if noisy sim-

ulation results place some valid simulations well into the infeasible region, they will

be evenly weighted with failed simulations, regardless of the level of violation. This

will push the boundary line farther into the infeasible region.

A related form of SVM is the Support Vector Regressor (SVR). SVRs span the

gap between SVMs and RBF interpolators by attempting to approximate function

values while maintaining the objective of minimizing the RBF coefficients. One ver-

sion, known as c - SVR, attempts to minimize approximation error only outside of

an c deviation from the fitting surface and otherwise keep the surface as "flat" as

possible [66]. This formulation is ideal for the problem at hand because it produces

a relatively smooth function for optimization purposes while attempting to minimize

approximation error to the full set of samples.

The last problem to solve is adding an additional level of conservatism to the

301

standard training procedure. The class of SVMs under consideration are called Soft-

Margin SVMs because they tolerate a level of misclassification to reduce over-fitting.

For the purpose of robustness characterization, these misclassifications are failed sim-

ulations that fall incorrectly into the valid parameter region. An additional ad-hoc

procedure is required to compensate:

1. Train the e - SVR with a very small value of E. This will tend to result in a

response surface well outside of the maximal set with many parameter points

predicted to be violations even though the constraint function evaluation indi-

cates otherwise.

2. For all predicted values g(p) > 0 where g(p) < 0, discard the falsely identified

parameters. Repeat until no more false predictions are made.

This procedure should generally reduce the number of false predictions. In a stochastic

simulation it will be nearly impossible to cleanly separate the boundary because small

perturbations can easily cause a constraint violation. Once the critical parameter

value is identified, additional sampling around the edge of the maximal set can help

better characterize the region with additional data points.

C.2.4 Choosing a Constraint Function

For the best fitting performance it is helpful to choose a constraint function with a

range of [-1,1] and distinct transition between positive and negative values. One

way to achieve this behavior with a general input is to pass the values through the

hyperbolic tangent function

g(p) = tanh(f(p)).

A function with this shape will anchor the failure and and success regions while

providing slope information at the boundary.

302

C.2.5 Additional Implementation Considerations

Parameter Scaling Because the optimization in Equation C.4 normalizes the pa-

rameters, it is not necessary to re-scale parameters in the optimizer. This also produce

better fitting results for the SVM.

Even Sampling with Constraints In some cases, there are limits to parameters.

either due to physical constraints such as positive mass, or to a priori known ranges.

To support these constraints in the sampling method, it is possible to simply discard

parameters that fall outside of the constraint limits. Due to the even sampling prop-

erties, the remaining region will continue to be filled in uniformly. When performing

the CPV optimization, the upper and lower bounds must be added as inequality

constraints in the optimization

(p',) = arg min {a : g(p') > 0, -a < p' < a, Ap' b}.
ap'

C.2.6 Multi-Dimensional Data Display with Parallel Coordi-

nates

For Efficient Inquiry, it will be important for students to be able to concisely review

the results of Monte Carlo simulations. For several varied parameters, trends in the

higher dimensions are often difficult to discern. One particularly attractive approach

for Monte Carlo data visualization is the parallel coordinates method. In this method,

each dimension of the data set is displayed as a separate column on a common scale.

Specific parameter set realizations are traced out as lines that connect the variable

columns on the plot. By grouping the lines and adding emphasis such as color data,

overall trends become more clearly defined. Figure C.3 shows an example for a Monte

Carlo simulation for a 2D circle-tracking satellite, where the angular velocity, circle

radius and thruster saturation were varied. Simulations were considered to be a failure

if the steady state error did not converge to within 3 cm in 60 seconds. From the

figure, we can see immediately, that the dominant factor producing failed simulations

303

1.5

0

0 0-0.5

-1

- 1.5 -- --
r omeg thruster saturation

Figure C.3: Parallel Coordinates Example

is the angular velocity, while thruster saturation can become problematic at large

radii.

When displaying on a web page, JavaScript data visualization libraries, such as

D3.js1 , can add a useful element of interactivity to the display. In parallel coordi-

nates, users can explore the data set by constraining parameters to specific ranges.

This eliminates some of the clutter form the bulk of the set and allows new trends

to surface. Also, when changing constraints the effects of changing parameters are

perceived through progressive transitions, making incremental effects of the changes

more visible.

C.2.7 Algorithm Summary

The complete procedure for identifying a critical parameter value follows:

1. Draw n random samples of p E R- from a Halton set.

2. Run simulations for each of the samples.

3. Evaluate the constraint function g(p) based on the results of the simulations.

4. Fit a the constraint values with an e - SVR, and perform the steps to improve

robustness of fit.

'See http://syntagmatic.github.io/parallel-coordinates/ for an example of parallel coordinates
implemented in JavaScript

304

5. Perform the parameter optimization over p using the trained model of g(p).

6. Optionally: perform additional samples around the critical parameter point to

find more accurate critical values.

C.2.8 Phased Deployment to Zero Robotics Platform:

Given the significant scale of implementing a Monte Carlo system on the Zero Robotics

platform, here are several steps to incrementally deploy the functionality in manage-

able steps:

1. Enable users to run a batch of simulations over user-defined parameters. Simply

show the list of resulting simulations.

2. Show parallel coordinates plot for exploration of raw simulation results.

3. Fit user-defined cost functions to response surfaces and use the simplified re-

sponse model for rapid data exploration.

4. Add critical value optimization to highlight specific simulation instances and

determine robustness metrics.

305

306

Bibliography

[11 Michael S Andrle and John L Crassidis. Geometric Integration of Quaternions.

Journal of Guidance, Control, and Dynamics, pages 1-6, February 2013.

12] Arduino.cc. Arduino API Reference, 2013.

[3] Albert Bandura. Self-efficacy: Toward a unifying theory of behavioral change.

Psychological Review, 84(2):191-215, 1977.

[4] Albert Bandura. Social foundations of thought and action: a social cognitive

theory. Prentice-Hall, 1986.

15] M Bong. Predictive utility of subject-, task-, and problem-specific self-efficacy

judgments for immediate and delayed academic performances. The Journal of

experimental education, 70(2):133-162, 2002.

161 Ralph Allan Bradley and Milton E Terry. Rank Analysis of Incomplete Block

Designs: I. The Method of Paired Comparisons. Biometrika, 39(3/4):pp. 324-

345, 1952.

17] Paul Bratley and Bennett L Fox. Algorithm 659: Implementing Sobol's quasiran-

dom sequence generator. ACM Trans. Math. Softw., 14(1):88-100, March 1988.

18] Louis Breger and Jonathan P How. Safe Trajectories for Autonomous Ren-

dezvous of Spacecraft. In AIAA Guidance, Navigation and Control Conference

and Exhibit, Keystone, Colorado, August 2006.

19] Allen Chen. Propulsion System Characterization for the {SPHERES} Formation

Flight and Docking Testbed. Master's thesis, Cambridge, MA, June 2002.

307

[101 H. Choset, R. Knepper, J. Flasher, S. Walker, A. Alford, D. Jackson, D. Ko-

rtenkamp, R. Burridge, and J. Fernandez. Path planning and control for AER-

Cam, a free-flying inspection robot in space. In Proceedings 1999 IEEE Interna-

tional Conference on Robotics and Automation (Cat. No. 99CH36288C) , number

May, pages 1396-1403. IEEE, 1999.

[11] Committee on Science, Engineering and Public Policy. Rising above the gathering

storm. 2005.

112] Committee on Science, Engineering and Public Policy. Rising above the gathering

storm, revisited: Rapidly approaching Category 5. 2010.

113] James 0. Coplien. Curiously Recurring Template Patterns. C++ Report, Febru-

ary 1995.

114] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learn-

ing, 20(3):273-297, 1995.

[151 Remi Coulom. Whole-history rating: A bayesian rating system for players of

time-varying strength. Computers and games, 2008.

[16] Luis G Crespo, Sean P Kenny, and Daniel P Giesy. A computational framework

to control verification and robustness analysis. 2010.

[17] Pierre Dangauthier, Ralf Herbrich, Tom Minka, Thore Graepel, and Others.

Trueskill through time: Revisiting the history of chess. Advances in Neural

Information Processing Systems, 20:337-344, 2007.

[18] Beman Dawes, David Abrahams, and Rena Rivera. Boost C++ Libraries.

[19] Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve. SAFECode : Enforc-

ing Alias Analysis for Weakly Typed. In PLDI '06: Proceedings of the 2006

ACM SIGPLAN conference on Programming language design and implementa-

tion, pages 144-157, New York, New York, USA, 2006. ACM.

308

[20] Arpad E. Elo. The Rating of Chess Players, Past and Present. Arco Pub., New

York, NY, 1978.

1211 John P Enright. A Flight Software Development and Simulation Framework for

Advanced Space Systems. Phd, Massachusetts Institute of Technology, 2002.

[22] Gregory E Fasshauer and Jack G Zhang. Iterated approximate moving least

squares approximation. In Advances in Meshfree Techniques, pages 221-239.

Springer, 2007.

[23] Gregory E Fasshauer and Jack G Zhang. On choosing "optimal" shape parame-

ters for RBF approximation. Numerical Algorithms, 45(1-4):345-368, 2007.

1241 FIRST. Rebound Rumble 2012 FRC Game Manual,

http://www.usfirst.org/roboticsprograms/frc/2012-competition-manual-and-

related-documents, 2012.

[25] David J. Gates. Properties of a Real-Time Guidance Method for Preventing

a Collision. Journal of Guidance, Control, and Dynamics, 32(3):705-716, May

2009.

[26] Mark E Glickman. Paired Comparison Models with Time-Varying Parameters,

1993.

[27] Mark E Glickman and Shane T Jensen. Adaptive paired comparison design.

Journal of statistical planning and inference, 127(1):279-293, 2005.

1281 Max Goldman, Greg Little, and Robert C. Miller. Real-Time Collaborative

Coding in a Web IDE. In UIST'11, Santa Barbara, CA, 2011.

[29] John H Halton. On the efficiency of certain quasi-random sequences of points

in evaluating multi-dimensional integrals. Numerische Mathematik, 2(1):84-90,

1960.

[30] John M Hammersley. Monte Carlo methods for solving multivariable problems.

Annals of the New York Academy of Sciences, 86(3):844-874, 1960.

309

131] Ralf Herbrich, Tom Mnka, and Thore Graepel. TrueSkill: A Bayesian Skill

Rating System. In Advances in Neural Information 20. MIT Press, 2007.

[32] Mark 0 Hilstad. A Multi-Vehicle Testbed and Interface Framework for the De-

velopment and Verification of Separated Spacecraft Control Algorithms. Master's

thesis, Cambridge, MA, June 2002.

[33] Margaret A Honey and Margaret Hilton. Learning Science Through Computer

Games and Simulations, volume 42. The National Academies Press, 2011.

134] D Hsu, R Kindel, J.-C. Latombe, and S Rock. Randomized Kinodynamic Mo-

tion Planning with Moving Obstacles. The International Journal of Robotics

Research, 21(3):233-255, March 2002.

135] Http://www.bestinc.org. BEST Robotics: Middle and high school robotics com-

petition.

1361 Http://www.botball.org. BotBall Educational Robotics Program.

[371 Http://www.usfirst.org. FIRST Robotics.

[38] David R Hunter. MM Algorithms for Generalized Bradley-Terry Models. The

Annals of Statistics, 32(l):pp. 384-406, 2004.

139] A. R. Johnson. International Space Station: National Laboratory Education

Concept Development Report. Technical report, NASA, 2006.

[40] Jacob G Katz. Estimation and control of flexible space structures for autonomous

on-orbit assembly. Master's, Massachusetts Institute of Technology, 2009.

[41] Firas Khatib, Seth Cooper, Michael D Tyka, Kefan Xu, Ilya Makedon, Zoran

Popovic, David Baker, and Foldit Players. Algorithm discovery by protein folding

game players. Proceedings of the National Academy of Sciences, 108(47):18949-

18953, 2011.

[42] S. M. LaValle. Randomized Kinodynamic Planning. The International Journal

of Robotics Research, 20(5):378-400, 2001.

310

[43] William A. Lucas, Sarah Y. Cooper, Tony Ward, and Frank Cave. Industry

placement, authentic experience and the development of venturing and technol-

ogy self-efficacy. Technovation, 29(11):738-752, November 2009.

[441 James E Lumpp, Daniel M Erb, Twyman S Clements, Jason T Rexroat, and

Michael D Johnson. The CubeLab Standard for Improved Access to the Inter-

national Space Station. In Aerospace Conference, 2011 IEEE, pages 1-6. IEEE,

2011.

[45] MATE. Marine Advanced Technology (MATE) Underwater Robotics Competi-

tions, http://www.marinetech.org/rov-competition/.

146] MATLAB/Simulink. version 8.0.0 (R2012b). The MathWorks Inc., Natick, Mas-

sachusetts, 2012.

1471 Grant McDonald and Jennifer Lay. Social Networking In FIRST Robotics, 2010.

[481 Alan Melchior, Faye Cohen, Tracy Cutter, and Thomas Leavitt. More than

Robots : An Evaluation of the FIRST Robotics Competition Participant and

Institutional Impacts Heller School for Social Policy and Management. Technical

Report April, Brandeis University, Walthma, MA, 2005.

[49] David P Miller, Illah R Nourbakhsh, and Roland Siegwart. Robots for Education.

In Springer Handbook for Robotics, pages 1283-1301. Springer, 2008.

150] MIT Space Systems Laboratory. SPHERES ISS Test Session 18. Technical

report, 2009.

[51] MIT Space Systems Laboratory. SPHERES ISS Test Session 21. Technical

report, Massachusets Institute of Technology, 2010.

[52] MIT Space Systems Laboratory. SPHERES ISS Test Session 33. Technical

report, 2012.

311

[53] Sreeja Nag. Collaborative Competition for Crowdsourcing Spaceflight Software

and STEM Education using SPHERES Zero Robotics. Master's thesis, Mas-

sachusetts Institute of Technology, 2012.

154] Nicholas Nethercote and Julian Seward. Valgrind: A Program Supervision

Framework. Electronic Notes in Theoretical Computer Science, 89(2):44-66, Oc-

tober 2003.

[55] Simon Nolet. Development of a Guidance, Navigation and Control Architecture

and Validation Process Enabling Autonomous Docking to a Tumbling Satellite.

Sc.d. thesis, Massachusetts Institute of Technology, Cambridge, MA, June 2007.

156] Simon Nolet, Alvar Saenz-otero, David W Miller, and Amer Fejzic. SPHERES

Operations Aboard the ISS: Maturation of GN&C Algorithms in Microgravity.

In 30th Annual AAS Guidance and Control Conference, Breckenridge, Colorado,

February 2007.

[57] William H Press, Brian P Flannery, Saul A Teukolsky, and William T Vetterling.

Numerical Recipes in C: The Art of Scientific Computing. October 1992.

[58] Andrew Radcliffe. A Real-Time Simulator for the SPHERES Formation Flying

Satellites Testbed. Master's, Massachusetts Institute of Technology, Cambridge,

MA, June 2002.

1591 Casey Reas and Ben Fry. Getting Started with Processing. O'Reilly Meida, Inc.,

2010.

[60] CW Reynolds. Steering behaviors for autonomous characters. In Game Develop-

ers Conference, pages 763-782, San Jose, California, 1999. Miller Freeman Game

Group.

[611 Arthur George Richards. Trajectory Optimization using Mixed-Integer Linear

Programming. Master's thesis, Cambridge, Massachusetts, June 2002.

312

[62] Alvar Saenz-Otero. The SPHERES Satellite Formation Flight Testbed: Design

and Initial Control. Master's thesis, Cambridge, MA, August 2000.

1631 Alvar Saenz-Otero. Design Principles for the Development of Space Technology

Maturation Laboratories Aboard the International Space Station. Phd thesis,

Massachusetts Institute of Technology, Cambridge, MA, June 2005.

164] Alvar Saenz-Otero, Jacob Katz, Swati Mohan, David W Miller, and Gregory E

Chamitoff. ZERO-Robotics: A student competition aboard the International

Space Station. In 2010 IEEE Aerospace Conference, pages 1-11. IEEE, March

2010.

[65] Jeanine Skorinko, Jennifer Lay, G McDonald, Brad Miller, Colleen Shaver,

C. Randall, J.K. Doyle, G. Tryggvason, M. Gennert, and J. van de Ven. The So-

cial Outcomes of Participating in the FIRST Robotics Competition Community.

In 2010 ASEE Northeast Section Conference, May 7-8, number 1, Boston, MA,

2010.

[66] Alex J Smola and Bernhard Sch6lkopf. A tutorial on support vector regression.

Statistics and computing, 14(3):199-222, 2004.

[67] Herb Sutter. Pimpls - Beauty Marks You Can Depend On. C++ Report, 10(5),

May 1998.

[681 Tynan Sylvester. Designing Games. O'Reilly Meida, Inc., 2013.

[69] Texas Instruments. TMS320C6000 DSP/BIOS Application Programming Inter-

face (API) Reference Guide. Houston, TX, 2002.

170] Sonny Thai. Collaborative editor environments for player programs. M. eng.,

Massachusetts Institute of Technology, 2012.

[71] The Mathworks. MATLAB/Simulink Embedded Coder Documentation

(v2013a), http://www.mathworks.com/help/ecoder/index.html, 2013.

[72] LLC YouTube. YouTube Space Lab Official Rules, 2011.

313

