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Abstract

The rapid growth of low cost carriers forced many legacy airlines to simplify their
fare structures and develop new pricing strategies to remain competitive. The strategy
of branded fares, or “fare families”, is an increasingly popular approach for airlines
to differentiate their products and services from other competitors.

This thesis provides a comprehensive overview of revenue management (RM) fore-
casting and optimization methods developed specifically for fare family structures.
These methods, collectively termed Q-Forecasting for Fare Families (QFF), provide
airlines with the capability to manage branded fares from a RM perspective. The
QFF methods are all constructed based on the assumed fare family passenger choice
model, which accounts for both willingness-to-pay estimates as well as family pref-
erence. Each formulation makes underlying assumptions regarding passenger sell-up
and buy-across.

The Passenger Origin Destination Simulator is used to test and compare the per-
formance of each QFF formulation in a dual airline competitive environment, both
with leg-based RM controls as well as network RM controls. The results from the
simulations indicate that substantial gains in both revenue and yield over traditional
RM methods can be achieved with appropriate RM in a fare family structure. Specif-
ically, while Hybrid Forecasting (with leg RM controls) generates a 4.0% increase in
revenue over Standard Forecasting, QFF is shown to increase revenues by more than
12.5%. The benefits of QFF are greater with network RM controls, with potential
revenue increases of nearly 14.0% (over Standard Forecasting).

The positive results obtained with each QFF formulation are dependent upon an
appropriate estimate for passenger sell-up and family preference. Consequently, this
research also illustrates the importance of the estimate for passenger willingness-to-
pay and its relationship to forecasting and optimization in airline RM.

Thesis Supervisor: Peter P. Belobaba
Title: Principal Research Scientist, Aeronautics and Astronautics
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Chapter 1

Introduction

After the Airline Deregulation Act passed in 1978, US airlines were granted the

freedom to determine the price of their fares, routes flown, and frequency of domestic

flights without government approval. Since then, the airline industry has evolved

tremendously to adapt to an increasingly competitive environment. It was in the post-

deregulation era where the practice of airline revenue management (RM), described by

American Airlines as “selling the right seats to the right customers at the right prices”

(Smith et al., 1992), began to develop. More formally, airline RM serves to design and

manage service products by allocating seats on an aircraft to different predetermined

booking classes in order to maximize total revenue (Weatherford, 1991).

While the nature of the airline industry has changed dramatically over the past

three decades, the goal of maximizing revenue remains the same today as it did

some 30 years ago. Many revenue management systems have been implemented over

the years, owing to the advanced technological capabilities as well as the emergence

of “low cost carriers” (LCCs) in the early 2000s. Many of the largest airlines, or

“network legacy carriers” (NLCs), struggled to promote brand awareness in the early

parts of the 21st century. One response to this issue was an innovative fare structure

known as “fare families”, first developed in 2004 in an attempt to de-commoditize

the airline product.

The goal of this thesis is to provide a comprehensive overview of the different

forecasting and optimization methods developed specifically for fare family struc-
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tures. These models are analyzed using the Passenger Origin-Destination Simulator

(PODS), a simulator used to test different airline RM systems in competitive RM

scenarios.

1.1 Overview of the Airline Industry

The number of flights and fare options available to consumers wishing to travel

from an origin to a destination (OD) increased tremendously after US airline dereg-

ulation. Airlines began to greatly expand the practice of differential pricing, an im-

portant component of revenue management (Botimer & Belobaba, 1999). Differential

pricing consists of offering multiple combinations of price levels and restrictions, or

“fare products”, for a shared inventory of seats on the same flight leg. When an airline

offered only one or two fare products, revenue was lost either in the form of consumer

surplus or unused seats (Belobaba et al., 2009). The concept of differential pricing

is illustrated in Figure 1-1. Higher revenues can be generated by offering multiple

fare products based on passengers’ expected willingness-to-pay (WTP). Each of the

rectangular surfaces under the demand curve represent the revenue for a particular

fare product. Q1 passengers book the fare product priced at P1, and so forth. As

demonstrated by the figure, the airline’s goal is to fill the empty space beneath the

demand curve (lost revenue due to consumer surplus).

Although it is impossible in practice to charge each passenger their maximum

WTP, airlines have made progress towards this goal through the use of differential

pricing. When considering the different fare products an airline offers, consumers must

make a trade-off between the restrictions associated with lower-priced fare products

and the flexible (but higher-priced) unrestricted products. While some travelers find

the multitude of fare product offerings overly-complex, economic theory supports the

airlines’ tactics.

In order to segment demand, airlines developed fare products that would appeal to

different groups of passengers. Many legacy carriers offered a range of fare products,

each with their own fares, or “price points”, and set of restrictions. In addition to

16



Figure 1-1: Airline Practicing Differential Pricing (d’Huart, 2010)

the different fare products offered, different cabins (economy, business, and first) were

also offered, with multiple products within each of those cabins. This allowed those

consumers who placed a higher value on travel flexibility (typically business travelers)

the option to purchase a more expensive fare product in return for more convenient

air travel. Alternatively, seats that were previously empty could be sold at lower price

points to consumers who were more price-sensitive and less affected by restrictions

(leisure travelers), thereby raising revenues (Belobaba et al., 2009). By recognizing

the sensitivity of different types of passengers to the restrictions, the demand could

be more accurately segmented.

The airlines imposed the most severe restrictions on lower fare products to prevent

consumers with high WTP from purchasing these less-expensive products (a process

known as “diversion”). Some of the restrictions included the non-refundability of

a ticket, change fees, required Saturday night stay at a destination, as well as an

advanced purchase (AP) requirement.

For RM purposes, every fare product is assigned to a booking class; there can be

multiple products assigned to the same class. A collection of booking classes offered

17



by an airline constitute a fare structure. An example of a typical restricted fare

structure is shown in Table 1.1. The discounted M class is fully restricted and also

requires passengers to book at least 21 days in advance. As the price points of each

of the booking classes increases, the severity of the imposed restrictions generally

decreases. The Y and B classes (top two booking classes) are attractive to business

passengers, given that these types of passengers are generally unable to book many

days in advance, and are unwilling to stay over Saturday night at their destination.

Table 1.1: Example of a Differentiated Fare Structure

Since passengers differ in their sensitivity to each of the restrictions, the costs

associated with each of the disutilities is generally different for every traveler. When

purchasing a fare product, a given passenger takes the restrictions into consideration

by examining the total generalized cost of the fare product, that is, the sum of the

fare itself along with the disutility costs the passenger in question attributes to the

particular product. Out of the different options available, the passenger chooses the

fare product with the lowest total generalized cost, provided the fare is below the

passenger’s maximum WTP.

The conventional applications of differential pricing and revenue management used

in the 1990s were successful in limiting revenue dilution from diversion because of the

restrictions associated with the cheaper fare products. With the legacy carriers fo-

cused on providing the most flexibility and gaining the most revenue from high-paying

business travelers, the door opened for new entrant low cost carriers. These LCCs be-

gan to offer non-stop point-to-point service in major markets that had previously only
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been served by the NLCs. With the network carriers’ pricing policies gradually lead-

ing to more expensive fares at the top, some business passengers avoided the higher

prices by opting to stay over Saturday night in addition to meeting other restrictions

imposed by the airlines. As a result, the legacy carriers faced major challenges as the

number of passengers in the top booking classes dropped considerably with business

travelers buying lower fare products, and in some cases choosing to fly with the LCC

competitor.

The LCCs typically implemented more simplified fare structures compared to

their NLC counterparts. These structures were typically composed of cheaper fare

products with few or no restrictions attached to them; in some cases the price points

acted as the only differentiator between the products. These fare structures were

generally more appealing to passengers, both in terms of the lower prices and in

the reduced complexity of restrictions. Consequently, traditional carriers in many

cases abandoned the fully-restricted fare structure in order to stay competitive with

the LCCs and maintain market share. Major restrictions were eliminated, shorter

advance purchase requirements were implemented, and the fares were reduced. An

example of a less-restricted fare structure is shown in Table 1.2. In addition to fewer

restrictions attached to each of the booking classes, the less-restricted fare structure

has lower fares (relative to the fully-restricted structure seen in Table 1.1) and shorter

AP requirements for each of the classes.

Table 1.2: Example of a Less-Restricted Fare Structure with Lower Fares

In addition to the rise of the LCCs in the early 2000s, travel sites such as Orb-
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itz and Expedia became much more prominent, enabling passengers to more easily

compare the different fare products offered by the airlines for the same itinerary.

This further contributed to the reduced market share for many of the legacy airlines,

leading some major carriers into bankruptcy.

1.2 Branded Fare Families

With the emergence of the LCCs and low-fare search engines, the airline product

was in many respects perceived to be a commodity. Many travelers selected an airline

based on price and convenience rather than on any specific service benefits or loyalty

to that airline. In response, some carriers attempted to develop new tools to both de-

commoditize and enhance their product. One such strategy that was introduced by

Air New Zealand (ANZ) in 2004 was branded fare families, a new approach to airline

pricing and segmentation (Vinod & Moore, 2009). Since it was first developed, many

other airlines have adopted this fare structure, including Air Canada and Qantas.

This innovative fare structure consists of offering two or more sets, or “families”, of

booking classes, differentiating itself from the previous fare structure which consisted

of a single set of multiple classes.

Each family in a fare family structure is set apart from one another by “fences” in

service, flexibility, and fare levels. These differences exist between families, with the

intention of providing the various passenger types (e.g., business, leisure) their own

individual set of classes to choose from. Within each fare family all the classes have

identical restrictions and amenities; the fare level of an individual class is the only

differentiator between one class and another.

Figure 1-2 illustrates a fare family structure as offered by Air New Zealand for a

particular South Pacific flight. For any itinerary, the cheapest available fare product

within each of the four different economy families is presented as an option to the

passenger at the time of booking. That is, ANZ’s fare structure consists of four

economy families, as well as additional families in the business cabin (not shown

here). This type of fare structure presents a passenger with a multitude of options.
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For example, the fare for the 7:00am flight departure ranges from $219 (in the “Seat”

family) up to $369 (“Works Deluxe” family). The final decision on which family

the passenger selects depends upon the services and flexibility the passenger desires,

as well as the passenger’s maximum WTP. Note that in some cases different flights

within the same family have different prices. This is because the cheaper classes

are not necessarily available for each of the departure times listed, and as a result,

traveling at 9:30am is more expensive than at 7:00am in this example.

Figure 1-2: Fare Family Structure Offered by ANZ for Sydney-Auckland Market.
Data source: AirNewZealand.com

This type of fare structure was developed for two primary reasons: incremental

revenues and better brand awareness (Vinod & Moore, 2009). By offering different

levels of service and flexibility, better passenger segmentation can lead to incremental

ancillary revenues (Fiig et al., 2012). Additionally, better product recognition can

potentially be achieved, given that passengers can secure all of their desired services

and amenities at the time of booking. For instance, referring back to the ANZ fare

family structure, a passenger booking in the “Seat + Bag” family avoids any of

the inconveniences associated with checking a bag on the day of departure. From an
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airline’s perspective, offering multiple families of classes ideally encourages passengers

to shop for specific families by name, and thus creates a better brand image.

The ability to choose between multiple families can also be beneficial from a con-

sumer perspective. Business passengers who have the ability to book in advance (yet

still desire a fare product with flexibility and amenities) now have the opportunity to

purchase a lower-priced fare product within their particular family of choice. Contrast

this to the previous fare structure (with only a single set of classes), where even if a

business traveler was able to meet the advanced purchase requirements, he was still

forced to purchase a fare product in one of the top booking classes (at the highest

fare levels) to ensure receiving the desired services and amenities.

In a similar manner, fare family structures can also be attractive to the typical

leisure passenger. Price-sensitive travelers who are unable to meet one or more re-

strictions (such as an advanced purchase requirement) have the ability to purchase a

ticket later in the booking period in one of the cheaper but more restricted families

(e.g., “Seat” in ANZ’s fare family structure). Although booking closer to departure

will force passengers in this situation to purchase one of the higher-priced products,

they now have the ability to do so in a cheaper family. This is generally much less ex-

pensive than purchasing a product in one of the top booking classes in a fare structure

with only one set of classes. Because of the advantages to consumers just mentioned,

airlines that offer fare family structures generally see higher load factors (LF), that

is, higher occupancy rates on their flights.

While there are several benefits of implementing a fare family structure to both

airlines and passengers, there are major RM challenges that must be taken into con-

sideration. Virtually all RM systems were developed under the assumption of inde-

pendent demand by fare product, that is, the notion that the demand for a particular

product was independent of the availability of fare products in lower classes. Al-

though this assumption simplified many RM models, it was clearly unrealistic. With

the industry evolving and the new entrant airlines making their presence in the in-

dustry known, new forecasting and optimization methods were needed to ensure full

benefit of the fare family approach.
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1.3 Objectives of the Thesis

The objective of this thesis is to provide a detailed analysis of the different RM

methods developed in this research for a fare family structure. Forecasting and opti-

mization, which will both be described in greater detail in the subsequent chapters,

play a critcal role in the success of an RM system, and thus in revenues being max-

imized. This thesis will present the specific algorithms developed in this research

for a fare family environment. The robustness of the forecasting methods will be

tested by examining their performance in different types of fare family structures.

The limitations of the different developed models will also be discussed.

All simulations and quantitative evaluations will be performed using the Passenger

Origin-Destination Simulator (PODS), first developed by Hopperstad in 1994 at the

Boeing Company as an evolution from its predecessor, the Decision Window Model.

The key components of the simulator, which can be adjusted to conform to a particular

area of study, include the passenger choice model and the airline RM system.

1.4 Structure of the Thesis

This thesis is structured as follows. Chapter 2 presents an overview of the previous

work done on airline revenue management, emphasizing the changes in the industry.

The topics that will be discussed in this chapter include RM in the 1980s and 1990s,

emergence of LCCs, and forecasting in an unrestricted environment.

Chapter 3 provides an in-depth description of the forecasting and optimization

models developed for fare family structures. The assumed passenger decision process

in a fare family environment is introduced, providing the motivation for each of the

methods. The key differences in each of the formulations is highlighted.

The simulator used to test the different methods, the Passenger Origin Destination

Simulator (PODS), as well as the simulation environments are discussed in Chapter

4.

In Chapter 5, the performance of the different forecasting and optimization meth-
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ods developed in Chapter 3 are analyzed. Specifically, the simulation results from the

different test cases will be presented and analyzed using different metrics.

The thesis is summarized in totality in Chapter 6. The impacts of fare families

are recapped, as well as potential future research directions in this field.
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Chapter 2

Literature Review

Although airline RM literature dates back to the early 1970s, the field truly evolved

in the post-deregulation era. With the goal of achieving the highest possible revenues,

focus shifted from maximizing the quantity of passengers carried to optimizing seat

allocation. This chapter will cover several of the most important published works

in this area of research, beginning with an overview of the traditional RM meth-

ods developed under the assumption of independent booking class demand. The

second section describes different forecasting techniques that were developed for less-

differentiated fare structures, that is, methods that do not rely on the independent

demand assumption. All of the methods discussed in this chapter were developed

under the assumption of a fare structure with a single set of classes (in contrast to

the fare family structures introduced in Chapter 1).

2.1 Traditional Airline RM Methods

In the 1980s, airline RM systems were first developed and used as large database

management systems. Over the years more sophisticated features were added; the

current third generation RM system implemented by many airlines throughout the

world has capabilities to both forecast demand for each future flight departure and to

optimize the number of seats made available to each booking class. It is the function

of the RM system to set booking limits (BL) on the lower classes to protect seats
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for consumers who are willing to pay more for the less restricted product (Botimer &

Belobaba, 1999). On the other hand, if the plane is not full, the RM system should

ensure that empty seats be made available for passengers with a lower willingness-to-

pay who otherwise would not fly. Weatherford (1991) provides more insight on the

revenue opportunity which is lost whenever a flight departs with empty seats.

The major components of a typical third generation RM system are illustrated

in Figure 2-1. Historical booking data from the same flight in the past (same route,

time, and day of the week) is combined with the actual booking data to generate a

demand forecast by booking class for the upcoming flight. This forecasting model,

along with the estimated revenue data, are inputs into the optimization model that

works to create booking limits on each booking class that will maximize revenue on

the flight leg. During this time, an overbooking model is also used to estimate an

appropriate number of seats of each class to make available given the historical no-

show rates. Overall, the optimization model and the overbooking model create the

recommended booking limits per class for the flight leg in question.

Figure 2-1: A Typical Third Generation RM System (Barnhart et al., 2003)

Effective implementations of standard RM systems have been estimated to in-

crease revenues by 4-6% over situations in which no seat inventory is used (Belobaba,

1992b). This chapter will discuss two of the three main components to the third gen-
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eration RM system: optimization models and forecasting. For a detailed overview of

the history of RM in the airline industry, consult McGill & Ryzin (1999) and Barnhart

et al. (2003).

2.1.1 Seat Allocation Models

One of the main complications in airline RM is that low-yielding leisure passen-

gers generally book much earlier in the booking process than high-paying business

travelers. This creates a need for inventory control based on forecasts of various pas-

senger types. That is, a sufficient number of seats should be protected for high-fare

passengers who book closer to departure.

2.1.1.1 Leg-based Controls

Littlewood (1972) developed the first model for seat inventory control by solving

the booking class problem for two ‘nested’ classes (more on nested classes below).

Belobaba (1987 and 1989) developed the Expected Marginal Seat Revenue (EMSR)

heuristic, a more general model that is applicable to any number of nested booking

classes. In 1992, Belobaba subsequently developed a variant (EMSRb) of this al-

gorithm to make it more robust. EMSRb has been widely incorporated into many

airlines’ RM systems on the flight leg level and is used extensively throughout this

thesis.

The EMSRb model assumes demand to be stochastic (normal) and independent

for each booking class, and assumes that the lowest classes book first. The model

determines the leg-based nested booking limits, that is, protection levels for higher

classes and booking limits on the lower classes. In general, airline reservation systems

use a nested control mechanism, preventing higher-priced booking class requests from

ever being denied so long as the plane is not full. Figure 2-2 shows the general idea

of nested booking limits, where there are booking limits on each of the four classes

(Y class being the most expensive and the Q class being the cheapest). The booking

limit for the Y class, or BL1, is set equal to the remaining capacity of the plane.
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In the EMSRb model, a seat is protected for the higher booking class whenever the

revenue expected from protecting it exceeds the revenue from the fare directly below

it. Belobaba & Weatherford (1996) provide a much more in-depth explanation of the

EMSRb heuristic.

Figure 2-2: Nested Bookings Limits and Class Protection Levels (Cleaz-Savoyen,
2005)

The EMSRb model optimizes seat protections levels on a single leg basis. However,

it does not take into consideration the difference in revenue from local (single-leg) vs.

connecting (multiple-leg) passengers. Belobaba et al. (2009) identifies two potential

problems that prevent a leg-based optimization approach from maximizing revenue.

The first occurs when a short-haul flight leg is full, acting as a bottleneck for other

itineraries connecting multiple legs. Revenue is lost when high-revenue passengers

are unable to purchase their desired itineraries due to no available seats on one of the

flight legs on their journey. The second issue with leg-based control is the inability

to distinguish between passenger origin-destination itineraries. When a connecting

itinerary is accepted by the airline, there is potential that this one passenger can

prevent two high-paying local travelers from flying. Given that the sum of two local

itineraries is generally greater than one connecting itinerary, revenue is lost when this

occurs. For these reasons, leg-based control is sub-optimal because it favors local
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passengers. RM methods which take into account these network effects, classified as

Origin-Destination (OD) controls, are discussed next.

2.1.1.2 Origin-Destination Controls

OD controls are especially important given that the majority of major airlines

operate hub-and-spoke networks (de Neufville & Odoni, 2002), and thus will have

many multi-leg itineraries. There has been substantial effort in developing algorithms

for origin-destination, or path-based, control of booking classes. One of the first

approaches to network revenue management (i.e., RM at the path level) was developed

by Smith & Penn at American Airlines in 1988. In this approach, booking classes are

replaced by “revenue value buckets” for seat inventory management. These buckets

are defined according to network revenue value. Each origin-destination itinerary fare

(ODIF) in the network is assigned to a revenue value bucket. The seat availability for a

requested ODIF (local or connecting) depends on the availability of the corresponding

revenue value bucket for each leg of the passenger’s itinerary. With this approach,

different itineraries can be compared to one another in terms of total revenue value.

The pitfall of relying only on revenue value is that it is “greedy” in the sense that

it always favors connecting passengers, even in situations where two locals would

contribute more overall revenue.

The greedy virtual bucket method was refined into Displacement Adjusted Virtual

Nesting (DAVN). In this new methodology, the revenue input to the virtual buckets

was adjusted for the network displacement costs incurred by a connecting passenger,

given that the actual network contribution of a connecting passenger is less than or

equal to the total ODIF value of the passenger’s itinerary (Belobaba et al., 2009).

Williamson (1992) describes different methods that can be used to estimate these

displacement costs. After incorporating the network displacement costs, leg-based

controls can then be applied to solve the problem. A good overview of these models

and their evolution can be found in Belobaba (2002). Implementing network RM

controls can lead to an additional 1-2% increase above leg-based controls (Belobaba,

1998). This thesis uses EMSRb and DAVN as the main seat allocation models in the
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simulations involving fare family structures.

2.1.2 Demand Forecasting Models

Another component of the RM system that that plays a vital role in maximizing

revenue is the demand forecasting model. The objective of forecasting is to estimate

future values for a particular flight leg, including demand for a booking class as well

as passengers’ willingness to “sell up”, that is, purchase a higher fare product if their

first choice is no longer available. The forecasts must be as accurate as possible for

the RM systems to be effective. It is common that the observed bookings are less

than the actual demand; this happens when a particular booking class is closed and

passengers are rejected for that particular class. When this occurs, the historical

bookings will not reflect true demand, but rather will represent a lower bound on the

actual demand. Hence, it is crucial that the booking data be detruncated to estimate

the unconstrained demand. For an overview of some of the unconstraining methods

used, please refer to Weatherford & Polt (2002). The most common and frequently

used forecasting methods are now discussed.

2.1.2.1 Pick-up Forecasting

Pick-up Forecasting is a simple forecasting technique that has proven to be ef-

fective under the traditional assumptions of RM, specifically, the assumed indepen-

dence of demand in different booking classes. This forecasting method calculates

the expected incremental bookings for each data check point (or “time frame”) un-

til departure using the historical database. This pick-up is added to the number of

bookings already received to forecast the total demand at the end of a specific time

frame. There are two different versions of this model: the classical and the advanced

pickup model. The classical model only uses data from flights that have departed,

while the advanced pick-up model developed by L’Heureux (1986) also uses data from

flights that have not yet departed. In this thesis, only the classical pick-up forecasting

method is used in the simulations. Gorin (2000) provides a detailed description of
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this forecasting algorithm.

2.1.2.2 Alternative Forecasting Methods

A slight variant to the traditional Pick-up Forecasting is Pick-up Forecasting with

Exponential Smoothing. There is one additional parameter in this method which

allows the user to put more weight on recent samples as opposed to the older ones.

Another classical forecasting method is Regression Forecasting. This method as-

sumes a correlation between bookings-on-hand and future bookings for a particular

flight. The forecasted demand thus directly depends on the bookings-on-hand at

each specific time frame prior to departure. For a detailed explanation on Regression

Forecasting, refer to Zickus (1998). Consult Weatherford (1999) for an overview of

common forecasting methods used in practice.

2.2 RM Methods for Less-Restricted Fare Struc-

tures

In the late 1990s, most legacy airlines were upgrading their revenue management

systems to include network control, unaware of the major changes that would be

taking place after the turn of the century. It was at this time when the LCCs started to

emerge. With the low-fare search engines freely available on the internet, passengers

had easy access to information on the different fare products offered by the airlines.

To remain competitive, many of the legacy airlines underwent dramatic changes to

their pricing practice and adapted to the LCC fare structure, removing many of the

restrictions which acted as fences between the different products. Assumptions such

as fare product demand independence, crucial to the success of standard forecasting

and optimization methods, became completely invalid.

Since every passenger buys the lowest fare product when no restrictions are at-

tached, it was not possible to accurately forecast future demand simply based on

historical data. As a direct result, the traditional revenue management systems
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Figure 2-3: Spiral-Down Effect (Tam, 2008)

failed, both in forecasting and in optimization. Demand for higher booking classes

was under-forecasted, which then led to fewer bookings in higher classes and more

bookings in lower classes, and thus tremendous revenue losses. This cycle of diver-

sion, referred to as “spiral-down”, is shown in Figure 2-3. For more on the effects

of spiral-down and less restricted fare structures, consult Cooper et al. (2006) and

Cleaz-Savoyen (2005).

To avoid spiral down, airlines initially applied manual interventions to override

the RM system’s recommended booking limits. However, this was not the long-term

solution. For the NLCs to return to higher revenues, they were forced to either

modify their current RM systems or develop new tools that would allow them to

capture passengers with high WTP. Widespread research has been done on forecasting

passenger demand for unrestricted fare structures. The remainder of this chapter will

focus on methods that have been developed specifically for the these types of fare

structures. The central idea behind many of these methods is estimating passengers’

WTP, and then forecasting based on this concept, rather than relying on the demand

independence assumption and time series forecasts.
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2.2.1 Q-Forecasting

Q-Forecasting was developed by Belobaba & Hopperstad (2004) as a forecasting

method for fully undifferentiated booking classes that was designed to avoid the spiral-

down effect. Q-Forecasting does not use the independent demand assumption, but

rather only forecasts potential demand for the lowest available booking class, given

this class contains the only fare product passengers will purchase when the booking

classes are undifferentiated.

The Q-Forecasting process is shown in Figure 2-4. The first step is to obtain

unconstrained historical demand by class (for each of the remaining time frames), and

then convert this demand to the total number of “Q-equivalent bookings”, that is,

the equivalent demand for the lowest booking class if it were available. To accomplish

this, sell-up probabilities between the lowest booking class (Q) and the rest of the

booking classes must be established. The probability of sell-up from class Q to some

higher booking class f depends on the price points of both of the classes, as well as

the airlines estimate of passengers’ WTP.

Figure 2-4: Process of Q-Forecasting (Belobaba, 2010)
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In the next step, detruncation is applied to the Q-equivalent bookings for each

time frame. These unconstrained Q-equivalent bookings are then summed up to

produce a total Q-equivalent bookings-to-come within the current time frame. The

sell-up probabilities from class Q to the higher classes are then used to partition

the Q-equivalent bookings into the different booking classes to develop the total

bookings-to-come forecast by class. Note that the estimated sell-up probabilities will

change over time prior to departure, given that late-booking travelers are generally

less price-elastic and will be more likely to pay extra for a ticket than passengers

booking months in advance. To account for this, a weighted average of the sell-up

probability for each class is used. Given that sell-up can only be achieved by closing

down lower booking classes based upon the estimated passengers WTP, appropriate

sell-up probabilities are crucial to the effectiveness of Q-Forecasting. Cleaz-Savoyen

(2005) discusses various methods for estimating sell-up probabilities. In this thesis,

sell-up is modeled as a negative exponential distribution (Belobaba & Hopperstad,

2004).

2.2.2 Hybrid Forecasting

The Q-Forecasting method introduced in the last section was developed for fully

unrestricted fare structures. However, most airlines’ (including LCCs) fare structures

still have some restrictions, given that fare restrictions are generally only partially re-

moved. Even with this type of structure, differentiating between business and leisure

passengers was much more difficult than it was with a fully-restricted fare structure.

Boyd & Kallesen (2004) suggest that the demand can instead be differentiated be-

tween price-oriented and product-oriented passengers. Price-oriented passengers are

those passengers who always purchase in the lowest open booking class, regardless of

what other options are available. Passengers are considered to be product-oriented if

they purchase a fare product in any class above the lowest open one. That is, they

purchase a higher-priced product because of its flexibility and/or services.

By segmenting the demand in this manner, different forecasting methods can be

applied to the two different “groups” of passengers. Q-Forecasting can be applied
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to the price-oriented passengers while standard Pick-Up Forecasting can be imple-

mented for the product-oriented passengers. Hybrid Forecasting is thus a combina-

tion of the two methods that forecasts the demands separately and then aggregates

the two forecasts to estimate total forecasts. Figure 2-5 shows a schematic of the

Hybrid Forecasting process. Reyes (2006) provides more information on the Hybrid

Forecasting methodology and its performance

Figure 2-5: Process of Hybrid Forecasting (Belobaba, 2010)

2.2.3 Fare Adjustment Theory

Both Q-Forecasting and Hybrid Forecasting were efforts to reversing the spiral-

down effect. However, it was the fare adjustment theory developed by Fiig et al.

(2010) that provided the optimization models for the forecasting methods mentioned

above. The fare adjustment theory showed that it was possible to map the fare and

demand inputs of a completely general fare structure (perhaps unrestricted) into an

equivalent independent demand model of a fully restricted structure. This is known as

the marginal revenue transformation theorem. Once the demands and fares have been
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transformed, the traditional RM methods that were developed under the independent

demand assumption can then be applied using the original fare structure (Fiig et al.,

2010).

In a fully restricted fare structure with price points in decreasing fare order and

deterministic demand for each fare product, the demand for each fare product is

assumed to be independent of whether other products are available. It is therefore

beneficial to open up classes in decreasing fare order until capacity is reached, given

that total revenue increases monotonically with the total quantity of seats sold.

In an unrestricted fare structure in which the price points act as the only differ-

entiator between the classes, passengers who had previously been willing to purchase

the more expensive fare products will now buy in the lowest available booking class.

Opening up classes in decreasing fare order will result in passengers diverting to the

lowest products. While the incremental demand from opening up the next lowest

class remains identical to the incremental demand in a fully restricted fare structure,

the incremental revenue is reduced, taking into account the fact that passengers are

diverting to lower-priced classes.

The optimization problem is thus to maximize total revenue subject to the quan-

tity sold being less than the capacity of the flight leg. This solution is most easily

arrived at by considering the total forecasted demand and revenue for all possible

combinations of classes, or “policies”, an airline can offer (which is 2n in an n class

structure). As Figure 2-6 illustrates, the policies trace out the convex hull, with the

optimal policies S0...Sm identified as those that lie along the ‘efficient frontier’ (upper

boundary) on the convex hull (Fiig et al., 2010). As illustrated by the figure, the

marginal revenue f ′i , or “adjusted fare”, is the change in total revenue (TRi−TRi−1)

over the change in total demand (d′i = Qi −Qi−1) from one policy to another.

Assuming a nested efficient frontier, the marginal revenue transformation will

produce demands and adjusted fares for each of the original booking classes. After

these quantities are fed into the optimizer, the same availability control as in the

independent fare structure can be achieved.
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Figure 2-6: Scatter Plot of Different Strategies Tracing out the Convex Hull (Fiig
et al., 2010)

2.3 Chapter Summary

This chapter began with a review of the literature on airline RM methods that

were in use prior to the emergence of the LCCs. The discussion was centered on both

seat allocation optimization and forecasting models. Next, the literature focused on

revenue management methods in a less-restricted environment. The impact of LCCs

on legacy carriers has been immense, as the removal of fare class restrictions and

cheaper fares has led to lower revenues for the NLCs. Finally, the fare adjustment

theory was introduced. The next chapter focuses on RM methods developed in this

research for fare family structures.
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Chapter 3

Revenue Management Methods for

Fare Families

One of the main challenges in implementing a branded fare family structure in

practice is that it requires more sophisticated forecasting and optimization models.

That is, the RM methods discussed thus far were not developed for a multiple-family

fare structure. Although implementing the traditional RM methods (e.g., EMSRb

optimization with Hybrid Forecasting) in a fare family environment may provide a

small gain over manual control, there is an additional revenue gain that can be earned

through successful modeling of customer choice behavior in the RM system. Given

that some experts believe that the fare family structure could be the key to effective

airline pricing in the future, developing RM models specifically for this environment is

essential (Fiig et al., 2012). This chapter introduces the advanced forecasting methods

developed for the branded fare family structure, providing an in-depth overview of

each algorithm.

3.1 Introduction to Fare Family Structures

The fare family structures used for examples and simulations in this thesis are

comprised of two families: ‘family 1’ (known as the flex fare family in some literature),

and ‘family 2’ (restricted fare family). It is worth mentioning that in practice an
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airline can offer any number of families. The families are differentiated from one

another by both the services offered as well as flexibility. Within each family the

booking classes are undifferentiated in terms of restrictions; the lower-priced family

2 classes are completely restricted while the more expensive family 1 classes are

completely unrestricted. Thus the only difference between classes in each family is

the price points, which are in decreasing fare order.

In this thesis, the cheapest available (or “open”) family 1 and family 2 classes

are denoted as f1 and f2, respectively. An optimization policy {f1, f2} consists of

opening up at most one class from family 1 and at most one class from family 2. It

suffices to consider only the price point of the lowest open class in each family, since

passengers will always book in the cheapest class when choosing between options in

the same family with identical restrictions. Thus in any fare family structure with n

family 1 classes and m family 2 classes, the maximum number of possible policies to

be considered for forecasting purposes is (n + 1)(m + 1), which also accounts for the

policies where one or both of the families are completely closed.

3.2 Passenger Decision Process

In order to develop successful forecasting methods for fare family structures, the

passenger decision process must be modeled appropriately. Modeling this process is

much more complicated in a fare family structure than in a fare structure with a

single set of booking classes (referred to as a ‘nested fare structure’ in this thesis,

given that the majority of non-fare family fare structures have the nested property).

In a nested fare structure, a passenger simply chooses a product in the cheapest class

that meets his criteria, or is a “no-go”, that is, the passenger does not fly. In a fare

family structure, a passenger now has the option to choose between the lowest open

family 1 class f1, the lowest open family 2 class f2, or neither.

Before proceeding further, formal definitions of two important concepts in fare

family structures are provided. “Sell-up”, briefly described in Chapter 2, refers to

the decision of a passenger to purchase a higher-priced fare with the same (or very
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similar) restrictions if the passenger’s first choice of booking class is unavailable. The

decision to sell up is based strictly on passengers’ WTP, and only passengers with a

WTP greater than or equal to the higher-priced fare will sell up. Given that there is

no difference in restrictions between the booking classes within each family, the notion

of passengers’ willingness to sell-up plays a critical role in the forecasting techniques

developed throughout this chapter.

Another important concept is the notion of “buy-across”. Buy-across refers to the

choice an eligible passenger (i.e., a passenger that can afford both f1 and f2) makes

between the lowest open family 1 class f1 and the lowest open family 2 class f2.

This choice is made by comparing the difference in price points between f1 and f2

against the difference in disutilities associated with the restrictions and/or amenities

of the two families. Given that family 1 is unrestricted in the examples used in this

thesis, this is equivalent to comparing the difference in price points between f1 and

f2 against the disutility costs the passenger in question attributes to the family 2

restrictions.

Figure 3-1 shows how sell-up and buy-across are incorporated into the assumed

choice process in a fare family structure from a passenger’s perspective. In this model,

the first step is for the passenger to determine if he can afford f2, that is, determine

if his maximum WTP is greater than the price of the fare product in the lowest open

family 2 class. If he can not afford f2, he becomes a no-go. If the passenger can

afford f2, he would then compare his maximum WTP to f1 to see if he can afford

the lowest open family 1 class. If the passenger can afford f2 but not f1, he purchases

f2.

If the passenger can afford f1, he then compares the disutility costs that he

attributes to the f2 restrictions against the difference in price points between the two

classes, faref1 − faref2, to determine which class has a lower total generalized cost

(sum of the price point and disutility costs), and thus which class the passenger will

book in.

New forecasting and optimization methods are critical to the success of fare fam-

ilies if the actual passenger decision process for a fare family structure follows the
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Figure 3-1: Assumed Passenger Decision Process in a Fare Family Structure

model described in Figure 3-1. That is, the forecasting methods described in Chapter

2 do not reflect the assumed passenger behavior in a fare family environment. Fore-

casting and optimization methods are needed that incorporate an airlines’ estimate

of passengers’ WTP (sell-up), and that model passenger preference (buy-across) for

every combination of family 1 and family 2 classes.

3.3 Q-Forecasting for Fare Families

The forecasting methods developed in this research for the fare family environment

utilize the concept of Q-Forecasting (as described in Chapter 2) extensively. As such,

the methods introduced in this chapter are collectively termed “Q-Forecasting for

Fare Families” (QFF). Each of the methods described in this chapter follow a similar

step-by-step process. These steps are all described in detail for the first method

(QFF1). For each subsequently developed model, a similar procedure is followed. As

such, when describing QFF2 and QFF3, only the steps in each method that differ

from QFF1 will be highlighted. Note that, for each forecasting method, the RM

system re-optimizes the booking limits at each time frame (TF) before departure.

To more easily illustrate the QFF algorithm, a numerical example highlighting
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each of the different steps in the QFF process (with the QFF1 formulation) is worked

out. In this example, a two-family six-class fare structure is used (three classes per

family). The classes in family 1 are labeled alphabetically from A1 to C1, with

A1 being the highest-priced class overall and C1 being the cheapest family 1 class.

Likewise, the family 2 classes are labeled in a similar manner from A2 to C2.

The fare structure used for this example is shown in Table 3.1. In this fare family

structure, the price points are non-overlapping; the fare of the lowest family 1 class

(in this case, C1) is priced above the most expensive family 2 class (A2). As indicated

in the table, there is no advanced purchase requirement in either family. This will

be the case for all simulations involving QFF; no AP is used in conjunction with any

fare family forecasting method in this thesis.

Table 3.1: Fare Family Structure used in QFF1 Example

3.3.1 QFF1

A flow chart summarizing the main steps in the QFF1 process is shown in Figure 3-

2. After obtaining a Q-Forecast using historical data, the demand and revenue is

forecasted for the different policies. Once the optimal policies have been determined,

these policy forecasts can then be converted back into class forecasts, which can then

be fed into the optimizer. A walk-through of QFF1 is provided in the following

subsection, illustrating the process within a particular time frame. As mentioned

above, these same steps are performed within each time frame in the pre-departure
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process.

Figure 3-2: QFF1 Process

Step 1: Produce a time frame partitioned Q-Forecast

The first step in the forecasting process is to use unconstrained historical data

to generate a time frame partitioned Q-Forecast both for the current time frame as

well as for each future time frame up until departure. In the numerical example, the

partitioned Q-Forecast for the current time frame tf , denoted as FCtf , is assumed

to be 30. Note that with QFF1, the Q-Forecast is generated assuming that C2 is the

lowest class. That is, no distinction is made between the two families.

Step 2: Forecast the demand for each policy {f1, f2}

In this step, the maximum demand is forecasted for each policy. The maximum

demand is estimated assuming that the family 1 and family 2 classes that make up

the policy are the lowest open classes in each of their respective families. Given that

the fare structure used in this example consists of three classes in each family, there

are (3 + 1)(3 + 1) = 16 possible policies the airline can choose to offer. However, in a

non-overlapping fare structure, an airline would never offer a policy consisting of only
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a family 2 class. Thus the actual number of policies that need to be considered in

this setup is (3)(3 + 1) = 12, which corresponds to the nine policies with both family

1 and family 2 classes, as well as the three policies with only a family 1 class.

The demand forecast for each policy depends on the airline’s estimation of pas-

sengers’ willingness to sell up. A negative exponential distribution sell-up model is

assumed in this thesis. This model is governed by a single parameter called “FRAT5”,

defined as the fare ratio of a higher fare to the lowest fare class (C2) at which the

airline expects 50% of the demand will sell up to a higher class (Belobaba & Hop-

perstad, 2004). The probability a random passenger will sell up to class f (at a fare

of faref ) in time frame tf , given he would have chosen the lowest class C2 and no

other classes are available, is

psuptf (C2 → f) = e
(

faref
fareC2

−1)( ln(0.5)
FRAT5tf−1

)

One of the fundamental assumptions with QFF1 is that all passengers in the

forecast are assumed to follow the same sell-up model. That is, the QFF1 algorithm

does not distinguish between passenger types (e.g., business vs. leisure).

For a given flight, it is expected that as the departure date nears, passengers’

WTP, and consequently the sell-up probabilities increase, given that less price sen-

sitive business travelers tend to book closer to departure. To account for this, the

single FRAT5 curve is modeled in such a way to capture the different booking ten-

dencies between business and leisure passengers. Specifically, the sell-up probability

is expected to gradually increase from the early time frames up until departure, re-

sulting in a FRAT5 curve of an S-shape, as shown in Figure 3-3. This curve reflects

the change in the business/leisure mix across time frames (Belobaba, 2010).

Forecasting the demand for any policy with QFF1 is dependent upon the lowest

overall class in the policy. Consider any of the 9 policies where some family 2 class

is open. The maximum demand for any policy of this type in time frame tf is the

Q-Forecast in time frame tf multiplied by the probability of sell-up from C2 to f2

in time frame tf . This corresponds to the number of passengers from the Q-Forecast
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Figure 3-3: Typical FRAT5 Curve

that can afford f2:

demtf{f1, f2} = FCtf × psuptf (C2→ f2)

The maximum demand for any policy with f2 open is thus independent of the

lowest open family 1 class. Note that this is always true for a non-overlapping fare

family structure, since in this setup any passenger than can afford f1 can also afford

f2. Thus only those passengers who can afford f2 need to be considered when some

family 2 class is open.

Now consider the scenario where family 2 is completely closed (denoted with a

%). With only the lowest open family 1 class f1 open, the maximum demand for

{f1,%}, that is, the estimated number of passengers from the Q-Forecast who can

afford f1 in time frame tf , is found as follows:

demtf{f1,%} = FCtf × psuptf (C2→ f1)

The previous two demand equations illustrate that the demand forecast for any

policy with QFF1 only depends upon the cheapest available class in the given policy.

If a family 2 class is open, the maximum demand for f2 will be the overall policy

demand. If no family 2 classes are available, then the demand of the policy will be

the demand for the lowest available family 1 class.
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A numerical example of forecasting the maximum demand for the different policies

is shown in Table 3.2. The calculations performed assume FCtf = 30 (step 1), and a

FRAT5 value of 2.0 in time frame tf . As the example illustrates, the demand forecast

is the same for the policies {A1, A2} and {C1, A2}, given that A2 is the lowest open

family 2 class in each policy.

Table 3.2: Example Illustrating the Demand Forecast for each Policy assuming
FRAT5tf = 2.0

Step 3: Forecast the revenue for each policy {f1, f2}

In the assumed fare family passenger decision process the notion of sell-up and

buy-across were both discussed. In the demand forecast, sell up from C2 to f in time

frame tf was taken into consideration by the variable psuptf (C2→ f). The demand

forecasts for each policy corresponded to the maximum number of passengers from the

Q-Forecast that could afford the lowest open class in the given policy. The revenue

forecasts, discussed in detail in this section, also account for buy-across, given that

some passengers in the demand forecast will purchase the family 1 product.

Similar to the demand forecasts, forecasting the revenues for the different policies

depends upon the status of family 2 within a given policy. The revenue forecasts are

intricate, given that some passengers in the demand forecast will prefer f1 over f2.
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If the policy has both open family 1 and 2 classes, the revenue from the demand that

can and will buy f1 is obtained, and then added to the revenue from the demand that

can afford f2, but cannot or will not buy f1. If the policy only has an open family 1

class, the revenue from the demand that can afford the family 1 fare is obtained.

Recall from the passenger decision process, a passenger who can afford f1 chooses

f1 only if the difference in fare between the two classes, faref1− faref2, is less than

the disutility costs the passenger in question attributes to the family 2 restrictions.

This is defined as “buy up” from family 2 to family 1. To include the probability that

an eligible passenger prefers f1 over f2, or the probability of buy up from f2 to f1,

the passenger’s disutility distribution (assumed to be Gaussian) must be estimated.

Figure 3-4 shows a random passenger’s disutility distribution and how the difference

in fare levels between f1 and f2 impact the likelihood of buy-up from family 2 to

family 1.

Figure 3-4: Disutility Distribution of Random Passenger. Area of Shaded Region is
Probability that Passenger Buys Up from f2 to f1

The QFF1 algorithm estimates a passenger’s disutility distribution through the

“PBUP” parameter. The PBUP values is the fare ratio to the lowest family 2 fare

at which the airline expects 50% of the eligible passengers would prefer family 1 over

family 2. This input, along with an input k-factor, can then be used to generate

estimated disutility distributions for all passengers. Although in practice a passen-

ger is likely to be less sensitive to restrictions closer to departure, this is not taken

into consideration in the QFF models. That is, the disutility costs for a particular

passenger are assumed to be the same for each time frame throughout the booking

process.

Referring back to the fare structure introduced in Table 3.1 (which has a lowest
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class fare of $100), a PBUP value of 3.0 (with a disutility k-factor of 0.5) implies that

the airline believes that 50% of the passengers would prefer purchasing a family 1 class

priced at $300 over a family 2 class priced at $100. The disutility distribution can

then be generated, which has a mean of $200 ($300 - $100) and a standard deviation of

$100. With the estimated disutility distribution, the probability an eligible passenger

will buy up from f2 to f1, denoted as pbup(f2, f1), can be computed for each set of

family 2/family 1 classes. Table 3.3 shows the probability of buy-up from the three

family 2 classes to the three family 1 classes, assuming a PBUP input of 3.0.

Table 3.3: Probability of Buy-Up from each Family 2 Class to each Family 1 Class

Once the disutility distributions have been estimated, the revenues can be fore-

casted for each of the policies. The revenue forecast equations, which depend both

on the lowest open family 2 class as well as the lowest open family 1 class, are found

as follows:

revtf{f1, f2} =[FCtf × psuptf (C2→ f1)× pbup(f2, f1)]× faref1+

[FCtf × psuptf (C2→ f2)− (FCtf × psuptf (C2→ f1)× pbup(f2, f1))]× faref2

The first part of the revenue forecast equation for the policy {f1, f2} considers

those passengers who purchase the lowest open family 1 fare, that is, the travelers

who both can afford and prefer f1. The remaining passengers who can afford f2 but
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do not choose f1 (either because they cannot afford or do not want f1) book f2 at

a fare of faref2. Any passengers that do not book either f1 or f2 (i.e., passengers

who can not afford f2) are no-go.

This approach can be used to forecast the revenues for each of the 12 policies,

including the policies with only family 1 classes available. In these three policies,

pbup(f2, f1) = 1, and the revenue forecast equation becomes

revtf{f1,%} = FCtf × psuptf (C2→ f1)× faref1

Step 4: Determine the optimal policies by constructing the convex hull

After the demands and revenues have been forecasted for each of the policies, the

next step involves determining which policies are optimal. This can most easily be

illustrated graphically by plotting the total revenue vs. total demand for each of the

policies in a scatter plot, tracing out the convex hull (Fiig et al., 2010). Using a

similar process as described in Section 2.2.3 (Fare Adjustment Theory), the optimal

policies are found to be those that lie along the efficient frontier (increasing part

of the convex hull), as shown in Figure 3-5. Although there are 12 policies in this

numerical example, only five of them are efficient. Fiig et al. (2012) describes the

main techniques used for calculating the optimal policies from the convex hull.

Step 5: Convert policy forecasts to class forecasts to obtain the optimal

booking limits

Once the optimal policies for each forecast have been determined, Fiig et al. (2012)

shows how, for nested policies, the policy forecasts can be converted back into class

forecasts. Specifically, the adjusted fares and partitioned demand for each class can

be obtained. Note that Steps 2-4 of the QFF1 process are all performed on both the

Q-Forecast within the current time frame as well for the Q-Forecast for each future

time frame up until departure. Thus the adjusted fares and partitioned demands for

each class in each time frame are obtained.

To obtain the class bookings-to-come demand forecast, the partitioned demand
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Figure 3-5: Scatter Plot of Total Revenue vs. Total Demand for all Policies

from the current time frame is summed up with the partitioned demand from the

remaining time frames (for all classes). The class adjusted fare is set to the adjusted

fare for the current time frame. The bookings-to-come demand forecast and adjusted

fare inputs are then fed into the optimizer to produce the optimal class protection

levels within the current time frame.

Limitations of QFF1

On the revenue management side, forecasting with QFF1 required both a sell-up

input (FRAT5) and a buy-across input (PBUP). The single FRAT5 curve represented

the airline’s estimate of all passengers’ WTP, while the PBUP input modeled the

passengers’ disutility distribution to the family 2 restrictions. While theoretically

sound to include inputs that model both sell-up and buy-across, it was determined

that the FRAT5 value had much larger impacts on the overall performance of QFF1

than the PBUP value. After a detailed analysis of the impacts and interactions of

these two parameters on the performance of QFF1, Cizaire (2010) concluded that

there was too much emphasis on the buy-up input compared to its actual role on the

performance of the methodology.
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Additionally, estimating both family 1 and family 2 passengers’ WTP with the

same sell-up model did not appear to be the most appropriate method of capturing

passenger sell-up behavior. That is, with one sell-up input, there was no distinguishing

between family 1 and family 2 passengers, which can have very different maximum

WTP.

The reasons listed above provided the motivation to develop an alternative fore-

casting method for the fare family structure. This method, known as QFF2, is dis-

cussed next.

3.3.2 QFF2

A schematic illustrating the QFF2 forecasting process is shown in Figure 3-6.

QFF2 puts more emphasis on forecasting separately within each family instead of

forecasting for both families combined. As such, the first step includes generating

separate Q-Forecasts by fare family. While the remaining steps are the same, there

are notable changes in the formulations within the different steps.

Figure 3-6: QFF2 Process

There is a major distinction between QFF1 and QFF2 in the way that sell-up is

modeled. Specifically, an additional FRAT5 value is incorporated into the model. In
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the new formulation a separate sell-up input is used for each family, a consequence of

the fact that with QFF2, separate Q-Forecasts for each family are generated in the

first step.

The second difference between the methods is the removal of the buy-up input

(PBUP) in the QFF2 algorithm. As mentioned earlier, it was found that the sell-up

input was a dominating factor in the performance of QFF1. In the new formulation,

buy-across is assumed to be implicitly taken into account, given that the forecast for

each family is based on historical data available from previous bookings in each of

the families. Consequently, there is no buy-up input.

In addition to the modifications mentioned above, a simplification was also made in

the FRAT5 curve. Recall that in QFF1, the FRAT5 curve was modeled as an S-shape

to capture the different booking tendencies between business and leisure passengers

throughout the different time frames. Given that this was the only sell-up input, it

was modeled in this way to account for leisure travelers (lower WTP) booking early

in the process and business passengers (higher WTP) booking closer to departure.

With QFF2 producing separate forecasts by family, it is assumed that the family

1 forecast consists mainly of business travelers, while the family 2 forecast primarily

consists of leisure passengers. Consequently, the separate forecasts for each family

essentially segment passengers based on WTP. For forecasting purposes, it is assumed

that the passengers from the family 1 forecast all have similar WTP, regardless of the

different time frames. Similarly, the WTP of passengers from the family 2 forecast is

not expected to change significantly as the departure date nears. Thus, QFF2 uses

constant FRAT5 values by time frame instead of the S-shaped curves. While the

assumptions regarding the segmentation of passengers that are listed above are not

perfect, they are believed to be reasonable for forecasting purposes.

Step 1: Produce a time frame partitioned Q-Forecast for each family

As opposed to QFF1, QFF2 produces a time frame partitioned Q-Forecast sep-

arately for family 1 and family 2, both within the current time frame as well as for

each future time frame before departure.
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To obtain the Q-Forecast for family 1 in time frame tf (FC1tf ), only past bookings

in family 1 are used. Inverse sell-up probabilities from the lowest family 1 class (C1)

are determined from the family 1 FRAT5 value, which in this case is assumed constant

throughout the booking process (e.g., 1.5).

A similar procedure is used to generate the time frame partitioned Q-Forecast

for family 2 (FC2tf ). Only relevant information on past bookings in family 2 is

used. Using inverse sell-up probabilities from the lowest family 2 class (C2), which

are generated using the assumed sell-up rate (may be different from the sell-up input

used in the family 1 estimate), FC2tf can be determined.

Step 2: Forecast the demand for each policy {f1, f2}

Recall that the FRAT5 value is the fare ratio of some higher class fare to the

lowest overall fare. Since the family 1 forecast is independent of the family 2 forecast,

the lowest fare for the family 1 forecast is C1 instead of C2. As a result, the sell-up

equation for a passenger in the family 1 forecast (psup1) becomes

psup1tf (C1 → f) = e
(

faref
fareC1

−1)( ln(0.5)
FRAT5tf−1

)

Given that the lowest family 1 fare is always priced higher than the lowest family

2 fare, the same numerical sell-up input (e.g., 2.0) will implicitly produce steeper

sell-up estimates in family 1 than in family 2. For example, in the fare structure from

Table 3.1, a FRAT5 value of 2.0 in both families estimates a median WTP of $400

for family 1 passengers and a median WTP of $200 for passengers from the family 2

forecast.

The demand forecasts with QFF2 for each policy are straightforward, given that

the forecasts for each family are independent from one another. The maximum de-

mand forecast for any policy {f1, f2} is found as follows:

demtf{f1, f2} = FC1tf × psup1tf (C1→ f1) + FC2tf × psup2tf (C2→ f2)
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In this formulation, the maximum demand for any policy is found by estimating

the number of passengers from the family 1 forecast that can afford f1, and then

adding this number to the estimated number of passengers from the family 2 forecast

that can afford f2. This model assumes that there is no interaction between the

two families. That is, no passengers from the family 2 forecast sell-up to f1 in the

algorithm. Likewise, any passengers from the family 1 forecast who do not sell up to

f1 are assumed to be no-go (rather than book f2).

Step 3: Forecast the revenue for each policy {f1, f2}

The revenue forecasts for each policy in the QFF2 formulation are also calculated

in a straightforward manner, given that buy-across is not captured in the model, and

thus there is no probability of buy-up from family 2 to family 1 in the formulation.

As a result, the algorithm assumes that only passengers in the family 1 forecast buy

f1, and only passengers in the family 2 forecast buy f2. Specifically, the revenue

forecast for any policy {f1, f2} is

revtf{f1, f2} =[FC1tf × psup1tf (C1→ f1)]× faref1+

[FC2tf × psup2tf (C2→ f2)]× faref2

That is, the revenue forecast is calculated using the demand for f1 and f2, mul-

tiplying these values by faref1 and faref2, respectively, and then adding the results.

This process can be done for each of the possible policies an airline can offer.

Steps 4-5

The remaining steps are identical to the QFF1 algorithm. All the policies are

plotted in a scatter plot of total revenue vs. total demand. Assuming the policies

on the efficient frontier are nested, the policy forecasts can be mapped back to class

forecasts to eventually obtain the booking limits.
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Limitations of QFF2

QFF2 differs from the original fare family forecasting method in two ways. Sepa-

rating the forecasts by fare family and treating each family independently appeared to

be more accurate from a theoretical standpoint. Under this assumption, buy-across

was not modeled, and the buy-up input was removed. However, several experiments

using the PODS simulator showed that, in practice, a certain percentage of passen-

gers from the family 2 forecast bought a family 1 product, and vice versa. The QFF2

algorithm did not capture this interaction between the two families.

The third QFF formulation (QFF3) was developed with the intention of incorpo-

rating the best characteristics of the first two models into a new formulation.

3.3.3 QFF3

The two forecasting methods discussed thus far utilized different approaches in

modeling the passenger decision process in a fare family environment. The QFF1

formulation captured both sell-up and buy-across. One of the drawbacks to this

method was estimating the sell-up probabilities of both passenger types with a single

sell-up model. This provided part of the motivation for QFF2, where the passengers

for each family are forecasted separately, including different sell-up inputs by family.

Buy-across was not included in the model, and as a result, there was no buy-up

input. However, experiments showed that there was still interaction between the

families that was not being modeled in the QFF2 algorithm. The third formulation

is essentially a hybrid between QFF1 and QFF2.

QFF3 includes separate forecasts and requires separate sell-up estimates by family

(as in QFF2). As such, the only differences between QFF2 and QFF3 are in the

formulations. With QFF3, buy-across is modeled in the form of buy-up as well as

“buy-down”, given the separate family forecasts. With QFF3, the probability of buy-

up is the probability a passenger from the family 2 forecast prefers f1 over f2. On

the flip side, the probability of buy-down is the probability that a passenger in the

family 1 forecast prefers f2 over f1.
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With QFF3, an airline can estimate the disutilities attributed to the family 2

restrictions through the use of the new disutility multiplier input “DUMLT”. The

mean estimated disutility costs for a passenger in the family 1 forecast (DUMU1)

and a passenger in the family 2 forecast (DUMU2) are

DUMU1 = DUMLT × fareC1

DUMU2 = DUMLT × fareC2

In this formulation, a single DUMLT value is used to estimate the disutilies at-

tributed to the family 2 restrictions for both family 1 and family 2 passengers. This

is accomplished by multiplying the DUMLT input times the price point of the lowest

booking class in each family. Finally, the disutility k-factor (assumed to be 0.5) can

be used to define the standard deviation of the disutility distributions, which are

again assumed to be Gaussian.

With these estimated disutility distributions for both passengers from the family

1 forecast and the family 2 forecast, the probability of a passenger choosing a booking

class in the opposite family in which he was forecasted can be determined. To this

end, the probability a passenger in the family 1 forecast would buy down to the lowest

open family 2 fare class f2 is

pbdwn(f1, f2) = P (DUMU1 < f1− f2)

That is, the probability that a passenger in the family 1 forecast would prefer the

lowest family 2 class is the probability that the difference in fare between f1 and f2

is greater than the estimated disutilities as defined above.

In a similar manner, the probability of a passenger in the family 2 forecast buying

up to f1 can be found as follows:

pbup(f2, f1) = P (DUMU2 > f1− f2)
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The additional parameters added were done so to explicitly represent buy-up

and buy-down, and thus better model buy-across in the actual passenger decision

process. These parameters are incorporated into the QFF3 revenue forecast. Note

that the only changes between the QFF2 and QFF3 formulation lies in the demand

and revenue forecasts (Steps 2-3). As such, these are the only steps from the QFF

forecasting process that are highlighted in the description of the QFF3 algorithm.

Step 2: Forecast the demand for each policy {f1, f2}

The demand forecast with QFF3 is dependent upon the status of the lowest open

family 2 class. Assuming some family 2 class is open, the demand forecast for any

policy {f1, f2} is

demtf{f1, f2} = FC1tf × psup1tf (C1→ f2) + FC2tf × psup2tf (C2→ f2)

In this equation, psup1tf (C1 → f2) is the probability a family 1 passenger will

sell-up to f2 in time frame tf , while psup2tf (C2→ f2) is the probability a passenger

from the family 2 forecast will sell-up to f2. The main difference between the two

quantities is that the sell-up probability for the passenger from the family 1 forecast

is computed with C1 as the lowest class, while the latter is computed with C2 as the

lowest class.

The total demand for any policy with a family 2 class open is the number of

passengers from both the family 1 forecast as well as the family 2 forecast that can

afford f2. In a non-overlapping fare family structure, every passenger in the family 1

forecast is included in the demand, given that each passenger is assumed to be able

to afford f2.

If family 2 is completely closed, the demand forecast with QFF3 becomes

demtf{f1,%} = FC1tf × psup1tf (C1→ f1) + FC2tf × psup2tf (C2→ f1)
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That is, the forecast is now the number of passengers from both the family 1

forecast and family 2 forecast that can afford f1.

Step 3: Forecast the revenue for each policy {f1, f2}

With QFF3, buy-across includes both passengers from the family 2 forecast buying

up to family 1 as well as passengers from the family 1 forecast buying down to family

2. These passenger characteristics, along with sell-up, are all included in the QFF3

revenue forecasts. To this end,

revtf{f1, f2} = rev(f1) + rev(f2)

The forecasts for the lowest open family 1 class as well as the lowest open family

2 class depend both on FC1tf and FC2tf , that is, the Q-Forecasts from each family

in time frame tf . The revenue forecast for the lowest open family 1 class is

revtf (f1) =[FC1tf × psup1tf (C1→ f1)× (1− pbdwn(f1, f2))]× faref1+

[FC2tf × psup2tf (C2→ f1)× pbup(f1, f2)]× faref1

The first part of the equation consists of the passengers from the family 1 forecast

that purchase f1. This includes those passengers from the family 1 forecast who

can both afford f1 and prefer f1 (i.e., those that do not buy down to family 2).

The second component of the equation consists of those passengers from the family 2

forecast who can both afford and prefer f1. The number of passengers forecasted to

purchase f1 (from both the family 1 and family 2 forecasts) is multiplied by faref1

to obtain the forecasted revenue contribution to the policy {f1, f2} from f1.

Using similar logic, the revenue forecast for the lowest open family 2 class can be
calculated as

revtf (f2) =[FC1tf × psup1tf (C1→ f2)− FC1tf × psup1tf (C1→ f1)× (1− pbdwn(f1, f2))]× faref2+

[FC2tf × psup2tf (C2→ f2)− FC2tf × psup2tf (C2→ f1)× pbup(f2, f1)]× faref2
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The revenue forecast for f2 considers both those passengers who buy-down from

the family 1 forecast as well as passengers from the family 2 forecast. The majority

of passengers from the family 1 forecast are assumed to purchase f1. Those who

don’t purchase in f1 either purchase f2 or are no-go. This is captured in the above

formulation by FC1tf × psup1tf (C1 → f2). Note that psup1tf (C1 → f2) = 1 in a

non-overlapping fare structure, since in this case all passengers in the family 1 forecast

are expected to be able to afford any family 2 class, given that the lowest family 1

class is priced above the most expensive family 2 class. Note that, in an overlapping

fare family structure, the probability a passenger from the family 1 forecast sells up

to one of the more expensive family 2 classes can be less than 1, given that some

family 2 classes are priced above the lowest family 1 class.

The final part of the revenue equation for f2 comes from the passengers from the

family 2 forecast. This includes all passengers from FC2tf that can afford f2 but

do not buy f1. Finally, the values obtained are multiplied by faref2 to produce the

revenue contribution to the policy from f2.

QFF3 summary

It is believed that the QFF3 formulation appropriately captures the different as-

pects of the passenger decision process in a fare family structure. The first two

formulations had limitations, which led to the development of subsequent methods.

From a formulation perspective, there are no apparent invalid assumptions in the

model. It is the three methods described throughout this chapter that are tested and

analyzed in this thesis.

3.4 Chapter Summary

This chapter provided a detailed description of the fare family forecasting al-

gorithms. The assumed passenger decision process in a fare family structure was

described, providing the basis for the developed methods. Other essential terms and
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concepts were introduced in more detail, including passenger sell-up and buy-across.

An in-depth walk-through of a numerical example with QFF1 was illustrated, fol-

lowed by an analysis of the differences between the original fare family forecasting

method and each of the subsequent formulations.

Following the descriptions of each of the first two methods, the limitations of each

were discussed. With QFF1, it was found that, although buy-across was accounted

for, it had little impact on overall performance. Additionally, there was motivation to

split up the forecasts by family, which led to the development of QFF2. In the second

formulation, there were two sell-up inputs and no buy-across input. While producing

separate forecasts appeared to more accurate from a modeling perspective, passengers

from one family forecast were still purchasing in the opposite family, which was not

captured in the algorithm.

The last method, QFF3, was designed with the goal of incorporating the best

characteristics from each of the first two methods into one formulation. Specifically,

separate inputs to estimate sell-up were still required for each family in the third

formulation. However, unlike with QFF2, buy-across was accounted for with QFF3

through the DUMLT parameter. This input was used to estimate buy-across in the

form of buy-up and buy-down.

The next chapter introduces the RM simulator used to test the different experi-

ments throughout this thesis, the Passenger Origin-Destination Simulator. The airline

networks used to set up the experiments and test the performance of the different

algorithms are described in detail.
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Chapter 4

Overview of the Passenger Origin

Destination Simulator (PODS)

This chapter introduces the Passenger Origin Destination Simulator (PODS), the

software tool used to test and analyze the performance of the different RM methods

that were described in the previous chapter. PODS was developed in the mid-1990s as

a successor to The Boeing Company’s Decision Window Model, which originally was

created to model passenger choice with respect to flight schedules. The simulator has

been further advanced by the MIT PODS Consortium, funded by several members

associated with the airline industry. PODS simulates hypothetical airline networks, in

which different RM system forecasting and optimization methods’ performances can

be analyzed. The first section in this chapter briefly describes the main components of

the PODS architecture. This overview includes details of the Passenger Choice Model,

the Revenue Management System, and the interaction between these two components.

The simulated two-airline environments used for analysis will be introduced in the

second section. For more information on the PODS simulator, see Belobaba (2010)

4.1 PODS Architecture

In PODS, each simulation run begins with user defined inputs. The initial iter-

ations allow the airlines to progressively build the historical database, which is used
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to generate forecasts. A typical PODS run is composed of five independent trials,

with each trial consisting of 600 samples, or “departure days”. The results from a

single run are obtained by discarding the first 200 samples of each trial to eliminate

the initial condition effects, and then averaging over the 400 samples from each of

the five trials (total of 2000 iterations). The results are based on simulated individ-

ual passenger choices and convey information on various airline performance metrics,

including airline traffic, revenues, load factors, and yields.

The pre-departure process in PODS is modeled as a 63-day process, where pas-

sengers can begin booking up to 63 days prior to departure. These days are divided

into 16 time frames, where the RM system updates seat availabilities by class at the

beginning of each time frame. As Table 4.1 illustrates, the length of each time frame

is initially about seven days due to fewer anticipated bookings in the early stages,

but then is compressed to only a few days closer to departure.

Table 4.1: Booking Period Time Frames

The passenger choice process in PODS is captured in the Passenger Choice Model

(enhanced version of Decision Window Model), where passengers choose between

different airlines, booking classes, and itineraries. The different path class availabili-

ties generated by an airline’s Revenue Management System are fed into the passenger

choice model. Figure 4-1 illustrates how, although the main components of the PODS

architecture are separate, both interact with one another. These two pieces of the

PODS puzzle are now discussed in greater detail.

4.1.1 Passenger Choice Model

The Passenger Choice Model in PODS models passenger behavior through four

separate steps: (1) Demand Generation; (2) Passenger Characteristics; (3) Passenger

Choice Set; and (4) Passenger Decision. Each of these steps will briefly be introduced.
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Figure 4-1: PODS Architecture (Belobaba, 2010)

Please refer to Carrier (2003) for a more in-depth overview of the model.

4.1.1.1 Demand Generation

For any given PODS scenario, the average total demand for each of the OD mar-

kets in the network is input by passenger type. Passengers are classified as either

‘business’ or ‘leisure’, with business passengers comprising about 35% of the total

demand (percentages based on input from members of the PODS Consortium). The

Passenger Choice Model then generates variability around the average demand for the

different OD markets to draw the actual demand on a given day. While variability is

added randomly to the demand generated, seasonal variability and other trends are

typically not accounted for. Once the demand for each market is established for a sin-

gle sample, the arrival of business and leisure travelers is set according to user-defined

booking curves. The booking curves used in this thesis are shown in Figure 4-2. As

the figure illustrates, past history shows that less time-sensitive leisure passengers

tend to arrive much earlier in the booking process than than business travelers.

In PODS, for each passenger type there are two inputs which impact the demand

generation process: the “base fare” and the “demand multiplier”. For any OD market,

65



Figure 4-2: Booking Curves in PODS by Passenger Type

the base fare for that market is defined as the price point at which the mean number

of passengers input for that market would be willing to fly. By adjusting the base

fare, the user has the ability to increase or decrease the demand for that market.

Another way to alter the demand is by modifying the demand multiplier, a setting in

PODS used to generate higher or lower demand by season. In this thesis, the demand

multiplier was set to generate baseline cases with approximately 85% load factor,

although higher and lower demand levels can also tested by adjusting the demand

multiplier.

4.1.1.2 Passenger Characteristics

Three sets of characteristics are assigned to passengers in the Passenger Charac-

teristics step: a decision window, a maximum WTP, and a set of disutility costs. The

decision window is different for each passenger, and is defined as the period from the

earliest acceptable departure time to the latest allowable arrival time. Given that

leisure travelers are less time-sensitive, they are assigned a wider decision window

than the business passengers. Any time outside a passenger’s decision window will

contribute to the associated product’s disutility costs.
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PODS generates a maximum WTP for each passenger, that is, a maximum fare a

given passenger is willing to pay to travel. This WTP is generated from user-defined

inputs using the following formula:

P(pay at least f ) = min[1, e
ln(0.5)(f−basefare)
(emult−1)(basefare) ]

In the above equation, f is the fare of the travel alternative, basefare is the input

in PODS representing the price which the mean number of leisure passengers input

for each OD market are willing to pay to travel, and emult is the elasticity multiplier,

such that 50% of passengers are willing to pay emult× basefare to travel. The WTP

probabilities for each passenger type are shown in Figure 4-3. Note that the base fare

for business passengers in each market is 2.5 times the base fare for leisure travelers.

Thus the user can control both leisure and business passengers’ WTP by modifying

the basefare input for each market.

Figure 4-3: WTP Curve by Passenger Type

Lastly, disutility costs are randomly generated and assigned to each passenger

type. In PODS, there are capabilities to represent different types of disutilities, in-

cluding passengers’ sensitivity to schedule preference (if original itinerary was outside
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decision window), path quality (non-stop vs. connecting), airline preference, Satur-

day night minimum stay requirements, itinerary change fees, and non-refundability

constraints. For more information on modeling passenger disutilities, consult Lee

(2000).

4.1.1.3 Passenger Choice Set

Once a given passenger is assigned a full set of characteristics, he is then presented

with a set of different fare product options, along with the no-go option as well. In

PODS, whenever there is some fare product that meets all of his criteria, he will

not select the no-go option. Of all the options that were originally included in the

passenger’s decision window, some of them will be removed due to the class no longer

being available (due to RM closures), an advanced purchase requirement that cannot

be met, or a price point above the passenger’s maximum WTP.

4.1.1.4 Passenger Decision

The passenger is then given a choice among the available alternatives. Each of the

options are ranked according to their total generalized cost (as described in Chapter

3.2). The passenger will choose the option that has the lowest total generalized cost.

Once the decision is made, the booking is recorded into the airline RM system’s

historical booking database.

4.1.2 Revenue Management System

Thus far, only the Passenger Choice Model of the PODS architecture has been

discussed. The airline component of PODS consists of a third-generation RM system,

similar to the RM system described in Figure 2-1. That is, the RM system is made

up of a Historical Bookings Database, a Forecaster, and a Seat Allocation Optimizer.

The historical bookings database records the path/class of every booking on each

airline in the network. The default bookings used for the beginning of the simulation

are replaced by actual observed bookings as the simulation progresses.
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The information from the historical bookings database is used by the forecaster

to provide a forecast of future demand by leg or path. Because the historical demand

only includes passengers who actually flew (and not necessarily those that were turned

away due to no availability), the booking data is unconstrained prior to forecasting

the future demand.

4.1.2.1 Seat Allocation Models in PODS

Although PODS has a number of different seat allocation optimizers, representa-

tive versions of EMSRb leg control and DAVN network RM are the only ones used

throughout this thesis. These seat allocation optimizer takes the forecasts generated

as inputs and determines the availability of booking classes on every leg/path. It is

worth noting that the main purpose of this thesis is not so much to compare the ac-

curacy of EMSRb and DAVN, but rather to compare the performance of the various

forecasting optimization methods discussed in the previous section.

4.1.2.2 Forecasting Methods in PODS

In Section 2.1, some of the more common forecasting methods used in practice

were introduced. In this section, the forecasting methods which will be utilized in

this thesis are briefly discussed. Pick-up Forecasting (as described in Chapter 2)

is used as the standard forecasting method throughout this thesis, and is referred

to as “Standard Forecasting” for the remaining chapters. Note that with Standard

Forecasting, the demand for each time frame can be forecasted at either a leg/class

level or path/class level. In this research, these methods are referred to as Standard

Leg Forecasting and Standard Path Forecasting, respectively.

Both Q-Forecasting and Hybrid Forecasting, developed under the research of the

PODS consortium, were also described in Chapter 2. These methods utilized the

notion of sell-up. In PODS, an airline’s estimate of the sell-up probabilities is governed

by the FRAT5 input, which was defined as the fare ratio of a higher fare to the lowest

fare class at which 50% of the demand for the lowest booking class would be willing

to sell-up to the higher class. That is, this parameter is an estimate of what the
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airline expects from passengers’ regarding their sell-up behavior (Belobaba, 2010).

Less price-sensitive passengers are generally expected to have a higher FRAT5 than

those passengers that are more price-sensitive (i.e., business travelers).

In PODS simulations, the typical FRAT5 curve is known as “FRAT5c”, which

has values ranging from 1.2 in the first time frame up to 3.0 in the final time frame.

Other sell-up inputs in PODS include the more-aggressive “FRAT5a” as well as the

less-aggressive “FRAT5e”. These FRAT5 curves are all plotted in Figure 4-4. As

the figure illustrates, the distinct S-shaped curve is much more visible in the more-

aggressive FRAT5 curves. It is worth mentioning that these sell-up curves are only

used with QFF1 in this thesis, as constant sell-up inputs are assumed for both QFF2

and QFF3 (as mentioned in the previous chapter).

Figure 4-4: Different FRAT5 Curves used in PODS

4.2 Simulation Environment

There are various competitive airline networks in PODS that can be used as the

basic structure for setting up a simulation experiment. Because different revenue

management methods are often designed to operate in a variety of environments,

it is useful to test these methods under multiple conditions. The conditions are
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accounted for by the numerous different controllable attributes for each network in

the simulation. The most important factors to consider in the experiments are the

airlines’ fare structures with various restrictions, as well as the size and complexity

of the network and markets served by the airline of interest. This thesis makes use of

a single network structure in PODS known as Network D10.

4.2.1 Network D10

Network D10 in PODS is a dual airline competitive network, with each airline

serving 40 spoke cities out of its central hub. All traffic flows from west to east, and

connects through one of the two hubs. A total of 482 distinct OD markets are served

by the two airlines; each airline operates 126 legs per day. A map of the network

is shown in Figure 4-5. All of Airline 1’s (AL1) legs either arrive at or depart from

the AL1 hub (H1), while all of Airline 2’s (AL2) legs arrive at or depart from H2.

Throughout the PODS simulations in this thesis, the experiments are set up so that

AL1 is the airline of interest, leaving AL2 as the competitor.

Figure 4-5: Map of Network D10

PODS offers the capability to control which restrictions an airline imposes for
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the different booking classes. These restrictions include the Saturday night minimum

stay requirement, cancellation fee, and the non-refundability of a ticket. In this

research, both airlines are assumed to offer identical fare structures, that is, two

identical fare families. The families are differentiated from one another by both

service and flexibility. As shown in the previous chapter, within each family in a

fare family structure the booking classes are undifferentiated with respect to the

imposed restrictions. The only difference between classes in each family is the price

points, which are in decreasing fare order. The relatively symmetric network was

chosen to ensure that the main distinction between the two competing airlines is

their RM system, thus allowing a better evaluation of the performance of the different

forecasting and optimization methods discussed in the previous chapter.

Within a fare family setup there are two different types of fare family structures:

non-overlapping and overlapping structures. In a non-overlapping fare family struc-

ture, the least expensive family 1 class is priced above the most expensive family 2

class. The fare structure used in the numerical example in the previous chapter (

Table 3.1) is an example of a non-overlapping fare structure. As its title suggests,

an overlapping fare family structure exists when there is some overlap in price points

between the two families. That is, at least one of the lower family 1 classes is priced

below at least one of the top family 2 classes. The two fare family structures used in

this thesis are introduced in the following sections.

4.2.1.1 Non-Overlapping Fare Family Structure

The booking classes for the fare family structures are labeled the same way as in

the numerical example from chapter 3, with A1 being the most expensive family 1 class

and A2 being the highest-priced family 2 class. However, unlike the example which

included only three classes in each family, the fare structure used in the experiments in

this research include five classes in each family. As such, the cheapest classes in each

family are E1 and E2 for family 1 and family 2, respectively. These booking classes,

along with their associated price points and restrictions, are shown in Figure 4-6.

The fares under the “average fare” column are averaged over all 482 markets. In the
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network used throughout this research (i.e., Network D10), the fares for each market

are generally proportional to the distance of each individual OD market, but vary

from market to market randomly.

Figure 4-6: Fare Family Structure with Non-Overlapping Price Points

4.2.1.2 Overlapping Fare Family Structure

In addition to testing the different forecasting and optimization methods with the

fare family structure shown in Figure 4-6, experiments were also conducted on an

alternative fare structure, where one or more of the classes from family 2 are priced

higher than the cheapest family 1 class.

To develop the overlapping fare family structure, the non-overlapping fare family

structure introduced in the previous section was modified. The fare levels of the

family 1 booking classes were lowered while the family 2 prices were increased. The

overlapping fare structure is shown in Figure 4-7. From this structure arise two

important insights that should be noted. First, the price points of the lowest two

booking classes did not change, and thus no new demand was stimulated from before.
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Second, the price points of the top two family 2 classes are now more expensive than

class E1, creating the intertwined fare structure.

Figure 4-7: Fare Family Structure with Overlapping Fares in Network D10

4.3 Chapter Summary

This chapter introduced the simulation environment used to test and analyze the

performance of the fare family forecasting methods described in chapter 3. The basic

architecture of PODS was described, including the Passenger Choice Model and the

Revenue Management System. The Passenger Choice Model provides the user with

tremendous flexibility in designing experiments to test different RM methods. The

Revenue Management System’s chosen for this thesis were modeled as a typical third-

generation RM system.

The airline network (Network D10) used for all of the simulations was described

in detail. This two airline network allows us to effectively analyze the performance of

one airline while using the opposite airline as the competitor.

Finally, the two-family ten-class fare family structures used in this thesis were
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introduced. The non-overlapping fare family structure is used in the majority of the

simulations throughout this thesis. However, the performance of the QFF methods is

also tested with in overlapping fare structure to determine how relative performance

is impacted.

In the next chapter, the results from the PODS simulations that tested the differ-

ent forecasting and optimization methods from chapter 3 are presented.
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Chapter 5

PODS Simulation Results

This chapter presents the results from the different experiments that were per-

formed to test the forecasting and optimization methods developed for fare family

structures. The QFF methods described in Chapter 3 are analyzed in detail us-

ing different metrics (e.g., revenues, load factors) to better understand the strengths

and drawbacks of each model. All simulations in this chapter are performed in the

dual-airline Network D10 (as described in Chapter 4).

This chapter is divided into two sections. First, each QFF method is tested with a

fare family structure with non-overlapping price points (denoted as “non-overlapping

structure”), as previously shown in Figure 4-6. Both leg-based and origin-destination

(OD) RM controls are tested with the different fare family forecasting methods. The

second section illustrates the performances of the different QFF methods when over-

lapping fare family structures (“Overlapping”) are implemented for both airlines (see

Figure 4-7 for the average fares for each class in this structure).

Each experiment performed in this chapter is categorized as either a “symmetric

RM” or a “competitive RM” test case. Although the two airlines in the network are

competitors, the symmetric RM environment is defined as the experimental setup

in which both airlines in the network are assumed to use identical seat allocation

models, forecasting methods (including any sell-up/buy-across inputs), and advanced

purchase requirements (or lack thereof). Although this type of scenario is unlikely in

practice, testing forecasting and optimization methods in the symmetric environment
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within PODS provides the ability to better analyze the behavior of the algorithm

without any competitive feedback effects. That is, this type of setup is in many

respects the same as a single airline environment.

In all competitive RM experiments, the seat allocation model and/or forecast-

ing method for Airline 1 is modified while holding the competitor’s (Airline 2) RM

methods constant. In these experiments, basic RM controls for the competitor air-

line are assumed in all competitive RM simulations; Airline 2 uses a leg-based seat

allocation optimizer (EMSRb), Standard Forecasting, and advanced purchase (AP)

requirements on the different classes. These AP restrictions are shown in Table 5.1.

As the values in the table indicate, a slightly more aggressive AP is used for family 2,

with the lowest E2 class closing down (at the latest) three weeks prior to departure.

The top classes in each family have no AP restriction.

Table 5.1: Advanced Purchase Requirements used by Airline 2 in Competitive RM
Simulations

5.1 Non-Overlapping Fare Family Structures

The first section of this chapter provides an analysis on the results from all the

simulations in which both airlines used fare family structures with non-overlapping

price points. The subsections contain the results from the simulations in which both
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leg-based and OD controls are used in the symmetric RM environment. Following this,

the results from the competitive RM experiments are presented. In each section, the

performances of the different forecasting and optimization methods tested throughout

this thesis are analyzed relative to a “base case”. Different base cases will be used

depending on the simulation environment (i.e., competitive RM vs. symmetric RM) as

well as the types of controls used (leg-based vs. OD ). In each section, the appropriate

experimental setup for the base case will be specified, along with the corresponding

results from the experiment in question.

5.1.1 Leg-based Controls in Symmetric RM Experiments

The base case used throughout this section is the experimental setup in which both

airlines implement EMSRb with Standard Forecasting and an advanced purchase fare

family structure. The AP requirements are identical for both airlines, and is the same

set of restrictions that Airline 2 uses in the competitive RM simulations (Table 5.1).

Although no AP is used in conjunction with QFF (as described in Chapter 3), it is

used with Standard Forecasting in the base cases to prevent the airlines’ RM systems

from spiraling down. In all leg-based symmetric RM test cases, Airline 2 implements

the same RM methods as Airline 1.

In addition to Standard Forecasting, Hybrid Forecasting with FRAT5c (and an

AP requirement) was also tested in the preliminary leg-based simulations. The results

from the symmetric RM experiments in which both airlines use Standard Forecasting

(i.e., the base case), as well as Hybrid Forecasting (HF), are shown in Figure 5-1. In

the base case, Airline 1 achieves a total revenue (over the entire network) of $1,388,833.

The revenues obtained from subsequent leg-based symmetric RM simulations are all

measured relative to this amount. The baseline load factor is 86% for both airlines.

As expected, Hybrid Forecasting provides an increase in revenue over Standard

Forecasting in a symmetric RM environment. Specifically, Hybrid Forecasting leads

to a 4.5% increase in revenue for Airline 1 over the base case. The load factor

for each airline decreases to 81% with Hybrid Forecasting, owing to the fact that

the higher revenues have been obtained through more effective lower-class closures,
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Figure 5-1: Baseline Revenues

causing passengers to sell up to higher-priced classes. Despite this gain in revenue over

the base case, there is little scientific evidence that Hybrid Forecasting appropriately

models the passenger decision process in a fare family structure. It is worth noting

that, given the RM symmetry between the two airlines, it is not surprising to observe

that both airlines perform very similar to one another in the different metrics shown.

The number of passengers booked in each class over the entire network, that is,

the “booking class mix”, is another metric used frequently throughout this chapter.

The number of passengers in a particular class can be further broken down into

the different types of passengers (i.e., business or leisure) to better understand the

different passenger behaviors.

To illustrate the mix of passengers in the baseline experiments, the total number

of business and leisure bookings in each class over all OD markets for Airline 1 is

shown in Figure 5-2(a) for Standard Forecasting. As expected, the majority of family

1 passenger bookings are from business travelers (91%). Overall, business passengers

represent approximately 38% of the total bookings. Due to the effects of the AP

requirements, bookings occur in all 10 classes, with a fairly significant amount of

business travelers buying down to the highest family 2 class (A2).

The business/leisure mix with Hybrid Forecasting (for Airline 1) is given in Fig-

ure 5-2(b). The increase in revenue obtained with Hybrid Forecasting is a direct

result of the higher quantity of bookings in each of the top top eight classes. That is,
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(a) Standard Forecasting (b) Hybrid Forecasting

Figure 5-2: Baseline Business/Leisure Bookings for Airline 1

closing E2 more effectively and encouraging sell-up to higher-priced classes leads to a

4.5% revenue gain over the base case. Although there is not a significant difference in

the classes in which business passengers book, there are nearly twice as many leisure

traveler bookings in E1 with Hybrid Forecasting than there are with Standard Fore-

casting. However, as discussed earlier, there remains an additional revenue gain that

can be obtained with appropriate RM methods designed specifically for fare family

structures, namely, QFF.

In all symmetric RM simulations, both Airline 1 and Airline 2 generate similar

results (revenues, load factors, booking class mix, etc.), given that both airlines serve

the same markets and operate the same number of legs. As such, for all experiments

in the symmetric environment, only the performance of Airline 1 will be described.

That is, only the results from Airline 1 will be presented, with the understanding that

the results for Airline 2 would look nearly identical.

The maximum revenue obtained with each QFF method for Airline 1 (in the

symmetric RM environment) is shown in Figure 5-3. The percentages above each bar

graph show the revenue gains with each QFF method over the base case (represented

by the horizontal dotted line). While QFF2 only leads to a 5.2% gain, both QFF1

and QFF3 both lead to revenue increases of above 7%.

Although QFF3 generates only a 68% load factor (which would be unacceptably
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Figure 5-3: Revenues with QFF

low by many industry standards), it is worth re-iterating that the environment in

which this load factor is achieved is not practical in the real world. However, testing

each QFF method under such circumstances allows for a more appropriate analysis

of the validity of each algorithm (without any competitive feedback). Thus, although

a low load factor is obtained with QFF3, this forecasting method is performing as

expected, given the symmetry of the environment. An analysis of the inputs that led

to the best performance for each method, as well as the sensitivity of these parameters,

is conducted in the next section.

5.1.1.1 Sensitivity Analysis of Sell-up and Buy-across Inputs

The experiments with QFF1 required inputs to model both sell-up (FRAT5) and

buy-across (PBUP). Multiple combinations of FRAT5 and PBUP inputs were tested

in this research, with the highest revenues being achieved with FRAT5a and a PBUP

of 3.5. That is, both aggressive sell-up estimates, as well as fairly large estimates

for the disutility costs attributed to the family 2 restrictions, led to the best per-

formance for QFF1. To illustrate the sensitivity surrounding these estimates, three

different FRAT5’s (FRAT5a, FRAT5c, FRAT5e) were tested in combination with

three separate PBUP values (4.0, 3.5, 3.0).

The revenues for Airline 1 with QFF1 with each combination of inputs are given in
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Figure 5-4. More revenue is achieved for Airline 1 with more aggressive FRAT5 curves.

That is, when both airlines implement aggressive sell-up inputs, many passengers are

unable to book in their desired class (E2 or E1) with either airline (given that both

airlines are closing classes at a similar rate). As a result, while some passengers are

no-go, many others sell up to higher classes in each family, thus increasing the yield.

As expected, the load factors are lower with more-aggressive FRAT5 curves. In these

experiments, the network load factors range from 76% (FRAT5a) to 86% (FRAT5e).

Figure 5-4: Revenues with QFF1 with different FRAT5 Curves and PBUP Values

Figure 5-4 also demonstrates the noticeable difference in impact the FRAT5 curves

and PBUP values have on total revenue. While overall performance is substantially

influenced with the different FRAT5 curves, the different PBUP value minimally

affected the final results. Recall from Chapter 3 that this finding was one of the main

motivating factors that led to the development of QFF2.

To better understand how the different FRAT5 curves impact the overall perfor-

mance, the booking class mix for the three different sell-up estimates is shown in

Figure 5-5 (fixed PBUP of 3.5). The classes are labeled from top-to-bottom. As

expected, the aggressive FRAT5 curves inform the RM system that more passengers

will sell up, which results in earlier closures for the lowest classes in each family, and

thus fewer overall bookings in these classes. However, this also leads to more book-

ings in the top classes in both families, increasing the yield. Alternatively, with less

aggressive FRAT5 curves, more bookings are made in the lower classes, resulting in

83



an overall lower yield. Given that FRAT5a led to the highest revenues, the increase

in yield outweighs the lower load factor in this case.

Figure 5-5: Booking Class Mix with QFF1 (PBUP 3.5) with different FRAT5 Curves

With QFF2, a separate forecast is generated for each family, thus requiring sep-

arate FRAT5 values to estimate sell-up within each family. Additionally, the buy-

across input (PBUP) is not required, given that buy-up is assumed to be implicitly

accounted for by the separate Q-Forecasts for each family. Consequently, the only

required parameters with QFF2 are the two FRAT5 values. One of the fundamental

assumptions with different forecasts for each family is that the sell-up is assumed to

be constant by time frame over the entire booking period (see Section 3.3.2).

QFF2 was tested with different sell-up inputs for each fare family. Recall that the

FRAT5 estimate for each family is multiplied by the lowest class in the corresponding

family ($300 for E1, $100 for E2) to generate an estimate of the median WTP for

passengers from each family. The highest revenues in the symmetric RM experiments

with QFF2 were achieved with a family 1 FRAT5 value of 1.5 and a family 2 FRAT5

value of 2.0 (denoted as FRAT5 1.5|2.0). The sensitivity around these FRAT5 values

was examined by considering different combinations of FRAT5 inputs in each family.

Specifically, family 1 FRAT5 values of 2.0, 1.5, and 1.0 (median WTP estimates of

$600, $450, and $300), and family 2 FRAT5 values of 2.5, 2.0, and 1.5 ($250, $200,

$150) were all tested. Note that, in the case of a FRAT5 input of 1.0, no sell-up
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is expected, and thus the lowest family 1 class would remain open for essentially all

time frames.

Figure 5-6 shows the revenues for Airline 1 with QFF2 for the nine different

combinations of FRAT5 values tested. While QFF2 can lead to small gains in revenue

over Standard Forecasting, it is apparent that the overall performance of the algorithm

is very sensitive to the choice of the sell-up input in each family. When aggressive

family 1 sell-up inputs are used in conjunction with less-aggressive family 2 sell-up

inputs, revenues plummet to values below Standard Forecasting, as was the case with

FRAT5 2.0|1.5.

Figure 5-6: Revenues with QFF2 with different FRAT5 Values by Fare Family

As the figure illustrates, the load factor is significantly impacted by the choice

of the family 2 FRAT5 input with QFF2. While a family 2 FRAT5 input of 2.5

generates load factors between 62-63%, lowering the family 2 FRAT5 to 1.5 results

in load factors approaching 90%. However, the highest revenue (5.2% above the base

case) was obtained with a load factor of 77%, where the family 2 FRAT5 was 2.0.

The corresponding booking class mix with QFF2 is shown in Figure 5-7 for each

of the different combinations of FRAT5 values. While the family 2 FRAT5 value

essentially dictates the quantity of overall bookings, the mix of bookings varies dra-

matically with different family 1 sell-up inputs. For example, with a family 1 FRAT5

of 2.0, no bookings are accepted in the lowest family 1 class. This implies that a
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sell-up estimate of $600 results in the RM system never opening E1 over the entire

duration of the booking process. While some passengers from the family 1 forecast

sell up, many are no-go. With less aggressive family 1 FRAT5 values (1.5 and 1.0),

a substantial amount of bookings are made in class E1, with fewer occurring in the

top family 1 classes.

The figure also demonstrates why an increase in load factor does not necessarily

lead to positive results. While the load factor noticeably increases with a family 2

FRAT5 of 1.5, this is a result of an abundance of bookings being made in the lowest

two classes overall. That is, very little sell-up is achieved, and, as a result of the low

yield, low revenues are observed when sell-up is underestimated in family 2.

Figure 5-7: Booking Class Mix with QFF2 with different FRAT5 Inputs by Fare
Family

As Figure 5-7 showed, no bookings were made in E1 with a family 1 FRAT5 of 2.0.

A further analysis on the closure rates of the lowest family 1 class explains why this

was the case. Figure 5-8 shows the percentage of all Airline 1 paths over the network

in which class E1 was closed down for each time frames. The closure rates are shown

for the three different family 1 FRAT5 values tested (with a fixed family 2 FRAT5

value of 2.0). With a family 1 FRAT5 of 2.0, QFF2 prevents E1 from becoming

available for the duration of the booking process, thus preventing any bookings from

being made. With the less aggressive family 1 sell-up inputs, E1 remains open for

a much larger percentage of time. This indicates that, with constant FRAT5 values
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by time frame, there is some value for the WTP estimate for family 1 passengers

that, when reached, will result in E1 never opening up throughout the entire booking

process.

Figure 5-8: Class E1 Closure Rates with QFF2 with different Family 1 FRAT5 Values
(Family 2 FRAT5 2.0)

Proceeding to the analysis of the QFF3 performance, recall that all experiments

with this method required both two FRAT5 values (one for each family to estimate

passengers’ WTP) as well as a single DUMLT input and disutility k-factor (DUKF)

estimate to model buy-across. Through multiple experiments, it was found that the

same sell-up inputs that led to the highest revenue with QFF2 also led to the best

performance with QFF3 (FRAT5 1.5|2.0). DUMLT inputs of 2.5, 2.0, and 1.5 were

then tested on this set of FRAT5 values. It was determined that the DUKF had an

insignificant impact on overall performance. As such, a fixed value of 0.5 is used in

all experiments.

The revenues with QFF3 with different DUMLT inputs (assuming FRAT5 1.5|2.0)

are shown in Figure 5-9(a). In general, it was determined that higher DUMLT inputs

resulted in slightly higher load factors (2-3 percentage points), but overall did not

have a significant impact on total revenues. A DUMLT of 2.0 (with FRAT5 1.5|2.0)

resulted in a 7.6% increase in revenue over the base case. Overall, the load factors were

relatively low with QFF3, with the highest revenues attaining only a 68% occupancy

rate.
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(a) Revenues (b) Bookings

Figure 5-9: Results with QFF3 (FRAT5 1.5|2.0) with different DUMLT Inputs

Figure 5-9(b) shows the booking mix for Airline 1 for the three DUMLT inputs

mentioned above. More bookings occur in the top family 1 classes, and in family

2 overall, with larger DUMLT inputs. As described in Chapter 3, higher DUMLT

estimates imply that the restrictions attributed to the family 2 classes will have a

larger impact on passengers (from both family forecasts). When this is the case, the

RM system then assumes that relatively few bookings will occur in the bottom classes

(due to the unattractive restrictions), and thus keeps the lower family 2 classes open

longer. This allows for more bookings in these classes, which is what was observed in

the figure.

Alternatively, a low DUMLT signals to the RM system that the family 2 re-

strictions do not significantly impact passengers, implying that more passengers will

purchase tickets in the lowest classes. As a result, the RM system closes these lower

classes down early, thus resulting in fewer bookings. Regardless, the DUMLT input

is found to have a much smaller influence on the performance of QFF3 than either of

the FRAT5 inputs.

Throughout this section it has been shown that the success of QFF is largely

dependent upon the appropriate choice of sell-up and buy-across parameters. Each

method was also tested with DAVN in the symmetric environment; the results are

shown in the following section.
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5.1.2 OD Controls in Symmetric RM Experiments

In the previous section all of the results with the different QFF methods assumed

a leg-based EMSRb seat allocation model. In practice, many of the world’s largest

airlines have moved towards OD control mechanisms; in this research, DAVN is used

as the optimizer in all OD RM experiments. The results from the simulations in

which both airlines implemented QFF with DAVN are shown in this section. These

results are measured against a “new” base case, where both airlines use DAVN with

path/class forecasting and an AP restriction on the different classes. In this new base

case, revenues for Airline 1 were 1.1% higher than in the base case with EMSRb, a

typical gain for OD RM over leg-based RM.

The revenues with OD controls in a symmetric RM environment with Standard

Forecasting, as well as with each of the QFF methods, are shown in Figure 5-10.

Similar trends in the revenues as from the leg-based simulations are observed. Specif-

ically, QFF1 and QFF3 generate significant gains in revenue over the base case, while

the gain with QFF2 is much lower. The load factors have increased between 1-3 per-

centage points for each of the methods, contributing to the overall higher revenues

achieved with DAVN. Although the percentage increase in revenue due to QFF is

similar with DAVN as it is with EMSRb, on the absolute scale DAVN is generating

higher revenues than EMSRb, given that the revenues are higher in the OD RM base

case.

Figure 5-10: Revenues with Standard Forecasting and QFF
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The sensitivity analysis of the QFF inputs in OD RM showed similar results as to

the leg-based RM experiments and is not shown here. Although multiple parameters

were tested with each method, the same inputs that led to the highest revenues in

the symmetric leg-based RM experiments also led to the to the highest revenues with

DAVN. These parameters are shown in Table 5.2.

Table 5.2: QFF Inputs used by Airline 1

5.1.3 Leg-based Controls in Competitive RM Experiments

Given that most airline networks in today’s industry are competitive, successful

performances by the different RM methods in competitive scenarios is essential. This

section shows the leg-based RM results from the experiments that were performed

in the competitive RM environment. Both airlines use EMSRb, with Airline 2 re-

maining with Standard Forecasting (with AP) throughout all runs while Airline 1’s

forecasting and optimization methods are modified. The same experiment that was

classified as the base case in the symmetric setup is also used as the base case in the

competitive environment. That is, the experiment in which both airlines use EMSRb

with Standard Forecasting and an AP requirement.

In addition to testing each of the QFF methods, Hybrid Forecasting with FRAT5c

(and an AP requirement) was also tested with Airline 1 in the competitive RM en-

vironment. The revenues and load factors for both airlines in this setup are shown

in Figure 5-11. The forecasting method Airline 1 implements in each case is shown

below the corresponding bar graphs. QFF leads to large revenue gains for Airline 1 in

the competitive cases, with QFF3 generating a 13% increase in revenue over Standard

Forecasting. It is interesting that, while QFF3 produced only a 68% load factor in
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the symmetric test case, it generates the highest load factor out of the QFF methods

in the competitive scenarios (80%). As expected, HF performs much worse compared

to QFF, generating only a 4.0% gain in revenue over the base case.

Figure 5-11: Revenues when Airline 1 uses Hybrid Forecasting and QFF

Although the focus of this analysis is primarily on the performance of Airline

1, it is interesting to observe how Airline 2 is impacted in the different competitive

RM cases. For example, when Airline 1 implements HF, Airline 2 still generates a

reasonable revenue at an 89% load factor. However, when Airline 1 uses QFF, Airline

2’s revenue drops tremendously. Given that Airline 2’s load factor actually increases

in these cases (up to 93%), the lower revenues can be attributed to its substantial

decrease in yield in the competitive RM experiments.

To further understand the impacts of QFF, the bookings by class are shown for

Airline 1 and Airline 2 in Figure 5-12(a) and Figure 5-12(b), respectively. A quick

analysis shows the drawbacks of applying HF to a fare family structure. With this

method, little sell-up occurs, and a high percentage of the overall bookings are made

in family 2. Alternatively, with QFF, many of the bookings are made in family 1,

in large part due to the substantial amount of passengers purchasing in E1. While

Airline 1 receives many passengers in the lowest family 1 class, Airline 2 accumulates

more passengers in the lowest family 2 classes.
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(a) Airline 1 (b) Airline 2

Figure 5-12: Booking Class Mix when Airline 1 uses HF and QFF

5.1.3.1 Sensitivity Analysis of Sell-up Inputs

Earlier it was shown that the success of QFF (in particular, QFF2 and QFF3) in

the symmetric RM environment was largely dependent upon the sell-up estimates. In

this section the impacts of the FRAT5 values for the QFF methods is briefly examined

to determine if any major differences exist between the symmetric and competitive

RM environments in regards to the sensitivity of these estimates. The analysis for

QFF2 is omitted, given that the sensitivity results from the symmetric test cases with

QFF2 and QFF3 were nearly identical.

Recall that simulations with QFF1 in the symmetric RM environment confirmed

that the FRAT5 curve had a much larger impact on overall performance of QFF1 than

the PBUP value. This conclusion remains valid in the competitive RM scenarios as

well. As such, the results with QFF1 in the competitive RM environment are shown

with different FRAT5 curves and a fixed PBUP input of 2.0.

The revenues for both airlines in this competitive setup where Airline 1 uses

QFF1 are given in Figure 5-13. Unlike in the symmetric RM environment where

both airlines were able to aggressively close down classes to encourage passengers to

sell up, in the competitive RM scenarios the aggressive FRAT5 curves for Airline 1
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results in passengers spilling over to the competitor, where the lowest classes in each

family remain open longer. With FRAT5a (used by Airline 1), both airlines achieve

similar revenues with very different load factors. While Airline 1 finishes with a 67%

network load factor, Airline 2 is above 93%, a consequence of Airline 1’s aggressive

closure rates.

Figure 5-13: Revenues when Airline 1 uses QFF1 (PBUP 2.0) with different FRAT5
Curves

With less aggressive sell-up inputs (FRAT5c and FRAT5e), Airline 1 retains more

passengers, and consequently the load factors and revenues are much higher. Al-

though Airline 2 does not modify its RM system in any of these experiments, its

revenues vary drastically depending on Airline 1’s FRAT5 curves. When Airline 1

uses less aggressive sell-up estimates, revenues for Airline 2 substantially drop as a

result of lower yields.

With QFF3, it was shown that in the symmetric setup the DUMLT input had

only a minor impact on the overall performance of this method. In the leg-based

competitive RM experiments it was determined that a DUMLT of 2.0 led to the

highest revenues. However, unlike in the symmetric cases, FRAT5 1.5|2.0 performed

poorly, generating revenues below Standard Forecasting and a load factor of only

58%. Less aggressive WTP estimates were tested by lowering the FRAT5 value in

each family.
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The revenues for both airlines in the competitive RM environment where Airline

1 uses QFF3 with different combinations of FRAT5 values are shown in Figure 5-

14. The left three bar graphs show the revenues when Airline 1 uses a family 2

FRAT5 of 2.0, while the right three graphs depict a family 2 FRAT5 of 1.5. In the

competitive RM experiments, family 1 FRAT5’s were tested in 0.25 increments, given

the noticeable impact that the sell-up estimates had on the overall performance.

As seen previously, aggressive family 2 FRAT5 values substantially impact the

load factor. Lowering the family 2 FRAT5 to 1.5 drives up the load factor, and

consequently the revenues as well. However, even more revenue can be achieved by

lowering the family 1 FRAT5 to 1.25. The assumption that no family 1 passengers

will sell up (family 1 FRAT5 of 1.0) was also tested. However, despite the additional

increase in load factor, this did not lead to higher revenues.

Figure 5-14: Revenues when Airline 1 uses QFF3 (DUMLT 2.0) with different FRAT5
Values by Fare Family

There are several key takeaways that are worth highlighting from Figure 5-14.

First, as indicated by the wide range of load factors and revenues obtained with the

different inputs, appropriate sell-up estimates are essential to the success of QFF3.

Second, when a family 2 FRAT5 value of 2.0 is used, the load factor plummets (regard-

less of the family 1 sell-up estimate), as many passengers spill over to the competitor

airline. Lastly, although less aggressive sell-up inputs lead to higher revenues, there

reaches a point where the decrease in yield outweighs the higher load factor, and thus
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the revenues no longer increase.

While the increments of 0.25 appear to be very precise, recall that the family 1

FRAT5 value is multiplied by $300 (E1 fare). Thus in this case a 0.25 change in

FRAT5 is in reality a $75 difference in the WTP estimate. To more clearly visualize

the effects of the different FRAT5 values, the bookings for Airline 1 are shown in

Figure 5-15. As expected, the different FRAT5 values from each family lead to very

different mixes. When a family 1 FRAT5 value of 1.0 is used, all family 1 bookings

are made in E1.

Figure 5-15: Airline 1 Bookings with QFF3 (DUMLT 2.0) with different FRAT5
Values by Fare Family

It is interesting to observe how the FRAT5 value from a particular family impacts

the passenger mix in the opposite family. For example, with FRAT5 1.5|2.0, the

majority of family 1 bookings are made in C1, with relatively few occurring in the

lowest family 1 class. However, with FRAT5 1.5|1.5, even though the family 1 WTP

estimate has not changed, the family 1 passenger mix is substantially different, with

a high quantity of passenger bookings in E1. This is a consequence of the fact that

the more aggressive sell-up estimates in one family lead to earlier lower-class closures,

and thus indirectly influence the booking limits in the opposite family. This finding is

seen frequently throughout this thesis, where the booking mix for family 1 is notable

affected by the family 2 FRAT5 value, and vice versa.
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5.1.4 OD Controls in Competitive RM Experiments

The QFF methods for fare family structures were developed under the assumption

of an OD control mechanism. As such, a detailed analysis of the performance of QFF

is provided in this section, with the focus primarily centered on QFF3.

The experiments in this section include cases in which Airline 1 uses a network

seat allocation model (DAVN) with different QFF methods, while Airline 2 remains

with EMSRb with Standard Forecasting and an AP requirement. As an initial base

run, Airline 1 was given DAVN with Standard Forecasting (with AP).

The revenues with QFF in OD RM are shown in Figure 5-16. Airline 1 achieves

higher load factors in the competitive case with DAVN than with EMSRb, and sub-

stantial increases in revenue over the base case overall. Each QFF method leads to

revenue gains of approximately 14% over Standard Forecasting. The revenues for

the competitor drop considerably when Airline 1 uses QFF with OD controls, again

consistent with what was found when Airline 1 used a leg-based model.

Figure 5-16: Revenues with Standard Forecasting and QFF

The same sell-up inputs that led to the highest revenues in the leg-based compet-

itive RM simulations also led to the best performances in the OD RM experiments.

Although there were slight differences in buy-across inputs, for the most part the

parameters for each method were identical in both cases. These inputs are shown in

Table 5.3.
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Table 5.3: QFF Inputs used by Airline 1

(a) Standard Forecasting (b) QFF3

Figure 5-17: Business/Leisure Bookings for Airline 1 with Standard Forecasting and
QFF3

To further explore the results with QFF in the competitive RM environment,

the the business/leisure bookings for both Standard Forecasting as well as QFF3 are

shown in Figure 5-17(a) and Figure 5-17(b), respectively. With the AP enforced,

Airline 1 actually achieves more bookings in the top four classes with Standard Fore-

casting than with QFF3. However, with QFF3, E1 remains open for a much longer

period of time, and thus more bookings are made in the lowest family 1 class.

While this may cause concern as to why there is more of a balanced mix with

Standard Forecasting than with QFF3, recall that it is revenues, and not passengers,

that is being maximized. Given that the competitor uses Standard Forecasting with

AP (and thus closes E1 a minimum of 14 days before departure), the QFF3 algorithm

attempts to generate the highest revenues by keeping E1 open for a longer period of

time, which results in a high quantity of bookings being made in this class. A different

set of RM methods for the competitor airline would likely result in a different mix
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for Airline 1 than what is seen in Figure 5-17(b).

It is worth noting that there are approximately 33% more business traveler book-

ings with QFF3 than with Standard Forecasting. Fewer travelers spill over to the

competitor, and less no-go is observed. Also, as a consequence of E1 remaining open

for a longer period of time, there are more leisure passengers buying up to family 1,

as well as fewer fewer business travelers buying down to family 2.

To further scrutinize the differences between Standard Forecasting and QFF3,

Figure 5-18 shows the cumulative bookings by family for both Standard Forecasting

and QFF3 across the different time frames. As already shown, more family 2 bookings

occur with Standard Forecasting. The difference between the quantity of family 2

bookings with Standard Forecasting and QFF3 becomes larger as the departure date

nears.

Figure 5-18: Cumulative Family 1 and Family 2 Bookings by Time Frame with Stan-
dard Forecasting and QFF3

As Figure 5-18 illustrates, the total number of family 1 bookings that each method

generates is essentially the same during the beginning of the booking process. How-

ever, after about Time Frame 10, while the increase in cumulative family 1 bookings

with Standard Forecasting remains nearly constant, the number of family 1 book-

ings increases dramatically with QFF3, owing to the number of both business and

leisure travelers booking in E1. As mentioned previously, although the ratio of fam-
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ily 1/family 2 passengers may be different depending on the choice of RM methods

for the competitor, in this particular setup, there is a higher quantity of family 1

bookings for airline 1.

5.1.4.1 Performance of QFF under Low Demand Scenarios

As mentioned in Chapter 4, PODS allows users to adjust the demand over the

entire network. All of the test cases thus far have been conducted with “medium”

demand (approximately 85% load factor in the base cases). Before proceeding to the

results from the simulations that with overlapping fare family structures, the QFF

methods are tested in a competitive environment under “low” demand settings (with

non-overlapping structures) to determine how the performance of each algorithm is

impacted.

In the base case with lower demand, Airline 1 generated approximately 10% lower

revenues than what it obtained in the base case with medium demand. However,

when the QFF methods were tested under the new settings, each of them produced

similar percentage increases in revenue over Standard Forecasting as to what was

achieved in the medium-demand experiments. The revenues for both airlines are

given in Figure 5-19. The same QFF parameters that were used with DAVN in the

medium-demand scenarios (Table 5.3) were found to generate the best results in the

low-demand cases as well.

While the load factors (for Airline 1) drop approximately 2 - 4 percentage points

in the lower-demand simulations, it is the yield that is especially impacted in these

new runs. With fewer bookings being made, the bottom classes remain open longer,

and as a result, a much lower yield is achieved. However, the relative performance

of each method is nearly identical in the lower-demand experiments, with revenue

gains well above 13% with QFF3. Interestingly, the load factors for Airline 2 are now

between 83% to 85%, much more realistic than the 93% that was achieved in the

medium-demand experiments.

To more clearly see the impacts the medium-demand and low-demand situations

have on the different passengers, the business/leisure mix for Airline 1 with QFF1
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Figure 5-19: Revenues in Low Demand Experiments when Airline 1 uses Standard
Forecasting and QFF

in the competitive environment is shown in Figure 5-20(a) (medium demand) and

Figure 5-20(b) (low demand). Both mixes are from experiments in which FRAT5c

with PBUP 2.5 were used. The yield is much smaller in the low demand setting, with

fewer bookings in family 2. Overall, there are nearly half as many bookings in E1

with lower demand, while almost twice as many in E2.

Many of these experiments performed with a non-overlapping structure were also

conducted with an overlapping fare family structure in order to determine how the

relative performance of each method was impacted. These results are presented in

the following section.

5.2 Overlapping Fare Family Structures

The fare family structures with overlapping price points included higher fares

in the top family 2 classes (compared to the non-overlapping structure), as well as

lower fares in the bottom family 1 classes. As the results are presented, it is worth

noting that all of the experiments in this section are completely independent from the

simulations in which non-overlapping structures were used, given the major differences

between the prices of the fares. As such, for the remainder of this chapter, all of the

results mentioned will refer to the experiments performed when both airlines used the
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(a) Medium Demand (b) Low Demand

Figure 5-20: Airline 1 Bookings with QFF1 with different Demand Levels

overlapping structure shown in Figure 4-7. As in the previous section, this section

will begin by showing leg-based and network results in the symmetric RM test cases,

and then culminate with results in the competitive scenarios.

5.2.1 Symmetric RM Experiments

In this subsection the results from the symmetric RM test cases, both with EMSRb

and DAVN, are presented. An analysis of the sensitivity of the FRAT5 values with

DAVN is then covered in order to determine if the impact of the sell-up estimates

changes from one type of fare family structure to another.

The revenues for Airline 1 with both EMSRb and DAVN are given in Figure 5-

21. The leftmost bar graphs include the revenues when both airlines use Standard

Forecasting. The percentage increases in revenue with EMSRb and QFF are all

compared to EMSRb with Standard Forecasting, while the increases with DAVN are

measured against DAVN with Standard Forecasting.

The revenue increases with QFF are more substantial in the overlapping struc-

ture than they were in the non-overlapping structure, particularly with QFF1 and

QFF3. Each of these methods generates approximately 10% revenue increases over

the respective base cases. As previously observed, QFF2 produces significantly lower

gains in revenue as compared to the other methods. With DAVN, each QFF method
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Figure 5-21: Revenues with Standard Forecasting and QFF in both Leg-based and
OD RM Simulations

makes an even larger impact on overall performance, further increasing the revenues.

Although the percentage increase with QFF1 and QFF2 with DAVN is less than with

EMSRb, this is a result of the base case with DAVN generating 2% higher revenues

than in the EMSRb case case.

The inputs that led to the highest revenues were nearly identical with both EMSRb

and DAVN, and are shown in Table 5.4. While the QFF1 parameters are very similar

as to what they were with the non-overlapping structure, the family 1 FRAT5 values

with QFF3 are much higher than before . However, recall that the family 1 FRAT5

value is multiplied by the lowest family 1 class to estimate the median WTP among

passengers from the family 1 forecast. Given that the E1 fare is now $200 (previously

$300), the estimate for the median WTP is not far off from what it was in the previous

fare structure. The sensitivity of the QFF3 FRAT5 values (with DAVN) is explored

in the following section.

Table 5.4: QFF Inputs used by Airline 1
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5.2.1.1 Sensitivity of Sell-Up Inputs with QFF3 with OD Controls

Before analyzing the QFF3 inputs, the booking class mix with DAVN is shown

in Figure 5-22. In the symmetric RM test cases, QFF1 achieves bookings in all 10

classes, while both QFF2 and QFF3 are more aggressive in the lowest classes in each

family. These traits were also observed in the non-overlapping structure.

Figure 5-22: Bookings Class Mix with DAVN

As Table 5.4 indicated, FRAT5 3.0|2.0 was used with QFF3 in the symmetric

DAVN experiments. When other FRAT5 values were tested, the family 2 input

largely impacted the overall performance (as seen in previous results). Given the

reduced E1 fare, this was even more evident with Overlapping fares.

The revenues with QFF3 (DUMLT 1.5) and different FRAT5 values are presented

in Figure 5-23. With an even higher family 2 FRAT5 value (2.5), revenues actually

increase. However, the load factor decreases to around 60%. Alternatively, lowering

the family 2 FRAT5 to 1.5 brings the load factor up, but the decrease in yield is more

substantial, thus leading minimal revenue gains above Standard Forecasting. This

result confirms that, in a symmetric RM environment, revenues are largely dictated

by the WTP estimate for passengers in the family 2 forecast.
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Figure 5-23: Revenues with QFF3 with different FRAT5 Values

5.2.2 Leg-based Controls in Competitive RM Experiments

There were several intriguing findings in the competitive RM test cases with over-

lapping fares. This section begins by examining the cases in which Airline 1 used

EMSRb with QFF. The results throughout this section are measured against the

revenue obtained with EMSRb and Standard Forecasting from Figure 5-21, that is,

$1,267,698.

The revenues for both airlines when Airline 1 uses QFF are given in Figure 5-24.

With QFF1, Airline 1 achieves a 7.6% gain in revenue over the base case at an 81%

load factor. While QFF2 also generates an 81% load factor, only a 2.0% revenue

increase is obtained, thus implying a lower yield. Finally, QFF3 leads to minimal

gains over Standard Forecasting, a consequence of a 67% load factor. Note that while

QFF3 consistently produced low load factors in the symmetric RM experiments, this

was not the case in the competitive RM scenarios. It is also interesting to note that,

although Airline 1 uses QFF3 and Airline 2 uses Standard Forecasting, both airlines

achieve similar revenues. This oddity is investigated in the following section.
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Figure 5-24: Revenues with QFF

5.2.2.1 Analysis of QFF3 Performance in Competitive RM Experiments

To gain a better insight as to the drawbacks of QFF3, the bookings are ana-

lyzed in comparison to the bookings achieved with Standard forecasting, given that

both methods generated similar revenues (albeit very different load factors). The

business/leisure booking mix for Standard Forecasting and QFF3 is shown in Fig-

ure 5-25(a) and Figure 5-25(b), respectively. With a reduced E1 fare, there are many

more leisure passengers purchasing the lowest family 1 class with Standard Forecast-

ing than there were in the Non-Overlapping structure. Because of this, when E1

eventually does close down, those business passengers that were displaced by the

leisure passengers either are forced to sell-up, or buy-down to family 2 (very few pas-

sengers are spilled, given that the competitor is undergoing a similar process). This

explains why a fair amount of business bookings are made in the top family 2 classes.

While there are slightly more business passenger bookings with QFF3, there are

nearly 50% more leisure passenger bookings with Standard Forecasting, a result of

more leisure passengers buying in both family 1 and family 2. With QFF3, a relatively

low amount of bookings are made in the lowest class in each family. It is evident that

these classes are being closed down very early, forcing passengers to make a different

decision on which class they will book in, if any. While some passengers sell-up, the

majority either are spilled to Airline 2 or are no-go.
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(a) Standard Forecasting (b) QFF3

Figure 5-25: Bookings for Airline 1 with Standard Forecasting and QFF3 in Compet-
itive RM Experiments

To more clearly illustrate passenger choice, Figure 5-26 shows the details of the

actual passenger decision, given a first choice of E1 or E2. Recall that, in the fare

family structures used throughout this thesis, all passengers have a first choice of E1

(business travelers) or E2 (leisure travelers), given the lack of restrictions between the

classes within each family. With QFF3 implemented, many passengers are unable

to book in their desired class (either E1 or E2), given the early closure rates of

each of these classes. Out of the approximately 4400 business passengers generated

throughout this network, only a little more than 10% received their first choice (E1).

While more than half of all the business passengers sell-up (captured in the “Booked

in Family 1” category), a significant amount of travelers spill over to the competitor.

The business travelers that bought down to family 2 are represented by the green bar

graph in the “Booked in Family 2” column.

An even smaller percentage of all the leisure passengers are able to book in E1,

with only about 6.3% of these travelers obtaining their first choice. As was the case

with the business travelers, while some leisure passengers sell-up to higher family 2

classes (“Booked in Family 2”), an even larger percentage are either spilling over to

Airline 2 or are no-go. As a result, QFF3 results in insignificant gains in revenue over

Standard Forecasting alone.
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Figure 5-26: Breakdown of Passenger Decision with QFF3, given a First Choice E1
(Business) and First Choice E2 (Leisure)

Given that early class closures have been identified as the main contributor to the

poor mix of bookings with QFF3, further investigations were conducted to determine

the reason for these aggressive closure rates. It was discovered that the main issue

with QFF3 was with the original Q-Forecasts generated for each family. As described

in Chapter 3, the first step in the QFF3 algorithm is to generate Q-Forecasts by

family using historical data from each family. The fundamental assumption in this

step is that the majority of bookings in family 1 are from business travelers, while

the majority in family 2 are from leisure passengers.

Although this assumption was reasonably valid with non-overlapping fare family

structures (given the gap in fares between the two families), this was not the case

with overlapping fares. More leisure passengers booked in family 1 and more business

passengers booked in family 2 than with the original fare family structure. As a

consequence of the way the bookings are scaled, higher Q-Forecasts were generated

in each family across all the time frames. With higher Q-Forecasts, more protection

was given to the top classes in each family, thus leading to aggressive closure rates in

the lower classes (in each family) with QFF3.
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5.2.3 OD Controls in Competitive RM Experiments

To culminate the matrix of results presented throughout this chapter, Figure 5-27

shows the revenues with DAVN in the competitive RM environment. The inputs

used to generate these revenues, as well as the highest revenues in the leg-based

competitive RM simulations, are given in Table 5.5. For the reasons listed above,

QFF3 expectedly performs poorly compared to QFF1. While a slightly higher load

factor is obtained when DAVN is implemented with QFF3, only a 2.1% increase in

revenue is achieved, much lower than the 6.7% gained with QFF1.

Figure 5-27: Revenues with QFF

Table 5.5: QFF Inputs used by Airline 1

5.3 Chapter Summary

In this chapter, the results from the simulations with both non-overlapping and

overlapping fare family structures were presented. With each type of fare structure,
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the three QFF methods were tested with both a leg-based RM optimizer (EMSRb) as

well as with OD controls (DAVN). These methods were tested first in the symmetric

RM environment to determine if the algorithm produced the desired results assuming

no competitive feedback. These methods were then analyzed in the competitive

RM environment, where Airline 2 was assigned a fixed optimization and forecasting

method (EMSRb with Standard Forecasting and AP).

Beginning with simulations with non-overlapping fare family structures, the per-

formance of QFF was measured against a base case in each subsection. The revenue

gains with both EMSRb and DAVN in the different environments are summarized in

Table 5.6. Regardless of the optimizer, QFF2 generated much lower revenues than

QFF1 or QFF3 in the symmetric test cases. This is most likely a result of the fact

that buy-across is not modeled within the algorithm. With all methods, DAVN led

to higher overall revenues.

Table 5.6: Summary of Revenue Gains with QFF over Standard Forecasting with
Non-Overlapping Fare Family Structures

In the competitive test cases, all QFF methods generated much larger revenue

gains over Standard Forecasting. This was a result of the high quantity of bookings

made in the lowest family 1 class. However, as mentioned earlier, the mix of passengers

for Airline 1 is largely dependent upon the choice of RM system assigned to Airline

2.

Similar experiments were then shown for the test cases with overlapping fare family

structures. The results from these simulations are summarized in Table 5.7. In the
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symmetric environment, QFF1 and QFF3 make an even larger impact than before,

with revenue gains of approximately 10% being achieved. QFF2 is once again seen

to generate much lower revenues than either of the other methods in the symmetric

cases.

In the competitive scenarios, it was discovered that both QFF2 and QFF3 perform

poorly, posting minimal gains over Standard Forecasting. With buy-across not being

modeled with QFF2, the results with this method were not completely surprising.

However, the poor performance by QFF3 led to further investigations, where it was

shown that the Q-Forecasts from each family were inaccurate due to high quantity

of leisure travelers buying up to family 1 (and business passengers buying down to

family 2). The way the bookings were scaled overestimated the forecasts in each

family, thus leading to earlier lower class closures while overprotecting the highest

classes.

Table 5.7: Summary of Revenue Gains with QFF over Standard Forecasting with
Overlapping Fare Family Structures
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Chapter 6

Conclusions

With the emergence of low cost carriers in the early 2000s, many major airlines

were forced to simplify their fare structures and develop alternative means to remain

competitive. The strategy of offering branded fares, or “fare families”, has become

more popular among airlines as a way to differentiate their products and services from

competitors. Legacy carriers offered branded fares to create a better value proposition

to their customers by bundling ancillary services together and attributing distinct

benefits to each fare family. The airlines expected that, by better promoting brand

awareness and by enabling passengers to purchase a product that better met the their

specific needs, revenues could ultimately be increased.

There were numerous revenue management (RM) challenges associated with im-

plementing this type of fare structure. Many of the RM forecasting and optimization

models that came about in the 1990s were developed under the assumption of a sin-

gle set of fare products. That is, the third-generation RM systems implemented by

many airlines were not designed for fare family structures. Thus in order to fully take

advantage of branded fares, forecasting and optimization methods that appropriately

model the customer choice process in a fare family structure were needed.
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6.1 Summary of Thesis Objectives

The objective of this thesis was to provide a comprehensive overview of the fore-

casting and optimization methods developed in the MIT PODS Research Consortium

specifically for fare family structures. Three variants of fare family RM methods were

developed; each was constructed based on the assumed passenger decision process in

a fare family structure. These methods were collectively termed Q-Forecasting for

Fare Families (QFF) due to the extensive use of Q-Forecasting concepts (described

in Chapter 2) in each model.

In this thesis, all fare family structures tested consisted of two families, with five

classes in each family. All classes within a particular family were undifferentiated

from one another, with the family 1 classes being completely unrestricted while the

family 2 classes were fully restricted.

The first QFF formulation (QFF1) generates a single Q-Forecast of demand for

both family 1 and family 2 combined. Because all passengers in the forecast were

assumed to follow the same sell-up function, the FRAT5 curve (an estimate for WTP

in PODS) was modeled in such a way as to capture the different booking tendencies

between business and leisure passengers. That is, given less price sensitive business

travelers tend to book closer to departure, the probability of a given passenger sell-

ing up to a higher fare was expected to gradually increase as the departure date

approached. This resulted in an “S-shaped” FRAT5 curve.

Buy-across, described in Chapter 3 as the decision a passenger makes between

the lowest open family 1 class and the lowest open family 2 class, was also accounted

for in QFF1 with a PBUP value. To determine how “attractive” a (more expensive)

family 1 product was compared to a fully-restricted (though less expensive) family

2 product, the disutility costs the passenger in question attributed to the family 2

restrictions were required as inputs. The algorithm assumes the passenger would

ultimately select the most “favorable” product after considering both the fare as well

as the disutility costs.

While it accounted for both passenger sell-up and buy-across, there were limita-
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tions with the QFF1 formulation. It was discovered in the simulation of QFF1 that

too much emphasis was put on the FRAT5 input. That is, the sell-up estimate had

a much larger impact on the overall performance of QFF1 than did the buy-across

input. Additionally, airlines from the PODS Consortium preferred a more practi-

cal estimate for sell-up; the feedback from the consortium members was to estimate

sell-up separately in each family.

The QFF algorithm was refined to estimate the probability of sell-up by family.

In the second formulation (QFF2), differential forecasts are generated in each family

(using historical data). Because the separate Q-Forecasts are based on past bookings

in each family, it is assumed that the family 1 forecast mainly consists of business

passengers while the family 2 forecast represents mainly leisure travelers. As such,

it is assumed that the WTP of passengers from each forecast would not significantly

change as the departure date neared. That is, the passengers from the family 1

forecast were assumed to have a similar WTP throughout the entire pre-departure

process, as were the passengers from the family 2 forecast. Thus, QFF2 uses two

constant FRAT5 values (one for each family) as sell-up inputs in place of the S-

shaped curve used in QFF1.

Additionally, under the QFF2 formulation, buy-across was assumed to be implic-

itly taken into account, given that the forecast for each family is based on historical

data available from previous bookings in each family. Consequently, there is no buy-

across input in QFF2.

While the second QFF formulation provided a more practical RM method from an

airline’s standpoint than QFF1, the results from PODS simulations showed that some

of the key assumptions in the QFF2 model were not valid. Specifically, although buy-

across was assumed to be accounted for by the separate family forecasts, simulations

showed that the PBUP was important after all. A significant percentage of passengers

purchased a product in the opposite family from which they were forecast. This

interaction between the two families was not captured in the QFF2 formulation. These

results provided the necessary motivation to further modify the QFF algorithm. The

third method (QFF3) was developed with the intention of incorporating the better
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aspects from the first two methods into a new formulation.

As was the process with QFF2, QFF3 generated separate forecasts by family,

and single FRAT5 values were required to estimate the probability of sell-up within

each family. However, the second and third formulations differed from one another in

the fact that QFF3 accounted for buy-across. Given that two separate forecasts were

generated with QFF3, two different elements of buy-across were modeled. Specifically,

“buy-up” and “buy-down”. Buy-up occurs when passengers from the family 2 forecast

purchase a family 1 product, while buy down refers to a passenger from the family 1

forecast booking in family 2. To include the probability of both buy-up and buy-down

in the model, the parameter DUMLT was added to the formulation to estimate the

disutility costs each passenger attributes to the family 2 restrictions.

Overall, of the three formulations, QFF3 best reflects the the actual passenger

choice process with fare families. Although implementing QFF3 requires an additional

input (DUMLT), the input for estimating the probability of sell-up is more practical

than with QFF1 (which required a detailed FRAT5 curve).

In Chapter 4, the PODS simulation tool used to test the three distinct QFF

formulations was discussed. All simulations took place in a dual airline competitive

environment. Two types of fare family structures were tested: “non-overlapping”

fare structures and “overlapping” fare structures. In the non-overlapping structures,

the lowest family 1 class was priced above the highest family 2 class, whereas in

the overlapping structures, the price points between the lowest family 1 and highest

family 2 classes were intertwined.

6.2 Summary of Results

The QFF formulations were tested in both symmetric RM and competitive RM

scenarios. In the symmetric RM test cases, both airlines in the network were assumed

to use identical seat allocation models, forecasting methods, and advanced purchase

requirements (or lack thereof). In the competitive RM simulations, Airline 1’s RM

methods were modified while the forecasting and optimization methods used by Air-
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line 2 (chosen as the competitor in the simulations) were fixed. Specifically, Airline

2 implemented a leg-based seat optimizer (EMSRb), Standard Forecasting, and an

advanced purchase requirement in all competitive RM simulations.

In general, the QFF methods showed promising results in most of the experiments

in which they were tested, particularly QFF1 and QFF3. To analyze and compare

the results of QFF against a commonly used forecasting method, Hybrid Forecasting

with traditional optimization was also tested in this thesis. With non-overlapping fare

family structures, Hybrid Forecasting was shown to produce about a 4.0% increase

in revenue over Standard Forecasting, both in symmetric RM and competitive RM

simulations. In contrast, QFF1 and QFF3 generated revenue gains above 7.5% and

12.5% in the symmetric RM and competitive RM scenarios, respectively. The strong

performance of the QFF methods was a direct result of higher yields (in many cases

the load factors with QFF were lower than with Standard Forecasting). That is,

by appropriately modeling the passenger decision process in a fare family structure,

QFF was able to encourage passengers from each family to sell up to higher-priced

classes. With network RM controls (DAVN), the revenue gains with QFF were further

magnified.

With overlapping fare family structures, similar conclusions were reached about

the performance of QFF in symmetric RM scenarios. Specifically, QFF1 and QFF3

generated much higher revenues than QFF2. However, in the competitive RM ex-

periments, QFF3 resulted in lower revenues and load factors than expected. The

modeling issue was determined to be with the original Q-Forecasts, which used his-

torical data from each family. Because the lowest family 1 classes were priced below

the highest family 2 classes, more leisure passengers booked in family 1, and thus

the family forecasts were not appropriately segmenting the different passenger types.

As a result, QFF3 generated too high of protection levels for the top classes in each

family, which ultimately led to early closure rates in the lowest classes.

For a complete summary of the revenue benefits with each QFF method with

both non-overlapping and overlapping fare family structures, refer to Table 5.6 and

Table 5.7, respectively.
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6.3 Potential Directions for Future Research

Based on the findings in this thesis, two potential areas for research are suggested.

The first direction is on the validity of the sell-up estimate used with each QFF

method. One of the general trends observed throughout this thesis was that minor

adjustments in sell-up inputs to the algorithms had major impacts on the revenues

and booking class mix in many simulations. In some cases, QFF performed worse

than Standard Forecasting. This occurred when the estimate for sell-up was too

aggressive (lowest classes closed too early) or when the sell-up potential was under

estimated (lowest classes left open too long). In either case, a poor sell-up estimate

had dramatic effects on the overall performance of QFF.

With QFF2 and QFF3, constant FRAT5 inputs by time frame were used to es-

timate sell-up for each family. The fundamental assumption with constant FRAT5

values by time frame is that the WTP of passengers in each family does not change

significantly over the duration of the booking process. However, it could very well

be true that both business and leisure passengers’ WTP does change as the depar-

ture date nears. Thus perhaps a more rigorous method of representing passenger’s

willingness-to-pay (and consequently their sell-up probability) could make the QFF

methods even more effective.

The second suggestion for future research is a direct follow-up to the weaker

performance of the QFF3 formulation in competitive RM simulations with overlap-

ping structures. As described in Chapter 5, because the historical data from each

family consisted of both business and leisure passengers (more so than in with the

non-overlapping structure), the Q-Forecasts by family were less accurate. That is,

because of the way the leisure/business bookings are scaled, the Q-Forecasts were too

high, which resulted in overly-aggressive closure rates with QFF3. Thus, further in-

vestigation on the assumption that historical data from each family is an appropriate

way to generate the Q-Forecasts could be conducted. Pursuing this direction could

especially be useful for experiments with overlapping fare family structures, where

the different passenger types are less segmented.
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Overall, the contributions from this thesis are believed to be of practical impor-

tance to the airlines, with many legacy carriers transitioning to branded fares. That

is, developing appropriate RM methods was vital, given that some industry experts

believe that fare family structures may be the key to successful airline pricing in the

future.
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