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Abstract

Three-dimensional numerical simulations (RANS and URANS) were used to assess
the impact of two specific design features, and of aspects of the actual turbine envi-
ronment, on turbine blade tip loss. The calculations were carried out for a subsonic
high pressure turbine stage. The loss mechanism examined is that due to tip clearance
vortex mixing. The effects examined were three-dimensional blade stacking, down-
stream transition duct geometry, and unsteadiness due to an upstream nozzle guide
vane. Tip leakage loss changes due to three-dimensional blade stacking (bowing or
reverse bowing) are verified to be associated with changes in the magnitude of blade
tip loading, which create differences in the leakage flow exit velocities. The effect
of a downstream diffusing transition duct on tip leakage losses is small; there was a
3.6% increase in tip leakage loss for a 65% increase in duct exit-to-inlet area ratio
compared to a constant area duct. For unsteadiness arising from an upstream nozzle
guide vane, it is shown that substantial temporal fluctuations in vortex core velocity
and loss generation exist. However, the time average tip leakage loss differed less than
5% from the tip leakage loss calculated on a steady flow basis. Based on the com-
putations, the mechanism for tip leakage vortex loss in the three different situations
examined appears to be similar to that which is seen for an isolated turbine blade.
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ṁtip Tip Leakage Flow

ε Leakage Angle

Γ Circulation =
∫
ωdA

µeff Effective Viscosity

Ω Blade Rotational Speed

ω Vorticity

Ωij Mean Rate-of-Rotation Tensor

φ Flow Coefficient = vx
Ωr

ψ Work Coefficient = ∆ht
(Ωr)2

ρ Density

σ Solidity

17



ξ Loss Coefficient

AR Exit-to-Inlet Area Ratio

c Blade Chord

Cd Gap Coefficient of Discharge

Cp Non-dimensional Pressure Rise

cp Constant Pressure Specific Heat

c∗p Ducts that give maximum pressure recovery for a given non-dimensional length

c∗∗p Ducts that give maximum pressure recovery for a given area ratio

Dh Hydraulic Diameter

g Tip Clearance Height

M Mach Number

p Pressure

pt Stagnation Pressure

q Dynamic Pressure: 1/2ρU2

Re Reynolds Number

S Spalart Allmaras Turbulence Production Term

S Swirl Number = vθ/u

s Specific Entropy

Sij Mean Strain Rate Tensor

T Temperature

t Time

18



Tt Stagnation Temperature

tvane Vane Passing Period

u, U Wake or Average Core Velocity, Freestream Velocity

u, v, w velocity components in the x,y,z directions respectively

vθ Swirl Velocity

V R Velocity Ratio = u
U

x, r, θ Cylindrical Coordinates

x, y, z Cartesian Coordinates

x/c Axial Distance Normalized by Blade Chord

y+ Non-dimensional Wall Cell Distance

FL Forward Blade Loading Style

ML Middle Blade Loading Style

19



20



Chapter 1

Introduction

Turbomachines have clearance gaps between the rotating blade tips and the stationary

casing. The losses generated due to leakage flow through this gap are approximately

linearly proportional to the gap height. The magnitude of this proportionality, re-

ferred to as the leakage loss slope, depends on the blade design.

Rotating blades can either be of the shrouded or unshrouded type. Shrouded

blades carry a portion of the endwall at the blade tips that forms a seal with the

outer casing. Unshrouded blades have a gap between the tip and the casing, with flow

forced from pressure side to suction side through the gap by the pressure difference

across the tip. The leakage flow generates losses both inside the gap and in mixing

with the mainstream flow. Unshrouded turbine blades are the subject of this thesis.

1.1 Background

Turbine tip leakage flows account for about one third of the total turbine stage loss

[7]. For a given blade design, this loss grows roughly linearly with tip gap height

and has a penalty of one to three percent or more of stage efficiency for a gap height

equal to 1% blade span [1]. The overtip flow can also enhance heat transfer in the

tip region.

The flow through the gap can be modeled as a vena contracta with a coefficient

of discharge. There is a separation bubble present if the pressure side gap corner is
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sharp. The flow reattaches before exiting the gap if the blade tip thickness is greater

than roughly four times the gap height [3]. Two-dimensional sketches of the leakage

flow are shown in Figure 1-1 for cases in which the flow does and does not reattach

before exiting the gap. In the thick blade case, the flow mixes and reattaches such

that the separation bubble does not extend the entire blade thickness as in the thin

blade case. In both sketches, the vortex and its sense of rotation is shown on the

suction side of the blade passage.

Figure 1-1: Flow over tip gap for unshrouded blade, r − θ plane looking aft a)Thick
Blade, b)Thin Blade [3]

Most of the loss generation associated with the tip leakage flow is due to mixing

with the freestream flow; for turbines only 15% of the tip leakage loss is generated

within the gap itself [10]. On the suction side of the passage, the flow forms a shear

layer due to the difference in velocity with the main passage flow. This layer rolls up,

forming a tip leakage vortex. The details of how the vortex changes as it develops

and moves downstream are influenced by blade tip design, blade design, and design
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of the downstream diffusing ducts.

Several models have been developed to predict the gap exit massflow, velocity

profiles, and loss generated due to mixing with the freestream. Heyes and Hodson

estimate the leakage angle of the gap exit flow using a control volume approach that

models the behavior of the flow as a vena contracta followed by mixing before the

flow exits the gap. Their results showed good agreement with turbine cascade data

[8]. Sjolander viewed loss generation during mixing with the mainstream flow as due

to dissipation of the kinetic energy associated with the normal gap exit velocity [10],

and matched experimental cascade tip loss data for gap thickness to blade chord

ratios of 0.015 and 0.02 closely with their loss model. Denton developed estimates

for the total mixing loss generated which account for the difference in axial velocity

of the gap exit flow, in addition to the normal gap exit velocity. Denton assumed

the flow mixes immediately with the freestream flow at constant pressure [3]. Huang

evaluated the Denton model for a simple channel with mass injection through a slot

and found it to be accurate within ± 40%, with the deviation being the largest when

vortex contraction or stretching were present [9].

Huang showed that the behavior of the tip leakage flow in turbines is different from

compressors because of stronger swirl. As a result of high swirl the turbine tip leakage

loss can decrease with mainstream pressure rise increase, until vortex breakdown, at

which further pressure rise increases the mixing loss. In the high pressure unshrouded

turbine blades of interest in this thesis, the tip leakage vortex undergoes breakdown,

and the severity of the breakdown is an important mechanism for the tip leakage

loss generation [9]. Applying these ideas to turbine airfoil design, Huang was able to

reduce tip leakage loss by 16% through reducing the trailing edge diffusion [9].

The work of Huang and others focused on a blade row in isolation, but this is not

the real environment in which a turbine blade operates. Turbine blades are typically

embedded within upstream and/or downstream transition ducts and vanes which

can affect the blade aerodynamics. In addition, the turbine operates in an unsteady

environment, while much of the work referred to above assumes steady flow. In

order to use the prior work to effectively design turbine blade rows, the real turbine
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environment impacts must be assessed, and that goal is the focus of this work.

1.2 Research Questions

The aim of this work is to quantify the impact of turbine design factors such as

three-dimensional blade design, the design of the downstream transition duct, and

the presence of unsteadiness from an upstream vane on tip leakage loss generation

mechanisms. Specific research questions are:

• What is the impact of turbine blade bow on the tip clearance loss?

• How does the downstream transition duct affect tip loss mechanisms?

• Does the vortex mixing loss mechanism described by Huang hold in unsteady

flow due to the presence of an upstream vane?

1.3 Methodology

Three-dimensional computations have been used to address the above questions. The

work focuses on the mixing out of the leakage flow because this is the major cause

of leakage loss. The impact of changing blade tip geometry, and of adjacent flow

path geometry parameters, on tip leakage loss was determined. The important flow

features were identified through these numerical analyses.

1.4 Contributions

• The effect of blade bowing on tip loss mechanisms has been described. Bowing

is shown to change the magnitude of blade tip loading and thus the difference

between tip leakage gap exit velocity and blade suction side freestream velocity.

For positive bowing there is a reduction in this difference and hence in the

leakage flow mixing losses.
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• Over the range examined, the effect of the downstream diffusing transition duct

design on tip leakage losses is small. A 65% increase in duct area ratio caused

a 3.6% increase in tip loss coefficient. The implication is that the downstream

diffusing transition duct can be designed to meet other constraints without

creating large increases in tip loss.

• The time average tip leakage loss, calculated using URANS, with unsteadiness

arising from the upstream nozzle guide vane, differed less than 5% from tip

leakage loss calculated on a steady state basis. The time average blade loading,

leakage flow, and vortex core velocity also show little change from those as given

by steady state calculations. Further, model calculations with an axisymmetric

vortex in a pressure rise show the tip leakage loss vortex breakdown mecha-

nism is insensitive to unsteady pressure fluctuations. This implies that steady

calculations predict the tip loss coefficient trends adequately.

• The reduced frequency in the vortex core was 0.8. The flow through the tip

gap, however, is characterized by a reduced frequency less than 0.1, and can

be treated as quasi-steady, as verified by comparison of quasi-steady gap flow

analyses.

• Although the time average quantities match the steady values, there are sub-

stantial instantaneous fluctuations in the vortex flow field. The vortex core

velocity at the blade trailing edge changes by ±15% over the period, which

causes variation in the dissipation associated with vortex breakdown of ±20%

over the period.

1.5 Organization of Thesis

Chapter 2 describes the approach and the design of computations to address the

three research questions posed. Chapter 3 describes the behavior of bowed blades

and the physical connection between bowing and tip loss. In Chapter 4 the effect

of downstream transition duct design on the tip leakage loss is assessed. In Chapter
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5 the time average effect of unsteadiness due to an upstream nozzle guide vane on

the tip loss is determined along with a description of the time average flow behavior.

Chapter 6 presents the temporal effects of unsteadiness for the nozzle guide vane-

blade interaction. An unsteady axisymmetric vortex model problem is also examined

to provide insight into the time average results of Chapter 5. Finally, Chapter 7 gives

conclusions and recommendations for future work.
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Chapter 2

Assessing Tip Flow Effects in the

Turbine Environment

2.1 Introduction

This chapter describes flow features that result from the presence of a tip clearance

gap and the approach for assessing their impact on loss. Based on prior work, several

effects were hypothesized to be important in the context of the research questions

posed in Chapter 1. In addressing the questions, it is useful to consider the flow in

two conceptual “pieces”: the flow that exits the gap, and the flow subsequent to this

exit, in particular the vortex that develops and then mixes with the freestream. The

effects are illustrated using three-dimensional turbine airfoil calculations.

The analysis metrics introduced in this chapter are applied in subsequent chapters

to assess impacts on the tip leakage loss. Specifically, the leakage flow is characterized

by the axial distribution of the mass flow exiting the gap, and the angle between the

leakage flow and the freestream flow. The vortex is characterized by the ratio of

streamwise velocity in the core to freestream velocity (in the core axis direction) and

the swirl number, the ratio of the swirl velocity to average streamwise velocity in the

core. The axial distribution of loss generation due to vortex mixing is also found to

be important in determining the locations in the flow field that are critical to overall

loss generation.
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2.2 Computational Methodology

To examine the loss due to tip clearance flow, two separate calculations were run for

each effect to be studied. One has no tip gap clearance, referred to as the 0% clearance

case. The other has a (radial) tip gap of 2% of the blade height, referred to as the 2%

case. The calculations were done for isolated blades, blades with downstream turbine

transition ducts, and a vane-blade (stage) configuration. In this last situation the

flow was unsteady.

FINETM/Turbo was initially selected for its structured tip gap mesh capability,

but the decision was made to move to the Rolls-Royce proprietary CFD code HYDRA

in order to work more effectively with Rolls-Royce. Investigations of the bowed blade

and transition duct effects were done using NUMECA FINETM/Turbo, while the

subsequent studies were done using HYDRA. Structured meshes were used in both

cases, an example of which is shown in Figure 2-1. The HYDRA solver is unstructured

while the FINETM/Turbo solver is structured. The HYDRA Spallart-Allmaras (SA)

turbulence model uses a rotational correction so it diffuses the vortex core to a lesser

extent than the FINETM/Turbo SA turbulence model. The effects of turbulence

model on the computed details of the leakage loss mechanisms are described at the

end of this chapter.

(a) (b)

Figure 2-1: Typical Grid Geometry: a)Mesh of hub and blade, b)Tip mesh
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The inlet boundary conditions enforced are radial distributions of stagnation pres-

sure, stagnation temperature, turbulent viscosity, and inlet flow angle. The outlet

boundary condition is the radial distribution of static pressure that satisfies radial

equilibrium with the pressure specified at the hub radius. All walls were enforced to

be no-slip and adiabatic. The casing was stationary. Both solvers used the Reynolds-

Averaged Navier Stokes (RANS) equations, and the unsteady calculations were done

in HYDRA with the unsteady RANS (URANS) equations. All meshes had an aver-

age y+ of 1 to resolve the boundary layers. The SA turbulence model was used with

an initial turbulent to laminar viscosity ratio of 100 to represent the high turbulence

level of the flow exiting the combustor, although it was shown by Huang that the

results concerning tip loss are insensitive to the inlet turbulent viscosity ratio [9].

The parameters describing the turbine used in this study are shown in Table 2.1

Work Coefficient 2.13
Flow Coefficient 0.584

Midspan Relative Inlet Angle 54.3◦

Midspan Relative Exit Angle 64.6◦

Exit Mach Number 0.755
Stagnation-to-Static Pressure Ratio 2.22

Solidity 0.966
Aspect Ratio 1.25

Exit Relative Rec 3.8 x 106

Table 2.1: Turbine Parameters

2.2.1 Blade Design Specification

Two main blade designs are examined in this work. The difference between the two

blades is the tip airfoil shape, which is blended into a geometry that is identical for

both blades from 0% to 50% span. The shape differences result in pressure loading

differences between the two blades in the near tip region. The designs were created

to highlight the loss mechanism shown by Huang, in which loss generation due to

leakage flow was found to be sensitive to the pressure rise encountered by the tip

leakage vortex [9].
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The baseline blade has a mid loading (ML Blade), and the blade that reduces

the pressure rise encountered by the leakage flow is the forward loaded blade (FL

Blade). The two tip airfoil designs and resulting near tip blade loadings are shown in

Figure 2-2. The axial location in this thesis is normalized by blade chord, with x/c

= 0 corresponding to the blade leading edge, and x/c = 1 corresponding to the blade

trailing edge.
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Figure 2-2: ML and FL Blade Definitions: a)Tip Airfoil Geometry [9], b)Pressure
Distribution at 85% span

2.3 Tip Leakage Vortex Characteristics and De-

scription

The focus of this work is the tip leakage vortex that forms near the suction side of

the blade passage. We define the vortex core as the flow field region with positive

relative streamwise vorticity.

The vortex is characterized by a shear layer that exits the tip gap and rolls up into

a vortex. Flow field quantities illustrating the roll up are shown on several slices, at

different streamwise positions, in Figure 2-3. Figure 2-3(a) shows the development of

the streamwise vorticity, vorticity aligned with the mean freestream velocity vector,

in the vortex core. As the vortex is convected downstream, the shear layer adds
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(a) (b)

(c) (d)

Figure 2-3: Tip Leakage Vortex Slices at x/c = 0.66, 0.81, 0.97, 1.20, 1.41 :
a)Streamwise Vorticity, b)Streamwise Velocity, c)Pressure Field, d)Dissipation
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circulation to the vortex, which grows in size. The result is a strongly swirling motion

with a low pressure region in the center of the vortex as seen in the slice at x/c =

0.66 in Figure 2-3(c). As a result of the swirl and the low core velocity (compared

to freestream), the response of the vortex core velocity to the external pressure rise

is larger than that of the external flow as shown in Figure 2-3(b). The entropy

generation, or dissipation, shown in Figure 2-3(d), is greatest near the axial location

where the core velocity is lowest, at x/c = 1.1.

The external pressure gradients to which the vortex core is subjected depend on

the blade tip geometry. Trailing edge diffusion decelerates the core, from x/c = 0.7

to x/c = 1 in the particular turbine studied. The flow on the centerline reacts more

strongly to the pressure rise than the freestream and, if the deceleration is strong

enough, vortex breakdown occurs [9].

2.4 Vortex Breakdown

Vortex breakdown, characterized by the stagnation and reversal of flow in the center

of the vortex core, is due to the core being subjected to a pressure rise. The magnitude

of the external pressure rise that causes the onset of flow reversal is lower for swirling

flow than it is for non-swirling flow. The vortex core has increased sensitivity to

external streamwise pressure gradients due to radial pressure gradients in the core.

This is illustrated by Equation 2.1, which gives an estimate of the difference in axial

pressure gradient between core edge and core centerline due to vortex core radius

increase [6]. The core axis pressure gradient is larger than the edge external pressure

gradient by a factor proportional to Γ2, and the core axis velocity response is amplified

as a result.

∂p

∂x

∣∣∣∣
r=0

− dpre
dx

= ρ
Γ2

4π2r3
e

dre
dx

(2.1)

In reference [9], a 7% reduction in leakage loss was obtained by redesigning the

tip to reduce the pressure rise near the trailing edge and thus reduce the severity of

the vortex breakdown. The ML blade was the baseline blade geometry in that work,
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while the FL blade reduced the trailing edge pressure rise to achieve the leakage loss

reduction.

An indication of the vortex breakdown severity, and the loss generated due to the

breakdown, is the size of the flow reversal region which is shown in Figure 2-4. The

reversal region is smaller in the FL blade case than in the ML case, highlighting the

reduction in the breakdown severity. The trailing edge pressure rise reduction in the

FL blade was thus the reason for the 7% decrease in tip leakage loss.

(a) (b)

Figure 2-4: Flow Reversal Regions in Tip Leakage Vortex Core (Shown by Blue
Isosurfaces): a)ML blade, b)FL blade

2.5 Leakage Flow Analysis Metrics

2.5.1 Tip Leakage Loss Coefficient

The loss generated by the tip leakage flow is characterized by a tip loss coefficient

ξtip = ξ2%clr − ξ0%clr, where a loss coefficient is as defined as in Equation 2.2.

ξ =
Texit∆s

cp(Tt,inlet − Tt,exit)
(2.2)

The tip loss coefficient is defined as the loss coefficient of a flow with a clearance
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gap minus the loss coefficient of the same blading without a clearance gap modeled.

2.5.2 Tip Leakage Mass Flow

The magnitude and location of the leakage massflow exiting the gap is shown in

Figure 2-5. Figure 2-5(a) shows the leakage massflow versus axial distance normalized

according to Equation 2.3, is concentrated in the rear half of the blade. The quantity

ρUA = ṁmain is the axial massflow through the blade row.

ṁnormalized =
(ρu)

ρUA
c g (2.3)
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Figure 2-5: Characterization of Tip Gap Leakage Flow Properties: a)Leakage Flow
Distribution Versus Axial Position, b)Leakage Flow Angle Distribution (measured
from streamwise direction) Versus Axial Position

Description of the gap exit flow also requires a leakage angle distribution, measured

from the streamwise direction, as shown in Figure 2-5(b). The combination of the

leakage flow distribution and the leakage angle distribution dictates the shear layer

formation due to misalignment of the leakage flow and the passage flow velocities.

This shear layer rolls up to form the vortex.

The gap coefficient of discharge describes how effectively the tip passes mass flow.

An “ideal” leakage mass flow is calculated using the ratio of static to stagnation
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pressure, with the static pressure taken to be that at gap exit. The ratio of actual

massflow to ideal massflow for the tip gap is the coefficient of discharge. The axial

distribution of Cd is shown for the ML and FL blades in Figure 2-6.
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Figure 2-6: Characterization of Tip Gap Leakage Flow Properties: Gap Coefficient
of Discharge Distribution

2.5.3 Tip Leakage Vortex State

The vortex evolution in the axial direction is important in setting the loss created by

the tip leakage flow. An indication of vortex intensity is the swirl number, S = vθ/u.

The average core axial velocity is u, and the swirl velocity vθ is calculated using

the vortex circulation and outer radius: Γ = 2πrevθ. Higher pre-breakdown swirl

numbers create more mixed out loss [9]. An additional indicator of the vortex state

is the centerline velocity ratio, defined as the minimum streamwise velocity in the

vortex core, normalized by the magnitude of the freestream velocity downstream of

the trailing edge.

The swirl number at the trailing edge changes between the ML and FL blades be-

cause of the differences in centerline velocity ratio. Figure 2-7 shows the deceleration

in the core is less for the FL blade than for the ML blade (because the leakage vortex

is subjected to a smaller pressure rise in the FL blade). For equal swirl velocity, the
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lower axial velocity in the ML leakage vortex means a higher swirl number and thus

more loss.
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Figure 2-7: Characterization of Vortex Properties Versus Axial Position: a)Core
Centerline Velocity Ratio, b)Core Swirl Number

2.5.4 Tip Leakage Loss Generation

The axial distribution of loss generation can be used to highlight the regions that

account for the majority of the tip loss. A peak in dissipation typically corresponds

to the minimum streamwise core velocity axial location, where the difference between

velocities in the core and freestream, ∆u, is largest. Because mixing loss scales

with (∆u)2, this region contributes most heavily to the loss. Figure 2-8 shows the

dissipation as a function of axial position (integrated over the upper 50% of the blade

passage). The quantity given is the difference between the 2% and the 0% cases,

with the dissipation for the 0% case subtracted from the 2% clearance case. The loss

generated per unit axial distance, dξ/d(x/c), is calculated as in Equation 2.4. Figure

2-8 shows the peak due to vortex beakdown occurs at x/c = 1.1. The analysis does

not include contributions from dissipation due to the boundary layer and the lower

50% of the blade passage.
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dξ

d(x/c)
=

Texitc

mmain

∫
ρ
ds

dt
dA

axialslice
(2.4)
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Figure 2-8: Characterization of Vortex Loss Generation Distribution (2% case - 0%
case), NormalizedDissipation =

dξ
d(x/c)/cp∆Tt

2.6 Turbulence Modeling Effects

Two turbulence models, Spalart Allmaras (SA) and k − ω Shear Stress Transport

(SST), as well as two numerical codes, NUMECA FINETM/Turbo (FT) and Rolls-

Royce HYDRA, have been used in this work. The main effect of turbulence model is

on the turbulence production in the vortex core. One and two equation turbulence

models tend to smear out the vortex core with more turbulence production [14], so

vortex response to a pressure gradient is weaker than with a higher order model such

as a full Reynolds Stress model [13].

Figure 2-9 shows the reduction of vortex core deceleration is more prominent in

the FT calculation using the SA model. The flow field calculated using the SA model

with the rotational correction responds more strongly to the external pressure, and

the two SST model calculated flow responses are in between the two SA models

implemented here. Changing the turbulence model impacts the absolute levels of the
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vortex parameters, such as vortex centerline velocity ratio in the breakdown region

(by ∼ 0.2), but does not alter the tip loss reduction trends. The largest difference

between tip loss coefficients in the four simulations described is 4.1%, as shown in

Table 2.2.

The overall tip loss trends remain the same regardless of code or turbulence model.

This was illustrated with a back-to-back study with a change in downstream diffusing

duct geometry with the FT SA and FT SST models. An increase in duct area ratio

of 65% caused tip loss coefficient increase of 3.6% with the FT SA model, and a 5.1%

increase with the FT SST model. In summary, the results show that the turbulence

model is not critical to assessing the impact of turbine environment on tip loss for

the blades of interest.

Case ξ0%clr ξ2%clr ξtip % Change from FT SA

FT SA 0.0714 0.134 0.0631
FT SST 0.0695 0.130 0.0605 -4.1

HYDRA SA 0.0668 0.131 0.0646 2.3

Table 2.2: Impact of Turbulence Model on Tip Loss Coefficient Behavior
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Figure 2-9: Effect of Turbulence Model and Code Implementation on Vortex Center-
line: FINETM/Turbo SA, FINETM/Turbo SST, HYDRA SA, HYDRA SST
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Chapter 3

Effect of Bowing Turbine Blade on

Tip Leakage Vortex Mixing Losses

3.1 Introduction

The applicability of the tip leakage loss mechanism found by Huang has been exam-

ined for blade designs with three dimensional stacking changes, called bowing. Bowed

blades are created by shifting constant two dimensional cross sections relative to one

another in the tangential direction, similar to sliding a deck of cards, with positive

bow referring to a radially concave suction surface of the blade. An example of a

positively bowed blade is shown in Figure 3-1.

The blades described here were designed in a similar manner to the blades used in

the study by Staubach et. al. [12], who calculated a 40% reduction in tip loss using

both positive bow and axial sweep. The goal was to determine the magnitude and

cause of changes in tip loss due to bowing. One possible cause is overall changes in

the driving pressure difference across the tip, resulting in a smaller mismatch between

gap exit velocity and main passage flow velocity. A second possible mechanism could

involve the the behavior of the vortex in a pressure rise at the blade trailing edge

described by Huang [9]. The effects of bowing a turbine blade on the tip loss coefficient

were determined to address this question.

The effect of bowing on the tip loss behavior comes from changes in the radial
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Figure 3-1: 115◦ Positive Bowed Blade Design

loading distribution. The concept is explained by Denton and Xu as a “frozen pressure

field” [4]. Streamline curvature in the blade-to-blade plane is much higher than in the

r − θ plane, so the blade-to-blade pressure gradient dominates. It is as if the blade

geometry moves within a set of radial isobars while bowing, modifying the loading at

the hub and tip. Positive bow unloads the hub and tip relative to mid span, while

negative bow loads the hub and tip relative to mid span.

3.2 Computational Geometry

Linear cascades were used to simplify the analysis, with four bowing magnitudes

examined: 65◦, 90◦, 115◦, and 130◦. A 90◦ blade is a straight blade, while a 115◦

blade means the tip has been shifted 25◦ past vertical. FINETM/Turbo was used

with a grid of ∼ 3 million cells and y+ of one. The computation inlet was 2 chords

upstream of the leading edge and the outlet was 3 chords downstream of the trailing
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edge.

3.3 Effect of Bow on Blade Passage Pressure Field

Calculations for no clearance cascades are shown in Figure 3-2, which illustrate the

effect of bowing. The constant pressure lines are nearly radial despite the geometry

shift in the circumferential direction. The figure also shows the change in radial

loading; the 130◦ blade is higher loaded at midspan and less loaded near the tip

compared to the straight blade.

Figure 3-2: 115◦ Bowed Blade Static Pressure Contours at x/c = 0.5

Figure 3-3 illustrates the “frozen pressure field” concept in a different manner,

using blade static pressure distributions at several spanwise locations for the 115◦

blade, no clearance case. The loading is less at radial locations closer to the tip

compared to midspan. The pressures at 25% span match those at 75% because the

blade is symmetric about the midspan. The impact of bowing is concentrated in the
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first 70% axial chord of the blade.
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Figure 3-3: Radial Loading Variation due to Bow: 115◦ Blade, No Clearance

The pressure profiles in Figure 3-4 at 90% span show the effect of bowing on

near-tip loading. The near-tip loading decreases monotonically as the blade angle

increases from 65◦ to 130◦. This result will be shown to have important implications

for loss.
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Figure 3-4: Tip Loading Variation due to Bow: 90% Span, No Clearance
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3.4 Results

3.4.1 Tip Leakage Loss

The computations show that positive bow has a beneficial effect on the tip loss. In

the most extreme case of the 130◦ blade, the tip loss coefficient is reduced by 20%

compared to the baseline straight blade, as in Table 3.1. There is a reduction in tip

loading due to bowing which reduces the gap exit velocities, and thus the difference

between tip leakage flow and main passage flow velocities (|∆~v|). Since mixing loss

scales with (|∆~v|)2, and positive bow reduces this value, the leakage loss decreases.

Bow Angle ξ0%clr ξ2%clr ξtip % Change from 90◦

65 0.0401 0.0734 0.0332 2.3
90 0.0368 0.0693 0.0325 0.0
115 0.0409 0.0707 0.0297 -8.4
130 0.0477 0.0737 0.0260 -20.0

Table 3.1: Influence of Bowing on Tip Loss Coefficient Behavior

3.4.2 Tip Leakage Massflow

Table 3.2 gives the changes in normalized tip leakage flow relative to the straight blade

for different bowing magnitudes. There is an increase in leakage flow with positive

bow. There are several impacts on the leakage flow magnitude, including tip loading

and the behavior of the velocity field inside the gap.

Bow Angle ṁmain (kg/s) ṁtip (kg/s) Normalized ṁtip % Change from 90◦

65 0.115 0.0057 0.0498 -3.78
90 0.115 0.0059 0.0518 0.0
115 0.117 0.0061 0.0526 1.61
130 0.116 0.0062 0.0532 2.85

Table 3.2: Influence of Bowing on Leakage Flow Behavior

The tip massflow increases as the blade is positively bowed, which is not expected

given the decrease in near-tip blade loading. The reason is that the discharge coef-
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Figure 3-5: Influence of Bowing on Tip Leakage Flow: a)Cd Distribution, b)Leakage
Flow Distribution

ficient for the tip flow, Cd, increases as the blade is bowed. This is shown in Figure

3-5(a), which gives the axial distribution of Cd. The mean Cd increases from 0.57 for

the 65◦ blade to 0.65 for the 113◦ blade.

The physical basis for the Cd behavior can be seen from the velocity field at the

corner of the gap entrance in Figure 3-6. A separation bubble forms with a vena

contracta in the gap flow due to the sharp corner on the pressure side of the blade.

The influence of the separation bubble increases as the size of the low pressure region

at the gap corner increases. This bubble decreases in size with positive bow; the

bubble for the 130◦ blade in Figure 3-6 is smaller than the bubble for the 65◦ blade.

A smaller separation allows more massflow with corresponding higher Cd. The result

is a 3% increase in normalized leakage mass flow for the 130◦ blade relative to the

straight blade, despite the reduction in tip loading.

3.4.3 Tip Leakage Vortex State

The effects of loading changes due to bow can be seen in the vortex parameters in

Figure 3-7. The core velocity ratio minimum increases with increasing bow and the

swirl number of the tip leakage vortex reduces. Increasing bow reduces the vortex
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Figure 3-6: Gap Entrance Flow Field Characteristics at x/c = 0.25 (Pressure Side
Corner) for Different Bowing, with Overlaid In-Plane Velocity Vectors

strength, which creates less leakage loss from mixing with the freestream.

Figure 3-8 presents the vortex centerline static and stagnation pressure coefficients

as a function of axial position. The differences in the static pressure rise undergone

by the vortex are small (Figure 3-8(a)). The pressure in the core is sensitive to the

external pressure gradient because the core is swirling, so if no changes are evident in

core pressure response, the external pressure rise between the cases should be similar.

The 65◦ blade, however, has a lower stagnation pressure at the gap exit than the 130◦

blade due to increased mixing within the gap from the larger separation bubble, as

given in Figure 3-8(b). For similar pressure gradients a reduced stagnation pressure in

the core results in an increased deceleration, and this is the situation in the negatively

bowed blade vortex core. The result is lower centerline velocity, higher swirl number,

and more loss.

45



0.5 1 1.5 2 2.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x/c

u/
u ex

it

 

 

65°

90°

115°

130°

(a)

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x/c

S

 

 

65°

90°

115°

130°

(b)

Figure 3-7: Influence of Bowing on Vortex Core: a)Centerline Velocity Ratio, b)Swirl
Number
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Figure 3-8: Influence of Bowing on Vortex Core: a)Centerline Static Pressure,
b)Centerline Stagnation Pressure, Cp = p−pin
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3.4.4 Tip Leakage Loss Mechanisms

The changes in tip leakage loss can be attributed to the differences in overall loading

at the tip. Arguments for this can be made using a control volume analysis outlined

by Denton [3]. In this method, the flow is mixed out at constant pressure, equal

to the suction side pressure at the point of gap exit, to determine the leakage loss.
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The expression for loss is Equation 3.1, evaluated at the tip gap exit during CFD

post-processing to produce the results.

Tdsgen =

∫
ρVleaksin(ε)

mmain

(
1

2

[
V 2
leak + V 2

ss − 2VssVleakcos(ε)
]

+ cpT

∫ Tinj

T

−1

τ
dτ

)
gdx

(3.1)

The results of the control volume loss analysis using Equation 3.1 are shown in

Figure 3-9, which illustrates the distribution of contribution of the tip leakage flow to

the mixing loss versus axial location. The loss generation is concentrated towards the

trailing edge, because the leakage flow is also concentrated towards the aft portion of

the tip gap.
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Figure 3-9: Influence of Bowing on Loss Distribution for Leakage Flow Mixed Out at
Constant Pressure, Normalized CV loss = Teds/cp∆Tt

Table 3.1 shows the total control volume loss, integrated under the curves of Figure

3-9. Comparison of Tables 3.3 and 3.1 show the control volume analysis yields tip loss

changes for the 90◦ and 130◦ bowed blades in accord with the CFD predicted tip loss

coefficient changes. However, the control volume analysis does not capture the effect

of changing pressure during leakage flow mixing as shown by Huang [9]. If the control

volume analysis captures the loss benefit due to blade bowing, it can be concluded
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that the changes in tip loss coefficient are dominated by overall tip loading. This

analysis is supported by the vortex state analysis, because the changes seen were due

to a similar pressure rise acting on vortex cores with different stagnation pressures,

rather than due to variation in trailing edge pressure rise (as in the ML and FL blade

comparisons).

Bow Angle ξCV % Change from 90◦

65 0.0305 -20.29
90 0.0383 0.0
115 0.0344 -10.12
130 0.0295 -22.90

Table 3.3: Influence of Bowing on Integrated Control Volume Tip Loss Coefficients

3.5 Conclusions

The effect of blade bowing on tip leakage loss was assessed using three-dimensional

calculations for a turbine cascade. The radial distribution of blade loadings agreed

with the “frozen pressure field” concept proposed by Denton and Xu, giving nearly

radial isobars when viewed in the r− θ plane [4]. There were larger total gap leakage

massflows for the positively bowed blades despite reduced tip loading because of

smaller separation bubbles at the corner of the gap entrance, which led to larger

coefficients of discharge for increased positive bowing. The tip loss benefit of 20%

for the 130◦ blade, compared to the straight blade, is due to the overall reduction in

loading. A control volume analysis of the gap exit flow also gave this result, indicating

the overall tip loading is the dominant effect on tip leakage loss.
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Chapter 4

Effect of Transition Duct

Geometry on Tip Leakage Vortex

Mixing Losses

4.1 Introduction

Turbine blades in gas turbine engines do not operate in isolation. For a single stage

high pressure turbine, for example, the flow enters a downstream diffusing transition

duct before reaching the low pressure turbine. Computations were thus performed to

assess the impact of transition duct design on the tip leakage loss.

4.2 Design of Transition Ducts

The diffusing transition ducts were designed to cover a parameter space defined

by non-dimensional wall length, area ratio, and inner and outer wall angles. The

two most influential of these are area ratio (AR), and non-dimensional wall length

(L̄/∆Rd). For diffusers, Sovran and Klomp defined a c∗∗p curve as the locus of designs

that have the highest pressure recovery for a given area ratio, and a c∗p curve as the

locus of designs that give maximum pressure recovery for a given non-dimensional

length [11]. Figure 4-1 shows the c∗p and c∗∗p curves in AR-1 versus L̄/∆Rd space.
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Figure 4-1: Transition Duct Design Space (AreaRatio - 1 vs. Non-dimensional Duct
Length): With c∗p and c∗∗p curves from Sovran and Klomp [11]

The figure also shows four circles representing the cases examined. These cover a

representative design space for turbine transition ducts.

The four designs corresponding to the circles in Figure 4-1 are shown in Figure

4-2, with Transition Duct 1 corresponding to the point on the c∗∗p curve. A straight

duct, called Transition Duct 0, was also modeled to serve as a baseline.

The outer wall angles were held constant for this set of calculations at 20◦, with

the idea of keeping local effects due to the upper duct corner the same for all cases.

The inner wall angle and the wall lengths were not constant, and are specified by the

desired AR and L̄/∆Rd.

4.3 Computational Details

NUMECA FINETM/Turbo with the ML blade geometry was used for this set of

calculations. A grid density of ∼3 million cells was used and the SA turbulence

model was implemented with a y+ of about 1.
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Figure 4-2: Meridional View of Transition Duct Designs: Blade Represented by Solid
Rectangle, Evaluation Location for ξ Represented by Dashed Line
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The computational domain extended 1.5 chords upstream of the blade leading edge

and 1 diffuser exit span downstream of each diffuser exit. The former was done to

decouple the inlet conditions from the upstream influence of the blade, and the latter

was done to allow the flow to mix out before being subjected to the static pressure

equilibrium boundary condition. The exit pressure at the duct exit hub location was

set to ensure the work done by each blade matched within ±0.5% relative to the work

done in the Transition Duct 0 case.

The loss evaluation was done at different axial locations in each of the four ducts.

The evaluation location was chosen so that the mean radius flow path distance was

constant to provide equal opportunity for the leakage flow to mix with the freestream.

The corners of the hub and casing at the start and end of the transition duct were

designed with a radius of curvature corresponding to 20% of the hydraulic diameter

(Dh) of the annular duct to avoid separation [5]. The corner of the transition duct is

located 0.1 axial chords downstream of the blade trailing edge according to standard

design practice [5].

4.4 Results

4.4.1 Tip Leakage Loss

Table 4.1 presents the tip loss coefficients for all ducts. The increases in area ratio

caused small increases in tip loss, with the most extreme AR of 1.65 causing a 3.6%

increase in tip loss coefficient compared to the baseline. The loss increase is due to

further deceleration of the core, which strengthens the vortex breakdown.

Duct ξ0%clr ξ2%clr ξtip % Change from 90◦

0 0.0714 0.134 0.0631 0.0
1 0.0703 0.135 0.0693 2.39
2 0.0723 0.136 0.0635 0.76
3 0.0715 0.137 0.0654 3.64
4 0.0684 0.131 0.0621 -1.56

Table 4.1: Transition Duct Tip Loss Coefficient Behavior
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4.4.2 Tip Leakage Massflow

The blade loading was altered little between duct designs, so the variation in tip

leakage flow is negligible. The results are given in Table 4.2 for completeness.

Duct ṁmain (kg/s) ṁtip (kg/s) Normalized ṁtip

0 0.314 0.0232 0.0739
1 0.313 0.0232 0.0741
2 0.313 0.0232 0.0741
3 0.314 0.0232 0.0740
4 0.314 0.0233 0.0742

Table 4.2: Influence of Transition Duct Geometry on Leakage Mass Flow

4.4.3 Influence of Duct Design on Axial Pressure Rise and

Blade Loading

Figure 4-3 shows the circumferentially averaged pressure rise as a function of axial

position experienced by the mean flow in the duct downstream of the blade. The

largest pressure rises correspond to ducts 3 and 4 which are the most aggressive.
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Figure 4-3: Axial Distribution of Average Static Pressure in Duct, 2% Clearance,
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The duct corners are located 0.1 chords downstream of the blade trailing edge,

thus it can be expected that they will have some upstream influence on the blade exit

flow. Figure 4-4 shows radial distributions of static pressure at blade exit, illustrating

that the duct corner on the upper wall causes a local decrease in static pressure. This

is most clearly shown in the difference between ducts 0 and 2 because they have

similar area ratios. A similar argument can be made for the bottom corner, except

the sign of the local pressure change varies between duct designs because some ducts

have positive wall angles while others have negative angles.
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Figure 4-4: Radial Distribution of Circumferentially Averaged Pressure at Blade Exit,
0% Clearance, Cp =

p−px/c=1

qx/c=1

Despite ducts 1-4 having the same 20◦ outer wall angle, there are differences in

the near-tip static pressures shown in Figure 4-4. This is caused by a variation in the

strength of the upstream influence of the downstream diffuser geometry. Duct 2 has

the smallest AR so the depression in static pressure in the upper half of the channel

is the largest. Duct 1 has a larger AR, so the pressure rise downstream created by

the diffuser influences the pressure field at blade exit and raises the pressure in the

upper 30% of the duct relative to that of Duct 2. The same occurs for Ducts 3 and

4 in increasing magnitudes.

The result of the variation in upstream influence due to duct geometry is that the
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trailing edge blade loading profiles near the tip are altered slightly as shown in Figure

4-5, although the net effect of this loading change is small. There are no discernible

changes in leakage flow, and the vortex properties on the blade are not affected as

will be shown in the subsequent sections.
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Figure 4-5: Upstream Influence of Transition Duct on Blade Loading Profile at 90%
Span, 0% Clearance

4.4.4 Tip Leakage Vortex State

The centerline velocity ratio and dissipation data are nearly indistinguishable between

duct geometry cases as shown in Figure 4-6 and Figure 4-7. However, if the breakdown

regions are examined, small differences are present which agree with the prior finding

that dissipation is larger in vortex cores with lower minimum core velocities. Ducts

with larger pressure rise, such as Duct 3, have lower minimum velocities in the vortex

core compared to Duct 1. In addition, this means lower swirl numbers for Ducts

1 and 2 as shown in Figure 4-8. The lower minimum velocity ducts in Figure 4-6

correspond to the curves with higher dissipation peaks in Figure 4-7. However, the

effect of the dissipation changes is 3.6% in tip loss coefficient for the most extreme

duct despite the 65% change in AR.

We emphasize that the effect of the transition duct on the vortex properties is
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small when compared to changes seen by Huang due to blade geometry [9]. The

largest changes for the duct cases are on the order of 0.05 for the velocity ratio and

12.5% for the dissipation, compared to changes of 0.15 velocity ratio and 30% in

dissipation due to blade loading distribution changes.
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Figure 4-6: Vortex Velocity Ratio Changes Due to Transition Duct Design
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Figure 4-7: Vortex Loss Generation (2% case - 0% case) Changes Due to Transition
Duct Design, NormalizedDissipation =

dξ
d(x/c)/cp∆Tt
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Figure 4-8: Vortex Swirl Number Changes Due to Transition Duct Design

4.4.5 Tip Leakage Loss Mechanisms

The reasons for the small effect of duct geometry effect are twofold. First, the pressure

changes created by the duct diffusion occur over a larger distance (2 axial chords),

than the pressure changes on the blade surface (0.2 axial chords). A given pressure

rise difference between duct designs corresponds to an order of magnitude smaller

change in pressure gradient than in the blade tip design variation study. The blade

tip vortex properties are thus similar for the various downstream diffusing duct designs

and, correspondingly, the tip loss coefficients are similar.

Further, the regime in which the duct pressure gradient acts on the vortex is one

of low sensitivity for changes in pressure rise. The vortex mixes quickly downstream

of the trailing edge and by x/c = 1.4 the swirl number has fallen to 0.2 and the

velocity ratio has risen to 0.7. The duct extends over the range x/c = 1 to x/c = 3,

so for more than 75% of the duct the pressure rise acts on a weakly swirling vortex

with a small velocity defect.

The difference in sensitivity of (axisymmetric) vortices subjected to a pressure rise

are shown in Figure 4-9, which shows the increases in mixing loss as a contour plot

in a core velocity ratio and swirl number plane. This figure enables a comparison
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of vortex regimes at different axial locations [9]. The regime that corresponds to

the pre-breakdown tip leakage vortex in the range of x/c = 0.6-1.1 is SN = 0.8-1.2

and VR = 0.0-0.3 near the letter B. This region, which exhibits strong sensitivity to

pressure rise, is the regime on which the tip loading changes act. Region A shows

lower sensitivity to pressure rise than region B, and is characterized by SN = 0.0-0.3

and VR = 0.6-0.8. This is why larger changes in loss are created when the loading is

changed from aft to forward style (16%). The difference in vortex state is one reason

why the vortex response is small relative to the vortex response based on tip loading

distribution changes.

Figure 4-9: Swirling Flow Mixing Loss: Letter A:Vortex Regime in Transition Duct
(Weakly Swirling), Letter B:Vortex Regime at x/c = 1 (Strongly Swirling) [9]
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4.4.6 Combined Blade Loading and Transition Duct Effects

A set of computations was done to assess the interaction of effects from combined

blade tip geometry changes and duct geometry changes. The tip loss coefficients are

compared for four cases using the ML and FL blades and ducts 0 and 3 in Table 4.3.

The table shows a reduced tip loss increase between ducts 0 and 3 with the FL blade

(0.9%) compared to the tip loss increase with the ML blade (3.6%).

Duct 0 ξtip Duct 3 ξtip % Change from Duct 0

ML ξtip 0.0631 0.0654 3.6
FL ξtip 0.0578 0.0583 0.9

% Change from ML -8.4 -10.9

Table 4.3: Interaction Effect of Duct Geometry and Blade Geometry on Tip Loss
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Figure 4-10: Interaction of Duct Geometry and Blade Geometry Effects on Vortex
State: a)Vortex Centerline Velocity Ratio, b)Vortex Swirl Number

The reason for the change in loss behavior for the FL blade is due to further

reduction of vortex sensitivity in the duct compared to the ML blade. Figure 4-10

shows peak swirl number is reduced in the FL blade cases, and the deceleration of the

streamwise velocity is not as severe, thus the tip leakage vortex is further desensitized

to downstream pressure changes compared to the ML blade. This agrees with the

tip loss coefficient results in Table 4.3. A second result is that the tip loss benefit
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of forward loading the blade is 10.9% in the AR 1.65 duct, which is larger than the

8.4% for the same blade tip geometry change in the straight duct.

4.5 Conclusions

The impact of the downstream diffusing transition duct geometry on tip loss was

assessed. Parameterization of the duct design was based on work by Sovran and

Klomp, which showed the diffusing duct area ratio and non-dimensional length were

the dominant parameters [11]. Five ducts, including one straight duct, were assessed

to cover the range of existing transition duct designs. The tip loss coefficient increased

3.6% relative to the straight duct for an AR of 1.65. The changes in loss coefficient

were smaller than those seen due to blade tip geometry changes because: i) the duct

pressure rise acts on a vortex that is in an insensitive regime with both reduced swirl

and higher core velocity ratio, and ii) the duct geometry creates pressure gradient

changes that are an order of magnitude less than pressure gradient changes that

result from forward loading the blade.
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Chapter 5

Time Average Effects of Unsteady

Upstream Vane Influence on Tip

Leakage Vortex Mixing Losses

5.1 Introduction

Real turbomachines operate in an unsteady environment, and an important question

is the impact of unsteadiness on tip leakage loss. To assess this, unsteady simulations

of a vane-blade (stage) configuration have been conducted. The aim of the simulations

was to address how turbine tip loss mechanisms are affected by unsteadiness due to

an upstream nozzle guide vane, and a specific item of interest was how the vortex

breakdown mechanism described by Huang was affected.

The discussion in this chapter concerns time averaged results, Chapter 6 will

address the unsteady effects of the vane-blade configuration. The specific questions

to be addressed are:

• What is the time average impact of unsteadiness on the overall loss coefficient?

• What is the time average impact of unsteadiness on the tip loss coefficient?

• Does the loss mechanism discovered by Huang hold in the vane-blade configu-

61



ration for unsteady flow?

• What is the time average impact of unsteadiness on the vortex properties and

dissipation due to leakage flow?

5.2 Computational Details

The Rolls-Royce proprietary CFD code, HYDRA, was used for all unsteady calcu-

lations. The upstream vane and blade were first modeled in a steady manner, with

mixing plane calculations performed on the ML and FL blades for 0% and 2% tip

clearance cases. The steady simulations were then used as the starting point for a

matching set of unsteady phase lag boundary condition cases.

To assess convergence, unsteady probes, which record the flow data at a given

point in space, were inserted into the computational domain. There were 5 on the

trailing edge of the vane, 5 on the leading edge of the blade, and 2 at midspan of the

sliding interface between vane and blade. In addition, the cases with tip clearance

had 5 probes inside the gap evenly spaced in the axial direction, and 5 probes inside

the volume occupied by the tip leakage vortex. The probes were monitored to ensure

periodic behavior was observed. The quantitative assessment of convergence was

done using a fast Fourier transform to characterize the frequency content of these

pressure probes. Figure 5-1 shows the amplitude of the unsteady pressure signal at

the vane passing frequency for a probe in the blade relative frame versus computation

time. The simulation covered 108 vane passings, and over the last 1/2 revolution the

amplitude varies less than 0.1% per vane passing relative to the unsteady pressure

amplitude corresponding to the last simulated vane passing.

Two sets of cases were run. The first set used the design airfoil counts of 36

vanes and 58 blades. This meant that the smallest periodic sector of the stage was

half of the blades (18 vanes and 29 blades), so phase lagging was used to reduce the

computational requirements. The grid used for these calculations is shown in Figure

5-2. The second set used modified airfoil counts of 29 vanes and 58 blades. This

enabled a calculation to be run with a periodic sector that included one vane and two
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Figure 5-1: Analysis of Unsteady Probe Pressure Data Shows Convergence: Normal-
ized Vane Frequency Response Amplitude versus Simulation Time

Figure 5-2: Sample Grid for Phase Lag Computations

blades. A sliding plane calculation was used for this second configuration, because

the periodic sector was small enough to not require phase lagging. The discussion of

data in this chapter is mainly from the calculations with the original airfoil counts.
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The modified vane count cases, which had larger unsteady variations due to the 2 to

1 blade to vane ratio, will be discussed in Section 5.5.

5.2.1 Evaluation of the Unsteady Flow in the Tip Vortex

There were 116 time steps per vane passing period in the calculation. To enable anal-

ysis of this large data volume, each flow file was interpolated to the streamwise grid

shown in Figure 5-3(a). This allowed calculation of streamwise velocity and vorticity

on slices perpendicular to the vortex core path. The streamwise grid has 90% fewer

grid points than the two blade passage mesh in order to reduce data requirements

by eliminating unwanted information. To reduce the data further, volume average

quantities were calculated for the subzone shown in green of Figure 5-3(b), referred to

as the breakdown control volume. The breakdown volume extends from axial location

x/c = 0.7 to x/c = 1.2 and thus includes the region in which the majority of the loss

is generated.

(a) (b)

Figure 5-3: Vortex Analysis Flow Field Domains: a)Radial Slice of Streamwise Grid,
b)Vortex Breakdown Analysis Control Volume
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5.3 Effect of Unsteadiness on Time Average Loss

Coefficient

Table 5.1 shows that the time average overall loss coefficient increases by 4 − 5%

compared to the steady loss coefficient for the stage.

ML 0% ML 2% FL 0% FL 2%

Steady ξ 0.0695 0.143 0.0729 0.141
Unsteady ξ 0.0732 0.149 0.0764 0.147

% Difference 5.2 4.2 4.8 4.0

Table 5.1: Impact of Unsteadiness on Time Average Stage Loss Coefficient

Figure 5-4 shows radial profiles of mass average non-dimensional entropy at two

axial locations, one upstream of the blade and one downstream of the blade, for the

no clearance case. There is an increase in entropy at the hub and tip and a reduction

in entropy near midspan for the unsteady time averaged solution. The source of the

entropy increase is concentrated in the hub and tip passage vortices.
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Figure 5-4: Radial Profiles of Mass Average Entropy Profiles, Circumferentially Av-
eraged, No Clearance ML Blade: a)x/c = -0.25, b)x/c = 1.5
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5.3.1 Effect of Unsteadiness on Time Average Tip Loss Co-

efficient

The effect of unsteadiness on time average tip loss is shown in Table 5.2. There is

a roughly 3% increase in tip loss due to unsteadiness. The time average tip loss

reduction of the FL blade in an unsteady vane-blade configuration is 7.7% compared

to the ML blade, roughly the same as in steady flow (7.5%). To understand the

tip loss coefficient behavior, the details of the tip leakage flow are examined in the

following sections.

ML FL % Difference from ML

Steady ξtip 0.0734 0.0679 7.5
Unsteady ξtip 0.0758 0.0700 7.7
% Difference 3.3 3.1

Table 5.2: Impact of Unsteadiness on Time Average Tip Loss Coefficient

5.4 Analysis of Time Average Flow Field

The most important question to address for these unsteady calculations is how the

presence of unsteadiness affects the time average solution because this influences the

time average loss. The unsteady vane-blade interaction has an effect on the time

average solution, but the results show the effects to be small which is in agreement

with the small (3%) changes in time average tip loss coefficients.

5.4.1 Unsteady Time Average Blade Loading

The time average blade loading has an impact on the time average tip leakage flow

magnitude, and the subsequent development into a tip leakage vortex. If there were

changes in the average driving pressure gradient across the tip, we could expect

changes in the leakage flow distribution. Our hypothesis is that if changes in the

time average diffusion on the suction side of the blade near the trailing edge were

present, the time average vortex structure would be impacted (assuming extreme
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fluctuations are not present). Computations show there is little difference between the

time average and the steady loading due to the presence of unsteadiness as illustrated

by in Figure 5-5.
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Figure 5-5: Steady and Unsteady Time Average Blade Loading Profiles a)50% span,
0% clearance, b)85% span, 2% clearance

5.4.2 Unsteady Time Average Leakage Massflow

Figure 5-6 shows the steady and time average leakage flow and leakage angle distribu-

tions, illustrating the changes in the unsteady results are small relative to the steady

solution. This is expected because of the small changes in time average tip loading.

The difference between the steady and time average massflow is discernible near the

leading edge, but the difference in normalized leakage flow integrated over the tip gap

is less than 0.1% as shown in Table 5.3.

ṁmain (kg/s) ṁtip (kg/s) Normalized ṁtip % Change from Steady

ML Steady 0.485 0.0156 0.0323
ML Unsteady 0.484 0.0156 0.0323 -0.026

FL Steady 0.483 0.0168 0.0349
FL Unsteady 0.482 0.0168 0.0349 0.060

Table 5.3: Impact of Unsteadiness on Time Average Leakage Flow
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Figure 5-6: Steady and Unsteady Time Average Leakage Flow Distributions:
a)Leakage Mass Flow, b)Leakage Flow Angle

5.4.3 Unsteady Time Average Tip Leakage Vortex State

The details of the time average flow field provide information on the time average

leakage flow mixing. The time average vortex properties can be expected to be similar

to the steady properties because the tip loss increases by 3%. Post processing of the

unsteady flow was done at 116 time intervals per cycle and then averaged. Figure

5-7 shows the core centerline velocity ratios versus axial distance. The velocity ratios

match well between the computed steady flow field and the time average analysis,

consistent with the small change in tip loss coefficient.

The axial distribution of time averaged dissipation in the vortex flow is shown in

Figure 5-8. The ML blade has a larger dissipation peak in the breakdown region than

the FL blade for both the steady and the time average results. The time average

dissipation is close to the steady dissipation until the vortex reaches the breakdown

location at x/c = 1.1. The total dissipation is about 10% lower between x/c = 1

and x/c = 2.5 for the unsteady time average cases compared to the steady cases.

A possible explanation for the decrease in peak dissipation between unsteady time

average and steady simulation results at this location is presented in Chapter 6.
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Figure 5-7: Steady and Unsteady Time Average Vortex Centerline Velocity Ratio
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Figure 5-8: Steady and Unsteady Time Average Dissipation Due to Leakage Flow
(2% case - 0% case), NormalizedDissipation =

dξ
d(x/c)/cp∆Tt

5.5 Effect of High Amplitude Blade Loading Un-

steadiness

As mentioned, the stage was also run with a modified vane that gave 2 blades for every

1 vane (airfoil counts: 29 vanes, 58 blades). The reason for this decision was to enable

sliding plane calculations with fewer modeled blade passages to lower computation

time. The level of unsteadiness increased because of the 2:1 count, resulting in larger

blade loading fluctuations than with the design vane count. Figure 5-9 shows blade
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loading envelopes (maximum variation at that location) of the amplitude versus axial

distance for the original vane count and for the modified vane count cases. The

modified vane count envelope is roughly twice the design vane count envelope at the

radial station shown (75% span), and this trend was typical of the different span

locations.
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Figure 5-9: Blade Loading Envelope Increases in Modified Count Case at 75% span:
a)Original Case, b)Modified Case (2 blades for every 1 vane)

With these larger fluctuations in the modified count case, the time average tip loss

coefficient also exhibits lower loss for the FL blade than the ML blade as shown in

Table 5.5. The magnitude of tip loss coefficient change due to loading type is reduced

from 7.3% to 6.0%. Table 5.4 shows the time average loss coefficient increases by

about 4-9% due to the presence of unsteadiness, and is included for completeness.

This more exteme case thus also agrees with the vortex in a pressure rise mechanism,

with the implication that the findings are of more generic applicability.
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ML 0% ML 2% FL 0% FL 2%

Steady ξ 0.0704 0.1437 0.0737 0.142
Unsteady ξ 0.0766 0.1493 0.0797 0.148

% Difference 8.9 3.9 8.2 4.5

Table 5.4: Impact of Unsteadiness on Time Average Stage Loss Coefficient: Modified
2 to 1 Blade Count

ML FL % Change from ML Blade

Steady ξtip 0.0734 0.0679 -7.3
Unsteady ξtip 0.0727 0.0684 -6.0
% Difference -0.9 0.5

Table 5.5: Impact of Unsteadiness on Time Average Tip Loss Coefficient: Modified
2 to 1 Blade Count

5.6 Conclusions Concerning Time Average Results

The unsteady tip leakage flow due to an upstream nozzle guide vane has been exam-

ined computationally. The results of URANS computations show that reducing the

pressure rise at the trailing edge has similar beneficial effects for unsteady flow as

for steady flow. The time average loss coefficient increases roughly 4 − 5%, and the

time average tip loss coefficient increases by about 3%, compared to the steady cal-

culations. The time average properties show little change from the steady value with

the exception of the dissipation associated with mixing of the leakage vortex, which

was lower in the vortex breakdown region in the unsteady calculation by about 10%

compared to the steady case. The benefit for changing blade tip geometry from a ML

blade to a FL blade is thus valid in the presence of unsteadiness due to vane-blade

interaction.
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Chapter 6

Instantaneous Effects of Unsteady

Upstream Vane Influence on Tip

Leakage Vortex Mixing Losses

6.1 Introduction

In this chapter we examine the instantaneous effects of unsteadiness due to an up-

stream nozzle guide vane to provide insight into the time average results discussed in

Chapter 5. The specific questions posed are:

• How does the leakage flow distribution fluctuate with time?

• How does the vortex flow field fluctuate with time?

• How does the loss generation respond as a result of the above temporal fluctu-

ations?

• How generic are the conclusions that we can draw?
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6.2 Characterization of Unsteady Behavior Due to

Vane Passing

Despite the small changes in time average tip leakage loss and leakage flow properties,

the changes within a vane passing period are substantial. It is thus useful to examine

the “cause” of the small time average changes. The role of unsteadiness in the flow

field can be examined from the one-dimensional momentum equation for inviscid flow,

Equation 6.1.

∂u

∂t
+ u

∂u

∂x
=
dp

dx
(6.1)

Equation 6.1 shows the pressure gradient is balanced by the sum of the local and

convective accelerations. The ratio of the two terms is represented by the reduced

frequency, which would be defined for this comparison as β = (∂u/∂t)/(u∂u/∂x). The

reduced frequency of a system can also be defined more globally, using representative

values as β = ωL/U. L is a relevant length scale of the system, U is a representative

flow-through velocity, and ω is a representative frequency of the unsteadiness source.

The reduced frequency can be thought of as the ratio of the flow-through time to the

flow-change time, and the behavior of an unsteady flow can be classified based on the

reduced frequency magnitude [6].

β � 1 unsteady effects small - quasi-steady flow;

β � 1 unsteady effects dominate;

β ∼ 1 both unsteady and quasi-steady effects important;

For an axial flow turbine, the reduced frequency due to blade or vane passing is

typically of order one [6]. If the characteristic velocity is chosen to be the average

axial velocity in the blade passage and the characteristic length is taken to be the
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blade axial chord, β for the present stage is 0.8.

A local reduced frequency can also evaluated as a point quantity in the flow

field by examining the ratio of the local and convective accelerations, defined as

βacc = |∂~v/∂t|/|~vd~v/d~x|. (In doing this calculation of reduced frequency included all

acceleration terms, not just those in the axial direction.) The reduced frequency

calculated in the flow field, spatially averaged versus axial location and then time

averaged, is shown in Figure 6-1. The three curves are the βacc in the upper 50% of

the passage, the βacc outside the vortex core in the upper 50% of the passage, and the

βacc inside the vortex core. The figure shows increased unsteadiness inside the vortex

core, which peaks at the trailing edge. This agrees with the high velocity gradients

due to the swirling flow and the core reversal region. Small changes in the vortex

centerline location can create local accelerations.
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Figure 6-1: Unsteady Time Average Reduced Frequency, Spatially Averaged Perpen-
dicular to Streamwise Direction, ML Blade 2% Clearance

The passage reduced frequency based on characteristic values and the flow field

time average reduced frequency for the tip leakage vortex flow are both of order

unity, so both steady and unsteady effects are important. For the flow through the

gap however, using the average gap velocity and average blade tip width, gives a

calculated value of β to be 0.07. This is an order of magnitude smaller than the

75



freestream value and implies the gap flow regime is quasi-steady.

6.3 Analysis of Instantaneous Flow Field

6.3.1 Unsteady Tip Leakage Massflow

The magnitude of the tip leakage flow is a contributor to the tip leakage loss, and

we now examine its time variation. There are temporal changes in leakage flow due

to the temporal variations in blade tip loading. Figures 6-2(a) and 6-2(b) show the

pressure envelopes (p versus x/c) at 75% span for the ML and FL blades respectively.

These illustrate the maximum and minimum pressures at each spatial location on the

blade over the period. The figures illustrate that the amplitude of the fluctuations is

greatest on the suction side of the blade and the unsteadiness is concentrated toward

the blade leading edge.
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Figure 6-2: Blade Loading Envelopes at 75% span, 2% clearance: a)ML blade, b)FL
blade

Due to the blade pressure fluctuations, the leakage flow through the gap also varies

with time. Figure 6-3(a) illustrates the tip leakage massflow distribution envelope,

the maximum and minimum leakage flow at any given time, versus gap exit location.

Figure 6-3(b) illustrates the amplitude in leakage flow of the fluctuation, taken to
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be the difference of the maximum and minimum envelope curves normalized by the

axial stage massflow, versus gap exit location. The amplitude of unsteadiness is

concentrated towards the leading edge and decays towards the trailing edge. Figure

6-4 shows analogous graphs of the leakage flow angle, measured from the streamwise

direction. The maximum variation is 20◦ and is concentrated towards the leading

edge.
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Figure 6-3: Unsteady Tip Leakage Flow: a)Leakage Mass Flow Envelope,
b)Amplitude of Fluctuations

The quasi-steady gap flow assumption, implied by the evaluation of the gap re-

duced frequency, is next assessed. The driving pressure difference across the tip

is approximated as the instantaneous blade tip loading (taken to be the integrated

pressure difference between the pressure and suction side of the blade at 85% span).

Figure 6-5 shows the time variation of the blade tip loading and leakage flow are

roughly in phase, supporting the quasi-steady gap flow approximation.

To further assess the quasi-steady approximation we can compare a quasi-steady

leakage flow analysis to the computed leakage flow. The quasi-steady analysis used

a steady upstream stagnation pressure, the average gap discharge coefficient, and

the unsteady instantaneous suction side blade pressures at 85% span to provide the

axial distribution of quais-steady gap leakage flow. This leakage distribution was

integrated to yield the quasi-steady leakage flow at each instant. Figure 6-6 shows
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Figure 6-4: Unsteady Tip Leakage Angle: a)Leakage Flow Angle Envelope,
b)Amplitude of Fluctuations
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Figure 6-5: Time Variation of Tip Leakage Flow and Tip Blade Loading

the quasi-steady leakage flow to be in phase with the computed leakage flow from the

numerical simulations. The time average quasi-steady leakage flow differs by 1.5%

from the CFD tip leakage flow, supporting the quasi-steady nature of the gap flow.

It is worth noting that the time variation in integrated blade loading is smaller

than that implied by the unsteady pressure amplitude in the blade loading envelope.

This is because the loading does not increase or decrease across the entire blade chord
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Figure 6-6: Comparison of Time Variation of Quasi-Steady and Actual Leakage
Flow: a)Normalized Leakage Flow: ṁtip/ṁmain b)Normalized by Mean Leakage Value:
ṁtip/ṁtipavg

in phase. Figure 6-7 illustrates this point. The instantaneous blade loading and the

mass flow distribution are given as a function of x/c, at two instants in time.
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Figure 6-7: Instantaneous Pressure and Leakage Flow Behavior: a)Snapshots of ML
Blade Loading at 85% Span, b)Snapshots of Leakage Flow Distribution

The instantaneous pressure exceeds the mean value at some locations on the blade,

but is lower than the mean at others. The result is an integrated variation in pressure

substantially lower than the blade loading envelope suggests. If the extremes of the
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blade loading envelope were used, the total loading would vary ±15% from the mean

loading, instead of the ±6% result obtained by computing the loading at each instant

in time. The temporal mass flow variation calculated from the numerical simulation

is thus also smaller than if it were based on the leakage flow envelope. Using the

extremum of the leakage flow envelope, the variation would be ±8% from the mean

leakage flow, instead of the ±1.5% result from the numerical simulations.

6.3.2 Unsteady Tip Leakage Vortex State

The tip clearance vortex, and therefore the loss generated by the leakage flow, ex-

periences considerable fluctuations due to unsteady vane passing. The core velocity

ratio, circulation, vortex area, and core stagnation pressure all fluctuate, as does the

pressure rise to which the core is subjected.

To characterize the unsteadiness, the average core velocity ratio envelope is shown

in Figure 6-8 for axial locations between x/c = 0.7 and x/c = 1.5. The core experiences

±15% variation in the time average core velocity in the breakdown region at x/c =

1.05.
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Figure 6-8: Unsteady Vortex Core Velocity Ratio Envelope

Figure 6-9 illustrates the time variation of the spatially averaged pressures inside
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the vortex core and in the passage outside the vortex core at x/c = 0.7. The pressure

fluctuations within the core are in phase with changes in the pressure external to the

core, thus the external pressure drives the core pressure. Similar analyses at other

locations in the range x/c = 0.7 to x/c = 1.4 also show the core and passage pressures

are in phase.
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Figure 6-9: Time Variation of Pressures, Spatially Averaged Perpendicular to Stream-
wise Direction at x/c = 0.7: Inside Vortex Core and External to Vortex Core in Upper
50% Span of Passage

6.3.3 Unsteady Loss Generation

The instantaneous dissipation field was assessed to determine the impact of vortex

flow field fluctuations on the time variation of leakage loss generation. Figure 6-

10 gives a dissipation envelope, which shows the extremum over the period of the

integrated dissipation on axial slices in the blade passage for the 2% clearance case

minus the 0% clearance case. The figure illustrates the variation in loss generation

is concentrated in the vortex breakdown region from x/c = 1.1 to x/c = 1.7. The

mixing loss scales with (∆u)2, and this region is also the location of the largest ∆u

between the core and freestream, within which the minimum core velocity exists.

Figure 6-11 captures the time variation of loss generation in the breakdown region,
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Figure 6-10: Leakage Loss Generation Envelope (2% case - 0% case):
NormalizedDissipation =

dξ
d(x/c)/cp∆Tt

showing the total dissipation in the control volume enclosing the breakdown region

(displayed in Figure 5-3(b)). The variations of the entropy production due to the

vortex breakdown are approximately ±20% compared to the mean volume total dis-

sipation. The ML and FL blades loss generation behave in a similar manner, in that

they are in phase with one another and have similiar magnitudes of time variation

amplitude.

To determine why these large variations are present, the time variation of the

breakdown control volume average velocity deficit in the core was examined. In

Figure 6-12, the velocity deficit, ∆u, is defined to be the difference in streamwise

velocity between any point inside the vortex core and the average velocity outside

the core at each axial slice in the breakdown control volume. The figure shows that

the volume average velocity deficit is shown to vary by ±15% from the time average

volume average deficit. This magnitude of variation is similar both to what was seen

in the core velocity envelope in Figure 6-8, and to the breakdown control volume

dissipation variation illustrated in Figure 6-11.

Comparison of Figure 6-11 and Figure 6-12 shows that the time variation of ve-

locity deficit leads the dissipation inside the breakdown control volume by roughly 1/6
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Figure 6-11: Time Variation of Spatially Averaged Vortex Loss Generation in Break-
down Control Volume
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Figure 6-12: Time Variation of Spatially Averaged Streamwise Velocity Defect of
Vortex Core in Breakdown Volume

vane passing periods. The reason for the phase offset can be explained using the dis-

sipation equation, Equation 6.2. We can break the dissipation into two parts, namely

the factor of 2µeff/T , and the velocity gradient terms. Figure 6-13 shows the time

variation of these two parts, spatially averaged over the breakdown control volume.
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Figure 6-13: Time Variation of Spatially Averaged Dissipation Decomposition Terms
and Turbulence Production in Breakdown Control Volume

Comparison of Figure 6-13 and Figure 6-12 shows the gradients inside the control

volume are in phase with the vortex core velocity deficit. However, the viscosity

term lags behind by roughly 1/4 periods. The reason for the phase offset between the

viscosity and gradient terms can be explained using the turbulence production, S, in

Equation 6.3 [2].

S =
√

2ΩijΩij − 2.0min(0,
√

2SijSij)−
√

2ΩijΩij) (6.3)

The time variation of the spatially averaged turbulence production in the control

volume is shown in Figure 6-13 to be in phase with the gradient terms. The turbulence

production S, rather than the actual viscosity µeff , is in phase with the gradient

terms. Thus, the dissipation lags the velocity deficit signal. The decrease in time
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average breakdown dissipation due to unsteadiness, in Figure 5-8, is thus caused by

the lag between the turbulent viscosity and velocity gradients.

6.3.4 Source of Time Variation in Leakage Flow Loss Gener-

ation

Two sources of the unsteady loss generation variation exist. One is the temporal vari-

ation in tip gap exit flow. The second is temporal alteration of the vortex breakdown

severity. To determine whether one source is dominant, we have carried out a control

volume analysis to mix out the gap exit flow at constant pressure for every time step

during the period. The time average distribution of normalized loss contribution re-

sulting from this analysis (calculated with Equation 3.1) versus axial distance along

the gap is shown in Figure 6-14. The time average mixing loss integrated over the

gap has a 7.5% and 5.5% increase for the ML and FL cases respectively compared to

the steady flow computations.
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Figure 6-14: Steady and Time Average Loss Distribution with Leakage Flow Mixed
Out at Instantaneous Suction Side Pressure, Normalized CV loss = Teds/cp∆Tt

The time variation of the gap exit control volume loss, integrated over the blade

axial chord, is shown in Figure 6-15. Two aspects of the flow can be seen. First,
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comparison of Figure 6-15 and Figure 6-5 shows the unsteady control volume loss is

roughly in phase with the magnitude of the tip leakage flow, because higher massflow

corresponds to higher cross flow velocity which means more lost kinetic energy. Sec-

ond, the variation of the gap exit control volume loss is roughly ±6%, considerably

lower than the ±20% variation in unsteady loss generation in the vortex breakdown

region. The implication is that the major contributor to time variation in tip leakage

flow loss generation is the time variation in the pressure field to which the vortex is

exposed, not the time variation in unsteady tip leakage flow.
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Figure 6-15: Time Variation of Leakage Loss for Gap Flow Mixed Out at Constant
Instantaneous Pressure

86



6.4 Comments on Generic Flow Features

To provide insight into the three-dimensional turbine calculation results an axisym-

metric model problem has been examined to determine the loss behavior of an un-

steady vortex. These calculations also enable comments to be made concerning the

generic applicability of the conclusions regarding the time average results in Chapter

5. The model problem is a vortex in a time varying pressure rise. The source of

unsteadiness was selected because the pressure rise a vortex experiences is central to

the steady vortex breakdown mechanism.

6.4.1 Computational Details

The axisymmetric CFD was done in FLUENT as in the work of Huang who character-

ized the behavior of vortices in a pressure rise [9]. The configuration was a diverging

duct, with inlet stagnation pressure distribution corresponding to a Burger’s vortex.

The exit boundary condition was specified as a simple radial equilibrium static pres-

sure distribution with the pressure at vortex centerline at the duct exit specified in

time (as a user defined function in FLUENT)1. The outer wall is a slip wall to avoid

extraneous losses, and the Re-Normalisation Group (RNG) k − ε turbulence model

was used.

The axial and swirl velocity inlet profiles for the axisymmetric vortex are given

in Figure 6-16 as a function of radius normalized by the core edge radius. The swirl

number at the inlet was set to 0.83 and the inlet core velocity defect was 0.6, as in the

vortex about 0.2 axial chords upstream of vortex breakdown in the three-dimensional

turbine case.

A sample grid is shown in Figure 6-17 to illustrate the axial distances in the

geometry. The radius of the duct is 10 times that of the vortex core (re). The vortex

radius approximately matches (within 25%) the radius of the tip leakage vortex at

1Calculations were also done with inlet velocity fluctuations corresponding to variations in ve-
locity defect and in circulation. These did not capture the behavior seen in the three-dimensional
calculations and they have not been included here. The total variation in time average mixed out loss
with these calculations differed less than 10% compared to steady cases for unsteadiness amplitudes
as high as 40%.
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Figure 6-16: Axisymmetric Vortex Inlet Velocity Profiles: Axial Velocity Core Defect
= 0.6, Swirl Number = 0.83

x/c = 0.74, upstream of the breakdown location. The freestream axial velocity,

unsteady period, and axial system length were specified as a group to ensure the

model computations had a similar reduced frequency to the three dimensional turbine

computations.

Figure 6-17: Axisymmetric Vortex Computational Domain

6.4.2 Loss Mechanisms for a Vortex in an Unsteady Pressure

Rise

For a steady tip leakage vortex, Huang showed that the vortex mixing loss can decrease

with increase in pressure rise, but at the onset of vortex breakdown the loss increases

rapidly with increase in pressure rise [9]. To make a general statement that this

scenario holds in unsteady flow, we need to show the behavior is replicated in a flow

with a time varying pressure rise. The magnitude of the pressure rise in the steady
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axisymmetric cases, and the time average pressure rise in the unsteady calculations

(over the range of parameters studied), is set by the duct area ratio. To assess the

vortex mixing loss mechanism in unsteady flow, a range of duct area ratios from 1 to

1.32 were used to provide Cp values ranging from 0 to 0.42. Three separate cases were

run: steady flow, unsteady flow with exit pressure variation of ±10%, and unsteady

flow with exit pressure variation of ±20% from the mean Cp.
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Figure 6-18: Mixed Out Loss for a Vortex in Unsteady Flow in a Pressure Rise

Figure 6-18 shows mixed out loss versus pressure rise for steady and time average

unsteady cases. The difference between the mixed out loss of the time average un-

steady flow and the steady flow is roughly 1%. The small changes in loss are due to

the low curvature shape of the loss vs. Cp curve; it is essentially two linear sections

connected by a “knee” which corresponds to the onset of vortex breakdown. The

impact of the unsteady pressure variation should be most pronounced in the high

curvature region with Cp = 0.35.

The unsteadiness was further examined in two sets of calculations with fixed duct

geometry corresponding to Cp = 0.35. The first set was designed to examine the

sensitivity of the time average mixed out loss to the unsteady pressure amplitude.

The second set assessed the impact of reduced frequency on the time average mixing

loss. Figure 6-19, which shows mixing loss versus exit pressure amplitude (normalized
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by the time average Cp), illustrates the small sensitivity of the mixed out loss to the

unsteady pressure rise fluctuations. Figure 6-20 shows the variation in loss versus

reduced frequency (normalized by the β for the three-dimensional case). Again, there

is only a small variation in loss. In summary, neither a time variation of exit pressure

of ±40%, or an order of magnitude change in reduced frequency result in more than

a 2% increase in mixed out loss relative to steady flow.
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Figure 6-19: Sensitivity of Time Average Mixing Loss to Amplitude Variation
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Figure 6-20: Sensitivity of Time Average Mixing Loss to Reduced Frequency Variation
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6.5 Conclusions

Instantaneous leakage flow changes in the unsteady flow have been assessed to provide

insight for the time average results. Consideration of the reduced frequency showed

that both steady and unsteady effects are important for the vortical flow, although

the flow through the gap is quasi-steady. The quasi-steady assumption for gap flow

was further supported by comparisons of the quasi-steady leakage flow and the leakage

flow from the numerical simulations.

The streamwise velocity in the core shows fluctuations of ±15% and these fluc-

tuations were shown to be associated with loss generation variations of similar size.

Comparison of the time variations of loss generation and of gap exit control volume

loss shows that the unsteady change in pressure rise experienced by the vortex plays

the dominant role in driving the fluctuations in the vortex breakdown region.

To provide insight concerning the applicability of the vortex breakdown loss mech-

anism in an unsteady flow, a model problem of an axisymmetric vortex in an unsteady

pressure rise was examined. The behavior of the unsteady vortex mixing loss matched

the steady flow loss mechanism; mixing loss decreases with increasing pressure rise

until the onset of vortex breakdown. In addition, the mixed out loss was shown to

be insensitive (less than 2% change) to pressure rise fluctuation amplitudes of ±40%

compared to the mean Cp and order of magnitude changes in reduced frequency. The

results imply that time average tip loss behaves similar to the steady calculations not

only for this turbine, but for similar turbine designs as well.
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Chapter 7

Conclusions and Recommendations

for Future Work

7.1 Summary

Three dimensional RANS and URANS calculations have been used to assess the im-

pact of several specific design features and aspects of the actual turbine environment

on turbine blade tip loss mechanisms. In particular, examination was carried out of

the effects of bowing (positive and negative), the effect of downstream transition duct

geometry, and the effect of unsteadiness due to an upstream vane. A summary of the

results is given below.

• Tip clearance loss is reduced by positive blade bow. A blade with the two-

dimensional airfoil sections shifted tangentially such that the suction side is

radially concave reduces the tip loss coefficient. Loss is reduced due to reduction

of the tip loading, which decreases the velocity difference between leakage flow

and suction side passage flow, and hence the mixing losses. The maximum

positive bow studied in this work was 130◦, resulting in a 20% reduction in the

tip loss coefficient.

• Over the range examined, the effect of the downstream diffusing transition duct

design on tip leakage losses is small compared to the effect of changing the blade
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tip design. A 65% increase in duct area ratio caused a 3.6% increase in tip loss

coefficient. In contrast, the change in geometry between a mid loaded blade and

a forward loaded blade created a 7.5% decrease in tip loss. There are two reasons

for this. One is the difference in vortex state, in that the diffusing duct acts on

the vortex when it has low swirl and high ratio of core to freestream velocity

(S ∼ 0.2 and VR ∼ 0.7 in the case investigated). Blade geometry design affects

the vortex at high swirl and low ratio of core to freestream velocity (S ∼ 1.2,

VR ∼ 0.2 in the case investigated). The latter condition is much more sensitive

to changes in pressure than the former. In addition, the variation in pressure

gradient between duct designs is an order of magnitude less than for variations

due to blade geometry design. The implication is that the downstream diffusing

transition duct can be designed to meet other constraints without creating large

increases in tip loss.

• The time average tip leakage loss calculated using URANS, with unsteadiness

arising from the upstream nozzle guide vane, differed less than 5% from tip

leakage loss calculated on a steady state basis. The time average blade loading,

leakage flow, and vortex core velocity also show little change relative to steady

state calculations. Further, model calculations with an axisymmetric vortex

show the tip leakage loss vortex breakdown mechanism is insensitive to unsteady

pressure fluctuations, at least up to an amplitude of ±40% of the mean pressure

rise. This implies that steady calculations can provide tip loss coefficient trends

adequately.

• The reduced frequency of the vortical flow was 0.8. The tip gap flow, however,

is characterized by a reduced frequency less than 0.1, and can be treated as

quasi-steady, as verified by comparison of quasi-steady gap flow analyses to the

unsteady computations.

• Although the time average quantities match the steady values, there are sub-

stantial instantaneous fluctuations in the vortex flow field. The vortex core

velocity in the breakdown region changes by ±15% over the period, causing
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variation in the breakdown dissipation of ±20%. The reason for these vari-

ations is the gap flow does not mix out instantly, but forms a vortex that is

subjected to a time-varying pressure rise at the blade trailing edge; if the leakage

flow did mix out instantly, the loss generation would vary by ±6%. The dispar-

ity between the unsteady variation in actual loss generation and loss generation

estimation due to instantaneous mixing is analagous to the scenario previously

described by Huang for steady flow; it is important to the instantaneous loss

generation that the leakage flow creates a tip leakage vortex which only mixes

out after passing through a pressure rise in the region of the blade trailing edge.

• Based on the computations, the mechanism for tip leakage vortex loss in the

three different situations examined appears to be similar to that which is seen

for an isolated turbine blade.

7.2 Recommendations for Future Work

A next step in this research could be to determine the effect of the downstream

vane passing pressure field on the tip leakage vortex, and the subsequent mixing loss.

Following this, an unsteady 1.5 stage study should be run to determine if there are

interaction effects between the two sources of unsteadiness. It is possible that benefits

could be realized by clocking the downstream vanes relative to the upstream vanes.

In addition, a steady parametric analysis of inlet conditions on the tip leakage

loss generation would be useful. The impact of boundary layer thickness on vortex

formation is a feature that should be quantified.

Finally, in connection with the overall problem of unsteady loss and mixing, it

would be useful to define the effect of vane-blade interaction on wake mixing and loss

for a basic case such as a two-dimensional flow.
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