
Goal-oriented inference: Theoretical foundations

and application to carbon capture and storage

by

Chad Lieberman

Submitted to the Department of Aeronautics & Astronautics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2013

c© Massachusetts Institute of Technology 2013. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Aeronautics & Astronautics

May 15, 2013

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Karen Willcox

Professor, Department of Aeronautics & Astronautics
Thesis Supervisor

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Youssef Marzouk
Associate Professor, Department of Aeronautics & Astronautics

Committee Member

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Tommi Jaakkola

Professor, Department of Electrical Engineering & Computer Science
Committee Member

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Eytan H. Modiano
Professor, Department of Aeronautics & Astronautics

Chair, Graduate Program Committee



2



Goal-oriented inference: Theoretical foundations and

application to carbon capture and storage

by

Chad Lieberman

Submitted to the Department of Aeronautics & Astronautics
on May 15, 2013, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Many important engineering problems require computation of prediction output quan-
tities of interest that depend on unknown distributed parameters of the governing
partial differential equations. Examples include prediction of concentration levels in
critical areas for contamination events in urban areas and prediction of trapped vol-
ume of supercritical carbon dioxide in carbon capture and storage. In both cases the
unknown parameter is a distributed quantity that is to be inferred from indirect and
sparse data in order to make accurate predictions of the quantities of interest. Tra-
ditionally parameter inference involves regularization in deterministic formulations
or specification of a prior probability density in Bayesian statistical formulations to
resolve the ill-posedness manifested in the many possible parameters giving rise to the
same observed data. Critically, the final prediction requirements are not considered
in the inference process.

Goal-oriented inference, on the other hand, utilizes the prediction requirements
to drive the inference process. Since prediction quantities of interest are often very
low-dimensional, the same ill-posedness that stymies the inference process can be
exploited when inference of the parameter is undertaken solely to obtain predictions.
Many parameters give rise to the same predictions; as a result, resolving the parameter
is not required in order to accurately make predictions. In goal-oriented inference,
we exploit this fact to obtain fast and accurate predictions from experimental data
by sacrificing accuracy in parameter estimation.

When the governing models for experimental data and prediction quantities of in-
terest depend linearly on the parameter, a linear algebraic analysis reveals a dimension-
ally-optimal parameter subspace within which inference proceeds. Parameter esti-
mates are inaccurate but the resulting predictions are identical to those achieved by
first performing inference in the full high-dimensional parameter space and then com-
puting predictions. The analysis required to identify the parameter subspace reveals
inefficiency in experiment and sources of uncertainty in predictions, which can also
be utilized in experimental design. Linear goal-oriented inference is demonstrated on
a model problem in contaminant source inversion and prediction.
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In the nonlinear setting, we focus on the Bayesian statistical inverse problem for-
mulation where the target of our goal-oriented inference is the posterior predictive
probability density function representing the relative likelihood of predictions given
the observed experimental data. In many nonlinear settings, particularly those involv-
ing nonlinear partial differential equations, distributed parameter estimation remains
an unsolved problem. We circumvent estimation of the parameter by establishing
a statistical model for the joint density of experimental data and predictions using
either a Gaussian mixture model or kernel density estimate derived from simulated
experimental data and simulated predictions based on parameter samples from the
prior distribution. When experiments are conducted and data are observed, the sta-
tistical model is conditioned on the observed data, and the posterior predictive prob-
ability density is obtained. Nonlinear goal-oriented inference is applied to a realistic
application in carbon capture and storage.
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Committee Member: Tommi Jaakkola
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Chapter 1

Introduction

Many years of research have focused on the development of algorithms for estimating

distributed parameters of mathematical models for physical systems. Models are fre-

quently based on partial differential equations (PDEs). Experiments are performed,

and parameters must be estimated from observed data [7]. In these cases, inference

is typically severely ill-posed due to the relatively high-dimensionality of parameters

compared to that of the observed data [38]. Problem formulations are either deter-

ministic or statistical, and both require special attention to the ill-posedness and the

extensive computational resources required to estimate the parameter [75, 79]. Rec-

ognizing that estimation of parameters is a step in pursuit of making predictions,1

and subsequently decisions, we establish goal-oriented inference, a novel approach to

estimation when the goal is to obtain accurate predictions from data without regard

for accuracy in parameter estimation. In short, we refocus resources toward estimat-

ing the predictions, the true target of the parameter estimation. By exploiting the

low-dimensionality of the map from data to predictions, we expose weaknesses in the

experimental design, discover the major sources of uncertainty in the predictions, and

circumvent the most expensive online computations, making feasible pseudo real-time

deployment.

Motivation for goal-oriented inference is discussed at greater length in section 1.1.

1It should be noted that there are fields where parameter estimation is the goal and predictions
either do not exist or are not apparent. These settings usually have a flavor of scientific discovery
rather than the engineering context we treat in this work.
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In section 1.2 we define the key terminology of the work. Current practice in the

estimation of distributed parameters is discussed in section 1.3. We give particular

attention to the challenges of PDE-constrained inverse problems in section 1.4. In

section 1.5 we highlight the recent advances and trends in the research community to

focus on quantities of interest, the predictions in the context of goal-oriented inference.

1.1 Motivation for goal-oriented inference

When predictions depend on a system with an unknown distributed parameter, a

typical approach is to perform parameter inference on collected data before passing

the estimate to the prediction simulation. Data informative about the parameter are

first observed. An inference procedure, deterministic or statistical, is then employed

to make an estimate of the parameter based on the observed data and an assumed

model. The parameter estimate is then used as an input to a simulation that will

make predictions.

The inference step is ill-posed and computationally very expensive. In determin-

istic formulations of the inverse problem, a solution is determined by regularizing

an objective function minimizing the mismatch between observed data and model-

predicted data [44]. The field of regularization theory has developed to address ill-

posedness [27, 40]. While the solution of such inverse problems is very well understood

compared to its statistical counterpart, the computational cost for PDE-constrained

problems still prohibits pseudo real-time solution, limiting the applicability of this

strategy.

Bayesian statistical formulations treat ill-posedness in the inverse problem by spec-

ifying a prior distribution over the parameter space, a representation of one’s belief in

the relative likelihood of different parameters before data are observed [72, 45]. In the

limited data context, however, this prior distribution will not be forgotten through

Bayesian updates; its effect remains even after all data are processed [74]. There

are many computational challenges of Bayesian inference of distributed parameters

for models described by PDEs. Markov chain Monte Carlo (MCMC) methods are a

18



popular technique for exploring the posterior distribution of the Bayesian inference

[80, 54, 58, 42, 76, 13, 33]. However, MCMC requires efficient exploration of param-

eter space and many samples, meaning many PDE solves. Efficient exploration is

challenging in high-dimensional parameter spaces and many PDE solves makes the

computation intractable for the pseudo real-time setting.

These challenges can be addressed by incorporating the final objectives of the

inference into the problem statement. In many engineering applications, typically

parameter estimation is not the goal but rather a critical intermediate step in making

predictions of the system under different operating conditions. We propose a new

approach to the parameter estimation problem that focuses on accuracy in those pre-

dictions. We find that exploiting the low-dimensional map from observed data to

predictions allows us to circumvent many of the challenges mentioned above, making

many high-dimensional problems amenable to real-time prediction in the determinis-

tic setting and tractable prediction in the statistical setting.

1.2 Terminology and scope

There are two central components to the developments in goal-oriented inference: an

experimental process by which data are obtained, and a prediction process yielding

the target of our estimation.

An experimental process is a physical system, or model thereof, as well as an

observation paradigm given by experimental design, that produces data depending

on the existing, but unknown, parameter. The data are corrupted by noise, which we

will regularly model as additive Gaussian. In this work, the data will be simulated

using a model of a physical system; in practice, one would perform the experiments on

the real world. Our applications are governed by PDEs. Therefore, the experimental

process will consist of the composition of the numerical solution of a system of PDEs,

determining state variables from a given parameter, and an observation operator,

which yields uncorrupted data from the state variables.

A prediction process is a physical system, or model thereof, that yields an estimate
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of a quantity of interest given a specified value of model parameter. Although such

a process usually is not modelled perfectly, we will assume there is no noise in the

output. Like the experimental process, the prediction process will typically also

consist of the composition of a PDE operator and an observation operator. The PDE

need not be the same as the experimental process; however, the two must be linked

by a consistent description of the unknown parameter.

A block diagram of the two processes, connected by the parameter, is shown

in Figure 1-1. Goal-oriented inference will involve the exploitation of information

content in observed data to make estimation of the prediction.

Figure 1-1: The experiment and prediction processes both take as input the shared
parameter. The output of the experimental process is corrupted by noise to yield the
observed data. The output of the prediction process yields the prediction quantity of
interest.

For the purposes of this work, we do not consider model uncertainty in either the

experimental or prediction processes. We focus solely on the uncertainty, or lack of

information, about the parameter resulting from the unobservability of the processes.
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For both processes, this is a result of a PDE operator with collapsing spectrum and

observation with significant sparsity.

The models underlying the two processes are assumed to have outputs that vary

smoothly with the parameter. We do not consider problems with discontinuities or

parameters taking integer values. Parameters reside as a field in 1-, 2-, or 3-d in

continuous form or as a vector of modal coefficients in an n-d Euclidean space in

discretized form where continuity is enforced by the modal functions.

The data collection process for parameter estimation can be sequential or batch. In

sequential estimation, the parameter estimate is updated with each new measurement.

In batch processing, all of the data are collected first, then the parameter estimation

problem is solved. We will focus on the batch processing of data in this work. Goal-

oriented inference can be extended to the sequential processing of data, but we do

not undertake that task here. When experiments are completed, no additional data

will be obtained before predictions are to be made.

1.3 Current practice in identification of distributed

parameters

We are concerned primarily with distributed parameter systems, often governed by a

set of partial differential equations (PDEs) modeling the relevant physics in space and

time. These systems have infinite-dimensional parameters whose spatial discretization

leads to high-dimensional vector forms. Some examples include contaminant identi-

fication and carbon dioxide sequestration. The contaminant problem is governed by

a convection-diffusion equation with the unknown initial contaminant concentration

as the parameter. In carbon dioxide sequestration, governed by two-phase flow in

porous media, permeability and porosity of the subsurface are unknown parameters.

Parameters must be estimated to understand the behavior of the system, to utilize

the system accurately in simulation, and to design or control the system.

Distributed parameter systems are often estimated by reconciling indirect obser-
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vations with mathematical models of the system. For the problems of interest, it is

not feasible, or necessarily useful, to observe the unknown parameter directly. For

example, in the contaminant identification problem, the parameter only exists in the

past as the initial concentration; in the carbon dioxide sequestration application, some

core samples may be taken but they are expensive to obtain, undermine the existing

structure of the subsurface, and only provide localized information.

A key challenge of estimating distributed parameter systems is the high dimen-

sionality of the unknown parameter. In the continuous description, the parameter

is a scalar, vector, or even tensor field quantity defined everywhere in the domain.

By the process of discretization in space, we arrive at a mathematical model suitable

for computer implementation but with many (sometimes hundreds of thousands or

even tens of millions) of unknown parameters. It is rarely, if ever, the case that every

component of the high-dimensional parameter can be inferred from available data.

The quantity of experimental data is often orders of magnitudes smaller than the

number of unknown parameters. This is the essence of one form of ill-posedness in

inverse problems [38].2

This ill-posedness is addressed primarily by two classes of formulations of inverse

problem: regularized deterministic formulations and statistical formulations. We

discuss each in turn below. In what follows we will often refer to inverse problems

in the deterministic setting and inference in the statistical setting to be consistent

with established nomenclature. They are different methods for answering essentially

the same question: How do we estimate the high-dimensional parameter given low-

dimensional data?

1.3.1 Regularized deterministic inverse problems

Deterministic inverse problem formulations are generally PDE-constrained optimiza-

tion problems with an objective function involving the mismatch between observed

2In our applications, there is insufficient data based purely on a dimensional argument. In many
applications, however, even with copious data, the parameter may not be uniquely determined. It
depends on the amount of independent information contained in the data.
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data and model-predicted experimental outputs. A parameter that drives this mis-

match below the noise level of the data is a strong candidate to be the true parameter

of the system. As mentioned before, many parameters may result in such a small mis-

match. In order to improve the mathematical posedness and numerical robustness,

the inverse problem is usually regularized by penalizing or restricting the parameters

in a manner that does not depend on experimental data.

Regularization techniques can be categorized by two forms: subspace regulariza-

tion and penalty regularization. Subspace-regularized formulations search for pa-

rameter estimates confined to a well-defined subspace. For penalty regularization, a

term is added to the objective function that positively contributes to the objective

function more for parameters exhibiting some undesirable characteristics (e.g., sharp

interfaces, large difference from a nominal value, etc.).

In linear inverse problems, a subspace regularization may be based on the trun-

cated singular value decomposition (TSVD) of the experimental observation operator.

Effectively, coefficients of parameter modes informed by experimental data are esti-

mated; the component of the parameter in the orthogonal complement is taken to

be zero. The goal-oriented inference approach we present in Chapter 3 will also give

rise to a subspace regularization, where the subspace is chosen to properly balance

information content in the experimental data with requirements for the predictions.

Regularization is more generally imposed by adding a penalty term to the objective

function. Tikhonov regularization is one common approach where a suitably-defined

norm of the difference between the parameter and a nominal value is balanced against

the mismatch [27]. The nominal value is chosen to bias the parameter estimate

toward an expected parameter. The norm is selected to either admit or penalize

against parameters with certain characteristics, i.e., smoothness, total integral, or

sharp gradients.

One disadvantage of the deterministic formulation is that the parameter estimate

in the end is a single field quantity. In particular, we have no measure of the uncer-

tainty in that solution. In contrast, uncertainty quantication follows naturally from

the statistical formulation of the inverse problem.
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1.3.2 Statistical inference problems

Bayesian statistical inference formulations model the unknown parameter as a random

variable (or in the case of distributed quantities as we have here, a random field).

The result of the Bayesian inference is a posterior distribution over the parameters

given observed experimental data. Critical components of the formulation include

specification of a prior distribution over the parameters a priori and the definition of

the likelihood function expressing the relative likelihood of experimental data given

the parameter.

Given the specifications of prior and likelihood, Bayes’s rule gives the posterior

distribution (up to a normalizing constant — the evidence) by the product. Typically

the forward model will be included in the likelihood function so that the posterior

distribution is given implicitly by the parameter. Although we can evaluate the

posterior (up to the normalizing constant) for any parameter, it is desired instead to

sample from the posterior distribution. This can be achieved in theory by Markov

chain Monte Carlo (MCMC) methods.

MCMC techniques aim to implicitly construct a Markov chain over the parameter

space whose invariant distribution is the posterior of the inference problem. It is

achieved by defining an acceptance probability based on evaluations of the posterior

and the relative likelihood of proposed samples and then accepting or rejecting in ac-

cordance with that probability. An important benefit of MCMC is that the posterior

need only be known up to a normalizing constant, since it cancels out in the accep-

tance ratio. Therefore, computing the evidence is not necessary – a show-stopping

computational burden in many cases.

Since the introduction of the Metropolis-Hastings random walk MCMC in the

1950s [59], many new MCMC techniques have been developed to tackle a wide variety

of challenges presented by applications of statistical inference in many settings [57,

26, 22, 34]. Despite the advances, inference in high-dimensional3 parameter spaces

remains unconquered territory. Most methods fail to achieve a suitable automatic

3Methods have not been demonstrated consistently for spaces with even hundreds of dimensions,
whereas our parameter spaces can exceed hundreds of thousands.
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compromise between exhaustive exploration enabled by longer steps from sample

to sample and a significant acceptance ratio improved by taking shorter steps from

sample to sample. For a detailed review of the state of the art in MCMC techniques,

please refer to [51, 18, 61].

In the end, even well-tuned proposal distributions will result in MCMC imple-

mentations requiring hundreds of thousands of posterior evaluations, each of which

requires a solution to a PDE in applications of interest.

1.4 Challenges of PDE-constrained distributed pa-

rameter inverse problems

Applications of interest are typically constrained by PDEs, an additional challenge on

top of those mentioned above. Every time a set of outputs must be computed based on

a given parameter, the PDE must be solved. For many applications, such a solution

could require days of computing time even on the most advanced supercomputers in

the world. Where pseudo real-time inversion is required, problems quickly become

intractable.

In practice this difficulty is frequently addressed by building a surrogate model. A

surrogate model is a computationally inexpensive counterpart to the complete PDE

solution but that seeks to maintain the integrity of the input-output map of inter-

est. There are many approaches for deriving a surrogate model coming from many

different research communities. Approaches can be divided into intrusive and non-

intrusive methods. Intrusive methods modify the governing equations directly while

non-intrusive methods only require sample input-output pairs to build the surrogate

model.

Intrusive methods largely consist of schemes of model reduction using projections

of the governing equations onto lower-dimensional manifolds like moment-matching

[24, 30, 36], proper orthogonal decomposition [6, 12, 71, 49], and reduced basis meth-

ods [66, 78, 77, 16]. While in the linear setting some algorithms yield reduced mod-
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els without requiring a solution of the PDE, for nonlinear problems, some (usually

guided) sampling of the parameter space and corresponding solutions is required.

Intrusive methods typically provide a surrogate model for the maps from parame-

ter/input to state, while non-intrusive methods often focus solely on the parame-

ter/input to output map without regard for the governing equations or state at all.

Non-intrusive methods treat the model or physical system as a black box, estab-

lishing a scheme for producing a predicted output from parameter input, a so-called

response surface. A set of experimental design points, parameters at which to inter-

rogate the model or physical system, is determined to produce data from which to

establish the response surface. Methods include regressions of linear and nonlinear

type as well as a suite of interpolatory approaches including Kriging [63] and Gaussian

processes [68] and their variants. Such methods are physics-agnostic and are popular

in data-driven approaches typical in machine learning and statistics.

Many of the intrusive methods and all of the non-intrusive methods require an

experimental design procedure to determine the parameters at which full physics

models or real systems will be interrogated. There are many well-established ap-

proaches for conducting this experimental design process in parameter spaces with

a handful of dimensions; however, in very high-dimensional parameter spaces, as we

have with the discretization of distributed parameters here, most of those methods

become intractable. They simply do not scale acceptably with parameter dimension.

Some successful approaches have involved targeting outputs of interest. For ex-

ample, the construction of reduced basis models using greedy sampling of param-

eter/input space has been used in the context of inverse problems [9, 53]. These

approaches typically only focus on the outputs of interest, but that treats only half

of the problem — the experimental process. The prediction process is disregarded

under the pretense that the parameter can be properly inferred. To dismiss this crit-

ical part of the inference-for-prediction problem is to leave out the driving facet: the

final prediction that called for the parameter estimation in the first place.

This thesis considers the entirety of the process of establishing prediction esti-

mates based ultimately on the observed data from experiments. We do not focus
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individually on developing surrogate models for the experimental and prediction pro-

cesses separately; instead, we develop a surrogate model for the inference process such

that the final predictions are accurate.4

1.5 Recent focus on goal-oriented methods

Recently there has been a significant thrust in the research community to emphasize

the goal-oriented computation of quantities of interest. In finite elements, mesh adap-

tation and error estimation have both been driven by the need to accurately estimate

low-dimensional quantities.

Consider the computational fluid dynamics approach of predicting the lift of an

airfoil at certain angle of attack in uniform freestream flow in 2–D. One approach is to

model the complete physics and represent them on a uniformly resolved finite element

mesh in an attempt to accurately calculate the state of the flow everywhere in the

computational domain. Once the pressures are obtained around the airfoil, they can

be integrated to determine the lift. Researchers have realized that this approach for

estimating the lift on an airfoil is wasteful and inefficient. If the lift is determined by

integrating the pressures around the airfoil, why is it that we must resolve the state

of the flow everywhere in the domain?

Adjoint techniques, which have also become essential tools in PDE-constrained

optimization, are employed in error estimation of output quantities of interest as well.

Based on linearization, error estimation via the adjoint permits the approximation of

errors without computing a truth solution at all. For mesh adaptation, the adjoint

solution can be localized to give a measure of the sensitivity of the error in output

prediction as a means to guide selective refinement and coarsening procedures [67].

The adjoint gives a computationally efficient approach to calculate output sensitivities

for high-dimensional parameters. In contrast, direct sensitivity calculations based on

perturbations of each parameter (like finite differencing) are more expensive in this

4The accuracy of predictions is based on a given well-defined inference procedure to infer the
parameter using the complete physics model.
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context. Since the computation of the lift of the airfoil is the goal, it makes sense to

modify the mesh to obtain accuracy in that calculation. Resolving the pressures far

downstream of the airfoil is not necessary.

In the goal-oriented inference analog, we are tasked with inferring a parameter

that is also a distributed quantity like the pressure living on a computational mesh.

While in the mesh adaptivity case we solve for the pressure field to compute the lift

on the airfoil as the quantity of interest, in the goal-oriented inference setting, we

require the parameter estimate in order to compute our prediction output quantity

of interest. It stands to reason then that with careful study of the problem we could

avoid resolving the entirety of the parameter and instead focus on the components

informed by our experimental data and required to accurately predict our output

quantities of interest.

1.6 Research objectives

The primary objective of this research is to provide foundational work in goal-oriented

inference. In many engineering applications, the inference of distributed parameters is

one step in a process resulting in predictions of low-dimensional quantities of interest.

We exploit this fact to understand sources of uncertainty in predictions, identify

uninformative experiments, and achieve online efficiency in making predictions by

trading off accuracy in parameter estimation. In the linear setting, we establish

theoretical guarantees; for nonlinear problems, we have guarantees in the infinite

sample limit. Both approaches are demonstrated on problems paramount to curbing

anthropogenic effects on the environment. More specifically, the research objectives

are:

• to formulate goal-oriented inference so that predictions are the driving factors

in the inference process;

• to develop a set of goal-oriented inference procedures companion to well-established

parameter identification algorithms;
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• to establish offline analysis tools to guide experimental design and expose sources

of prediction uncertainty for linear problems;

• to derive theoretical guarantees on the prediction accuracy of goal-oriented in-

ference for linear problems;

• to demonstrate linear goal-oriented inference on a model problem in contami-

nant identification and prediction;

• to develop a practical algorithm that extends goal-oriented inference to nonlin-

ear problems;

• and to demonstrate nonlinear goal-oriented inference in performing a proba-

bilistic risk assessment in carbon capture and storage (CCS).

1.7 Thesis outline

This thesis is organized as follows. In Chapter 2 we introduce a teleological approach

to identification of distributed parameters, looking forward to final objectives to in-

form the inference process. Chapters 3 and 4 are devoted to problems with outputs

that are linear in the unknown parameter. In Chapter 3 we develop the foundational

algorithm for the truncated singular value decomposition approach to goal-oriented

inference, provide the relevant theory and analysis, then extend to other popular in-

verse problem formulations. In Chapter 4 we demonstrate the techniques on a model

problem in contaminant identification and prediction. Chapters 5 and 6 extend goal-

oriented inference to nonlinear problems with a statistical formulation. In Chapter 5

we develop an algorithm for learning the joint density between potentially observed

data and predictions using a sampling scheme in combination with a Gaussian mix-

ture model representation. The mechanics for conditioning on data are provided. In

Chapter 6 we apply the method to a model problem in carbon capture and storage.

We provide a summary and conclusions of the work in Chapter 7.
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Chapter 2

A teleological approach to

identification of distributed

parameters

The process of utilizing experimental data to estimate unknown parameters is central

to many important problems in science and engineering. Inference problems arise in

medical imaging [5], geophysics [17], meteorology and oceanography [47], heat transfer

[2], electromagnetic scattering [41], and electrical impedance tomography [3], among

many other disciplines.

2.1 Parameter identification in the context of pre-

dictions

Many inverse problems are ill-posed; the data do not determine a unique solution.

Inference approaches, therefore, rely on the incorporation of prior information. In

deterministic formulations [27], this prior information is often manifested as a form

of regularization. In Bayesian statistical formulations [75], the prior information is

used to formulate a prior distribution reflecting the belief in probable parameter val-

ues. As a result, the distinction becomes blurred between inferred parameter modes
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informed by data and modes influenced largely or wholly by prior information. With-

out careful design of prior information, data-independent information can overshadow

the information contained in the limited data collected from experiments. Although

ill-posedness will always be an issue to some extent in limited data settings, in this

thesis we show that it is possible to partially circumvent the deleterious effects of the

use of regularizers or prior information by incorporating end goals.

While in some cases estimation of unknown parameters is the end goal, there are

many engineering processes where parameter estimation is one step in a multi-step

process ending with design. In such scenarios, engineers often define output quantities

of interest to be optimized by the design. In consideration of this fact, we propose a

goal-oriented approach to inference that accounts for the output quantities of interest.

Generally, in an abstract sense, our experimental data are informative about certain

modes in the parameter space and another set of modes in parameter space are

required to accurately estimate the output quantities of interest. Our philosophy is

to understand the relationship between these two sets of modes and to modify our

approach to inference based on that information. The goal-oriented inference method

involves identifying parameter modes that are both informed by experiment and also

required for estimating output quantities of interest. In what follows, we refer to the

output quantities of interest as predictions although predictions need not be outputs of

a system but instead could be, for example, the evaluation of the objective function in

a design optimization problem. We call it the inference-for-prediction (IFP) method.

The two decompositions of parameter space based on the experimental process and

the prediction process are shown notionally in Figure 2-1. We consider abstractly

the decomposition into experimentally-observable and experimentally-unobservable

modes on the left side of Figure 2-1. Experimentally-observable modes are informed

by the experimental data while experimentally-unobservable modes are not. The

analogous decomposition for prediction is shown on the right side of Figure 2-1. It is

informative to explore the combinations of observable modes from the two processes.

We explicitly identify here three types of parameter modes. Modes informed by

experiment and required for prediction are targeted by the IFP method. Modes that
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Figure 2-1: The two separate decompositions of the parameter space based on the
experiment (left) and prediction (right). Note that the unobservable and observable
spaces are orthogonal complements of each other in Rn; the intersection contains only
the zero vector.

are informed by experiment but not required for prediction represent inefficiencies in

the experimental data acquisition. Finally, modes that are required for prediction but

are uninformed by experiment lead to uncertainty in the prediction and may guide

future experimentation.

There are many advantages to this way of thinking including computational ef-

ficiency in the inference step, enabling deployment on lightweight, portable devices

(e.g., smartphones and laptops) in the field; understanding of the effects of regular-

ization and prior information on predictions; identification of inefficiencies in experi-

mental data acquisition to focus efforts on data informative about modes required for

predictions; and understanding of vulnerabilities in predictions. In the nonlinear set-

ting, this approach not only makes real-time prediction possible, but makes tractable

a class of problems in statistical inference for prediction that are currently infeasible.
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2.2 Decomposition of offline analysis and online

inference-for-prediction

Consider the partition of the experiment-infer-predict process into offline analysis and

online prediction. The offline and online segments of the process are divided by the

data acquisition process. In the offline phase, we exploit the mathematical structure

within the experiment and prediction processes (i.e., their dependence on parameter)

to perform analysis and automatically construct a reduced model for the inference-for-

prediction process. In the online phase, we perform experiments and acquire data,

then utilize that data to make predictions based on the model constructed in the

offline phase.

2.2.1 Offline analysis

Once the experiments and prediction requirements are defined, and before experi-

ments are conducted and data observed, the mathematical structure of the experiment-

infer-predict process is exploited to generate a reduced model for inference-for-prediction.

In the linear setting, the analysis tools are naturally linear algebraic. Through an

eigendecomposition, a joint measure of experiment and prediction observability de-

termines a basis for the lowest-dimensional subspace of parameters that gives exact

predictions in the online stage. The decomposition exposes the relationships between

parameter modes informed by the experimental data and modes required to make

accurate predictions. This analysis yields identification of experimental inefficiencies

based on experiments that provide information about parameter modes that are irrel-

evant for prediction. The process also establishes the primary sources of uncertainty

based on the modes uninformed by experimental data but required for prediction.

This information could be used to iterate on the experimental design before proceed-

ing to data acquisition.

In the nonlinear setting, the linear algebraic analysis tools are no longer applicable

globally; however, we can still identify and exploit the mathematical structure in the
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experiment and prediction processes. This can be achieved by learning the joint

density between data and predictions. The density can be represented by a Gaussian

mixture model (GMM) whose parameters are fit by sampling from a prior distribution

on the parameter. Typically the density estimation problem is infeasible in the inverse

problem since it would need to be constructed over parameters and data. Here,

however, where we have the dimensional compression via the prediction process, our

prediction and data typically occupy a space of modest dimension: density estimation

is feasible. In this case we can also evaluate the experimental design by investigating,

for example, a measure of the expected information gain in the posterior predictive

density.

2.2.2 Online inference-for-prediction

After the analysis is performed and the inference-for-prediction model constructed,

experiments are conducted and data are acquired. The task online is then to utilize

the data to make accurate predictions.

In the linear setting, inference-for-prediction will take place in a low-dimensional

subspace of the parameter space. The solution to the inference problem will be the

coefficients in a basis expansion in this space. The basis can be computed offline

since it is data independent. Since the prediction problem is also linear, we also are

able to compute the prediction corresponding to each basis function, subsequently

forming a basis for the prediction. Therefore, when data are collected, obtaining the

prediction estimate requires only to determine the coefficients of the basis expansion

and compute the weighted combination of previously-obtained predictions. The online

computations can be performed in real-time.

For the statistical approach in nonlinear problems, the result of the online inference-

for-prediction is the posterior predictive, a probability density over predictions repre-

senting the state of belief given observed data. After building the GMM representing

the joint density between data and predictions in the offline phase, the online phase

requires only the conditioning of the GMM at the observed data. There are two

parts to the conditioning process: (i) each mixture component must be conditioned
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individually and (ii) the weights of each component must be recalculated based on

the relative marginal likelihood of the observed data. Each of these steps is analytic

due to the convenient form of the GMM.

2.3 Procedural timeline

The goal of our procedure is to obtain accurate real-time predictions when they

depend on unknown parameters implicitly informed by observed data. In applications

of interest, it will be intractable to perform parameter identification and subsequent

prediction online in the linear setting, and may be completely intractable to perform

parameter identification at all in the nonlinear setting. The time scales on which we

need predictions are orders of magnitude less than the time it would take to resolve

the parameter accurately, even using state-of-the-art supercomputers.

As an example, consider the contaminant prediction problem. A contaminant is

released in an urban environment. It advects and diffuses. We make measurements

of the contaminant concentration from sensors sparsely distributed throughout the

domain. Using the time series data from the sensors, what level of contaminant will

there be near a critical building in a later time interval? We could not expect that a

state-of-the-art inverse problem solver would have the initial condition of the release

identified within thirty minutes. By exploiting the goal of predicting the contaminant

level in a given area at a specified time, we can make predictions in real-time if we

pay an up front computational cost to perform the analysis described above.

It is important for this process that there be sufficient time in the offline phase to

perform the necessary analysis. The analysis can proceed as soon as the experiments

and prediction are defined so that the maps from parameter to data and parameter

to predictions are well defined. It must be completed before the data are observed. In

this work we do not treat adaptive or sequential experiment-infer-predict processes;

however, many of the ideas could be extended to this context.
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2.4 Abstract problem statement

Goal-oriented inference is the task of estimating a parameter from data for the purpose

of making accurate predictions. We will now outline the abstract problem statement

which we will treat in the linear and nonlinear cases in later chapters.

Let P be the unknown parameter. Experiments are defined to produce outputs

Yd = Me(P) + E based on the experiment model Me and noise E . Predictions

Yp =Mp(P) are based on the prediction modelMp.

Let I : Yd → P be a well-defined inference procedure so that P̂ = I(Yd) is the

resulting parameter estimate. The objective of parameter estimation is to minimize

‖P − P̂‖ in a suitable norm. The estimated parameter can then be passed as input

to the prediction model to obtain outputs Ŷp = Mp(P̂) that are assumed to be

noiseless.1

On the other hand, the objective of goal-oriented inference is to obtain accurate

predictions, i.e., to minimize ‖Ỹp− Ŷp‖, where Ỹp is the prediction obtained by goal-

oriented inference and Ŷp is the prediction obtained by first estimating the parameter

P̂ using the inference algorithm I defined above.

We will see in Chapter 3, in the case whenMe andMp are linear functions of the

parameter, that we can drive the prediction error ‖Ỹp−Ŷp‖ to zero (i.e., replicate the

predictions obtained from standard inference techniques) for some popular inverse

problem formulations. For the nonlinear statistical setting in Chapter 5, we will

demonstrate that this error can be driven below a specified tolerance with sufficient

a priori sampling of the parameter space.

1It is possible to extend this work to situations where there is a statistical model for the predic-
tions. We do not treat that case here; instead, we assume the prediction model can be trusted.
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Chapter 3

Linear goal-oriented inference

The fundamental principles of goal-oriented inference have now been established.

In this chapter we will begin the technical development of solution methodology

for goal-oriented inference problems in the context of linear experimental and linear

prediction processes. Such processes can arise from inherently linear problems or from

the suitable linearization of nonlinear systems. While this is a restrictive assumption,

the developments of this chapter provide the critical substantive foundation for goal-

oriented inference. Without proper theory in the linear case, we certainly cannot

expect the ideas to apply to more challenging nonlinear scenarios.

This chapter is organized as follows. In section 3.1 we present background in

control-theoretic concepts and balanced truncation model reduction, both fundamen-

tal ideas to be exploited in our solution to the linear goal-oriented inference problem.

The inference-for-prediction (IFP) method is established in section 3.2 as the solu-

tion to the linear goal-oriented inference problem for the truncated singular value

decomposition (TSVD) approach to parameter identification. Theoretical guarantees

are provided in section 3.3 where we prove important properties of the IFP method

including prediction exactness and the dimensional optimality of the IFP subspace.

Finally, in section 3.4 we provide the extensions of the IFP method to Tikhonov-

regularized and Gaussian statistical inverse problem formulations.
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3.1 Background

In this section we provide background material in control-theoretic concepts and

balanced truncation model reduction that will be the basis for the development of

our goal-oriented inference approach. When developing mathematical models we

often describe systems by state equations where the states are defined to be physical

quantities (e.g., position, velocity, momentum, etc.). When those state equations

are coupled with an output equation, the physically meaningful state vector is not

always the minimum dimension vector that defines the system for the purposes of

predicting the output. Model reduction is the term used to describe the act of reducing

such a system to a lower-dimensional description that maintains integrity in output

predictions, typically over a desired range of inputs to the system.

Balanced truncation is one systematic method for performing model reduction

on a linear time-invariant system. The determination of a new state vector depends

on two control-theoretic concepts. Controllability of a state refers to the input en-

ergy required to drive a system to zero from that state. Observability of a state

refers to the output energy associated to that state. Independently, the most con-

trollable (observable, respectively) modes are the eigenvectors of the controllability

(observability, respectively) gramian corresponding to larger eigenvalues. The goal of

balanced truncation model reduction is to obtain a reduced state vector composed

of modes that exceed a certain threshold on a joint measure of controllability and

observability known as Hankel singular values.

We will find later that a useful analogy can be drawn between the state of a

large-scale model and the parameter in our goal-oriented inference problem. This

is illustrated in Figure 3-1. Namely, the state equation of a system determines the

time evolution of the state due to input to the system. In the goal-oriented infer-

ence context, the parameter estimate is determined through the solution of an inverse

problem based on experimental data. Furthermore, the output equation determines

the outputs given a state in the dynamical system context. In the goal-oriented in-

ference context, the prediction quantity of interest is determined by the parameter
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Figure 3-1: Comparison of dynamical systems (left) and inference for prediction
(right). State and parameter are high-dimensional; however, inputs/data and out-
puts/prediction are low-dimensional.

estimate. In both (dynamical system, goal-oriented inference) situations, we have

low-dimensional input (input, data), high-dimensional model description (state, pa-

rameter), and low-dimensional output quantities of interest (outputs, predictions).

We will show later that the balanced truncation methodology used to determine a

reduced system has an analog in goal-oriented inference.

For the following exposition, consider the time-invariant discrete-time linear sys-

tem

xk+1 = Axk +Buk, k = 0, 1, . . . , (3.1)

yk = Cxk, k = 0, 1, . . . , (3.2)
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where xk ∈ Rn is the state at time step k, A ∈ Rn×n, B ∈ Rn×ni, uk ∈ Rni is the

input at time step k, C ∈ Rno×n, and yk ∈ Rno is the output at time step k. The

system has given initial condition x0. We assume that (3.1) is stable; i.e., the spectral

radius ρ(A) < 1.

3.1.1 Controllability and observability

Controllability and observability are two important properties of the system (3.1)–

(3.2) [46]. The information contained within them is exploited in balanced truncation

model reduction, as we describe in section 3.1.2.

A measure of the controllability Lc(x) of a state x is the minimum input energy

required to drive the system to zero when initialized at x0 = x; i.e.,

Lc(x) = min
uk, ∀k

∞
∑

k=0

‖uk‖2, s.t. x0 = x, lim
k→∞

xk = 0.

Let P =
∑∞

k=0A
kBB⊤(A⊤)k ∈ Rn×n be the controllability gramian [32]. The system

(3.1)–(3.2) is controllable if P is full rank. Then we may write Lc(x) = x⊤P−1x. If

more energy is required to drive the system to zero, the state is less controllable.

A measure of the observability Lo(x) of a state x is the total output energy gen-

erated by the unforced (uk = 0, ∀k) system initialized at x0 = x; i.e.,

Lo(x) =
∞
∑

k=0

‖yk‖2 =
∞
∑

k=0

‖CAkx‖2.

Let Q =
∑∞

k=0(A
⊤)kC⊤CAk ∈ Rn×n be the observability gramian [32]. Then the

observability associated to a state x is Lo(x) = x⊤Qx. The system (3.1)–(3.2) is

observable if Q is full rank. If the evolving unforced system produces larger output,

the initial state is more observable.

The controllability and observability gramians are usually computed as solutions

to the Stein equations

−P+APA⊤ = −BB⊤, −Q +A⊤QA = −C⊤C,
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respectively.

3.1.2 Balanced truncation model reduction

A projection-based reduced model of the system (3.1)–(3.2) is given by

x̂k+1 = Âx̂k + B̂uk, k = 0, 1, . . . ,

ŷk = Ĉx̂k, k = 0, 1, . . . ,

where Â = U⊤AV ∈ Rm×m, B̂ = U⊤B ∈ Rm×ni , Ĉ = CV ∈ Rno×m, x̂k ∈ Rm is

the reduced state at time step k, and ŷk ∈ Rno is the output of the reduced model

at time step k. The left basis U ∈ Rn×m and right basis V ∈ Rn×m span subspaces

of dimension m≪n and satisfy U⊤V = I.

Balanced truncation model reduction is one method for selecting the left and right

bases [60]. Conceptually, balanced truncation can be understood in two distinct steps.

The first step is a similarity transformation to describe the state space of the sys-

tem (3.1)–(3.2) in a way that balances each coordinate direction’s combined measure

of controllability and observability. In particular, the controllability and observabil-

ity gramians of the transformed system are diagonal and equal. The second step is

truncation, whereby only some of the states in the transformed model are retained.

For example, any coordinate directions having zero combined measure of controlla-

bility and observability can be truncated without affecting the system’s input-output

behavior.

We first identify the similarity transformation. The balanced truncation left and

right bases can be obtained using general matrix factors of the controllability and

observability gramians [10, 50]. For purposes of exposition, we will assume the factors

are square. Let P = SS⊤ and Q = RR⊤. Consider the similarity transformation

defined by T = Σ−1/2M⊤R⊤ and T−1 = SNΣ−1/2 where MΣN⊤ is the singular
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value decomposition (SVD) of R⊤S. The transformed system

x̃k+1 = TAT−1x̃k +TBuk, k = 0, 1, . . . ,

yk = CT−1x̃k, k = 0, 1, . . . ,

has diagonal and equal controllability and observability gramians,

TPT⊤ = T−TQT−1 = Σ.

The coefficients σ1, σ2, . . . , σn on the diagonal of Σ are known as the Hankel singular

values, which represent a joint measure of the controllability and observability of

the modes in the transformed system. The second step is the truncation of the

transformed state x̃ ∈ Rn to x̂ ∈ Rm. The truncation eliminates the least controllable

and observable modes of the system based on the Hankel singular values.

Algorithm 1 Balanced truncation model reduction left and right bases

1: Compute the first m normalized eigenvectors ψi of S⊤QS with corresponding
eigenvalues σ2

i , i.e.

S⊤QSψi = σ2
iψi, ‖ψ‖2 = 1, ψ⊤

i ψj = δij , i = 1, 2, . . . , m.

2: Compute the first m left eigenvectors φi of R
⊤PR also having eigenvalues σ2

i , i.e.

φi = σ−1
i ψ

⊤
i S

⊤R, i = 1, 2, . . . , m.

3: Then define the left and right bases

U = R
[

σ
−1/2
1 φ⊤

1 · · · σ
−1/2
m φ⊤

m

]

, V = S
[

σ
−1/2
1 ψ1 · · · σ

−1/2
m ψm

]

.

In practice the balanced truncation reduced model can be obtained by directly

identifying left and right bases U and V by Algorithm 1. Although balanced trunca-

tion is not optimal, there exist bounds on the H∞-norm of the error system related

to the truncated Hankel singular values [60]. There exist algorithms to obtain a bal-

anced reduced model via approximate computation of the gramians for large-scale

systems [50, 37].
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In balanced truncation model reduction, analysis of the controllability and observ-

ability gramians leads to a reduced system of equations accounting for both the state

and output equations. For goal-oriented inference, we have very similar goals. We

wish to analyze the behaviors of the experimental process and prediction process to

generate a reduced description of the inversion and prediction sequence. In balanced

truncation, we maintain integrity of the input-output relation. For goal-oriented in-

ference, we will maintain integrity of the data-prediction relation.

3.2 Inference-for-prediction (IFP) method

Let µ ∈ Rq be an unknown parameter defining a system of interest. We assume

that q is large, i.e., there are many more parameters to infer than experiments we

can afford to perform or predictions we wish to make. Let Oe ∈ Rr×q be the linear

observation operator representing the (usually indirect) measurement process taking

the parameter space to the space of experimental observables of dimension r < q. We

write experimental outputs ye = Oeµ. In many instances it will be appropriate to

model sensor error in which case we obtain yd = e(ye, ǫ) for some error model e and

a measure of error ǫ. Our formulation will utilize the experimental output matrix

Oe, but our algorithms will be data-independent and therefore admit any form of the

error model e. For many applications of interest, Oe will be the composition of a PDE

operator and an observation operator. Likewise, the prediction operator Op ∈ Rs×q

is analogous to Oe, but instead measures prediction output quantities of interest in

the space of dimension s < r. We write prediction yp = Opµ.
1

In section 3.2.1 we define experiment and prediction observability and the associ-

ated gramians. In section 3.2.2 we state the assumptions, give important definitions,

and establish the IFP property. We conclude with an algorithm for obtaining a basis

for efficient inversion. Finally, in section 3.2.3 we discuss the numerical implementa-

tion of the algorithm and analyze the computational complexity.

1Note that the physics underlying the PDE operators (if present) in Oe and Op need not be the
same. Typically experimental conditions will differ from operational conditions, and our method
admits that naturally.
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3.2.1 Experiment and prediction observability

Experiment and prediction observability extend the concept of observability of linear

systems described in section 3.1.1 to the goal-oriented inference setting.

A measure of the experiment observability of a parameter µ is given by the ex-

perimental output energy associated to it. We define Le(µ) = ‖ye‖2 = ‖Oeµ‖2.
Consequently, the experiment observability gramian He = O⊤

e Oe can be defined

since Le(µ) = µ
⊤Heµ. Since the experiment observability gramian is symmetric and

positive semi-definite it admits the decomposition He = VeLeV
⊤
e where Ve ∈ Rq×r

is orthogonal and Le ∈ Rr×r is diagonal with positive entries. The columns of Ve are

eigenvectors of He with corresponding eigenvalues on the diagonal of Le. When we

solve the inverse problem, the pseudoinverse H†
e = VeL

−1
e V⊤

e and its matrix factor

Ge = VeL
−1/2
e will play an important role.

Let Ve⊥ be an orthogonal basis whose range is the orthogonal complement to the

range of Ve. Then any parameter µ can be decomposed as µ = VeV
⊤
e µ+Ve⊥V

⊤
e⊥µ.

The first term influences the data observed for parameter µ while the second term

produces exactly zero experimental output. When we utilize data to infer the param-

eter, the unobservable component (second term) of µ is determined by incorporating

data-independent information through regularization and prior distribution in the

deterministic and statistical approaches, respectively.

A measure of the prediction observability of a parameter µ is given by the pre-

diction output energy associated to it. Define Lp(µ) = ‖yp‖2 = ‖Opµ‖2. The

prediction observability gramian Hp = O⊤
p Op then follows since Lp(µ) = µ⊤Hpµ.

It is also symmetric and positive semi-definite and therefore has a decomposition

Hp = VpLpV
⊤
p analogous to He above. Similarly, any parameter µ can be de-

composed as µ = VpV
⊤
p µ + Vp⊥V

⊤
p⊥µ. The first component will pass through to

predictions yp and is therefore necessary to accurately estimate; on the other hand,

the second component is in the kernel of Op and will therefore not contribute to yp.

Thus, the second component need not be accurately estimated, or even estimated at

all, to achieve accurate estimates of yp.
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An algorithm to perform goal-oriented inference should exploit these decomposi-

tions and the relationships between them.

3.2.2 IFP algorithm

The IFP method will lead to an experiment and prediction balanced basis for infer-

ence spanning the low-dimensional subspace of the parameter space that will result

in replication of the predictions obtained by a traditional approach to the linear

inverse problem. In this section we will treat the truncated singular value decom-

position approach to the linear inverse problem, and we will extend the method to

the Tikhonov-regularized inverse problem and Gaussian statistical inverse problem in

section 3.4.

We begin with a truncated singular value decomposition (TSVD) approach to

the linear inverse problem. The inverse problem uses data yd and knowledge of

Oe to estimate the unknown parameter µ. In many applications however the inverse

problem is ill-posed due to the vast null space ofOe. This difficulty is usually overcome

by regularization. In this section, we consider a form of subspace regularization by

seeking a solution only in the row space of Oe. In section 3.4.1 we will consider

regularization in the form of a penalty in the objective function.

Let PSV⊤ = Oe be the SVD with P ∈ Rr×r, S ∈ Rr×q, and V ∈ Rq×q. Let

Ve ∈ Rq×r and V⊥
e ∈ Rq×(q−r) span the row space and null space of Oe, respectively,

such that V = [Ve,V
⊥
e ]. Let Ve ⊂ Rq be the r-dimensional subspace spanned by

the columns of Ve. The TSVD approach searches for µ ∈ Ve that reproduces the

observed data with minimal error in ℓ2-norm. That is,

µTSVD = arg min
µ∈Ve

1

2
‖yd −Oeµ‖22. (3.3)

The first-order optimality condition for (3.3) is obtained by imposing the subspace

constraint and setting the first-derivative of the objective function to zero; i.e.,

V⊤
e O

⊤
e OeVea = V⊤

e O
⊤
e yd, (3.4)
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where a ∈ Rr is the vector of modal coefficients in the expansion µTSVD = Vea.

Substituting the reduced eigendecomposition of OT
e Oe = He and noting that

VT
e Ve = I, (3.4) reduces to a = L−1

e V⊤
e O

⊤
e yd. Therefore, the TSVD parameter

estimate is given by

µTSVD = VeL
−1
e V⊤

e O
⊤
e yd,

involving the well-known pseudoinverse H†
e = VeL

−1
e V⊤

e . In the traditional two-step

approach, this estimate of µ would then be utilized in simulation to predict output

quantities of interest

yTSVD
p = Opµ

TSVD.

It is precisely these prediction outputs that the IFP method will reproduce.

The following derivation of the IFP basis resembles, and in fact was inspired by,

balanced truncation model reduction [60]. It is not necessary however for there to

exist an underlying state space system to use the IFP method; it is sufficient to have

models only for the experiment and prediction operators Oe and Op.

Before stating the basis generation algorithm, we first define the key property of

the IFP method.

Property 1. A parameter estimate µ∗ has the IFP property if it results in prediction

equal to that of the prediction resulting from the TSVD parameter estimate; i.e.,

yp(µ
∗) = Opµ

∗ = yTSVD

p .

Our goal is to find an s-dimensional subspace W ⊂ Rq such that the IFP solution

µIFP = arg min
µ∈W

1

2
‖yd −Oeµ‖22 (3.5)

has Property 1. For now, we assume that such a subspace exists.

We will also utilize an assumption regarding the geometry of the experiment and

prediction observable subspaces.

Assumption 1. We will assume throughout that rank(V⊤
p Ve) = s.
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Assumption 1 codifies the requirement that the experiments contain at least some

information about at least one required prediction quantity of interest. It will almost

always be the case that this assumption is valid. If it is not (i.e., there is some exper-

iment that provides no information about any required prediction), that experiment

can be removed from the process without effect to either the traditional parameter

inference formulation or its goal-oriented counterpart. If Assumption 1 holds, we

know that the IFP subspace will have dimension s. If rank(V⊤
p Ve) < s, the true

rank will be exposed implicitly in our algorithm. If rank(V⊤
p Ve) = 0, then our al-

gorithm breaks down appropriately, indicating that none of the experiments provide

information about any of the required predictions.

We now define the IFP subspace.

Definition 1. An IFP subspace is an s-dimensional subspaceW such that the solution

µIFP to (3.5) has Property 1 independent of the data yd.

The definition of an IFP basis follows naturally.

Definition 2. Any basis W ∈ Rq×s is an IFP basis if its columns span an IFP

subspace W.

We now present an algorithm for obtaining an IFP basis W (we prove it in sec-

tion 3.3.1) that simultaneously diagonalizes the projected experiment and prediction

observability gramians. Although the simultaneous diagonalization is not necessary

to replicate the TSVD predictions (any basis forW will do), it does provide a measure

by which further reduction can be performed if desired.

Algorithm 2 IFP Basis Generation for TSVD approach

1: Define Ge = VeL
−1/2
e .

2: Compute the reduced eigendecomposition ΨΣ2Ψ⊤ of G⊤
e O

⊤
p OpGe.

3: Define W = GeΨΣ−1/2.

The singular values on the diagonal of Σ are analogous to the Hankel singular

values of balanced truncation. They represent a joint measure of the experiment

and prediction observability. While Algorithm 2 identifies a low-dimensional basis
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for the IFP subspace, it is possible to truncate further (cf. second step of balanced

truncation). In this basis, eliminating columns of W from the right is analogous to

removing the least experiment and prediction observable modes according to the joint

measure reflected by the singular values.

Using the IFP basis from Algorithm 2, the optimality condition of (3.5) becomes

µIFP = W(W⊤HeW)−1W⊤O⊤
e yd = WΣW⊤O⊤

e yd. (3.6)

Thus, when the IFP parameter estimate is computed online, it does not require even

the inversion of a small s-by-smatrix, but rather just the application ofWΣW⊤O⊤
e ∈Rn×r, which can be precomputed, to the observed data yd.

3.2.3 IFP implementation and computational complexity

Algorithm 2 has two major computational steps. In Step 1 we require the eigende-

composition of the experiment observability gramian He = O⊤
e Oe, which has rank r.

Step 2 involves an eigendecomposition of a matrix of rank s.

For Step 1 efficient implementation should include a code to perform the matrix-

vector product Hev as efficiently as possible, both in terms of storage and operation

cost. Often times, particularly when the governing equations are given by PDEs,

this implies a matrix-free implementation. For problems of interest, the action Hev

is one forward and one adjoint solution starting from initial condition v [14]. Let

α(n) be the cost of one time step of the PDE (depending on the mesh DOFs n) and

Ke be the number of time steps until the last data are collected. Then the forward

and adjoint solutions cost 2α(n)Ke. Since the experiment observability gramian has

rank r, an iterative eigenvalue solver will typically require approximately 2rα(n)Ke

to obtain the eigendecomposition, assuming the eigenvalues are well separated [23].

Note here that r is independent of n and that α(n) ∼ n if appropriate preconditioners

are used. If all operations are performed iteratively, the storage requirements should

not exceed a small constant number of parameter vectors and therefore scale linearly

with q. However, we do assume here that we store the r eigenvalues and eigenvectors
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for a total storage cost of (q + 1)r = qr + r.

The computation in Step 2 contains two parts. First, the implementation should

include a matrix-free code for computing Hpv = O⊤
p Opv. Second, a rank s eigende-

composition must be computed. The code for the prediction observability gramian

will also manifest in forward and adjoint solves, although the final time of the sim-

ulation Kp > Ke. Thus, the cost is approximately 2α(n)Kp for each matrix-vector

product. This computation sits inside the eigendecomposition which iteratively uti-

lizes a code representing the product G⊤
e O

⊤
p OpGev = L

−1/2
e V⊤

e HpVeLev. Each

such product requires in order (from right to left) r scalar products, nr scalar prod-

ucts, r q-vector sums, 2α(n)Kp for the action of Hp, r q-vector inner products,

and finally another r scalar products. That is a total cost of 2(4q + 2)rα(n)Kp

for each matrix-vector product G⊤
e O

⊤
p OpGev. Since this matrix has rank s, we can

expect approximately s such iterations giving a total cost for Step 2 of approximately

2(4q + 2)rsα(n)Kp. There is negligible additional storage required at this step since

the storage of the eigenvectors Ve will dominate. We do store the resulting s eigen-

values and r-dimensional eigenvectors for a storage cost of (r + 1)s.

If we combine the cost of the first two steps and then account for the final ma-

trix multiplication to obtain W, we have a total operation cost of approximately

2rα(n)Ke + 2(4q + 2)rsα(n)Kp + qrs2 and total storage cost of approximately (q +

1)r + (r + 1)s + qs. While the IFP method may be more computationally expen-

sive than traditional inference procedures for the solution of one-off inverse problems;

the benefits of the IFP method are three-fold. First, if data are collected repeatedly

under the same experimental observation operator, then the cost of determining the

IFP basis can be amortized over the experiments. Second, the IFP basis encodes im-

portant information about the process relating inference and prediction, in particular

through an analysis of the range of the IFP basis as it compares to the ranges of the

gramians of the experiment and prediction processes. The study of this relationship

could play a role in determining the effects of regularization and in designing future

experiments. Lastly, and perhaps most importantly, since the IFP method has data-

independent theory, it is feasible to move all of this computation offline and utilize
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only the resulting basis in an online deployment. This offline-online decomposition of

cost can make the IFP approach efficient for inverse problem solutions on lightweight,

portable devices in the field.

3.3 IFP Linear Theory

In this section we develop the relevant theory for the IFP method in linear inverse

problems. We first prove that the basis generated by Algorithm 2 leads to Property 1.

We give a geometric interpretation of the IFP method in this setting. Finally, the

section is concluded with a proof of dimensional optimality, showing that there is no

subspace of dimension less than s that produces a solution of (3.5) that has Property 1,

and a proof of the uniqueness of the IFP subspace.

3.3.1 Prediction exactness

We first show that the basis generated by Algorithm 2 defines an IFP subspace, i.e.,

that the solution to (3.5) has Property 1.

Theorem 1. Algorithm 2 leads to a basis W whose columns span an IFP subspace.

Therefore, the solution µIFP to (3.5) with W = range(W) has Property 1.

Proof. Let U = O⊤
p OpGeΨΣ−3/2 and note that the columns of U are a basis for

the row space of Op. Thus, any two parameter estimates µ1 and µ2 satisfying

U⊤(µ1 − µ2) = 0 will have the same prediction Opµ1 = Opµ2. We will now show

U⊤(µIFP − µTSVD) = 0. Substituting the optimality conditions for the TSVD and

IFP optimization problems, we find

U⊤(µIFP − µTSVD) = U⊤(W(W⊤HeW)−1W⊤O⊤
e −VeL

−1
e V⊤

e O
⊤
e )yd. (3.7)

By construction, we have

U⊤W = Σ−3/2Ψ⊤G⊤
e O

⊤
p OpGeΨΣ−1/2 = Σ−3/2Σ2Σ−1/2 = I,
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where we have used the orthonormality of Ψ and the eigendecomposition from Algo-

rithm 2. Furthermore, the basis W satisfies the relation

W⊤HeW = Σ−1/2Ψ⊤G⊤
e VeLeV

⊤
e GeΨΣ−1/2,

= Σ−1/2Ψ⊤L−1/2
e V⊤

e VeLeV
⊤
e VeL

−1/2
e ΨΣ−1/2 = Σ−1/2Ψ⊤ΨΣ−1/2 = Σ−1.

Using these facts, (3.7) reduces to

U⊤(µIFP − µTSVD) = (ΣW⊤O⊤
e −U⊤VeL

−1
e V⊤

e O
⊤
e )yd.

We have now ΣW⊤O⊤
e = Σ1/2Ψ⊤G⊤

e O
⊤
e and

U⊤VeL
−1
e V⊤

e O
⊤
e = Σ−3/2Ψ⊤G⊤

e O
⊤
p OpGeG

⊤
e O

⊤
e = Σ1/2Ψ⊤G⊤

e O
⊤
e .

This demonstrates that U⊤(µIFP−µTSVD) = (Σ1/2Ψ⊤G⊤
e O

⊤
e −Σ1/2Ψ⊤G⊤

e O
⊤
e )yd =

0, and therefore proves that yIFP
p = yTSVD

p for all data yd.

Note that Theorem 1 holds irrespective of data yd. The implication is that the

IFP method inherits many of the characteristics of the inference formulation. The

method does not change the estimation methodology but rather circumvents some

of the superfluous computation in the context of predictions. In particular, the IFP

method inherits the sensitivity to noise of the TSVD approach, in this case.

An analogous approach can be utilized for any inverse problem formulation that

has the form of a filter, of which TSVD is an example [39]. Let Oe = UeΣeV
⊤
e be the

reduced SVD of the experimental operator. Then the filtered parameter estimate can

be written as µfilt = VeΦΣ−1
e U⊤

e yd for the filter weighting matrix Φ ∈ Rr×r. The

IFP approach extends readily to this context. We demonstrate in section 3.4.1 that

this is the case for Tikhonov-regularized inverse problems.
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3.3.2 Geometric interpretation

Of particular interest is the geometry of the approach. The solution µIFP is obtained

as the oblique projection of µTSVD based on the projector Π = GeΨΨ⊤G⊤
e He. That

is to say, µIFP = ΠµTSVD independent of the data. We show first that Π is an oblique

projector.

Theorem 2. The matrix Π = GeΨΨ⊤G⊤
e He is an oblique projector.

Proof. We first show that Π is a projector, and then we establish that its range and

null space are not orthogonal complements. We have

Π2 = GeΨΨ⊤G⊤
e HeGeΨΨ⊤G⊤

e He = GeΨΨ⊤ΨΨ⊤G⊤
e He = GeΨΨ⊤G⊤

e He = Π.

Since Π2 = Π, Π is a projector. An orthogonal projector has orthogonal range and

null spaces. Any projector that is not an orthogonal projector is an oblique projector.

Therefore, it suffices for us to obtain a vector v ∈ Rq such that (Πv)⊤(v −Πv) 6= 0

to show that Π is an oblique projector, since Πv ∈ range(Π) and v−Πv ∈ null(Π).

We assume that Le 6= I in general; if it is, then Π is an orthogonal projector. Let

z ∈ Rr be chosen such that Ψ⊤z = 0 but that Ψ⊤Lez 6= 0. Define then v = VeL
1/2
e z.

Then if we write out the expression above, we find

(Πv)⊤(v −Πv) = v⊤VeΛV⊤
e v − v⊤VeΛΛ⊤V⊤

e v (3.8)

where Λ = L
1/2
e ΨΨ⊤L

−1/2
e . Based on our choice of v above, we find that the first

term on the right hand side vanishes; i.e.,

v⊤VeΛV⊤
e v = z⊤LeΨΨ⊤z = 0.

The second term on the right hand side of (3.8) can be rewritten as ‖Λ⊤V⊤
e v‖2 =

‖L−1/2
e ΨΨ⊤Lez‖2 ≥ 0. Since we chose z such that Ψ⊤Lez 6= 0, we have that the

second term is positive. This implies that we have found a v such that (Πv)⊤(v −
Πv) 6= 0, and therefore Π is an oblique projector.
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Theorem 3. The parameter estimate µIFP obtained using the IFP method is the

oblique projection under Π of the TSVD solution µTSVD.

Proof. Using the basis W obtained by Algorithm 2 the IFP solution is computed as

µIFP = W(W⊤HeW)−1W⊤O⊤
e yd.

Since O⊤
e (yd −Oeµ

TSVD) = 0, we have

µIFP = W(W⊤HeW)−1W⊤Heµ
TSVD.

Recalling that W⊤HeW = Σ−1 and that W = GeΨΣ−1/2, we have

µIFP = GeΨΨ⊤G⊤
e Heµ

TSVD = ΠµTSVD.

It can be shown directly that, for µTSVD ∈ null(Op), the projection is zero, as

expected. If the resulting parameter estimate has no prediction observable compo-

nents, it must lead to zero prediction. One can also show that, under Assumption 1,

if µTSVD /∈ null(Op), the projection is nonzero, meaning that a nonzero prediction

will result.

3.3.3 Dimensional optimality of the IFP subspace

It is natural to ask if the IFP subspace of dimension s is the subspace of minimum

dimension such that the solution of (3.5) has Property 1. We now show that there

does not exist a s̃-dimensional subspace W̃ for s̃ < s such that the solution of (3.5)

has Property 1.

Theorem 4. The IFP subspace W is the subspace of minimum dimension such that

the solution to (3.5) has Property 1.
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Proof. In view of Assumption 1, the predictable component of the TSVD solution is

obtained from the data by the operation

µTSVD
p = VpV

⊤
p µ

TSVD = VpV
⊤
p VeL

−1
e V⊤

e O
⊤
e yd

where the matrix VpV
⊤
p VeL

−1
e V⊤

e O
⊤
e transforming data yd to µTSVD

p has rank s.

Let s̃ < s and W̃ ∈ Rq×s̃ be a basis for any s̃-dimensional subspace W̃ . Based

on the IFP formulation the matrix from data yd to predictable component of the

IFP estimate µIFP
p = VpV

⊤
p µ

IFP is VpV
⊤
p W̃(W̃⊤HeW̃)−1W̃⊤O⊤

e . In order for

µIFP
p = µTSVD

p for arbitrary yd it must be the case that VpV
⊤
p VeL

−1
e V⊤

e O
⊤
e =

VpV
⊤
p W̃(W̃⊤HeW̃)−1W̃⊤O⊤

e . However, we know that the matrix on the left has

rank s and the matrix on the right has rank s̃ 6= s, establishing a contradiction.

Therefore, a basis permitting Property 1 must have dimension at least s. Thus, an

IFP subspace, which has dimension s, is dimensionally optimal.

3.3.4 Uniqueness of the IFP subspace

Clearly the basis for the IFP subspace is not unique, but we show in this section that

the subspace is indeed unique. The algorithm provided above is designed to provide

a balanced basis (with respect to experiment and prediction observability) of this

subspace.

Theorem 5. Let Ve be the subspace spanned by the columns of Ve. Consider a

decomposition of Ve into two He-orthogonal subspaces W and U of dimensions s and

r − s respectively, where U is an Hp-orthogonal subspace. The solution of (3.5) with

the subspace W has Property 1; therefore W is an IFP subspace.

Proof. Let W ∈ Rq×r and U ∈ Rq×(r−s) be bases for the subspaces W and U respec-

tively. Since we impose that W + U = Ve, we can represent the TSVD solution as

µTSVD = Wa+Ub for coefficient vectors a ∈ Rs and b ∈ Rr−s. Rewriting the TSVD
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parameter estimate, we obtain matrix equations for the unknown coefficient vectors





W⊤HeW W⊤HeU

U⊤HeW U⊤HeU









a

b



 =





W⊤O⊤
e yd

U⊤O⊤
e yd



 . (3.9)

Imposing the He-orthogonality of W and U yields a decoupled block-diagonal system

with corresponding TSVD parameter estimate

µTSVD = W(W⊤HeW)−1W⊤O⊤
e yd +U(U⊤HeU)−1U⊤O⊤

e yd.

The corresponding prediction is then

yp = OpW(W⊤HeW)−1W⊤O⊤
e yd +OpU(U⊤HeU)−1U⊤O⊤

e yd,

= OpW(W⊤HeW)−1W⊤O⊤
e yd,

where the second term vanishes due to the Hp-orthogonality of U , which is equivalent

to OpU = 0. What remains is the prediction resulting from the IFP estimate µIFP =

W(W⊤HeW)−1W⊤O⊤
e yd, showing that W is an IFP subspace.

It is straightforward to show that the balanced IFP basis of Algorithm 2 defines

an IFP subspace that has these properties. The corresponding subspace U is defined

by a basis U = VeL
−1/2
e Ψ̃ where Ψ̃ ∈ Rr×(r−s) is defined such that Ψ⊤Ψ̃ = 0.

Having specified the general conditions for an IFP subspace W, we are now in a

position to prove uniqueness.

Theorem 6. If Assumption 1 holds, then the IFP subspace is unique.

Proof. Let Ve = range(He) and Vp = range(Hp). Consider first the identification of

the subspace U . We have that U = VeB for a full rank matrix B ∈ Rr×(r−s) imposing

the dimensionality and that U ⊂ Ve. The Hp-orthogonality of U then implies that

V⊤
p VeB = 0. Since we have forbidden the orthogonality of Ve and Vp in any way via

Assumption 1, V⊤
p Ve ⊂ Rr where dim(V⊤

p Ve) = s. Therefore, V⊤
p Ve has an (r − s)-

dimensional null space, making unique the space spanned by the columns of B. Now
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define W = VeA for full rank matrix A ∈ Rr×s. The He-orthogonality of W and

U implies that B⊤LeA = 0 where Le ∈ Rr×r is a reduced diagonal matrix of the

eigenvalues of He. The product B⊤Le ∈ R(r−s)×r has a null space of dimension s.

Consequently, the space spanned by the columns of A is unique. Therefore, the

subspace W is uniquely determined.

3.4 Extensions of the IFP method

We extend the IFP method to Tikhonov-regularized inverse problems and Gaussian

statistical inverse problems in this section. It is shown that only a small modification

to the IFP method above is necessary to apply the goal-oriented approach to these

cases.

3.4.1 Tikhonov-regularized inverse problem

Another method for regularizing ill-posed inverse problems requires adding a penalty

term to the objective function [27]. The idea is to select the parameter that most

closely matches the experimental data while also conforming to a certain extent with

an a priori structural preference. The main effect is a modification of the experiment

observability gramian in the algorithm.

A Tikhonov-regularized inverse problem [27] has the form

µTR = arg min
µ∈Rq

1

2
‖yd −Oeµ‖22 +

1

2
‖Rµ‖22 (3.10)

where we assume the regularization parameter weighting the two terms has been

incorporated into the regularization matrixR. For these formulations, the experiment

observability gramian becomes O⊤
e Oe +R⊤R where R⊤R is assumed to fill at least

the null space of O⊤
e Oe making the problem (3.10) well-posed.

The optimality condition for the Tikhonov-regularized inverse problem (3.10) is

given by

(O⊤
e Oe +R⊤R)µTR = O⊤

e yd,
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where we assume that R is chosen such that null(O⊤
e Oe+R⊤R) = {0}. The solution

of (3.10) is then given by

µTR = (O⊤
e Oe +R⊤R)−1O⊤

e yd,

and the associated prediction is

yTR
p = Opµ

TR.

We will now show that we can modify the IFP method for the TSVD approach

in section 3.2.2 to once again replicate the predictions without inverting for all of the

parametric modes. The key here is a modification to the experiment observability

gramian. In particular, we have He = O⊤
e Oe +R⊤R. Given an IFP subspace W, we

obtain the IFP solution

µIFP = arg min
µ∈W

1

2
‖yd −Oeµ‖22 +

1

2
‖Rµ‖22. (3.11)

However, the IFP basis W is now obtained by Algorithm 3.

Algorithm 3 IFP Basis Generation for Tikhonov-regularized approach

1: Define Ge = VeL
−1/2
e where VeLeV

⊤
e is the eigendecomposition of O⊤

e Oe+R⊤R.
2: Compute the reduced eigendecomposition ΨΣ2Ψ⊤ of G⊤

e O
⊤
p OpGe.

3: Define W = GeΨΣ−1/2.

The eigendecomposition in Step 1 of Algorithm 3 will lead to square eigenvector

matrices Ve ∈ Rn×n since He is full rank by design of R, which increases both the

operation and storage cost of the algorithm. However, since R is specified, the cost

of each matrix-vector product Hev should not be significantly greater than the cost

for the unregularized experiment observability gramian in the TSVD approach in

section 3.2.2.

Theorem 7. The predictions yIFP
p arising from the IFP solution µIFP of (3.11) with

basis W defined by Algorithm 3 are identical to the Tikhonov-regularized predictions

yTR
p .
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Proof. The proof is exactly the same as the proof of Theorem 1. Both Algorithm 2

and Algorithm 3 work with the eigendecomposition of He, which has been suitably

redefined for the Tikhonov-regularized inverse problem here.

3.4.2 Linear Gaussian statistical inverse problem

One way to account for uncertainty in prior knowledge and uncertainty in sensor

measurements is through a statistical formulation of the inverse problem. In this

section, we demonstrate how the IFP methodology can be extended to the statistical

setting using a Bayesian approach with a Gaussian prior and Gaussian likelihood.

The solution to the statistical inverse problem is a random variable and therefore

has a distribution, which in this case is also Gaussian due to the linearity. That

distribution over the parameter is then propagated through to the prediction resulting

in a distribution over predictions that we refer to as the posterior predictive. Instead of

finding a single estimate of the predictions, we will determine a mean and covariance

estimate. The mean estimate is obtained by the IFP method for a specific Tikhonov-

regularized inverse problem; i.e., the procedure discussed in section 3.4.1 is all that is

required. We show that the covariance estimate can be obtained at minimal additional

cost through matrix multiplications involving the IFP basis W and singular value

matrix Σ.

Let µ ∼ N (0,Γ0) be the multivariate Gaussian random variable with mean 0

and covariance Γ0 representing our prior knowledge of the unknown parameter.2 We

assume that the measurements we make are corrupted by independent additive Gaus-

sian errors ǫ = yd −Oeµ ∼ N (0, σ2I) with zero mean and variance σ2.

Given that the map from parameters to experimental outputs is linear, by Bayes’s

rule, we write the posterior estimate of the parameter

µ|yd ∼ N (µπ,Γπ)

2The method readily admits priors with nonzero mean. Both the traditional approach and IFP
method would then target the deviation from the mean; the covariance remains unchanged.
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where

µπ = σ−2(Γ−1
0 + σ−2O⊤

e Oe)
−1O⊤

e yd, (3.12)

Γπ = (Γ−1
0 + σ−2O⊤

e Oe)
−1.

Recall however that we are interested only in the statistics of the prediction arising

from simulations utilizing this parameter; that is, the posterior predictive

yp|yd ∼ N (Opµπ,OpΓπO
⊤
p ).

It is this posterior predictive distribution yp|yd that will be replicated by the IFP

method.

We will now show that the IFP approach can obtain the posterior predictive. First

note that the posterior predictive mean is obtained as the solution to a Tikhonov-

regularized inverse problem.

Theorem 8. The posterior predictive mean Opµπ is obtained by solving (3.11) with

W generated by Algorithm 3 where R is chosen such that R⊤R = σ2Γ−1
0 .

Proof. We first rewrite the Tikhonov-regularized inverse problem (3.10) to account

for the measurement error and prior knowledge; i.e., we search for the parameter

µ∗ = arg min
µ∈Rq

1

2
‖yd −Oeµ‖22 +

1

2
σ2µ⊤Γ−1

0 µ,

= arg min
µ∈Rq

1

2σ2
‖yd −Oeµ‖22 +

1

2
µ⊤Γ−1

0 µ. (3.13)

We now show that this is precisely the posterior mean. The first-order optimality

condition of (3.13) is given by

(Γ−1
0 + σ−2O⊤

e Oe)µ
∗ = σ−2O⊤

e yd

whose solution is µ∗ = σ−2(Γ−1
0 + σ−2O⊤

e Oe)
−1O⊤

e yd. This is equal to µπ given in

(3.12). The remainder of the proof is completely analogous to that of Theorem 7.
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The following theorem states that the posterior predictive covariance can be recov-

ered by a matrix multiplication involving the IFP basis W and the diagonal matrix of

singular values Σ already computed in the posterior predictive mean obtained above.

Theorem 9. The posterior predictive covariance can be obtained as a matrix multi-

plication involving the IFP basis W and singular values Σ from Algorithm 3 since

OpΓπO
⊤
p = OpWΣW⊤O⊤

p .

Proof. The posterior predictive covariance is given by

OpΓπO
⊤
p = Op(Γ

−1
0 + σ−2O⊤

e Oe)
−1O⊤

p . (3.14)

Recall that He = Γ−1
0 + σ−2O⊤

e Oe is full rank; therefore, H−1
e = VeL

−1
e V⊤

e and

VeL
−1
e V⊤

e = GeG
⊤
e . Substituting into (3.14) we find

OpΓπO
⊤
p = OpGeG

⊤
e O

⊤
p . (3.15)

Since range(Ψ)⊥ ⊂ null(OpGe) and (I − ΨΨ⊤) is the orthogonal projector onto

range(Ψ)⊥, we have OpGe(I −ΨΨ⊤) = 0 and therefore OpGe = OpGeΨΨ⊤. Sub-

stituting into (3.15),

OpΓπO
⊤
p = OpGeΨΨ⊤G⊤

e O
⊤
p .

Inserting the identity Σ−1/2ΣΣ−1/2 = I, we obtain

OpΓπO
⊤
p = OpGeΨΣ−1/2ΣΣ−1/2Ψ⊤G⊤

e O
⊤
p = OpWΣW⊤O⊤

p .

The posterior predictive covariance does not require then the extra computational

effort of inverting an n-by-n matrix as it would in a typical approach. For the price of

the computations to determine the IFP basis, we get both the mean and the covariance

of the posterior predictive without significant additional computational cost.
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The directions in parameter space that contribute to the variability of the posterior

predictive are only those directions that are prediction-observable. Each direction’s

contribution to the variability depends on a tradeoff first between the prior and the

likelihood (i.e., based on experimental observability) and second by prediction ob-

servability. All of these directions are contained in the IFP subspace, consistent with

the prediction exactness property. If any of the directions were outside of the IFP

subspace, underpredicting the variability in posterior predictive would be unavoid-

able.
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Chapter 4

Application of linear goal-oriented

inference to contaminant

prediction

In this chapter we apply the algorithms of linear goal-oriented inference developed in

the previous chapter to a model problem in contaminant identification and prediction.

When the parameter is taken to be the initial contaminant release and the governing

equations are those of advection-diffusion, the contaminant concentration field at

a later time is a linear function of the initial condition. With linear experimental

observations and linear prediction output quantities of interest, the assumptions of

linear goal-oriented inference are satisfied.

The governing equations are established in section 4.1. In sections 4.2 and 4.3

we define the experimental and prediction observation operators. For the predictions

we use a few different examples corresponding to some logical desirable output quan-

tities of interest for this application. The discretization and numerical simulation

is discussed in section 4.4. Finally we give discussion and results of the numerical

experiments in section 4.5.
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4.1 Governing equations

Let z = (z1, z2) be the spatial coordinates of a 2-D rectangular domain Ω = {(z1, z2) | 0≤
z1 ≤ 1, 0 ≤ z2 ≤ 0.4}. Denote by ∂Ω the boundary of that domain. Let c(z, t) :

Ω×R+ → R+ be the contaminant concentration at z and time t where R+ = [0,∞).

We prescribe ambient wind velocity u = (1.5, 0.4) constant throughout the domain.

Let the diffusivity κ = 0.02 also be constant. Given initial condition c0(z) = c(z, 0),

the contaminant evolves in time according to the advection-diffusion equation

∂c

∂t
= κ∇2c− u · ∇c, z ∈ Ω, t > 0, (4.1)

∇c · n = 0, z ∈ ∂Ω, t > 0, (4.2)

where ∇ = ( ∂
∂z1

, ∂
∂z2

) and n denotes the outward-pointing unit normal on each of the

four segments of ∂Ω.

4.2 Experimental process

The experimental outputs ye(t) = (ye1(t), ye2(t), . . . , yens
(t)) at time t are given by

localized integrals of the contaminant concentration, i.e.,

yei(t) =

∫

Ω

c(z, t) exp

{

− 1

2σ2
e

‖z− zi‖2
}

dz, i = 1, 2, . . . , ns, (4.3)

where zi is the location of the ith sensor, σe = 0.01 is a measure of the sensing radius

for all sensors, ‖ · ‖ represents the Euclidean norm in R2, and ns is the number of

sensors distributed in the domain. Contaminant concentration readings are available

only at discrete times t = t0, t1, . . . , tnr
where nr is the number of readings. In what

follows, we will denote the concatenation of experimental outputs as

ye =
[

y⊤
e (t0) y⊤

e (t1) · · · y⊤
e (tnr

)
]⊤

. (4.4)
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Then, ye ∈ Rr where r = nsnr. In our numerical experiments, we use eight sensors.

The domain and sensor locations are shown in Figure 4-1. The sensors are placed in

the domain with knowledge of the synthetic initial contaminant concentration but are

not chosen with consideration for any of the outputs of interest. Both the IFP and

traditional approaches utilize the same sensor configuration. We make measurements

at time instants t = ∆t, 2∆t, . . . , 30∆t where ∆t = 5× 10−3.

Figure 4-1: The domain and the eight sensor center locations.

4.3 Prediction process

For the numerical experiments we compare prediction outputs from the three tra-

ditional methods to their respective IFP implementations. We define three time-

dependent prediction outputs of interest and two scalar prediction outputs.

Let ∂Ωr = {(z1, z2) | z1 = 1, 0<z2<0.4} denote the right boundary of the domain.

One prediction output quantity of interest is the total contaminant propagating out-

ward through this boundary as a function of time in the interval 60∆t ≤ t ≤ 70∆t,

i.e.,

yp0(t) =

∫

∂Ωr

c(z, t)u · nr dz2, 60∆t ≤ t ≤ 70∆t,

where nr = (1, 0) is the outward-pointing unit normal for the right boundary.

We define a second prediction output of interest that is the total contaminant

contained within a box on the interior of the domain. Let Ω1 = {(z1, z2) | 0.6023 ≤
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z1 ≤ 0.6932, 0.2000 ≤ z2 ≤ 0.2909} and define

yp1(t) =

∫

Ω1

c(z, t)dz1 dz2, 25∆t ≤ t ≤ 50∆t.

For the demonstration of the IFP methodology in the statistical setting, we will

use two scalar prediction output quantities of interest. Let Ω2 = {(z1, z2) | 0.6023 ≤
z1 ≤ 0.6932, 0.1000 ≤ z2 ≤ 0.1909}; see Figure 4-1. Define

yp2(t) =

∫

Ω2

c(z, t)dz1 dz2, 25∆t ≤ t ≤ 50∆t.

Our third and fourth prediction outputs of interest are the time-integrated quantities

yp3 =

∫ 50∆t

t=25∆t

yp1(t) dt and yp4 =

∫ 50∆t

t=25∆t

yp2(t) dt. (4.5)

The IFP method utilizes the experimental data to infer those components of the

parameter that are relevant for predicting the output quantities of interest. Our

numerical experiments generate synthetic data by prescribing an initial condition

that is a sum of Gaussian plumes, i.e.,

c0(z) =

5
∑

i=1

1

αi

√
2π

exp

{

− 1

2α2
i

‖z− zi‖2
}

, (4.6)

where the standard deviations αi and centers zi, i = 1, 2, . . . , 5 are given in Table 4.1.

The initial condition is pictured in Figure 4-2. For reference we present four snap-

shots of the contaminant concentration in the domain at times t = 10∆t, 30∆t, 50∆t, 70∆t

in Figure 4-3. The synthetic data is corrupted by noise for our experiments by adding

random errors distributed normally with zero mean and variance σ2 = 0.01.

The goal of our IFP method is not to obtain the true output of interest based on

the true parameter but rather to match the prediction obtained by employing any

of the traditional inference formulations discussed above. In other words, we are not

proposing to improve accuracy of inference but rather to exploit final goals to make

existing inference methods more efficient online and more transparent with respect
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Figure 4-2: The initial contaminant concentration c0(z) used to generate synthetic
data for the numerical experiments.

Table 4.1: Standard deviations and center locations for the five Gaussian plumes
summed to form the initial condition (4.6) used to generate the synthetic data for the
numerical experiments. The initial condition is pictured in Figure 4-2.

i 1 2 3 4 5

αi 0.07 0.05 0.07 0.05 0.05
z1i 0.20 0.25 0.35 0.45 0.55
z2i 0.15 0.15 0.20 0.20 0.12

to injected prior information.

(a) (b)

(c) (d)

Figure 4-3: The evolution of the contaminant whose initial concentration is shown in
Figure 4-2 at time steps (a) t = 10∆t, (b) t = 30∆t, (c) t = 50∆t, and (d) t = 70∆t.

4.4 Numerical simulation

For numerical simulation we discretize the continuous formulation (4.1)–(4.2) in space

and time. We discretize in space by the finite element method (FEM) using a regular

simplicial mesh with 44 and 88 elements each on the short and long boundary edges,
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respectively. The mesh has 7744 elements and 4005 nodes. We use a linear nodal

basis to approximate the numerical solution and the parameter; i.e., we have q = 4005

parameter unknowns. The numerical instability due to the advection term is treated

by a streamline upwind Petrov-Galerkin (SUPG) correction [15]. The semi-discrete

equation is time-stepped by Crank-Nicolson leading to a system of the form (3.1)

with uk = 0 ∀k.

The integral computations for calculating the experimental outputs and the pre-

diction output are also approximated by the discrete solution. For the experimental

outputs, the integral is computed using a mass-matrix-weighted inner product be-

tween the rapidly decaying Gaussian sensor in the integrand of (4.3) and the solution

vector xk at time step k. The prediction output quantity of interest is estimated by

using a midpoint rule in time and the linear nodal basis leads to a midpoint integra-

tion rule in space as well. In both experiment and prediction, the outputs are linear

functions of the initial condition. For example, define Ce such that the experimental

outputs (4.4) are given by

ye(k∆t) = Cexk, k = 1, 2, . . . , 30.

Let µ = x0, then ye = Oeµ where Oe =
[

(CeA)⊤ (CeA
2)⊤ · · · (CeA

30)⊤
]⊤

.

Similarly, define Cp0 such that yp0(k∆t) = Cp0xk for k = 60, . . . , 70 then yp0 = Opµ

where Op =
[

(Cp0A
60)⊤ (Cp0A

61)⊤ · · · (Cp0A
70)⊤

]⊤

. For the other outputs of

interest, we just have to redefine Op appropriately.

4.5 Results for numerical experiments

In this section we present results for the 2-D advection-diffusion application described

in the preceding section. We will demonstrate the IFP methodology in each of the

three inverse problem formulations described above: TSVD, Tikhonov-regularized,

and Gaussian statistical. All of the problems are implemented in Matlab and utilize

the built-in LAPACK eigenvalue solver.
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4.5.1 TSVD approach

The IFP method was applied in the context of the TSVD approach to the initial

condition problem described above. In this case, we focus on the time-dependent

output yp0(t). Similar results are obtained for all of the outputs.

(a) (b)

(c) (d)

Figure 4-4: The first four modes (a)–(d) of the IFP basis W for the TSVD approach.

Figure 4-5: The singular values on the diagonal of Σ reflecting the joint measure of
experiment and prediction observability for the TSVD approach.

Algorithm 2 is implemented to obtain the IFP basis W ∈ Rq×s whose first four

modes are plotted in Figure 4-4. The high frequency characteristics are inherited

from the eigenmodes Ve. For this problem, there are 240 experimental outputs (8

concentration sensors over 30 time steps) and there are eleven prediction outputs
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(right side flux over 11 time steps). Although He mathematically has rank 240,

the reduced eigendecomposition reveals that it can be approximated almost exactly

(with respect to error in the Frobenius norm) by a rank-54 matrix; this is due to

the numerical implementation and tolerance in the eigensolver. The singular values

Σii indicate that there is a subspace of dimension s = 11 for which there will be

no information loss in the inference-to-prediction process; therefore, the IFP method

yields a basis W ∈ R4005×11. Decay of the singular values (see Figure 4-5) indicate

that further truncation to fewer than eleven modes is possible; the IFP solution would

then not result in exact predictions, but the error incurred by truncating the last three

or four modes would be very small.

(a) (b)

(c) (d)

Figure 4-6: The (a) real initial condition, (b) TSVD estimate, (c) IFP estimate, and
(d) error µe = µTSVD − µIFP. In Figure 4-7 we show the propagation of µe to the
output time steps.

We now turn to the results of the inversion. In Figure 4-6 we plot (a) the real initial

condition, (b) the TSVD estimate, (c) the IFP estimate, and (d) the difference or

error µe = µ
TSVD−µIFP. It is important to recall here that the IFP approach targets

prediction outputs and is not designed to accurately infer the unknown parameter.

Clearly the traditional inference method is more proficient at that.

What is relevant though is the propagation of the error µe to the prediction

output yp0(t). If the IFP estimate µIFP results in the same predictions as the TSVD

estimate µTSVD as the theory claims, then we expect that the error initial condition

72



(a) (b)

(c) (d)

Figure 4-7: The propagation of µe according to the advection-diffusion equation to
the prediction output yp0 at time steps (a) t = 60∆t, (b) t = 64∆t, (c) t = 65∆t, and
(d) t = 70∆t. The integrated flux through the right boundary is negligible.

Figure 4-8: The (left ordinate axis) error between the prediction outputs from the
TSVD and IFP approaches (red, diamonds) and the (right ordinate axis) predic-
tions themselves based on TSVD (black, solid) and IFP (orange, dashed, squares)
approaches.

µe will lead to zero prediction. In Figure 4-7 we plot snapshots of the evolving error

field beginning with initial condition µe at four time steps within the prediction time

region t ∈ [60∆t, 70∆t]. It can be seen that the error propagation leads to negligible

flux through the right boundary, as the theory predicts.

In Figure 4-8 we plot the prediction outputs for both the TSVD and IFP ap-

proaches, as well as the error in the outputs. The prediction output curves are
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Figure 4-9: The error in prediction outputs ‖yTSVD
p0

− yIFPp0
‖2 between the TSVD and

IFP predictions vs. the number of IFP basis vectors included in W.

directly on top of each other and the error is seven orders of magnitude less than the

output predictions themselves. The error is not identically zero due to the numerical

approximations, e.g., in the eigenvector solver, where tolerances are used.

Although our results above do not involve further truncation from the original

IFP basis in s = 11 dimensions, we show in Figure 4-9 the error in prediction outputs

as it varies with the number of basis vectors included in the IFP estimate. The error

is significant if one includes just a few basis vectors, but as soon as six vectors are

included the error drops to 10−6.

In the next section, we demonstrate the approach for a Tikhonov-regularized in-

verse problem.

4.5.2 Tikhonov-regularized approach

In the Tikhonov-regularized approach, we define the matrix R implicitly by setting

the diagonal matrix
(

R⊤R
)

jj
= 0.1λmin(1 + (99j/4004)) where λmin is the smallest

nonzero eigenvalue of the experiment observability gramian. This spreads the eigen-

values of R⊤R evenly between approximately 0.0660 and 6.6028. We focus in this

section on the output yp1(t) defined above. Results are similar for the other outputs

of interest.
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(a) (b)

(c) (d)

Figure 4-10: The first four modes (a)–(d) of the IFP basis W for the Tikhonov-
regularized approach.

Figure 4-11: The singular values on the diagonal of Σ reflecting the joint measure of
experiment and prediction observability for the Tikhonov-regularized inverse problem
approach.

For this experiment, we find that s = 26 is the dimension of the IFP basis and

here r = q = 4005 since the regularization fills the null space of the experiment

observability gramian in the sense that O⊤
e Oe+R⊤R is full rank. The first four basis

modes are plotted in Figure 4-10 and the singular values are shown in Figure 4-11.

In Figure 4-12 we show the (a) real initial condition, (b) Tikhonov-regularized

(TR) estimate, (c) IFP estimate, and the (d) error µe = µ
TR − µIFP. The evolution

of the error µe through the advection-diffusion equation is shown in Figure 4-13

for four time steps in the temporal range of the predictions t ∈ [25∆t, 50∆t]. The
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(a) (b)

(c) (d)

Figure 4-12: The (a) real initial condition, (b) Tikhonov-regularized (TR) estimate,
(c) IFP estimate, and (d) error µe = µTR − µIFP. In Figure 4-13 we show the
propagation of µe to the output time steps.

(a) (b)

(c) (d)

Figure 4-13: The propagation of µe according to the advection-diffusion equation to
the prediction output yp1 at time steps (a) t = 25∆t, (b) t = 35∆t, (c) t = 45∆t, and
(d) t = 50∆t. The average concentration inside of Ω1 (box) is negligible for all time
steps t ∈ [25∆t, 50∆t].

average contaminant concentration in the subdomain Ω1 is zero for all time steps in

the prediction period. This is consistent with the proposition that the initial condition

estimate based on TR and initial condition estimate based on IFP will result in the

same predictions.

We show the error in predictions and the predictions themselves in Figure 4-14.

The errors are again many orders of magnitude smaller than the predictions and the

76



Figure 4-14: The (left ordinate axis) error between the prediction outputs from the
TR and IFP approaches (red, diamonds) and the (right ordinate axis) predictions
themselves based on TR (black, solid) and IFP (orange, dashed, squares) approaches.

predictions themselves lie directly on top of each other. This result is consistent with

the theory presented in the preceding sections.

4.5.3 Gaussian statistical approach

For the statistical approach, we specify a prior distribution on the parameter µ. We

use a multivariate normal prior with mean zero and covariance matrix Γ0 with (i, j)th

element given by

Γ0ij = a exp

{−‖zi − zj‖22
2b2

}

+ cI, 1 ≤ i, j,≤ n

with constants a = 0.001, b = 0.5, and c = 0.1. We assume the sensors are corrupted

by additive Gaussian noise that is i.i.d. each with zero mean and variance σ2 = 0.01.

For this numerical experiment we focus on the scalar outputs yp3 and yp4 defined

in (4.5). We present results here for the posterior predictive mean and posterior

predictive covariance; however, more attention is given to the covariance since the

mean computation is analogous to the Tikhonov-regularized problem in the preceding

section.

In this case again the prior distribution affects every mode of the parameter so
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that r = q = 4005. On the other hand, there are only two scalar outputs of interest

so we find that the IFP basis has dimension s = 2. In Figure 4-15 we plot these two

basis vectors. The singular values are Σ11 = 2.855× 10−4 and Σ22 = 1.390× 10−4.

(a) (b)

Figure 4-15: The only two modes (a) and (b) of the IFP basis W for the Gaussian
statistical approach.

The results are presented in Table 4.2 and Figure 4-16. The estimated posterior

predictive means and covariances are nearly identical having componentwise errors

many orders of magnitude smaller than the values themselves. Once again, the nu-

merical results reconfirm the theory. Inverting for just two modes of the parameter

is sufficient to exactly obtain the posterior predictive distribution. In Figure 4-16 we

plot equiprobability contours of the posterior predictive distribution from the (a) tra-

ditional and (b) IFP approaches.

Table 4.2: Means and covariances for the prediction outputs. In each cell, we list
the result from the traditional approach, the result from the IFP approach, and the
absolute value of the error. Equiprobable contours for the associated probability
density functions are pictured in Figure 4-16.

covariance
mean yp3 yp4

yp3

Traditional Approach 5.1983E-1 1.9376E-8 2.0276E-9
IFP 5.1983E-1 1.9376E-8 2.0276E-9
Error 2.3309E-11 1.3235E-23 4.6736E-23

yp4

Traditional Approach 3.0017E-1 2.0276E-9 8.1433E-8
IFP 3.0017E-1 2.0276E-9 8.1433E-8
Error 1.0047E-10 4.6736E-23 7.9409E-23
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(a) (b)

Figure 4-16: Contour plots of the joint probability density function over the outputs
(yp3, yp4) for the (a) traditional approach and the (b) IFP approach. The means and
covariance matrices corresponding to both approaches are also given in Table 4.2.
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Chapter 5

Nonlinear goal-oriented inference

in the statistical setting

Extending linear algorithms to the nonlinear setting is often achieved by repeated

linearization of the nonlinearity. In the context of inference, however, this approach

is unsuccessful. Critically, the point about which one desires to linearize the nonlin-

earity is the unknown parameter — that which itself is to be identified in the first

place. Approaches based on iterating between linearizing the nonlinearity and solving

the associated linear goal-oriented inference problem are possible but come with no

guarantees that convergence will imply accuracy in predictions.

Although the theory of the linear case does not extend to nonlinear problems,

the concept of driving the inference approach based on prediction requirements can

be fruitfully extended. In this chapter we will focus on the statistical approach to

inference for generally nonlinear systems. In this context, we present a new approach

for circumventing the significant challenge of solving the nonlinear parameter inference

problem in high-dimensions, particularly when the model equations are given by

PDEs.

In section 5.1 we define the problem statement from the standpoint of generally

nonlinear models for experimental and prediction processes and in the context of a

statistical formulation. We describe the key challenges to parameter inference in this

setting in section 5.2 as motivation for our approach. In section 5.3 we describe the
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details of the approach to goal-oriented inference in the nonlinear setting, where we

focus on learning the joint density of experimental data and predictions in the form

of a Gaussian mixture model (GMM). Posterior predictive distributions are obtained

from the model by conditioning the GMM on the observed data. Finally, we present

the kernel density estimation approach as a way of validating the GMM result.

5.1 Problem statement

We now present the formal problem statement for nonlinear goal-oriented inference in

the statistical setting. We begin by writing the statement for the parameter inference

problem and then propagating the posterior through to the prediction. This posterior

predictive distribution is the target of our goal-oriented inference.

Let fe(µ) : Rq → Rr be a general nonlinear function representing the experimental

process mapping parameter to expected observational data. The function will usually

embed a PDE operator and an observation operator. In the carbon capture and

storage example presented in the next chapter, fe corresponds to the solution of the

single-phase flow equations and observation of bottom hole pressure in some wells.

We make observations yd = fe(µ)+ ǫ where ǫ is assumed to be a multivariate normal

noise such that ǫ ∼ N (0, σ2
nI) with noise variance σ2

n.

Let p(µ) be the prior probability density function of the parameter. In Bayesian

statistical approaches to parameter inference, the prior encompasses knowledge of the

parameter before data are observed. There are several approaches for choosing the

prior density and it has been the focus of significant controversy in the community

[11, 19, 31]. Recall that our goal in this work is not to improve the existing parameter

inference approaches but rather to reformulate them for the goal-oriented inference

context. Therefore, we will simply take p(µ) as given, assuming that a routine to

generate samples from the prior is available. For our numerical experiments, we will

assume that µ is a lognormal random process with exponential covariance kernel.

With the additive Gaussian noise model assumed above, our likelihood function

L(µ;yd) comes directly from the relation ǫ = yd − fe(µ) ∼ N (0, σ2
nI). In words, the
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likelihood represents the ratio (as a function of µ) of the posterior to the prior. For

parameters that are more likely to have generated the observed data, the posterior

undergoes a more significant update from the prior. Other likelihood models are

possible, but this is a typical choice in the PDE-constrained statistical inference

literature.

The posterior probability density function π(µ|yd) can be readily expressed by

Bayes’s rule, i.e.,

π(µ|yd) ∝ L(µ;yd)p(µ). (5.1)

The evidence that would appear in the denominator of Bayes’s rule that scales to a

proper density is unknown. Fortunately, it is not needed in order to draw samples from

the posterior via Markov chain Monte Carlo (MCMC). Computation of the evidence

itself is usually at least as computationally challenging as evaluating moments of the

posterior by sampling since such a computation involves integration over the very

high-dimensional parameter space.

The posterior (5.1) is the solution to the Bayesian statistical inference problem.

It represents the new probabilistic description of the parameter after the prior is

updated based on observed data. Unfortunately, the posterior is not immediately

useful in its current form: since the likelihood embeds the nonlinear forward model

fe(µ), the posterior is not written explicitly in terms of the parameter, and therefore,

even the form of the posterior distribution is not readily apparent. What we can

do, in theory, is generate samples from the posterior using MCMC. We discuss the

challenges of MCMC, particularly in high-dimensional parameter spaces, in the next

section.

We now introduce the prediction process fp(µ) : Rq → Rs, a measurable function

from parameters to prediction output quantity of interest. The function is often a

composition of an output functional and a PDE operator. For the carbon capture

and storage example, fp represents the calculation of trapped carbon dioxide volume

under a given injection scenario governed by a vertical equilibrium approximation of

the two-phase flow equations.
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Figure 5-1: Block diagram of Bayesian statistical inference for prediction. The prior
p(µ) is specified over the parameters representing the a priori relative likelihood of
parameters. Data are observed and incorporated by Bayes’s rule to yield the posterior
π(µ|yd). The posterior is then pushed forward through the prediction process to
obtain the posterior predictive pYp|Yd

(yp|yd).

The ultimate goal of our inference is to obtain the posterior predictive probabil-

ity density function pYp|Yd
(yp|yd) which represents the push forward of the posterior

measure π(µ|yd) through the function fp. It is the representation of our estimate

of the prediction given the choice of prior and accounting for the observed data. In

the Bayesian paradigm, our estimate of the prediction is itself a random variable

and therefore is characterized by a distribution representing the uncertainty in the

estimate. If one could solve1 the parameter inference problem by sampling from the

posterior, one can obtain corresponding samples of the posterior predictive by passing

each sample through the prediction process. The resulting samples can then be used

to calculate moments of the posterior predictive, or since the prediction dimension

is very low, one can even fit a density (using kernel density estimation, e.g.) to the

provided samples to visualize the complete probability density function. A block

diagram of the entire process is shown in Figure 5-1.

The goal-oriented inference method will obtain the resulting posterior predictive

probability density function without inferring the parameter itself. Furthermore, the

density will be obtained online in real-time; that is, when the data are observed,

the posterior predictive can be obtained immediately without further sampling or

expensive PDE solves. In the best case scenario using the traditional approach, the

data are observed and then samples are generated from the posterior, if possible,

where each proposal sample requires a full PDE solve (experimental process) and

1For the applications of interest, very high-dimensional parameter spaces and nonlinear PDE
models render MCMC intractable in most cases.
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each accepted sample requires another PDE solve (prediction process). This leads

to a long delay between data observation and obtaining the posterior predictive. In

most cases, the traditional approach of first performing statistical inference will be

intractable, severing the path to obtain prediction estimates.

In the next section we discuss the challenges of parameter inference in more detail.

As in the linear setting, we hope to convince the reader that extending the inference

problem statement to include the ultimate goal of predictions actually serves to make

the problem easier rather than more challenging, and in many cases, tractable where

it otherwise would not be.

5.2 Motivation for goal-oriented inference in the

nonlinear statistical setting

Statistical inference of distributed parameters in nonlinear problems is typically tack-

led using MCMC. In this section we highlight the daunting challenges facing this

approach today. This serves as motivation for bypassing the inference of the param-

eter whenever it is not necessary. In the goal-oriented inference context, estimation

of the parameter is just a means to obtain predictions. Therefore, we will circumvent

the high-dimensional parameter inference and instead infer predictions directly from

data.

MCMC [59] is a well-known approach for sampling from the posterior defined

in the previous section. The goal is to implicitly construct a Markov chain whose

invariant distribution is the posterior. When the chain is converged, samples from the

chain are samples of the posterior. This is achieved by using an acceptance/rejection

scheme based on proposing the next sample of the chain from a proposal distribution.

The acceptance probability is determined such that detailed balance is satisfied and

therefore the chain must converge to the posterior in the limit. There have been

hundreds of variants of MCMC proposed in the literature; however, the method is

still intractable in high-dimensional parameter spaces, particularly when the forward
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model has significant nonlinearity. One example is the carbon capture and storage

application in the next chapter. In these cases, the traditional statistical inference of

the parameter is intractable. Therefore, it would be impossible to obtain prediction

estimates using that approach. With goal-oriented inference, on the other hand, we

target estimation of low-dimensional prediction quantities of interest by essentially

integrating out the parameter and focusing on the relationship between observed

data and predictions. The intractability of parameter inference is circumvented and

we obtain probabilistic prediction estimates from experimental data.

In addition to the challenges associated with sampling from the posterior, the

computational cost makes infeasible the traditional approach of online parameter

inference and subsequent forward uncertainty propagation to obtain prediction esti-

mates. The posterior depends explicitly on the observed experimental data; therefore,

this process must take place online. The evaluation of the acceptance ratio requires

a PDE solve in the experimental process. The number of solves is guaranteed to

be larger than the number of samples obtained (due to rejections), therefore the

online cost of parameter inference alone will result in massive delays in prediction

estimates. Furthermore, to obtain predictions will require another set of PDE solves

of the prediction process, one for each of the parameter samples from the posterior.

This renders real-time prediction infeasible.

5.3 Joint density estimation by Gaussian mixture

model

The key to goal-oriented inference for nonlinear problems in the statistical setting

is to exploit the low-dimensionality of experimental data and predictions. Although

we did not entirely circumvent parameter inference in the linear case (we learned

its restriction to the IFP subspace), here we propose to essentially integrate out the

parameter itself, instead focusing entirely on the conditional relationship between

predictions and experimental data.
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Consider the concatenation f(µ) = [f⊤e (µ) + ǫ
⊤, f⊤p (µ)]

⊤ : Rq → Rr+s of the data

and prediction models. Let pYd,Yp
(yd, yp)

2 be the joint density of data and predictions

given by the push forward of the prior through f(µ). Our goal is to use samples to

learn the joint density pYd,Yp
(yd, yp) in the offline phase.

Once the joint density is learned, we move to the online phase where we conduct

the experiment. Let ỹd represent the data that are observed after the experiment

is conducted, as opposed to yd, which represents the random variable associated to

data that may be observed. When the real data ỹd are observed, we can obtain the

conditional density pYp|Yd
(yp; ỹd) analytically from the learned joint density. That

conditional density is precisely the posterior predictive that is the objective of our

goal-oriented inference.

5.3.1 Sampling the parameter space

Similarly to many other statistical inference methods, we assume that the prior is de-

signed so that the parameter can be efficiently sampled. Since our method is designed

for, and our applications typically involve, distributed parameters, we describe the

sampling procedure of the random field in this section. In particular, we describe the

representation of the prior random field as a truncated Karhunen-Loeve (KL) expan-

sion [48, 56]. For the carbon capture application undertaken in the next chapter, the

permeability field is given by a lognormal random field. Our discussion here focuses

on the representation of log µ.

We begin with the definition of a positive definite covariance function C(~x1, ~x2) :Rd×Rd → R where d is the physical dimension of the domain and ~x1 and ~x2 are two

points within the domain. The covariance function describes the correlation between

the value of the parameter at ~x1 and the value of the parameter at ~x2. In practice,

it is usually selected from a set of well-established choices. The parameters of the

covariance function are selected based on the expected amplitude and correlation

2For the remainder of the discussion, we will assume s = 1; i.e., the prediction output quantity
of interest is a scalar. The method is not restricted to such cases, but frequently it will be a scalar,
and this makes the exposition and presentation cleaner.

87



length in the field, typically as given by experts (in our case, geologists). We aim to

generate samples from a Gaussian random field g(~x; ξ) with zero mean and covariance

function given by C(~x1, ~x2). The random field is given by g(~x; ξ) =
∑∞

i=1

√
βiξivi(~x)

where (βi, vi(~x)) are the eigenpairs of the covariance function and ξi ∼ N (0, 1) iid.

In practice, the domain is discretized and our parameter is represented as piecewise

constant; we will refer to the discrete approximant as g(ξ). As is typical practice,

we will calculate discrete eigenfunctions of the covariance function by forming the

Gram matrix K ∈ Rnel×nel where nel is the number of elements in our computational

domain. Let ~xi be the centroid of element i. Then the Gram matrix is given by

K =























C(~x1, ~x1) C(~x1, ~x2) · · · · · · C(~x1, ~xnel
)

C(~x2, ~x1) C(~x2, ~x2) · · ·
...

...
. . .

...
...

. . .

C(~xnel
, ~x1) · · · · · · C(~xnel

, ~xnel
)























. (5.2)

Once the Gram matrix is formed, we calculate the eigenvalue decomposition K =

VΛV⊤ where V =
[

v1 v2 · · ·vnel

]

, Λ = diag(λ1, λ2, . . . , λnel
), vi and λi are the

ith eigenvector and eigenvalue with the ordering λ1 ≥ λ2 ≥ · · · ≥ λnel
≥ 0. The

discretized random field is given by

g(ξ) =

nel
∑

i=1

ξi
√

λivi (5.3)

still with ξi ∼ N (0, 1) iid.

Typically it is not necessary to retain all of the modes in the expansion. In practice

we truncate the expansion after sufficient decay of the eigenvalues based on the ratio

ν(m) =

∑m
i=1 λi

∑nel

i=1 λi

. (5.4)

In the application we will truncate at m = argmin ν(m) where ν(m) > 0.98, thereby

retaining 98% of the energy in the representation.
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A sample of the parameter will therefore be generated by sampling m iid standard

normal random variables ξi and calculating the expansion

µ = exp

{

m
∑

i=1

ξi
√

λivi

}

(5.5)

so that µ is a lognormal random vector with zero mean and covariance K, the discrete

approximant of µ(~x), the infinite-dimensional lognormal random field with zero mean

function and covariance function C(~x1, ~x2).

5.3.2 Gaussian mixture models

For each of the parameter samples drawn from the prior, we simulate corresponding

experimental data and prediction output. LetNs be the total number of prior samples.

For each sample we evaluate the experimental process and add simulated noise to

generate synthetic measurements. Analogously, for each sample, we evaluate the

prediction. As a result we obtain a set of ordered pairs (yi
d, y

i
p) for i = 1, . . . , Ns.

3

Ostensibly, these are samples from the joint density pYd,Yp
(yd, yp) of experimental data

and predictions.4 From these data we propose to learn the joint density as a Gaussian

Mixture Model (GMM). Then when data are observed, we simply condition the GMM

on the given data to obtain the posterior predictive density as desired. In this section,

we describe the construction of the GMM. Other density estimation techniques and

other mixture models can also be used in this context. We select the GMM because

of its convenient conditioning properties, allowing us to obtain real-time predictions.

A Gaussian mixture model [65] is a generative representation of a probability

density function that generalizes the k-means clustering algorithm [73] to probabilistic

3As with any machine learning algorithm, one benefits greatly by perusing the data in advance,
e.g., by plotting two-way marginals. Using the results, one should attempt to construct monotonic
and differentiable transformations to make the data as normal as possible. The algorithm can then
be applied to the transformed data, and the results can be transformed back appropriately. We
will apply such transformations in the next chapter; here, we assume the data is already in a form
amenable to our methods.

4It should be noted that this process is embarrassingly parallel; that is, the evaluation of exper-
imental and prediction processes for each parameter sample can be performed completely indepen-
dently. Therefore, optimal parallel scaling is possible.
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clusters. Let X be a random variable distributed according to the density pX(x). Let

N(x;µ,Σ) be the probability density function of a normal random variable with mean

µ and covariance Σ. A Gaussian mixture model approximates

pX(x) ≈ p̂X(x) =

nc
∑

i=1

αiN(x;µi,Σi),
∑

i

αi = 1, αi ≥ 0, ∀i, (5.6)

where nc is the number of components in the mixture model. The coefficients αi

are considered prior probabilities over the nc clusters. One can therefore think of the

mixture model in a generative manner. To draw a sample from X first select the clus-

ter by sampling from the probability mass function corresponding to αi. Then, given

the mean µi and covariance Σi of that cluster, draw a sample from the corresponding

multivariate normal.

For the moment consider the number of clusters to be fixed. The estimation

problem then becomes one of determining the means and covariances of each of the

components in the mixture. Typically this is achieved by choosing the parameters

that maximize the likelihood of the data. Let xi for i = 1, . . . , Ns be samples of X .

Then, we have

αi, µi,Σi = argmax
Ns
∏

j=1

p̂X(xj). (5.7)

The component weights and component parameters are obtained by the well-

known expectation-maximization (EM) algorithm [25]. We give a brief description of

the algorithm here. Let θi = {µi,Σi} be the unknown parameters of component i in

the mixture model. Begin with an initial setting of the unknown parameters θi and

weights αi. Then calculate the membership weights

wji =
αiN(xj ; θi)

∑nc

k=1 αkN(xj ; θk)
, ∀i, ∀j (5.8)

corresponding to the data point at xj and component i. This corresponds to the

E-step. For the M-step, we calculate the new component weights and component
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parameters

αi =
1

Ns

Ns
∑

j=1

wji, ∀i, (5.9)

µi =
1

nc

Ns
∑

j=1

wjixj , ∀i, (5.10)

Σi =
1

nc

Ns
∑

j=1

wji(xj − µi)(xj − µi)
⊤, ∀i, (5.11)

in that order. The E and M steps are iterated until the likelihood is no longer changing

from iteration to iteration, within a given tolerance.

5.3.3 Selection of the number of components

The GMM is an expressive statistical model, meaning that with sufficient components

it could fit any set of data. In an extreme case we could fit a component to every data

point. As with many learning algorithms, there is a danger of overfitting the data;

in this case, the resulting model would not generalize well to unobserved samples.

In practice, selection of the number of components in the mixture model can have a

significant effect on the performance of the resulting statistical model. There have

been proposed several methods to automatically determine the appropriate number

of components.

One approach is to select an information criterion, which adds a regularization in

the optimization (5.7). As a consequence, we maximize the likelihood of the observed

data but with a penalty for including more components in the mixture model. Two

common choices are the Bayesian information criterion (BIC) and Akaike information

criterion (AIC) [1]. Let k be the number of parameters to be estimated in the statis-

tical model. Then BIC adds a penalty of the form k lnNs to the objective function.

The number of data points are explicitly accounted for in this form. In contrast, the

AIC uses a regularization that scales only with k. In what follows we use an approach

based on BIC [29] since it accounts explicitly for the limited number of available data

in our applications.
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5.3.4 Evaluation of the posterior predictive online

Once the GMM is learned in the offline stage, i.e., before data are observed, we

progress to the online stage of the process. The experiments are performed and data

are collected. It remains only to condition the model on the observed data to obtain

the posterior predictive density. Using the GMM, this process is straightforward as

we now describe.

Let p̂Yp,Yd
(yp,yd) =

∑nc

k=1 αkN(yp,yd;µk,Σk) be the GMM we built in the offline

stage. When we condition on observed data ỹd, we will obtain yet another GMM, this

time over the prediction variables yp only. Let p̂Yp|Yd
(yp, yd) =

∑nc

k=1 βkN(yp; ỹd, µk|Yd
,Σk|Yd

)

be the resulting GMM with positive component weights βk that sum to unity, means

µk|Yd
, and covariances Σk|Yd

.

The new parameters are obtained as follows. Let

µk =





ȳkp

ȳkd



 , Σk =





Σkp,p Σkp,d

Σkd,p Σkd,d



 (5.12)

be the decomposition of the component means and covariances into the parts corre-

sponding to the prediction variables (subscript p) and data variables (subscript d).

The parameters of the conditional GMM are then given by

βk =
αk(2π)

−ne/2|Σkd,d|−1/2 exp
{

−1
2
(ỹd − ȳkd)

⊤Σ−1
kd,d

(ỹd − ȳkd)
}

∑nc

m=1 αm(2π)−ne/2|Σmd,d
|−1/2 exp

{

−1
2
(ỹd − ȳmd

)⊤Σ−1
md,d

(ỹd − ȳmd
)
} , (5.13)

µk|Yd
= ȳkp + Σkp,dΣ

−1
kd,d

(ỹd − ȳkd), (5.14)

Σk|Yd
= Σkp,p − Σkp,dΣ

−1
kd,d

Σkd,p. (5.15)

The conditional density can then be visualized, samples can be drawn, or moments

computed.
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5.3.5 Limitations

There are several limitations to this approach, although a few are shared by many

other methods as well. Two important limitations are that of model misspecification

and extension to higher dimensional data and prediction space, which we discuss in

this section.

Model misspecification can take several forms in this setting. A prior for which the

true unknown parameter has very low likelihood could lead to a data realization that

is far away from simulated data samples. In this case, the density estimation scheme

is required to extrapolate to the observed data as opposed to interpolating between

them. This can lead to large errors in the posterior predictive density. However, it

should be noted that it would be straightforward to detect when such a situation

occurs, modify the prior in some way to account for it, and rebuild the GMM for the

joint density.

Another form of model misspecification can be an unrealistic noise model in the

likelihood function. In that case, the posterior predictive density is likely to reflect

much lower variability in prediction than would be predicted with a more representa-

tive noise model. The same issues can also arise with observed data outside the regions

adequately sampled in the offline stage, again leading to inaccuracy in predictions.

Lastly, model misspecification can also occur because of errors in the experimental

or prediction processes themselves. Large errors in the posterior predictive can be

manifested in this case as well.

It should be noted that many other techniques also suffer from model misspecifica-

tion issues. In particular, a more traditional approach to the solution of the statistical

inference problem would also be subject to errors in prior, noise model, and forward

model prescription alike. These techniques would not, however, suffer from the issues

of extrapolation that we have here, which, to some extent, exacerbate the situation.

Instead, they work online and therefore can refer to the statistical model when the

data are known.

Besides model misspecification, there are also impediments to extending the method
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to higher dimensional combined data and prediction spaces, i.e., the space where the

mixture model is defined. The number of parameters to learn in the mixture model

depends linearly on the number of components but scales roughly like the square of

the number of dimensions (assuming anisotropic covariances are permitted). Density

estimation therefore becomes more and more challenging as the dimensionality of the

joint space increases. In applications of interest, however, it is likely that the pre-

diction space will remain very low-dimensional, and that the dimensionality of the

experimental data space may grow. For that context, it may be possible to break the

algorithm into two steps: first, to identify some small number of important features

in the data, and second, to learn the joint density between that feature space and

the predictions. This will introduce another level of approximation but may be an

adequate path forward for growing data spaces.

One important open question is the dependence of the accuracy of the method

on the dimensionalities of the parameter, data, and prediction spaces as well as on

the number of samples used to learn the mixture model. Intuitively, we expect the

dimensionality of the parameter space to play an insignificant role since it is only the

parameter’s influence in the data and prediction spaces that are relevant for the joint

density; that is, the information contained in the high-dimensional parameter space is

collapsed into a much lower dimensional space. There is also an open question regard-

ing the significance of the dimensionality of data and prediction spaces, separately, in

the accuracy of the resulting posterior predictive density. One would like to believe

that the dimensionality of the data space would play a less significant role since the

final posterior predictive density is defined over just the prediction variables, but the

conditional density itself (for unrealized data) is a function of both data and predic-

tions. Therefore, it seems unavoidable that the dimensionality of the combined space

will be the dominant consideration in such analyses. One way to alleviate this issue

would be to combine our suggested approach with an online algorithm; however, the

real-time capabilities would be necessarily sacrificed in doing so. In the next chapter

we will explore numerically the effect of the total number of offline samples on the

accuracy of the resulting posterior predictive density for several realizations of data.
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5.4 Kernel conditional density estimation

In order to check the results from the GMM, we will compare to a kernel density esti-

mate [70, 64] of the conditional density. For these purposes, we employ the Nadaraya-

Watson conditional density estimator

p̂Yp|Yd
(yp;yd) =

∑Ns

i=1 θ(yp − yip; hp)θ(‖yd − yi
d‖; hd)

∑Ns

i=1 θ(‖yd − yi
d‖; hd)

(5.16)

where θ(∆; h) is the Gaussian kernel function with length scale h [35]. We obtain hp

and hd by minimizing a cross-validation estimate of the integrated squared error.

Define I to be the integrated squared error

I =
1

2

∫

Yp

∫

Yd

(p̂Yp|Yd
(yp;yd)− pYp|Yd

(yp;yd))
2pYd

(yd) dyd dyp. (5.17)

Expanding out the terms, what remains is I = 1
2
I1 − I2 where

I1 =

∫

Yp

∫

Yd

p̂Yp|Yd
(yp;yd)

2pYd
(yd) dyd dyp, (5.18)

I2 =

∫

Yp

∫

Yd

p̂Yp|Yd
(yp;yd)pYp,Yd

(yp,yd) dyd dyp. (5.19)

Let J = {1, . . . , Ns} and define p̂J\i(yp;yd) to be the Nadaraya-Watson conditional

density estimator computed by excluding data point i. Then, we have leave-one-out

cross validation Monte Carlo estimates

Î1 =
1

Ns

Ns
∑

i=1

∫

Yp

p̂J\i
(

yp;y
i
d

)2
dyp, Î2 =

1

Ns

Ns
∑

i=1

p̂J\i
(

yip;y
i
d

)

. (5.20)

Owing to the Gaussian kernel functions, we have the further simplification

Î1 =
1

Ns

Ns
∑

i=1

∑

j 6=i

∑

k 6=i θ(‖yi
d − yj

d‖; hd)θ(‖yi
d − yk

d‖; hd)θ(y
k
p − yjp;

√
2hp)

(

∑

j 6=i θ(‖yi
d − yj

d‖; hd)
)2 . (5.21)

We select hp and hd by minimizing Î = 1
2
Î1 − Î2.
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We will check our solution using the GMM approach by evaluating the kernel

density estimate at the observed experimental data ỹd for a variety of samples of

observed data. We will plot the densities for comparison.

5.5 Demonstration on model problems

We now demonstrate the above approaches on a few model problems before proceeding

to the carbon capture and storage application in the next chapter. The goal here is to

verify the approach on problems where the associated parameter inference problem

is tractable. In this manner we can directly compare the goal-oriented approach

to the traditional approach of first estimating the parameter and then propagating

uncertainty forward to the prediction output quantity of interest.

5.5.1 Linear model

Consider linear models for both experiment and prediction, i.e., where we would

normally apply the techniques from linear goal-oriented inference. Let the parameter

µ ∈ R2 have iid standard normal prior distributions. Our experimental outputs are

defined by the function

ye =





2 3

−1 1









µ1

µ2



 . (5.22)

We make observations of data yd = ye + ǫ where ǫ ∼ N (0, σ2I) with σ = 0.05. The

goal is to predict yp = µ1 + µ2.

The solution to this problem is analytic owing to the normality and linearity.

We compare the analytic solution to three approaches to making prediction. We

use the GMM, the KDE, and lastly, we solve the inference problem using MCMC

and propagate the resulting samples through the prediction, forming a kernel density

estimate on those prediction samples. The results are shown in Figure 5-2.

For the KDE and GMM we use 50,000 samples of the joint density. We take

500,000 steps in the MCMC chain, retaining 9091 of them after discarding burn-in

and removing correlated samples. All of the results are very accurate, with the KDE
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performing worst, but still with small error. The results from MCMC and the GMM

both coincide with the truth solution, which we know analytically. In this case the

GMM is able to fit the samples with just one mixture component. In general one may

require many components and this affects both the computational complexity and the

accuracy. As the number of samples of the joint density increases, the KDE will also

converge to the truth. Here the GMM has the unfair advantage that it is able to

exactly capture the true joint density since it is just a single multivariate Gaussian.
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Figure 5-2: Results from the linear model for both experiment and predictions. The
GMM and MCMC results both coincide with the truth result. The KDE is slightly
off but still doing well.

5.5.2 Nonlinear model

We now introduce nonlinearity in the experimental process through an additional

term whose effect we can dial in by adjusting a parameter λ, i.e.,

ye =





2 3

−1 1









µ1

µ2



+ λ





µ2
1 + µ2

2

µ2
1 − µ2

2



 . (5.23)

We use the same procedures for the approaches we used in the linear model exam-

ple above. In this case, we do not have the analytic solution with which to compare.

The results are plotted in Figure 5-3 for a variety of choices of the parameter λ. We

consider the KDE results to be truth in this case due to its asymptotic convergence
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Figure 5-3: Posterior predictive densities for choices of the nonlinear parameter (a)
λ = 0.1, (b) λ = 0.5, (c) λ = 1, and (d) λ = 3.

As the parameter λ is increased, the experimental process becomes increasingly

nonlinear (i.e., the nonlinear term becomes more pronounced). This is manifested in

the results primarily by multimodality in the prediction. The MCMC approach fails

to locate the other mode when it exists since it tends to get stuck in the first mode

it finds.5 The GMM, on the other hand, seems to identify a spurious extra mode

in Figure 5-3(c). The GMM is susceptible to such behavior particularly where the

observed data correspond to cuts through the joint density in regions with relatively

few samples (i.e., low marginal likelihood of data). These regions are influenced

by components of the mixture model that have been centered around more densely

5It should be noted that this drawback of the random walk Metropolis-Hastings form of MCMC
has been addressed in the literature (see, e.g., [22]). We present the MCMC result here just as a ref-
erence; it’s online cost is prohibitive in the goal-oriented inference context irrespective of algorithm.
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packed samples in the joint density.

In the next chapter, we tackle the carbon capture and storage problem where both

the experimental and prediction processes are nonlinear functions of the parameter.

We will explore solutions based on KDE and GMM for obtaining posterior predictive

densities. Unfortunately, the current MCMC technology is not feasible in the number

of parameters we have in the application, so we cannot reasonably compare to such

results.
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Chapter 6

Application of nonlinear

goal-oriented inference to carbon

capture and storage

In this chapter we apply the nonlinear goal-oriented inference approach described in

the previous chapter to a realistic application in carbon capture and storage. Seques-

tering carbon emissions in the subsurface is one method for curbing anthropogenic

effects. Knowledge of the subsurface parameters (e.g., permeability and porosity) is

essential to making accurate predictions of plume migration and trapping volumes.

The subsurface parameters are field quantities and can only be measured indirectly

by making sparse readings of pressures at boreholes for some experimental conditions.

We utilize the goal-oriented inference approach to establish prediction estimates di-

rectly from observed data from the experiment.

We describe the carbon capture and storage application in section 6.1 and provide

reference for the numerical implementation of the physics. In section 6.2 we define

the geometry of a candidate aquifer and the associated computational domain. The

random field defining the permeability is discussed in section 6.3. In sections 6.4 and

6.5 we establish the governing equations for the experiment and prediction processes,

respectively. The experiments are governed by single-phase flow in porous media while

the predictions depend on a vertical equilibrium approximation of the two-phase flow
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equations. Finally, in section 6.6 we give discussion of the numerical results employing

the nonlinear goal-oriented inference procedure of the previous chapter.

6.1 Application description and numerical imple-

mentation

Supercritical carbon dioxide is typically injected in saline aquifers in the subsurface.

The fluid is buoyant with respect to the resident brine; therefore, it floats and migrates

along the caprock of the aquifer. Where the aquifer geometry is suitable, the fluid can

be captured in pockets underneath the caprock. Remaining carbon dioxide continues

to migrate. Of primary importance in such scenarios is the percentage of carbon

dioxide effectively trapped in the injection and migration process over a given period

of time. The dynamics of the plume depend heavily on the permeability in the aquifer,

the target of parameter inference in the application. Determining the feasibility for

injection of a candidate aquifer would typically involve performing experiments in the

form of hydraulic interference tests to infer the permeability field. The estimate can

then be used as input to an injection simulation to predict trapped volume percentage

to evaluate different injection scenarios and ultimately to make decisions.

The computational tasks involving the geometry, numerical solution, and visual-

ization of the experiment and prediction processes for the carbon capture and stor-

age application are performed using SINTEF’s Matlab Reservoir Simulation Toolbox

(MRST) [52]. The governing equations for the experiment and prediction processes

are discretized using the mimetic finite difference method. For the experiment pro-

cess we solve the single-phase flow equations in 3-D. On the other hand, for the

two-phase flow governing the migration of the carbon dioxide plume, we use the

vertical equilibrium (VE) module that ships with MRST. MRST can be found at

www.sintef.no/Projectweb/MRST/ and is freely available under the GNU General

Public License, well maintained, and updated with each new distribution of Matlab.
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6.2 Computational domain

The computational domain is a hexahedral discretization of a synthetic, but realistic,

saline aquifer. The domain is pictured in Figure 6-1. The aquifer occupies a one

kilometer by one kilometer ground area and varies in thickness from approximately

30m to 80m as a function of x and y location. The aquifer’s top surface contains both

high and low frequency variations, and the aquifer itself has a 20m fault. We have

made an effort to include the most challenging aspects of realistic candidate aquifers.

The domain has 30,000 cells.
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Figure 6-1: The computational domain representing the candidate aquifer.

We use the full 3-D domain for the experiment process where we solve the single-

phase flow equations under given injection and production scenario. For the prediction

process, however, we will enlist the vertical equilibrium approximation and use only

the top grid, which contains 2500 quadrilateral cells. The top surface grid is pictured

in Figure 6-2.
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Figure 6-2: The computational domain for the prediction process; the top grid of the
3-D computational domain.

6.3 Permeability field

The parameter in this goal-oriented inference problem is the permeability field in the

aquifer. Let µ(x, y, z) : R3 → R3×3 be the permeability tensor field. We will assume

that the tensor is anisotropic and has the form

µ(x, y, z) = µ(x, y, z)











1 0 0

0 1 0

0 0 0.1











(6.1)

where µ(x, y, z) is the parameter field.

We model the permeability as a lognormal random field with µ(x, y, z; ξ) = exp g(x, y, z; ξ)

where g(x, y, z; ξ) is a Gaussian random field. We specify zero mean function and co-

variance function

C(~x1, ~x2) = b exp

{

1

L
‖~x1 − ~x2‖

}

(6.2)

where ~x = (x, y, z), b is the amplitude, and L is the correlation length scale. In this

application we use L = 400 and b = 5, which results in samples of permeability that

vary by four to five orders of magnitude. This exponential kernel has algebraically

104



diminishing eigenvalues (compared to the exponentially decreasing eigenvalues of the

squared exponential covariance kernel, e.g.), which makes the moral dimension of the

parameter space still very large.

As mentioned in the previous chapter, we discretize the random field and represent

it as piecewise constant with the permeability varying from cell to cell. To sample

approximately from the random field g(x, y, z; ξ) we first construct the Gram matrix

K by evaluating the covariance function at all pairs of centroids of the cells. We

then perform the eigenvalue decomposition of the resulting matrix and retain modes

corresponding to the highest 98% of the total energy as determined by the eigenvalues.

The eigenvalue decay is shown in Figure 6-3. The first eight eigenvectors are pictured

in Figure 6-4. Eight random samples of the log permeability are shown in Figure 6-5.
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Figure 6-3: Eigenvalues of the Grammatrix with exponential covariance kernel. (Only
the retained 3,383 eigenvalues pictured.)
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Figure 6-4: The first eight eigenmodes of the Gram matrix.

106



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6-5: Eight samples of the log permeability.
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6.4 Experiment process

We now define the experiment process for the carbon capture and storage application.

The experiment process is the steady state single-phase flow in the aquifer under given

injection and production rates at five injection wells controlled by bottomhole pres-

sure and three production wells controlled by rate. The outputs are the bottomhole

pressures at each of the production wells.

Table 6.1: The positions and completions of the injection and production wells for
the experimental process.

Label Completion Top (x, y, z) Completion Bottom (x, y, z)

I1 (62.352, 410.000, 135.592) (63.178, 410.000, 150.430)
I2 (224.8412, 150.000, 194.957) (223.716, 150.000, 209.392)
I3 (525.123, 729.999, 306.420) (528.343, 729.998, 322.413)
I4 (784.941, 330.000, 164.954) (785.166, 330.000, 180.140)
I5 (415.082, 70.001, 205.000) (413.352, 70.002, 218.782)
P1 (396.613, 689.999, 201.606) (399.512, 689.999, 215.890)
P2 (275.624, 50.001, 108.887) (273.756, 50.001, 124.071)
P3 (587.946, 230.000, 225.926) (587.421, 230.000, 241.260)

Let Ω be the computational domain with boundary faces δΩ. We assume no

flow boundary conditions (i.e., homogeneous Neumann at each boundary face). The

pressure is fixed to 300 bar at the bottom of each of the injection wells. The production

wells extract fluid at a rate of 3 m3/day. The governing equation in the domain outside

of the wells (which is solved using a Peaceman well model) is given by conservation

of mass and Darcy flow, i.e.,

−∇ · (µ∇u) = q, ~x ∈ Ω (6.3)

where u is the global pressure and q corresponds to the sources/sinks at the injection

and production wells.

For each sample of the permeability field, we solve (6.3) using MRST and ex-

tract the bottomhole pressure at the production wells. That is, we have fe =

[u(~x1;µ), u(~x2;µ), u(~x3;µ)]
⊤ where the production wells extend down to the cell

whose centroids are at ~x1, ~x2, and ~x3, respectively. An example solution showing
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Figure 6-6: An example solution of the pressure (bar) in the experiment process. Five
injection and three production wells pictured.

the injection and production wells is pictured in Figure 6-6. The locations of the

injection and production wells are given in Table 6.1.

We simulate noise in the data by sampling from the additive Gaussian noise model

with zero mean and standard deviation σn = 2 bar. Histograms of the marginal

likelihood of the data for each experimental output are shown in Figure 6-7.

109



0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

pressure

sa
m

pl
es

(a)

0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

pressure

sa
m

pl
es

(b)

0 50 100 150 200 250 300 350
0

1000

2000

3000

4000

5000

pressure

sa
m

pl
es

(c)

Figure 6-7: For 11,075 samples of the parameter, marginal likelihood of the data for
the three experimental outputs, bottomhole pressure at production wells (a) P1, (b)
P2, and (c) P3.
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6.5 Prediction process

The prediction process is given by the two-phase flow of supercritical carbon dioxide

and the resident brine in the aquifer. We make the common assumption that the flow

is incompressible and that the two phases are immiscible. Furthermore, we will neglect

capillary pressure in the model. For the development of the governing equations and

the vertical equilibrium approximation, we follow [55]. For a more in-depth reference

on the vertical equilibrium approximation and other modeling approaches, see [62].

Let ϕ be the porosity (assumed constant) in the aquifer, pn and pw be the pressures

of the carbon dioxide (non-wetting) and brine (wetting), vn and vw the corresponding

velocities, and Sn and Sw be the corresponding saturations. Mass conservation is then

expressed by the PDEs

ϕ
∂Si

∂t
+∇ · vi = qi, vi = −λi(S)µ(∇pi − ρig), i = n, w, (6.4)

where ρi is the phase density, qi is the phase source volume rate, λi(S) is the phase

mobility as a function of the saturation, and g is the gravitational vector. Define now

a global pressure p and total velocity v to obtain

ϕ
∂S

∂t
+∇ · f(S)(v + λw(S)µ∆ρg) = qn, (6.5)

v = −µλt(S)(∇p− (f(S)ρn + (1− f(S))ρw)g), (6.6)

∇ · v = qt, (6.7)

where λt = λn + λw is the total mobility, f = λn/λt is the fractional mobility,

∆ρ = ρn− ρw is the density difference of the two phases, and qt = qn + qw is the total

volume rate of source.

Let H be the total height of the aquifer and h be the height of the carbon dioxide

plume. Define s = h/H to be the relative height of the CO2 plume as a function of
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position ~x = (x, y) and time t. If we vertically average (6.5), we obtain

ϕH(~x)
∂s

∂t
+∇|| ·

(

f̃(s, ~x)vve + f̃g(s, ~x)(g||(~x) +∇pc(s, ~x)
)

= qn(x, y), (6.8)

∇|| · vve = qt(~x), (6.9)

vve = −λ̃t(s, ~x)

(

∇||pt − (f̃(s, ~x)ρn + (1− f̃(s, ~x))ρw)g||(~x) +
λ̃w

λ̃t

∇||pc(s, ~x)

)

,(6.10)

where the notation a|| indicates the component of the vector a parallel to the top

surface of the aquifer, pt(~x) is the global pressure at the top surface. Since we disregard

capillary forces, we have pc(s, ~x) = H(~x)g⊥∆ρs where g⊥ is the component of the

gravity vector perpendicular to the top surface.

Heterogeneities in the medium are preserved in the vertical equilibrium approxi-

mation by defining modified mobilities and fractional flow functions

λ̃n =

∫ sH(~x)

0

kn
νn

µdz, λ̃w =

∫ H(~x)

sH(~x)

kw
νw

µdz, f̃ =
λ̃n

λ̃n + λ̃w

, f̃g = λ̃wf̃ , (6.11)

where ki and νi are the relative permeability and viscosity, respectively, of phase i.

The evaluation of the relative permeabilities in (6.11) depends on whether the reser-

voir is locally undergoing drainage or imbibition. Let sresi be the residual saturation

of phase i. When the aquifer is undergoing imbibition, i.e. smax > s where smax is

the maximum historical saturation, then the relative permeabilities are evaluated at

1− sresw for kn and 1− sresn for kw; otherwise, they are evaluated at unit saturation.

We simulate the injection of supercritical carbon dioxide at one well at a rate of

500m3/day for 50 years followed by the migration that takes place over the following

450 years. The resulting plume is pictured in Figure 6-8. The prediction quantity

of interest is the total volume of trapped carbon dioxide. This corresponds to the

portion of the fluid that has been successfully sequestered under the caprock and is

no longer mobile, thereby no longer presenting a risk of leakage through faults or

improperly sealed wells in other parts of the subsurface. A histogram of the marginal

likelihood of the predictions is shown in Figure 6-9.
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Figure 6-8: The height (m) of the CO2 plume after 50 years of injection at 500m3/day
followed by 450 years of migration.
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Figure 6-9: Marginal likelihood of the prediction of trapped volume for 11,075 samples
of the parameter.
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6.6 Discussion and numerical results

We now undertake the task of learning the conditional density of prediction given

experimental data and performing numerical experiments to validate our approach.

We begin first by visualizing and then transforming the data with monotonic and

differentiable functions in section 6.6.1. In section 6.6.2 we evaluate the performance

of our approach by simulating true experimental data and validating our approach

with a kernel density estimate of the posterior predictive. Finally, in section 6.6.3, we

study numerically the effect on the results of the number of parameter samples used

to build the GMM in the offline stage.

6.6.1 Transforming the data

We begin by inspecting the data further, a recommended first step before employing

any machine learning algorithm. Any additional insight one can gain from perusing

the data can help to inform model building or algorithmic choices. The raw data is

shown in Figure 6-10 in the form of pairwise marginals.

From the figure, it is clear that each component of the experimental data and the

prediction would benefit from logarithmic transformation. Therefore, we perform the

transformations

yd ← ln(330− yd), yp ← ln yp, (6.12)

which are both differentiable and monotonic. The barrier value at 330 bar was deter-

mined based upon inspection of the raw data.

6.6.2 Numerical results

Using the transformed data shown above, we learn a GMM for the joint density using

theMatlab code developed in [28, 29]. We choose a maximum of 30 components and

the code automatically chooses the number of components to balance the maximiza-

tion of likelihood of data and the Bayesian information criterion (BIC) [21]. Given

the 11,075 samples of the joint density we use, the algorithm settles on a GMM for
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Figure 6-10: Pairwise marginal data and histograms. The first three rows (columns)
correspond to the experimental data, and the last row (column) corresponds to the
prediction output. It is clear that all components would benefit from certain loga-
rithmic transformations.

the joint density that has 15 components. As a verification tool, we use a kernel

density estimate (KDE) as described in the previous chapter. The KDE is obtained

using the Kernel Density Estimation Toolbox for Matlab [43].

For the numerical experiments, we select a permeability field at random from

the prior distribution. We assume this random sample to be truth, i.e., the true

permeability field in the subsurface. Experimental data are simulated by solving the

single-phase pressure equation given the injection and production settings specified

in section 6.4. Given the simulated noisy data, we carry out the online process of

goal-oriented inference: the previously learned joint density is conditioned at the

observed data to obtain the posterior predictive density. The raw observed data and
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Figure 6-11: Pairwise marginal data and histograms after the transformations of
(6.12) have been applied.

predictions based on the truth sample of permeability are given in Table 6.2.

Table 6.2: For the six assumed truth samples of the permeability field, we give the
figure where the posterior predictive is plotted, the raw observed data, and the true
prediction.

Figure yd1 (bar) yd2 (bar) yd3 (bar) yp (m3)

6-12(a) 282.124 294.804 293.153 1.294× 105

6-12(b) 294.865 298.440 295.787 3.416× 105

6-12(c) 298.654 294.842 279.562 2.795× 105

6-12(d) 291.663 288.973 293.773 1.994× 105

6-12(e) 278.557 296.358 298.237 3.764× 105

6-12(f) 298.061 273.317 293.704 2.948× 105

Figure 6-12 presents the posterior predictive by both GMM and KDE for some

truth samples of the permeability field. For reference, we also show the prior pre-

dictive density as obtained by a KDE over all samples of prediction from the offline
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phase. For each case, we also plot the prediction quantity of interest obtained by

simulating the prediction process for the given truth sample. Note that this is a de-

terministic quantity; however, we expect it to appear within the significant support

of the posterior predictive with high probability.

In each of the results we notice trends similar to those observed in the model

problems in section 5.5. The KDE generally produces results with greater total

variation since it is more sensitive to the locality of samples of the joint density near

where data are observed. On the other hand, the GMM tends to smooth the result

since it involves only 15 Gaussian components, each with greater kernel width than

the kernel from KDE, which has as many components as original samples. In all

cases, the GMM and KDE are in general agreement, particularly in the manner with

which the posterior predictive density differs from the prior predictive density. It

is this update in information based on the observed data which is critical to our

goal-oriented inference.

The posterior predictive densities represent our updated belief in the relative like-

lihood of trapped volume of carbon dioxide under the pumping scenario described in

section 6.5 given our prior specification on the parameter and the observed data from

experiments. We have a full probabilistic description of the trapped volume enabled

by focusing on the relationship between experimental data and the prediction quan-

tity of interest, all in an application where best practices in statistical inference of the

parameter would have been insufficient. In practice these results would feed forward

to a decision-making process where it would be determined if sufficient volume of the

carbon dioxide would be trapped in the aquifer to proceed with the injection.

6.6.3 Effect of number of offline samples

In this section we investigate numerically the effect of the number of offline samples of

parameter on the resulting prediction accuracy. We learn separate GMMs using 100

samples, 1000 samples, and all 11075 samples and compare the posterior predictive

results against those obtained by KDE for several realizations of the data. The results

are shown in Figure 6-13.
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(a) (b)

(c) (d)

(e) (f)

Figure 6-12: Posterior predictive densities for samples of the permeability field. Re-
sults from the GMM and KDE are both presented. The prior predictive density and
true prediction are given as reference. Observed data values are given in Table 6.2.

The trend is expected. The approximation of the posterior predictive density by

GMM appears to improve with more offline samples. Since we assume that the prior
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Figure 6-13: Posterior predictive densities for four samples of the permeability field
representing the true permeability synthetically. Results from GMMs learned us-
ing 100 samples, 1000 samples, and 11075 samples offline are compared to solutions
obtained using KDE.

is efficient to sample and we build the GMM before experiments are performed, we

recommend that as much data are acquired as possible to build the GMM. If data are

difficult or expensive to obtain for some reason, it should be noted that the accuracy of

the GMM (as well as many other estimation procedures) will be affected significantly.

In order to study the dependency of the accuracy of the approach on proximity

of the observed data point to the offline samples, we explore three cases where we

artificially prescribe data. In the first case, we set the data to be in a high-density

region of the samples for all of the mixture models we trained with different numbers

of offline samples. For the second case, we select the data artificially to be proximal

to many samples from the 1000-sample and 11075-sample GMMs but in a low-density

region of the 100-sample GMM. Finally, in the last case, we select the data artificially

119



to be in a low-density region of all of the GMMs. The results are shown in Figure 6-14.
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Figure 6-14: Posterior predictive densities for three artificial realizations of data: (a)
proximal to points used to train all GMMs, (b) proximal to points for many-sample
GMMs but in low-density region of the 100-sample GMM, and (c) in low-density
region of all GMMs. Results from GMMs learned using 100 samples, 1000 samples,
and 11075 samples offline are compared to solutions obtained using KDE.
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For the first case (see Figure 6-14(a)), there is general agreement of all of the

GMMs with the KDE posterior predictive density. This is expected behavior since

the model should be accurate in high sample density regions. In the second case (see

Figure 6-14(b)), the GMM based on 100 samples is inaccurate since the observed data

occurs in a low sample density region. Finally, in the last case (see Figure 6-14(c)),

all of the posterior predictive density approximations fail. The observed data are well

outside the offline samples. This reflects that these density estimations are susceptible

to large errors when extrapolation is required. For this reason, it is critical that one

attempt to detect such situations before trusting the resulting posterior predictive

density.
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Chapter 7

Summary and future work

In this final chapter we provide a summary of the work, enumerate the contributions

of this thesis, and provide some thoughts on possible extensions.

7.1 Summary

We have introduced goal-oriented inference as a new approach to estimation of pre-

diction quantities of interest in the context of unknown distributed parameters. Tra-

ditional approaches of parameter estimation followed by forward propagation are in-

sufficient for enabling real-time online prediction computations and expend extensive

computational resources on parameter inference when it is not necessary to do so.

We have developed a new approach in the linear setting that resulted in a set of

goal-oriented inference algorithms companion to popular existing parameter inference

algorithms. By letting the prediction requirements drive the parameter inference, an

offline analysis of the experiment and prediction processes reveals a dimensionally-

optimal subspace regularizer for the parameter inference. As a result the linear opera-

tor transforming observed data to predictions can be precomputed offline and stored,

due to its low dimensionality. When observations are collected online, predictions

can be obtained in real-time. Our method also has the benefit of revealing important

properties of the inference in the context of predictions by identifying experimental

inefficiency and modes of prediction uncertainty. This information could be used
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as inputs to an optimal experimental design. The linear approach was applied to a

model problem in contaminant source identification and prediction where numerical

results corroborated the theoretical findings.

In the nonlinear statistical setting we have developed a practical method for goal-

oriented inference involving a priori parameter sampling and learning the joint density

of predictions and experimental data. The method exploits the low-dimensionality of

the product space of experimental data and predictions. The accuracy of the method

depends on the ability to sample the parameter space and simulate experimental

data and predictions; however, this can be completed entirely offline before the real

data are observed, and the process is embarrassingly parallel meaning that one could

obtain optimal parallel scaling on a distributed computing architecture. Once the

joint density is learned, the experiment is performed, and the density is conditioned

on the observed data to obtain the posterior predictive density in real-time. The

approach was demonstrated on an important problem in carbon capture and storage,

where the very high-dimensional parameter space puts the traditional approaches

out of reach of state-of-the-art statistical inference techniques. Since we focus on

prediction quantities of interest, we circumvent the issues associated with inferring

the parameter itself; instead, we focus on the relationship between experimental data

and prediction quantities of interest.

The contributions of this thesis are:

• formulation of goal-oriented inference, allowing predictions to drive the inference

process;

• development of a set of goal-oriented inference procedures companion to well-

established parameter identification algorithms;

• establishment of offline analysis tools to guide experimental design and expose

sources of prediction uncertainty for linear problems;

• derivation of theoretical guarantees on the prediction accuracy of goal-oriented

inference for linear problems;
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• demonstration of linear goal-oriented inference on a model problem in contam-

inant identification and prediction;

• development of a practical algorithm that extends goal-oriented inference to

nonlinear problems;

• and demonstration of nonlinear goal-oriented inference in performing a proba-

bilistic risk assessment in carbon capture and storage (CCS).

7.2 Future work

One of the goals of this work was to establish goal-oriented inference as a new branch

in the inference tree. We are hopeful that others will take up some of the possible

extensions to this work. In this section we briefly describe a few possibilities in this

direction.

The decompositions of experiment and prediction processes in the linear setting

reveal information about how modes in parameter space affect experimental data

and prediction outputs. In our developments, we have assumed the definition of the

experimental process. One can easily envision extending the idea of goal-oriented

inference to the experimental process as well. This would be consistent with the con-

cept of allowing prediction requirements to drive the process of experiment in addition

to the inference. Ideally one would choose experiments to align the experimentally

observable modes with those of the prediction; however, in many cases, this may

be physically impossible or too costly. An optimal experimental design formulation

would account for the feasibility and cost of experiments in an attempt to align these

spaces.

Extending the goal-oriented nature of the approach to experimental design may

be accompanied by pushing beyond predictions and on to decisions as well. In this

work, we focus on driving inference by prediction requirements, using predictions

as a substitute for final decisions. However, particularly in the statistical setting,

decisions would be derived from the posterior predictive density. If we encode that
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decision-making process and include it as part of the prediction, we expect to find that

prediction requirements differ and may require less information about the unknown

parameter. For example, if the decision about going ahead with a carbon capture

strategy relies on the trapped carbon dioxide volume exceeding a certain value with

given probability, then it is not necessary to resolve the posterior predictive density

but rather just to obtain that probability accurately.

The goal-oriented inference approach for nonlinear problems in the statistical set-

ting treats the experimental and prediction processes as black box models. It may

be possible to improve the accuracy and/or efficiency of the approach by exploiting

structure in these processes if they are known. In particular, exploiting sensitiv-

ity information of the experimental data and prediction outputs with respect to the

parameter, information which varies as a function of the parameter itself, may be

possible. Linear goal-oriented inference can be applied locally in parameter space,

but transitioning between parametric descriptions is still an open problem. Some

nonlinear model reduction concepts (e.g., trajectory piecewise linearization [69], in-

terpolation on Grassmann manifolds [4], or empirical interpolation methods [8, 20])

may be fruitfully applied or adapted in this context.
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