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Abstract 

Recent advances in autonomy have enabled a future vision of single operator control of multiple 

heterogeneous Unmanned Vehicles (UVs). Real-time scheduling for multiple UVs in uncertain 

environments will require the computational ability of optimization algorithms combined with the 

judgment and adaptability of human supervisors. Automated Schedulers (AS), while faster and more 

accurate than humans at complex computation, are notoriously “brittle” in that they can only take into 

account those quantifiable variables, parameters, objectives, and constraints identified in the design stages 

that were deemed to be critical. Previous research has shown that when human operators collaborate with 

AS in real-time operations, inappropriate levels of operator trust, high operator workload, and a lack of 

goal alignment between the operator and AS can cause lower system performance and costly or deadly 

errors. Currently, designers trying to address these issues test different system components, training 

methods, and interaction modalities through costly human-in-the-loop testing. 

Thus, the objective of this thesis was to develop and validate a computational model of real-time 

human-automation collaborative scheduling of multiple UVs. First, attributes that are important to 

consider when modeling real-time human-automation collaborative scheduling were identified, providing 

a theoretical basis for the model proposed in this thesis. Second, a Collaborative Human-Automation 

Scheduling (CHAS) model was developed using system dynamics modeling techniques, enabling the 

model to capture non-linear human behavior and performance patterns, latencies and feedback 

interactions in the system, and qualitative variables such as human trust in automation. The CHAS model 

can aid a designer of future UV systems by simulating the impact of changes in system design and 

operator training on human and system performance. This can reduce the need for time-consuming 

human-in-the-loop testing that is typically required to evaluate such changes. It can also allow the 

designer to explore a wider trade space of system changes than is possible through prototyping or 

experimentation. 

Through a multi-stage validation process, the CHAS model was tested on three experimental data 

sets to build confidence in the accuracy and robustness of the model under different conditions. Next, the 

CHAS model was used to develop recommendations for system design and training changes to improve 

system performance. These changes were implemented and through an additional set of human subject 

experiments, the quantitative predictions of the CHAS model were validated. Specifically, test subjects 

who play computer and video games frequently were found to have a higher propensity to over-trust 

automation. By priming these gamers to lower their initial trust to a more appropriate level, system 

performance was improved by 10% as compared to gamers who were primed to have higher trust in the 

AS. The CHAS model provided accurate quantitative predictions of the impact of priming operator trust 

on system performance. Finally, the boundary conditions, limitations, and generalizability of the CHAS 

model for use with other real-time human-automation collaborative scheduling systems were evaluated. 

 

Thesis Supervisor: Mary L. Cummings 

Title: Associate Professor of Aeronautics and Astronautics  
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1 Introduction 

Real-time scheduling in uncertain environments is crucial to a number of domains, including Air 

Traffic Control (ATC) (Wickens et al., 1998), rail operations (Kwon, Martland, & Sussman, 

1998), manufacturing plants (Jackson, Wilson, & MacCarthy, 2004), space satellite control 

(Howe et al., 2000), and Unmanned Vehicle (UV) operations (Clare, 2010). The representative 

setting for this thesis will be UV operations, as the use of UVs has increased dramatically over 

the past decade (Girard & Hedrick, 2004; Naval Studies Board, 2005; U.S. Air Force, 2009). The 

United States Department of Defense (DoD) allocated $1.82 billion for UV research and 

development in its 2010 budget, with general UV funding increasing 18% from 2009 

(Washington Technology, 2009). Beyond military operations, UVs were used in natural disaster 

relief efforts and in the response to the Fukushima nuclear disaster (Madrigal, 2011; Thomas, 

2012). Recently, the U.S. Congress passed legislation (H.R. 658, 2012) mandating the 

integration of commercial Unmanned Aerial Vehicles (UAVs) into the U.S. National Airspace 

System (NAS) by 2015. UAV integration into the NAS is projected to have an $82 billion 

economic impact over 10 years (Jenkins, 2013), with uses for UAVs including agriculture, 

wildlife monitoring, firefighting, search and rescue, border patrol, atmospheric research, and 

cargo delivery. 

While these UVs contain advanced technology, they typically require multiple human operators, 

often more than a comparable manned vehicle would require (Haddal & Gertler, 2010). The need 

for many operators per UV causes increased training and operating costs (Haddal & Gertler, 

2010) and challenges in meeting the ever-increasing demand for more UV operations (U.S. Air 

Force, 2009). For nearly a decade, the U.S. DoD has envisioned inverting the operator-to-vehicle 

ratio in future scenarios where a single operator controls multiple heterogeneous (air, sea, land) 

UVs simultaneously (Naval Studies Board, 2005; Office of the Secretary of Defense, 2005). 

More recently, the DoD made it clear that increasing UV autonomy and developing advanced 

techniques for manned-unmanned teaming are priorities for future research in the “Unmanned 

Systems Integrated Roadmap FY2011-2036” (DoD, 2011). The roadmap discussed the need for 

more advanced autonomy, the desire for this autonomy to be flexible and adaptable to dynamic 

and uncertain environments, the need for collaborative autonomy between multiple UVs, and the 

need for new verification and validation approaches to certify increasingly complex autonomy.  
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Recent advances in the autonomous capabilities of UVs have enabled these vehicles to execute 

basic operational and navigational tasks on their own and collaborate with other UVs to complete 

higher level tasks, such as surveying a designated area (Alighanbari & How, 2006; Bertuccelli et 

al., 2009). Researchers have demonstrated autonomous collaboration and swarming behavior 

with anywhere from three to hundreds of vehicles (see Mohan & Ponnambalam, 2009 for a 

review). In October 2012, NASA and DARPA demonstrated advanced collaboration between 

multiple UVs for autonomous aerial refueling between two unmanned, high-altitude Global 

Hawk aircraft, as shown in Figure 1 (NASA, 2012).  

 

Figure 1. Demonstration of autonomous multi-UV collaboration for aerial refueling (NASA, 2012).  

To effectively control multiple semi-autonomous UVs, some method is necessary for scheduling 

tasks. For the purposes of this thesis, scheduling is defined as creating a temporal plan that 

assigns tasks among a team of UVs and determines when the tasks will be completed. While this 

thesis will not focus on path planning per se, it should be noted that path planning is coupled 

with the scheduling problem, due to the need to estimate how long it will take for a UV to travel 

to a certain location to accomplish a task. A wide variety of optimization algorithms have been 

developed to address the problem of scheduling tasks for multiple UVs (see Clare, Cummings, & 

Bertuccelli, 2012 for a review). While varying in their method of formulating the scheduling 
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problem and solving the optimization, all of the approaches cited in the above paper utilize an 

Automated Scheduler (AS) with little to no human input during the development of the schedule. 

However, in the presence of unknown variables, possibly inaccurate information, and changing 

environments, automated scheduling algorithms do not always perform well (Scott, Lesh, & 

Klau, 2002; Silverman, 1992). Though fast and able to handle complex computation far better 

than humans, optimization algorithms are notoriously “brittle” in that they can only take into 

account those quantifiable variables, parameters, objectives, and constraints identified in the 

design stages that were deemed to be critical (Smith, McCoy, & Layton, 1997). In a command 

and control situation such as supervising multiple UVs, where unanticipated events such as 

weather changes, vehicle failures, unexpected target movements, and new mission objectives 

often occur, AS have difficulty accounting for and responding to unforeseen changes in the 

environment (Guerlain, 1995; Polson & Smith, 1999). Additionally, the designers of 

optimization algorithms often make a variety of assumptions when formulating the optimization 

problem, determining what information to take into account, or, in the case of receding horizon 

algorithms, deciding how far into the future to plan (Bellingham, Richards, & How, 2002; 

Layton, Smith, & McCoy, 1994). While the DoD is enthusiastic about autonomy, the 2011 

roadmap also cautioned that: 

“Because artificial systems lack the human ability to step outside a problem and 

independently reevaluate a novel situation based on commander’s intent, algorithms 

that are extremely proficient at finding optimal solutions for specific problems may 

fail, and fail badly, when faced with situations other than the ones for which they 

were programmed.” (DoD, 2011, p. 48) 

One approach to deal with the “brittleness” of these algorithms is to have a human operator and 

an algorithm work together. A 2012 Defense Science Board report, “The Role of Autonomy in 

DoD Systems,” explicitly called for human-automation collaboration, stating: 

“It should be made clear that all autonomous systems are supervised by human 

operators at some level, and autonomous systems’ software embodies the designed 

limits on the actions and decisions delegated to the computer. Instead of viewing 

autonomy as an intrinsic property of an unmanned vehicle in isolation, the design and 

operation of autonomous systems needs to be considered in terms of human-system 

collaboration.” (U.S. Department of Defense, 2012, pp. 1-2) 
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A mixed-initiative scheduling system, where a human guides a computer algorithm in a 

collaborative process to solve the scheduling problem, could best handle a realistic scenario with 

unknown variables, possibly inaccurate information, and dynamic environments. A number of 

studies have shown that humans collaborating with algorithms can achieve higher performance 

than either the human or the algorithm alone under certain conditions (Anderson et al., 2000; 

Cummings et al., 2012; Cummings & Thornburg, 2011; Johnson et al., 2002; Malasky et al., 

2005; Ponda et al., 2011; Ryan, 2011). Designing a more effective human-automation 

collaborative scheduling system would provide the ability to supervise multiple UVs while 

addressing the inherent brittleness and opacity of algorithms. 

1.1 Motivation 

Despite the potential benefits of a collaborative scheduling system, operators can become 

confused when working with automation, unaware of how the “black box” algorithm came to its 

solution or the assumptions made by the algorithm in modeling the problem. Often times there 

are differences between the real world, the automation/engineer’s model, and the human 

operator’s models of the world (Figure 2). 

 

 

Figure 2. Differences between real world, the algorithm/engineer’s model, and operator’s model of the world. 

 

Three major problems have been identified when human operators collaborate with AS in real-

time operations due to the “brittleness” of the AS. First, operator trust in the AS can fluctuate 

due both to the operator’s initial trust level in the AS and the behavior of the AS throughout the 

mission. This phenomenon has been observed in data analysis from previous human-in-the-loop 

experiments and has been linked to changes in performance (Clare, Macbeth, & Cummings, 

2012; Gao et al., 2013). Trust can be defined as the “attitude that an agent will help achieve an 
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individual’s goals in a situation characterized by uncertainty and vulnerability” (Lee & See, 

2004, p. 51). Operators with low trust may spend an excessive amount of time replanning or 

adjusting the schedule (Clare, Macbeth, et al., 2012). Also, “overtrust” in automation has been 

cited in a number of costly and deadly accidents in a variety of domains (Cummings, 2004a; 

Parasuraman & Riley, 1997).  

The second problem is that operator cognitive workload can reach a level where system 

performance begins to decline, as shown in previous research (Clare & Cummings, 2011; 

Cummings, Clare, & Hart, 2010). When the operator’s workload becomes too high, he or she 

may not have enough spare attentional resources to evaluate the schedules generated by the AS 

and determine whether the schedules need to be adjusted. On the other hand, increased 

automation can lower the operator’s task load to the point where boredom and fatigue can 

negatively impact performance (Cummings et al., 2013; Mkrtchyan, 2011; Scerbo, 2001; 

Walters, French, & Barnes, 2000). 

The third problem is that there may be a lack of goal alignment between the operator and AS. 

Thus, the schedules generated by the AS may not be achieving the goals that are most important 

at that moment during the mission. There are two primary methods by which this could occur. 

First, the objective functions of the human and AS may not be aligned, in that the AS is 

optimizing for one objective, while the operator has a dynamic or different and possibly 

subjective metric for evaluating schedules. Previous research has shown that alignment of 

operator and AS goals can lead to higher Situation Awareness (SA), higher levels of operator 

confidence, and higher spare mental capacity (Clare et al., 2012). Second, the operator may be 

most concerned with satisficing (Simon et al., 1986), or achieving a feasible solution as quickly 

as possible, as opposed to finding the optimal schedule through lengthy optimization.  

Understanding how to design collaborative scheduling systems to achieve the appropriate level 

of human trust, a moderate level of workload, and alignment of operator and AS goals is crucial 

to maintaining high system performance and preventing mistakes. Also, testing the impact of 

different system components (algorithms, interfaces, etc.) and interaction modalities on human 

and system performance typically requires costly and time-consuming human-in-the-loop testing. 

Thus, the objective of this thesis was to develop and validate a computational model of real-time 
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human-automation collaborative scheduling of multiple UVs that could be used to predict the 

impact of changes in system design and operator training on human and system performance. 

1.2 Research Questions 

To address this objective, the following research questions were posed: 

 What are the major attributes and interactions that a model of real-time human-

automation collaborative scheduling must capture? 

 Can the model be used to predict the impact of changes in system design and operator 

training on human and system performance? 

 What level of accuracy can be expected of this model? How does it compare to other 

relevant models? What are the boundary conditions of the model? 

1.3 Thesis Organization 

In order to address these research questions, this thesis has been organized into the following 

chapters: 

 Chapter 1, Introduction, describes the motivation, objectives, and research questions of this 

thesis. 

 Chapter 2, Background, defines the concept of real-time human-automation collaborative 

scheduling of multiple UVs. Previously developed relevant models of humans in scheduling 

and control situations are presented and three crucial gaps among these previous models are 

identified. Finally, six attributes that are important to consider when modeling real-time 

human-automation collaborative scheduling are elicited from the relevant body of literature.  

 Chapter 3, Model Development, describes the modeling process that created the 

Collaborative Human-Automation Scheduling (CHAS) model, a System Dynamics (SD) 

model of human-automation collaborative scheduling of multiple UVs. The chapter describes 

the model in detail and concludes by describing the outputs and benefits of the model 

 Chapter 4, Model Validation, presents the results of the multi-stage validation process that 

was conducted for the CHAS model. Model structure tests are described, including boundary 

adequacy testing, dimensional consistency testing, extreme conditions testing, integration 

error testing, and structure and parameter verification. Behavior reproduction testing to 
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evaluate the accuracy of the CHAS model is described for three data sets. A sensitivity 

analysis is presented to evaluate the robustness of CHAS model results. 

 Chapter 5, Predictive Validation Experiment, describes a human subject experiment that was 

conducted to evaluate the ability of the CHAS model to predict the impact of changes in 

system design and operator training on human and system performance. The experimental 

results are presented, including an analysis of the impact of demographics on performance. 

Data is presented to evaluate the assumptions built into the CHAS model. Finally, the 

experiment results are compared to the quantitative predictions made by the CHAS model. 

 Chapter 6, Model Synthesis, demonstrates potential uses for the CHAS model by system 

designers. The CHAS model’s accuracy and features are compared with a previously 

developed Discrete Event Simulation (DES) model of human supervisory control of multiple 

UVs. Finally, the generalizability of the model is discussed along with model limitations. 

 Chapter 7, Conclusions, summarizes the important results in the CHAS model’s development 

and validation. Also, this chapter evaluates how well the research objectives were met, 

suggests potential future work, and presents the key contributions of this thesis.  
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2 Background: Modeling Human-Automation 

Collaborative Scheduling 

This chapter begins by defining the concept of real-time human-automation collaborative 

scheduling of multiple Unmanned Vehicles (UVs). The unique aspects of this method of 

controlling UVs are identified along with the potential benefits to both human and system 

performance. Previously developed relevant models of humans in scheduling and control 

situations are then presented. Three crucial gaps among these previous models are identified with 

regards to real-time human-automation collaborative scheduling of multiple UVs. Finally, 

attributes that are important to consider when modeling real-time human-automation 

collaborative scheduling are elicited from the body of literature relevant to human supervisory 

control. These attributes provide a theoretical basis for the model proposed in this thesis. 

2.1 Real-time Human-Automation Collaborative Scheduling 

A potential future method for a single human operator to control multiple heterogeneous UVs 

(air, land, sea) involves the operator guiding an Automated Scheduler (AS) in a collaborative 

process to create, modify, and approve schedules for the team of UVs, which are then carried out 

by the semi-autonomous UVs. Although this concept is known by many names, including 

“Human-Automation Collaboration” (Miller & Parasuraman, 2003), “Human-Computer 

Collaboration” (Silverman, 1992), “Human Guided Algorithms” (Klau et al., 2003; Thorner, 

2007), and “Mixed-initiative Planning” (Riley, 1989), all such systems involve a human working 

collaboratively with an optimization algorithm to solve a complex problem or make a decision. It 

is likely that operators will need to concentrate attention on the primary task of monitoring UV 

progress and system performance while also being prepared for various alerts, such automation 

notifications about potential changes to the vehicle schedules. 

For the purposes of this thesis, the representative setting will be a reconnaissance mission to 

search for an unknown number of mobile targets, each of which may be friendly, hostile, or 

unknown. The mission scenario is multi-objective, and includes finding as many targets as 

possible, tracking already-found targets, and neutralizing all hostile targets. Scheduling is 

defined here as creating a temporal plan that assigns tasks/targets among the team of UVs and 

determines when the tasks will be completed. While this thesis will not focus on path planning 
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per se, it should be noted that path planning is coupled with the scheduling problem, due to the 

need to estimate how long it will take for a UV to travel to a certain location to accomplish a 

task. 

This thesis will also focus on “real-time” scheduling. As opposed to the formal definition of real-

time in the computer science field, which is a system that must guarantee a result within a hard 

time constraint (Stankovic, 1988), our definition of real-time involves mission planning and 

replanning on-the-fly due to a dynamic and uncertain environment. For example, tasks may 

appear or disappear, move, or obstacles may appear or change throughout the mission. This 

implies a soft constraint on the speed of the collaborative scheduling process; the human operator 

and the AS must be capable of creating and approving new plans rapidly enough to be able to 

replan while a mission is already underway, in contrast to “off-line” pre-planning of a mission. 

While this soft time constraint would be different for each possible application scenario, this 

thesis focuses on a highly dynamic environment where the AS must be capable of generating 

new plans within seconds. 

This type of scheduling problem, assigning multiple heterogeneous UVs to many possible tasks 

with capability, location, and timing constraints in uncertain, dynamic environments, is likely a 

situation with unbounded indeterminacy (Russell & Norvig, 2003), depending on the problem 

formulation, where the set of possible preconditions or effects either is unknown or is too large 

to be enumerated completely. This optimization problem is NP-hard, meaning that it is likely that 

the AS cannot find an optimal solution in polynomial time (Russell & Norvig, 2003). Also, the 

objective function for this optimization may be non-convex, meaning that certain algorithms may 

become stuck in local minima. In many of these cases, where either the environment is stochastic 

or the search space is large, it is unlikely that an optimal plan can be found or will remain 

optimal throughout the mission.  In addition, the definition of “optimal” in uncertain, dynamic, 

command and control environments may be difficult to quantify and represent in a single, static 

objective function.   

Within the body of literature for task assignment algorithms, a wide variety of methods of 

solving the optimization have been developed, (see Clare, Cummings, & Bertuccelli, 2012 for a 

review). These methods include enumeration, the simplex method, dynamic programming, 
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branch and bound, and greedy algorithms. Meta-heuristic methods, often inspired by biological 

processes, include Genetic Algorithms, Simulated Annealing, Tabu Search, Particle Swarm 

Optimization, and Ant-Colony Algorithms, among others. Market-based auction algorithms are 

often applied to solve a variety of scheduling problems. Also, Dynamic Vehicle Routing (DVR) 

methods using Voronoi partitions are a potential solution method that could guarantee a certain 

level of performance without the need to replan constantly in a dynamic environment. DVR 

methods produce policies or decision rules, as opposed to specific task assignments, typically by 

optimizing the expected value of performance. 

A recently developed method utilizes decentralized algorithms, which can solve the problem 

quickly with slightly sub-optimal solutions (Alighanbari & How, 2006; Choi, Kim, & Kim, 

2011). Prior to the implementation of decentralized algorithms, a central node was used to collect 

information from all of the UVs, attempt to create a globally optimal schedule, and then send the 

plan back to all of the UVs.  The drawbacks to these centralized scheduling algorithms are the 

high communication bandwidth necessary to collect global information, the increased 

computational resources necessary to plan for the entire team of UVs, and the vulnerability of the 

system to single node failures. In contrast, decentralized algorithms allow each UV to compute 

its locally best plan to accomplish the mission goals with shared information. Decentralized 

algorithms can potentially respond to changes in the environment more quickly, scale to larger 

numbers of UVs while taking advantage of each UV’s added computational power, and are 

potentially more robust to communications failures (Alighanbari & How, 2006; Whitten, 2010). 

However, it can be difficult to reach a conflict-free schedule without needing a large amount of 

communication between the vehicles. In addition, the behavior of the UVs is emergent and 

sometimes difficult to predict in advance. Finally, decentralized algorithms cannot always 

guarantee optimal schedules. 

This thesis will focus on human collaboration with a decentralized AS for real-time scheduling. 

In order to enable this collaboration, a goal-based architecture must be implemented (Clare & 

Cummings, 2011; Cummings, et al., 2012). The human operator guides the high-level goals of 

the team of UVs (as opposed to guiding each individual vehicle) and the AS assumes the bulk of 

computation for optimization of task assignments. The AS is responsible for decisions requiring 

rapid calculations or optimization, and the human operator supervises the AS for high-level goals 
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such as where to search and overall resource allocation (i.e., which tasks get included in the 

overall plan), as well as for tasks that require strict human approval, such as approving weapons 

release. The system could include the human operator, the graphical interface which displays 

information to the operator and allows the operator to interact with the system, the scheduling 

algorithm, and the semi-autonomous UVs which act in the environment, all with information 

flowing between components (Figure 3). It should be noted that the AS could exist as a stand-

alone component, as pictured, or as sub-system of each UV, as in a decentralized system. 

 

Figure 3. Human-automation collaborative scheduling system diagram. 

This type of system has potential performance benefits for a realistic scenario with unknown 

variables, possibly inaccurate information, and dynamic environments by combining the 

computational ability of optimization algorithms with the judgment and adaptability of human 

supervisors (Cummings, et al., 2012). A goal-based architecture has been shown to achieve 

superior workload mitigation under high task loads with comparable system performance as 

compared to a vehicle-based, centralized control system (Clare & Cummings, 2011). Preventing 

high workload situations in a command and control environment is crucial for maintaining 

system performance, preventing costly or deadly errors, and enabling human operators to 

supervise larger fleets of coordinated UVs in the future. 

In this architecture, the role of the human operator shifts from vehicle pilot to mission manager. 

This means that the human operator is monitoring the system and makes decisions to intervene 

throughout the mission to coach the automation. There are many possible role allocations for 
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operator and AS in the collaborative decision-making process (Bruni et al., 2007; Cummings & 

Bruni, 2009). However, due to the complexity of the scheduling problem, time-pressure, and the 

potential for cognitive overload (Cummings, Clare, et al., 2010; Wickens & Hollands, 2000), 

human operators in a goal-based architecture are not allowed to have vehicle-level control, i.e. 

directly control or task a single UV. The operator cannot take completely manual control and 

must work with the AS to develop plans for the UVs. The AS, however, cannot make changes to 

the strategic-level plan without the approval of the human operator and needs the human operator 

for other tasks (such as visual identification of targets). Thus, this system is truly collaborative, 

in that contributions from the human and automation are necessary to conduct the mission. The 

operator cannot take complete manual control or set the system to a purely automatic mode. This 

is a subtle, yet important distinction between previous research into human supervisory control 

of multiple UVs, where often the level of automation could be changed (Goodrich et al., 2001; 

Miller et al., 2005), or where the human could have direct control over an individual UV 

(Cummings, Nehme, & Crandall, 2007; Nehme, 2009). 

The next section will review previously developed relevant models of humans in scheduling and 

control situations, in order to evaluate their applicability to real-time human-automation 

collaborative scheduling of multiple UVs, based on the above definition. 

2.1 Previous Relevant Models 

Computational models of human behavior in scheduling situations have existed since the early 

1980s. In contrast to purely descriptive or conceptual models (Jackson, et al., 2004; Rad, 2008), 

computational/quantitative models typically leverage computer simulations to both promote 

deeper understanding of how human operators behave and provide testable predictions about 

human behavior under different circumstances (Gao & Lee, 2006; Parasuraman, 2000). One of 

the earliest computational models of human behavior in a scheduling situation was developed by 

Tulga and Sheridan (1980) to model human attention allocation methods during a multitasking 

supervisory control situation. Sanderson (1991) also developed a computational model of how 

humans perform scheduling functions in the manufacturing domain. In both of these early works, 

the impact of attention allocation strategies on operator workload and performance was shown. 

Also, Tulga and Sheridan (1980) developed a theory of the impact of the arrival rate of tasks on 

human cognitive workload. However, neither paper modeled the potential for human 
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collaboration with an algorithm for conducting these scheduling tasks, but instead focused on 

how humans conducted the scheduling process on their own. 

With increases in computational power came an interest in pairing human operators with 

optimization algorithms to perform tasks that previously were done solely by a human or were 

impossible without automation. Thus, a set of computational models of human-automation 

collaboration were developed for general decision support systems (Riley, 1989), but mostly for 

industrial purposes such as manufacturing plants (Khasawneh et al., 2003) or process control 

(Gao & Lee, 2006; Lee & Moray, 1994). While these models of industrial processes captured the 

need for effective human-automation collaboration and the impact of operator trust on reliance 

on the automation, the manufacturing/industrial domain is distinct from control of multiple 

heterogeneous UVs. In a command and control mission involving multiple UVs, the environment 

is more dynamic and unpredictable, often with greater time pressure for decisions and higher 

uncertainty about the state of the environment. Also, operators controlling multiple UVs will 

likely have numerous additional tasks to conduct, requiring rapid task-switching, such as dealing 

with automation alerts, identifying visual imagery, monitoring the health and status of the UVs, 

and communicating with other operators and supervisors. 

With the explosion in UV usage in the late 1990s and 2000s, the concept of a human operator 

controlling multiple UVs with the aid of an AS was explored. Given the differences between 

industrial processes and controlling UVs, a number of computational models have been 

developed specifically for human-automation collaboration involving multiple UV control. It 

should be noted that formal cognitive modeling techniques, such as Goals, Operations, Methods, 

and Selection (GOMS) rules (Card, Moran, & Newell, 1983) and Adaptive Control of Thought-

Rational (ACT-R) (Anderson, 2007) have been applied to modeling human control of UVs (i.e. 

(Ball et al., 2002; de Visser, Jacobs, et al., 2012; Dimperio, Gunzelmann, & Harris, 2008; Drury, 

Scholtz, & Kieras, 2007)). However, these models focus on lower-level perception, cognition, 

and action processes, using a framework of discrete actions for visual encoding, memory access, 

memory retrieval, and motor actions. While formal cognitive models can produce accurate 

predictions of the time that an expert user would take to interact with an automated system, they 

often do not take into account variation in human operators, including the behavior of non-expert 

users, the impact of fatigue, previous operator experiences with automation, or the possibility of 
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operator mistakes or errors. All of these characteristics influence human decision-making and 

trust in real-time human-automation collaborative scheduling of multiple UVs. Finally, the focus 

of this thesis is on higher-level decision-making processes for human-automation collaboration. 

Human judgment and adaptability under uncertain conditions requires knowledge-based 

reasoning, rather than the skill- or rule-based decisions that formal cognitive models typically 

describe (Rasmussen, 1976, 1983). 

Among the previously developed computational models which focus on higher-level decision-

making processes (Cummings & Mitchell, 2008; Mkrtchyan, 2011; Nehme, 2009; Olsen & 

Wood, 2004; Rodas, Veronda, & Szatkowski, 2011; Savla et al., 2008), there are several crucial 

gaps with regards to real-time human-automation collaborative scheduling of multiple UVs, 

which will be discussed next. 

2.1.1 Lack of Feedback Interaction among Important Aspects 

The first limitation of the previous models is that they fail to effectively capture the feedback 

interactions among important aspects of real-time human-automation collaborative scheduling of 

multiple UVs. Feedback interactions play a crucial role in the collaboration between the human 

and automation in real-time scheduling of UVs. For example, as operator workload reaches too 

high of a level, a lack of attentional resources can lead to poor Situation Awareness (SA), 

defined as the “perception of the elements in the environment within a volume of time and space, 

comprehension of their meaning, and the projection of their status in the near future” (Endsley, 

1995, p. 36). Inadequate SA can prevent the operator from properly updating his or her 

expectations about system performance or can lead to poor decision-making about when to 

intervene in the system, both of which can lead to poor overall performance and lower trust in 

the AS. Poor system performance and undertrust in the AS can cause the operator to intervene 

too rapidly, driving workload to an even higher level, thus reinforcing the feedback loop. Thus 

capturing all of these components in sufficient detail, along with the feedback relationships 

among them, is crucial to an effective model of human-automation collaborative scheduling of 

multiple UVs. 
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2.1.2 Lack of Explicit Contributions of Human and Automation 

The second limitation of the previous models is that they do not capture sufficient details of the 

contribution of the operator and the AS to system performance. One of the reasons for this gap is 

that most of the previous models related to controlling multiple UVs (Cummings & Mitchell, 

2008; Mkrtchyan, 2011; Nehme, 2009; Olsen & Wood, 2004; Rodas, et al., 2011; Savla, et al., 

2008) assume that the human operator is directly individually tasking each vehicle, as opposed to 

goal-based control, where the human operator cannot command individual vehicles, but must 

guide the AS to create a viable schedule for all vehicles (Clare & Cummings, 2011). An effective 

model of human-automation collaborative scheduling must capture both the automation 

contribution to performance as well as the relationship between human guidance and system 

performance. The benefits of effective collaboration between the operator and an algorithm have 

been shown in previous research (Cummings, et al., 2012; Layton, et al., 1994; Silverman, 1992). 

As explained earlier, goal-based architectures will likely use decentralized or non-deterministic 

algorithms. Decentralized control architectures enable each vehicle to compute its locally best 

plan to accomplish the mission goals with shared information (Choi, Brunet, & How, 2009). 

Non-deterministic algorithms have been utilized successfully for complex real-time scheduling 

problems, including genetic algorithms (Eun & Bang, 2007) and particle swarm optimization 

(Sujit, George, & Beard, 2008). While there are potential advantages to using decentralized 

algorithms or non-deterministic algorithms, an open question is how human operators will react 

to the unpredictability of working with these types of algorithms, where behavior is emergent 

and solutions are likely suboptimal, but generated quickly. For example, Walker et al. (2012) 

defined the concept of “neglect benevolence” to capture the idea that humans may need to allow 

time for decentralized swarm algorithms to stabilize before acting, and thus neglecting the swarm 

for a period of time may be beneficial to system performance. Capturing the impact of these and 

other AS characteristics (i.e. time to generate a plan, impact of operator interventions) would 

enable the model to predict system performance when working with different algorithms. 

2.1.3 Lack of Integration of Qualitative Variables 

Third, none of the models which are specifically for multi-UV control capture the influence of 

qualitative variables such as trust or alignment of human and AS goals on system performance. 
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Operator trust in the AS can change throughout a mission due to the operator’s perception of 

how well the AS is performing towards the operator’s goals. Both overtrust and undertrust can 

have a significantly negative impact on system performance for human-automation collaborative 

scheduling. In real-time multiple-UV scheduling, the mission may be so complex that the 

operator cannot bypass the AS without the operator’s workload reaching levels that would cause 

a decrease in performance (Cummings & Nehme, 2010). This requirement to continue working 

with the AS means that it is critical for an effective model to capture the dynamics of trust and 

the impact of human and AS goal alignment. 

2.1.4 Summary 

Three gaps with regards to real-time human-automation collaborative scheduling of multiple 

UVs have been identified among the previously developed models reviewed above. First, none 

of the previous models capture the feedback interactions among important aspects of a real-time 

human-automation collaborative scheduling system. Capturing these feedback interactions is 

necessary for an effective model of a goal-based architecture for controlling multiple UVs. 

Second, the relevant models do not capture sufficient details of the AS in order to model the 

automation contribution to performance as well as the relationship between human guidance and 

system performance. Third, none of the models which are specifically for multi-UV control 

capture the influence of qualitative variables such as trust or alignment of human and AS goals 

on system performance. 

This thesis proposes to address these three gaps through the development of a computational 

model of real-time human-automation collaborative scheduling of multiple UVs. This new model 

will aid designers in dealing with the previously discussed issues of AS brittleness, inappropriate 

levels of operator trust, high operator workload, and poor goal alignment between the human and 

AS. To inform the model development process, the next section identifies attributes that are 

important to consider when modeling real-time human-automation collaborative scheduling. 

2.2 Model Attributes  

There is a large body of literature exploring the various features of human supervisory control, 

especially for UV control (i.e. (Chen, Barnes, & Harper-Sciarini, 2011; Crandall & Cummings, 

2007; Cummings, Bruni, & Mitchell, 2010; Dixon & Wickens, 2003; Endsley, 1995; Lee & See, 
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2004; Miller, 2004; Nehme, 2009; Sanders et al., 2011; Sheridan, 1992)). Based on the previous 

literature and the above definition, it is proposed that a model of real-time human-automation 

collaborative scheduling of multiple UVs should capture the following attributes: 

 Attention allocation and situation awareness 

 Cognitive workload 

 Trust in automation 

 Human learning 

 Automation characteristics 

 Human value-added to performance through interventions 

 Team coordination and structure (not addressed in this thesis) 

In the following sections, it is argued that these attributes collectively capture the major human, 

automation, and combined human/automation performance issues associated with human-

automation collaborative scheduling of multiple UVs and that all of these attributes are necessary 

in an effective model of such a system. The discussion of these attributes focuses primarily on 

their importance to the domain of this thesis, multiple UV scheduling, although the extension of 

this model to scheduling domains outside of multiple UVs is explored in Chapter 6. This thesis 

focuses on the concept of a single operator controlling multiple UVs, thus team coordination and 

task allocation among multiple operators is not considered and is left for future work. In the 

following sub-sections, for each of the remaining six attributes, previous research will be 

presented supporting the importance of capturing the attribute when modeling human-automation 

collaborative scheduling of multiple UVs. While the sub-sections will discuss each attribute 

independently, the interactions between the various attributes are important and will be discussed 

further in Chapter 3. 

2.2.1 Attention Allocation and Situation Awareness 

Human-automation collaborative scheduling of multiple UVs inherently involves multi-tasking, 

as operators must pay attention to the activities of multiple vehicles. In addition, operators 

engaged in these dynamic, high workload environments must both concentrate attention on the 

primary task (e.g., monitoring vehicle progress and identifying targets) and also be prepared for 

various alerts, including incoming chat messages or automation notifications about potential 
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changes to the vehicle schedules. This need to concentrate on a task, yet maintain a level of 

attention for alerts requires both interrupt and task-driven processing. The allocation of attention 

between these two can incur cognitive costs that negatively impact overall system performance 

(Miyata & Norman, 1986). Poor attention allocation has been shown to be a significant 

contributor to poor operator performance in single operator control of multiple unmanned 

vehicles (Crandall & Cummings, 2007; Goodrich, Quigley, & Cosenzo, 2005). Thus, capturing 

how the operator allocates his or her attentional resources (Wickens & Hollands, 2000) and the 

switching costs (Miyata & Norman, 1986) involved in multi-tasking are both important to the 

model proposed in this thesis. 

The result of poor attention allocation and information processing efficiency can be low 

Situation Awareness (SA), which can decrease the effectiveness of an operator’s decisions. 

Maintaining adequate SA of both the overall mission as well as individual UVs has been 

described as “one of the most critical factors for achieving effective supervisory control of 

multiple UVs” (Chen, et al., 2011, p. 439). There are three levels of SA: 1) perception of the 

elements in the environment within a volume of time and space, 2) comprehension of their 

meaning, and 3) the projection of their status in the near future (Endsley, 1995). There is a clear 

relationship between attention allocation and SA, as it has been shown in previous studies that 

switching between tasks incurs a cost in terms of SA, leading to delays in responses and errors 

(Cummings & Mitchell, 2008; Squire, Trafton, & Parasuraman, 2006). 

While all three levels of SA are generally important, Level I SA, perception of changes in the 

environment and of changes in system performance, is especially crucial to human-automation 

collaborative scheduling of multiple UVs. As described previously, the human operator must 

decide when to intervene to create tasks, change the schedule, or modify the way the AS works. 

This decision to intervene is driven by the operator’s timely perception of changes to the 

environment or mission performance, thus it will be important to the proposed model to capture 

time delays in the perception of these changes. 

2.2.2 Human Cognitive Workload 

Human cognitive workload is defined as the mental resource demand experienced by the 

operator as a function of task load, or the level of tasking that an operator is asked to perform 
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(Wickens & Hollands, 2000). As theorized by the Yerkes Dodson Law (1908), up to a certain 

point, increased workload can be beneficial to performance. Once the operator reaches what will 

be referred to as “cognitive overload,” performance begins to suffer. 

It has been shown in numerous previous empirical studies that cognitive workload has a 

significant impact on both human and system performance in human supervisory control of 

multiple UVs (Clare & Cummings, 2011; Cummings, Clare, et al., 2010; Cummings & Guerlain, 

2007; Cummings & Nehme, 2010; Dixon & Wickens, 2003; Nehme, 2009; Rouse, 1983; Ruff, 

Narayanan, & Draper, 2002; Schmidt, 1978). Thus it will be crucial in the proposed model to 

represent both the potential benefits of increased workload and the detrimental effects of 

cognitive overload. Beyond the traditional measures of workload through subjective ratings 

(Hart, 1988; Rubio et al., 2004), objective measures of workload such as utilization, the ratio of 

the total operator “busy time” to the total mission time, have been successfully incorporated in 

previous models of operator workload (Nehme, 2009; Schmidt, 1978) and should be 

incorporated in the model presented in this thesis. 

It should be noted that this thesis will only focus on medium to high task load environments, 

while low task load conditions and the impact of fatigue and boredom have and continue to be 

explored by others (Cummings, et al., 2013; Mkrtchyan, 2011; Scerbo, 2001; Walters, et al., 

2000). This is another area of possible future work. 

2.2.3 Human Trust in Automation 

Human trust in the AS is a crucial driver of performance in a human-automation collaborative 

scheduling system. Although there are some similarities to the concept of trust between two 

humans, there are also some significant differences between human-human trust and human-

automation trust (Muir, 1987). Human trust in an AS can be defined as the “attitude that an agent 

will help achieve an individual’s goals in a situation characterized by uncertainty and 

vulnerability” (Lee & See, 2004, p. 51). This thesis distinguishes trust in a scheduling algorithm 

for controlling UVs from recent research on human trust in embodied agents (de Visser, Krueger, 

et al., 2012) or robots (Hancock et al., 2011), as the operator is not co-located with the vehicle 

and there is no physical embodiment of the algorithm. Operator trust in the AS can fluctuate due 

both to the operator’s initial trust level in the AS and the behavior of the AS throughout the 
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mission. This phenomenon has been observed in data analysis from a previous human-in-the-

loop experiment and has been linked to changes in performance (Clare, Macbeth, et al., 2012; 

Gao, et al., 2013). 

Both overtrust and undertrust in automation can be detrimental to system performance. Low 

human trust in the AS can be caused by automation “brittleness,” in that the AS can only take 

into account those quantifiable variables, parameters, objectives, and constraints identified in the 

design stages that were deemed to be critical (Scott, et al., 2002; Silverman, 1992; Smith, et al., 

1997). In a command and control situation such as supervising multiple UVs, where 

unanticipated events such as weather changes, vehicle failures, unexpected target movements, 

and new mission objectives often occur, AS have difficulty accounting for and responding to 

unforeseen changes in the environment (Guerlain, 1995; Polson & Smith, 1999). Additionally, 

the designers of optimization algorithms often make a variety of assumptions when formulating 

the optimization problem, determining what information to take into account, or, in the case of 

receding horizon algorithms, deciding how far into the future to plan (Bellingham, et al., 2002; 

Layton, et al., 1994). Operators with low trust may spend an excessive amount of time 

replanning or adjusting the schedule (Clare, Macbeth, et al., 2012; Cummings, Clare, et al., 

2010). 

Also, “overtrust” in automation has been cited in a number of costly and deadly accidents in a 

variety of domains (Cummings, 2004a; Parasuraman & Riley, 1997). Overtrust in the AS can 

lead to the phenomenon of automation bias (Mosier et al., 1998), where operators disregard or do 

not search for contradictory information in light of an AS-generated solution which is accepted 

as correct (Cummings, 2004a). A number of empirical studies have shown that when working 

with imperfect automation, automation bias occurs (Chen & Terrence, 2009; Lee & Moray, 

1994; Muir & Moray, 1996; See, 2002). 

Thus, achieving the “appropriate” level of trust, calibrated to the reliability of the AS under 

different situations, is essential to achieving high performance in a human-automation 

collaborative scheduling system (Lee & See, 2004). To effectively model the trust calibration 

process, it is essential to start by capturing the operator’s initial trust level, which can vary 

widely based on the operator’s prior knowledge, past experiences, and training (Lee & Moray, 
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1994; Moray, Inagaki, & Itoh, 2000). Trust is dynamic, however, and can fluctuate throughout a 

mission based on the operator’s perception of how well the AS is performing (Lee & Moray, 

1992; Muir & Moray, 1996). A number of studies have found that human trust has inertia, where 

automation errors do not necessarily cause instantaneous loss in trust, but recovery in trust from 

severe failures can also be slow (Hoffman et al., 2013; Lee & Moray, 1992, 1994; 

Lewandowsky, Mundy, & Tan, 2000; Parasuraman, 1993; See, 2002). Capturing the impact of 

this inertia on the dynamics of the trust calibration process is also important to the model 

proposed in this thesis. 

Finally, it should be noted that previous studies and models of trust focused on systems where 

the operator had a choice between automated control or turning off the automation and taking 

complete manual control based on the difference between the operator’s trust in the automation 

and self-confidence (Gao & Lee, 2006; Lee & Moray, 1992). Based on the definition of human-

automation collaborative scheduling of multiple UVs presented earlier in this Chapter, however, 

taking complete manual control is not feasible. Thus, while the model’s treatment of trust will be 

derived from previous models of trust, it will require a slightly different approach that focuses on 

when and how the operator decides to intervene to guide the system, not when the operator 

decides to take complete manual control because his or her self-confidence in system operation is 

higher than his or her trust in the automation. 

2.2.4 Human Learning 

As human operators gain experience with a human-automation collaborative scheduling system, 

they will both learn how to use the system more quickly and efficiently and learn how to better 

collaborate with the AS. Sheridan (2006, p. 1028) stated that in a human supervisory control 

system, one of the operator’s major roles is “learning from experience so as to do better in the 

future.” Even with adequate initial training, operators controlling multiple UVs in a dynamic and 

uncertain environment will likely encounter novel situations throughout a mission that provide 

the operator with new knowledge and experience. 

For the proposed model in this thesis, there are two forms of learning that should be captured. 

The first, called “long-term learning” in this thesis, is the adjustment of the operator’s 

expectations of system performance. Tversky and Kahneman (1974) explained that humans who 
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need to estimate a value often utilize an “anchoring and adjustment” heuristic, where they begin 

with an initial guess and then attempt to adjust the guess based on new information gathered. In 

human-automation collaborative scheduling of multiple UVs, the operator will likely begin with 

a certain expectation of how well the system should perform a given task. Based on the 

operator’s perception of system performance throughout the mission, the operator will adjust his 

or her expectation of performance, albeit with some amount of “inertia” or a time delay in the 

adjustment (Lee & See, 2004). Representing this change in the operator’s expectations 

throughout the mission is important to the proposed model because previous research has shown 

that people (and businesses) often decide to make changes when there is a large enough 

difference between expected performance and actual (or perceived) performance (Rudolph, 

Morrison, & Carroll, 2009; Sastry, 1995; Tushman & Romanelli, 1985).  

The second form of learning, called “short-term learning” in this thesis, is the learning curve of 

how to use the graphical user interface more efficiently and how to read and analyze the 

information presented in the various displays more quickly. Many of the empirical data sets that 

can be used for verification and validation of the model proposed in this thesis utilize novice 

operators who receive some limited training but, in fact, are still learning how to use the system 

during experimental trials. Evidence of learning in experiments involving humans controlling 

multiple UVs has been found in previous studies (Cooper & Goodrich, 2008; Mekdeci & 

Cummings, 2009). The concept of a learning curve was first coined to describe the rate of 

increase in the productivity of airplane manufacturing workers (Wright, 1936). Since then, the 

concept has been well explored in the psychology, manufacturing, and business domains. 

Finally, it should be noted that others are researching machine learning (Geramifard et al., 2012; 

Michini, Cutler, & How, 2013) and adaptive automation techniques (de Visser, Jacobs, et al., 

2012; Miller, et al., 2005) to enable the automation for controlling UVs to learn over time as 

well. This thesis focuses on human learning and the incorporation of automation learning into a 

model of real-time human-automation collaborative scheduling is left for future work. 

2.2.5 Automation Characteristics 

In a model of human-automation collaborative scheduling of multiple UVs, certain 

characteristics of the AS must be captured in order to effectively model the system. For example, 
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it has been shown in previous research that the rate at which the AS prompts the operator to 

approve new schedules impacts operator workload and system performance (Clare, Maere, & 

Cummings, 2012; Cummings, Clare, et al., 2010). A prior empirical study showed that providing 

the operator with an AS that allows modifications to the objective function of the algorithm can 

improve SA, lower workload, and improve the operator’s perception of the AS (Clare, 

Cummings, How, et al., 2012). Lee and See (2004) identified a number of the bases of trust in 

automation, among them predictability, the degree to which future behavior can be anticipated; 

dependability, the degree to which behavior is consistent; and reliability, a measure of how well 

the automation performs relative to current and historical performance. Other factors that can 

influence both human and system performance include the speed with which the AS can produce 

new schedules and the alignment of objectives between the AS and the operator (Howe, et al., 

2000; Linegang et al., 2006; Silverman, 1992).  

As described earlier in this Chapter, a wide variety of AS have been developed for assigning 

tasks to multiple UVs in real-time, with differences in their solution method, guarantees about 

optimality, whether or not the AS took into account uncertainty, whether the AS was centralized 

or distributed among the UVs, and whether the AS could plan for heterogeneous UVs (Clare, 

Cummings, & Bertuccelli, 2012). Thus, for the model proposed in this thesis to be effective and 

capable of evaluating the impact of different AS on human and system performance, the impact 

of such AS characteristics on performance must be captured. 

2.2.6 Human Value-Added Through Interventions 

A number of studies have shown that humans collaborating with algorithms can achieve higher 

performance than either the human or the algorithm alone under certain conditions (Anderson, et 

al., 2000; Cummings, et al., 2012; Cummings & Thornburg, 2011; Johnson, et al., 2002; 

Malasky, et al., 2005; Ponda, et al., 2011; Ryan, 2011). Scott, Lesh, and Klau (2002) showed that 

in experiments with humans utilizing mixed-initiative systems for vehicle routing, operator 

intervention can lead to better results, but there is variation in the way that operators interact with 

the system and in their success in working with the automation. Cummings, et al. (2012) showed 

that in a human-automation collaborative scheduling system for multiple UVs, motivated human 

operators clearly added value to the performance of the system as compared to the performance 

of the system without a human actively guiding the system.  
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Thus, the proposed model should both capture baseline system performance without significant 

human intervention and identify the areas where humans could add the most value. Once those 

areas are identified, it is important to then quantify the impact of the different interventions that 

the human operator can undertake. Rather than a standalone variable, the model can represent 

human value-added through a feedback process that combines the impact of operator 

interventions with the impact of operator cognitive workload. The rate of operator interventions 

and the effectiveness of these interventions can form competing feedback loops (Rudolph & 

Repenning, 2002), as previous empirical research has shown that rapid rates of replanning can 

cause an increase in workload and a decrease in system performance (Clare & Cummings, 2011; 

Cummings, Clare, et al., 2010). 

2.3 Chapter Summary 

In summary, the concept of real-time human-automation collaborative scheduling of multiple 

UVs has been defined. The representative setting for this thesis is a reconnaissance mission to 

search for an unknown number of mobile targets. The mission scenario is multi-objective, and 

includes finding as many targets as possible, tracking already-found targets, and neutralizing all 

hostile targets. Scheduling is defined here as creating a temporal plan that assigns tasks/targets 

among the team of heterogeneous UVs, determines when the tasks will be completed, and takes 

into account capability, location, and timing constraints. In order to conduct this mission in 

uncertain, dynamic environments, a human operator will collaborate with a decentralized AS 

through a goal-based architecture to guide the team of UVs.  

Based on this definition, a review of previously developed relevant models of humans in 

scheduling and control situations was conducted to evaluate their applicability to the 

representative setting. The review identified crucial gaps with regards to real-time human-

automation collaborative scheduling of multiple UVs. Previous computational models did not 

capture the feedback interactions among important aspects of human-automation collaboration, 

the impact of AS characteristics on the contributions of the operator and automation to system 

performance, and the impact of qualitative variables such as trust in automated scheduling 

algorithms. 
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Finally, six attributes that are important to consider when modeling real-time human-automation 

collaborative scheduling are proposed, providing a theoretical basis for the model proposed in 

this thesis. Attention allocation and situation awareness, cognitive workload, trust in automation, 

human learning, automation characteristics, and human value-added through interventions 

should all be captured by the proposed model. 

Chapter 3 describes the modeling process that created the Collaborative Human-Automation 

Scheduling (CHAS) model, a System Dynamics (SD) model of human-automation collaborative 

scheduling of multiple UVs. The model is described in detail, including how it captures the 

important attributes identified in this chapter and addresses the gaps in previous models. Then, 

Chapters 4 and 5 describe preliminary validation of the model using historical data sets and a 

new human subject experiment. 
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3 Model Development 

This chapter describes the modeling process that created the Collaborative Human-Automation 

Scheduling (CHAS) model, a System Dynamics (SD) model of human-automation collaborative 

scheduling of multiple Unmanned Vehicles (UVs). The chapter begins by describing the field of 

System Dynamics and why it is appropriate for modeling a human-automation collaborative 

scheduling system. Next, the model building process is described, starting with an analysis of a 

previous experimental data set where a human operator was paired with an Automated Scheduler 

(AS) to conduct collaborative scheduling of multiple UVs in a simulation testbed. This analysis 

identified reference modes of operator behavior and performance, leading to the creation of a 

“dynamic hypothesis.” This hypothesis attempts to explain the dynamics of the system as 

endogenous consequences of the feedback structure of this system. Next, a SD model was 

formulated from this hypothesis. Parameters, behavioral relationships, and initial conditions of 

the system were estimated from experimental data. The chapter concludes by describing the 

outputs and benefits of the model. 

3.1 System Dynamics Modeling 

System Dynamics (SD) is a well-established field that draws inspiration from basic feedback 

control principles to create simulation models (Sterman, 2000). SD constructs (stocks, flows, 

causal loops, time delays, feedback interactions) enable investigators to describe and potentially 

predict complex system performance, which would otherwise be impossible through analytical 

methods (Forrester, 1961). SD models have been used in a number of large and small scale 

systems with social elements including management, economics, logistics, education, and 

disease spread (Sterman, 2000). More relevant to real-time human-automation collaborative 

scheduling, SD models have been developed to represent human supervisors monitoring 

automated systems (White, 2003), a number of command and control applications (Coyle, 

Exelby, & Holt, 1999), human decision-making in high-stress situation with interruptions 

(Rudolph & Repenning, 2002), and human problem-solving under time-pressure in action-

oriented environments, such as doctors coping with an operating room emergency (Rudolph, et 

al., 2009). This proposed application of SD is novel because no previous efforts have used this 
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method to model human interaction with automated systems at the decision-making level or to 

represent UV systems. 

While other simulation modeling techniques, such as Discrete Event Simulation (DES), have 

been successfully applied to modeling human supervisory control of multiple UVs (Nehme, 

2009; Rodas, et al., 2011), there are a number of reasons that SD models are particularly 

appealing for UV systems. The first is the ability of SD models to capture non-linear processes 

(Sweetser, 1999). Since human performance does not generally adhere to linear models 

(Cummings, et al., 2013; Gao & Lee, 2006), using non-linear behavioral and performance 

representations will be critical for the external validity of the model. Second, SD models can 

include both qualitative and quantitative data (Özgün & Barlas, 2009; Sterman, 2000). As 

previously discussed in Chapter 2, capturing the dynamics of trust and the impact of human and 

AS goal alignment on system performance is crucial for an effective model. Third, SD models 

are effective at capturing the impact of latencies and feedback interactions on the system, which 

is essential for modeling a human operator and the impact of delays in perception of system 

performance on operator behavior and trust. While there is an ongoing argument in the modeling 

community about the scenarios for which SD is more appropriate than DES (i.e. (Özgün & 

Barlas, 2009; Sweetser, 1999)) a key contribution of this thesis is the evaluation of the adaptation 

of SD techniques to model human supervisory control of UVs in comparison to DES techniques. 

The model presented in this thesis was developed through an inductive modeling process. 

Größler and Milling defined the inductive SD modeling process by stating that “the solution to a 

specific problem is sought as well as a specific situation serves as the basis for the model. Later 

in the process, insights gained in the project might be generalized…” (Größler & Milling, 2007, 

p. 2). The SD modeling process can be broken down into five major phases (Sterman, 2000). 

First, in the problem articulation stage, the overall problem that the model is attempting to 

represent is identified, along with key variables to be captured within the boundary of the model. 

Much of this work was described in Chapter 2. In the second stage, a “dynamic hypothesis” is 

developed. A dynamic hypothesis is defined as a theory that explains the behavior of the system 

as an endogenous consequence of the feedback structure of the holistic system (Sterman, 2000). 

It is a working hypothesis that guides the modeling effort and is continuously tested and refined 
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throughout the model building and testing process. Sections 3.2 and 3.3 describe the data 

analysis that led to the dynamic hypothesis for the model described in this thesis. 

In the third stage, the dynamic hypothesis is mapped into causal loops and stocks and flows in 

order to formulate the simulation model and estimate exogenous parameters, as described in 

Section 3.4. The SD community defines endogenous variables simply as those variables which 

are calculated within the model, while exogenous variables are assumed parameters which lie 

outside of the model boundary (Sterman, 2000). The fourth stage, testing the model, including 

comparison of model outputs to experimental data sets, robustness under extreme conditions, 

sensitivity analyses and other tests are described in Chapters 4 and 5. The fifth stage, policy 

design and evaluation, including evaluating the ability of this model to predict performance 

under new circumstances, is described in Chapter 5. Finally, Chapter 6 will describe how this 

model, developed for a specific system, can be generalized for use with other real-time human-

automation collaborative scheduling systems. While these phases will be described in a linear 

fashion in this thesis, the model underwent significant iteration, including a model reduction 

process (Appendix A). The final parsimonious model is described here. 

3.2 Previous Experimental Data Set Analysis 

In order to inform the construction of the CHAS model, a time-series data analysis was 

conducted using a previous experimental data set. First, the testbed used to collect this data is 

described. Then the analysis of the data is presented.  

3.2.1 Testbed Description 

The testbed which the CHAS model was designed to represent is a collaborative, multiple UV 

system called Onboard Planning System for UVs Supporting Expeditionary Reconnaissance and 

Surveillance (OPS-USERS), which leverages decentralized algorithms for vehicle routing and 

task allocation (Cummings, et al., 2012). This system functions as a computer simulation but also 

supports actual flight and ground capabilities (How et al., 2009); all the decision support displays 

described here have operated actual small air and ground UVs in real-time (Kopeikin et al., 

2012). 
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Operators were placed in a simulated command center where they controlled multiple, 

heterogeneous UVs for the purpose of searching an area of interest for new targets, tracking 

these targets, and approving weapons launch for hostile targets. The UVs in the scenario 

included one fixed-wing UAV, one rotary-wing UAV, one Unmanned Surface Vehicle (USV) 

restricted to water environments, and a fixed-wing Weaponized Unmanned Aerial Vehicle 

(WUAV). The UAVs and USV were responsible for searching for targets, using a decentralized, 

local search algorithm to guide their search pattern (Whitten, 2010). Once a target was found, the 

operator was alerted to perform a target identification task (i.e., hostile, unknown, or friendly), 

along with assigning an associated priority level (i.e., high, medium, low). Then, hostile targets 

were tracked by one or more of the vehicles until the human operator approved WUAV missile 

launches. UVs automatically returned to a central base when they needed to refuel. A primary 

assumption was that operators had minimal time to interact with the displays due to other 

mission-related tasks. 

Participants interacted with the OPS-USERS simulation via two displays. The primary interface 

is a map display (Figure 4). The map shows both geo-spatial and temporal mission information 

(i.e., a timeline of mission significant events), and supports an instant messaging “chat” 

communication tool, which provides high level direction and intelligence. As in real-life 

scenarios, changing external conditions often require the human and the system to adapt, which 

are represented through “Rules of Engagement” (ROEs) received through the chat tool. Icons 

represent vehicles, targets of all types, and search tasks, and the symbology is consistent with 

MIL-STD 2525 (U.S. Department of Defense, 1999). Operators had two exclusive tasks that 

could not be performed by automation: target identification and approval of all WUAV weapon 

launches. Operators could also create search tasks, which dictated on the map those areas which 

the operator wanted the UVs to specifically search.  

The AS used in OPS-USERS is the Consensus Based Bundle Algorithm (CBBA), a 

decentralized, polynomial-time, market based protocol (Choi, et al., 2009). More details on the 

AS can be found in (Whitten, 2010), with details of the OPS-USERS automation architecture in 

(Clare, Cummings, How, et al., 2012; Cummings, et al., 2012). The performance plot (Figure 4) 

gives operators insight into the AS performance, as the graph shows predicted plan score (red) 

versus current plan score (blue) of the system. The AS calculates plan score based on an 
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objective function that the operator can modify, as described below. When the AS generates a 

new plan that is at least five percent “better” than the current plan, the Replan button turns green 

and flashes, and a “Replan” auditory alert is played. The operator can choose to replan at any 

time, regardless of whether the Replan button is flashing. When the Replan button is clicked, the 

operator is taken to the Schedule Comparison Tool (SCT), for conducting scheduling tasks in 

collaboration with the automation. 

 

Figure 4. Map Display. 

The SCT display (Figure 5) appears when the Replan button is pressed, showing three 

geometrical forms colored gray, blue, and green at the top of the display, which are configural 

displays that enable quick comparison of schedules. The left form (gray) is the current UV 

schedule. The right form (green) is the latest automation-proposed schedule. The middle working 

schedule (blue) is the schedule that results from user plan modification. The rectangular grid on 

the upper half of each shape represents the estimated area of the map that the UVs will search 

according to the proposed plan. The hierarchical priority ladders show the percentage of tasks 

assigned in high, medium, and low priority levels, respectively.  
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When the operator first enters the SCT, the working schedule is identical to the proposed 

schedule. The operator can conduct a “what-if” assignment by dragging the desired unassigned 

tasks into the large center triangle. This query forces the automation to generate a new plan if 

possible, which becomes the working schedule. The configural display of the working schedule 

alters to reflect these changes. However, due to resource shortages, it is possible that not all tasks 

can be assigned to the UVs, which is representative of real world constraints. The working 

schedule configural display updates with every individual query so that the operator can leverage 

direct-perception interaction (Gibson, 1979) to quickly compare the three schedules. This “what-

if” assignment, which essentially is a preview display (Wickens & Hollands, 2000), represents a 

collaborative effort between the human and automation (Layton, et al., 1994). Operators adjust 

team coordination metrics at the task level as opposed to the individual vehicle level, which has 

been shown to improve single operator control of a small number of multiple, independent robots 

(Goodrich et al., 2007). Operators could also modify the objective function that the AS uses to 

evaluate schedules for the UVs through the “Plan Priorities” panel on the right side of the SCT. 

Details of the OPS-USERS interface design and usability testing can be found in (Clare, 

Cummings, How, et al., 2012; 2008). 

 

Figure 5. Schedule Comparison Tool (SCT) 

Operators can either choose to accept the working schedule or cancel to keep the current 

schedule. Upon accepting a new schedule, the AS only communicates to the vehicles via a 
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prioritized task list, and the vehicles sort out the actual assignments amongst themselves. This 

human-automation interaction scheme is one of high level goal-based control, as opposed to 

more low-level vehicle-based control. 

To summarize, there were four possible categories of “interventions” that the human operator 

could perform to adjust how the teams of UVs conducted the mission. First, the operator could 

create search tasks, which enabled the human operator to guide the automation and prevent 

myopic behaviors by encouraging the UVs to search in remote, unsearched areas that were likely 

to contain new targets. Second, the operator could “replan” by asking the AS to generate a new 

schedule for the team of UVs. This new schedule must be approved by the operator before the 

team of UVs will enact the new schedule. Third, the operator could modify the objective 

function of the AS throughout the mission to ensure that the goals of the AS align with changing 

mission goals. Fourth, the operator could conduct a “what-if assignment” to attempt to manually 

force a single task into the schedule if possible and view the ramifications of this forced 

assignment. 

3.2.2 Data Analysis 

The data set for this analysis is from an experiment where 30 participants performed two 20-

minute long simulated UV missions (Clare, Cummings, How, et al., 2012). Each scenario had 10 

targets initially hidden to the operator. Rules of Engagement (ROEs) were provided to the 

operators every 5 minutes via a chat box, which adjusted the goals that the operator focused on 

during each phase of the mission. It was assumed that all UVs and sensors operated normally 

throughout the mission. 

The primary mission performance metrics collected in these experiments were percentage of area 

covered during the search process and percentage of targets found, which were logged once per 

minute. All other metrics were collected in two minute intervals, resulting in 10 data points for 

each mission that enable comparison and aggregation across trials. These other metrics included: 

length of time spent replanning, utilization (a proxy measure for cognitive workload), the 

probability of performing a what-if assignment, the probability of modifying the objective 

function of the AS, the number of replans per two minute interval, and the number of search 
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tasks created per two minute interval. Aggregate data for all 60 trials in the experiment are 

shown in Figure 6.  

 
Figure 6. Aggregate time series experimental data. Standard Error bars are shown. 

A common analysis in the SD modeling process is to look for reference modes, which are graphs 

and data showing changes in the system over time. A few key reference modes that are apparent 

from these plots include that utilization, the percent of the overall mission time an operator was 

engaged in a task, generally declined throughout the mission, from 60% busy time to only 30% 

busy time by the end of the mission. Also, at the start of the mission, operators only performed a 

what-if assignment with 17% of the schedules proposed by the AS. After 5 minutes into the 

mission, operators approached a 33% likelihood of conducting a what-if assignment, which 

remained roughly flat for the rest of the mission. Next, it appears that operators generally had 

about a 50% likelihood of making a modification to the objective function of the AS, except 

during the period of the mission from 300-600 seconds, when that likelihood dropped to roughly 

25%. Finally, two of the key performance metrics, area coverage and targets found, both roughly 

resemble saturation curves, where the initial rates of covering area and finding new targets are 

high at the start of the mission, but later taper off as there is less new area to cover and fewer 

new targets left to be found. 
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As one of the key goals of this modeling effort is to capture the drivers of system performance, a 

cluster analysis was conducted to identify the missions which had significantly high or low 

performance so that they could be analyzed. Two separate clustering analyses were conducted, 

with the first analysis using total area coverage by the end of the mission as the clustering metric, 

and the second analysis using total number of targets found by the end of the mission. A 

hierarchical clustering was conducted using Ward’s Method to determine the number of clusters. 

Afterwards, the k-means algorithm was used to assign missions to clusters. Following clustering, 

operator behavior (search task creation rates, workload, length of time replanning, frequency of 

replanning, etc.) was compared between the high and low performance clusters for each 

performance metric. Between the best and worst missions ranked in terms of targets found, there 

were no significant differences found in operator action measures (Appendix B).  

There were significant differences in operator behavior, however, for the best and worst missions 

ranked in terms of area coverage, so data analysis focused on this performance metric. The area 

coverage metric of performance also provides a number of beneficial features to this analysis and 

modeling effort. It is a continuous measure of performance as opposed to discrete measures such 

as targets found or hostiles destroyed. It is visible to the human operator due to the use of a “Fog 

of War” overlay on the Map View (Figure 4). Also, it has been shown in prior work that the 

human operator can make a significant and meaningful contribution to the collaborative 

relationship with the AS in terms of area coverage performance (Cummings, et al., 2012). 

The clustering analysis results based on the total area coverage in each mission are shown in 

Figure 7a. The red circled clusters were identified as the Low Performance and High 

Performance clusters. Of the total 60 missions, there were 11 missions in the High Performance 

cluster and 26 missions in the Low Performance cluster. The average area coverage performance 

over time through the mission is shown for the two clusters in Figure 7b. A repeated measures 

ANOVA showed a significant difference between the two groups in terms of area coverage, 

F(1,35) = 145.801, p < 0.001. 
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(a)       (b) 

Figure 7. (a) Results of cluster analysis using total area coverage as the clustering metric. (b) Average area 

coverage performance over time for the high and low performance clusters. Standard Error bars are shown. 

Next a comparison of operator actions between the two clusters was conducted using a repeated 

measures ANOVA. The full details of this analysis are presented in Appendix B. The operator 

actions where there was a significant difference (=0.05) between the two clusters are shown in 

Figure 8a-c. These operator actions were: 

 The number of replans per 120-second time period, also known as the replan rate. High 

performers replanned more frequently than low performers (F(1,35) = 10.485, p = 0.003), as 

shown in Figure 8a. It should be noted that in the dynamic objective function experiment, 

there was no set interval at which operators were prompted to replan, but they were informed 

when the AS had a new proposed schedule that was at least 5% better than the current 

schedule. 

 The length of time that operators spent replanning, where high performers spent less time 

evaluating new plans generated by the AS (F(1,27) = 5.910, p = 0.022) (Figure 8b). 

 The rate of creating search tasks, where high performers created more search tasks 

throughout the mission (F(1,35) = 18.697, p < 0.001) (Figure 8c). 

 

Finally, the workload level of the operators, as measured by utilization, was compared between 

the two performance cluster groups. While there was no significant effect for performance 

cluster (F(1,35) = 2.472, p < 0.125), there was a significant effect for time (F(9,315) = 16.215, p 

< 0.001), as utilization decreased throughout the mission (Figure 8d). This analysis showed that 
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high performers used the system as designed by replanning more frequently, spending less time 

evaluating new schedules generated by the AS, and creating more search tasks to encourage the 

UVs to explore new areas on the map. They were able to conduct more interventions to guide the 

automation without significantly increasing their workload, as measured by utilization. 

 
(a)       (b) 

  
(c)       (d) 

Figure 8. Differences in operator behavior between low and high performers. Standard Error bars are 

shown. 

Once again, the hierarchical clustering analysis identified the number of meaningful groups in 

the data set, as shown in Figure 7a. While further data analysis could be conducted to determine 

what separates above average versus top performers, it is still instructive for model development 

that high performers intervened more frequently than low performers while making faster 

decisions. Why is it that high performers intervened more often to coach the automation? While 

data on operator trust is not explicitly available from this experiment, operators were asked to 

rate their satisfaction with the plans created by the AS after each mission on a Likert scale from 
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1-5 (low to high). This subjective rating can be used as a proxy variable for overall trust in the 

AS, as satisfaction of the operator’s goals is a key component of the definition of trust (Lee & 

See, 2004). The High Performance cluster had a lower average rating of satisfaction than the 

Low Performance cluster, as shown in Figure 9a. This difference was significant according to a 

Mann-Whitney non-parametric test, Z = -2.677, p = 0.007. In order to further examine this trend, 

data on operator satisfaction with the AS from all 60 missions was analyzed. As the operator’s 

satisfaction with the AS increased, overall area coverage performance decreased (Figure 9b). The 

figure only shows ratings between 1 and 4 because no operator rated their satisfaction level as 5 

out of 5. The differences in performance across all 60 missions based on the operators’ rating of 

their satisfaction with the AS are marginally significant according to a Kruskal-Wallis test, χ
2
(3, 

N=59) = 7.262, p = 0.064. Taking these ratings of satisfaction with the plans generated by the 

Automated Scheduler as a proxy measure of trust, it appears that higher performers had lower 

trust.  

 
(a)       (b) 

Figure 9. (a) Average subjective ratings of satisfaction with the plans created by the AS for each performance 

cluster. (b) Area coverage performance vs. operator ratings of satisfaction with AS plans (1=low, 4=high) for 

all missions. 

Finally, a set of correlations were run among the variables, looking for relationships that should 

be captured in the model. While correlation does not necessarily imply causation, an 

understanding of how human operators use the OPS-USERS system can inform decisions to 

model correlated relationships as causation relationships. One of the most interesting 

relationships found was between the operator’s satisfaction with the AS (a proxy measure of 

trust) and the number of search tasks that the operator creates per time interval (=-0.394, 
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p=0.002). This indicates that operators who have lower trust in the AS may choose to intervene 

more frequently in order to guide the automation. 

3.3 Dynamic Hypothesis 

Based on this analysis, a dynamic hypothesis was developed that high performers adjusted to an 

appropriate level of trust in the AS earlier in the mission as compared to low performers. 

Previous research on the AS used in the OPS-USERS testbed has shown that the automated 

search process is suboptimal and can be improved either with a centralized global search 

algorithm (Whitten, 2010) or with a collaborative human assisting the AS (Cummings, et al., 

2012), both of which extend the “effective planning horizon” of the search algorithm. Data 

analysis shows that higher performers understood the nature of these imperfections in the 

automation, reporting lower satisfaction/trust in the Automated Scheduler (p=0.007). They 

modified their behavior appropriately and used the system as designed by replanning more 

frequently (p=0.003), spending less time evaluating new schedules generated by the AS 

(p=0.022), and creating more search tasks (p<0.001) to encourage the UVs to explore new areas 

on the map. 

Drawing an analogy to the anchoring and adjustment heuristic (Tversky & Kahneman, 1974), if 

operators can anchor to the correct expectation of AS performance earlier in the mission or 

adjust to the appropriate level of trust faster (through better feedback about the AS/system), 

performance should improve. The implementation of this dynamic hypothesis into a SD model is 

described in the next section. 

3.4 CHAS Implementation 

The CHAS model has been developed using SD modeling techniques, drawing from the results 

of the above data analysis, and supported where possible with examples from previously 

developed models and the human supervisory control literature. The model captures the six 

attributes that were identified in Chapter 2 as important to consider when modeling real-time 

human-automation collaborative scheduling: attention allocation and situation awareness, 

cognitive workload, trust in automation, human learning, automation characteristics, and human 

value-added through interventions. 
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CHAS is a computational model that can simulate the operations of a human-automation 

collaborative scheduling system throughout a hypothetical mission. It simulates the human 

operator, a team of UVs, and the automation at an abstract level, yet provides concrete metrics 

such as system performance, the frequency of certain operator decisions, and operator workload 

throughout the mission, not simply at the end or on average throughout the mission. This is 

especially helpful in dynamic missions where significant changes to the environment and the 

operator’s behavior can occur. The model implements a set of equations which are calculated at 

discrete time steps using the Vensim
®
 simulation software package.  

A key fact to remember is that the model is meant to represent goal-based control of a team of 

UVs with the assistance of a decentralized planning algorithm (Clare & Cummings, 2011). The 

human operator only guides the high-level goals of the team of UVs (as opposed to guiding each 

individual vehicle), and collaborates with a decentralized planning algorithm, where each vehicle 

computes its locally best plan to accomplish the mission goals with shared information. This 

means that the human operator is monitoring the system and makes decisions to intervene 

throughout the mission in order to adjust the allocation of resources at a high level. In the next 

section, the model is described in further detail. 

3.4.1 Model Overview 

A simplified CHAS model is shown in Figure 10 which depicts the three major feedback loops: 

the Trust in Automation loop, the Expectations Adjustment loop, and the Cognitive Overload 

loop. These three loops consist of separate causal pathways through the model. A high-level 

discussion of the loops is presented below, while a more detailed discussion of the 

implementation of each loop is presented in Section 3.5. 

The Trust in Automation loop, shown in the red dashed line box in Figure 10, draws from the 

“perception, cognition, action” loop in the human information processing model developed by 

Wickens and Hollands (2000). The loop represents how the operator’s perception of the 

performance of the system impacts his or her trust in the automation and thus influences the 

operator’s decisions to intervene in the operations of the semi-autonomous UVs. The operator 

has a time-delayed perception of how the system is performing. The operator’s trust during the 

mission begins at an initial level and then adjusts based on the difference between the operator’s 
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expectations of how well the system should be performing and the operator’s perception of 

system performance. It is likely that the operator’s trust has some inertia (Lee & Moray, 1994) 

and thus adjusts with a time delay. As the operator loses (or gains) trust in the AS, the operator 

will choose to intervene more (or less) frequently, for example by creating new tasks for the UVs 

or requesting a new schedule for the UVs. This decision to intervene has an impact on the 

operations of the team of semi-autonomous UVs, which influences the performance of the 

system, completing the feedback loop. 

 
Figure 10. Simplified diagram of CHAS model. 

Second, the Expectations Adjustment loop, shown in the green dashed line box, represents how 

the operator’s expectations of performance can change throughout the mission. The operator’s 

initial expectations of performance are likely set by training, previous experience, or by 

instructions from a supervisor. However, as the operator perceives how the system is actually 

performing, there is likely a time-delayed adjustment of the operator’s expectations to conform 

to his or her perceived reality of how well the system is doing. 

Third, the Cognitive Overload loop, shown in the blue dashed line box, represents the impact that 

excessive cognitive workload can have on system performance. The System Dynamics modeling 
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community typically separates the positive and negative effects of a variable into distinct loops 

(Sterman, 2000). The Trust in Automation loop, as previously described, captures the positive 

effects of increasing workload, assuming that an increasing rate of interventions leads to higher 

performance. It should be noted that this assumption does not hold for all systems, as previous 

studies have shown that frequent human intervention can potentially have a negative impact on 

automation (Beck, Dzindolet, & Pierce, 2005; Parasuraman & Riley, 1997), as some 

decentralized algorithms may need time to stabilize (Walker, et al., 2012). The automation in the 

OPS-USERS testbed has been found to be provably good, but suboptimal (Choi, et al., 2009; 

Whitten, 2010) and previous experiments have shown that a moderate rate of intervention results 

in higher performance than a low frequency of intervention (Clare, Maere, et al., 2012; 

Cummings, Clare, et al., 2010). Thus, it is assumed that operator interventions can improve 

performance. 

The model captures the fact that the frequency with which the operator decides to intervene in 

the system also has an impact on human cognitive workload (Cummings, Clare, et al., 2010). 

The Cognitive Overload loop only captures the negative effects of high workload, and thus is 

dormant when the operator has low or moderate workload, having little effect on the model. 

Human workload is also driven by task load, i.e. the level of tasking that an operator is asked to 

perform by the system (Clare & Cummings, 2011). This model is specifically designed to 

simulate moderate to high task load missions and future research will investigate low task load, 

vigilance missions. The feedback loop is completed by modeling the potential for cognitive 

overload, where high levels of human workload can decrease the effectiveness of the operator’s 

interventions in the system, thus decreasing system performance (Cummings & Guerlain, 2007; 

Nehme, 2009; Rouse, 1983; Schmidt, 1978). 

It should be noted that the CHAS model underwent significant iteration. For example, “short-

term” learning to use the graphical user interface more efficiently and analyze the information 

presented in the various displays more quickly was originally included in the model developed in 

this thesis, but was subsequently removed during the model reduction process (Appendix A). It 

was found that the impact of short-term learning on system performance and operator behavior 

was small. However, this model component could always be re-instated in the model if the 
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system being modeled had a significant short-term learning curve. The high-level differences 

between the original and final parsimonious CHAS model can be seen in Figure 11. 

 

 

 

Figure 11. High-level diagram showing the original model reduced to the parsimonious model. 

The full diagram of the reduced CHAS model is presented in Figure 12, showing the three main 

feedback loops. All of the equations and parameters that have been used in the final version of 

CHAS are listed in Appendix C. Many of the exogenous parameters can take distributions of 

values in Monte Carlo simulations to capture the impact of human variability, which is described 

in further detail in Chapter 4, along with testing of the model and fitting to experimental data. 

For ease of explanation, the three feedback loops are presented in five interconnecting modules, 

described in the following sections. 
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Figure 12. Collaborative Human-Automation Scheduling (CHAS) Model 



  71 

 

3.4.2 System Performance Module 

The first component of the CHAS model is the system performance module, shown in Figure 13. 

In order to properly model real-time human-automation collaborative scheduling, an effective, 

yet simple model of system performance is necessary. The system performance module aims to 

model one of the primary performance metrics from the OPS-USERS system, area coverage.   

 

Figure 13. System performance module. “Total Number of Cells” is shown in gray to indicate that it is the 

same parameter, but used twice in the module. 

The module is inspired by the diffusion SD model, which has been used to model the spread of 

new ideas, the adoption of new products, or the spread of contagious diseases (Sterman, 2000). 

In the OPS-USERS simulation, the total area to be searched by the team of UVs is discretized 

into 4,150 cells of equal area. Once a UV passes through that cell, the OPS-USERS testbed 

counts that cell as “searched” for the area coverage performance measure. The CHAS model 

represents the number of Unsearched Cells and the number of Searched Cells as “stocks.” The 

Unsearched Cells stock is initialized to the Total Number of Cells. The “flow” between the two 

stocks is equal to the Area Coverage Rate.  

While the area coverage performance metric is purely a count of cells which have been visited 

once, the actual search process in OPS-USERS is more complex than simply visiting every cell 

once. The system maintains a probability map which propagates the likelihood that a target is in 

each cell based on the last time that each cell was visited and a target motion model. The team of 

UVs re-visit previously searched cells based on this probability map (more details in Cummings, 

et al., 2012; Whitten, 2010). The CHAS model captures the impact of re-visiting previous cells 
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by decreasing the rate of covering new area over time through the Probability of a Cell Being 

Unsearched variable. The Probability of a Cell Being Unsearched is calculated by dividing the 

number of Unsearched Cells by the Total Number of Cells. Thus, the model assumes that as 

there are fewer unsearched cells, the area coverage rate will taper off. 

The system performance module simplifies the complex human-automation collaboration for 

guiding a team of semi-autonomous UVs into two components: a) the Automation Generated 

Search Speed that the team of UVs would have without any human input and b) the Human 

Value Added to the system. As discussed in Chapter 2, in a goal-based architecture (Clare & 

Cummings, 2011) the vehicles are semi-autonomous and with the guidance of the AS, can 

conduct much of the mission on their own. The human operator only guides the high-level goals 

of the vehicles, as opposed to guiding each individual vehicle. Thus, the CHAS model captures 

the contribution of the automation through an exogenous parameter, Automation Generated 

Search Speed, which is dependent on the number of UVs, speed of the UVs, capabilities and 

sensors of the UVs, and the algorithm that the AS employs.  

The human contribution to the collaboration is represented in the model as an endogenously-

calculated Human Value Added variable. This enables the model to separately capture the 

contribution of the automation and the human to area coverage performance. While the operator 

cannot increase the search speed of the UVs, the operator can indirectly adjust the search patterns 

of the UVs, which can increase (or decrease) the rate of searching new cells. Previous research 

on the AS used in the OPS-USERS testbed has shown that the automated search process is 

suboptimal and can be improved either with a centralized global search algorithm (Whitten, 

2010) or with a collaborative human assisting the AS (Cummings, et al., 2012), both of which 

extend the “effective planning horizon” of the search algorithm. 

While the calculation of Human Value Added itself is non-linear (Sections 3.4.5 and 3.5), it was 

decided to model the contribution of Human Value Added to the Area Coverage Rate as an 

additive factor in order to capture two important facts about real-time human-automation 

collaborative scheduling: a) the system could potentially conduct some of the mission without 

any meaningful contribution from the human operator and b) while human operators can increase 

the performance of these collaborative systems, it is also possible for them to hurt the 
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performance of a system either intentionally or unintentionally. Thus, the Human Value Added 

variable is calculated with units of cells/second, the same units as Automation Generated Search 

Speed and Area Coverage Rate, to capture how much the operator is increasing or decreasing the 

rate of searching new cells.  

The Area Coverage Rate is calculated using Equation 1, where the sum of Automation Generated 

Search Speed and Human Value Added is multiplied by the Probability of a Cell Being 

Unsearched. This represents the fact that once there are few unsearched cells remaining, the rate 

of area coverage must approach zero. Area Coverage Percentage, the primary system 

performance metric for this model, is calculated by dividing the number of Searched Cells by the 

Total Number of Cells parameter. 

                   

                                          
                                                      (1) 

There are three major simplifying assumptions that the system performance module makes. First, 

the model assumes that the total number of cells possible to search can be quantified and 

measured. This amount is known in the OPS-USERS simulation and is shown as the total area on 

the Map Display (Figure 4). Second, the model assumes that Automation Generated Search 

Speed can be captured in a single exogenous parameter. Third, the model assumes that the 

human contribution to the collaboration can be separately calculated and summed with 

Automation Generated Search Speed to produce a measure of area coverage rate. 

To test these simplifying assumptions about the complex human-automation collaboration, it was 

important to measure how the team of UVs under purely automation control would perform 

without any contribution from the human operator with regards to the guidance of the UVs. 

Thus, for this test, an “obedient” human operator was used, as has been used in previous 

experiments to make a similar comparison (Cummings, et al., 2012). An obedient operator 

always agrees with the AS proposed schedule and never conducts any interventions (such as 

manually modifying the schedule, or creating new search tasks), in effect always trusting that the 

AS was correct in its guidance of the UVs. The human operator still had an important role to 

play with regards to identifying targets, integrating information from the command center 

received through the chat box, and approving the destruction of hostile targets.  
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Using the same testbed, mission length, and experimental conditions described in Section 3.2, an 

obedient human mission was conducted and the results are shown in Figure 14. The actual data 

collected from the testbed are shown in the red squares. First, the data shows a saturation-type 

curve, indicating that the rate of covering new area slows down over time, supporting the 

structure of the system performance module. Second, the percent area covered in the “obedient 

human” condition was 56.2%. In comparison, the average human operator in the experiment 

described in Section 3.2 achieved area coverage of 61.7%, a 10% increase in performance due to 

human value added (blue diamonds in Figure 14). The high performer group in the experiment 

achieved average area coverage of 76.6%, a 36% increase in performance over the “obedient 

human” condition (green triangles in Figure 14). These results support the assumption that the 

human operator is adding value over the automation generated s. 

The system performance module was used to simulate this test, with the Human Value Added set 

to zero, essentially turning off all other modules in the CHAS model. The model simulation is 

shown in the blue line in Figure 14. The model was able to achieve a good fit to this data, with 

an R
2
 value of 0.9932 and a RMSE of 0.0143. This test also enabled the estimation of the 

Automation Generated Search Speed parameter, set to 2.9 cells/second.  

 

Figure 14. Obedient human area coverage performance: model vs. experimental data. Aggregate and high 

performer data from previous experiment shown for comparison. Standard error bars shown. 
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The ability of the module to adequately capture the key drivers of system performance and 

accurately calculate performance over time is explored in greater detail in Chapter 4. 

3.4.3 Perception of Performance Module 

One of the major attributes identified in Chapter 2 that should be captured in a model of human-

automation collaborative scheduling is attention allocation and Situation Awareness (SA). The 

Perception of Performance module captures both attention allocation and the three levels of SA 

(Endsley, 1995).  

There are two major components to the module, as shown in Figure 15. First, there is the 

Perceived Present Performance (PPP), which takes as an input Area Coverage Rate. PPP is a 

measure of performance, delayed by the parameter Time to Perceive Present Performance 

(TPPP), which is an assumption about how long it takes the operator to detect changes in the area 

coverage rate. This delay is implemented as a third-order exponential smooth, which has been 

used in previous SD models to represent human perception, decision-making, and response 

delays (Naill, 1973; Senge, 1980; Sterman, 2000). This method captures two facets of human 

perception: a) operators do not immediately perceive changes in system performance, this belief 

changes only after some time has passed and b) operators may filter out high-frequency, short-

term changes in system performance and this process can be represented mathematically through 

averaging/smoothing. 

TPPP is also an implicit measure of attention allocation efficiency, which was described in 

Chapter 2 as an important attribute to capture in a model of human-automation collaborative 

scheduling. Operators engaged in these dynamic, high workload environments must both 

concentrate attention on the primary task of monitoring UV progress and system performance 

while also being prepared for various alerts, such automation notifications about potential 

changes to the vehicle schedules. The allocation of attention between these two can incur 

cognitive switching costs that negatively impact overall system performance (Miyata & Norman, 

1986). Poor attention allocation has been shown to be a significant contributor to poor operator 

performance in single operator control of multiple unmanned vehicles (Crandall & Cummings, 

2007; Goodrich, et al., 2005). Thus an operator with higher attention allocation efficiency who is 
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better able to handle the rapid task switching required would have a lower TPPP and detect 

changes in system performance faster than an operator who struggles with multitasking. 

 
Figure 15. Perception of performance module. 

Second, the CHAS model assumes that the operator begins the mission with some expectation of 

how well the system should be performing, Expected Performance (EP). The Initial EP may be 

based on many factors, such as prior experience or training with the system, or various 

demographic characteristics. The operator’s expectations of how well the system should be 

performing, however, are not static. The CHAS model represents the EP as a “floating anchor” 

which adjusts via first-order exponential smoothing to the perceived performance of the system 

over time. This formulation was inspired by the TREND function (Sterman, 1987a; Sterman, 

2000), which is based on a model of how humans forecast future conditions, such as inflation or 

energy consumption, based on previous data. The Time Horizon for Expected Performance 

(THEP) is an estimate of the adjustment lag required for operators to change their expectations, 

similar to the estimate of the time horizon for the forecasting process (Sterman, 1987a; Sterman, 

2000). 

Finally, the percent difference between PPP and EP is called the Perceived Performance Gap 

(PPG), calculated via Equation 2. When the operator perceives that system is not performing up 

to his or her expectations, there is a positive PPG, and vice versa. 
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One of the advantages of this formulation of the Perception of Performance module is that it 

explicitly represents the three levels of SA (Endsley, 1995) and how they can change over time 

throughout a mission: 

 Perception (Level I): PPP represents the operator’s delayed perception of performance. 

 Comprehension (Level II): PPG represents the operator’s understanding of the situation, 

specifically the gap between expected and actual performance. 

 Projection (Level III): EP, as a floating anchor of the operator’s expectation of performance, 

represents the operator’s projection of future performance. 

This module makes two simplifying assumptions. The model assumes perfect operator 

perception of the area coverage rate, with only a time delay. However, humans are not perfect 

sensors of information, especially when there is no explicit indication of the system performance. 

Second, as mentioned above, the model assumes that the operator begins the mission with a 

certain expectation level of performance, but adjusts these expectations throughout the mission. 

Both of these assumptions are evaluated in Chapters 4 and 5. 

3.4.4 Trust Module 

Chapter 2 described the importance of trust in a human-automation collaborative scheduling 

system. The Trust Module draws from a previous computational model of human trust in 

automation. Gao and Lee (2006) modeled human trust in a supervisory control setting as 

dependent on the operator’s perception of the capability of the automation. They define 

automation capability as “the reliability of the automation in terms of fault occurrence and 

general ability to accomplish the task under normal conditions” (Gao & Lee, 2006, p. 946). In 

their model, the operator’s trust began at an initial level, given by a parameter, and adjusted with 

some inertia, meaning that some operators adjusted their trust faster than others. Gao and Lee 

represented the inertia of trust through a trust time constant that governed how quickly trust 

could change. A larger trust time constant meant that the operator put greater weight on new 

information that was perceived in terms of the capability of the automation and thus had lower 

inertia of trust. Finally, the operator’s decisions about the next action to take were influenced by 

the operator’s trust in the automation. Portions of the Gao and Lee (2006) model were adapted 
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for use in the CHAS model to capture the impact of trust on human-automation collaboration for 

control of multiple UVs. 

The trust module, as shown in Figure 16, begins by calculating the Perceived Automation 

Capability based on the Perceived Performance Gap (PPG). Perceived Automation Capability, 

which is expressed as a percentage between 0-100%, then drives changes in Human Trust. The 

model assumes that human operators adjust their trust in the automation based not upon their 

absolute perception of the performance of the system, but on the relative difference between 

what they perceive and how well they expect the system to be doing. For example, an operator 

with very low expectations of performance could have higher trust in the automation based on 

their perception of how well the system is doing. This is supported in the human supervisory 

control literature, for example, Lee and See (2004, p. 53) explained that trust in automation 

“concerns an expectancy or an attitude regarding the likelihood of favorable responses,” but that 

trust changes based on the operator’s perception of the current capability of the automation as 

compared to their expectation of capability. Also, Lee and Gao (2006) used the occurrence of 

automation faults, i.e. performance that was lower than expected, to model the capability of the 

automation as a measure of reliability. 

 

Figure 16. Trust module. 

The model assumes that increases in PPG should cause a decrease in Perceived Automation 

Capability and vice versa. It was decided to model the relationship between PPG and Perceived 

Automation Capability with an inverse logit function, as shown in Figure 17. This non-linear 

relationship is supported by previous research, as Lee and See (2004, p. 72) wrote that “trust is a 

nonlinear function of automation performance and the dynamic interaction between the operator 
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and the automation…some evidence suggests that below a certain level of reliability, trust 

declines quite rapidly.” Thus, in the CHAS model, below a certain level of reliability (above a 

certain level of PPG), trust (driven in the CHAS model by Perceived Automation Capability) 

declines rapidly. A logit function also maintains the Perceived Automation Capability between 

0-100% even at extremely high or low values of PPG.  

This relationship is captured by the logit function shown in Figure 17, which shows a fairly rapid 

decline in Perceived Automation Capability as the operator moves from a 0% PPG to a 30% 

PPG. The shape of this curve is dependent on the characteristics of the system being modeled 

and can be varied in the CHAS model by two parameters as seen in Equation 3: Base PPG and 

PPG Max Slope. The Base PPG determines the point at which Perceived Automation Capability 

crosses 50%. PPG Max Slope determines the maximum slope of the curve at the midpoint. 

Equation 3 shows the calculation for Perceived Automation Capability. By capturing this 

relationship through these two parameters, it enables sensitivity analysis of how the model 

outputs change with different curves, which is explored further in Section 4.3. 

                                                                          (3) 

 

Figure 17. Notional relationship between Perceived Performance Gap (percent difference between expected 

and perceived performance) and Perceived Automation Capability. 

Next, the model takes as an input parameter the Initial Human Trust in the AS, which can vary 

widely based on the operator’s prior knowledge, past experiences, and training (Lee & Moray, 
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1994; Moray, et al., 2000). Both the Initial Human Trust and the Human Trust variable are 

expressed as a percentage between 0-100%, matching the definition of Perceived Automation 

Capability.  

Trust is often dynamic and can fluctuate throughout a mission based on the operator’s perception 

of how well the automation is performing (Lee & Moray, 1992; Muir & Moray, 1996). A 

number of studies have found that human trust has inertia, where automation errors do not 

necessarily cause instantaneous loss in trust, but recovery in trust from severe failures can also be 

slow (Lee & Moray, 1994; Lewandowsky, et al., 2000; Parasuraman, 1993). To reflect the 

dynamic nature of trust, the model adjusts the operator’s trust via first-order smoothing to the 

Perceived Automation Capability with a time delay. Just as Lee and Gao (2006) used in their 

model, the time delay is determined by an exogenous parameter, the Trust Time Change 

Constant, which is representative of the operator’s trust inertia. Both the Initial Human Trust and 

Trust Time Change Constant are estimated through model fitting to experimental data, as 

described in Chapter 4. 

Once again, there are a number of simplifying assumptions in this module. First, the model 

assumes that human trust in the AS is negatively dependent on the PPG. Second, the model 

assumes that the non-linear relationship between PPG and trust can be captured through a logit 

function. Third, the model assumes that trust begins at a given level, potentially different for 

each operator, and adjusts with some inertia. All of these assumptions will be evaluated in 

Chapters 4 and 5. 

3.4.5 Interventions Module 

The interventions module is shown in Figure 18. Two types of interventions were specified in the 

CHAS model. First, the operator could create new search tasks, which enabled the human 

operator to guide the automation and prevent myopic behaviors by encouraging the UVs to 

search in unsearched areas the human felt were likely to contain new targets. Second, the 

operator could “replan” by asking the AS to generate a new schedule for the team of UVs. This 

new schedule must be approved by the operator before the team of UVs will enact the new 

schedule. These two interventions were chosen because the data analysis discussed previously in 

Section 3.2 revealed that there were significant differences between low and high performers in 



  81 

 

these two types of interventions. Other interventions to modify the automation-generated 

schedules directly, such as “what-if assignments” to attempt to manually force a single task into 

the schedule and modifying the objective function of the AS (Section 3.2) were removed from 

the CHAS model in the model reduction process described in Appendix A. 

 

Figure 18. Interventions Module. 

First, the module assumes that the rate of intervening by creating new search tasks is negatively 

dependent on Human Trust level (higher trust, less likely to intervene). As was explained in 

Section 3.2, data from a previous experiment showed that the operator’s subjective rating of 

satisfaction with the AS (a proxy variable for trust) was negatively correlated with the rate of 

creating new search tasks, =-0.394, p=0.002. It was decided to model the relationship between 

Human Trust and Search Task Rate with an inverse logit function, as shown in Figure 19. A non-

linear logit relationship between trust and interventions is supported by previous empirical 

results (Lee & Moray, 1994; See, 2002). In particular, Lee and Gao (2006) modeled the 

relationship between trust and the likelihood that an operator would use automatic versus manual 

control using a logit function. 

Empirical evidence supporting the shape of this curve is also presented in Figure 19. The data 

shown in the plot is from the previous experiment described in Section 3.2. While explicit data 

on operator trust is not available from this experiment, operators were asked to rate their 

satisfaction with the plans created by the AS after each mission on a Likert scale from 1-5 (low 
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to high). This subjective rating can be used as a proxy variable for trust in the AS. For the 

purposes of this plot, the ratings of satisfaction with the plans created by the AS were converted 

to the trust scale (0-100%) simply by dividing by 5. The yellow diamond shows the average for 

all missions in terms of the proxy trust measure and search task rate. Data from the high and low 

performance clusters identified in Section 3.2 are shown in green triangles. The blue squares 

show the average search task rate for groups of operators based on their rating of satisfaction 

with the AS. There are four groups (ratings 1-4), as no operator rated their satisfaction level as 5 

out of 5. It is apparent from the data that the relationship is non-linear, as the decline in search 

task rate with increasing trust begins sharply, but flattens out at higher trust levels. 

 

Figure 19. Relationship between Human Trust and Search Task Rate. Empirical data shown with ±1 

Standard Error bars. 

The shape of this curve can be varied in the CHAS model of the OPS-USERS environment by 

four parameters as seen in Equation 4: Max Search Task Rate, Min Search Task Rate, Midpoint 

Trust, and Trust Max Slope. The Max and Min Search Task Rate set the minimum and maximum 

values for the curve. The Midpoint Trust determines the midpoint of the logit curve, i.e. the trust 

level at which the curve crosses halfway between the Max and Min Search Task Rate. Trust Max 

Slope determines the maximum slope of the curve at the midpoint. Equation 4 shows the 

calculation for Search Task Rate. By capturing this relationship through these three parameters, 

it enables sensitivity analysis of how the model outputs change with different curves, which is 

explored further in Section 4.3.  
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Next, the interventions module captures the Replan Rate through a direct relationship with the 

Search Task Rate, as shown in Equation 5. The Number of Replans per Search Task parameter 

scales the rate of creating search tasks to the rate of replanning. The relationship between search 

task creation and replanning is a result of the design of the testbed. There is a direct system need, 

once a search task has been created, to replan in order to assign that new task to the team of UVs. 

The OPS-USERS system actually displays a notification every time a search task is created, 

encouraging the operator to replan to assign the new task. Data from the previous experiment 

described in Section 3.2 supports this relationship, as the search task rate was significantly 

correlated with the replan rate, =0.567, p<0.001. While the search task rate and replan rate are 

highly correlated, the CHAS model only represents the impact of search task creation on the 

human value added to system performance, as described below. It is still important to calculate 

the replan rate to enable an accurate estimation of workload, as described in Section 3.4.6. 

                                                               (5) 

Finally, the interventions module calculates the Effect of Search Tasks on Human Value Added. 

Data from the previous experiment described in Section 3.2 showed that the rate of creating new 

search tasks (an intervention meant to guide the search process of the team of UVs) was 

significantly correlated with area coverage performance, =0.446, p<0.001. This supports the 

assumption that there is a positive relationship between the rate of creating search tasks and the 

human value added to system performance. 

In order to estimate the relationship between Search Task Rate and Human Value Added, the 

simple test model shown in Figure 20 was used. This model is identical to the system 

performance module presented previously except that instead of separating the Automation 

Generated Search Speed and Human Value Added, it uses a single Search Speed parameter to 

drive the model. Also, there are no feedback loops linking the area coverage rate to operator 

trust, interventions, or workload. 



84 

 

 
Figure 20. Test model for estimating relationship between Search Task Rate and Human Value Added. 

The Search Speed input parameter was varied in order to fit the test model to the area coverage 

data from three groups in the experimental data set described in Section 3.2: low performers, 

high performers, and aggregate data for all missions. The results are shown in Table 1. Given 

that the Automation Generated Search speed was estimated in Section 3.4.2 to be 2.9 

cells/second, the Human Value Added could be estimated by subtracting 2.9 from the fitted 

Search Speed value of each group, as shown in the fourth column of Table 1. The results show 

that low performers were actually hurting the performance of the system (either intentionally or 

unintentionally) as compared to how the system would have performed under automation-only 

control. The average performer added some value to system performance, while high performers 

added the most value, contributing 68% of the value that the automation was contributing. As the 

data analysis in Section 3.2 showed, it is likely that operators increased the rate of covering new 

area by creating more search tasks to encourage the UVs to explore new areas on the map. 

Table 1. Estimated relationship between Average Search Task Rate and Human Value Added. 

Data Set Average Search Tasks 

Created Per Two Minutes 

Fitted Search Speed Human Value Added 

Low Performers 2.38 2.4 -0.5 

All Missions 2.90 3.6 0.7 

High Performers 4.42 4.9 2 

 

By plotting Average Search Task Rate and Human Value Added, as shown in Figure 21, a non-

linear logit relationship was estimated. The CHAS model assumes that operators who create 

fewer than 2.5 search tasks per two minute interval are actually lowering the performance of the 

system as compared to the Automation Generated Search Speed. The model also assumes that 

the contribution of the human operator to the system is limited in both the positive and negative 

direction, with the minimum Human Value Added set to -1 cells/second and the maximum 
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Human Value Added set to 2 cells/second. As a model construct, these limits ensure that the 

model behaves appropriately at extreme conditions. Without these limits, for example, the Effect 

of Search Tasks on Human Value Added could scale linearly down to the point at which the 

Human Value Added cancels out the Automation Generated Performance, causing the Area 

Coverage Rate to become negative, which is physically impossible. The non-linear logit 

relationship enables this appropriate model behavior at extreme conditions and further extreme 

conditions testing is described in Chapter 4. 

 
Figure 21. Relationship between Search Task Rate and Effect of Search Tasks on Human Value Added. 

Empirical data shown with ±1 Standard Error bars. 

The shape of this curve can be varied in the CHAS model by four parameters as seen in Equation 

6: Max Human Value Added, Min Human Value Added, Base Search Task Rate, and Search 

Task Rate Max Slope. The Max and Min Human Value Added set the minimum and maximum 

values for the curve. The Base Search Task Rate determines the search task rate at which the 

curve crosses halfway between the Max and Min Human Value Added. Search Task Rate Max 

Slope determines the maximum slope of the curve at the midpoint. Equation 6 shows the 

calculation for Effect of Search Tasks on Human Value Added. This effect is combined with the 

impact of cognitive overload to calculate Human Value Added (Section 3.5). By capturing this 

relationship through these four parameters, it enables sensitivity analysis of how the model 

outputs change with different curves, which is explored further in Section 4.3.  
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To summarize, this module contains a number of assumptions. First, the model assumes that the 

rate of creating new search tasks is negatively dependent on human trust. Second, the model 

assumes that the non-linear relationship between trust and search task rate can be captured 

through a logit function. Third, the model assumes that the rate of replanning is directly 

dependent on the rate of creating search tasks. Fourth, the model assumes that the Human Value 

Added to system performance is positively dependent on the rate of creating search tasks. 

Finally, the model assumes that the non-linear relationship between search task rate and Human 

Value Added can be captured through a logit function. While empirical data was presented 

throughout this section to support these assumptions, further evaluation of these assumptions will 

be presented in Chapters 4 and 5. 

3.4.6 Workload Module 

As described in Chapter 2, it has been shown in several previous studies that human cognitive 

workload has a significant impact on both human and system performance (Clare & Cummings, 

2011; Cummings, Clare, et al., 2010; Cummings & Nehme, 2010). As theorized in the Yerkes-

Dodson curve (1908), up to a certain point, increased workload can be beneficial to performance. 

Once the operator reaches what is referred to as cognitive overload, performance begins to suffer 

(Figure 22). Miller (1978) surveyed a large number of studies on the ability of individuals to 

process information and found a robust inverted U-shaped relationship between the rate of 

information inputs (a proxy for workload) and the ability of individuals to produce correct 

responses (performance).  

 

Figure 22. Notional diagram of the Yerkes-Dodson curve. 
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The System Dynamics modeling community avoids implementing U-shaped non-linear functions 

for two reasons: a) to ensure that all causal links in the model have unambiguous polarity and b) 

a U-shaped relationship indicates the presence of multiple causal pathways between the input 

and output (Rudolph & Repenning, 2002; Sterman, 2000). Thus, the increasing and decreasing 

effects of the Yerkes-Dodson curve are separated in the CHAS model. While this may add 

complexity to the model, it also clarifies which side of the Yerkes-Dodson curve the model is 

operating on at all times. The Trust in Automation loop, as previously described, captures the 

positive effects of increasing workload, where an increased rate of creating search tasks leads to 

higher performance (as shown in Section 4.2.1). The workload module specifically captures the 

negative effects of cognitive overload in real-time human-automation collaborative scheduling. 

The workload module is shown in Figure 23. Human Workload is measured through a utilization 

metric, calculating the ratio of the total operator “busy time” to the total mission time. This 

captures the percentage of time that the operator is engaged in a goal-directed task, not 

monitoring the system. Operator “busyness” can serve as a useful proxy measure of mental 

workload (Wickens & Hollands, 2000). 

 

Figure 23. Workload module. 

A key assumption in the CHAS model is that operators must deal with non-scheduling activities 

during the mission in addition to the two scheduling tasks of creating search tasks and replanning 
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(evaluating new schedules created by the AS). For the purposes of this thesis, these two types of 

activities are called scheduling activities and Nonscheduling Task Load (NST). Scheduling 

activities have two defining characteristics: a) the operator decides when to conduct these 

activities and b) the activity is directly related to scheduling the UVs. In contrast, NST is defined 

as the level of tasking that an operator is asked to perform, excluding scheduling activities. There 

were three activities that fell in this category in the OPS-USERS testbed: visually identifying or 

re-designating targets, approving weapons launch, and reading and answering chat messages. For 

all three of these activities, the operator was prompted to do the activity, either through a pop-up 

window or an auditory alert (see Appendix D for more details). 

The CHAS model endogenously calculates the rate of creating search tasks and the rate of 

replanning, as the operator decides when to conduct these activities. The model assumes that the 

required utilization generated by NST can be captured exogenously based on data gathered from 

the OPS-USERS testbed. The required utilization due to NST was calculated from aggregate 

experimental data (Section 3.2.2), using two-minute intervals, as shown in red in Figure 24. Self-

imposed utilization from scheduling activities (creating search tasks and replanning) is shown in 

blue stripes. 

 
Figure 24. Utilization due to self-imposed scheduling activities and required utilization due to Nonscheduling 

Task load (NST). Standard error bars are shown.  

A number of observations can be made from this data. First, the required utilization due to NST 

appears to decline over time. A repeated measures ANOVA of the required utilization due to 

NST indicates a significant effect for time, F(9,531) = 55.140, p < 0.001. Descriptive statistics 
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for this ANOVA analysis are presented in Appendix D. Second, it appears that this decline is 

roughly linear. The green line shown in Figure 24 captures most of the variance in required 

utilization due to NST, with an R
2
 value of 0.72.  

Why is NST declining over time? The main reason for this linear decline in NST is that most of 

the visual target identification activities and chat messages occur earlier in the mission and are 

less frequent towards the end of the mission. This linear decline appears to hold except for a 

small uptick in NST in the interval following 600 seconds into the mission. This increase in NST 

is clearly linked to a ROE change allowing the destruction of hostile targets, which occurs at 600 

seconds. A similar analysis of required utilization due to NST for different OPS-USERS 

experiments also showed a roughly linear decline in NST (Appendix D). 

Overall, the assumption of an exogenously defined, linearly declining NST seems to be 

appropriate for modeling the OPS-USERS testbed under the experimental conditions described 

in Section 3.2 (see Section 4.2.2 for an analysis of NST for a different OPS-USERS experiment 

with higher task load). For the experimental conditions in Section 3.2, the CHAS model 

representation of NST follows the green “model” line shown in Figure 24, with the required 

utilization due to NST starting at 30% followed by a linear decline. The CHAS model calculates 

the Nonscheduling Task load (NST) from two exogenous parameters: Initial NST and NST Rate, 

as shown in Figure 23. NST begins at a level set by Initial NST and either linearly increases, 

linearly decreases, or remains the same depending on the NST Rate of change parameter. 

To conclude the calculation of human workload, it should be noted that the experimental data set 

used to build this model measured the rate of interventions (search task creation, replans) by 

counting the number of interventions that occurred over each two minute interval throughout the 

mission. Two minute intervals provided 10 data points per mission and were used to balance the 

need to show fine-grain changes in operator behavior with the need to allow a long enough 

aggregation period to allow the operator to create search tasks and replan. The CHAS model 

measures the Search Task Rate in tasks created per two minute interval, not tasks/second. Thus, a 

Sampling Interval parameter is used in the workload module to enable an apples-to-apples 

comparison between the simulation and experimental data. The Sampling Interval parameter, set 
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to 120 seconds, is used to convert the search task rate and replan rate back to tasks/second in the 

calculation of Human Workload (as measured via utilization), shown in Equation 7. 

                             

  
                                                                                      

                 
 

     (7) 

In order to estimate the Effect of Cognitive Overload on Human Value Added, the model draws 

upon previous literature in both human supervisory control and SD modeling. It has been 

established in previous literature that a utilization level over 70% can lead to performance 

decrements (Cummings & Guerlain, 2007; Nehme, 2009; Rouse, 1983; Schmidt, 1978). Rudolph 

and Repenning (2002) developed an SD model of the Yerkes-Dodson curve to capture the impact 

of stress on human decision-making. Their aim was to model the impact of interruptions on the 

poor decision-making that led to events such as the Tenerife airliner collision or U.S.S. 

Vincennes disaster. They separated the typical inverted-U Yerkes-Dodson curve into its upward 

and downward-sloping components. The positive effect of increased stress captured the upward 

sloping component, including low task load levels, as performance improved with increasing 

stress levels. The negative effect of increased stress only had an impact on their model outputs 

once the stress level was high enough to enter the downward-sloping part of the Yerkes-Dodson 

curve. The negative effect was modeled as a flat line equal to 1 up to the point of overload (thus 

having no impact on performance as the positive and negative effects were multiplied together), 

followed by a sharp decline to zero beyond the point of overload (Rudolph & Repenning, 2002). 

Inspired by this previous literature, the CHAS model captures the Effect of Cognitive Overload 

on Human Value Added using a table function, shown below in Figure 25. Up to a workload 

level of 70%, there is little change in the effect of workload. Above a workload level of 70%, 

however, the effect would cause a steep drop in Human Value Added up to a maximum 

workload level of 100%. 

This module makes a number of assumptions. First, it assumes that utilization is a good proxy 

measure for cognitive workload. While utilization has been used in many previous models of 

operator workload (Nehme, 2009; Schmidt, 1978), it makes two simplifying assumptions: a) all 

time spent performing tasks is equivalent in terms of the mental resource demand and b) all time 
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spent not performing any active tasks, i.e. monitoring the system, is not drawing on mental 

resources. Both of these assumptions are dubious, as certainly some tasks require more mental 

effort than other tasks, and the operator is using some cognitive resources while monitoring the 

system. Given these limitations, however, utilization has been found to be a useful proxy 

measure of human cognitive workload in previous studies (Cummings & Guerlain, 2007; 

Donmez, Nehme, & Cummings, 2010; Schmidt, 1978), especially in monitoring changes in 

workload over time, and will be used in the CHAS model as a proxy for cognitive workload. 

 

Figure 25. Table function for the Effect of Cognitive Overload on Human Value Added. 

Second, the model assumes that the impact of complete cognitive saturation, i.e. 100% 

utilization, is captured by driving the Human Value Added to the performance of the system to 

zero. Previous research has shown that under conditions of cognitive overload, perceptual 

narrowing can occur (Kahneman, 1973). At 100% utilization, the operator will likely begin to 

miss prompts to conduct important tasks. Other researchers have shown that under conditions of 

extreme high stress, the typical first response is to freeze (Bracha, 2004). Thus, the model 

assumes that the Human Value Added to the system will go to zero under complete cognitive 

saturation. Future research will explore whether in fact the curve should go negative, in that 

operators begin to make mistakes and detract from system performance under conditions of 

cognitive overload. 

Third, the model assumes that 70% utilization is the point at which performance begins to suffer 

and that performance drops off according to the curve shown in Figure 25. While the human 
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supervisory control literature supports the assumption that performance declines beyond 70% 

utilization, additional empirical evidence supporting the shape of the curve is presented in 

Chapter 4. Also, sensitivity analysis of how the model outputs change with different workload 

curves is explored further in Section 6.1.2. 

3.5 Feedback Interactions 

The CHAS model closes the major feedback loops by relating the rate of interventions and 

operator workload back to system performance. Human Value Added is calculated by 

multiplying the Effect of Interventions on Human Value Added by the Effect of Cognitive 

Overload on Human Value Added. Under normal workload situations (under 70% utilization) the 

rate of interventions is the key driver of the Human Value Added variable, since the Effect of 

Cognitive Overload on Human Value Added remains near 1. However, if the operator’s 

cognitive workload reaches too high of a level, there will be a sharp decrease in Human Value 

Added. This represents the fact that the rate of operator intervention and the effectiveness of 

these interventions can be in tension, as previous research has shown that high rates of human 

intervention in a highly automated multi-UV system can lead to worse performance under certain 

conditions (Clare & Cummings, 2011; Cummings, Clare, et al., 2010). 

The interaction of the three main feedback loops shown in Figure 12 is the key driver of 

performance in a real-time human-automation collaborative scheduling system. First, the Trust in 

Automation loop is a balancing feedback loop, also known as a negative feedback loop, in that 

the loop is self-correcting and opposes disturbances. For example, if the Area Coverage Rate 

were to decrease, the operator’s Perceived Present Performance (PPP) would decrease after a 

time delay, as shown by an arrow connecting the two variables with a plus sign. This would 

cause an increase in the Perceived Performance Gap (PPG) and a decrease in Perceived 

Automation Capability. A decrease in Human Trust and an increase in the Search Task Rate 

would follow. Finally, the Human Value Added would increase and the Area Coverage Rate 

would return to a higher level. This loop is balancing in that it always seeks to maintain the 

operator’s expected level of performance. 

Second, the Expectations Adjustment loop is a reinforcing loop, also known as a positive 

feedback loop, in that the loop reinforces any disturbance. If the Area Coverage Rate were to be 
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increase, the operator’s PPP would increase, as would the Expected Performance, albeit after a 

long time delay. This would cause an increase in PPG and a decrease in Perceived Automation 

Capability. A decrease in Human Trust and an increase in the Search Task Rate would follow. 

Finally, the Human Value Added would increase and the Area Coverage Rate would continue to 

increase, reinforcing the original change. This loop tends to reinforce trends towards either 

increasing or decreasing performance, as the operator’s expectations adjust to his or her 

perception of how well the system is doing. 

Third, the Cognitive Overload loop is also a reinforcing loop. If Human Workload were to be 

increase above 70% utilization, the Effect of Cognitive Overload on Human Value Added would 

decrease sharply. This would decrease the Human Value Added and therefore decrease the Area 

Coverage Rate. A decreased PPP, increased PPG, decreased Perceived Automation Capability, 

decreased Human Trust, and increased Intervention Rate would follow, resulting in an additional 

increase in Human Workload, reinforcing the trend. This loop works in tension with the Trust in 

Automation loop, as additional interventions may improve performance, but also cause workload 

to increase, potentially lowering performance. The loop also captures the fact that there is 

potentially a tipping point (Rudolph & Repenning, 2002) beyond which the dynamics of the 

system change dramatically. Once beyond this tipping point, working “harder” to attempt to 

correct for poor performance can simply lead to further decreases in performance and the need to 

work “even harder” in a vicious cycle. 

3.6 Model Outputs 

The CHAS model can aid a designer of future UV systems in predicting the impact of changes in 

system design and operator training. This can reduce the need for costly and time-consuming 

human-in-the-loop testing that is typically required to evaluate such changes. It can also allow 

the designer to explore a wider trade space of system changes than is possible through 

prototyping or experimentation. 

The CHAS model provides a number of output variables that a designer might be interested in 

capturing. A designer could investigate system performance by analyzing the rate of area 

coverage or the total area coverage by the end of the mission. Changes in human trust in the AS 

can be captured, which can be beneficial for the designer to understand, as both undertrust 
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(Clare, Macbeth, et al., 2012) and overtrust (Parasuraman & Riley, 1997) in automation have 

been shown to hurt the performance of a system. The rate at which a human operator decides to 

intervene can be analyzed. This can be important for a system designer to know, for example, to 

analyze the impact of communications delays between the operator and the vehicles in a 

decentralized network of UVs (Southern, 2010). The effect of alternative system designs on the 

workload of the operator can also be captured. In addition, since operator workload is a key 

driver of human performance, the ability to design a future UV system with an understanding of 

the impact on operator workload is crucial. 

3.7 Model Benefits 

Chapter 2 identified a set of research gaps that the CHAS model was designed to address. The 

following sections describe the benefits of the model in relation to these research gaps. The 

limitations of the model will be explored in Chapter 6. 

3.7.1 Feedback Interaction Among Important Aspects 

As was explained in Chapter 2, it is crucial for an effective model of real-time human-

automation collaborative scheduling of multiple UVs to capture the feedback relationships 

among perception, workload, trust, decision-making, and performance. The CHAS model 

accomplishes this through the three feedback loops that have been implemented in the simulation 

model: the Trust in Automation loop, the Expectations Adjustment loop, and the Cognitive 

Overload loop. Rather than treating the aforementioned variables as separate factors, the CHAS 

model captures the interaction among these components. For example, the tension between the 

rate of operator interventions and the effectiveness of these interventions due to cognitive 

overload is explicitly modeled. Components are not static in the CHAS model, but can change 

over time throughout the simulation of a mission due to feedback. For example, operator 

expectations of performance, trust, and workload all start at an initial level, but vary over time. 

3.7.2 Capturing Impact of Automation Characteristics 

The CHAS model captures three crucial details of the automation used in a real-time human-

automation scheduling system and the impact of these characteristics on the contributions of the 

operator and automation to system performance. First, the model explicitly represents the 
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contribution of the automation to the performance of the system. This provides the system 

designer with the ability to quantitatively evaluate the impact of improved automation, such as a 

better search algorithm, on the performance of the system and potentially on the operator’s trust 

level and workload. Second, the model captures the average length of time that an intervention 

takes. Interventions by the human operator can include replanning to request a new schedule 

from the AS. If the designer reduces the time that the AS takes to generate a new schedule, the 

impact on operator workload and performance can be evaluated. Third, the model captures the 

effect of operator interventions on the human-automation collaboration and thus on system 

performance. This effect is implemented in the model using an empirically derived, non-linear 

relationship between the search task rate and human value added that is specific to the 

automation being used. While it would be difficult to tune this model to a revolutionary system 

that does not already exist, the CHAS model could potentially allow a system designer to 

investigate the impact of evolutionary changes to a currently existing system, such as using a 

different AS, on human and system performance. 

3.7.3 Integration of Qualitative Variables 

As was defined in Chapter 2, it is critical for an effective model to capture the influence of 

qualitative variables such as trust or alignment of human and AS goals on system performance. 

The CHAS model explicitly models human trust and its impact on the rate at which humans 

intervene into the operations of the team of UVs. The dynamics of trust are captured by enabling 

trust to adjust over time throughout the mission with some inertia. The alignment of human and 

AS goals influences both their expectations of how well the system should perform and their 

perception of the capability of the AS, both of which are captured in the model. 

3.8 Chapter Summary 

In summary, a System Dynamics model of real-time human-automation collaborative scheduling 

of multiple UVs has been developed. The System Dynamics modeling process was described and 

applied to the problem of collaborating with an automated scheduler in a dynamic, uncertain 

environment. A previous experimental data set was analyzed and led to the creation of a dynamic 

hypothesis that attempts to explain the differences between high and low performing operators. 

Using this dynamic hypothesis, the data analysis, and prior literature in human supervisory 
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control, three major feedback loops were developed. These feedback loops were implemented 

into a System Dynamics simulation model. This model was specific to the OPS-USERS testbed, 

and the generalizability of the model will be explored in Chapter 6.  

As with any model, a number of assumptions were made in the development of the model. In 

Chapter 4, these assumptions will be tested as the model is used to simulate the behavior of 

operators in prior human-automation collaboration experiments. In Chapter 5, the usefulness of 

the model for predicting the impact of system changes on system performance will be evaluated. 
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4 Model Validation 

This chapter describes the validation process that was conducted for the Collaborative Human-

Automation Scheduling (CHAS) model introduced in the previous chapter. While no model will 

ever be truly validated, as it is a limited, simplified representation of the real world (Sterman, 

2000), model testing is essential for building confidence in the soundness and usefulness of the 

model (Forrester & Senge, 1980). The testing process also attempts to demonstrate whether the 

model is consistent with the real world that it attempts to capture (Richardson & Pugh, 1981). 

While a number of methods to validate simulation models have been proposed (Barlas, 1994; 

Forrester & Senge, 1980; Homer, 1983; Richardson & Pugh, 1981; Sargent, 2005; Sterman, 

1987b; Sterman, 2000), the field of System Dynamics (SD) has established a common set of tests 

for the validation of a simulation model (Forrester & Senge, 1980; Sterman, 2000). This chapter 

details how each of these confidence-building tests was applied to the CHAS model. 

There are three categories of tests that were conducted: model structure tests, model behavior 

tests, and policy implications tests (Forrester & Senge, 1980). While these tests were used 

iteratively to refine the CHAS model, the tests presented in this chapter apply to the latest 

version of the CHAS model. Model structure tests that were conducted and will be discussed in 

this chapter include: a) boundary adequacy testing, b) dimensional consistency testing, c) 

extreme conditions testing, d) integration error testing, and e) structure and parameter 

verification. Model behavior tests include behavior reproduction and sensitivity analysis to 

parameter changes.  

Behavior reproduction testing will be described for three data sets. First, the model was tested on 

the experimental data which informed construction of the model (Section 3.2). Second, in a 

“family member” test, data from an experiment that uses the same testbed but under different 

experimental conditions was used. Third, to test the external validity of the CHAS model, the 

model was exercised on data from an experiment that uses a different testbed, a multi-robot 

Urban Search and Rescue simulation (USARSim). Sensitivity analysis included an investigation 

of the impact of parameter estimate errors on model outputs and Monte Carlo simulations to 

capture the impact of human variability on model outputs. The final test category, policy 
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implications, was conducted through a predictive validation experiment and will be described in 

Chapter 5. 

4.1 Model Structure Tests 

A number of model structure tests have been conducted on the CHAS model. These tests strive 

to assess the structure and parameters of the model directly, without necessarily evaluating the 

relationships between structure and behavior (Forrester & Senge, 1980). The tests described here 

are: a) boundary adequacy testing, b) dimensional consistency testing, b) extreme conditions 

testing, d) integration error testing, and e) structure and parameter verification. 

4.1.1 Boundary Adequacy Testing 

Boundary adequacy tests ask whether the model is appropriate for the purpose for which it was 

built and whether the model includes all relevant structure (Forrester & Senge, 1980). The 

primary method of determining the boundary of the model is through inspection of a model 

boundary chart, shown in Table 2. While all models choose to omit certain concepts and 

variables in the pursuit of the most parsimonious model, an evaluation of boundary adequacy 

considers whether there are potentially important feedbacks omitted from the model. Methods of 

evaluating boundary adequacy commonly include interviews with subject matter experts, review 

of relevant literature, and assumptions built from experience with the system being modeled.  

First, in order to evaluate whether the model is appropriate for the purpose for which it was built, 

the purpose must be defined. The purpose of the CHAS model was to enable system designers to 

address the three major challenges that have been identified when human operators collaborate 

with AS in real-time operations: inappropriate levels of operator trust, high operator workload, 

and a lack of goal alignment between the operator and AS (Chapter 1). Currently, designers 

trying to address these issues test different system components, training methods, and interaction 

modalities through costly human-in-the-loop testing. Through the use of a computational 

simulation model such as the CHAS model, a designer of future UV systems can simulate the 

impact of changes in system design and operator training on human and system performance. 

This can reduce the need for time-consuming human-in-the-loop testing that is typically required 



  99 

 

to evaluate such changes. It can also allow the designer to explore a wider trade space of system 

changes than is possible through prototyping or experimentation. 

Next, to evaluate whether the model includes all relevant structure, a model boundary chart was 

constructed to define which characteristics were captured endogenously, exogenously, or were 

excluded from the CHAS model boundary (Table 2). The CHAS model was then compared to 

the six attributes described in Chapter 2 that were important to consider when modeling real-time 

human-automation collaborative scheduling: 

 Attention Allocation and Situation Awareness: The operator’s attention allocation efficiency 

was modeled through the Time to Perceived Present Performance (TPPP) time constant, an 

exogenous parameter. As described in Chapter 3, an operator with higher attention allocation 

efficiency who was better able to handle the rapid task switching required would have a 

lower TPPP and detect changes in system performance faster than an operator who struggles 

with multitasking. The three levels of Situation Awareness were modeled endogenously, by 

capturing perception of performance (Level I), the perceived performance gap (Level II), and 

expected performance (Level III).  

 Cognitive workload: The operator’s workload was modeled endogenously, based upon the 

rate of interventions, the time lengths for these interventions, and the nonscheduling activities 

that the operator also had to complete. While it is likely that cognitive workload is correlated 

with attention allocation and situation awareness, it is important to model both attributes in 

order to capture the feedback interactions among them and the resulting impact on human 

and system performance. 

 Trust in automation: The operator’s level of trust in the AS was modeled as starting at an 

initial level defined exogenously, then adjusting endogenously over time to the perceived 

automation capability with an inertia defined by an exogenous trust change time constant. 

 Human Learning: The model’s calculation of time-delayed adjustments in perceived 

performance, expected performance, and trust level were all endogenous representations of 

long-term human learning. Previous versions of the CHAS model also captured how 

operators learned to use the interface more quickly and efficiently to collaboratively replan 

with the AS, but this short-term learning component was removed during the model 
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reduction process (Appendix A). The final model presented in Chapter 3 represents the 

length of time to replan as a static exogenous parameter. 

 Automation characteristics: The characteristics of the automation were static during the 

mission and were thus represented through exogenous parameters and relationships, 

including automation generated search speed and the relationship between search task 

interventions and system performance. 

 Human value-added through interventions: Human value added to system performance was 

calculated endogenously based on the rate of interventions to coach the sub-optimal 

automation, while also taking into account the fact that high operator cognitive workload 

could cause a decrease in the effectiveness of operator interventions, as has been shown in 

previous research (Clare & Cummings, 2011; Cummings, Clare, et al., 2010). 

Table 2. Model boundary chart for the CHAS model. 

Endogenous Exogenous Excluded 

 System performance 

o Unsearched 

cells 

o Searched cells 

o Probability of a 

cell being 

unsearched 

 Perception of 

performance (Level 

I SA) 

 Perceived 

performance gap 

(Level II SA) 

 Expected 

performance (Level 

III SA) 

 Perceived 

automation 

capability 

 Human trust 

 Human workload 

 Search task rate 

 Replan rate 

 Human value added 

 System characteristics: 

o Total number of cells 

o Initial Nonscheduling Task Load (NST) 

o NST rate of change 

 Automation characteristics: 

o Automation generated search speed 

o Effect of search task rate on human 

value added to system performance 

 Human-automation interaction time lengths: 

o Length of time to replan 

o Search task creation time length 

 Initial human conditions: 

o Expectations of performance 

o Trust level 

 Human time constants/delays:  

o Perceiving performance  

o Adjusting expectations  

o Adjusting trust 

 Non-linear human relationships: 

o Cognitive overload 

o Effect of perceived performance gap on 

perceived automation capability 

o Effect of human trust on search task rate 

 Details of UVs 

o System or component 

failures 

o Vehicle losses 

o Sensor ranges or types 

 Communications delays or 

bandwidth limitations 

 Allocation of tasks to 

individual UVs 

 Safety policies (ex: separation 

distances) 

 Human vigilance issues under 

low workload 

 Multiple human operators 

(teamwork & coordination) 

 Details of the operator control 

interface 

 Environmental effects 

(weather, wind, etc.) 

 Details of targets 

o Locations 

o Movement or evasive 

maneuvers 

 Destruction of hostile targets 

 

The majority of these important characteristics were captured endogenously, as they could 

change throughout a mission. The characteristics of the automation and certain system 
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characteristics were static during the mission and were thus represented as exogenous 

parameters. While by definition, initial human conditions (i.e. initial trust level) should be 

modeled as exogenous parameters, the CHAS model assumed that a number of human 

characteristics and time constants (i.e. the time constant for adjusting trust) were static and could 

be modeled as exogenous parameters. Future work should analyze whether these assumptions 

were valid or whether these characteristics should be modeled endogenously.  

The “Excluded” column in Table 2 shows a number of concepts that were excluded to keep the 

model small enough to capture the major aspects of the system. The CHAS model could 

potentially be expanded to include many of these other features, such as the impact of vehicle 

failures, communications delays, safety policies, coordination between multiple operators, or 

human vigilance issues. These are addressed in the future work section in Chapter 7. 

The CHAS model was designed to represent a single operator working on a moderate to high 

workload mission. The focus of this modeling effort was to capture the perceptions, decisions, 

and actions of the human operator when working in collaboration with an AS. Thus, the model 

boundary appears to be adequate to capture the important characteristics of real-time human-

automation collaborative scheduling of multiple UVs and to address the challenges that were 

identified in previous studies. 

4.1.2 Dimensional Consistency Testing 

Dimensional consistency testing evaluates the units used for each variable and ensures that the 

units match on each side of every equation. An additional component of dimensional consistency 

testing is evaluating whether the model includes arbitrary scaling factors that have no real world 

meaning (Sterman, 2000). All of the equations in the CHAS model passed the dimensional 

consistency test, both through inspection of all model equations (Appendix C) and through the 

Vensim
®
 units check function. 

4.1.3 Extreme Conditions Testing 

Extreme conditions tests are important to evaluate the robustness of a model under extreme 

inputs. Model outputs should be valid for the entire range of all input variables, not simply at the 

median input values. If the model still provides valid outputs under extreme conditions, it builds 
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confidence that the model can be used to extrapolate beyond the data which was used for 

behavior testing. Extreme conditions tests were carried out in two ways. First, by examining each 

model equation (Appendix C), one can ask “whether the output of the equation is feasible and 

reasonable even when each input to the equation takes on its maximum and minimum values” 

(Sterman, 2000, p. 869).  

Second, extreme conditions were imposed on the model through simulations. For example, the 

Automation Generated Search Speed of the team of UVs was set to an extremely high value 

(1200% of the normal value) and the model behaves as it should, quickly reaching but not 

exceeding 100% area coverage (Figure 26). Also, the Automation Generated Search Speed 

parameter was set to 0, which is representative of the situation where the UVs only tracked 

previously found targets on their own instead of covering new area. The operator could create 

more tasks to encourage the UVs to search new area, although system performance would not be 

as high as if the automation was assisting the operator in the search process (as shown via model 

simulation in Figure 26). Additional extreme conditions tests are presented in Appendix E, where 

it was shown that the model behaved appropriately under a variety of extreme conditions. 

 
Figure 26. Extreme conditions testing by varying Automation Generated Search Speed. 

The CHAS model employs one “artificial” mathematical cap in the calculation of Human 

Workload to ensure that the model outputs are valid for extreme conditions. As explained in 

Section 3.4.5, inputs to the workload calculation include the Nonscheduling Task Load (NST) of 

the operator, such as visual identification of targets and chatting with a command center. Other 
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inputs to the workload calculation include the rate of search task creation, the replan rate, the 

average search task creation time, and the average length of time to replan. Without a 

mathematical cap, it is possible that this calculation could be driven above the maximum 

workload level of 100% utilization (percent busy time). In the CHAS model, the workload 

variable is prevented from exceeding 100% through the use of a MIN function. By definition, a 

quantity such as utilization cannot exceed 100%, thus this artificial means of limiting the 

workload parameter is necessary for maintaining the validity of model outputs. 

4.1.4 Integration Error Testing 

As SD models are formulated in continuous time and solved by numerical integration, the 

selection of integration method and time step are important choices for a SD model. The wrong 

time step or integration method can introduce unusual dynamics into the results of the model 

(Sterman, 2000). The time step chosen for the CHAS model was 0.125 seconds, to simulate 

missions which are typically between 10 to 30 minutes in duration. Humans typically cannot 

respond to stimuli in less than 0.2 seconds (Wickens & Hollands, 2000), thus the 0.125 second 

time step should be sufficient for modeling human perception and decision-making. The 

integration method chosen was Euler. To evaluate whether the model results were sensitive to 

changes in the time step, the model was run with a time step of 0.0625 seconds, then with a time 

step of 0.25 seconds. In both cases the results of the model did not change (Appendix E). Also, 

the model was run with a different integration method and there were no changes in the results. 

4.1.5 Structure and Parameter Verification 

Structure verification tests compare the structure of the model directly with the structure of the 

real world that the model attempts to represent (Forrester & Senge, 1980). The main question 

posed is whether the model and the assumptions that it makes contradict knowledge about the 

real system. Similarly, parameter verification tests aim to compare the parameters of the model 

against observations of real life to determine if parameters correspond both conceptually and 

numerically (Forrester & Senge, 1980). All parameters should have a clear, real-life meaning that 

preferably can be estimated from actual data, although it is often impossible to directly estimate 

all parameters in a model from real-world data (Sterman, 2000).  
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There are two primary methods of structure and parameter verification. First, direct inspection of 

the model equations can reveal the assumptions made in all causal relationships. Second, 

experiments can reveal how human operators behave under various circumstances. Data from 

previous experiments have been used to build the CHAS model and an additional experiment to 

test some of the model’s assumptions will be described in Chapter 5. Throughout the rest of 

Chapter 4, the model’s structure will be evaluated against a variety of data sets. 

In terms of structure verification, it was important to verify the interaction between the Trust in 

Automation and Cognitive Overload feedback loops. As explained in Chapter 3, the model was 

designed to represent the tension between the positive impact of operator interventions and the 

effectiveness of those interventions once operator cognitive workload reaches too high of a level. 

To verify that the structure of the model captures this tension, two simulation runs of the CHAS 

model are shown in Figure 27. In the “moderate task load” run, the operator’s workload remains 

at a moderate level near 50%, as shown in Figure 27a. In the “high task load” run, the operator’s 

workload is consistently above 75%. The only difference between the two simulations is that 

Nonscheduling Task load (NST) is set higher for the high task load run. In the real world, this 

could represent a more frequent need to communicate with a command center or with other 

operators in the field. It could also represent a system where the operator needs to spend more 

time analyzing visual images or video to identify or track targets. 

The simulations reveal a few interesting results due to this change in task load. First, the area 

coverage performance of the moderate task load simulation is higher than that of the high task 

load simulation (Figure 27b). Although performance did not fall dramatically, this result still 

aligns with previous human supervisory control literature, showing that system performance can 

suffer when human operators are experiencing cognitive overload (Cummings & Guerlain, 2007; 

Nehme, 2009; Rouse, 1983; Schmidt, 1978). Second, the model captured the fact that operators 

will likely detect that the system was performing poorly and attempt to “work harder” to 

counteract the poor system performance. This is reflected in the increasing search task rate for 

the high task load simulation (Figure 27c).  
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(a)       (b) 

   
(c)       (d) 

 
Figure 27. Model simulations of the impact of high task load: a) Workload, b) Area Coverage Performance, c) 

Search Task Rate, d) Human Value Added. 

Third, the model captured the fact that this harder work, creating more search tasks, may be less 

effective under conditions of cognitive overload. At approximately 150 seconds into the 

simulation, the negative effects of the Cognitive Overload loop began to override the positive 

effects of the Trust in Automation loop on Human Value Added to system performance for the 

high task load simulation (Figure 27d). Normally, a higher search task rate would produce 

increased Human Value Added, as described in Section 3.4.5. However, at workload levels 

above 70% utilization, the Cognitive Overload loop becomes active, beginning to reduce the 

improvement in Human Value Added due to an increasing search task rate. The operator enters a 

“vicious cycle” where he or she attempts to work harder to fix poor performance, but 

performance only gets worse because of high workload conditions. Rudolph and Repenning 

(2002) created a computational model of this tipping point effect with regards to human stress. 

The tipping point appears to occur at ~80% utilization for the particular simulation shown in 

Figure 27. Further exploration of this tipping point phenomenon is explored in Section 6.1.2. 
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Thus, the model structure captures three important aspects of real-time human-automation 

collaborative scheduling. First, under normal workload conditions, increased operator 

intervention to guide the sub-optimal automation can benefit system performance. Second, 

operators are monitoring the system and when they receive feedback that the system is 

performing poorly they will intervene more frequently in an attempt to improve system 

performance. Third, under conditions of cognitive overload, system performance will suffer as 

additional operator interventions will not add value. The impact of high task load on workload 

and performance will be explored further in Sections 4.2.2 and 4.2.3. 

Moving to parameter verification, it was first important to decide how each parameter would be 

estimated. Table 3 shows a list of all exogenous parameters in the CHAS model. The parameters 

were divided into four categories based on how they were estimated and whether or not they 

were allowed to vary between model simulations for a given experiment. First, in the upper left 

quadrant of Table 3, parameters such as Total Number of Cells were known from the testbed and 

constant for all operators. The Search Task Creation Time Length was assumed to be constant 

across operators, as overall variation was small and negligible for the calculation of utilization 

(Mean: 2.81 s, St. Dev: 1.68 s). Finally, the four non-linear relationships were kept constant 

between model runs because they were estimated from aggregate data (Section 3.4). 

Additionally, in the lower left quadrant of Table 3, Automation Generated Search Speed was 

estimated once via model fitting (Section 3.4.2) and kept constant between model simulations of 

different operators. 

In terms of parameters that were allowed to vary between model runs, the upper right quadrant of 

Table 3 shows parameters that could be estimated directly from experimental data. The average 

length of time to replan was estimated directly from experimental data for each operator or group 

of operators, who were being simulated. Also, the initial NST level and NST rate of change were 

estimated directly from experimental data via the method shown in Section 3.4.6. Finally, in the 

lower right quadrant of Table 3, a group of parameters that depend on the human operator that 

was using the system were estimated via model fitting. For example, each operator potentially 

had a different initial trust level or a different average ratio of replans to search tasks created. 

Parameter estimates for model behavior tests are described further in the next section. 
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Table 3. Exogenous parameters and relationships in the CHAS model. 

 Constant between model runs Varying between model 

runs 

Estimated 

Directly from 

Experimental 

Data 

 Total Number of Cells 

 Search Task Creation Time Length 

 Effect of PPG on Perceived Automation Capability 

 Effect of Search Tasks on Human Value Added 

 Effect of Trust on Search Task Rate 

 Effect of Cognitive Overload on Human Value 

Added 

 Length of Time to Replan 

 Number of Replans per Search 

Task 

 Initial Nonscheduling Task load 

(NST) 

 NST Rate of change 

Estimated via 

Model Fitting 

 Automation Generated Search Speed 

 
 Initial human conditions: 

o Expectations of 

Performance 

o Trust level 

 Human time constants for:  

o Perceiving performance  

o Adjusting expectations  

o Adjusting trust 

 

4.2 Model Behavior Tests 

Model behavior tests include behavior reproduction testing, which will be described for three 

data sets. First, the model was tested on the initial OPS-USERS data which informed 

construction of the model. Second, in a “family member” test, data from an experiment that uses 

the same testbed but under different experimental conditions was used. Third, to test the external 

validity of the CHAS model, the model was exercised on data from an experiment that uses a 

different testbed, a multi-robot Urban Search and Rescue simulation (USARSim). 

4.2.1 Historical Data Validation 

The CHAS model was used to replicate the OPS-USERS experimental data set which was 

described in Section 3.2. Three sets of data from the experiment were used to evaluate the 

model’s fit to the data: aggregate data for all missions, high performers, and low performers. The 

high and low performing missions were identified through a cluster analysis described in Section 

3.2.  

The CHAS model was used to simulate the average behavior of the operators in each of the three 

groups (low performers, high performers, and aggregate data for all missions). After generally 

fitting the model to the average behavior of all operators to select an initial starting point for the 

optimization process, the optimization feature in the Vensim
®
 simulation software was used to fit 
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the model to the behavior and performance of the three groups. The software used a modified 

Powell (1964) search to find a local minimum by searching within defined boundaries for each 

exogenous parameter which was allowed to vary (lower right quadrant in Table 3).  

The optimizer evaluated the fit of the model to experimental data for the following variables: 

area coverage performance, human workload as measured by utilization, search task rate, and 

replan rate. These four output variables were the only endogenous variables in the CHAS model 

for which experimental data was available for comparison. Data on the average length of time to 

replan was used to set the exogenous parameter for this interaction time length. For variables 

such as trust, expectations of performance, and perceptions of performance, actual data was not 

available to compare the accuracy of the model simulations. The accuracy of these three 

variables is evaluated in Chapter 5, where operator ratings of trust, expectations of performance, 

and perceptions of performance are gathered throughout the mission in a new experiment. 

After describing the model fit to the four output variables, a comparison of the model parameter 

values among the three groups is presented. 

4.2.1.1 Model Fit 

First, the simulation output for area coverage percentage is compared to average experimental 

data for each group in Figure 28, with the summary statistics for fit (Sterman, 1984) shown in 

Table 4. The Theil (1966) inequality statistics provide a decomposition of the error by splitting 

the Mean Square Error (MSE) into three components: bias (U
M

), unequal variation (U
S
), and 

unequal covariation (U
C
). The ultimate goal of a model fit is to have small errors between the 

model and data, with most of the error due to unsystematic, or random, variation. Sterman (2000, 

pp. 875-877) explains: 

“Bias arises when the model output and data have different means. Unequal variation 

indicates that the variances of the two series differ. Unequal covariation means the 

model and data are imperfectly correlated, that is, they differ point to point. Since U
M

 

+ U
S
 + U

C
 = 1, the inequality statistics provide an easily interpreted breakdown of the 

sources of error…Ideally, the error (indicated by [Mean Absolute Percent Error] 

MAPE, [Root Mean Square Error] RMSE, etc.) should be small and unsystematic 

(concentrated in U
C
).”  
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The simulations had a good fit to the experimental data with coefficient of determination (R
2
) 

values over 0.97 for all three groups, as shown in Figure 28. The model was able to predict the 

total area coverage performance by the end of the mission within 2.7% for all three groups. The 

model was most accurate in predicting the low performer group performance curve (Figure 28b), 

with a percent error at the end of the mission of only 0.8%. In all cases, the largest component of 

MSE was U
M

, as the model underestimated the amount of area coverage for much of the earlier 

portion of the mission while overestimating the rate of coverage at the end of the mission, for 

example, overshooting the curve for the all missions group (Figure 28a). This may indicate that 

that the simplistic system performance module requires refinement for modeling the earlier 

portions of a mission, although in general the fit is quite good. 

Second, the simulation output for human workload is compared to average experimental data for 

each group in Figure 29 with the summary statistics for fit shown in Table 5. The workload curve 

for the high performer group (Figure 29c) had the best fit (R
2
 of 0.69), replicating some of the 

non-linear fluctuations in workload that can be seen in the experimental data. The workload 

curve for the low performer group (Figure 29b) replicated the roughly linear decline in workload 

seen in the data (R
2
 of 0.67). However, for the all missions group, the R

2
 value was only 0.50, 

which is mostly due to the transient workload spike shown in the experimental data at the start of 

the mission (Figure 29a). This could likely be corrected through the model’s representation of 

NST (Section 3.4.6), which currently under-represents the NST at the start of the mission. 

Further evaluation of the model’s representation of NST is conducted in Section 4.2.2.1 and 

methods for improving the model of NST are discussed in the future work section of Chapter 7. 

In all three groups for the workload fit, the major component of the MSE was unequal 

covariation, indicating that the error in the model fit to the data was unsystematic. Additional 

small fluctuations in workload are difficult to capture due to human variability, for example in 

the amount of time that it takes each operator to create a search task or replan. Capturing this 

human variability will be discussed further in Section 4.3.2. Additionally, while utilization can 

serve as a good proxy measure for workload, there are also drawbacks to this measure, as 

described in Section 3.4.6. While the purpose of this research is not to evaluate utilization as a 

proxy measure of workload, it should be noted that small fluctuations in utilization may not 

correspond with actual fluctuations in cognitive workload. 
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Finally, the two forms of operator interventions, creating new search tasks and replanning, are 

evaluated together. The simulation output for search task rate is compared to average 

experimental data for each group in Figure 30, with the summary statistics for fit shown in Table 

6. The simulation output for replan rate is compared to average experimental data for each group 

in Figure 31, with the summary statistics for fit shown in Table 7. First, the model was 

successfully able to replicate the higher rate of intervention of high performers as compared to 

low performers. Additionally, the model was able to capture the general trend of increasing 

intervention as the mission went on. Finally, the model was also able to capture some of the 

oscillations in intervention frequency that occurred, which were evident in the data for all 

missions (Figure 30a) as well as the high performer group (Figure 30c). 

It should be noted that the fit for search task rate (max R
2
 of 0.40) was better than the fit for 

replan rate (max R
2
 of 0.04). This is likely due to the model assumption that the replan rate is 

directly, linearly related to search task rate. While there is a direct system need, once a search 

task has been created, to replan in order to assign that new task to the UVs, this is a very 

simplistic model of operator decisions to replan. The addition of a more sophisticated model of 

replanning is discussed in the future work section of Chapter 7. 

While there is room to improve the fit of the model to the intervention rate data, the most 

important aspects of the data have been captured, namely the differences in the rates of 

intervention of the high and low performer groups and the major oscillations in intervention 

frequency that occurred. 

4.2.1.1 Model Parameters 

Overall, the model was able to replicate the behavior and performance of the three groups of 

operators. As described in Section 4.1.5 and Table 3, there were nine possible parameters that 

were allowed to vary between model runs: Initial Human Trust, Initial Expected Performance 

(EP), Trust Change Time Constant, Time to Perceive Present Performance (TPPP), Time 

Horizon for Expected Performance (THEP), Number of Replans per Search Task, Length of 

Time to Replan, Initial NST, and NST Rate. Six of these variables were modulated by the 

optimizer, while the other three were estimated directly from the experimental data. The 

parameter values for each of the three groups are presented in Appendix F.  
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(a) 

  
(b)       (c) 

Figure 28. Area Coverage Performance: Simulation vs. Data ±1 SE: a) All Missions, b) Low Performers, c) 

High Performers. 

Table 4. Area Coverage Performance: Simulation to Experimental Data Fit. 

Summary Statistics All Missions Low Performers High Performers 

Percent Error at End of Mission 1.600% -0.787% -2.671% 

Coefficient of Determination (R
2
) 0.977 0.988 0.981 

Root Mean Square Error (RMSE) 0.054 0.039 0.054 

Root Mean Square Percent Error (RMSPE) 0.248 0.192 0.148 

Mean Absolute Percent Error (MAPE) 0.177 0.152 0.117 

Mean Square Error (MSE) 0.003 0.002 0.003 

Bias component of MSE (U
M

) 0.626 0.802 0.688 

Variation component of MSE (U
S
) 0.105 0.010 0.013 

Covariation component of MSE (U
C
) 0.270 0.187 0.299 
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(a) 

  
(b)       (c) 

Figure 29. Human Workload: Simulation vs. Data ±1 SE: a) c) All Missions, b) Low Performers, c) High 

Performers. 

Table 5. Human Workload: Simulation to Experimental Data Fit. 

Summary Statistics All Missions Low Performers High Performers 

Coefficient of Determination (R
2
) 0.500 0.676 0.698 

Root Mean Square Error (RMSE) 0.055 0.048 0.053 

Root Mean Square Percent Error (RMSPE) 0.108 0.099 0.141 

Mean Absolute Percent Error (MAPE) 0.077 0.083 0.127 

Mean Square Error (MSE) 0.003 0.002 0.003 

Bias component of MSE (U
M

) 0.036 0.099 0.097 

Variation component of MSE (U
S
) 0.089 0.168 0.398 

Covariation component of MSE (U
C
) 0.878 0.734 0.505 
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(a) 

  
(b)       (c) 

Figure 30. Search Task Rate: Simulation vs. Data ±1 SE: a) All Missions, b) Low Performers, c) High 

Performers. 

Table 6. Search Task Rate: Simulation to Experimental Data Fit. 

Summary Statistics All Missions Low Performers High Performers 

Coefficient of Determination (R
2
) 0.400 0.011 0.351 

Root Mean Square Error (RMSE) 0.331 0.375 0.658 

Root Mean Square Percent Error (RMSPE) 0.122 0.154 0.147 

Mean Absolute Percent Error (MAPE) 0.099 0.126 0.111 

Mean Square Error (MSE) 0.109 0.140 0.433 

Bias component of MSE (U
M

) 0.041 0.013 0.062 

Variation component of MSE (U
S
) 0.003 0.301 0.101 

Covariation component of MSE (U
C
) 0.957 0.685 0.837 
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(a) 

  
(b)       (c) 

Figure 31. Replan Rate: Simulation vs. Data ±1 SE: a) All Missions, b) Low Performers, c) High Performers. 

Table 7. Replan Rate: Simulation to Experimental Data Fit. 

Summary Statistics All Missions Low Performers High Performers 

Coefficient of Determination (R
2
) 0.041 0.001 0.042 

Root Mean Square Error (RMSE) 0.452 0.385 0.612 

Root Mean Square Percent Error (RMSPE) 0.153 0.173 0.167 

Mean Absolute Percent Error (MAPE) 0.125 0.117 0.129 

Mean Square Error (MSE) 0.205 0.148 0.374 

Bias component of MSE (U
M

) 0.000 0.009 0.014 

Variation component of MSE (U
S
) 0.127 0.158 0.012 

Covariation component of MSE (U
C
) 0.873 0.834 0.974 
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Once again, for parameters relating to trust, expectations of performance, and perceptions of 

performance, actual data was not available from the historical data sets to compare the accuracy 

of the model simulations. The model makes a number of assumptions about how perceptions, 

expectations, and trust impact more measureable quantities such as intervention rates. The 

accuracy of these three variables is further evaluated in Chapter 5, where operator ratings of 

trust, expectations of performance, and perceptions of performance were gathered throughout the 

mission in a new experiment.  

Differences and similarities between the parameter values for each group are compared below:  

 Initial Human Trust: The model fit process found that operators in the high performer group 

had the lowest Initial Human Trust, while the low performer group had the highest Initial 

Human Trust. This corresponds with data analysis from Section 3.2 showing that high 

performers rated their satisfaction in the AS significantly lower than low performers and had 

a significantly higher rate of interventions.  

 Initial EP: The model fit process found that operators in the low performer group had the 

lowest Initial EP as compared to the high performers and the all missions group. This is 

reflected in the data analysis from Section 3.2 showing that low performers had significantly 

higher ratings of satisfaction in the AS and a significantly lower rate of interventions. The 

model fit assumed that, given the suboptimal automation in the testbed, low performers may 

have been content with the performance of the system because they had lower expectations 

of performance to begin with. 

 Time Horizon for Expected Performance (THEP): The model fit process found that operators 

in both the low and high performer groups had a higher THEP compared to the all missions 

group. This indicates that operators in both groups may have anchored to a certain 

performance expectation early on and did not adjust that expectation quickly in response to 

how well the system was actually performing. 

 Time to Perceived Present Performance (TPPP): The model fit process found that operators 

in the low performer group had the highest TPPP. The model assumes that low performers 

had poorer attention allocation efficiency, had difficulty handling the rapid task switching 

required, and were slower to detect changes in system performance as compared to high 

performers. 
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 Trust Change Time Constant: The model fit process also found that operators in the high 

performer group had the shortest Trust Change Time Constant. This indicates that the model 

fit assumed that these operators had a smaller amount of trust inertia, enabling them to adjust 

their level of trust in the AS faster to new information. This is reflected in the sharper 

oscillations in intervention rate shown in Figure 30c.  

 Number of Replans per Search Task: High performers had the lowest number of replans per 

search task, while low performers had the highest ratio of replans to search tasks created. 

This is reflected in the data analysis from Section 3.2, showing that high performers were 

intervening more frequently without increasing their workload level, as measured by 

utilization. 

 Length of Time to Replan: This parameter was set directly from experimental data, where it 

was found that high performers had a much lower average length of time to replan. 

 Initial NST and NST Rate: These parameters were set directly from the experimental data. It 

was found that operators in all three groups spent the same amount of time attending to 

nonscheduling tasks. 

Overall, these results support the dynamic hypothesis presented in Section 3.3 that high 

performers were able to anchor to a higher expectation level of performance and adjust to the 

appropriate level of trust faster. It is likely that they adjusted their level of trust faster through 

their feedback perceptions of how the system was performing. By adjusting their trust faster, 

they improved their performance. The oscillation of search task rate and replan rate, seen both in 

the data and in the model simulations, appears to indicate goal-seeking behavior by the test 

subjects. The operators learned about the system as they conducted the mission, seeking out the 

appropriate level of trust and the rate of intervention that produced performance that matched 

their expectations. The time constants provide an additional level of insight into why high 

performers did better, as they were able to perceive how the system was performing and learn at 

a faster rate. 

While this section presented the model’s ability to capture the average behavior of a group of 

operators, the model’s accuracy at replicating the behavior of all individual missions in this data 

set was also evaluated (Appendix G). It was found that the mean R
2
 value for fitting the model to 
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all 60 individual missions was 0.968 for the primary performance metric of area coverage and 

0.335 for utilization, similar to the fit to the aggregate data presented in this section. 

4.2.2 Family Member Validation 

The family member validation test evaluates whether a model can generate the behavior 

observed in other instances of the same system (Sterman, 2000). Thus, the CHAS model was 

applied to simulate the behavior and performance of operators in a different experiment using the 

same OPS-USERS testbed discussed in the previous section. 

The second data set is from a high task load experiment (Clare & Cummings, 2011), where 31 

different operators performed two 10-minute long simulated missions (as opposed to 20-minute 

long missions in the previous experiment). All operators had a static, a priori determined 

objective function for the AS to use in evaluating schedules and were prompted to view 

automation-generated schedules at prescribed intervals of either 30 or 45 seconds. Changing the 

rate of prompts to view new schedules modulates the task load of the operator, such that 30s 

replan intervals should induce higher workload than the 45s intervals. All operators experienced 

both replan intervals in a counterbalanced and randomized order. These intervals have been 

validated in a previous study (Cummings, Clare, et al., 2010). In this experiment (for both replan 

prompting intervals), there were double the number of targets to find (20 vs. 10) as compared to 

the previous data set. In addition, the UVs traveled 5 times faster in the high task load 

experiment and operators received 71% more chat messages that either provided intelligence 

information updates or Situation Awareness (SA) questions requiring operator response. 

A customized version of the CHAS model was developed to model the OPS-USERS testbed with 

replan prompting at a prescribed interval. The tailored model is shown in Figure 32. There was 

only one change made to the model as compared to the version of the model presented in 

Chapter 3. In the Interventions module, as opposed to assuming that the replan rate is directly, 

linearly related to search task rate, the new model assumes that replan rate is an exogenous 

parameter. As described in Section 3.2.1, the operator could be prompted to replan when the 

Replan button turned green and flashed and a “Replan” auditory alert was played. In the 

experiment described previously and used for model fitting in Section 4.2.1, the operator was 

prompted to replan when the AS generated a new plan that was better than the current plan.  
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Figure 32. Tailored version of the CHAS model for OPS-USERS with replan prompting at a set interval. 
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In the high task load experiment presented in this section, operators were prompted to replan at 

specified time intervals. Thus, modeling the replan rate as an exogenous parameter modulated by 

the experimental condition is a valid assumption.  

Two groups of data from this experiment were used to evaluate the model’s fit to the data: the 30 

second interval missions and the 45 second interval missions. Both sets of data were used in 

order to evaluate whether the model could replicate the operator behavior and system 

performance of each set of missions, given the different replan prompting intervals. 

It should be noted that two changes to parameter values (not model structure) were made for this 

family member validation test. First, the parameters that determine the linear model of 

Nonscheduling Task Load (NST) were adjusted for this version of the model. The required 

utilization due to NST was calculated from experimental data from both sets of missions (30 

second and 45 second interval), using two-minute intervals, as shown in red in Figure 33. Self-

imposed utilization from scheduling activities (creating search tasks and replanning) is shown in 

blue stripes. The CHAS model representation of NST is shown by the green “model” line. For 

the 30 second interval missions (Figure 33a), the model represents NST as constant throughout 

the mission. For the 45 second interval missions (Figure 33b), there is a slight decline in NST 

over time. The impact of these simplified representations of NST on the model fit to the data is 

discussed below along with the general evaluation of model fit. 

   
(a)       (b) 

Figure 33. Utilization due to scheduling activities and Nonscheduling Task load (NST). a) 30 second replan 

prompt interval missions. b) 45 second replan prompt interval missions. Standard error bars are shown. 
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Second, the experiment described in this section had UVs that traveled at increased speeds, thus 

the Automated Generated Search Speed needed to be estimated. This was done using the same 

process described in Section 3.4.2 and was found to be 30 cells/second (10 times that of the 

previous experiment). 

The same optimization/fitting process described in Section 4.2.1 was utilized. All estimated 

parameters for the two sets of missions are presented in Appendix H. After describing the model 

fit to the four output variables, an evaluation of how well the model replicated the behavior, 

performance, and workload of these missions is presented. 

4.2.2.1 Model Fit 

First, the simulation output for area coverage percentage is compared to average experimental 

data for each set of missions in Figure 34, with the summary statistics for fit (Sterman, 1984) 

shown in Table 8. The simulations had a good fit to the experimental data with coefficient of 

determination (R
2
) values over 0.93 for both sets of missions. The model was able to predict the 

total area coverage performance by the end of the mission within 3.3% for both sets of missions. 

Similar to the model behavior with the previous experimental data set, the model underestimated 

the amount of area coverage for the earlier portion of the mission while overestimating the rate 

of coverage at the end of the mission. However, for this data set, the largest component of MSE 

was U
C
 for both sets of missions, indicating that the error in the model fit to the data was 

unsystematic. 

Second, the simulation output for human workload is compared to average experimental data for 

each set of missions in Figure 35, with the summary statistics for fit shown in Table 8. The 

model was able to capture major differences in workload, such as the higher workload level of 

the 30 second interval missions as compared to the 45 second interval missions. However, the 

model fit was not excellent in terms of workload, with R
2
 values of 0.37 and 0.36. These R

2
 

values are comparable to the previous historical data set fit for the all missions group, but worse 

than the fits for the low and high performer groups (Section 4.2.1.1). The data for the 30 second 

interval missions (red dots in Figure 35a) shows a slight increase in workload for the first half of 

the mission, followed by a decline, which is the opposite of the model prediction. The 45 second 

interval missions data (red dots in Figure 35b) shows an initial decline in workload, followed by 
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an increase, and then another decline in workload. As will be discussed below, the model’s 

calculation of workload was driven by a simple linear model of NST, while the NST in the actual 

experiment was more non-linear.  

The simulation output for search task rate is compared to average experimental data for each set 

of missions in Figure 36, with the summary statistics for fit shown in Table 9. The model did an 

excellent job of replicating the search task rate data, with R
2
 values of 0.78 and 0.96. Both the 

data and the model show a high rate of search task creation initially, declining until 

approximately halfway through the mission, followed by a sharp increase in the 30 second 

interval data (Figure 36a) but no increase in the 45 second interval data (Figure 36b).  

Finally, the simulation output for replan rate is compared to average experimental data for each 

set of missions in Figure 37, with the summary statistics for fit shown in Table 9. This version of 

the CHAS model represents replan rate as an exogenous, static parameter. As expected, replan 

prompting at an interval of 30 seconds caused a higher replan rate than an interval of 45 seconds 

(Figure 37). A linear, flat model of replan rate does a decent job of capturing the actual replan 

rate, with a RMSE of between 0.25 and 0.44 replans per two minute interval, although it does not 

capture the small oscillations in replan rate shown in the experimental data due to human 

variability in consenting to replan when prompted (Cummings, Clare, et al., 2010). 

4.2.2.1 Evaluation of Behavior, Performance, and Workload Replication 

It should be noted that the model replicated the fact that there were no significant differences in 

performance between the 30 second replan interval and 45 second replan interval missions, while 

matching the search task rate and replan rate of each set of missions. Also, operators in the 30 

second interval missions (Figure 35a) spent almost the entire mission at an average utilization 

level over 70%. In contrast, operators in the 45 second interval missions (Figure 35b) were only 

briefly over 70% average utilization at the beginning of the mission, while the rest of the mission 

was at or below 70% utilization. The fact that the operators in the 30 second interval missions 

were intervening more frequently, yet did not see any additional benefit to system performance 

provides additional support for the hypothesis that human interventions can become less 

effective once the operator’s workload reaches too high of a level. 
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(a)       (b) 

Figure 34. Area Coverage Performance: Simulation vs. Data ±1 SE: a) 30 Second Interval, b) 45 Second 

Interval. 

  
(a)       (b) 

Figure 35. Human Workload: Simulation vs. Data ±1 SE: a) 30 Second Interval, b) 45 Second Interval. 

Table 8. High Task load Experiment: Simulation to Experimental Data Fit. 

Summary Statistics 30 Second 

Area Coverage 

45 Second 

Area Coverage 

30 Second 

Workload 

45 Second 

Workload 

Percent Error at End of Mission 2.83% 3.28% N/A N/A 

Coefficient of Determination (R
2
) 0.938 0.955 0.372 0.362 

Root Mean Square Error (RMSE) 0.085 0.072 0.078 0.045 

Root Mean Square Percent Error (RMSPE) 0.135 0.119 0.128 0.070 

Mean Absolute Percent Error (MAPE) 0.079 0.074 0.092 0.052 

Mean Square Error (MSE) 0.007 0.005 0.006 0.002 

Bias component of MSE (U
M

) 0.133 0.103 0.143 0.273 

Variation component of MSE (U
S
) 0.130 0.154 0.332 0.059 

Covariation component of MSE (U
C
) 0.737 0.743 0.526 0.668 
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(a)       (b) 

Figure 36. Search Task Rate: Simulation vs. Data ±1 SE: a) 30 Second Interval, b) 45 Second Interval. 

  
(a)       (b) 

Figure 37. Replan Rate: Simulation vs. Data ±1 SE: a) 30 Second Interval, b) 45 Second Interval. 

Table 9. High Task load Experiment: Simulation to Experimental Data Fit. 

Summary Statistics 30 Second 

Search Task 

Rate 

45 Second 

Search Task 

Rate 

30 Second 

Replan Rate 

45 Second 

Replan Rate 

Coefficient of Determination (R
2
) 0.781 0.956 0.000 0.0000 

Root Mean Square Error (RMSE) 0.353 0.191 0.245 0.443 

Root Mean Square Percent Error (RMSPE) 0.057 0.034 0.048 0.109 

Mean Absolute Percent Error (MAPE) 0.050 0.027 0.042 0.083 

Mean Square Error (MSE) 0.125 0.036 0.060 0.197 

Bias component of MSE (U
M

) 0.000 0.048 0.000 0.039 

Variation component of MSE (U
S
) 0.024 0.021 1.000 0.961 

Covariation component of MSE (U
C
) 0.976 0.931 0.000 0.000 
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The model’s predictions of system performance were accurate because of the interaction of two 

feedback loops. First, the Trust in Automation loop provided a positive effect on Human Value 

Added for the higher rate of creating search tasks in the 30 second interval missions. However, 

the model also calculates an “Effect of Cognitive Overload on Human Value Added” based on 

the workload level of the operator (Section 3.4.6). This effect is a non-dimensional variable 

which scales the Human Value Added to system performance, thus a lower Effect of Cognitive 

Overload on Human Value Added will reduce the Human Value Added. In the model 

simulations of the 30 second interval missions, the Cognitive Overload loop produced a lower 

Effect of Cognitive Overload on Human Value Added, as shown by the red dashed line which is 

mostly below the blue line in Figure 38. This occurred because operators in the 30 second 

interval missions spent almost the entire mission above 70% utilization. Both lines in Figure 38 

initially increase because the search task rate for both sets of missions decreased, causing a 

decrease in workload for the first half of the mission. However, the increasing search task rate of 

the 30 second interval missions in the second half of the mission caused the simulation to 

calculate increasing workload, thus the decrease in the red dashed line. 

 

Figure 38. Model simulation of the impact of cognitive overload on performance. 

This experimental data set provides supporting evidence for the structure of the CHAS model, 

demonstrating that high workload can potentially reduce the effectiveness of operator 

interventions in real-time human-automation collaborative scheduling of multiple UVs. The 
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CHAS model was able to replicate the intervention behavior and system performance of these 

two sets of missions by effectively modeling the impact of high workload. 

While the model was able to capture major differences in workload, such as the higher workload 

level of the 30 second interval missions as compared to the 45 second interval missions, the 

model’s replication of workload fluctuations throughout the mission was subpar. The model did 

not capture the non-linear changes in workload shown previously in Figure 35. One major reason 

for the poor fit to the workload experimental data is that the CHAS model uses simple, linear 

models of NST, as shown previously in Figure 33. Both of the simplified linear representations 

of NST did not accurately capture the fluctuations in NST. To more accurately capture the 

impact of NST on workload, however, would require a non-linear implementation of NST, which 

could replicate the rise and fall of NST over time. Alternatively, the model could be driven with 

external data that contains accurate NST information for each mission. Both of these potential 

concepts are discussed in the Future Work section of Chapter 7. 

It should be noted that the NST for this high task load experiment was different from the NST in 

the previously described OPS-USERS experiment. For the high task load experiment, there were 

71% more chat messages and double the number of targets to identify, leading to required 

utilization due to NST of roughly 45% (Figure 33). In the previously described OPS-USERS 

experiment, required utilization due to NST was substantially lower, generally ranging from 10-

30% (Figure 24). 

Comparing the fit of the CHAS model between the original OPS-USERS experiment (Section 

4.2.1) and the high task load experiment presented in this section, in both cases the area coverage 

performance fits were excellent, with R
2
 values above 0.93. Generally, the model replicated the 

intervention differences between the various groups in each experimental data set. The fit was 

best for the search task rate in the high task load experiment, with R
2
 values above 0.78. Finally, 

in terms of workload, the CHAS model replicated the workload curves of the original OPS-

USERS experiment with R
2
 values between 0.5 and 0.69. However, for the high task load 

experiment, the workload goodness of fit values were lower (0.36-0.39). This is due to the 

model’s simplified representation of NST. While the workload calculation could be refined, 
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overall, it appears that the CHAS model was successfully able to replicate the intervention 

behavior and performance of two OPS-USERS data sets. 

4.2.3 External Validation 

While the CHAS model has been tested on the original data set that was used to inform 

construction of the model and an additional data set from a different experiment that used the 

same testbed, it was important to evaluate the CHAS model on a data set from a different 

testbed. This would provide a test of the external validity of the CHAS model, how well it could 

generalize to other real-time human-automation collaborative scheduling systems. Thus, the 

CHAS model was applied to simulate the behavior and performance of operators in a multi-robot 

Urban Search and Rescue experiment. 

Researchers have been exploring the use of autonomous robots for Urban Search and Rescue 

(USAR) for over a decade. Robots can go to places that are impossible or too dangerous for 

human rescuers. In urban search and rescue, robots usually need to navigate through a complex 

environment to map the environment and look for victims. Currently in practice, two operators 

are usually required to manually control a rescue robot. With autonomous path planning and 

scheduling algorithms, it is possible to reduce the workload of operators and increase the number 

of robots they can control. 

In order to apply the CHAS model to a USAR mission, data was collected from a previous 

USAR experiment (Gao, Cummings, & Bertuccelli, 2012) conducted using a 3-D simulation 

testbed based on USARSim (Lewis, Wang, & Hughes, 2007). The task of the operators was to 

monitor the cameras of robots and mark the positions of victims on the map when they appeared 

in the cameras (Figure 39). The goal was to mark as many victims as possible correctly. By 

default, robots searched autonomously for victims based on plans and paths developed by an AS. 

Operators could choose to take manual control and teleoperate an individual robot during this 

process when they felt it was necessary. Operators worked in teams of two to monitor a total of 

24 robots. Each team went through three trials of 25 minutes. In these three trials, the building 

maps were the same, but the locations of the 34 victims were different. At the end of each trial, 

subjective workload ratings were obtained from each operator using the NASA-TLX scale (Hart, 

1988), which measures six sub-dimensions of workload. 
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Analysis of data from this experiment is presented next, which informed the customization of the 

CHAS model to model this testbed. Later, the model fit to the data is described, along with an 

evaluation of how well the model replicated the behavior and performance of different groups of 

operators. 

 

Figure 39. USARSim interface for controlling multiple search and rescue robots. 

 

4.2.3.1 Data Analysis 

Analysis of the data from this experiment first showed that operators spent a longer time on 

teleoperation in later trials than in earlier ones, as shown in Figure 40. ANOVA analysis shows 

that this impact of trial sequence on the time spent on teleoperation is significant (F(2,141)=7.37, 

p<0.001). In interviews after the experiment, many participants said that the AS did not do a very 

good job and could not be trusted. They stated that robots often went back to places already 

explored, sometimes multiple times, while leaving some other places unexplored. They 

complained that the search was not thorough if they relied on only the AS. Even though 

intervening via teleoperation requires more effort than just relying on the AS, operators chose to 

teleoperate when the robots were not going where they wanted them to go. 

Thus, both quantitative and qualitative data indicate that operators lost trust in the automation 

throughout the three trials and chose to intervene more frequently. This indicates a link between 

the operator’s perception of the automation’s capability, operator trust, and the amount of 
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teleoperation conducted by the operator. The data also show that trust can change both during 

and in-between missions. Both of these findings support assumptions in the CHAS model. 

 
Figure 40: USAR Experiment: Total Teleoperation Time versus Trial Sequence. 

In a second analysis, for each 25-minute experiment trial, the number of teleoperation “actions” 

per minute was counted. To smooth out short-term fluctuations in the time series data, the 

moving average over each five-minute period was calculated, resulting in 21 data points per trial. 

Hierarchical clustering was used to classify each of the 144 experiment trials into groups. The 

goal was to identify groups of operators who had distinct behavior in terms of the frequency of 

teleoperation.  

This analysis identified six distinct clusters of trials. The first three clusters contained only seven 

trials in total, and were removed from further analysis. The last three clusters had different levels 

of teleoperation as shown in Figure 41a. The trials in Cluster 4 (named Low TeleOp), shown in 

red squares in Figure 41a, had the lowest frequency of teleoperation. These trials also had 

significantly worse performance ((F(2,134)=16.67, p<0.001), in terms of total victims found, 

than the other two clusters, as shown in Figure 41b. Thus there is a positive relationship between 

decreased teleoperation frequency in this experiment and decreased performance. Combined 

with the previously discussed link between trust and the frequency of teleoperation, it indicates 

an indirect, but crucial relationship between operator trust in automation and system 

performance.  

It should be noted, however, that while the trials in Cluster 6 (named High TeleOp) had 

significantly more teleoperations than those in Cluster 5 (named Med TeleOp) (Figure 41a), 
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there were no statistically significant differences in system performance between these two 

groups (Figure 41b). There appear to be diminishing returns in terms of performance with more 

teleoperation. 

 
(a)       (b) 

Figure 41: (a) Average teleoperation frequency versus mission time; (b) Number of victims found by 

teleoperation cluster. 

Finally, in order to investigate whether the frequency of teleoperation is related to operator 

workload, an analysis of the differences in NASA-TLX workload ratings among the three 

clusters was conducted. ANOVA analysis showed that there were significant differences on the 

temporal demand dimension of workload between clusters (F(2,134)=68.37, p<0.001), but not on 

overall workload ratings or any other dimensions. Operators in the High TeleOp group reported 

higher temporal demand, which indicates that they felt increased time pressure and that the pace 

of the simulation was rapid. This indicates that operator workload is related to the number of 

operator interventions, supporting another key CHAS model assumption.  

4.2.3.2 Model Customization 

In order to inform the customization of the CHAS model for simulating human control of 

multiple robots for an USAR mission, the OPS-USERS and USARSim testbeds were compared. 

The two testbeds are similar in a number of ways. They both enable operators to collaborate with 

an automated scheduling and path planning algorithm for controlling multiple robotic vehicles 

under goal-based control. As described in Chapter 2, in goal-based control, the human operator 
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guides the high-level goals of the team of UVs (as opposed to guiding each individual vehicle) 

and the AS assumes the bulk of computation for path planning and task assignment optimization. 

The USARSim testbed typically simulates homogeneous ground-based UVs, while the OPS-

USERS testbed can control heterogeneous UVs (air, land, sea). However, in the OPS-USERS 

testbed, the human operator does not need to worry about the distinction between different types 

of UVs, as the automation checks the feasibility of all task assignments based on the capabilities 

of the UVs. Also, both testbeds utilize a Map Display with a top-down view of the world. 

There are four major differences between the two testbeds. First, the goals of the missions are 

slightly different. In the OPS-USERS testbed, the goal is to find and track moving ground targets 

over a large, but fairly open area. In the USARSim testbed, the goal is to find and mark 

stationary human victims inside a building with an unknown layout. Despite this difference, 

however, both are search missions for a fixed number of victims/targets over a fixed area. 

Second, in OPS-USERS, the main interventions that the operator can use to coach the 

automation are the creation of search tasks and replanning. The operator cannot manually control 

any particular UV in OPS-USERS. In contrast, the USARSim testbed allows operators to 

manually teleoperate a single robot at a time. This is the only intervention that the operator can 

use, both to mark victims and to guide the search process.  

The third difference between the two testbeds is that the OPS-USERS testbed requires operators 

to multi-task, by monitoring the UVs, responding to chat messages, classifying visual images, 

and interacting with the AS to generate new schedules. In contrast, the USARSim testbed only 

requires operators to focus on the primary objective of monitoring the robots and marking 

victims. However, the workload level of operators in USARSim is just as high, if not higher than 

in OPS-USERS because there are 24 robots as compared to UVs in OPS-USERS. The final 

major difference between OPS-USERS and USARSim is that OPS-USERS is purely a single-

operator simulation, while the USARSim experiment described here was a two-player, team 

activity, where operators collaborated to control the group of robots. Although the USARSim 

data set comes from a team-based experiment, this modeling effort focused on the concept of a 

single operator controlling multiple robots, thus team coordination and task allocation among 

multiple operators was not considered. 



  131 

 

Given these similarities and differences between OPS-USERS and USARSim and the analysis of 

data from the USARSim experiment, a customized version of the CHAS model was developed to 

model human-automation collaborative scheduling for a USAR mission. The tailored model is 

shown in Figure 42. There were three major changes to the model from the version which has 

previously been presented. The first change was simply a terminology and units change. The 

system performance module was customized to the USAR mission with a focus on finding 

victims. In the USARSim experiment, once a victim is visited, it is marked as “found”, which is 

the primary performance metric. As more and more victims are found, the likelihood that a new 

victim is found declines, which lowers the Victim Discovery Rate. Although the data set comes 

from a team-based experiment, this model focuses on the concept of a single operator controlling 

multiple robots, thus team coordination and task allocation among multiple operators is not 

considered. Thus, the Total Number of Victims parameter was set to 17, half of the actual total in 

the experiment, assuming an equal division of labor between the two operators. 

The second change to the model was that the main operator intervention was changed to the 

Number of Teleoperations. This was modeled in the same manner as the Search Task Rate in the 

previous CHAS model, where the Number of Teleoperations is negatively non-linearly 

dependent on Human Trust level (higher trust means less likely to intervene) using a logit 

function. The model assumes, just as before, that a higher number of teleoperations improves the 

value that the human operator adds to the rate of finding victims. While the change itself was 

only a terminology change and there was no change to the underlying model structure, the 

parameters that define the non-linear relationships had to be estimated from experimental data. 

The third change to the model did impact the model structure. Replan Rate was removed from 

the model, as there was no separate replanning process in the USARSim testbed. Additionally, 

the workload module was simplified by scaling the Number of Teleoperations directly to 

workload using an Effect of Teleoperations on Workload parameter. Utilization data for each 

operator was not available in the data set for model fitting. However, using data on the total 

teleoperation time (such as that shown in Figure 40), the fraction of the mission spent in manual 

control of the robots could be used as a proxy for utilization to enable estimation of the Effect of 

Teleoperations on Workload parameter. While this is an oversimplification of the workload 

calculation, the impact of this assumption on model results will be discussed below. 
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Figure 42. Tailored version of the CHAS model for a multi-robot USAR mission. 
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The three teleoperation cluster groups described in the previous section were used to evaluate the 

model’s fit to the data. The data available for fitting were the Number of Teleoperations and the 

number of Found Victims over time. The same optimization/fitting process described in Section 

4.2.1 was utilized. All estimated parameters for the three groups are presented in Appendix I. 

After describing the model fit to the two output variables, an evaluation of how well the model 

replicated the behavior and performance of these missions is presented. 

4.2.3.3 Model Fit 

First, the simulation output for Number of Teleoperations is compared to average experimental 

data for each group in Figure 43, with the summary statistics for fit shown in Table 10. The 

model had a good fit to the Number of Teleoperations data. For the Medium TeleOp and High 

TeleOp groups, the R
2
 values were 0.96 and 0.80, as the model was able to replicate the initial 

increase in Number of Teleoperations, followed by a slower adjustment over time. The 

experimental data for the High TeleOp group (Figure 43) appears to show overshoot of a desired 

Number of Teleoperations, followed by a slow decline in teleoperations with small oscillations. 

The model captured the overshoot and decline to a desired intervention level shown by the High 

TeleOp group (Figure 43), but did not capture the small oscillations. Overall, this data suggests 

that operators were likely learning about the system as they conducted the mission, seeking out 

the appropriate level of trust and the rate of intervention that would produce performance that 

matched their expectations. High performers appear to have learned quickly and adjusted their 

trust level more dramatically, as shown by their rapid increase in Number of Teleoperations.  

While it may appear that Low TeleOp group had a subpar fit, with a R
2
 value of only 0.23, recall 

that R
2
 is a measure of the proportion of the variation in the experimental data explained by the 

model. As there was little variation over time in the frequency of teleoperation for this group in 

the experimental data, the model cannot and should not recreate these small variations in order to 

avoid overfitting. 
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Figure 43. Number of Teleoperations: Simulation vs. Data ±1 SE 

Table 10. Number of Teleoperations: Simulation to Experimental Data Fit. 

Summary Statistics Low TeleOp Medium TeleOp High TeleOp 

Coefficient of Determination (R
2
) 0.227 0.963 0.801 

Root Mean Square Error (RMSE) 6.688 8.709 16.83 

Root Mean Square Percent Error (RMSPE) 0.067 0.028 0.026 

Mean Absolute Percent Error (MAPE) 0.055 0.022 0.020 

Mean Square Error (MSE) 44.73 75.84 283.4 

Bias component of MSE (U
M

) 0.061 0.015 0.002 

Variation component of MSE (U
S
) 0.001 0.002 0.077 

Covariation component of MSE (U
C
) 0.938 0.983 0.921 

 

Second, the simulation output for Found Victims is compared to average experimental data for 

each group in Figure 44, with the summary statistics for fit shown in Table 11. The simulations 

had a good fit to the experimental data with coefficient of determination (R
2
) values over 0.98 

for all groups. The model was able to calculate the average final number of victims found in each 

group within 1.2%. The only slight issue with the fit is that the performance curve for the Low 

TeleOp group (Figure 44a) underestimates the number of victims found for much of the earlier 

portion of the mission. 
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(a) 

   
(b)       (c) 

Figure 44. Found Victims: Simulation vs. Data ±1 SE: a) Low TeleOp, b) Medium TeleOp, c) High TeleOp. 

Table 11. Found Victims: Simulation to Experimental Data Fit. 

Summary Statistics Low TeleOp Medium TeleOp High TeleOp 

Percent Error at End of Mission -0.077% 1.182% -0.713% 

Coefficient of Determination (R
2
) 0.989 0.993 0.998 

Root Mean Square Error (RMSE) 0.719 0.463 0.270 

Root Mean Square Percent Error (RMSPE) 0.123 0.107 0.092 

Mean Absolute Percent Error (MAPE) 0.102 0.068 0.048 

Mean Square Error (MSE) 0.517 0.214 0.073 

Bias component of MSE (U
M

) 0.760 0.086 0.372 

Variation component of MSE (U
S
) 0.000 0.458 0.287 

Covariation component of MSE (U
C
) 0.240 0.457 0.342 
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4.2.3.4 Evaluation of Behavior and Performance Replication 

The model replicated the fact that there were no significant differences in performance between 

the Medium and High TeleOp groups, while also capturing the differences in Number of 

Teleoperations of each group. Similar to Section 4.2.2., the fact that the operators in the High 

TeleOp group were intervening more frequently, yet did not see any additional benefit to system 

performance provides additional support for the hypothesis that the rate of operator intervention 

and the effectiveness of these interventions under high workload conditions can be in tension. 

The model’s predictions of Found Victims were accurate because of the interaction of two 

feedback loops, similar to the results seen in Section 4.2.2. First, the Trust in Automation loop 

provided a positive effect on Human Value Added for the higher rate of manual teleoperations of 

the High TeleOp group. However, the Cognitive Overload loop reduced the Human Value 

Added for the High TeleOp group, as the model calculated that the High TeleOp group spent 

almost the entire mission beyond the point of cognitive overload. This model assumption is 

supported by data from the experiment, where operators were asked to give a subjective 

assessment of their workload via the NASA-TLX scale. These NASA-TLX ratings showed that 

operators in the High TeleOp group reported higher temporal demand (Gao, et al., 2013), which 

indicates that they felt increased time pressure and that the pace of the simulation was rapid. 

While this measure of workload is different from the utilization metric available from the OPS-

USERS testbed, NASA-TLX ratings are a commonly used and validated measure of workload 

(Hart, 1988).  

Overall, it appears that the USARSim data supports the model assumptions and structure. The 

CHAS model was successfully able to replicate the behavior and performance of three groups of 

operators. While the accuracy of the CHAS model has been evaluated on three experimental data 

sets, the robustness of the model results will be evaluated in the next sections. 

4.3 Sensitivity Analysis 

A sensitivity analysis is an important test of the robustness of a computational model. This test 

asks whether the model outputs change in important ways when the assumptions are varied over 

the plausible range of uncertainty (Sterman, 2000). It is desirable for the outputs of a 
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computational model to be robust to errors in parameter estimates because it is likely that 

parameter estimates are imperfect. It is also helpful to identify the parameters for which the 

model outputs are most sensitive. This information can be useful to a system designer in two 

ways: a) more effort can be put into estimating the most sensitive parameters to ensure sufficient 

accuracy and b) it can identify the most sensitive human and system design parameters. The most 

sensitive human parameters represent characteristics that have a substantial impact on system 

performance and thus operator selection and/or training efforts should focus on these 

characteristics. The most sensitive system design parameters can also indicate fruitful areas for 

system design improvements. With limited resources for testing and development, it is desirable 

to determine which potential changes to a system are most likely to have strong and positive 

impact on system performance. Finally, regardless of how accurately model parameters are 

estimated, a model of human behavior and decision-making must be able to capture the inherent 

variability of humans. The next two sections aim to a) identify the parameters for which the 

model outputs are most sensitive and b) utilize Monte Carlo simulations to characterize the 

uncertainty in output variables due to human variability. 

4.3.1 Numerical Sensitivity Analysis 

The first analysis varied the values of each exogenous parameter in the original CHAS model 

(Figure 12) to investigate the impact on two outputs: the final area coverage performance at the 

end of the mission and the mean utilization throughout the mission. The baseline conditions were 

the parameter settings for the “All Missions” group, described in section 4.2.1 and detailed in 

Appendix F. The goal of this analysis was to identify the relative sensitivity of the model outputs 

to changes in each parameter, thus the amount of variation of each parameter needed to be 

consistent across parameters and large enough to perturb the model outputs. After testing 

different variation levels, it was determined that a 10% variation level was sufficient to perturb 

the model outputs. Each parameter was increased by 10% and decreased by 10% in univariate 

testing, where parameters were varied one at a time. The Total Number of Cells and the 

Sampling Interval were excluded from the analysis, as there was no uncertainty in these 

parameters. Also, the table function for Cognitive Overload (Section 3.4.6) was not varied in this 

analysis because varying a table function is a more complex process than increasing or 

decreasing a parameter by 10%. However, the effect of changing this table function is explored 
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in Section 6.1.2, where it was shown that the model was robust to changes in the point of 

cognitive overload as long as the model was simulating moderate workload missions. 

The percent error of the output was estimated by comparing the original baseline outputs of the 

model to the outputs after introducing the parameter changes. The results are displayed in two 

charts, for the impact on area coverage performance (Figure 45) and the impact on mean 

utilization (Figure 46). A number of observations can be made from these results. First, the 

overall results show that the model was fairly robust to parameter changes, as ±10% changes in 

parameter values resulted in at most a 7% change in area coverage performance. Second, the 

results show that the most crucial relationship to estimate accurately is the non-linear 

relationship between Search Task Rate and Human Value Added. Base Search Task Rate is the 

most sensitive parameter for area coverage performance and is part of the definition of the non-

linear logit relationship between Search Task Rate and Human Value Added. As described in 

Section 3.4.5, data was available to characterize this relationship accurately for the OPS-USERS 

testbed. Third, Automation Generated Search Speed is the second most sensitive parameter for 

area coverage performance. This parameter can be estimated accurately by collecting data on the 

performance of the automation without human guidance, as was done in Section 3.4.2. 

For the rest of the parameters beyond the two which were most sensitive, the area coverage 

output changed by less than ~4% for a 10% parameter value change, indicating that model was 

robust to errors in parameter estimates. It should be noted that the most sensitive human 

parameters (defined in Section 4.1.5 as initial conditions and time constants that vary between 

operators), were Initial Human Trust and Time Horizon for Expected Performance. These 

parameters had a relatively small impact on area coverage (~3%) for a 10% change in their 

parameter values. However, as will be shown in Chapter 5, influencing the operator’s trust in the 

AS and expectations of performance through various forms of priming can have a substantial 

impact on system performance.  
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Figure 45. Impact of changes in parameter estimates on area coverage performance. 

 
Figure 46. Impact of changes in parameter estimates on mean utilization. 
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Finally, a number of parameters at the bottom of Figure 45 had almost no impact on area 

coverage performance. All five of these parameters were inputs to the calculation of human 

workload. The reason that these parameters had almost no impact on area coverage performance 

in this analysis is that the simulations had moderate workload levels and thus the Cognitive 

Overload loop had little impact on area coverage. The operator’s workload never exceeded 70% 

for these simulations and the average utilization was 41%. The experiment which the model is 

replicating was purposely designed to be a moderate workload experiment, thus cognitive 

overload is not a major concern for this data set. Experiments with higher workload where the 

Cognitive Overload loop was active in the simulations were described in Section 4.2.2 and 4.2.3. 

However, it is still important to calculate workload accurately both to enable a system designer 

to analyze the impact of system changes on workload and for the model to appropriately trigger 

the Cognitive Overload loop. Figure 46 allows further investigation of the sensitivity of 

parameters to the workload calculation. The most sensitive parameter to mean utilization is 

Initial Nonscheduling Task load (NST), which is expected, as adding additional tasks such as 

identifying targets or chatting with the command center directly impacts operator workload. It 

should be noted that NST varies across different OPS-USERS experiments, depending on the 

experimental conditions, as shown in Appendix D. The OPS-USERS experimental data sets 

provide a good estimation of NST using the method described in Section 3.4.6. However, as 

previously discussed, the simple linear representation of NST in the CHAS model may not be 

sophisticated enough to support accurate prediction of fluctuations in workload.  

Next, Number of Replans per Search Task and Length of Time to Replan were the second and 

third most sensitive parameters. Both of these parameters impact the rate of replan interventions 

and the length of these interventions, which had a weak to moderate impact on workload. All 

other parameters had a relatively low impact on the mean utilization (less than a 4% change in 

utilization for a 10% parameter change) indicating that the utilization calculation is fairly robust 

to errors in parameter estimates. 

Overall, the model is fairly robust to changes in parameter estimates. Among the 21 parameters 

tested, only two (Base Search Task Rate and Automation Generated Search Speed) had a 

moderate impact on area coverage performance (at least a 4% change in area coverage for a 10% 
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change in parameter value). Also, only 3 parameters had a moderate impact on mean utilization, 

Initial NST, Length of Time to Replan, and Number of Replans per Search Task. These 

moderately sensitive parameters will be explored in further detail in the next section through 

Monte Carlo analysis. 

This sensitivity analysis did not specifically identify any variables that should be removed from 

the model. While changes to some of the parameters did not have a large impact on area 

coverage performance or workload, most of these parameters are essential for defining the 

various non-linear relationships that were described in Chapter 3. Also, as will be discussed 

further in Chapter 5, modeling human time delays is crucial to the validity of the CHAS model 

and the ability to capture oscillatory behavior patterns, even if the impact of some of these time 

delays on system performance by the end of the mission is not substantial. Finally, it should be 

noted that a model reduction process was conducted with earlier versions of the CHAS model 

(Appendix A), however, the sensitivity analysis presented here used the parsimonious model 

presented in Chapter 3 (Figure 12). 

In general, accurately estimating the automation contribution to system performance and 

defining relationships such as the impact of search task rate on human value added are crucial to 

model accuracy. Through data gathered through automation tests and human subject trials, these 

parameters and relationships can be estimated by the same method shown in Section 3.4.5. Given 

sufficient data to estimate these parameters and relationships, accurate model replications and 

predictions can be made. 

4.3.2 Capturing Human Variability 

Regardless of how accurately model parameters are estimated, a model of human behavior and 

decision-making must be able to capture the inherent variability of humans. Monte Carlo 

simulations can be utilized to generate dynamic confidence intervals for the simulation outputs. 

The general Monte Carlo simulation process for testing SD models (Sterman, 2000) is as 

follows. First, the exogenous parameters with significant uncertainty and for which the output 

variables are sensitive are identified. Second, probability distributions that characterize the likely 

values for these parameters are specified using human operator data. Then the simulation 

software randomly draws a value for each parameter from the chosen distribution and simulates 
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the model. This process is repeated for a large sample of simulations, which are used to define 

the confidence bounds for the output variables. 

Based on the sensitivity analysis presented above, there were five candidate parameters which 

could be used in the Monte Carlo analysis: Base Search Task Rate, Automation Generated 

Search Speed, Initial NST, Length of Time to Replan, and Number of Replans per Search Task. 

All five of these parameters were identified as having a moderate impact on either area coverage 

or mean utilization (defined as greater than a 4% change in the output variable for a 10% change 

in the exogenous parameter value). It was decided to exclude Automation Generated Search 

Speed from the Monte Carlo analysis for two reasons: a) it is an estimated parameter based on 

model fitting (Section 3.4.2) which cannot be drawn directly from experimental data and b) this 

Monte Carlo analysis focused on capturing human variability as opposed to variability in the 

performance of the automation. 

Thus, the four parameters used in the Monte Carlo analysis were: Base Search Task Rate, Initial 

NST, Length of Time to Replan, and Number of Replans per Search Task. All four of these 

variables had significant variability due to individual differences in the human operators who use 

the system. Using the distributions of the four variables generated from previous experimental 

data (Appendix K), 1000 simulations of the CHAS model were run. Once again, the baseline 

conditions for the model were the parameter settings for the “All Missions” group, described in 

section 4.2.1 and detailed in Appendix F. This enabled comparison of the Monte Carlo 

simulation results with the experimental data that originally informed the construction of the 

model (Section 3.2).  

The dynamic confidence intervals generated by the Monte Carlo simulations for area coverage 

percentage, human workload, search task rate, and replan rate are compared to average 

experimental data (±1 Standard Error (SE)) in Figure 47. Generally, the experimental data falls 

within the 50% confidence intervals for the Monte Carlo simulations for all four output 

variables. Given human variability, this is a decent measure of the accuracy of the CHAS model, 

along with the previously discussed evaluation of the fit of the model to historical data in Section 

4.2.1.  
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Through Monte Carlo simulation, the CHAS model is able to provide a system designer with a 

prediction of not only the average value of system performance or workload, but also the 

plausible range of performance or workload that could occur. Designing systems involving 

human operators requires understanding not just average performance, but also the range of 

performance. For example, while average workload may remain below cognitive overload 

conditions, it is crucial to evaluate what percentage of operators may still experience cognitive 

overload due to human variability in using the system. System designers may want to enforce 

boundary conditions, such as designing the system such that 95% of operators will not go above 

a certain workload level. The CHAS model can aid them in this process, through simulations 

such as those shown in Figure 47. This type of system design to workload constraints using the 

CHAS model is explored further in Section 6.1.3. 

         

(a)       (b) 

           

(c)       (d) 

 
 

Figure 47. Dynamic confidence intervals generated via Monte Carlo simulations compared to average 

experimental data ± 1 SE: a) Area coverage Performance, b) Workload, c) Search Task Rate, d) Replan Rate. 

There are a few limitations to this Monte Carlo approach. First, the approach assumes 

independence between the distributions of each parameter. For example, it is likely that an 
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operator with low trust in the AS will also have lower initial expectations for performance, 

however the simulation approach used here does not take this into account. Second, the Vensim
®

 

simulation software draws a random value from each distribution once at the start of the 

simulation and uses that parameter value for the entire simulation. While this is a valid 

assumption for initial conditions such as the Initial NST, for parameters such as the Length of 

Time to Replan, the model is assuming that the value drawn is an average time length that 

remains constant throughout the mission. This could be remedied through the use of different 

software or the implementation of the CHAS model in a more customizable programming 

language. Higher numbers of Monte Carlo simulations could also remedy this issue, although 

there were no substantial differences in the dynamic confidence intervals generated with 

different numbers of simulations (500 and 2000). Discrete Event Simulation (DES) models can 

more accurately re-draw a value from the distribution of Length of Time to Replan every time 

that a replan occurs. Additional comparisons between the CHAS model and a previously 

developed DES model of human supervisory control are presented in Chapter 6. 

4.4 Summary 

The CHAS model has been subjected to a battery of tests through the validation process 

presented in this Chapter. This process has built confidence in the CHAS model’s accuracy and 

robustness, which are discussed in more detail below. 

4.4.1 Model Accuracy 

First, the CHAS model was able to replicate the results of the real-time human-automation 

collaborative scheduling experiment that provided data to inform construction of the model. The 

model was able to capture the differences in system performance and rates of intervention 

between high and low performers. The model was also able to accurately simulate changes in 

output variables over time, including the decline in workload throughout the mission. 

Additionally, the model replicated oscillations in intervention rate which were seen in the data 

set, as operators sought out the appropriate level of trust and the rate of intervention that would 

produce performance that matched their expectations. 
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Second, a slightly modified version of the CHAS model was able to replicate the results of a 

second experiment in which operators were subjected to a much higher task load. As compared 

to the original model presented in Chapter 3, the only change to the customized model was that 

the replan rate was modeled as an exogenous parameter, as operators were prompted to replan at 

specified time intervals. The model replicated the impact of these different replan prompting 

intervals accurately by showing an increase in workload, a change in search task intervention 

rates, and no significant difference in performance between the two groups. The model’s 

predictions of system performance were accurate because the model simulated the impact of 

cognitive overload on operators who had a workload level over 70% utilization. This built 

confidence in the model’s method of capturing the impact of cognitive overload on human 

decision-making and system performance. For both this data set and the original data set, the 

model was able to capture the major differences in workload among different groups; however, 

the model’s replication of workload fluctuations throughout the mission was subpar, causing low 

goodness of fit values. This is due to the CHAS model’s simple, linear representation of 

Nonscheduling Task Toad (NST), which cannot accurately capture fluctuations in NST seen in 

experimental data. Methods for enhancing the model’s representation of NST are discussed in 

the future work section of Chapter 7. 

Third, as an external validation, a tailored version of the CHAS model was also used to replicate 

a data set from a multi-robot Urban Search and Rescue (USAR) experiment. The only major 

change to model structure was a simplification of the workload calculation. The model 

accurately captured the impact of an increased rate of manual teleoperation on system 

performance. The learning behavior of operators in the data set was accurately replicated. Once 

again, the model captured the diminishing returns of extremely high rates of teleoperation due to 

cognitive overload. This external validation test demonstrated the ability to generalize the model 

for use with other real-time human-automation collaborative scheduling systems. 

4.4.2 Model Robustness 

In addition to testing the model’s ability to accurately replicate experimental data, the validation 

tests presented in this chapter also evaluated the model’s robustness under a variety of 

conditions.  
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First, the adequacy of the model boundary was evaluated by comparing the endogenous and 

exogenous variables in the model to determine whether the model is appropriate for the purpose 

for which it was built and whether the model includes all relevant structure. Also, tests were 

conducted to show that the model structure captures important aspects of real-time human-

automation collaborative scheduling, such as the tension between the positive impact of operator 

interventions and the effectiveness of those interventions once operator cognitive workload 

reaches too high of a level. 

Second, an extreme conditions test was conducted by increasing the Automation Generated 

Search Speed by 1200%. The model behaved as expected by quickly reaching, but not exceeding 

100% area coverage performance. Additional extreme condition testing showed that through the 

use of logit curves to characterize key causal relationships, the model is robust to extreme 

conditions such as large differences between expected and perceived performance. In addition, 

an integration error tested demonstrated that the model was robust to changes in the time step 

and integration method used for simulation. 

Third, a numerical sensitivity analysis was conducted to evaluate whether model outputs change 

in important ways when there are errors in parameter estimates. The analysis demonstrated that 

the model is not overly sensitive to errors in parameter values, but did indicate that accurately 

estimating certain relationships, such as the impact of search tasks on system performance, is 

crucial to model accuracy. Through data gathered through human subject trials, sufficient data 

can be gathered to estimate these relationships, enabling accurate model replications and 

predictions.  

Finally, through Monte Carlo simulations, the CHAS model was able to characterize the impact 

of human variability on system performance. The CHAS model is able to provide a system 

designer with a prediction of not only the average value of system performance or workload, but 

also the plausible range of performance or workload that could occur. This is beneficial to a 

system designer who wants to evaluate the impact of system changes on the boundary conditions 

of system design. 

Having built confidence in the CHAS model’s replication accuracy and robustness, Chapter 5 

will describe an additional human subject experiment that was run a) to gather additional data to 
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evaluate model assumptions and b) to test the ability of the CHAS model to predict the impact of 

system changes on system performance. 
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5 Predictive Validation Experiment 

This chapter describes a human subject experiment that was conducted to evaluate the ability of 

the Collaborative Human-Automation Scheduling (CHAS) model to predict the impact of 

changes in system design and operator training on human and system performance. First, the 

CHAS model is used to develop experimental hypotheses, including quantitative predictions of 

performance. The test subjects, apparatus, experimental design, and procedure are presented. The 

experimental results are presented, including an analysis of the impact of demographics on 

performance. Data is presented to evaluate the assumptions built into the CHAS model. Finally, 

the experiment results are compared to the predictions made by the CHAS model. 

5.1 Experimental Objectives 

The primary objective of this experiment was to validate predictions from the CHAS model. The 

secondary purpose was to test the impact of design changes in the Onboard Planning System for 

UVs in Support of Expeditionary Reconnaissance and Surveillance (OPS-USERS) testbed. The 

tertiary purpose was to investigate how human trust in an Automated Scheduler (AS) changes 

throughout a simulated mission controlling a team of UVs. This experiment was designed to test 

the dynamic hypothesis developed through data analysis and development of the CHAS model. 

As described in Section 3.3, the dynamic hypothesis of the CHAS model is that if operators can 

either a) anchor to the appropriate trust in the AS and expectations of performance earlier in the 

mission and/or b) adjust their trust and expectations faster through better feedback about the AS, 

then system performance should improve. 

5.2 Experimental Hypotheses 

Following the multi-stage validation process described in Chapter 4, the CHAS model was used 

to develop hypotheses of how system design and training changes could potentially improve 

system performance. Commonly referred to as “policy implications” testing in the SD modeling 

community (Sterman, 2000), the model was exercised in a number of simulation runs to identify 

changes to a baseline system that could improve the performance of the system. While these 

policies could include both changing exogenous parameters and changing the feedback structure 

of a system, this analysis focused only on modulating exogenous parameters. 
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Thus, the goal was to make quantitative predictions of the impact of changing certain parameters 

on the primary performance metric of area coverage by the end of the mission. The baseline 

conditions for the model were the parameter settings, described in section 4.2.1 and detailed in 

Appendix F, which replicated the average behavior of all test subjects in a previous experiment 

using the OPS-USERS testbed. 

The three exogenous parameters selected for testing were: Initial Human Trust, Initial 

Expectations of Performance (EP), and Time to Perceive Present Performance (TPPP). The first 

two parameters were chosen because the sensitivity analysis described in section 4.3.1 identified 

Human Trust and Expectations of Performance (EP) as the most sensitive human attributes. 

These parameters represent characteristics that have a substantial impact on system performance 

and thus operator selection and/or training efforts should focus on these characteristics. The third 

parameter, TPPP, was chosen because previous research has shown that information time delays 

can have serious consequences for human decision-making in dynamic systems (Brehmer, 1990; 

Sterman, 1989b). While the manipulation of other variables, such as the Automation Generated 

Search Speed, may have had a more substantial effect on performance (Section 4.3.1), this 

research focused on modeling the human operator and understanding how humans collaborate 

with an AS to improve system performance. Thus, all three independent variables focused on 

training methods and system design changes to influence operator behavior, both to assess the 

impact on system performance and to evaluate the assumptions and accuracy of the CHAS 

model.  

The following sections describe the changes to training procedures and system design that were 

implemented in the testbed to attempt to modulate these variables. Also, CHAS model 

predictions for the impact of changing these three parameters on human and system performance 

are presented. 

5.2.1 Initial Trust Level 

According to the CHAS model, the Initial Human Trust of the operator should have an impact on 

the performance of the system. While the sensitivity analysis in Section 4.3.1 showed that Initial 

Human Trust had a weak to moderate impact on area coverage performance, a strong enough 

change in Initial Human Trust should result in a detectable change in system performance. Thus, 
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it was decided to prime test subjects prior to their interaction with the AS in order to influence 

their initial trust level. Priming has been studied extensively in the psychology and neuroscience 

domains (Cave, 1997; Henson, 2003; Kosslyn & Rosenberg, 2011; Schacter, 1987; Schacter & 

Buckner, 1998) and it is known that humans are susceptible to anchoring biases in decision-

making and judgments under uncertainty (Dzindolet et al., 2002; Tversky & Kahneman, 1974). 

However, there has been little research on the impact of priming on operators controlling 

multiple UVs.  

A few studies have investigated the impact of framing on human decision-making and reliance 

on an automated decision aid (Dzindolet, et al., 2002; Lacson, Wiegmann, & Madhavan, 2005). 

In these experiments, test subjects were provided with information about previous automation 

performance with either positive framing (“the aid usually made about half as many errors as 

most participants”) or negative framing (“the aid usually made about 10 errors in 200 trials”). 

These studies found that the manner in which information about the reliability of the automation 

was presented to operators could subtly influence reliance on the automation, but all experiments 

focused on signal detection, rather than the more complex decision-making required for 

controlling multiple UVs. In another study, Rice et. al (2008) primed test subjects with images of 

automation with either positive and negative affect. They found that operators primed with 

positive images had faster reaction times and higher accuracy in a visual identification task with 

the assistance of an automated identification aid. However, this was the only task that the 

operators were conducting, as opposed to the testbed described in this thesis where operators 

were multi-tasking. Also, the automation was for target identification and had 100% reliability, 

as opposed to the automated scheduling algorithm used in this testbed which has been found to 

be provably good, but suboptimal (Choi, et al., 2009; Whitten, 2010).  

Thus, the first independent variable for this human subject experiment was called “A Priori 

Priming,” with three levels: “Positive Priming,” “Negative Priming,” and “No Priming.” After 

completing a self-paced, slide-based tutorial about the testbed, operators read a passage 

containing six actual quotes written by test subjects from a previous experiment using this 

testbed. For the Positive Priming level, the quotes were all from operators who had positive 

impressions of the AS, describing it as fast, intuitive, easy to use, and smart. For the Negative 

Priming level, the quotes were all from operators who were dissatisfied with the AS, describing 
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how they did not agree with the plans made by the AS, how they wished they could manually 

assign tasks, and how the AS made poor decisions. Both passages are shown in Appendix K. The 

No Priming level served as a control group, where operators did not receive a passage to read 

after training. This was a between-subjects factor, in that a particular subject only experienced 

one Priming Level, to avoid training biases and confusion. 

In order to provide quantitative predictions of the impact of positive and negative priming, data 

from the twelve operators who wrote the quotes used in the priming passages was analyzed. All 

test subjects in the previous experiment were asked to rate their satisfaction with the plans 

created by the AS after each mission on a Likert scale from 1-5 (low to high), as explained in 

Section 3.2. This subjective rating was used as a proxy variable for trust in the AS. On average 

across all operators, the average rating of satisfaction was 2.82 out of 5. Among the six operators 

with positive quotes, the average rating was 3.16, a 12% increase. Among the six operators with 

negative quotes, the average rating was 2.16, a 23% decrease.  

For the purposes of making quantitative predictions, it was assumed that positive priming would 

cause a 12% increase from the baseline Initial Human Trust, while negative priming would cause 

a 23% decrease from the baseline. No Priming was the control group, and thus the baseline 

Initial Human Trust was maintained. The results of these model predictions are shown in Table 

12.  

Table 12. Model predictions for impact of a priori priming on area coverage performance. 

A Priori Priming Level % Change in Initial Human Trust Area Coverage Performance 

Negative Priming -23% 68.6% 

No Priming 0% 62.7% 

Positive Priming +12% 60.3% 

 

These predictions were based on the assumption that priming would change the average initial 

trust of each group by the desired amounts. It should be noted that the model predicted that a 

decrease in trust would improve performance while an increase in trust would lower system 

performance. Once again, the model made these predictions because the automated scheduling 

algorithm used in this testbed has been found to be provably good, but suboptimal (Choi, et al., 

2009; Whitten, 2010). Thus, lowering trust should lead operators to intervene more frequently in 
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order to guide the suboptimal automation. Based on these predictions, the following results were 

expected: 

 Hypothesis 1: Negative a priori priming of human trust in the AS is expected to result in 

a 9% increase in system performance by the end of the mission, as compared to the no 

priming control condition. 

 Hypothesis 2: Positive a priori priming of human trust in the AS is expected to result in a 

4% decrease in system performance by the end of the mission, as compared to the no 

priming control condition. 

 Hypothesis 3: Negative a priori priming of human trust in the AS is expected to result in 

a 12% increase in system performance by the end of the mission, as compared to the 

positive priming condition. 

5.2.2 Expectations of Performance 

In addition to Initial Trust, the operator’s expectations of performance should have an impact on 

system performance, according to the CHAS model. Once again, while the sensitivity analysis in 

Section 4.3.1 showed that Initial Expected Performance (EP) had a weak to moderate impact on 

area coverage performance, a strong enough change in operator expectations of performance 

should result in a detectable change in system performance. In order to influence operators’ 

expectations of performance, a new performance plot was implemented in the testbed, shown in 

Figure 48. The old performance plot (Section 3.2.1) showed scores for the current and proposed 

schedule based on the priority levels of assigned tasks in each schedule. The new performance 

plot showed a reference area coverage “expectation” line in red along with the actual area 

coverage performance thus far in the mission in blue. During training, test subjects were told that 

the red line was the average of area coverage accomplished by previous users of the system. This 

reference line was meant to serve as a different form of priming, by setting operators’ 

expectations of how well the system should perform based on the how well other operators had 

performed before them.  
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The second independent variable in the experiment was called “Real-Time Priming,” with two 

levels: “Low Priming” and “High Priming.” The Low Priming level showed the average area 

coverage curve of the low performers group from the previous experiment (Section 3.2) as the 

red reference line, with the final area covered at the end of mission equal to 53.2% (Figure 48a). 

The High Priming level showed the average area coverage curve of the high performers group, 

with the final area covered equal to 76.6% (Figure 48b). This was also a between-subjects 

variable, in that a particular subject only experienced one Real-Time Priming Level, to avoid 

confusion. It was possible for a test subject to perceive that they were doing “better than 

expected” (Figure 48a) or “worse than expected” (Figure 48b) through the performance plot. 

     
     (a)                   (b)   

Figure 48. New performance plot: (a) Low reference line. (b) High reference line. 

In order to provide quantitative predictions of the impact of real-time priming, the Initial EP 

parameter values of the low and high performer groups from the previous experiment were 

compared. When the model was fit to data from the low performer group, the Initial EP 

parameter value was 4.00 cells/second (Section 4.2.1 and Appendix F). In contrast, when the 

model was fit to data from the high performer group, the Initial EP parameter value was 6.25 

cells/second, a 56% increase. Thus, for the purposes of making quantitative predictions, it was 

assumed that High Real-Time Priming would cause a 56% increase from the baseline Initial EP. 

All other parameter values were maintained at the baseline level. The results of these model 

predictions are shown in Table 13.  

Table 13. Model predictions for impact of real-time priming on area coverage performance. 

Real-Time Priming Level % Change in Initial EP Area Coverage Performance 

Low Priming 0% 62.7% 

High Priming +56% 67.5% 
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These predictions were based on the assumption that High Real-Time Priming would change the 

system performance expectations by the desired amount, which would cause operators in the 

High Real-Time Priming group to have a larger Perceived Performance Gap (PPG). It was also 

assumed that Low Real-Time Priming would not substantially change performance expectations 

as compared to the average operator. Based on these predictions, the following results were 

expected: 

 Hypothesis 4: High real-time priming of operator expectations of performance is 

expected to result in an 8% increase in system performance by the end of the mission as 

compared to the low real-time priming condition. 

5.2.3 Time to Perceive Present Performance 

A third parameter investigated was the Time to Perceive Present Performance (TPPP). TPPP is 

an assumption about how long it takes the operator to detect changes in the area coverage rate. 

Given that the testbed now provided a plot showing real-time updates of area coverage 

performance throughout the mission, TPPP could potentially be increased by delaying the 

reporting of performance in the plot, as shown in Figure 49. While there was no way for the 

experimental testbed to gather precise data on human visual perception of information, operator 

actions and system performance could be measured to evaluate the impact of this system design 

change. 

 

Figure 49. Performance plot showing time delay of performance feedback. 

The impact of time lags on the manual teleoperation of robots has been studied extensively 

(Chen, Haas, & Barnes, 2007; Ricard, 1994; Sheridan, 1993; Thompson, Ottensmeyer, & 

Sheridan, 1999; Wickens & Hollands, 2000), but information time delays are less frequently 
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studied in human supervisory control because the operator does not have direct control over the 

vehicle and thus there is no delay in the control loop that can lead to instability (Sheridan, 1992). 

Walker et al. (2012) investigated the impact of latencies and predictive displays on supervisory 

control of a swarm of robots, where all information, including the locations of the robots, was 

delayed. Southern (2010) examined the impact of communication delays among a human 

supervised multi-UV system on performance, based on the testbed described in this thesis. 

However, the experiment described here attempted to evaluate the impact of an information 

reporting time delay of system performance on human decision-making, while there were no 

communications delays among the team of UVs. 

Thus, the third independent variable was called “Information Time Delay,” with two levels: “No 

Delay” and “With Delay.” For the No Delay level, the performance plot was just as shown in 

Figure 48b, where the area coverage performance blue line was updated immediately. For the 

With Delay level, a 120-second information reporting delay was implemented, as shown in 

Figure 49, with the blue line filled in after a 120-second delay. A 120-second delay was chosen 

because the model sensitivity analysis in Section 4.3.1 showed that ±10% changes (±30 seconds) 

in TPPP did not have a strong enough impact on system performance. Thus, the delay was raised 

to 120-seconds and pilot testing confirmed that operators noticed the information reporting 

delay. It should be noted that this was a within-subjects factor, in that each test subject 

experienced both levels of Information Time Delay. 

In order to provide quantitative predictions of the impact of the information time delay, TPPP 

values for operators in each Information Time Delay group had to be estimated. The TPPP 

parameter value was set to 10 seconds for the No Delay group, assuming that there was still an 

inherent perception delay due to operator attention allocation inefficiencies (Cummings & 

Mitchell, 2008). TPPP was set to 130 for the With Delay group, adding in the 120-second delay. 

All other parameter values were maintained at the baseline level. The results of these model 

predictions are shown in Table 14. 

Table 14. Model predictions for impact of information time delay on area coverage performance. 

Information Time Delay Level TPPP parameter value Area Coverage Performance 

No Delay 10 66.1% 

With Delay 130 63.1% 
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These predictions were based on the assumption that a time lag in the performance plot would in 

fact delay the perception of performance of each operator. Once again, while there was no way 

for the experimental testbed to measure the actual time delay in operator perception of changes 

in system performance, operator actions and system performance could be measured to evaluate 

the impact of this system design change. It should be noted that the predicted difference in 

system performance was small (5%) and thus it was likely that the experimental data would not 

have statistically significant differences. However, based on these predictions, the following 

results were expected: 

 Hypothesis 5: the addition of an information reporting time delay to the performance plot 

is expected to result in a 5% decrease in system performance by the end of the mission. 

5.3 Test Subjects 

To test these hypotheses, 48 test subjects were recruited from undergraduate students, graduate 

students, and researchers at the Massachusetts Institute of Technology (MIT). As the concept of 

multiple UV supervisory control through a decentralized network is a futuristic concept, without 

current subject matter experts, it was determined that a general user base would provide a 

sufficient sample of potential future UV system operators. 

The 48 test subjects consisted of 35 men and 13 women. The age range of test subjects was 18-

32 years with an average age of 23.08 and a standard deviation of 3.84. Only 5 test subjects had 

served or were currently serving in the military, but a previous experiment using the OPS-

USERS testbed showed that there was no difference in performance or workload between test 

subjects based on military experience (Cummings, Clare, et al., 2010). Each participant filled out 

a demographic survey prior to the experiment that included age, gender, occupation, military 

experience, average hours of television viewing, video gaming experience, and perception of 

UAVs. Additionally, all test subjects filled out a 52-question Metacognitive Awareness 

Inventory (MAI) prior to conducting the experiment. Metacognitive awareness “refers to the 

ability to reflect upon, understand, and control one’s learning” (Schraw & Dennison, 1994, p. 

460) which is relevant to expectation setting and adjustment. The consent forms and 

demographic surveys filled out by test subjects can be found in Appendices L and M. Descriptive 

statistics of the results of these demographic surveys can be found in Appendix N. 
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5.4 Apparatus 

The human subject experiment was conducted using two Dell 17” flat panel monitors operated at 

1280 x 1024 pixels and a 32-bit color resolution. The primary monitor displayed the testbed and 

the secondary monitor showed a legend of the symbols used in the system (Appendix O). The 

workstation was a Dell Dimension DM051 with an Intel Pentium D 2.80 GHz processor and a 

NVIDIA GeForce 7300 LE graphics card. System audio was provided using standard 

headphones that were worn by each participant during the experiment. All data regarding the test 

subjects’ interactions with the system for controlling the simulated UVs was recorded 

automatically by the system. 

5.5 Experimental Design 

Three scenarios were designed for this experiment: a practice scenario and two test scenarios. 

Each scenario involved controlling four simulated UVs (one of which was weaponized) in a 

mission to conduct surveillance of an area in order to search for targets, track these targets, and 

destroy any hostile targets found (when instructed). The area contained both water and land 

environments and targets could be either tanks on the ground or boats in the water. The vehicles 

automatically returned to the base when necessary to refuel and were equipped with sensors 

(either radar or cameras) which would notify the operator when a target was detected so that the 

operator could view sensor information in order to designate the target and give it a priority 

level. Perfect sensor operation was assumed, in that there were no false detections or missed 

target detections.  

Each scenario had 10 targets that were initially hidden to the operator. These targets always had 

a positive velocity and moved on pre-planned paths throughout the environment (unknown to the 

operator), at roughly 5% of the cruise velocity of the WUAV. Each scenario had three friendly 

targets, three hostile targets, and four unknown targets. The operator received intelligence 

information on the unknown targets through the chat window, revealing that two of the targets 

were friendly and two were hostile. Upon receiving this intelligence, the operator could re-

designate the targets. The operator would also be asked by the “Command Center” through the 

chat window to create search tasks in specified quadrants at various times throughout the 

mission. Finally, new Rules of Engagement (ROEs) were presented to the operator through the 



  159 

 

chat window every 5 minutes during the 20 minute mission. The ROEs instructed operators on 

aspects of the mission that were most important at the time in order to guide their high level 

decision making. The ROEs also specified when hostile target destruction was permitted. The 

ROEs are listed in Appendix P. The scenarios were all different, but of comparable difficulty, so 

that operators would not learn the locations of targets between missions. 

5.5.1 Independent Variables 

The experimental design was a 3x2x2 repeated measures design with three independent 

variables: 1) the A Priori Priming level based on a passage that was read by operators 

immediately following training, 2) the Real-time Priming level of the reference area coverage 

curve shown in the performance plot, and 3) the Information Time Delay of feedback on actual 

area coverage performance through the plot. As described above, the A Priori Priming variable 

had three levels: Positive Priming, Negative Priming, and a No Priming control condition. The 

Real-Time Priming variable had two levels: Low Priming and High Priming. Finally, the 

Information Time Delay variable had two levels: No Delay and With Delay. Information Time 

Delay was a within-subjects factor, as each subject experienced both a No Delay and With Delay 

mission. These missions were presented in a randomized and counterbalanced order to avoid 

learning effects. 

5.5.2 Dependent Variables 

The dependent variables for the experiment were mission performance, primary workload, 

secondary workload, Situation Awareness (SA), and subjective ratings, taken both during the 

missions and post-mission. Overall mission performance was measured by taking the following 

five metrics: percentage of area coverage, percentage of targets found, percentage of time that 

targets were tracked, number of correct hostile targets destroyed, and number of mistaken targets 

destroyed. The primary workload measure was a utilization metric calculating the ratio of the 

total operator “busy time” to the total mission time. For utilization, operators were considered 

“busy” when performing one or more of the following tasks: creating search tasks, replanning, 

identifying and designating targets, approving weapons launches, interacting via the chat box, 

and answering a survey question. All interface interactions were via a mouse with the exception 

of the chat messages, which required keyboard input. 
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An alternative method for assessing workload was measuring the spare mental capacity of the 

operator through reaction times to a secondary task. Secondary workload was measured via 

reaction times to text message information queries, as well as reaction times when instructed to 

create search tasks via the chat tool. Such embedded secondary tools have been previously 

shown to be effective indicators of workload (Cummings & Guerlain, 2004).  

SA was measured through the accuracy percentage of responses to periodic chat box messages 

querying the participant about aspects of the mission. Additionally, four of the targets were 

originally designated as unknown. Chat messages provided intelligence information to the 

operator about whether these targets were actually hostile or friendly (based on their location on 

the map). It was up to the operator to re-designate these targets based on this information. 

Therefore, a second measure of SA was the ratio of correct re-designations of unknown targets to 

the number of unknown targets found. 

Throughout the mission, a pop-up survey window (Figure 50) appeared in the lower left corner 

of the Map Display to ask the operator to provide three ratings. Operators read the following 

during their training session about the survey window: 

Every 2 minutes throughout all of your missions, this window will appear in the bottom left 

corner of the Map Display.  It asks you to rate three questions: 

 Rate how well you think the system is performing right at this moment (1=Extremely Poor, 

4=OK, 7=Extremely Well) 

 Rate how well you expect the system to be performing at this moment (1=Extremely Poor, 

4=OK, 7=Extremely Well) 

 Rate your trust in the Automated Scheduler that you work with in the SCT (1=No Trust, 

4=Neutral, 7=Absolute Trust) 

 

 

Figure 50. Pop-up survey window. 
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This survey was used to gather near real-time data on the operator’s perception of performance, 

expectations of how well the system should be performing, and trust in the AS. All three of these 

variables were essential to the CHAS model and collecting this data enabled the evaluation of 

model assumptions. A fourth metric, the Perceived Performance Gap (PPG) was calculated by 

taking the percent difference between the expectation and performance rating during data 

analysis. A Likert rating scale of 1-7 (low to high) was used simply because that is the scale that 

is used in an empirically validated and commonly used trust in automation questionnaire (Jian, 

Bisantz, & Drury, 2000). These questions were asked every 2 minutes, starting at 60 seconds into 

the mission. The goal was to sample the operator’s perceptions, expectations, and trust level as 

frequently as possible without distracting the operator from his or her primary tasks. Based on 

the fact that operators typically replan (use the AS to generate a new schedule) 1-2 times per 

minute, it was decided that prompting the user every minute would be too frequent and 

distracting. Instead, a questioning interval of 2 minutes was adopted. Pilot tests verified that this 

frequency of sampling captures the dynamics of perceptions, expectations, and trust without 

being too intrusive. Online probes to gather subjective ratings are commonly used in experiments 

such as these to measure workload and SA (Endsley, Sollenberger, & Stein, 2000), and they have 

been proposed as a method to measure trust (Miller & Perkins, 2010). 

A survey was provided at the end of each mission asking the participant for a subjective rating of 

their confidence, workload, and satisfaction with the plans generated by the AS on a Likert scale 

from 1-5 (low to high). At the end of the entire experiment, test subjects filled out a 12-question 

survey which is commonly used to measure trust in automation and has been empirically 

validated (Jian, et al., 2000). All of these subjective ratings are crucial, both for providing an 

additional measure of workload and for evaluating whether the independent variables influenced 

the operator’s confidence and trust in the collaborative decision-making process, factors which 

have been shown to influence system performance (Parasuraman & Riley, 1997). 

5.6 Procedure 

In order to familiarize each subject with the interface, a self-paced, slide-based tutorial was 

provided (Appendix Q). Subjects then conducted a fifteen-minute practice session during which 

the experimenter walked the subject through all the necessary functions to use the interface. Each 
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subject was given the opportunity to ask the experimenter questions regarding the interface and 

mission during the tutorial and practice session. Each subject also had to pass a proficiency test, 

which was a 5-question slide-based test (Appendix R). If the subjects did not pass the proficiency 

test, they were given time to review the tutorial, after which they could take a second, different 

proficiency test. All subjects passed on the first test. 

The actual experiment for each subject consisted of two twenty-minute sessions, one for each of 

the two Information Time Delay levels. The order of the Information Time Delay levels 

presented to the subject was counterbalanced and randomized to prevent learning effects. During 

testing, the subject was not able to ask the experimenter questions about the interface and 

mission. All data and operator actions were recorded by the interface and Camtasia
©

 was used to 

record the operator’s actions on the screen. Finally, a survey was administered at the end of each 

mission to obtain the participant’s subjective evaluation of their workload, confidence, and trust, 

along with general comments on using the system (Appendix S). Subjects were paid $10/hour for 

the experiment and a performance bonus of a $100 gift card was given to the individual who 

obtained the highest mission performance metrics (to encourage maximum effort). 

5.7 Results 

This section discusses the results of the experiment and compares them to the hypotheses 

described in Section 5.2. The section begins with an analysis of the value that human operators 

were adding to system performance as compared to the automation-generated performance. 

Then, performance, workload, SA, and subjective response results are compared across the three 

independent variables. Demographic predictors of performance are discussed and qualitative 

survey comments are presented to provide insight on operator strategy and trust. A more detailed 

analysis of the impact of gaming frequency on the reaction to the independent variables and 

system performance is presented. Finally, some of the assumptions in the CHAS model which 

were previously untested were evaluated using data gathered for the first time in this experiment. 

5.7.1 Human Value Added 

A histogram of the area coverage performance by the end of the mission of all 48 subjects is 

shown in Figure 51. Also shown in the diagram is a red line indicating the area coverage 
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performance of the “obedient human” mission, which was described in Section 3.4.2. The 

percent area covered in the obedient human mission was 56.2%, while the average human 

operator in this experiment achieved area coverage of 63.0%, a 12% increase in performance due 

to human value added. Eighty of the 96 missions (83%) had improved performance as compared 

to the obedient human mission. The top performer in the experiment achieved area coverage of 

85.0%, a 51% increase in performance over the obedient human condition.  

 
Figure 51. Test subject area coverage performance compared to “obedient human” mission (red line). 

This aligns with previous results using this testbed and adds additional support to the assumption 

that the human operator can add value over the automation generated performance. It should also 

be noted that 16 of the missions (17%) had lower area coverage performance than the obedient 

human mission, and thus modeling the potential for negative human value added is also an 

important facet of the CHAS model. 

5.7.2 Impact of Independent Variables 

A statistical analysis of all dependent variables was conducted and details, including descriptive 

statistics of all measures and testing for order effects, are provided in Appendix T. The following 

sections discuss the results for each independent variable. 
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5.7.2.1 A Priori Priming 

Beginning with the A Priori Priming independent variable, results showed that test subjects who 

experienced the Positive Priming level had higher ratings of trust in the AS following their 

training mission, prior to the actual experimental missions. Pairwise Mann-Whitney comparisons 

showed that the Positive Priming group had 13.8% higher trust ratings compared to the No 

Priming control group (Z = -2.570, p = 0.010) and 20.7% higher trust ratings compared to the 

Negative Priming group (Z = -3.186, p = 0.002). There were no significant differences in pre-

experiment trust ratings between the Negative Priming group and the No Priming control group 

(Z = -0.807, p = 0.420). Similar results were found for the average real-time rating of trust during 

the missions, where the Positive Priming group had 14.9% higher trust ratings compared to the 

No Priming control group (Z = -2.614, p = 0.009) and 24.2% higher trust ratings compared to the 

Negative Priming group (Z = -3.741, p < 0.001). Again, there were no significant differences in 

average real-time trust ratings between the Negative Priming group and the No Priming control 

group (Z = -1.036, p = 0.300). These results are shown in Figure 52. 

     
   (a)             (b) 

Figure 52. Trust ratings comparison: (a) Pre-experiment ratings. (b) Average real-time ratings during the 

mission. Standard Error bars are shown. 

It appears that positive a priori priming had the desired effect of raising initial trust in the 

automation. This higher trust level among the positive priming group was maintained on average 

throughout the experiment, although trust during the mission was lower than pre-experiment 

trust, as shown in Figure 52b. It should be noted that the impact of negative priming was not 

strong enough to significantly lower self-reported trust as compared to the control group. This 
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may be due to the particular method of priming that was used in this experiment, such as the 

quotes that were chosen (Appendix K). It could also show that operators were willing to raise 

their trust level in automation based on information about how it has worked in the past, but 

lowering their trust level requires actually working with the automation in person. 

Overall, these results show that priming can be effective at influencing initial trust level, 

especially when the priming is meant to raise trust. Interestingly, after the end of the experiment, 

there were no significant differences in trust across the three A Priori Priming groups according 

to a Kruskal-Wallis omnibus test of the 12-question post-experiment trust survey data (χ
2
(2, 

N=48) = 1.986, p = 0.371). Thus, this data also provides evidence that operators adjust their trust 

level over time as they work with the AS and thus the effects of priming are not enduring. This 

aligns with previous empirical evidence demonstrating that trust has inertia (Lee & Moray, 1994; 

Lewandowsky, et al., 2000; Parasuraman, 1993), where the effect of perceived automation 

performance on trust is not instantaneous, but trust does change steadily over time. 

In terms of system performance, the only significant difference among the three A Priori Priming 

groups was in terms of target destruction mistakes. These mistakes could take two forms: a) 

destroying a target against the ROEs or b) incorrectly destroying a friendly target. There were 14 

missions with a mistaken target destruction and 11 of these missions were conducted by 

operators who experienced Negative A Priori Priming (Figure 53). This difference was 

statistically significant according to a Kruskal-Wallis omnibus test, χ
2
 (2, N=14) = 13.0, p=0.002.  

 
Figure 53. Number of missions with mistaken target destruction across A Priori Priming levels. 
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Notably, there were no other significant differences in the system performance metrics, including 

the primary metric of area coverage, across the A Priori Priming groups. However, real-time 

ratings indicated that operators in the Negative Priming group recognized their mistakes. For the 

average real-time rating of how well operators thought the system was performing, pairwise 

Mann-Whitney comparisons showed the Negative Priming group had 7.0% lower self-

performance ratings compared to the No Priming control group (Z = -1.832, p = 0.067) and 9.9% 

lower performance ratings compared to the Positive Priming group (Z = -2.160, p = 0.031). 

There were no significant differences in performance ratings between the Positive Priming group 

and the No Priming control group (Z = -0.833, p = 0.405). Similar results were found for the 

average real-time rating of how well operators expected the system to perform, where the 

Positive Priming group had 10.4% higher expectations ratings compared to the No Priming 

control group (Z = -2.674, p = 0.007) and 13.1% higher expectations ratings compared to the 

Negative Priming group (Z = -3.189, p = 0.001). There were no significant differences in average 

real-time expectations ratings between the Negative Priming group and the No Priming control 

group (Z = -0.395, p = 0.693). 

In terms of reaction times to accomplish embedded secondary tasks used to measure spare 

mental capacity, the results showed that at two points during the mission, operators in the 

Negative A Priori Priming group had significantly slower reaction times to a secondary task than 

operators in the Positive A Priori Priming group, as shown in Figure 54. Mann-Whitney 

comparisons showed that the Negative Priming group had 61% slower reaction times to a chat 

question in fifth minute compared to the Positive Priming control group (Z = -3.115, p = 0.002). 

Similarly, the Negative Priming group had 46% slower reaction times to a chat question in 

eleventh minute compared to the Positive Priming control group (Z = -3.115, p = 0.002). There 

were no significant differences in the other three secondary task measures among the A Priori 

Priming groups. 

As shown in previous research (Cummings & Guerlain, 2004), an embedded secondary tool can 

provide an effective indicator of workload by measuring the spare mental capacity of the 

operator. These results could indicate that at certain points during the mission, operators in the 

Positive A Priori Priming group had more spare mental capacity than the Negative A Priori 
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Priming group. This higher level of spare mental capacity could potentially indicate that positive 

priming and higher trust in the AS caused operators to have lower workload. 

    
   (a)             (b) 

Figure 54. Reaction times to embedded secondary tasks comparison: (a) Chat question in fifth minute. 

(b) Chat question in eleventh minute. Standard Error bars are shown. 

These results provide a few potential explanations for the mistakes in target destruction by the 

Negative A Priori Priming group. First, operators in the Negative A Priori Priming group had 

lower reported trust in the AS, which may have reflected their frustration with the system, 

leading to violation of the ROEs. A second possible explanation revolves around the fact that the 

Negative A Priori Priming group had lower reported expectations of system performance. These 

lower expectations could form a self-fulfilling prophesy, where operators expect to perform 

poorly and thus sabotage their own performance. However, all test subjects were instructed that 

following the ROEs was part of how they would be judged for the reward at the end of the 

experiment. 

The third, more likely explanation is that if the Negative A Priori Priming group had less spare 

mental capacity, they may have misunderstood or missed the ROE instructing them not to 

destroy hostile targets until later in the mission. Similarly, they could have mistakenly designated 

an unknown target as hostile, leading to an erroneous hostile destruction. Many previous studies 

have demonstrated the negative impact of high cognitive workload on operator performance in 

human supervisory control of multiple UVs (Clare & Cummings, 2011; Cummings, Clare, et al., 

2010; Cummings & Nehme, 2010; Dixon & Wickens, 2003; Ruff, et al., 2002) and this result 

could indicate that a similar situation was caused by negative priming.  
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5.7.2.2 Real-Time Priming 

The goal of adjusting the Real-Time Priming level was to set operators’ expectations of how well 

the system should perform. The intention was to induce the High Priming group into having 

higher expectations of performance as compared to their perception of how well the system was 

performing. According to the CHAS model, this higher Perceived Performance Gap (PPG) 

would lead to lower trust, a higher rate of intervention, and improved system performance. 

Results showed that test subjects who experienced the Low Priming level had higher average 

perceptions of how well the system was performing. A Mann-Whitney comparison showed that 

the Low Priming group had 8.8% higher average real-time performance ratings compared to the 

High Priming group (Z = -2.122, p = 0.034), as shown in Figure 55a. This result was somewhat 

expected, as operators viewing the performance plot would likely think that the system was 

performing better when the reference line was lower. Surprisingly, the Low Priming group also 

had higher average real-time ratings of expected system performance. A Mann-Whitney 

comparison showed that the Low Priming group had 6.9% higher average expectations ratings 

compared to the High Priming group (Z = -2.145, p = 0.032), as shown in Figure 55b. There 

were no significant differences in trust ratings or calculated PPG between the Real-Time Priming 

groups. 

    
   (a)             (b) 

Figure 55. Average real-time ratings comparison: (a) Perceived system performance. (b) Expectations of 

system performance. Standard Error bars are shown. 
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In addition to comparing average ratings for the entire mission, changes in expectation and 

performance ratings over time were analyzed. A repeated measures ANOVA was utilized for this 

analysis, with a between-subjects factor of Real-Time Priming Level and a repeated measures 

factor of time, as shown in Figure 56. This ANOVA indicated a significant effect for Real-Time 

Priming Level, F(1,82) = 4.590, p = 0.035. There was also a significant effect for time (F(8,656) 

= 3.386, p < 0.001) and a significant interaction effect between time and Real-Time Priming 

Level (F(8,656) = 2.118, p = 0.001). It appears that both groups had similar perceptions of the 

performance of the system for the first half of the mission, but in the second half of the mission, 

the Low Priming group had significantly higher ratings of system performance than the High 

Priming group (Figure 56a). For ratings of expectations, the repeated measures ANOVA 

indicated a significant effect for Real-Time Priming Level, F(1,82) = 4.140, p = 0.045. This 

difference in expectations was consistent over time, with the Low Priming group reporting 

higher expectations of performance (Figure 56b). 

  
   (a)             (b) 

Figure 56. Real-time ratings comparison over time: (a) Perceived system performance. (b) Expectations of 

system performance. Standard Error bars are shown. 

These results suggest that real-time priming had some of the desired effects on operator 

expectations and perceptions, but also led to unintended consequences. High Real-Time Priming 

did in fact lower operator perceptions of how well the system was performing. However, instead 

of raising operator expectations, higher real-time priming actually led to lower expectations of 

how well the system would perform throughout the rest of the mission. This likely reflects 
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operator frustration due to their perception of system performance compared to the reference line 

presented on the performance plot.  

As will be discussed further in Section 5.7.4, operators in the High Priming level expressed 

frustration that they were struggling to keep up with the high reference area coverage curve 

shown on the plot. While there were no significant differences in total mouse clicks or other 

measures of operator interventions between the Real-Time Priming groups, some operators 

reported that they tried to intervene more frequently to improve system performance. However, 

others expressed that things seemed “out of their control,” which may be reflected in the 

declining performance ratings towards the end of the mission (Figure 56a). Additional evidence 

of this frustration is that following each mission, the High Priming group had lower subjective 

ratings in response to the question, “How confident were you about your performance?” A Mann 

Whitney comparison showed that the High Priming group had 30% lower confidence ratings 

compared to the Low Priming group (Z = -4.462, p < 0.001). Operators likely lost confidence 

because they were unable to guide the suboptimal automated scheduling algorithm to achieve the 

high performance shown on the reference line in the performance plot. 

While the original intention of higher real-time priming was to induce a higher Perceived 

Performance Gap (PPG) and lower trust in the AS, results showed that there were no significant 

differences in PPG or in trust ratings between the Real-Time Priming groups. This is likely due 

to the frustration and lack of confidence expressed by operators in the High Priming group. It is 

also possible that the real-time survey used to gather this subjective rating data was not sensitive 

enough to measure the differences in PPG or trust due to real-time priming. 

In terms of system performance, there were no significant differences among the system 

performance metrics, including the primary metric of area coverage, across the Real-Time 

Priming groups. Operators in the High Real-Time Priming group were unable to do any better 

than their counterparts in the Low Real-Time Priming group, while being shown that their 

performance was below the reference line of how well previous operators had performed, driving 

frustration higher and confidence lower. 

The only other significant difference among the dependent variables for the Real-Time Priming 

groups was in terms of reaction times to accomplish embedded secondary tasks. Of the five 
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embedded secondary tasks, the results showed that operators in the High Priming group had 

significantly faster reaction times to two secondary tasks as compared to operators in the Low 

Priming group. Mann-Whitney comparisons showed the that operators in the High Priming 

group answered a chat question in the seventeenth minute of the 20 minute mission significantly 

faster than operators in the Low Priming group (Z = -3.019, p = 0.003), as shown in Figure 57a. 

Also, following a chat message prompt to create a search task in a specific quadrant of the map 

during the sixteenth minute of the mission, the High Priming group created the search task 

significantly faster than the Low Priming group (Z = -2.735, p = 0.006), as shown in Figure 57b. 

There were no significant differences in the other three embedded secondary task reaction times, 

which occurred earlier in the mission. While these differences in reaction time only occurred 

during only two of the five embedded secondary tasks, it is still worth investigating why 

operators in the High Priming group had significantly faster reaction times. 

    

   (a)             (b) 

Figure 57. Reaction times to embedded secondary tasks comparison: (a) Chat question in seventeenth minute. 

(b) Prompted search task in sixteenth minute. Standard Error bars are shown. 

There are three potential explanations for the faster reaction times of the High Priming group. 

First, it is possible, but unlikely that operators in the High Priming group had more spare mental 

capacity as compared to the Low Priming group. Both of these embedded secondary tasks 

occurred towards the end of the mission and frustration with their inability to keep up with the 

reference area coverage curve may have caused operators in the High Priming group to mentally 

“check out” from the experiment. However, this likely would not lead to faster reaction times to 

a chat message in the experiment. A second possibility is that in their attempts to improve system 



172 

 

performance, the High Priming group may have been more focused than operators in the Low 

Priming group, thus responding faster to chat message questions and prompts. 

A third possible explanation is that the High Priming group may have chosen to focus their 

attention on the embedded chat tool due to their frustration with how the system was performing. 

The chat tool was visible from both the Map Display and the Schedule Comparison Tool (SCT), 

thus operators could continually monitor the chat tool. A previous study has demonstrated that 

operators may choose to fixate on a real-time chat secondary task instead of the primary 

supervisory control task (Cummings, 2004b). If the High Priming group was fixating on the chat 

tool in this experiment, then it would explain why the group had faster reaction times to chat 

message questions and prompts towards the end of the mission, when their ratings of system 

performance were at their lowest levels. 

5.7.2.3 Information Time Delay 

The goal of adjusting the Information Time Delay level was to evaluate the impact of a delay in 

the reporting of performance feedback on operator perceptions, operator behavior, and system 

performance. Results from the experiment showed that there were only two significant 

differences in the dependent variables between the Information Time Delay levels. 

First, a repeated measures ANOVA showed that there was a significant three-way interaction 

effect for percentage of time that targets were tracked among all three independent variables (A 

Priori Priming Level, Real-time Priming Level, and Information Time Delay), F(2,41) = 3.992, p 

= 0.026. It should be noted that there were no factor level or two-way interaction effects. This 

three-way interaction effect can be seen in Figure 58. Post-hoc Mann-Whitney dependent 

comparisons revealed two interesting results. The eight operators who had no A Priori Priming 

and the low reference line on the performance plot (Low Real-Time Priming) performed 

significantly worse in terms of percentage of time targets were tracked under the With Delay 

condition as compared to the No Delay condition (Z = -2.521, p = 0.012). In addition, the eight 

operators who had Positive A Priori Priming and the high reference line on the performance plot 

(High Real-Time Priming) also performed significantly worse in terms of percentage of time 

targets were tracked under the With Delay condition as compared to the No Delay condition (Z = 

-2.380, p = 0.017). A major caveat with these results is the small sample size, only 8 test subjects 
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in each of these specific conditions, conducting two missions each. However, it appears that 

adding a time delay to the performance plot negatively impacted system performance, but only 

under certain combinations of a priori and real-time priming. Notably, operators who 

experienced negative a priori priming had generally robust performance in terms of the 

percentage of time targets were tracked regardless of the information delay. 

  
       (a) Low Real-Time Priming     (b) High Real-Time Priming 

Figure 58. Three-way interaction effect for percentage of time that targets were tracked. (a) Low Real-Time 

Priming condition. (b) High Real-Time Priming condition. Standard Error bars shown. 

The only other significant difference among the dependent variables between the Information 

Time Delay levels was in terms of Situation Awareness (SA). Chat messages provided 

intelligence information to the operator about whether “unknown” targets were actually hostile 

or friendly (based on their location on the map). It was up to the operator to re-designate these 

targets based on this information. Therefore, a second measure of SA was the ratio of correct re-

designations of unknown targets to the number of unknown targets found. A Mann Whitney 

comparison showed that the No Delay missions had a higher average target re-designation 

accuracy (71.4%), while the With Delay missions had only 52.6% accuracy (Z = -3.130, p = 

0.002).  

Taken together, both results show that under the With Delay condition, operators did not perform 

as well in terms of tracking already found targets and re-designating unknown targets based on 

intelligence information, as compared to the No Delay condition. While adding an information 
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time delay did not lead to a statistically significant difference in the primary system performance 

metric of area coverage, results show that operators had lower system performance in terms of 

another measure and lower SA when there was an information time delay on the performance 

plot.  

It is not immediately clear why the With Delay missions had lower system performance and 

lower SA than the No Delay missions. An analysis of the actions of operators (replan rate, search 

task rate, length of time spent replanning, utilization, etc.) in each Information Time Delay level 

did not reveal any statistically significant differences in operator behavior. There were also no 

statistically significant differences in the subjective ratings provided by operators. One of the 

limitations of this independent variable was that there was no way for the experimental testbed to 

gather precise data on human visual perception of information in order to measure the time delay 

in the perception of changes in system performance. 

Finally, it should be noted that there were other ways for the operator to perceive area coverage 

performance beyond the performance plot. By default, operators had a “Fog of War” overlay on 

the Map View to indicate where they had recently searched (Section 3.2). Only 11 of the 48 test 

subjects ever turned the overlay off and in all cases it was turned back on and left on to the 

completion of the mission. Thus, the addition of an information time delay to the performance 

plot was not a pure information time delay; operators had alternative, albeit less accurate 

methods to estimate how well they were doing. 

5.7.3 Demographic Predictors 

A set of linear regression analyses was performed to see if there were any significant 

demographic predictor variables for high (or low) system performance, operator workload, and 

average trust. Details of the linear regression analysis can be found in Appendix T. There were 

four metrics with significant demographic predictor variables. In each case, there was only one 

significant predictor variable, which is equivalent to finding a significant linear correlation, and 

thus the results will be reported in this manner. It should be noted that there were no moderate to 

strong correlations among these four dependent variables, enabling separate analysis of each 

dependent variable. 
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For area coverage performance, the significant predictor variable was a metacognitive awareness 

score,  = -0.285, p = 0.005. A relatively weak negative relationship was found, indicating that 

operators with higher metacognitive awareness performed slightly worse in terms of the primary 

performance metric, area coverage. Metacognitive awareness was measured by test subjects’ 

responses to a 52-question Metacognitive Awareness Inventory (MAI). Higher metacognitive 

awareness is typically associated with positive qualities, such as strategic planning for complex 

problem solving (Schraw & Dennison, 1994). However, it is possible that the rapid decision-

making under uncertainty required for real-time human-automation collaborative scheduling 

relies more on developing heuristics through feedback on small adjustments rather than strategic 

and methodically-planned problem solving. Thus, it is debatable how useful MAI scores are for 

the type of decision-making necessary for this type of system.  

For targets found, the significant predictor variable was self-rated frequency of watching 

television,  = -0.298, p = 0.003. Operators who reported that they watched more hours of 

television per day had lower system performance in terms of the number of targets found by the 

end of the mission. The literature is divided between whether television-viewing enhances 

creativity (Kant, 2012; Schmidt & Vandewater, 2008) or decreases cognitive development 

(Shejwal & Purayidathil, 2006). It is likely, however, that a passive activity such as watching 

television does not exercise the decision-making and attention allocation skills required to 

manage a team of UVs in a complex and dynamic environment, in contrast to video gaming, a 

more active form of recreation, which is discussed below. 

For utilization, the significant predictor variable was self-rated frequency of playing computer 

and video games,  = -0.450, p < 0.001. This indicates a relatively strong relationship by human 

factors standards. As utilization measures the percent “busy” time of operators during the 

mission, this result shows that gamers were able to accomplish the mission with less “busy” time 

and thus more spare time for monitoring the system. It is likely that gamers in this experiment 

were able to click around the interface faster, accomplishing the same tasks in less time, which is 

reflected in the lower utilization level. In contrast to the previous finding on TV watching, video 

games are an active form of entertainment, and studies have shown that video game play 

improves visual attentional processing in divided attention, multi-tasking scenarios (Green & 

Bavelier, 2003). Another study showed that playing action video games improved encoding 
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speeds of visual information into visual short-term memory (Wilms, Petersen, & Vangkilde, 

2013). Faster visual processing and encoding could lead to a decrease in utilization, as operators 

could comprehend the information presented to them faster in order to make quicker decisions. 

The impact of gaming frequency on operator trust and performance is explored further in Section 

5.7.5. 

Finally, for the 12-Question trust survey filled out at the end of the experiment, the significant 

predictor variable was whether or not the operator had ever or was currently serving in the 

military,  = -0.308, p = 0.002. The survey (Jian, et al., 2000) asked questions that measured 

both trust and distrust in the AS, with a total trust score ranging from -28 to 44. The 5 operators 

who had military experience had an average post-experiment trust score of 0.8, while the other 

43 operators had an average trust score of 14.3. A Mann Whitney comparison showed that this 

difference was marginally significant (Z = -1.723, p = 0.085), and the trust ratings for both 

civilians and military test subjects are shown in Figure 59. It should be noted that of the 5 

military test subjects, three experienced positive a priori priming and two experienced negative a 

priori priming. 

 

Figure 59. Post-experiment trust rating comparison by military experience. Standard Error bars shown. 

While the sample size of military personnel is small, these results suggest that operators in the 

military may lose trust in automation faster than civilian operators when they perceive 

automation faults or poor automation recommendations. Previous studies have been inconclusive 
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on differences in military and civilian trust in automation. For example, in one study on maritime 

collision avoidance tools, preliminary interviews suggested that civilians were more receptive to 

proposed automated planning tools as compared to military personnel, but following testing of a 

prototype automation recommendation system, there were no statistically significant differences 

in trust ratings between the civilians and military personnel (Cummings et al., 2010). As Adams 

et. al (2003) discussed, both risk tolerance and organizational factors can influence trust. Military 

personnel understand that the decisions they are making could potentially impact the safety of 

their own team, jeopardize a critical mission objective, or waste valuable resources and 

expensive equipment. Under these circumstances, skepticism of an automated system is simply a 

method to mitigate risk. Adams et. al (2003, p. 67) further stated that “operators may be less 

likely to trust automation, a priori, if there is a prior track record of problematic automation 

being brought into [military] service.” Historical military incidents involving automation, such as 

the Patriot missile system accidents (Cummings, Bruni, et al., 2010), can lower an operator’s 

trust “inertia,” leading to steep drops in trust following automation errors or poor automation 

performance. 

Although significant correlations were found for these four demographic variables, causality is 

still unclear, and it will require further research to establish whether these demographic factors 

should influence training and selection processes for operators in real-time human-automation 

collaborative scheduling systems. 

5.7.4 Qualitative Comments 

Beyond quantitative subjective data, qualitative evaluations of the system and experiment were 

also obtained from all test subjects. While inferring operator perceptions and decision-making 

strategy from measureable actions during the missions and survey ratings is useful, valuable 

insights can also be gained from comments written by test subjects following the experiment. 

Sixty-five percent of test subjects reported that the AS was fast enough for this dynamic, time-

pressured mission. However, as in previous experiments (Clare, Cummings, How, et al., 2012; 

Clare, Hart, & Cummings, 2010), a common complaint from test subjects was a desire for 

increased vehicle-level control, as opposed to only goal-level control. Thirty-five percent of all 

test subjects wrote about wanting to manually assign vehicles to certain tasks because they 
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disagreed with an assignment made by the AS. For example, one operator wrote, “At times I 

wish I could have specifically assigned a vehicle to a search task directly,” while another wrote, 

“Disliked that I could not assign tasks directly to a UV or force a UV to perform a certain task 

immediately.” These comments could be due to the fact that the AS was taking into account 

variables that the human did not comprehend, such as the refueling needs, speed, or capabilities 

of each UV. Regardless of whether or not the AS was generating good schedules, operators 

perceived poor AS decisions and performance, supporting a key assumption in the CHAS model. 

Another feedback survey question asked operators whether their trust in the AS increased or 

decreased over time. Forty-two percent of operators reported that their trust in the AS decreased 

throughout the mission, while 17% reported an increase in trust over time. The rest reported that 

they either had no change in trust (17%) or had both increases and decreases in trust (21%) 

throughout the mission, while 4% did not respond. There were no differences in these results 

based on the A Priori Priming level or Real-Time Priming level experienced by the operator. 

Examples of written comments include: 

 “My trust in the scheduler increased when it successfully completed all the assigned 

tasks on time, but decreased when it did not.” 

 “[Trust] decreased, as high priority tasks were not always assigned by the automated 

scheduler. At times it favored lower priority tasks.” 

 “[Trust] decreased when it would fail to assign a task.” 

 “[Trust was] always pretty high.” 

 “There were times that my trust decreased because it did not assign the tasks I 

expected.” 

 “At certain points for area coverage it would schedule for a UV to move in directions 

that didn't seem logical. I would prefer it to search the west side if most of it had not 

yet been searched over the east.” 

 “My trust decreased every time I saw a path on the screen that I was not expecting. 

Usually I placed search tasks on the screen to influence the resulting path, but that did 

not always have the desired effect.” 

 “Trust increased with time as I got more comfortable and saw the Automatic 

Scheduler was working well.” 

 “Trust increased when it visibly showed how assignments changed according to plan 

priorities [changing the objective function of the AS].” 

 “If there was a lot happening it was easier to just trust [the AS].” 

 

These comments demonstrate that there was a wide a variety of opinions and perceptions of the 

AS across the test subjects. A number of insights into operator strategy and perceptions can be 
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drawn from these comments. First, the impact of human variability is clearly visible in these 

comments, as some operators gained trust over time while others lost trust, some thought the AS 

performed flawlessly while others could not understand the decisions made by the automation. 

Some operators reported that their trust would fluctuate, both rising and falling, depending on 

their perception of performance. This oscillatory behavior has been observed previously in the 

intervention actions of operators, as described in Section 4.2.1 and 4.2.3. An effective model of 

human-automation collaborative scheduling must have the ability to capture both the varying 

initial conditions of human operators, as well as the different possible ways that they could 

change their trust over time. 

Second, the final comment shown above reflects the fact that under high workload situations, 

operators tend to rely on automation in order to reduce their workload. Whether or not this 

actually indicates an increase in trust is debatable, as it may simply be an increase in reliance due 

to cognitive overload. While the CHAS model captures the direct impact of high workload on the 

value that humans can add to system performance, this interesting interaction between high 

workload and reliance on automation is not currently captured in the model, but will be discussed 

in Chapter 7 under future work. 

Third, these comments provide some interesting insights for the creators of scheduling 

algorithms and the designers of collaborative interfaces. As described in Chapter 1, there are 

often differences between the real world, the automation/engineer’s model, and the human 

operator’s models of the world. Generally, operators have expectations for how the automation 

should perform, for example which tasks should be assigned, what paths the UVs should take, 

and what search pattern should be used. When the automation chooses to do things in a different 

manner, even if this method is better in terms of some metric (distance traveled, priority level of 

tasks performed, fuel usage, etc.), it can confuse operators and decrease trust. Rather than 

training operators to understand the way the automation makes decisions, automation designers 

should develop methods that enable the automation to provide reasons for scheduling decisions, 

while interface designers should find innovate methods to display this information to operators. 

One method of providing insight into automation decision-making is direct-perception 

interaction (Gibson, 1979). As mentioned in one of the comments above, by allowing operators 

to immediately view the impact of changing the objective function of the AS (described further 
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in Section 3.2.1), it increased trust because the operator could infer some of the reasons behind 

the decisions made by the automation. 

Finally, test subjects were asked about the performance plot and how it influenced their 

perceptions and behavior. They were not specifically asked about the time delay. Seventy-five 

percent of operators reported that they looked at the performance plot frequently, while 58% 

reported that they changed their behavior because of what they saw on the plot. There were no 

differences in these results between the Real-Time Priming levels, reinforcing the fact that real-

time priming did not have the intended effect on operators. The intention was for the High 

Priming condition to cause operators to perceive a larger gap in performance and to more 

frequently intervene in the system as compared to operators in the Low Priming group. As 

described in Section 5.7.2.2, there were no significant differences in system performance or in 

any of the operator action measures between the Real-Time Priming groups. 

However, the language used in comments made by operators in the different Real-Time Priming 

groups reveals the frustration created by the High Priming condition. Seventy-nine percent of 

operators in the High Priming group wrote about the pressure that they felt to improve their 

performance or the frustration that they felt over their poor performance in relation to the 

reference line, while only 13% of the operators in the Low Priming group expressed feelings of 

frustration or pressure. Forty-six percent of operators in the Low Priming group expressed that 

the performance plot made them feel good about their performance or that they felt they were 

doing well, while none of the operators in the High Priming group expressed these positive 

feelings. Examples of written comments about the performance plot include: 

 High Real-Time Priming group 

o “It made me feel bad about myself. But more frustrating about it was that for 

the most part, the performance was based on the scheduler and a lot of it was 

out of my control (i.e. search) where I just had to sit and watch.” 

o “It made me feel like I was underperforming by a large margin. I couldn't 

really alter my behavior (the output was different than expected), but the chart 

definitely added to my sense of frustration.” 

o “It made me feel pressure to do better. I generally tried to increase my 

coverage area based on the plot.” 

o “I gave up trying to use [the performance plot] since I was always below [the 

reference line].” 
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o “I was always below [the reference line] so it made me want to constantly 

change my plans until it started increasing.” 

o “It made me realize I must be doing something wrong - which was area 

coverage (I was focusing on targets more).” 

 Low Real-Time Priming group  

o “It made me feel pretty good. Stayed above [reference line] - happy to see 

that!” 

o “Whenever my actual performance was above the [reference line], I felt better 

about myself. When I saw my performance dropping, I tried to cover more 

area.” 

o “It made me feel good, I was ahead. I did not change my behavior, as I was 

always ahead of [the reference line].” 

o “I was usually above average, so I guess I felt good about that.” 

o “I probably slacked off because of it though (as in I was calmer making 

decisions, but maybe could have been more vigilant).” 

o “It made me feel good and in control to see the [performance] line was above 

[the reference line]. Once I saw that I was covering the area more than 

average, I focused more on tracking targets.” 

 

While the High Real-Time Priming condition may have caused operators to feel pressure to 

intervene more frequently in the system, this did not translate into measureable differences in 

operator actions or system performance. Instead, the frustration created by the High Priming 

condition was reflected both in these comments and in the lower ratings of confidence by 

operators in the High Real-Time Priming group (Section 5.7.2.2). It is likely that the reference 

line on the performance plot for the High Real-Time Priming condition was set too high, leading 

to a sense that the goal was unachievable. It also led to a shifting of responsibility, where some 

operators placed all blame for poor system performance on the automation. In contrast, the Low 

Priming condition had a low reference line on the performance plot which provided positive 

reinforcement to operators, increasing their confidence. Future work should explore whether a 

more achievable reference performance curve for the High Priming group could cause the 

intended effect of pushing operators to intervene more frequently without lowering operator 

confidence. 

5.7.5 Gamer Analysis 

A detailed analysis of the impact of frequency of computer and video game playing was 

conducted. This analysis was conducted for two main reasons. First, gaming frequency was the 

most significant demographic predictor of utilization, implying that frequent gamers could 
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operate the interface more quickly than nongamers and potentially had a lower workload level 

(Section 5.7.3). Second, although the experiment used random assignment of subjects to 

experimental conditions, the between-subjects condition of Real-Time Priming had an uneven 

balance of gamers and nongamers. A Mann-Whitney comparison showed that the average self-

reported gaming frequency on a Likert scale from 1-5 (low to high) of the Low Priming group 

was significantly higher than subjects in the High Priming group (Z = -2.366, p = 0.018), as 

shown in Figure 60. 

 
Figure 60. Uneven balance of gaming frequency between real-time priming groups. 

These two findings encouraged a deeper analysis of the behavior of gamers. To begin, the 

analysis investigated whether gaming frequency correlated with performance metrics, behavior 

metrics, or subjective ratings from the experiment. Among the performance metrics, gaming 

frequency did not correlate with the primary performance metric of area coverage,  = 0.008, p = 

0.938. Thus, for the primary performance metric in the CHAS model, there was no direct 

correlation with gaming frequency. However, gaming frequency did correlate with the percent of 

time that targets were tracked, =0.211, p=0.039. This indicates that gamers were better at 

preventing targets from becoming lost by managing the resource allocation of the UVs. 

As reported in Section 5.7.3, gaming frequency correlated with utilization,  = -0.450, p < 0.001. 

In addition, gaming frequency correlated with the average length of time to replan,  = -0.286, p 

= 0.005. Both of these results indicate that gamers were faster at using the interface, evaluating 

information, and making decisions. Also, in terms of operator behavior, there was a marginally 

significant correlation between gaming frequency and the total number of search tasks created,  
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= -0.191, p = 0.062. Thus, it appears that gamers were less likely to intervene by creating new 

search tasks. In terms of subjective ratings, gaming frequency correlated with higher average 

real-time ratings of trust ( = 0.216, p = 0.037), perceived performance ( = 0.248, p = 0.016), 

and expectations ( = 0.302, p = 0.003). To summarize, these results indicate that gamers had 

higher trust in the AS and thus did not intervene as often. They were faster at using the interface 

and were better at preventing targets from becoming lost. They also had higher perceptions of 

how well they were doing and how well they expected to do.  

While all of these correlations were weak to moderate in strength by human factors standards, 

the fact that gamers had a somewhat higher propensity to trust the automation raised the question 

of whether frequent gamers reacted to a priori priming differently than nongamers. To facilitate 

this analysis, test subjects were divided into categories of “gamers” and “nongamers” based on a 

test subject’s self-reported frequency of playing computer and video games. Eighteen test 

subjects who reported that they were “weekly gamers,” “a few times a week gamers,” or “daily 

gamers” were classified as gamers. The other 30 test subjects reported that they played computer 

or video games once a month or less frequently. Test subjects were also asked to describe the 

types of games they played. Among the gamer group, all but one test subject reported playing an 

“action” video game, defined here as a shooter, real-time strategy, platform, racing, or sports 

game where the motion of a character or vehicle must be controlled directly and in real-time. 

While a previous study of the impact of video gaming used a more restrictive definition of action 

games, only counting shooter-type video games, the other types of games listed above can all 

“require fast reaction to multiple visual stimuli in a real time gaming environment” (Wilms, et 

al., 2013, p. 110). Future work should explore the differences in behavior and performance 

among gamers of different types, such as those who play shooter vs. real-time strategy games. 

Beginning with the gamers, there was a fairly equal distribution of test subjects among the A 

Priori Priming levels: Negative (5), No Priming (7), and Positive (6). Each of these test subjects 

conducted two missions. Gamers who experienced the Positive Priming level had higher ratings 

of trust in the AS following their training mission, but prior to the actual experimental missions. 

Mann-Whitney pairwise comparisons showed that the Positive Priming gamers had 22.8% higher 

trust ratings compared to the No Priming gamers (Z = -2.598, p = 0.009) and 19.1% higher trust 

ratings compared to the Negative Priming gamers (Z = -2.364, p = 0.018). There were no 
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significant differences in pre-experiment trust ratings between the Negative Priming gamers and 

the No Priming gamers (Z = -0.278, p = 0.781). Similar results were found for the average real-

time rating of trust during the missions, where the Positive Priming gamers had 23.9% higher 

trust ratings compared to the No Priming gamers (Z = -2.446, p = 0.014) and 35.2% higher trust 

ratings compared to the Negative Priming gamers (Z = -2.882, p = 0.002). Again, there were no 

significant differences in average real-time trust ratings between the Negative Priming gamers 

and the No Priming gamers (Z = -0.536, p = 0.592). After the end of the experiment, there were 

no significant differences in self-reported trust across the three A Priori Priming groups using the 

12-question trust survey according to a Kruskal-Wallis omnibus test (χ
2
(2, N=18) = 3.653, p = 

0.161).  

In terms of reported trust, these results are identical to the overall results presented in Section 

5.7.2.1, in terms of the reaction to A Priori priming. Positive Priming had the desired effect of 

raising initial trust in the automation. This higher trust level among the Positive Priming gamers 

was maintained on average throughout the experiment. Negative Priming was not strong enough 

to significantly lower self-reported trust as compared to the control group. After the end of the 

experiment, there were no significant differences in self-reported trust, as the effects of priming 

did not endure. 

Gamers began to differ from the overall test subject population in their system performance 

across the A Priori Priming groups. First, among the overall subject population, operators who 

experienced Negative A Priori Priming had a significantly higher number of mistakenly 

destroyed targets (Section 5.7.2.1). Secondary workload metrics showed that the Negative A 

Priori Priming group may have had less spare mental capacity during the mission. Thus, they 

may have misunderstood or missed the ROE instructing them not to destroy hostile targets until 

later in the mission or mistakenly designated a target as hostile. An analysis of the performance 

of gamers shows that five of the 14 missions with a target destruction mistake had a gamer as the 

operator. This is proportional to the number of gamers in the subject population (38%), thus 

gamers were no less likely to make a mistake as compared to nongamers. However, among 

gamers, a Kruskal-Wallis omnibus test showed that there were no significant differences in 

mistaken target destructions based on A Priori Priming level, χ
2
(2, N=5) = 1.778, p = 0.411. One 

possible reason why gamers did not make more mistakes under the Negative A Priori priming 
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condition is that gamers had lower utilization levels than nongamers, as described above. Thus, 

they may have had more spare mental capacity to correctly interpret the ROEs and correctly 

designate targets. 

A second difference in system performance between the general subject population and gamers 

is in the primary performance metric, area coverage performance. The overall test subject 

population had no significant differences in area coverage performance across the A Priori 

Priming groups (Section 5.7.2.1). However, a Mann-Whitney test showed that there was a 

marginally significant difference
1
 between the Positive A Priori Priming gamers and Negative A 

Priori Priming gamers in terms of area coverage performance (Z = -1.715, p = 0.086). Gamers 

with Positive A Priori Priming had 35% higher average trust, but 10% lower average area 

coverage performance as compared to gamers with Negative A Priori Priming. These results are 

shown in Figure 61.  

    
   (a)             (b) 

Figure 61. Impact of a priori priming on gamers. (a) Average real-time rating of trust in AS. (b) Area 

coverage system performance by the end of the mission. 

An analysis of the actions of the gamers in these A Priori Priming groups provides some insight 

into why this difference in system performance occurred. Time series data on operator actions 

throughout the mission were compared using a repeated measures ANOVA. First, the Negative A 

                                                 

1
 A separate analysis of gamers who only experienced the Low Real-Time Priming condition showed that there was 

a significant difference between the Positive A Priori Priming gamers (8 missions) and Negative A Priori Priming 

gamers (8 missions) in terms of area coverage according to a Mann-Whitney test (Z = -1.997, p = 0.046). 
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Priori Priming gamers replanned more frequently than Positive A Priori Priming gamers 

(F(1,20) = 7.147, p = 0.015), as shown in Figure 8a. Second, in terms of the length of time that 

operators spent replanning, Negative A Priori Priming gamers spent marginally significantly less 

time evaluating new plans generated by the AS (F(1,20) = 3.433, p = 0.082), as shown in Figure 

8b. Third, the Negative A Priori Priming gamers created search tasks more frequently throughout 

the mission (F(1,20) = 5.045, p = 0.036), as shown in Figure 8c.  

  
(a)               (b) 

  
(c)               (d) 

Figure 62. Differences in operator behavior between gamers who experienced positive or negative a priori 

priming. (a) Replan rate. (b) Length of time to replan. (c) Search task rate. (d) Trust ratings. Standard error 

bars shown. 

Fourth, the Negative A Priori Priming gamers reported lower trust than Positive A Priori 

Priming gamers (F(1,18) = 12.142, p = 0.003), as shown in Figure 8d. There was also a 

significant effect for trust across time, indicating that trust decreased throughout the mission for 

both groups (F(8,144) = 5.720, p < 0.001). It should be noted that there were no significant 
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differences in utilization between the A Priori Priming groups for gamers, (F(1,20) = 1.016, p = 

0.325), similar to the overall test subject results presented in Section 5.7.2.1. 

Remarkably, gamers who experienced Negative A Priori Priming behaved in almost the exact 

same way as high performers in a previous experiment using this testbed (Section 3.2 and 3.3). 

Gamers in the Negative A Priori Priming group understood the imperfections in the automation, 

reporting lower trust in the AS. They modified their behavior appropriately and used the system 

as designed by replanning more frequently, spending less time evaluating new schedules 

generated by the AS, and creating more search tasks to encourage the UVs to explore new areas 

on the map. They were able to intervene at a higher rate without increasing their workload as 

compared to the gamers who experienced Positive A Priori Priming. In contrast, a similar 

analysis of nongamers revealed that while A Priori Priming did impact their reported trust in the 

AS, there were no significant differences in behavior or system performance across the A Priori 

Priming groups.  

Why did a priori priming of trust only influence the behavior of gamers in a way that impacted 

system performance? One potential reason is that gamers may have a higher propensity to 

overtrust automation. As described above, gaming frequency correlated with higher average 

ratings of trust in the AS ( = 0.216, p = 0.037). Also, gamers began the mission with 

significantly higher ratings of trust as compared to all nongamers according to a Mann-Whitney 

test (Z = -2.254, p=0.024), but eventually adjusted their trust to the same, lower levels of trust of 

nongamers (Figure 63a).  

Additional evidence of the different reactions of gamers and nongamers to a priori priming is 

provided by an analysis of total mouse clicks (descriptive statistics presented in Appendix T). 

This measure was not part of the original experiment design and its use is for post-hoc analysis 

only. An ANOVA indicated a significant difference in the total mouse clicks among the A Priori 

Priming Levels, F(2,90) = 3.765, p = 0.027. There was also a significant effect for gamer vs. 

nongamer: F(1,90) = 4.458, p = 0.038 and a significant interaction effect between 

gamer/nongamer and A Priori Priming Level: F(2,90) =4.135, p = 0.019. Gamers overall had 

11% fewer total mouse clicks on average as compared to nongamers. There was no difference in 

the total mouse clicks of nongamers across the A Priori Priming levels. However, gamers reacted 
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to Negative A Priori Priming with a significantly higher number of mouse clicks, while gamers 

with Positive A Priori Priming had the lowest number of mouse clicks of any group (Figure 

63b). Gamers were prone to overtrusting the automation, and under Positive A Priori Priming, 

they did not take as much action to guide the automation. 

  
   (a)             (b) 

Figure 63. Comparison of gamers and nongamers: (a) Real-time trust ratings. (b) Total mouse clicks. 

Standard Error bars are shown. 

To further analyze nongamers, a clustering analysis was conducted among all 30 nongamers, 

identifying 15 nongamers who reported high levels of initial trust in the AS in contrast to four 

nongamers who reported low initial trust. The clustering method was similar to the clustering 

analysis described in detail in Section 3.2.2, except that the clustering metric was initial reported 

trust in the AS. The average trust ratings in the AS for high and low initial trust nongamers are 

compared to the trust ratings of all gamers in Figure 64. High initial trust nongamers showed a 

decline in trust throughout the mission, similar to gamers. Low initial trust nongamers generally 

remained at a low level of trust throughout the mission. However, using the same repeated 

measures ANOVA method described above, it was found that there were no significant 

differences between high initial trust nongamers and low initial trust nongamers in terms of area 

coverage performance (F(1,36) = 0.179, p = 0.675), search task rate (F(1,36) = 0.198, p = 0.659), 

replan rate (F(1,36) = 0.847, p = 0.364), nor length of time to replan (F(1,23) = 0.014, p = 0.906). 

An ANOVA analysis similarly indicated that there were no significant differences in the total 

mouse clicks between high and low initial trust nongamers, F(1,36) = 0.050, p = 0.825. 

However, it should be noted that high initial trust nongamers had significantly lower utilization 

as compared to low initial trust nongamers according to a repeated measures ANOVA (F(1,36) = 
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4.969, p = 0.032), which indicates that high initial trust nongamers were less busy throughout the 

mission. 

 

Figure 64. Real-time trust ratings for gamers, high initial trust nongamers, and low initial trust nongamers. 

Standard Error bars are shown. 

Overtrust in the AS can lead to the phenomenon of automation bias (Mosier, et al., 1998), where 

operators disregard or do not search for contradictory information in light of an AS-generated 

solution which is accepted as correct (Cummings, 2004a). A number of empirical studies have 

shown that when working with imperfect automation, automation bias occurs (Chen & Terrence, 

2009; Lee & Moray, 1994; Muir & Moray, 1996; See, 2002). Thus, Positive A Priori Priming 

may have induced automation bias in gamers, where they overtrusted the imperfect AS in this 

experimental testbed and did not intervene frequently enough. Negative A Priori Priming may 

have pushed gamers to a more appropriate level of trust in the AS, helping them avoid 

automation bias and encouraging them to intervene more frequently.  

Another possible reason is that priming triggered a learned behavior in gamers. Wickens and 

Hollands (2000) proposed in their human information processing model that working memory 

has a more direct impact on perception and response selection as compared to long-term 

memory. Previous studies have shown that priming can “spread activation,” meaning that the 

prime activates an association in memory prior to carrying out a task (Anderson, 1983; 

Niedeggen & Rösler, 1999). Additionally, the strength of the effect of the prime on behavior is 

influenced by the match between earlier experiences and the current situation (Domke, Shah, & 

Wackman, 1998; Lorch, 1982). Gamers, especially those who play action video games, have 

learned how to manually control characters or vehicles and manipulate automation to obtain a 
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desired result. Thus, Negative A Priori Priming of gamers may have activated this previously 

learned behavior to intervene more frequently in order to manipulate the automation to improve 

performance. In contrast, nongamers likely did not have as much previous experience working 

with automation and thus their behavior did not change significantly even though they reported 

lower trust. 

These results have interesting implications for personnel selection and training for future real-

time human-automation scheduling systems for multiple UVs. While gamers may bring valuable 

skills, such as faster visual attentional processing (Green & Bavelier, 2003) and faster encoding 

of visual information into short-term memory (Wilms, et al., 2013), they are also potentially 

prone to automation bias. One potential method for overcoming this propensity to overtrust 

automation is through priming during training. Results in this experiment demonstrated that the 

effects of priming are not enduring, thus regular priming throughout missions may be necessary 

to maintain the appropriate level of trust, as Rice et. al (2008) proposed.  

While these results are compelling, the limitations of this analysis must be taken into account. 

The definition of a “gamer” is based on self-reported information, meriting further research to 

establish which types of video games and what frequency of video game play influence operator 

trust, behavior, and performance. The sample size of gamers in this data set was small, only 18 

test subjects conducting two missions each. Future research should aim to evaluate these findings 

with a larger sample size of gamers and nongamers. Despite these limitations, initial evidence 

shows that previous experiences with automation and video game play can have a significant 

impact on initial trust level in automation and reaction to priming/training methods. 

5.7.6 Time Series Data 

One of the major objectives of this experiment was to gather data to evaluate the assumptions in 

the CHAS model surrounding perceptions of performance, expectations of performance, trust, 

and workload. Aggregate time series data from all test subjects was evaluated using a repeated 

measures ANOVA to test these assumptions. The results are presented below. 

Operators were asked to rate their perception of performance, expectations of how well the 

system should be performing, and trust in the AS every two minutes throughout the mission. The 
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survey utilized a Likert scale of 1-7 (low to high). The aggregate ratings for all test subjects are 

shown in Figure 65. Several observations can be made from this data. First, operator 

expectations were significantly higher than perceived system performance throughout the 

mission, F(1,166) = 9.279, p = 0.003. This supports the assumption made in the CHAS model 

that operators typically have higher expectations than perceptions of performance, leading to a 

positive Perceived Performance Gap (PPG).  

 
(a)        (b) 

 
(c) 

Figure 65. Aggregate real-time ratings (1-7, low to high) throughout the mission. (a) Expectations of 

performance and perceptions of performance. (b) Perceived Performance Gap (PPG), equal to the percent 

difference between ratings of expectations of performance and perceptions of performance. (c) Trust in the 

AS. Standard error bars are shown. 

Second, operator perception of performance declined throughout the mission, as shown by the 

red line in Figure 65a. The repeated measures ANOVA indicated a significant time effect for 

perception of performance, F(8,664) = 5.083, p < 0.001. This supports the CHAS model 
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assumption that the operator correctly perceives declining system and automation performance 

over time as the mission proceeds. It should be noted that the CHAS model can be tuned to a 

system which maintains or even improves in performance over time. Third, operators lowered 

their expectations based on their perception of system performance. A repeated measures 

ANOVA indicated a marginally significant time effect for expectations of performance, F(8,664) 

= 1.811, p = 0.072. The fact that operators adjusted their expectations of performance supports 

the need for an Expectations Adjustment feedback loop in the CHAS model, rather than 

assuming that the operator’s expectations of performance are static. 

Fourth, operators adjusted their expectations slowly in comparison to their perception of 

performance, as shown in Figure 65a. This is supported by a fourth metric, Perceived 

Performance Gap (PPG), which was calculated by taking the percent difference between the 

expectation and performance ratings at each two minute interval. There was a significant time 

effect for PPG, F(8,664) = 2.519, p = 0.011, indicating that the PPG increased over time, 

eventually reaching a 10% difference between expectations and performance ratings (Figure 

65b). This supports the need to separately model the time delays for perceiving performance 

versus adjusting expectations. 

Fifth, operator trust in the AS generally declined throughout the mission, as shown in Figure 65c. 

There was a significant time effect for trust, F(8,664) = 8.528, p < 0.001. The CHAS model 

assumes that human trust in the AS is negatively dependent on the PPG. This data analysis 

demonstrates that PPG generally increased over time as trust was declining. While this analysis 

alone cannot conclusively support the causal relationship between PPG and Human Trust, the 

qualitative comments described in section 5.7.4 provide additional evidence that as operators 

perceived that the AS was performing below their expectations, they lost trust in the AS. 

Finally, one of the main objectives of this experiment was to evaluate the dynamic hypothesis of 

the CHAS model: if operators can either a) anchor to the appropriate trust in the AS and 

expectations of performance earlier in the mission and/or b) adjust their trust and expectations 

faster through better feedback about the AS, then system performance should improve. To 

evaluate this hypothesis, a cluster analysis was conducted to identify the missions which had 

significantly high or low performance, using total area coverage by the end of the mission as the 
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clustering metric. Details of the clustering method can be found in Section 3.2.2, where the same 

clustering method was used for data analysis with a previous data set. Of the total 96 missions, 

there were 17 missions in the High Performance cluster and 15 missions in the Low Performance 

cluster. High performers averaged 75.6% area covered by the end of the mission, while low 

performers averaged 49.6%. The trust ratings in the AS for High and Low performing missions 

are compared in Figure 66.  

A repeated measures ANOVA indicated that there was a significant interaction effect for trust 

between time and performance cluster, F(8,200) = 2.768, p = 0.006. The main effects for 

performance cluster (F(1,25) = 1.103, p = 0.304) and time (F(8,200) = 1.875, p = 0.066) were not 

significant. It appears that high performers anchored to a lower level of trust in the AS and 

essentially remained at the same level of trust for the entire mission. Low performers, in contrast, 

began at a higher level of trust and adjusted their trust over time, reducing it to the point where 

there were no statistically significant differences in trust as compared to the high performers.  

 
Figure 66. Comparison of real-time ratings of trust in the AS (1-7, low to high) throughout the mission 

between high and low performers. Standard error bars are shown. 

This data provides evidence which supports the overall dynamic hypothesis of the CHAS model. 

High performers anchored to the appropriate level of trust early in the mission, understanding the 

imperfections in the automation and compensating to improve system performance. Low 

performers anchored at a higher level of trust, and while they did adjust their trust over time, by 



194 

 

the time they fully understood the limitations of the automation, it was too late in the mission to 

improve their performance. 

5.8 Evaluation of Hypotheses and Model Predictions 

Given all of the results presented in Section 5.7, the experimental hypotheses described in 

Section 5.2 can be evaluated. Specifically, the CHAS model made quantitative predictions of the 

impact of changes in system design and operator training on human and system performance. 

The experiment results are compared to the predictions made by the CHAS model below. 

5.8.1 A Priori Priming 

For the A Priori Priming independent variable, Hypothesis 1 stated that negative a priori priming 

of human trust in the AS was expected to result in a 9% increase in system performance by the 

end of the mission. Also, Hypothesis 2 stated that positive a priori priming of human trust in the 

AS was expected to result in a 4% decrease in system performance by the end of the mission. 

Finally, Hypothesis 3 stated that negative a priori priming of human trust in the AS was 

expected to result in a 12% increase in over the positive priming condition.  

While a priori priming was successful at adjusting initial human trust in the AS, data from the 

general test subject population did not support these hypotheses. According to a repeated 

measures ANOVA, there were no statistically significant differences in the primary performance 

metric, area coverage, across the A Priori Priming levels, F(2,41) = 0.016, p = 0.984 (see Table 

28 in Appendix T for descriptive statistics). The only statistically significant difference in system 

performance was that operators in the Negative A Priori Priming group had lower performance 

in terms of mistakes in target destruction. It is possible that the Negative A Priori Priming group 

had less spare mental capacity and thus misunderstood or missed the ROE instructing them not 

to destroy hostile targets until later in the mission (Section 5.7.2.1). This contradicts Hypotheses 

1 and 3, as negative a priori priming may have caused a significant decrease in one of the system 

performance metrics. 

When controlling for gaming frequency, however, the experimental data provides support for 

Hypothesis 3 and the CHAS model quantitative predictions. As described in Section 5.7.5, 

among gamers, there were no statistically significant differences in mistaken targets destroyed 
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across the A Priori Priming groups. Gamers had more spare mental capacity because they were 

faster at using the interface, evaluating information, and making decisions. Most importantly, 

gamers who experienced negative a priori priming had 10% higher average area coverage 

performance (M = 66.0%, SD = 8.4%) as compared to gamers with positive a priori priming (M 

= 59.6%, SD = 9.2%), a marginally statistically significant difference, which directly supports 

Hypothesis 3 (Figure 67). While the sample size of gamers was small and differences in system 

performance from the control No Priming group were not statistically significant, there is some 

evidence that negative priming can improve system performance while positive priming can 

reduce system performance. 

 
Figure 67. Predictions using the CHAS model compared to experimental results for gamers. 

The quantitative model predictions presented in Section 5.2.1 are compared to experimental 

results from gamers in Figure 67. As shown, the model effectively captures the impact of 

changes in initial trust on area coverage performance for gamers. All predictions fall within ±1 

Standard Error of the experimental data. These results provide compelling evidence that the 

model can accurately predict the impact of a change in operator training on system performance. 

A major caveat is that the model’s predictions were only accurate for the gamer population of 

test subjects. Controlling for gaming frequency reduced some of the human variability in the 

experimental results. Future research should explore whether the model can make accurate 
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predictions for a more general population of operators given a different change in operator 

training that has a stronger effect on operator perceptions and behavior. 

5.8.2 Real-Time Priming 

For the Real-Time Priming independent variable, Hypothesis 4 stated that high real-time priming 

of operator expectations of performance was expected to result in an 8% increase in system 

performance by the end of the mission over low real-time priming. Results from the experiment 

did not support this hypothesis, as there were no significant differences among the system 

performance metrics, including the primary metric of area coverage, across the Real-Time 

Priming groups (see Table 29 in Appendix T for descriptive statistics). 

Results showed that real-time priming had some of the desired effects on operator expectations 

and perceptions, but also led to unintended consequences (Section 5.7.2.2). Instead of raising 

operator expectations, higher real-time priming actually led to lower expectations of how well 

the system would perform throughout the rest of the mission. In the second half of the mission, 

the Low Priming group had significantly higher ratings of system performance than the High 

Priming group. Both of the results likely reflect operator frustration due to their perception of 

system performance compared to the reference line presented on the performance plot. 

Additionally, the High Priming group had 30% lower confidence ratings compared to the Low 

Priming group following the mission. The written comments of operators in the High Priming 

group express frustration and a lack of confidence (Section 5.7.4). It is possible that due to this 

lack of confidence, the frustration experienced by operators in the High Priming group did not 

translate into significant differences in Perceived Performance Gap (PPG), trust, or system 

performance. It is also possible that the surveys and measures of system performance failed to 

detect a change in these quantities due to the different Real-Time Priming levels. 

The CHAS model assumes for the High Priming prediction that operator expectations of 

performance are 56% higher than in the Low Priming condition (Section 5.2.2), which should 

cause an increase in the operator’s Perceived Performance Gap (PPG). The High Priming group 

had an average PPG that was only 13% higher than the PPG of the Low Priming group (see 

Table 38 in Appendix T for descriptive statistics), although this difference was not significant 

according to a Mann-Whitney test (Z = -0.314, p = 0.753). The model overstated the impact of 
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Real-Time Priming on system performance because Real-Time Priming did not have the desired 

effect on operator expectations. To further evaluate the CHAS model’s accuracy, the model was 

run with only a 13% increase in expectations from the Low to High Priming conditions. The 

model results are compared to experimental results in Figure 68. As shown, the model effectively 

captures the impact of the actual changes in expected performance on area coverage 

performance. All predictions fall within ±1 Standard Error of the experimental data.  

 
Figure 68. Revised predictions using the CHAS model compared to experimental results for all test subjects. 

However, as stated earlier, according to a repeated measures ANOVA, there were no statistically 

significant differences in area coverage between the Real-Time Priming levels, F(1,41) = 0.002, 

p = 0.961. Thus, future research should explore whether a more achievable reference line on the 

performance plot for the High Priming condition could cause the intended effect of pushing 

operators to intervene more frequently without lowering operator confidence. Also, a different 

method of priming expectations of performance could be explored to further investigate the 

impact of changes in expectations on system performance. 

5.8.3 Information Time Delay 

For the Information Time Delay independent variable, Hypothesis 5 stated that the addition of an 

information reporting time delay to the performance plot was expected to result in a 5% decrease 
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in system performance by the end of the mission. Results from the experiment both support and 

contradict this hypothesis. Under certain combinations of the two priming independent variables 

(Section 5.7.2.3), the With Delay missions had significantly lower system performance in terms 

of the percentage of time that targets were tracked (see Table 30 in Appendix T for descriptive 

statistics). Also, operators in the With Delay missions had significantly lower Situation 

Awareness (SA) as measured by the ratio of correct re-designations of unknown targets to 

number of unknown targets found. Both of these results support Hypothesis 4. However, in terms 

of the primary performance metric of area coverage, there were no statistically significant 

differences in area coverage between the Information Time Delay levels according to a repeated 

measures ANOVA, F(1,41) = 0.495, p = 0.486.  

In retrospect, the implementation of a time delay in this manner was fraught with challenges. 

First, as noted in Section 5.2.3, the predicted difference in system performance was small (5%) 

and thus it was likely that the experimental data would not have statistically significant 

differences. Also, the CHAS model assumed for the With Delay prediction that operators would 

perceive changes in the area coverage rate with a time delay of 130 seconds compared to only a 

10 second delay for the No Delay condition (Section 5.2.3). However, there was no way for the 

experimental testbed to gather precise data on human visual perception of information in order to 

measure the actual time delay in the perception of changes in system performance. Future 

research could examine this with eye tracking devices for a more precise estimate. 

Another major limitation to this implementation of a time delay was that there were other ways 

for the operator to perceive area coverage performance beyond the performance plot. Operators 

could view a “Fog of War” overlay on the Map View to indicate where they had recently 

searched (Section 3.2). Thus, the addition of an information time delay to the performance plot 

was not a pure information time delay; operators had alternative, albeit less accurate methods to 

estimate how well they were doing. Future research could run a similar experiment without the 

“Fog of War” overlay. 

Despite these challenges, modeling time delays in operator perception of performance is crucial 

to the validity of the CHAS model. In an attempt at model simplification, the time delay in 

perception of system performance was removed from the model. However, the model was no 
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longer able to replicate the goal-seeking and oscillatory behavior that was observed in previous 

experimental data (Sections 4.2.1 and 4.2.3). Sterman (2000, p. 663) wrote that “oscillation 

requires…that there be time delays in the negative feedbacks regulating the state of a system.” 

Previous research has shown that information time delays can have serious consequences for 

human decision-making in dynamic systems (Brehmer, 1990; Sterman, 1989b). Thus, it is crucial 

to capture delays in human perception of system performance when modeling human-automation 

collaborative scheduling of multiple UVs. Future research should explore whether a different 

system design change representative of real-world communications delays, such as delaying all 

information displayed to the operator (including visual information on the Map Display) similar 

to (Walker, et al., 2012), has a significant impact on operator behavior and performance in the 

OPS-USERS test bed. 

5.9 Summary 

This chapter described a human subject experiment that was conducted to evaluate the ability of 

the Collaborative Human-Automation Scheduling (CHAS) model to predict the impact of 

changes in system design and operator training on human and system performance. Results from 

the experiment led to a number of interesting findings. Eighty-three percent of operators were 

able to improve performance as compared to the performance of the system without human 

guidance, with an average improvement in performance of 12%. This aligns with previous 

results using this testbed and adds additional support to the assumption that the human operator 

can add value over the automation generated performance. Next, priming the initial trust level of 

operators using quotes from previous users of the system was successful at adjusting initial trust 

levels, with the strongest effect from positive priming. Test subjects who play computer and 

video games frequently were found to have a higher propensity to over-trust automation, but also 

experienced lower workload levels. By priming these gamers to lower their initial trust to a more 

appropriate level, system performance was improved by 10% as compared to gamers who were 

primed to have higher trust in the AS. The CHAS model accurately predicted the impact of this 

change in operator training on system performance.  

Two other system design changes to provide feedback on performance were implemented in the 

experimental testbed. These two changes were implemented in the performance plot of the main 



200 

 

display and consisted of a) displaying different reference system performance “expectation” lines 

and b) implementing a time delay in the reporting of the actual system performance thus far in 

the mission. However, results showed that they did not have the intended impact on operator 

expectations and perceptions. Revised model predictions taking into account the actual changes 

in operator expectations and perceptions due to these system design changes resulted in more 

accurate predictions of system performance. 

Both quantitative and qualitative data from this experiment validated a number of the 

assumptions in the CHAS model and provided some interesting insights for the creators of 

scheduling algorithms and the designers of collaborative interfaces. Operators adjusted their 

expectations of performance over time, supporting the need for an expectations adjustment 

feedback loop in the CHAS model. Results showed that as operators perceived that the AS was 

performing below their expectations, they lost trust in the AS. Operator comments suggested that 

rather than training operators to understand the way the automation makes decisions, automation 

designers should develop methods that enable the automation to provide reasons for scheduling 

decisions, while interface designers should find innovate methods to display this information to 

operators. Finally, experimental data supported the overall dynamic hypothesis of the CHAS 

model, showing that high performers anchored to the appropriate level of trust early in the 

mission, understanding the imperfections in the automation and compensating to improve system 

performance. 

Having built confidence in the CHAS model’s assumptions and accuracy, Chapter 6 will explore 

potential uses for the CHAS model by system designers. The CHAS model will be compared 

with another simulation model of human supervisory control of multiple UVs. Finally, the 

model’s generalizability to other real-time human-automation scheduling systems will be 

discussed and the limitations of the model will be described. 
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6 Model Synthesis 

Designers of UV systems currently have few tools to address some of the common challenges in 

human-automation collaboration that were identified in Chapter 1, which included inappropriate 

levels of operator trust, high operator workload, and a lack of goal alignment between the 

operator and AS. To attempt to address these issues, researchers and designers test different 

system components, training methods, and interaction modalities through costly human-in-the-

loop testing.  

The purpose of the Collaborative Human-Automation Scheduling (CHAS) model is to aid 

designers of future UV systems by simulating the impact of changes in system design and 

operator training on human and system performance. The goal is to reduce the need for time-

consuming human-in-the-loop testing that is typically required to evaluate such changes. Also, 

designers can utilize this model to explore a wider trade space of system changes than is possible 

through prototyping or experimentation. 

This chapter presents four example use cases of the CHAS model, to illustrate how it could aid 

UV system designers. Then, the CHAS model’s accuracy and features are compared with a 

previously developed Discrete Event Simulation (DES) model of human supervisory control of 

multiple UVs. Finally, the generalizability of the model is discussed along with model 

limitations. 

6.1 Potential Uses for CHAS Model 

Four example applications of the CHAS model are presented to illustrate how the model could 

potentially be used by UV system designers. First, designers can use the model to further 

investigate the impact of operator trust in the Automated Scheduler (AS) on system performance. 

Second, the CHAS model can be used to explore a wider system design space that includes both 

traditional system components as well as human characteristics. Third, the CHAS model can 

support requirements generation for meeting system design specifications, such as maximum 

workload levels. Finally, designers can evaluate the impact of automation characteristics, such as 

the need for certain algorithms to have time to reach consensus, on human behavior and system 

performance. 
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6.1.1 Investigating the Impact of Trust on Performance 

The experiment presented in Chapter 5 demonstrated that initial operator trust in the AS can have 

a significant impact on system performance. Specifically, test subjects who play computer and 

video games frequently were found to have a higher propensity to over-trust automation. By 

priming these gamers to lower their initial trust to a more appropriate level, they intervened more 

frequently to guide the suboptimal AS, improving system performance by 10% as compared to 

gamers who were primed to have higher trust in the AS. 

This raises the question: what is the optimal human trust level and intervention rate when 

collaborating with a suboptimal algorithm? As described more extensively in Chapter 2, both 

overtrust and undertrust in automation can be detrimental to system performance. Low human 

trust in the AS can be caused by automation brittleness and operators with low trust may spend 

an excessive amount of time replanning or adjusting the schedule. On the other hand, overtrust in 

automation has been cited in a number of costly and deadly accidents in a variety of domains. 

Overtrust in the AS can lead to the phenomenon of automation bias, where operators disregard or 

do not search for contradictory information in light of an AS-generated solution which is 

accepted as correct. 

Given that the CHAS model has been accurately tuned to a system with a sufficient amount of 

data, the model can be used to answer this question. Chapters 4 and 5 built confidence in the 

assumptions, predictive accuracy, and robustness of the CHAS model applied to the OPS-

USERS system. Thus, to address this question, the initial trust level parameter was modulated to 

explore the predicted impact on system performance. The baseline conditions for the model were 

the parameter settings, described in section 4.2.1 and detailed in Appendix F, which replicated 

the average behavior of all test subjects in a previous experiment using the OPS-USERS testbed. 

Initial Human Trust is an input parameter to the CHAS model and is expressed as a percentage 

between 0-100%, matching the definition of Perceived Automation Capability (Section 3.4.4). 

The Initial Human Trust level was varied from 0 to 100% in 1% increments and the resulting 

impact on system performance is shown in Figure 69. The CHAS model aligns with the previous 

literature on trust, predicting that an operator with extremely low trust will have low 

performance, while an operator with extremely high trust will also have low performance. There 

appears to be an optimal level of initial trust around 25-50%. While 25-50% trust in the AS does 
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not have any practical real-world meaning, an investigation of the intervention rate and workload 

predictions from this same analysis is more revealing.  

 
Figure 69. Model predictions of the impact of varying initial trust on system performance. 

The model predicts that Initial Human Trust influences the average rate of creating search tasks 

and the peak utilization level of the operator as shown in Figure 70. Simulated operators with 

low trust intervene frequently (Figure 70a), but also have high peak workload levels (Figure 

70b). The CHAS model captures that fact that at such high workload levels, operator 

interventions may be ineffective because the operator is cognitively overloaded. On the other 

hand, simulated operators with high trust rarely intervene to guide the suboptimal automation 

(Figure 70a). The model demonstrates the impact of this automation bias by predicting lower 

system performance for these overtrusting operators.  

   
(a)        (b) 

Figure 70. Model predictions of the impact of varying initial trust on (a) intervention rate and (b) workload. 
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Thus, the model predicts that the optimal level of trust, 25-50%, results in an average 

intervention rate between 3.5-5.5 interventions per two minute interval. This aligns with previous 

research on this testbed which indicated that prompting operators to intervene between every 30 

and 45 seconds (~2.7-4 times per two minute interval) produced the best system performance 

(Clare, Maere, et al., 2012; Cummings, Clare, et al., 2010). The model makes these predictions 

because it assumes that operators with initial trust below 25% intervene too frequently, causing 

their workload to go above 70% utilization. It has been shown in the previous literature that a 

utilization level over 70% can lead to performance decrements (Cummings & Guerlain, 2007; 

Nehme, 2009; Rouse, 1983; Schmidt, 1978). 

These predictions can be useful for a system designer who is considering implementing a 

prompting system, for example, to alert operators to intervene at a specific rate. Or for a designer 

who is concerned about the consequences of peak workload and how to either select or train 

potential operators. A major limitation of these predictions is that they are based on model 

assumptions about the non-linear human relationships between operator trust and the rate of 

interventions, the rate of interventions and human value-added to system performance, and the 

impact of cognitive overload on human-value added to system performance. While data was 

collected to estimate many of these relationships (Section 3.4), the next section explores the 

impact of changing these relationships on model predictions. 

6.1.2 Exploring the Wider Human-System Design Space 

The CHAS model enables tradespace exploration within a much larger design space that includes 

the human operator in addition to more typical system components included in such tradespace 

analyses, such as the number of UVs or the level of automation of the UVs. For example, a 

system designer may have different skills sets for human operators that can be selected for a 

specific system. Recently, the U.S. Air Force started a new program that trains UAV operators 

with no piloting experience (Clark, 2012). Some of these operators may be frequent gamers, who 

may have faster visual attentional processing (Green & Bavelier, 2003) and faster encoding of 

visual information into short-term memory (Wilms, et al., 2013). They may be used to multi-

tasking and likely have a high tolerance for workload before cognitive overload begins. While 

previous research has shown that performance decrements can occur on average above 70% 

utilization, it is certainly possible that some operators can sustain performance up to 80%, 90%, 
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or even close to 100% utilization, while others begin to experience cognitive overload as low as 

50% utilization. For the purposes of this section, the utilization level where cognitive overload 

begins will be called the cognitive overload onset point. 

Thus, the CHAS model can aid a system designer in choosing the most appropriate level of 

intervention given the different cognitive overload onset points of various operators. The model 

was run with three different table functions for the Effect of Cognitive Overload on Human 

Value Added (Section 3.4.6, Figure 25). The baseline table function has a cognitive overload 

onset point of 70%, but the relationship was modified to set the cognitive overload onset point to 

50% and 90%, with the results shown in Figure 71. As shown, operators who can sustain 

performance at utilization levels up to 90% can perhaps be prompted to intervene up to 6 times 

per two minute interval to maximize system performance. In contrast, operators who begin to 

experience cognitive overload onset at 50% utilization should only be prompted to intervene 4.5 

times per two minute interval. Alternatively, operators with higher tolerances for workload can 

be primed to have lower trust in the AS, causing them to intervene more frequently, without fear 

of inducing cognitive overload. As was shown in Chapter 5, gamers who had negative a priori 

priming to lower their trust in the AS chose to intervene more frequently, but did not experience 

cognitive overload, enabling them to improve system performance. 

 
Figure 71. Intervention rate vs. system performance for different cognitive overload onset points. 
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It is also notable that there is not a large performance improvement when moving from 4.5 to 6 

search tasks per two minute interval. This indicates that the system may be robust to varying skill 

levels and cognitive overload onset points, a key advantage of a goal-based architecture for real-

time human-automation collaborative scheduling.  

Similar limitations apply to these predictions as in the last section. However, this form of 

sensitivity analysis by modifying the non-linear relationships in the CHAS model can also help a 

system designer fine tune the model to more accurately represent the system they are analyzing. 

6.1.3 Supporting Trust Calibration for Workload Specifications 

Designing systems involving human operators requires understanding not just average 

performance, but also the range of expected performance. For example, while average workload 

may remain below cognitive overload conditions, it may be crucial to evaluate what percentage 

of operators are expected to experience significant cognitive workload at some point during a 

mission. System designers may want to enforce boundary conditions such as designing a system 

that 50% of typical operators will not exceed 70% utilization at any point during a mission.  

The CHAS model can aid them in this process through Monte Carlo simulations. Using the same 

techniques and parameter distributions described in Section 4.3.2 and Appendix J, Monte Carlo 

simulations of the CHAS model were run with Initial Human Trust levels of 40%, 60%, 80%, 

and 100%. The results are shown in Figure 72. In order to achieve the specification of 50% of 

typical operators remaining below 70% utilization for the entire mission, the CHAS model 

predicts that operators would need to calibrate their initial trust level between 80% (Figure 72c) 

to 100% (Figure 72d) prior to starting the mission. This would require priming/training the 

operator to have complete trust in the AS prior to the mission, which should lead them to 

perform few interventions to guide the automation, keeping their workload at a low level. 

As an alternative to calibrating trust prior to a mission, which is very difficult, system designers 

could investigate other methods of encouraging the appropriate rate of intervention to satisfy 

such workload specifications. In general, system designers could utilize similar Monte Carlo 

simulations to evaluate the impact of different workload specifications or design interventions on 

both average performance and the expected range of performance. In fact, maximizing the 

minimum expected performance is a common technique in robust optimization (Bertsimas & 
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Thiele, 2006), and thus the CHAS model could enable the designers of collaborative human-

automation systems to adopt this technique. 

Once again, one of the key benefits of the CHAS model is that it simulates the operator 

throughout a mission, showing the potential times when utilization may peak (early in the 

mission up to ~400s, as shown in Figure 72), or generally how trust, intervention rate, and 

performance change over time. This is in contrast to previous simulation models, which only 

predicted average utilization over a mission, as will be explored further in Section 6.2. 

             

(a)       (b) 

             

(c)       (d) 

 
 

Figure 72. Monte Carlo simulations showing dynamic confidence intervals for operator utilization 

throughout the mission, with different initial trust levels: (a) 40%. (b) 60%. (c) 80%. (d) 100%. 

6.1.4 Evaluating the Impact of Automation Characteristics 

The final example of an application for the CHAS model involves evaluating the impact of 

automation characteristics, such as the need for certain algorithms to have time to reach 

consensus, on human behavior and system performance. The CHAS model was developed to 

model the OPS-USERS testbed (Section 3.2), a collaborative, multiple UV system which 

leverages decentralized algorithms for vehicle routing and task allocation (Cummings, et al., 

2012). Previous research on the AS used in the OPS-USERS testbed has shown that the 
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automated search process is suboptimal and can be improved either with a centralized global 

search algorithm (Whitten, 2010) or with a collaborative human assisting the AS (Cummings, et 

al., 2012), both of which extend the “effective planning horizon” of the search algorithm. The 

goal-based architecture (Section 2.1) implemented in OPS-USERS was specifically designed 

such that if there were more tasks to do than UVs capable of completing the tasks, tasks would 

be left unassigned, representative of real world resource constraints. Given this architecture and 

analysis of a previous OPS-USERS data set (Section 3.2.2), the CHAS model assumes that an 

increasing rate of creating search tasks is beneficial to the performance of the system, but with 

diminishing returns at higher rates. It is not assumed that extremely high rates of creating search 

tasks has a negative impact on the automation itself, but the CHAS model does capture the 

potential negative impact of operator cognitive overload. This non-linear logit relationship 

between search tasks and system performance was quantified using data from a previous 

experiment (Section 3.4.5), as shown by the baseline curve in Figure 73. 

In contrast, other automation architectures which rely on decentralized swarming algorithms may 

need time to stabilize before further operator interventions should be conducted (Walker, et al., 

2012). This “neglect benevolence” concept, where high rates of intervention may actually reduce 

automation performance, can be represented notionally by the green dashed-line curve
2
 in Figure 

73. At low to moderate rates of intervention, the impact on performance is roughly the same as 

the baseline. However, at high rates of intervention, as opposed to diminishing returns, there is a 

decline in the human value added to system performance. While this curve is simply for 

demonstration purposes, data on the neglect time necessary for algorithm stabilization could be 

used to fit and validate this curve. This demonstration curve was implemented in the CHAS 

model through a normal distribution curve, defined by four parameters, similar to the baseline 

logit function (Section 3.4.5). 

 

                                                 

2
 Generally, System Dynamics modelers avoid implementing U-shaped curves (Section 3.4.6). Thus, the most 

appropriate way to model Neglect Benevolence would be through the addition of a Neglect Benevolence reinforcing 

feedback loop, similar to the Cognitive Overload loop. This would consist of a monotonically decreasing function 

showing the negative impact of high rates of intervention (which do not allow the decentralized algorithms to have 

enough time to reach consensus). However, for simplicity, this curve was implemented using a U-shaped curve 

purely for demonstration purposes. 
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Figure 73. Two potential relationships between Search Task Rate and Effect of Search Tasks on Human 

Value Added. Empirical data shown with ±1 Standard Error bars. 

Similar to Section 6.1.1, Initial Human Trust was varied from 0 to 100% and the impact on 

system performance is shown in Figure 74. Recall that the CHAS model assumes that a high 

level of human trust should result in a low rate of intervention. Thus, at high levels of trust, the 

performance of the baseline automation architecture as compared to the Neglect Benevolence 

architecture is the same. However, for operators with lower levels of trust, below 50%, the 

CHAS model predicts that there will be a sharp decrease in system performance. The CHAS 

model predicts that these operators would intervene by creating 5.25 search tasks per two minute 

interval. According to Neglect Benevolence curve in Figure 73, this rate of intervention would 

actually generate negative Human Value Added, as the operator is negatively impacting the 

performance of the automation. Data analysis in Section 5.7.1 supports this concept, showing 

that some operators can in fact hurt system performance. 

It should be noted that system performance does not continue to decrease below 30% Initial 

Trust for the Neglect Benevolence curve in Figure 74. This is caused by the model’s 

representation of the impact of cognitive overload. All operators who begin with initial trust 

below 30% are predicted to have an average utilization level near or above 70%. The model 

assumes that interventions will become less impactful on system performance once the operator 

reaches cognitive overload, as high levels of stress have been shown to induce perceptual 

narrowing (Kahneman, 1973). This assumption may hold when frequent operator interventions 

cannot directly harm automation performance. However, for automation architectures that need 

time to stabilize before further operator interventions should be conducted, this assumption does 
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not hold. The model does not capture the fact that even ineffective interventions under conditions 

of cognitive overload can continue to negatively impact decentralized algorithms. Performance 

should continue to drop with lower levels of trust below 30% that cause higher rates of 

intervention. Refining the implementation of the cognitive overload loop to capture this fact is 

discussed further in the future work section of Chapter 7. 

 
Figure 74. Model predictions of the impact of varying initial trust on system performance given different 

automation characteristics. 

In summary, four example use cases of the CHAS model have been shown to illustrate how it 

could aid UV system designers. Next, the CHAS model’s accuracy and features are compared 

with a previously developed Discrete Event Simulation (DES) model of human supervisory 

control of multiple UVs. 

6.2 Comparison of SD and DES Model 

One of the major goals of this thesis was to attempt to adapt System Dynamics modeling 

techniques to model human-automation collaboration for scheduling multiple semi-autonomous 

UVs. One of the research questions posed in Chapter 1 was “How does it compare to other 

relevant models?” Thus, it is important to compare both the quantitative accuracy as well as the 

qualitative features of the CHAS model to a previously developed computational model of 

human supervisory control of multiple UVs. 
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Nehme (2009) developed a queuing-based, multi-UV discrete event simulation (MUV-DES) 

model of human supervisory control of multiple UVs. MUV-DES captures both UV variables, 

such as the types of UVs and the level of autonomy of the vehicles, as well as operator variables, 

such as attention allocation strategies and Situation Awareness (SA). Similar to the CHAS 

model, MUV-DES aims to support the designers of future UV systems by simulating the impact 

of alternate designs on vehicle, operator, and system performance. MUV-DES uses 

DES/queuing-based constructs including events, arrival processes, service processes, and 

queuing policies to model the human operator as a serial processor of tasks. The input variables 

to MUV-DES are primarily the distributions of the arrival rate of various operator tasks and the 

distributions of service times for these tasks. These distributions are drawn from previous 

experimental data. 

While there is an ongoing argument in the modeling community about the scenarios for which 

SD is more appropriate than DES (i.e. (Özgün & Barlas, 2009; Sweetser, 1999)) a key 

contribution of this thesis is the evaluation of the adaptation of SD techniques to model human 

supervisory control of UVs in comparison to DES techniques. To begin this comparison, both 

MUV-DES and CHAS were used to simulate the high task load OPS-USERS experiment 

(Section 4.2.2). In this experiment, operators were prompted to view automation-generated 

schedules at prescribed intervals of either 30 or 45 seconds. Changing the rate of prompts to 

view new schedules modulates the task load of the operator, such that 30s replan intervals should 

induce higher workload than the 45s intervals. The average utilization of operators in the 30 and 

45s replan prompting interval conditions is shown in Figure 75. The CHAS model was applied to 

simulate this experiment (Section 4.2.2) while distributions of arrival rates and service times 

were generated from experimental data for use in MUV-DES model. The utilization results from 

the CHAS and MUV-DES simulations are compared to the experimental results in Figure 75. 

The MUV-DES model was more accurate for the 30 second replan prompting interval condition 

as compared to the CHAS model, which had an average utilization prediction that was higher 

than the experimental data. For the 45 second replan prompting interval data, both models were 

slightly off, although both predictions fell within the 95% confidence interval of the data. Both 

models captured the decrease in utilization from the 30 to 45 second replan prompting interval 

conditions. 
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Figure 75. Average utilization for OPS-USERS high task load experiment, with CHAS and MUV-DES 

predictions. 95% confidence intervals for the experimental data are shown. 

While both models replicate average utilization values for the experimental data, a qualitative 

comparison of the features of MUV-DES and the CHAS models is more revealing. There are 

certainly some similarities, such as capturing the impact of delays in operator perception on SA 

and modeling the impact of high operator workload on system performance. However, Nehme 

wrote that the MUV-DES model lacked the “consideration of interaction between human-UV 

system variables (i.e. the variables that form inputs to the model) [which] can result in lower 

predictive accuracy” (Nehme, 2009, p. 152). In addition, Nehme wrote that “the research in this 

thesis focused on situational awareness. However, there are other operator characteristics which 

can significantly influence UV-team performance, such as operator trust” (Nehme, 2009, p. 153).  

The CHAS model aimed to address these limitations of the MUV-DES model. There are three 

major features of the CHAS model that build upon the MUV-DES model: 

 The CHAS model captures the feedback interactions among perception, workload, trust, 

decisions to intervene, and performance. Rather than treating the aforementioned variables as 

separate factors, the CHAS model captures the interaction among these components. 

 The CHAS model explicitly represents qualitative variables such as human trust and its 

impact on the rate at which humans intervene into the operations of the team of UVs, and 

thus on system performance. The dynamics of trust are captured by enabling trust to adjust 

over time throughout the mission with some inertia. 



  213 

 

 The CHAS model can provide predictions of continuous measures, a key attribute of all SD 

models. While the MUV-DES model provided predictions of system performance based on 

the occurrence of events (i.e. visually identifying targets), this form of performance 

prediction is not as useful for a continuous performance metric such as area coverage.  

Both the MUV-DES model and the CHAS model have specific domains for which they are most 

appropriate. The MUV-DES model is best suited for using probabilistic distributions to 

accurately model an operator who is a serial processor of discrete tasks, such as visually 

identifying targets. The CHAS model is better suited for modeling continuous performance 

feedback that is temporally dependent and capturing the impact of qualitative variables such as 

trust. Based on this, the CHAS model enables diagnosticity, allowing a system designer to more 

precisely characterize the reasons behind behavior and performance patterns. 

6.3 Model Generalizability 

In addition to evaluating the adaptation of SD modeling techniques, one of the aims of this 

research was to create a model that was generalizable to a variety of scenarios where a human 

operator collaborates with an automated scheduler for real-time scheduling of multiple vehicles 

in a dynamic, uncertain environment. These scenarios could include searching a designated area, 

finding and tracking moving targets, visiting designated locations for delivery or pickup, etc. 

The CHAS model was developed through an inductive modeling process. Größler and Milling 

defined the inductive SD modeling process by stating that “the solution to a specific problem is 

sought as well as a specific situation serves as the basis for the model. Later in the process, 

insights gained in the project might be generalized…” (Größler & Milling, 2007, p. 2). The 

process began by analyzing a specific experimental data set in order to develop a dynamic 

hypothesis, defined as a theory that explains the behavior of the system as an endogenous 

consequence of the feedback structure of the holistic system (Sterman, 2000). The dynamic 

hypothesis of human-automation collaborative scheduling which was developed was: if operators 

can either a) anchor to the appropriate trust in the automation and expectations of performance 

earlier in the mission and/or b) adjust their trust and expectations faster through better feedback 

about the automation, then system performance should improve.  
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This hypothesis, which has been validated throughout the development and testing of the CHAS 

model on a variety of data sets, is in fact generalizable to wider variety of scheduling domains. 

Regardless of whether an operator is collaborating with an AS for real-time multi-UV control, 

Air Traffic Control (ATC) planning, rail operations scheduling, manufacturing plant operations, 

or space satellite control, appropriate trust and better feedback about the automation should lead 

to superior performance. Many of these domains require scheduling under significant 

uncertainty, which means that human judgment and adaptability must be leveraged in order to 

guide automation in a collaborative scheduling process. For example, Section 4.3.3 demonstrated 

how the CHAS model could be generalized to a different domain, an Urban Search and Rescue 

(USAR) mission with a large team of robots.  

However, the CHAS model assumes that the operator is working in a goal-based, decentralized 

control architecture, where each vehicle has onboard autonomy enabling it to compute its locally 

best plan to accomplish the mission goals with shared information. Many of the other domains 

mentioned above still rely on completely centralized scheduling methods, where information is 

collected from each vehicle, an attempt is made to develop a globally optimal schedule, and then 

the plan is sent out to all vehicles. This is a limitation of the generalizability of the CHAS model, 

especially in the computation of workload, as the operator would need to dedicate far more 

mental resources to scheduling in a centralized architecture. However, these domains will likely 

move towards goal-based, decentralized control architectures in the future. This would enable 

systems to respond to changes in the environment more quickly, scale to larger numbers of 

vehicles while taking advantage of each vehicle’s added computational power, and maintain 

performance despite communications failures (Alighanbari & How, 2006; Whitten, 2010).  

To further demonstrate how the model could be generalized for use in these other scheduling 

domains, the model terminology has been adjusted to more general terms, as shown in Figure 76. 

Common among the many possible scenarios in which a human operator is collaborating in real-

time with an automated scheduler is the accomplishment of mission goals. Thus, the system 

performance module has been generalized to focus on the completion of mission goals. These 

mission goals could include a measure of how much area has been covered for a search mission, 

a measure of how many victims have been found in a search and rescue mission, or how many 

locations have been visited for a delivery mission.  
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Figure 76. Generalized version of the CHAS model. 
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In order to model the system, it is still assumed that there are a total number of mission goals 

(sometimes, but not always known to the human operator or automation). For an area coverage 

and target finding mission, for example, there might be a defined limit to the total area to cover. 

For a mission without a clearly defined boundary or end-point, the Total Mission Goals 

parameter can be set to a near-infinite number to represent an ongoing mission. System 

Performance is measured by the rate at which mission goals are accomplished, for example the 

rate of finding new victims in a search and rescue operation. Finally, it is still true that once there 

are few incomplete mission goals left to accomplish, such as finding the last victim in a search 

and rescue scenario, the rate of accomplishing mission goals, System Performance, must 

decrease. 

The method by which humans add value depends on the specific system being modeled (see 

Section 2.2.6 for further discussion). For example, naval aircraft carrier deck operators apply 

heuristics to quickly change the schedules for launch catapults and a variety of aircraft while 

minimizing disruptions (Ryan, 2011; Ryan et al., 2011). Operators can change the objective 

function of an algorithm while planning for a multi-UAV mission (Malasky, et al., 2005) or 

decide when to loosen constraints on the scheduling problem for a network of satellites (Howe, 

et al., 2000). Also, operators can manually modify AS-generated solutions, guide the algorithm 

to replan for only a small portion of the problem, or backtrack to previous solutions for a 

multiple vehicle delivery scheduling problem (Scott, et al., 2002). Finally, the generalized CHAS 

model still assumes that the rate of operator interventions to guide the suboptimal automation is 

negatively non-linearly dependent on Human Trust level. 

One of the major assumptions that still remains in the generalized model is that the automation 

which the operator is guiding is suboptimal. Some scheduling domains may be well-defined 

enough for automation to provide near-optimal solutions, and thus human intervention is 

unnecessary. However, many scheduling problems, such as assigning multiple vehicles or 

satellites to many possible tasks with capability, location, and timing constraints in uncertain, 

dynamic environments are likely situations with unbounded indeterminacy (Russell & Norvig, 

2003). The set of possible preconditions or effects either is unknown or is too large to be 

enumerated completely. It is thus likely that the optimization problem is NP-hard, meaning that 

the AS cannot find an optimal solution in polynomial time (Russell & Norvig, 2003). Also, the 
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objective function for this optimization may be non-convex, meaning that certain algorithms may 

become stuck in local minima. In many of these cases, where either the environment is stochastic 

or the search space is large, it is unlikely that an optimal plan can be found or will remain 

optimal throughout the mission.  In addition, the definition of “optimal” may be difficult to 

quantify and represent in a single, static objective function for a command and control situation, 

where unanticipated events such as weather changes, vehicle failures, unexpected target 

movements, and new mission objectives often occur. Thus, in the presence of unknown 

variables, possibly inaccurate information, and changing environments, automated scheduling 

algorithms can be “brittle” and can benefit from human guidance. 

In summary, the CHAS model can be applied to a variety of system design problems across a 

number of domains that involve real-time human-automation collaborative scheduling. 

6.4 Model Limitations 

Finally, one of the research questions posed in Chapter 1 was “What are the boundary conditions 

of the model?” Based on the results of the multi-stage validation process, the predictive 

validation experiment, and the potential applications of the CHAS model presented in this 

Chapter, a number of limitations have been identified. These limitations can be categorized into 

three categories: computational modeling assumptions and simplifications, the need for data to 

tune the model, and model boundary conditions. 

First, the CHAS model is a computational model of human behavior and decision-making. In 

contrast to purely descriptive or conceptual models, computational models typically leverage 

computer simulations to both promote deeper understanding of how human operators behave and 

provide testable predictions about human behavior under different circumstances (Gao & Lee, 

2006; Parasuraman, 2000). While there are numerous benefits to developing and using a 

computational model, all such models make a number of difficult-to-test assumptions about the 

complexities of human perception, cognition, emotions, and decision-making. Reducing the 

judgment, adaptability, flexibility, and reasoning abilities of humans to a few formulae is 

certainly a simplification and such models will never fully capture the variability from individual 

to individual human. Given these limitations, however, the CHAS model can still be useful to a 

system designer, as described earlier in this Chapter. While the model makes certain inferences 
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about perceptions, expectations, and trust, these variables are secondary to the more quantifiable 

metrics, such as the frequency of interventions, the percent busy time during a mission, or overall 

system performance. Capturing the interactions and relationships between measureable human 

behavior and the underlying characteristics of human operators is an ongoing and important 

endeavor, which always has room for improvement. 

The second major limitation of the CHAS model is the need for sufficient data to validate and 

tune the causal relationships throughout the model. While the three historical data sets and new 

data set presented in this thesis were utilized in an attempt to validate as many model 

assumptions as possible, further work is necessary to validate some of the causal relationships in 

the model. For example, future work should gather additional data to characterize in more detail 

the negative, non-linear relationship between PPG, Perceived Automation Capability, and 

Human Trust. Also, it must be acknowledged that these four data sets all come from simulation-

based experiments with MIT students serving as test subjects. Thus, it remains an open question 

how these results would generalize to the broader population and non-simulation environments 

where actual, expensive UVs and potentially human lives are on the line. Finally, the need for 

prior data to tune the model means that the CHAS model is limited to assisting designers who 

aim to make evolutionary changes to existing systems. It would be desirable to assist designers 

of revolutionary systems, those that are radically different from previous systems. However, 

without some data about human interactions with the automation, such a model would not be 

accurate enough to be useful. 

It should be noted that the CHAS model was specifically tuned for the OPS-USERS testbed 

(Figure 12), and utilizes area coverage as the primary performance metric. As explained in more 

detail in Section 3.2, the area coverage metric provided beneficial features for developing and 

testing a System Dynamics model, as it is a continuous measure of performance. However, in a 

typical OPS-USERS mission, the goal is not simply to maximize area coverage, but to find and 

track moving ground targets. Thus, performance metrics such as targets found are crucial to the 

validity and usefulness of the CHAS model. Earlier versions of the CHAS model (Appendix A) 

estimated the number of targets found based on an empirical, logarithmic relationship between 

area covered and targets found. This relationship had an R
2
 value of 0.60, meaning that area 

coverage could explain 60% of the variance in targets found. While the relationship was 
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removed because it did not directly contribute to a feedback loop in the final, parsimonious 

CHAS model, it would be simple to add this relationship back to the model. Additionally, future 

work should investigate the addition of new model constructs to more accurately calculate 

targets found and other important performance metrics. 

The third major limitation of the CHAS model relates to the boundary conditions of the model. 

As described in Section 4.1.1, the “model boundary” (Sterman, 2000), or the scope of the CHAS 

model was chosen to keep the initial model simple enough to attempt to validate given the 

available experimental data. The CHAS model in its current form is limited to simulating a 

single operator in moderate to high task load missions, given the real-time human-automation 

collaborative scheduling system presented in Section 2.1. This definition includes a goal-based 

architecture (Clare & Cummings, 2011), where the vehicles are semi-autonomous and with the 

guidance of the AS, can conduct much of the mission on their own. The human operator only 

guides the high-level goals of the vehicles, as opposed to guiding each individual vehicle. This 

means that the human operator is monitoring the system and makes decisions to intervene 

throughout the mission in order to adjust the allocation of resources at a high level. The CHAS 

model would not be well-suited for modeling lower-level, manual control of robotic vehicles. 

Also, the CHAS model assumes that the operator is physically removed from the environment 

that the UVs are operating in and conducts supervisory control through a computer interface. In 

its current form, the model is not suited for modeling manned-unmanned teaming or human-

robot personal interaction.  

An additional boundary condition of the model is the assumption that the operator begins the 

mission with sufficient Situation Awareness (SA) and has a general understanding of what he or 

she is viewing on the interface, where the UVs are, which targets require tracking, etc. For the 

experimental datasets used to validate the model, all operators first went through a tutorial 

explaining the interface and a practice mission to become familiar with the system. Few order 

effects were found for the actual experiment missions (Appendix T), thus it appears that this 

assumption was an acceptable simplification. Future work could add to the model to capture the 

initial transients in operator perceptions, behavior, and workload prior to achieving SA. 

Similarly, there are often differences between novices and experts in their behavior and 

interactions with the system. As shown in Chapter 5, operators who played video games 
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frequently had higher initial trust in the AS and were able to click around the interface faster, 

accomplishing the same tasks in less time and making faster decisions. While the model attempts 

to capture these differences through a set of human and system parameters, such as Initial 

Human Trust and Length of Time to Replan, future work could further study the differences 

between novices and experts and expand the model constructs to better capture these differences. 

Finally, the CHAS model could potentially be expanded to include many other features. For 

example, consideration of teams of operators controlling teams of UVs through the addition of 

multiple feedback interactions. This would include modeling team communication, the impact of 

team structure on interaction with the automation, as well as interpersonal trust in addition to 

simply trust in the automation. Also, the CHAS model could be extended to take into account the 

impact of low task load, vigilance missions. All of the data used to build and test the CHAS 

model came from medium to high task load missions. The CHAS model would need to be tested 

on low task load experimental data and refined as necessary to take into account the negative 

impact of vigilance on human performance. Finally, the implementation of multi-UV systems in 

real-world settings will require an intensive investigation of how both operators and automation 

respond to vehicle failures, communications delays, and safety policies. All of these attributes 

could be added to a future iteration of the CHAS model. 

6.5 Summary 

This chapter presented four example use cases of the CHAS model, to illustrate how it could aid 

UV system designers. First, it was shown that designers could use the model to further 

investigate the impact of operator trust in the Automated Scheduler (AS) on system performance. 

Second, the CHAS model was used to explore a wider system design space that includes both 

traditional system components as well as human characteristics, such as cognitive overload onset 

points. Third, it was shown that through Monte Carlo simulations, the CHAS model could 

support robust system design to specifications such as maximum workload levels. Finally, 

designers can evaluate the impact of different automation characteristics, such as the need for 

certain algorithms to have time to reach consensus, on human behavior and system performance. 

Then, the CHAS model’s accuracy and features were compared with a previously developed 

Discrete Event Simulation (DES) model of human supervisory control of multiple UVs. It was 
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shown that both models replicate average utilization values for the experimental data. The CHAS 

model has three major features that build upon the MUV-DES model. First, the CHAS model 

captures feedback interactions among components. Second, the CHAS model explicitly 

represents qualitative variables such as human trust and its impact on the rate at which humans 

intervene into the operations of the team of UVs, and thus on system performance. Third, the 

CHAS model can provide predictions of continuous measures, a key attribute of all SD models. 

Both the MUV-DES model and the CHAS model have specific domains for which they are most 

appropriate. The MUV-DES model is best suited for using probabilistic distributions to 

accurately model an operator who is a serial processor of discrete tasks, such as visually 

identifying targets. The CHAS model is better suited for modeling continuous performance 

feedback that is temporally dependent and capturing the impact of qualitative variables such as 

trust. Based on this, the CHAS model has improved diagnosticity, enabling a system designer to 

more precisely characterize the reasons behind behavior and performance patterns. 

Finally, the generalizability of the model was discussed along with model limitations. The CHAS 

model could be generalized to a variety of scenarios where a human operator is collaborating 

with an automated scheduler in a goal-based architecture for real-time scheduling of multiple 

vehicles in a dynamic, uncertain environment. These scenarios could include reconnaissance 

missions, package delivery, multi-UV control, Air Traffic Control (ATC) planning, rail 

operations scheduling, manufacturing plant operations, or space satellite control. Many of these 

domains require scheduling under significant uncertainty, which means that human judgment and 

adaptability must be leveraged in order to guide automation in a collaborative scheduling 

process. Thus, appropriate trust and better feedback about the automation should lead to superior 

performance. In addition, a number of limitations of the CHAS model have been identified 

through the multi-stage validation process, the predictive validation experiment, and the potential 

uses of the CHAS model presented in this Chapter. These limitations were categorized into three 

categories: computational modeling assumptions and simplifications, the need for data to tune 

the model, and model boundary conditions. 
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7 Conclusions 

Recent advances in autonomy have enabled a future vision of single operator control of multiple 

heterogeneous Unmanned Vehicles (UVs). Real-time scheduling for multiple UVs in uncertain 

environments will require the computational ability of optimization algorithms combined with 

the judgment and adaptability of human supervisors. Automated Schedulers (AS), while faster 

and more accurate than humans at complex computation, are notoriously “brittle” in that they 

can only take into account those quantifiable variables, parameters, objectives, and constraints 

identified in the design stages that were deemed to be critical. Previous experiments have shown 

that when human operators collaborate with AS in real-time operations, inappropriate levels of 

operator trust, high operator workload, and a lack of goal alignment between the operator and AS 

can cause lower system performance and costly or deadly errors. Currently, designers trying to 

address these issues test different system components, training methods, and interaction 

modalities through costly human-in-the-loop testing. The Collaborative Human-Automation 

Scheduling (CHAS) model was developed to aid a designer of future UV systems by simulating 

the impact of changes in system design and operator training on human and system performance. 

This chapter summarizes the important results in the CHAS model’s development and validation. 

Also, this chapter evaluates how well the research objectives were met, suggests potential future 

work, and presents the key contributions of this thesis. 

7.1 Modeling Human-Automation Collaborative Scheduling 

Real-time human-automation collaborative scheduling of multiple UVs was defined as a 

potential future method for a single human operator to control multiple heterogeneous UVs (air, 

land, sea) by guiding an Automated Scheduler (AS) in a collaborative process to create, modify, 

and approve schedules for the team of UVs, which are then carried out by the semi-autonomous 

UVs. The representative setting for this thesis was a reconnaissance mission to search for an 

unknown number of mobile targets. The mission scenario was multi-objective, and included 

finding as many targets as possible, tracking already-found targets, and neutralizing all hostile 

targets. Scheduling was defined in this thesis as creating a temporal plan that assigns 

tasks/targets among the team of heterogeneous UVs, determines when the tasks will be 

completed, and takes into account capability, location, and timing constraints. In order to 
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conduct this mission in uncertain, dynamic environments, a human operator would need to 

collaborate with a decentralized AS through a goal-based architecture to guide the team of UVs.  

Based on this definition, a review of previously developed relevant models of humans in 

scheduling and control situations was conducted to evaluate their applicability to the 

representative setting. The review identified crucial gaps with regards to real-time human-

automation collaborative scheduling of multiple UVs. Previous computational models did not 

capture the feedback interactions among important aspects of human-automation collaboration, 

the impact of AS characteristics on human behavior and system performance, and the impact of 

qualitative variables such as trust in automated scheduling algorithms. 

7.1.1 CHAS Model 

Through a review of the relevant literature, six attributes that were important to consider when 

modeling real-time human-automation collaborative scheduling were identified, providing a 

theoretical basis for the model proposed in this thesis. These attributes were attention allocation 

and situation awareness, cognitive workload, trust in automation, human learning, automation 

characteristics, and human value-added through interventions.  

A computational model was then developed that incorporated all of these attributes. Following 

the System Dynamics (SD) modeling process, a previous experimental data set was analyzed, 

which led to the creation of a dynamic hypothesis: if operators can either a) anchor to the 

appropriate trust in the AS and expectations of performance earlier in the mission and/or b) 

adjust their trust and expectations faster through better feedback about the AS, then system 

performance should improve. Using this dynamic hypothesis, the data analysis, and prior 

literature in human supervisory control, three major feedback loops were developed. These 

feedback loops were implemented into a SD simulation model, the Collaborative Human-

Automation Scheduling (CHAS) model. The CHAS model utilizes SD constructs (stocks, flows, 

causal loops, time delays, feedback interactions) to model real-time human-automation 

collaborative scheduling of multiple UVs. 
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7.1.1.1 Model Inputs and Outputs 

The exogenous input parameters to the CHAS model, which a system designer could use to 

explore the design space, consist of four categories: 

 System characteristics: Operators engaged in these dynamic, high workload environments 

must both concentrate attention on the primary task (e.g., monitoring vehicle progress and 

identifying targets) and also be prepared for various alerts, including incoming chat messages 

or automation notifications about potential changes to the vehicle schedules. Thus, the first 

category of input variables includes the Nonscheduling Task Load (NST) that an operator 

must deal with, as compared to the scheduling activities that the operator chooses to conduct. 

Also, the total amount of area to be searched during the reconnaissance mission is considered 

a system characteristic. 

 Automation characteristics: The model explicitly represents the contribution of the 

automation to the performance of the system. This provides the system designer with the 

ability to quantitatively evaluate the impact of improved automation, such as a better search 

algorithm, on the performance of the system and potentially on the operator’s trust level and 

workload. Also, the model uses an exogenously defined, non-linear relationship to capture 

the effect of operator interventions on the automation and thus on system performance. As 

described in Chapter 6, this could potentially allow a system designer to investigate the 

impact of evolutionary changes to a current system, such as using a different AS, on human 

and system performance. 

 Human-automation interaction time lengths and frequencies: The length of time that an 

intervention takes is modeled as an input parameter. Interventions by the human operator can 

include replanning to request a new schedule from the AS or creating a search task to guide 

the search pattern of the team of UVs. If the designer is able to reduce the time that these 

interactions take or influence the frequency of these interventions, the impact on operator 

workload and performance can be evaluated. 

 Human characteristics: The initial conditions of the human operator (i.e. initial trust level) 

are modeled as input parameters. In addition, the CHAS model assumes that a number of 

human characteristics and time constants (i.e. the time constant for adjusting trust) are static 

and could be modeled as exogenous parameters. These parameters can capture a variety of 
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human attributes, including the impact of previous experiences with automation and video 

games. Finally, a set of non-linear relationships, such as the impact of cognitive workload on 

human value added to system performance, were estimated from experimental data where 

possible and are set by exogenous input parameters or table functions. Chapter 5 

demonstrated the impact of changing the initial trust level of human operators on 

performance. Also, as described in Chapter 6, by varying these non-linear relationships, the 

impact of different cognitive overload onset points on performance can be modeled. 

All of these inputs could also be studied as outputs. In addition, the CHAS model provides a 

number of endogenously-calculated variables that a designer might be interested in capturing. A 

designer could investigate system performance by analyzing the rate of area coverage or the total 

area coverage by the end of the mission. Changes in human trust in the AS can be captured, 

which can be beneficial for the designer to understand, as both undertrust (Clare, Macbeth, et al., 

2012) and overtrust (Parasuraman & Riley, 1997) in automation have been shown to hurt the 

performance of a system. The rate at which a human operator decides to intervene can be 

analyzed. This can be important for a system designer to know, for example, to analyze the 

impact of communications delays between the operator and the vehicles in a decentralized 

network of UVs (Southern, 2010). The effect of alternative system designs on the workload of 

the operator can also be captured. Since operator workload is a key driver of human 

performance, the ability to design a future UV system with an understanding of the impact on 

operator workload is crucial. 

7.1.1.2 Model Benefits 

The CHAS model addresses three gaps with regards to real-time human-automation 

collaborative scheduling of multiple UVs that were identified among the previously developed 

models reviewed in Chapter 2. First, the CHAS model captures the feedback relationships among 

perception, workload, trust, decision-making, and performance. Components are not static in the 

CHAS model, but can change over time throughout the simulation of a mission due to feedback 

interactions. Second, the CHAS model captures crucial details of the automation used in a real-

time human-automation scheduling system. These details include the contribution of the 

automation to the performance of the system and the impact of operator interventions to guide 

the automation on system performance. This provides a system designer with the ability to 
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quantitatively evaluate the impact of different algorithms and interaction modalities on system 

performance and operator trust and workload. Third, the model explicitly represents human trust 

and its impact on the rate at which humans intervene into the operations of the team of UVs. The 

dynamics of trust are captured by enabling trust to adjust over time throughout the mission with 

some inertia. The alignment of human and AS goals influences both their expectations of how 

well the system should perform and their perception of the capability of the AS, both of which 

are captured in the model. 

By addressing the three gaps above, the CHAS model built upon a previously developed Discrete 

Event Simulation (DES) model of human supervisory control of multiple UVs (Nehme, 2009). In 

Chapter 6, it was shown that both models can successfully replicate average utilization values for 

experimental data. However, the DES model and the CHAS model have specific domains for 

which they are most appropriate. The DES model is best suited for using probabilistic 

distributions to accurately model an operator who is a serial processor of discrete tasks, such as 

visually identifying targets. The CHAS model is better suited for modeling continuous 

performance feedback that is temporally dependent and capturing the impact of qualitative 

variables such as trust. Based on this, the CHAS model enables diagnosticity, allowing a system 

designer to more precisely characterize the reasons behind behavior and performance patterns. 

The CHAS model can aid a designer of future UV systems in predicting the impact of changes in 

system design and operator training. This can reduce the need for costly and time-consuming 

human-in-the-loop testing that is typically required to evaluate such changes. It can also allow 

the designer to explore a wider trade space of system changes than is possible through 

prototyping or experimentation. The CHAS model can be used to investigate the impact of trust 

level on performance, explore the design space for operators with different levels of cognitive 

overload onset, aid in designing systems to workload specifications, and investigate the impact 

of neglect benevolence time for decentralized algorithms to stabilize on human and system 

performance. These four potential applications are discussed further in Section 7.2. 
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7.1.2 Model Confidence 

Through a multi-stage validation process, the CHAS model was tested on three experimental 

data sets to build confidence in the accuracy and robustness of the model under different 

conditions. Additionally, a new human subject experiment was conducted to evaluate the ability 

of the CHAS model to predict the impact of changes in system design and operator training on 

human and system performance. The experiment had three independent variables: priming to 

influence initial operator trust, a system design change to prime expectations of system 

performance, and a time delay in feedback on system performance. The experiment gathered 

near real-time data on operator perceptions of performance, expectations of how well the system 

should be performing, and trust in the AS. All three of these variables were essential to the 

CHAS model and collecting this data enabled the evaluation of model assumptions. While no 

model can ever be truly validated, results from both the replication and predictive validation 

testing have built confidence in the CHAS model’s accuracy and robustness, which are discussed 

in more detail below.  

7.1.2.1 Model Accuracy 

First, the CHAS model was able to replicate the results of the real-time human-automation 

collaborative scheduling experiment that provided data to inform construction of the model. The 

model was able to capture the differences in system performance and rates of intervention 

between high and low performers. The model was also able to accurately simulate changes in 

output variables over time, including the decline in workload throughout the mission. 

Additionally, the model replicated oscillations in intervention rate which were seen in the data 

set, as operators sought the appropriate level of trust and the rate of intervention that would 

produce performance that matched their expectations. 

Second, a slightly modified version of the CHAS model was able to replicate the results of a 

second experiment in which operators were subjected to a much higher task load. The model 

replicated the impact of different replan prompting intervals accurately by showing an increase 

in workload, a change in search task intervention rates, and no significant difference in 

performance between the two groups. The model’s predictions of system performance were 

accurate because the model simulated the negative impact of cognitive overload. This built 
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confidence in the model’s method of capturing the impact of cognitive overload on human 

decision-making and system performance. 

Third, as an external validation, a tailored version of the CHAS model was also used to replicate 

a data set from a multi-robot Urban Search and Rescue (USAR) experiment. The only major 

change to model structure was a simplification of the workload calculation. The model 

accurately captured the impact of an increased rate of interventions on system performance. The 

long-term learning behavior of operators in the data set was accurately replicated, as operators 

adjusted their expectations of performance and trust in the automation over time. Once again, the 

model captured the diminishing returns of extremely high rates of interventions due to cognitive 

overload. This external validation test demonstrated the ability to generalize the model for use 

with other real-time human-automation collaborative scheduling systems. 

Fourth, the predictive accuracy of the model was tested through a new human subject 

experiment. Test subjects who play computer and video games frequently were found to have a 

higher propensity to over-trust automation. By priming these gamers to lower their initial trust to 

a more appropriate level, system performance was improved by 10% as compared to gamers who 

were primed to have higher trust in the AS. The CHAS model provided accurate quantitative 

predictions of the impact of priming operator trust on system performance. Also, system design 

changes were implemented in the experiment to influence operator expectations and perceptions 

of performance. When provided with accurate input data on operator responses to these system 

design changes, the CHAS model made accurate predictions of the impact on system 

performance. 

Both quantitative and qualitative data from this experiment validated a number of the 

assumptions in the CHAS model. Operators adjusted their expectations of performance over 

time, supporting the need for an expectations adjustment feedback loop in the CHAS model. 

Results showed that as operators perceived that the AS was performing below their expectations, 

they lost trust in the AS. Finally, experimental data supported the overall dynamic hypothesis of 

the CHAS model, showing that high performers anchored to the appropriate level of trust early in 

the mission, understanding the imperfections in the automation and compensating to improve 

system performance. 
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7.1.2.1 Model Robustness 

In addition to testing the model’s ability to accurately replicate experimental data, the validation 

tests presented in Chapter 4 also evaluated the model’s robustness under a variety of conditions.  

First, the adequacy of the model boundary was evaluated by comparing the endogenous and 

exogenous variables in the model to determine whether the model was appropriate for the 

purpose for which it was built and whether the model included all relevant structure. Also, tests 

were conducted to show that the model structure captures important aspects of real-time human-

automation collaborative scheduling, such as the tension between the positive impact of operator 

interventions and the effectiveness of those interventions once the operator is cognitively 

overloaded. 

Second, a set of extreme conditions tests were conducted and in all cases, the model behaved as 

expected. Through the use of logit curves to characterize key causal relationships, the model was 

robust to extreme conditions such as large differences between expected and perceived 

performance. In addition, an integration error tested demonstrated that the model was robust to 

changes in the time step and integration method used for simulation. 

Third, a numerical sensitivity analysis was conducted to evaluate whether model outputs change 

in important ways when there are errors in parameter estimates. The analysis demonstrated that 

the model is not overly sensitive to errors in parameter values, but did indicate that accurately 

estimating certain relationships, such as the impact of interventions on system performance, is 

crucial to model accuracy. Through human subject experiments, sufficient data can be gathered 

to estimate these relationships, enabling accurate model replications and predictions.  

Finally, through Monte Carlo simulations, the CHAS model was able to characterize the impact 

of human variability on system performance. The CHAS model is able to provide a system 

designer with a prediction of not only the average value of system performance or workload, but 

also the plausible range of performance or workload that could occur. This is beneficial to a 

system designer who wants to evaluate the impact of system changes on the boundary conditions 

of system design. 
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7.1.3 Model Generalizability and Limitations 

One of the aims of this research was to create a model that was generalizable to a variety of 

scenarios where a human operator is collaborating with an automated scheduler for real-time 

scheduling of multiple vehicles in a dynamic, uncertain environment. These scenarios could 

include searching a designated area, finding and tracking moving targets, visiting designated 

locations for delivery or pickup, etc. Regardless of whether an operator is collaborating with an 

AS for real-time multi-UV control, Air Traffic Control (ATC) planning, rail operations 

scheduling, manufacturing plant operations, or space satellite control, appropriate trust and better 

feedback about the automation should lead to superior performance. Many of these domains 

require scheduling under significant uncertainty, which means that human judgment and 

adaptability should be leveraged in order to guide automation in a collaborative scheduling 

process. While the method by which humans add value depends on the specific system being 

modeled, it was shown in Chapter 6 that the CHAS model can be applied to a variety of system 

design problems across a number of domains that involve real-time human-automation 

collaborative scheduling. 

In addition, a number of limitations of the CHAS model have been identified through the multi-

stage validation process. These limitations were categorized in Chapter 6 into three categories. 

First, the CHAS model is a computational model of human behavior and decision-making and 

thus makes a number of simplifications and assumptions about the complexities of human 

perception, cognition, emotions, and decision-making. However, capturing the interactions and 

relationships between measureable human behavior and the underlying characteristics of human 

operators is an ongoing and important endeavor, which always has room for improvement. 

Second, the CHAS model requires sufficient data to validate and tune the causal relationships 

throughout the model. Thus, the model is limited to assisting designers who aim to make 

evolutionary changes to existing systems. Third, the CHAS model in its current form is limited 

to simulating single operator, moderate to high task load missions, within the definition of real-

time human-automation collaborative scheduling presented in Section 2.1. This definition 

includes a goal-based architecture (Clare & Cummings, 2011), where the vehicles are semi-

autonomous and with the guidance of the AS, can conduct much of the mission on their own. 

The human operator only guides the high-level goals of the vehicles, as opposed to guiding each 
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individual vehicle. In addition, the CHAS model assumes that the operator is physically removed 

from UV environment, thus there is no direct human-robot interaction. Finally, the CHAS model 

does not consider vehicle failures, communications delays, and safety policies. These boundary 

conditions are addressed further in Section 7.3 on future work. 

7.2 Model Applications 

Four example applications of the CHAS model were presented in Chapter 6, to illustrate how the 

model could potentially be used by UV system designers. First, designers can use the CHAS 

model to further investigate the impact of operator trust in the Automated Scheduler (AS) on 

system performance. It was shown that the optimal level of trust in the AS and the optimal 

intervention rate to maximize system performance could be estimated, given the tradeoff 

between operator interventions to coach the suboptimal automation and the impact of operator 

cognitive overload.  

Second, the CHAS model can be used to explore a wider system design space that includes both 

traditional system components as well as human characteristics, such as the cognitive overload 

onset point. The model was able to demonstrate that operators with higher tolerances for 

workload could be prompted to intervene more frequently to enhance system performance 

without inducing cognitive overload. 

Third, the CHAS model can support requirements generation for meeting system design 

specifications, such as maximum workload levels. System designers could utilize the CHAS 

model with Monte Carlo simulations to evaluate the impact of different workload specifications 

or design interventions on both average performance and the expected range of performance. 

Maximizing the minimum expected performance is a common technique in robust optimization 

(Bertsimas & Thiele, 2006), and it was shown that this technique could potentially be adopted by 

designers of collaborative human-automation systems. 

Finally, designers can evaluate the impact of different automation characteristics on human 

behavior and system performance. For example, the concept of “neglect benevolence” (Walker, 

et al., 2012), where certain decentralized algorithms may need time to reach consensus, was 

implemented in the CHAS model. The CHAS model replicated the fact that operators who 
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intervene too frequently when collaborating with this type of automation may negatively impact 

the performance of the automation. 

7.3 Future Work 

Three main areas of future work have been identified: model refinements, model extensions, and 

recommendations for human-automation collaborative scheduling system designers and 

researchers.  

First, there are a number of ways that the existing CHAS model could be refined to provide more 

accurate simulations of a variety of different systems. These include: 

 Modeling additional human characteristics endogenously. While the CHAS model assumed 

that a number of human time constants (i.e. the time constant for adjusting trust) were static 

and could be modeled as exogenous parameters, future work should analyze whether these 

assumptions were valid or whether these characteristics should be modeled endogenously. 

Also, additional human characteristics such as experience using the system could be 

explicitly added to the model. 

 Adding additional causal relationships to the model. For example, qualitative data from the 

new human subject experiment indicated that under high workload situations, operators tend 

to rely on automation in order to reduce their workload. Whether or not this actually indicates 

an increase in trust is debatable, as it may simply be an increase in reliance due to cognitive 

overload. While the CHAS model captures the direct impact of high workload on the value 

that humans can add to system performance, this interesting interaction between high 

workload and reliance on automation is not currently captured in the model, but should be 

explored in future work. Additionally, a more sophisticated model of operator decisions to 

replan would increase model accuracy. This model should also include the fact that creating 

new search tasks would not have a positive impact system performance if the operator does 

not replan to assign these search tasks to the team of UVs. Finally, automation learning and 

adaptation could be modeled in addition to human learning. 

 Implementing a non-linear representation of Nonscheduling Task Load (NST). This could 

replicate the rise and fall of NST that was seen in experimental data. Alternatively, the 
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CHAS model could be driven with external data that contains accurate NST information for 

each mission. 

 Refining the implementation of the cognitive overload loop. As part of testing the 

applicability of the CHAS model to systems with different automation characteristics, it was 

observed that the model does not capture that fact that even ineffective interventions under 

conditions of cognitive overload can continue to negatively impact decentralized algorithms. 

Future work should address this limitation of the model. 

 Adding additional constructs to the model to capture the initial transients in operator 

perceptions, behavior, and workload prior to achieving SA. Similarly, the model could be 

expanded to better capture the differences between novices and experts when performing 

real-time human-automation collaborative scheduling. Further model structure could also be 

added to calculate different performance metrics, such as targets found, which are important 

to real-time human-automation collaborative scheduling missions. 

Second, there are a number of ways that the existing CHAS model could be extended to simulate 

different types of human-automation collaborative scheduling situations. These include: 

 Consideration of teams of operators controlling teams of UVs. This would include modeling 

team communication, the impact of team structure on interaction with the automation, as well 

as interpersonal trust in addition to simply trust in the automation. 

 Modeling the impact of low task load, vigilance missions. All of the data used to build and 

test the CHAS model came from medium to high task load missions. The CHAS model 

should be tested on low task load experimental data and refined as necessary to take into 

account the negative impact of vigilance on human performance. 

 The CHAS model could potentially be expanded to include many other features, such as the 

impact of vehicle failures, communications delays, and safety policies. All of these attributes 

were excluded from the model boundary to keep the initial model simple. Also, all model 

validation data came from simulation-based experiments that did not incorporate vehicle 

failures, communications delays, or safety policies. However, the implementation of multi-

UV systems in real-world settings will require an intensive investigation of how both 

operators and automation respond to all of these attributes. 
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Third, from the results of the new human subject experiment, design recommendations and 

insights for the creators of scheduling algorithms and the designers of collaborative interfaces 

were developed: 

 A number of the qualitative comments from the human subject experiment (Section 5.7.4) 

indicated that operators lost trust in the automation because they did not always understand 

the decisions that the automation was making. Thus, rather than training operators to 

understand the way the automation makes decisions, automation designers should develop 

methods that enable the automation to provide reasons for scheduling decisions. Also, 

interface designers should find innovative methods to display this information to operators. 

 The CHAS model can assist researchers in quantitatively assessing the impact of different 

automated scheduling algorithms. First, the model explicitly represents the contribution of 

the automation to the performance of the system through the Automation Generated Search 

Speed variable. This provides the system designer with the ability to quantitatively evaluate 

the impact of improved automation, such as a faster search algorithm, on the performance of 

the system, as well as potentially on the operator’s trust level, intervention rate, and 

workload. Second, the model takes as an exogenous parameter the average Length of Time to 

Replan. If an algorithm designer reduces the time that the AS takes to generate a new 

schedule, the impact on operator workload and overall system performance can be evaluated. 

Additionally, it might be shown quantitatively that additional improvements in schedule 

generation speed beyond a certain point have diminishing returns for operator workload and 

system performance, and thus some less complex, more predictable, yet potentially “slower” 

algorithms may, in fact, be fast enough for real-time human-automation collaborative 

scheduling. Such an approach could indicate whether more effort should be put into reducing 

computation time versus improving the robustness of the algorithm. Third, the model 

captures the effect of operator interventions on the human-automation collaboration and thus 

on system performance. This effect is implemented in the model using an empirically 

derived, non-linear relationship between the search task rate and human value added which is 

specific to the AS used in the testbed. As demonstrated in Section 6.1.4, the CHAS model 

could potentially allow a system designer to investigate the impact of a different AS on 

human and system performance. The empirical relationship between operator interventions 



236 

 

and the value that the human adds to system performance could be adjusted for a new AS 

using, for example, data on the neglect time necessary for algorithm stabilization (Walker, et 

al., 2012). 

 Both quantitative and qualitative data from the experiment indicated that the reference line 

on the performance plot may have been set too high for the test subjects who experienced 

High Real Time Priming, leading to a sense that the goal was unachievable and lower ratings 

of confidence. It also led to a shifting of responsibility, where some operators placed all 

blame for poor system performance on the automation. In contrast, another group of test 

subjects had a low reference line on the performance plot which provided positive 

reinforcement to operators, increasing their confidence. Future work should further explore 

the impact of expectation setting, including whether a more achievable reference 

performance curve could cause the intended effect of pushing operators to intervene more 

frequently without lowering operator confidence. 

 Future work should further explore the impact of gaming on the behavior and performance of 

UV operators. A more detailed and structured demographic questionnaire on gaming activity 

could enable deeper analysis of the impact of different types of gaming, i.e. shooter vs. real-

time strategy games. 

 It is crucial to accurately capture the impact of delays in human perception of system 

performance when modeling human-automation collaborative scheduling of multiple UVs. 

Thus, future research should further explore the impact of real-world communications delays, 

such as delaying or restricting information displayed to the operator, on operator behavior, 

trust, and system performance. Also, future research could utilize eye tracking devices for a 

more precise estimate of human perception patterns and delays. 

7.4 Contributions 

The objective of this thesis was to develop and validate a computational model of real-time 

human-automation collaborative scheduling of multiple UVs that could be used to predict the 

impact of changes in system design and operator training on human and system performance. In 

striving to achieve this objective, several contributions have been made to the domain of human-

automation collaboration research. These include theoretical, modeling, and experimental design 

contributions, which are discussed below. Additionally, this thesis begins to fill an 
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interdisciplinary research gap among the fields of human factors, autonomy, and complex system 

modeling by adapting System Dynamics modeling techniques to model human-automation 

collaboration for the control of multiple semi-autonomous UVs. 

Three research questions were posed in Chapter 1 to address this objective. By answering the 

first question, “What are the major attributes and interactions that a model of real-time human-

automation collaborative scheduling must capture?” this thesis resulted in the: 

 Identification of six attributes that are important to consider when modeling real-time human-

automation collaborative scheduling, providing a theoretical basis for the model developed in 

this thesis. The attributes are: attention allocation and situation awareness, cognitive 

workload, trust in automation, human learning, automation characteristics, and human value-

added through interventions. 

 Development and initial validation of a dynamic hypothesis of human-automation 

collaborative scheduling: if operators can either a) anchor to the appropriate trust in the 

automation and expectations of performance earlier in the mission and/or b) adjust their trust 

and expectations faster through better feedback about the automation, then system 

performance should improve. 

By answering the second question, “Can the model be used to predict the impact of changes in 

system design and operator training on human and system performance?” this thesis resulted in 

the: 

 Implementation and initial validation of a System Dynamics (SD) simulation model, the 

Collaborative Human-Automation Scheduling (CHAS) model. The CHAS model utilizes SD 

constructs (stocks, flows, causal loops, time delays, feedback interactions) to model real-time 

human-automation collaborative scheduling of multiple UVs. 

 Successful quantitative prediction of the impact of a priori priming of trust in automation on 

test subjects who play computer and video games frequently. These gamers were found to 

have a higher propensity to over-trust automation and lowering their initial trust level helped 

them recognize the imperfections in the automation. This encouraged them to intervene more 

frequently to coach the suboptimal automation, leading to an improvement in system 

performance. 
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Finally by answering the third set of questions, “What level of accuracy can be expected of this 

model? How does it compare to other relevant models? What are the boundary conditions of the 

model?” this thesis resulted in the: 

 Quantification of the non-linear relationships, in a very specific instantiation, for human trust 

in automation, the rate of human interventions to guide automation, and the impact of 

intervention rate on automation and system performance. These relationships were quantified 

using data from two different simulation testbeds, demonstrating the positive effects of initial 

increases in intervention rate along with the diminishing returns of high rates of intervention. 

 Novel use of a real-time survey to gather data on operator perceptions of performance, 

expectations of how well the system should be performing, and trust in automation. This 

survey was able to gather valuable data to evaluate model assumptions without substantially 

increasing operator workload. 

Real-time scheduling in uncertain environments is crucial to a number of domains, especially 

UV operations. With the ever-increasing demand for UVs for both military and commercial 

purposes, inverting the operator-to-vehicle ratio will become necessary. Real-time scheduling for 

multiple UVs in uncertain environments will require the computational ability of optimization 

algorithms combined with the judgment and adaptability of human supervisors. Despite the 

potential advantages of human-automation collaboration, inappropriate levels of operator trust, 

high operator workload, and a lack of goal alignment between the operator and automation can 

cause lower system performance and costly or deadly errors. The CHAS model can support 

designers of future UV systems working to address these challenges by simulating the impact of 

changes in system design and operator training on human and system performance. This could 

help designers save time and money in the design process, enable the exploration of a wider 

trade space of system changes than is possible through prototyping or experimentation, and assist 

in the real-world implementation of multi-vehicle unmanned systems. 
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Appendix A: Model Reduction Process 

The CHAS model underwent significant iteration, including a model reduction process. The 

original CHAS model (Figure 77) had many more parameters, modules, and feedback loops than 

the parsimonious model presented in Chapter 3. The goal of this reduction process was to 

determine which modules were necessary through progressive “loop knockout” tests. Known as 

“behavior anomaly” testing (Sterman, 2000), if a loop knockout test generates anomalous 

behavior, it suggests the importance of the loop. The reduction process consisted simply of 

evaluating whether there was an increase, decrease, or no change in the goodness of fit for seven 

variables that could be compared to experimental data, using the data set described in Chapter 

3.2. These variables were: area coverage, length of time to replan, utilization, the probability of 

performing a what-if assignment, the probability of modifying the objective function of the AS, 

search task rate, and replan rate. Three major modules that were removed following loop 

knockout tests are presented below. 

Short-Term Learning 

The first module to be removed was the “Short-Term Learning” module. The original intention 

of this module was to capture learning effects as operators became more comfortable using the 

interface and evaluating schedules. Both the experimental data set presented in Chapter 3.2 and 

the experiment presented in Chapter 5 had data showing that operators became faster at 

replanning over time through the mission. Thus, the Short-Term Learning module was important 

to the fit of the model with regards to length of time to replan. Once the module was removed, 

however, there was no change in the fit of the model to the area coverage performance metric or 

probability of a what-if assignment. The fit of the utilization and probability of modifying the 

objective function fit decreased, while the search task rate and replan rate fit improved. Thus, it 

was decided to remove the Short-Term Learning module, as removing it did not change the fit to 

the primary performance metric and actually improved the fit to important intervention metrics.  
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Figure 77. Original CHAS model with removed and modified modules shown. 
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By removing the Short-Term Learning module, it reduced the number of exogenous parameters 

in the model by 2 and the number of endogenous variables by 3. As opposed to modeling the 

length of time to replan as an endogenous variable that changed over time based on a learning 

curve, the CHAS model now captured the length of time to replan as a static exogenous 

parameter. It should be noted that the Short-Term Learning module could always be re-instated 

in the model if the system being modeled had a significant short-term learning curve. 

Automation Capability 

The second module to be removed was the “Automation Capability” module. This module 

assumed that the operator perceived the capability of the automation separately from the 

performance of the overall system, which is likely true, but a fine distinction. Written feedback 

from test subjects (Clare, Cummings, How, et al., 2012) indicated that operators often perceived 

the capability of the AS based on the tasks that the AS chose to assign in resource constrained 

situations. For example, one operator wrote, “I did not always understand decisions made by the 

automated scheduler…namely it would not assign tasks…while some vehicles were seemingly 

idle.” Another operator wrote "The automated scheduler would assign a different UAV [to a 

task] than I would have picked.”  

Thus, this module attempted to capture the capability of the AS by relating the number of 

unassigned tasks to AS capability. The AS often could not assign all available tasks due to UV 

resource shortages, which is representative of real world constraints. In order to model the 

number of unassigned tasks, the module first calculated the number of targets that had been 

found based on an empirical relationship between area coverage and targets found. It also 

maintained a stock of “Tasks to Do” based on the search task creation rate and the average time 

to complete search tasks. Combining the number of targets to track with the Tasks to Do stock 

enabled estimation of the number of unassigned tasks and perceived automation capability.  

In the pursuit of a parsimonious model, it was desirable to evaluate the potential impact of 

removing the Automation Capability module. However, in order to remove the Automation 

Capability module, the Trust module also needed to be modified. Instead of calculating the 

perception of AS capability from the number of unassigned tasks, it was modified to use the 

Perceived Performance Gap (PPG), as described in Chapter 3. The model now assumes that the 
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operator’s perception of the capability of the AS is directly related to the operator’s overall 

perceptions and expectations of system performance, as opposed to a distinct perception of the 

automation capability based on the number of unassigned tasks in the schedule. 

In the test that removed the Automation Capability module and modified the Trust module, there 

was no change in the fit of the model to the area coverage performance metric, utilization, search 

task rate, or replan rate. The fit to the probability of modifying the objective function fit and 

probability of a what-if assignment decreased. However, the cluster analysis presented in Section 

3.2 found no significant differences in the probability of modifying the objective function or the 

probability of a what-if assignment between high and low performers. While these may be 

important measures of operator interaction with the AS, there was a lack of evidence that these 

specific interventions influenced the primary performance metric in the experimental data, and 

thus they were removed from the model. This specific change reduced the number of exogenous 

parameters in the model by 4 and the number of endogenous variables by 4. 

With the probability of modifying the objective function fit and probability of a what-if 

assignment no longer in the model, it was decided to permanently remove the Automation 

Capability module and modify the Trust module to simplify the model. By removing the 

Automation Capability module, it reduced the number of exogenous parameters in the model by 

5 and the number of endogenous variables by 7. However, the relationship between PPG and 

Perceived Automation Capability in the Trust module required two new exogenous parameters to 

define the non-linear logit relationship (Section 3.4.4). 

Decision to Intervene 

The final major change to the model involved removing the Decision to Intervene module and 

simplifying the Intervention module. A key assumption in the original Decision to Intervene 

module was that the operator’s desire to make a schedule change could be modeled as a 

continuously increasing function based on his or her Perceived Performance Gap (PPG), 

followed by a discrete decision to intervene based on a threshold. There is some precedence in 

the SD literature for modeling a decision-making process in this manner, for organizational 

change (Sastry, 1995) and in high-risk, time-critical environments such as emergency operating 

rooms (Rudolph, et al., 2009). Thus, the Decision to Intervene module contained novel mixed 
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continuous/discrete modeling elements. The model represented the operator’s Desire to Make a 

Schedule Change as a stock that increased when there was a positive PPG, when the operator’s 

expectation of performance was higher than the perceived present performance. Once the 

operator’s desire to intervene was greater than a threshold, a discrete intervention event occurred, 

causing the operator’s Desire to reset to zero. The interventions that were chosen for this model 

were creating a search task and replanning. The model components shown in the original 

Intervention module convert the discrete intervention events back into continuous variables 

through the use of a pipeline delay function. 

Once again, in the pursuit of a parsimonious model, it was desirable to evaluate the potential 

impact of removing the Decision to Intervene module. In order to remove the Decision to 

Intervene module and simplify the Intervention module, two major changes were made. First, the 

model was modified to have Human Trust drive decisions to intervene in terms of search task 

creation and replanning. This removed the need for a “Desire to Intervene” stock, which did not 

have real-world meaning and would be impossible to measure. Second, the model calculated a 

continuous “search task rate” and “replan rate” directly from Human Trust, without the use of 

continuous to discrete to continuous conversions.  

In the test that removed the Decision to Intervene module and simplified the Intervention 

module, there was no change in the fit of the model to the area coverage performance metric or 

to utilization. However, the fit to search task rate and replan rate both improved. Thus, this 

change was made permanent. This reduced the number of exogenous parameters in the model by 

12 and the number of endogenous variables by 11. However, the relationship between Human 

Trust and Search Task Rate in the Intervention module required four new exogenous parameters 

to define the non-linear logit relationship (Section 3.4.5). 

Other additional minor changes to the model were made, but the major modules and feedback 

loops remained the same from this point on to the final parsimonious model presented in Chapter 

3. 
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Appendix B: Time Series Data Analysis 

This section presents additional data and statistics for time series data analysis discussed in 

Section 3.2.2. Two separate clustering analyses were conducted, with the first analysis using 

total area coverage by the end of the mission as the clustering metric, and the second analysis 

using total number of targets found by the end of the mission. A hierarchical clustering was 

conducted using Ward’s Method to determine the number of clusters. Afterwards, the k-means 

algorithm was used to assign missions to clusters. Following clustering, two performance 

metrics, one measure of workload, and five operator action measures were compared between 

the high and low performance clusters for each performance metric. These measures were: area 

coverage, targets found, utilization, length of time to replan, the probability of performing a 

what-if assignment, the probability of modifying the objective function of the AS, search task 

rate, and replan rate. 

The first analysis used area coverage by the end of the mission as the clustering metric. Three 

clusters were identified: low, medium, and high performance groups. Of the total 60 missions, 

there were 11 missions in the High Performance cluster and 26 missions in the Low Performance 

cluster. A comparison of the performance metrics between the high and low clusters is shown in 

Figure 78. Workload and operator action metrics are shown in Figure 79. All 8 metrics were 

evaluated with a repeated measures ANOVA and the results are summarized in Table 15. There 

were significant differences between the performance clusters in terms of 3 of the operator action 

metrics: length of time to replan, search task rate, and replan rate. 

 
(a)       (b) 

Figure 78. Performance metrics for cluster analysis based on area coverage. (a) Area Coverage. (b) Targets 

Found. Standard Error bars shown. 
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(a)       (b) 

  
(c)       (d) 

  
(e)       (f) 

Figure 79. Workload and operator action metrics for cluster analysis based on area coverage. (a) Utilization. 

(b) Length of time to replan. (c) Probability of performing a what-if assignment. (d) Probability of modifying 

the objective function of the AS. (e) Replan rate. (f) Search task rate. Standard Error bars shown. 
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Table 15. Summary of repeated ANOVA results for cluster analysis based on area coverage. 

Metric Main Effect for 

Performance Cluster 

(2 levels: High and Low) 

Main Effect for Time 

(10 time intervals) 

Interaction Effect 

Between Time and 

Performance Cluster 

Area Coverage F(1,35) = 145.801, 

p < 0.001 

F(9,315) = 1652.294, 

p < 0.001 

F(9,315) = 46.441, 

p < 0.001 

Targets Found F(1,35) = 0.300, 

p = 0.587 

F(9,315) = 259.299, 

p < 0.001 

F(9,315) = 1.744, 

p = 0.078 

Utilization F(1,35) = 2.472, 

p < 0.125 

F(9,315) = 16.215, 

p < 0.001 

F(9,315) = 0.580, 

p = 0.814 

Length of time to replan F(1,27) = 5.910, 

p = 0.022 

F(9,243) = 0.402, 

p = 0.933 

F(9,243) = 0.625, 

p = 0.775 

Probability of performing a 

what-if assignment 

F(1,27) = 3.799, 

p = 0.062 

F(9,243) = 1.060, 

p = 0.393 

F(9,243) = 1.020, 

p = 0.425 

Probability of modifying the 

objective function of the AS 

F(1,27) = 0.096, 

p = 0.759 

F(9,243) = 2.272, 

p = 0.018 

F(9,243) = 0.837, 

p = 0.583 

Replan rate F(1,35) = 10.485, 

p = 0.003 

F(9,315) = 2.705, 

p = 0.005 

F(9,315) = 1.520, 

p = 0.140 

Search task rate F(1,35) = 18.697, 

p < 0.001 

F(9,315) = 2.517, 

p = 0.009 

F(9,315) =1.299, 

p = 0.236 

 

The second analysis used targets found by the end of the mission as the clustering metric. Three 

clusters were identified: low, medium, and high performance groups. Of the total 60 missions, 

there were 14 missions in the High Performance cluster and 13 missions in the Low Performance 

cluster. A comparison of the performance metrics between the high and low clusters is shown in 

Figure 80. Workload and operator action metrics are shown in Figure 81. All 8 metrics were 

evaluated with a repeated measures ANOVA and the results are summarized in Table 16. There 

were no significant differences found between the performance clusters in terms of the 5 operator 

action metrics. 

 
(a)       (b) 

Figure 80. Performance metrics for cluster analysis based on targets found. (a) Area Coverage. (b) Targets 

Found. Standard Error bars shown. 
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(a)       (b) 

  
(c)       (d) 

  
(e)       (f) 

Figure 81. Workload and operator action metrics for cluster analysis based on targets found. (a) Utilization. 

(b) Length of time to replan. (c) Probability of performing a what-if assignment. (d) Probability of modifying 

the objective function of the AS. (e) Replan rate. (f) Search task rate. Standard Error bars shown. 
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Table 16. Summary of repeated ANOVA results for cluster analysis based on targets found. 

Metric Main Effect for 

Performance Cluster 

(2 levels: High and Low) 

Main Effect for Time 

(10 time intervals) 

Interaction Effect 

Between Time and 

Performance Cluster 

Area Coverage F(1,25) = 2.032, 

p = 0.166 

F(9,225) = 668.514, 

p < 0.001 

F(9,225) = 3.047, 

p = 0.002 

Targets Found F(1,25) = 62.561, 

p < 0.001 

F(9,225) = 281.269, 

p < 0.001 

F(9,225) = 5.327, 

p < 0.001 

Utilization F(1,25) = 5.609, 

p = 0.026 

F(9,225) = 16.721, 

p < 0.001 

F(9,225) = 1.811, 

p = 0.067 

Length of time to replan F(1,20) = 0.388, 

p = 0.541 

F(9,180) = 0.942, 

p = 0.490 

F(9,180) = 1.248, 

p = 0.268 

Probability of performing a 

what-if assignment 

F(1,20) = 0.072, 

p = 0.791 

F(9,180) = 1.023, 

p = 0.423 

F(9,180) = 1.206, 

p = 0.294 

Probability of modifying the 

objective function of the AS 

F(1,20) = 2.855, 

p = 0.107 

F(9,180) = 3.027, 

p = 0.002 

F(9,180) = 1.234, 

p = 0.277 

Replan rate F(1,25) = 0.092, 

p = 0.764 

F(9,225) = 2.692, 

p = 0.005 

F(9,225) = 1.257, 

p = 0.262 

Search task rate F(1,25) = 0.460, 

p = 0.504 

F(9,225) = 1.290, 

p = 0.243 

F(9,225) = 0.898, 

p = 0.528 
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Appendix C: CHAS Model Equations and Parameters 

System Performance Module 

Human Value Added= 

 Effect of Cognitive Overload on Human Value Added*Effect of Search Tasks on Human Value Added 

Units: Cells/Second 

  

Area Coverage Rate= 

 Probability of a cell being unsearched*(Automation Generated Search Speed+Human Value Added) 

Units: Cells/Second 

  

Area Coverage Percentage= 

 Searched Cells/Total Number of Cells 

Units: % Area Covered 

 

Probability of a cell being unsearched= 

 Unsearched Cells/Total Number of Cells 

Units: % 

 

Automation Generated Search Speed= 

 2.9 

Units: Cells/Second 

 

Total Number of Cells= 

 4150 

Units: Cells 

 

Unsearched Cells= 

INTEG (-Area Coverage Rate, Total Number of Cells) 

Units: Cells 

  

Searched Cells= 

INTEG ( Area Coverage Rate, 1) 

Units: Cells 

  

Perception of Performance Module 

"Perceived Present Performance (PPP)"=  

 SMOOTH3(Area Coverage Rate , Time to Perceive Present Performance) 

Units: Cells/Second 

  

Time to Perceive Present Performance= 

 150 

Units: Seconds 

  

Initial EP= 

 9.8 

Units: Cells/Second 

  

"Expected Performance (EP)"=  

INTEG ( Change in EP, Initial EP) 

Units: Cells/Second 
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Change in EP= 

 ("Perceived Present Performance (PPP)" - "Expected Performance (EP)")/Time Horizon for Expected 

Performance 

Units: Cells/(Second*Second) 

  

Time Horizon for Expected Performance= 

 190 

Units: Seconds 

  

"Perceived Performance Gap (PPG)"= 

 ("Expected Performance (EP)"-"Perceived Present Performance (PPP)")/"Expected Performance (EP)" 

Units: % PPG 

  

Trust Module 

Perceived Automation Capability= 

 (1-1/(1+EXP(-4*PPG Max Slope*("Perceived Performance Gap (PPG)"-Base PPG)))) 

Units: % Automation Capability 

  

Base PPG= 

 13 

Units: % PPG 

  

PPG Max Slope= 

 3 

Units: Dimensionless 

 

Change in Trust= 

 (Perceived Automation Capability-Human Trust)/Trust Change Time Constant 

Units: % Trust/Second 

  

Human Trust=  

INTEG ( Change in Trust, Initial Human Trust) 

Units: % Trust 

Min: 0% 

Max: 100% 

 

Initial Human Trust= 

 88 

Units: % Trust 

 

Trust Change Time Constant= 

 410 

Units: Seconds 

  

 

Intervention Module 

Search Task Rate= 

 (Max Search Task Rate-Min Search Task Rate)*(1-1/(1+EXP(-4*Trust Max Slope*(Human Trust\ 

  -Midpoint Trust))))+Min Search Task Rate 

Units: Search Tasks Per Two Minute Interval 
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Max Search Task Rate= 

 8 

Units: Search Tasks Per Two Minute Interval 

 

Min Search Task Rate= 

 1.9 

Units: Search Tasks Per Two Minute Interval 

 

Midpoint Trust= 

 25 

Units: % Trust 

 

Trust Max Slope= 

 2  

Units: Search Tasks per Two Minute Interval/% Trust 

 

Replan Rate= 

 Search Task Rate*Number of Replans per Search Task 

Units: Replans per Two Minute Interval 

 

Number of Replans per Search Task= 

 1.1 

Units: Replans/Search Tasks 

 

Effect of Search Tasks on Human Value Added= 

 (Max Human Value Added-Min Human Value Added)/(1+EXP(-4*Search Task Rate Max Slope*(\ 

  Search Task Rate-Base Search Task Rate)))+Min Human Value Added 

Units: Cells/Second 

 

Max Human Value Added= 

 2 

Units: Cells/Second 

 

Min Human Value Added= 

 -1 

Units: Cells/Second 

 

Base Search Task Rate= 

 2.85 

Units: Search Tasks Per Two Minute Interval 

 

Search Task Rate Max Slope= 

 0.6 

Units: Cells/(Second*Search Tasks per Two Minute Interval) 

 

Workload Module 

Human Workload= 

 MIN(1,((Search Task Rate*Search Task Creation Time Length+Replan Rate*Length of Time to Replan\ 

  )/Sampling Interval)+"Nonscheduling Task load (NST)") 

Units: % Utilization 

 

Search Task Creation Time Length= 

 2.8 

Units: Seconds/Search Task 
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Length of Time to Replan= 

 6.5 

Units: Seconds/Replan 

  

"Nonscheduling Task load (NST)"= 

 MAX(0,MIN(1,Initial NST+NST Rate*Time)) 

Units: % Utilization 

 

NST Rate= 

 -0.0002 

Units: % Utilizaiton/Second 

  

Initial NST= 

 30 

Units: % Utilizaiton 

 

Sampling Interval= 

 120 

Units: Seconds 

 

Effect of Cognitive Overload on Human Value Added= 

 Table for Cognitive Overload(Human Workload) 

(see table function below) 

Units: Dimensionless 

 

Table for Cognitive Overload( 

 (0,1.05),(0.7,1),(0.75,0.9),(0.8,0.7),(0.85,0.4),(0.9,0.1),(0.95,0.05),(1,0)) 

Units: Dimensionless 

 

Simulation Control Parameters 

FINAL TIME  = 1200 

Units: Seconds 

 

INITIAL TIME  = 0 

Units: Seconds 

 

TIME STEP  = 0.125 

Units: Seconds 
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Appendix D: Nonscheduling Task load Analysis 

This section presents additional figures and statistics for the analysis of Nonscheduling Task load 

(NST) discussed in Section 3.4.6. There were three activities in the OPS-USERS testbed that 

were considered to be nonscheduling activities. First, the operator had to visually identify or re-

designate targets. This was done through the pop-up window shown in Figure 82a. Second, the 

operator had to approve weapons launches on hostile targets, through the pop-up window shown 

in Figure 82b. These windows would appear over the Map Display (Figure 4) when the operator 

was prompted to conduct these visual identification tasks. Third, the operator was responsible for 

reading and answering chat messages, through the chat window shown in Figure 83. When a new 

chat message arrived, the window blinked and an auditory alert played. 

      
      (a)               (b) 

Figure 82. Pop-up windows for (a) target identification/re-designation and (b) approving weapons launch. 

 

Figure 83. OPS-USERS chat window. 
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The required utilization due to NST was calculated from aggregate experimental data (Section 

3.2.2), using two-minute intervals over the twenty minute experiment. Descriptive statistics for 

the required utilization due to NST in each interval are shown in Table 17. 

Table 17. Descriptive statistics for required utilization due to Nonscheduling Task load (NST). 

Interval 

(min) 

0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18 18-20 

Mean 38.9% 24.8% 26.7% 16.1% 16.4% 22.6% 17.1% 17.4% 9.5% 10.3% 

Median 35.7% 23.2% 24.6% 12.7% 15.3% 20.1% 14.9% 16.5% 8.6% 9.3% 

Min 20.0% 5.9% 8.3% 4.2% 4.2% 4.2% 4.3% 4.2% 0.0% 0.0% 

Max 73.6% 46.1% 66.4% 61.7% 49.0% 59.4% 40.3% 45.7% 30.5% 28.4% 

St. Dev 12.7% 9.0% 11.7% 10.8% 8.7% 11.8% 8.0% 8.6% 6.6% 7.3% 

SE 1.6% 1.2% 1.5% 1.4% 1.1% 1.5% 1.0% 1.1% 0.9% 0.9% 

 

A repeated measures ANOVA of the required utilization due to NST was conducted. There were 

no between-subject variables and there were 10 levels of time (representing each interval). The 

repeated measures ANOVA of the required utilization due to NST indicated a significant effect 

for time, F(9,531) = 55.140, p < 0.001. 

Finally, the same analysis was conducted for data sets from four different OPS-USERS 

experiments, with aggregate results for all operators shown in Figure 84. The first experiment 

had medium workload, 10-minute long missions (Cummings, Clare, et al., 2010), with NST data 

shown in Figure 84a. Second, the analysis was conducted for a high task load experiment, with 

10-minute long missions, but double the number of targets to identify, more chat messages, and 

faster UVs (Section 4.2.2), with NST data shown in Figure 84b. The third experiment had 20-

minute long, medium workload missions, where operators could adjust the objective function of 

the AS (Section 3.2), with NST data shown in Figure 84c. Finally, the NST analysis was 

conducted for the experiment presented in Chapter 5 of this thesis to validate the CHAS model, 

as shown in Figure 84d. The required utilization due to NST is shown in red and the self-

imposed utilization from scheduling activities (creating search tasks and replanning) is shown in 

blue stripes.  

In Figure 84a, c, and d, there appears to be a roughly linear decline in utilization due to NST over 

time. It is notable, however, how different the required utilization due to NST is among the 

various experiments, all of which use the same OPS-USERS testbed, but have different 
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experimental conditions, numbers of targets, speeds of UVs, chat message questions, and Rules 

of Engagement. Having an accurate representation of NST is thus important to the CHAS 

model’s accuracy for calculating operator workload. 

 

(a)               (b) 

 

(c)               (d) 

Figure 84. Utilization due to self-imposed scheduling activities and required utilization due to Nonscheduling 

Task load (NST) for different OPS-USERS experiments. (a) Medium workload replan prompting experiment. 

(b) High task load experiment. (c) Dynamic objective function experiment. (d) CHAS validation experiment. 

Standard error bars are shown.  
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Appendix E: Model Validation Test Results 

Sections 4.1.3 and 4.1.4 described two types of model structure tests: extreme conditions tests 

and integration error tests. Results for these tests are presented below.  

Extreme Conditions Tests 

Extreme conditions tests “ask whether models behave appropriately when the inputs take on 

extreme values” (Sterman, 2000, p. 869). Three extreme conditions tests were conducted, with a 

focus on: area coverage rate, Perceived Performance Gap (PPG), and human workload. In each 

test, the behavior of the model under extreme inputs was evaluated for the variable of interest, in 

addition to an evaluation of the resulting operator interventions and system performance.  

First, Section 4.1.3 presented the behavior of the model when the Automation Generated Search 

Speed parameter was set to extremely low and high values. It was shown that the overall system 

performance calculated by the model was appropriate even under these extreme conditions 

(Figure 26). 

For the second test, operator expectations of performance were initialized to an extremely high 

level. Initial EP was set to 10x the baseline value in the simulation, causing the Perceived 

Performance Gap (PPG) to go to extremely high levels (100% PPG) compared to the baseline 

simulation (Figure 85a). However, the Perceived Automation Capability (Figure 85b) went no 

lower than 0% as designed. Through the use of non-linear logit curves to define the relationships 

between variables such as PPG and Perceived Automation Capability (Section 3.4.4), the model 

is robust to extreme inputs.  

Additionally, operator expectations of performance were initialized to an extremely low level. 

Initial EP was set to 10% of the baseline value in the simulation, causing the Perceived 

Performance Gap (PPG) to go to extremely negative levels compared to the baseline simulation 

(Figure 85a). This indicates that the simulated operator perceived that the system was performing 

far better than expected. However, the Perceived Automation Capability (Figure 85a) went no 

higher than 100% as designed, once again due to the non-linear logit curve defining te 

relationship between PPG and Perceived Automation Capability. 
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(a)         (b) 

  

(c)         (d) 

 

(e) 

 

Figure 85. Extreme conditions test: Initial EP set to 10x and 10% of baseline value. (a) PPG. (b) Perceived 

automation capability. (c) Search task rate. (d) Workload. (e) Area coverage performance. 
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It should be noted that in both the extreme high Initial EP and extreme low Initial EP tests, the 

operator’s expectations adjusted to a more realistic level over time, as shown by the changes in 

PPG in Figure 85a. Even though the simulated operator initially had a -500% PPG (the system 

was far outperforming expectations), the simulated operator eventually adjusted its expectations 

to the point at approximately 450 seconds into the mission where the operator began to have a 

positive perceived performance gap (expectations higher than perceived performance). 

Additionally, Figure 85 shows the behavior of the model in terms of operator interventions, 

workload, and system performance under these extreme input conditions. When the operator has 

extremely high expectations of performance, the expected reaction would be to intervene at a 

high frequency, as shown in Figure 85c. This causes the operator’s workload to exceed 70% 

(Figure 85d), negating many of the positive effects of these interventions due to cognitive 

overload. Thus, the operator with extremely high expectations of performance does not perform 

substantially better than the normal condition (Figure 85e) due to the impact of cognitive 

overload. 

When the operator has extremely low expectations of performance, the typical reaction would be 

to intervene less frequently, as shown in Figure 85c, resulting in a slightly lower workload level 

(Figure 85d). However, because the operator is not guiding the suboptimal automation frequently 

enough, system performance suffers compared to the baseline condition (Figure 85e). Overall, 

the model behaved as expected in terms of operator interventions, workload, and system 

performance under these extreme input conditions. All model outputs remained within defined 

limits and the model behavior was reasonable. 

In the final test, the Number of Replans Per Search Task was set to 10x the baseline value in the 

simulation. This caused the Replan Rate to go to extremely high levels compared to the baseline 

simulation (Figure 86a). However, Human Workload (Figure 86b) went no higher than 100% as 

designed. The mathematical cap discussed in Section 4.1.3 prevents utilization from exceeding 

100%. This artificial means of limiting the workload parameter is necessary for maintaining the 

validity of model outputs. 
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(a)       (b) 

  

(c)       (d) 

 
Figure 86. Extreme conditions test: Number of Replans Per Search Task set to 10x baseline value.  

(a) Replan rate. (b) Workload. (c) Area coverage performance. (d) Search task rate. 

Once again, the model demonstrated that under conditions of cognitive overload, system 

performance would decline (Figure 86c). Additionally, the simulated operator detected that the 

system was performing poorly and attempted to “work harder” to counteract the poor system 

performance. This is reflected in the increasing search task rate for the extreme simulation 

(Figure 86d). As described in more detail in Section 4.1.5, this cycle of attempting to make up 

for poor performance by intervening more frequently simply leads to further cognitive overload.  
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Thus, the model behaves appropriately under these extreme workload conditions, capturing the 

impact of these extreme conditions on system performance and operator interventions. It should 

be noted that setting the Number of Replans per Search Task to an extremely low value did not 

have a substantial impact on model behavior. It simply lowered the workload of the operator 

slightly, but did not impact performance or intervention behavior. In reality, performance should 

have suffered because the operator was not replanning to assign the newly created search tasks to 

the team of UVs. Chapter 7 describes the need for future work to develop a more sophisticated 

model of replanning that also recognizes the impact of replanning on system performance. 

 

Integration Error Test Results 

The time step chosen for the CHAS model was 0.125 seconds and the integration method chosen 

was Euler (the Vensim
®
 simulation software package provides four integration method options: 

Euler, fourth order Runge-Kutta, second order Runge-Kutta, and Difference). To evaluate 

whether the model results were sensitive to changes in the time step, the model was run with a 

time step of 0.0625 seconds, then with a time step of 0.25 seconds. In both cases the overall 

results of the model simulations did not change, as shown in Figure 87. Similarly, the model was 

run with a different integration method, fourth order Runge-Kutta integration with a fixed step 

size, and there were no changes in the results (Figure 88). For all integration error tests, there 

were differences in the results at the fifth decimal point, however, precision at that level is 

unnecessary for a model of human decision-making. Thus, it appears that the model results are 

robust to changes in the time step and integration method. 
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(a)       (b) 

 
(c)       (d) 

 
Figure 87. Integration error test with three different time steps. (a) Area coverage. (b) Human workload. (c) 

Search task rate. (d) Replan rate. 
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(a)       (b) 

  
(c)       (d) 

Figure 88. Integration error test with two different integration methods, Euler and fourth order Runge-

Kutta. (a) Area coverage. (b) Human workload. (c) Search task rate. (d) Replan rate. 
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Appendix F: Model Parameters for Original OPS-USERS 

Experiment 

Table 18. All parameter values that remained constant across the three groups: All Missions, Low 

Performers, and High Performers.  

Parameter Value Units 

Automation Generated Search Speed 2.9 Cells/Second 

Base PPG 13 % PPG 

Base Search Task Rate 2.85 Search Tasks per Two Minute 

Interval 

Max Human Value Added 2 Cells/Second 

Max Search Task Rate 8 Search Tasks per Two Minute 

Interval 

Midpoint Trust 25 % Trust 

Min Human Value Added -1 Cells/Second 

Min Search Task Rate 1.9 Search Tasks per Two Minute 

Interval 

Mission Time Length 1200 Seconds 

PPG Max Slope 3 Dimensionless 

Sampling Interval 120 Seconds 

Search Task Creation Time Length 2.8 Seconds 

Search Task Rate Max Slope 0.6 Cells/(Second*Search Tasks 

per Two Minute Interval) 

Total Number of Cells 4150 Cells 

Trust Max Slope 2 Search Tasks per Two Minute 

Interval/% Trust 
 

Table 19. All parameter values that were allowed to vary across the three groups: All Missions, Low 

Performers, and High Performers. 

Parameter All 

Missions 

Low 

Performers 

High 

Performers 

Units 

Initial EP 9.8 4 6.25 Cells/Second 

Initial Human Trust 88 91 26 % Trust 

Initial NST 30 30 30 % Utilization 

Length of Time to Replan 6.5 7.7 4.5 Seconds 

NST Rate -0.0002 -0.0002 -0.0002 % Utilization/ 

Second 

Number of Replans per Search Task  1.1 1.2 0.9 Replans/ 

Search Tasks 

Time Horizon for Expected 

Performance 

190 220 220 Seconds 

Time to Perceive Present 

Performance (TPPP) 

150 220 210 Seconds 

Trust Change Time Constant 410 445 60 Seconds 
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Appendix G: Individual Mission Replication Testing 

While Chapter 4 evaluated the ability of the model to replicate aggregate performance, workload, 

and intervention actions for groups of operators, another key test of model accuracy is the ability 

to replicate individual operator behavior and performance. Sterman (1989a) performed similar 

tests by fitting a human decision-making model to individual data gathered using a computer-

based simulation of an economy where test subjects deciding how to invest capital to satisfy 

customer demand. Similarly, Sterman (1989b) fit a different decision-making model to 

individual trial data using a computer simulation of an industrial production and distribution 

system, called the “Beer Distribution Game.”  

The CHAS model was used to replicate the 60 individual missions in the OPS-USERS 

experimental data set, described in Section 3.2. In order to fit the model to each mission, the 

optimization feature in the Vensim
®

 simulation software was utilized. The software uses a 

modified Powell (1964) search to find a local minimum by searching within defined boundaries 

for each parameter. The optimizer evaluated the fit of the model to experimental data for the 

following variables: area coverage performance, human workload as measured by utilization, 

search task rate, replan rate. These four output variables were the only endogenous variables in 

the CHAS model for which experimental data was available for comparison. Data on the average 

length of time to replan was used to set the exogenous parameter for this interaction time length.  

In the optimization, nine input parameters were allowed to vary: Initial Human Trust (IT), Initial 

Expected Performance (EP), Trust Change Time Constant (TC), Time to Perceive Present 

Performance (TPPP), Time Horizon for Expected Performance (THEP), Number of Replans per 

Search Task (NRST), Length of Time to Replan (LTR), Initial NST, and NST Rate. All other 

exogenous parameters in the model were either a) known from the testbed and constant for all 

operators, b) had negligible variation and were kept constant for all operators, or c) estimated 

from aggregate data in order to define one of the non-linear relationships in the model and thus 

were kept constant between model runs (see Section 4.1.5 for more details on the selection 

criteria for these parameters). 

The analysis of the results of this individual fitting process was based on the method that 

Sterman (1989b) utilized to analyze the accuracy of the model fit. The results of the individual 
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fitting process are presented below. Descriptive statistics of the nine estimated parameters for 

each mission are shown in Table 20. The R
2
 and Root Mean Square Error (RMSE) values of the 

model fit to the experimental data for four output variables are shown in Table 21. The mean R
2
 

for the primary performance metric of area coverage was 0.968. The minimum R
2
 for area 

coverage among all 60 missions was 0.838. The other outputs variables had mean R
2
 values 

ranging from 0.160 to 0.335, similar to the aggregate fits achieved in Chapter 4. 

Table 20. Descriptive statistics of estimated parameters for model fit to 60 individual missions. 

 IT Initial 

EP 

Trust 

TC 

TPPP THEP NRST LTR Initial 

NST 

NST 

Rate 

Mean 0.664 4.638 529.274 468.023 552.208 1.031 6.986 0.307 -0.0002 

Median 0.794 4.747 300.462 247.557 296.880 1.040 6.649 0.299 -0.0002 

Min 0.000 0.263 1.000 1.000 106.824 0.364 2.287 0.105 -0.0004 

Max 1.000 10.000 1200.000 1200.000 1200.000 1.890 14.773 0.533 0.0000 

St. Dev 0.373 3.493 477.554 467.427 441.927 0.319 2.845 0.087 0.0001 

SE 0.048 0.451 61.652 60.345 57.053 0.041 0.367 0.011 0.0000 

 
 

Table 21. Descriptive statistics of goodness of fit measures for model fit to 60 individual missions. 

 Area Coverage Utilization Search Task Rate Replan Rate 

 R
2
 RMSE R

2
 RMSE R

2
 RMSE R

2
 RMSE 

Mean 0.968 0.082 0.335 0.103 0.299 1.478 0.160 1.083 

Median 0.978 0.074 0.354 0.103 0.303 1.386 0.128 1.031 

Min 0.838 0.015 0.001 0.033 0.000 0.756 0.000 0.524 

Max 0.997 0.238 0.886 0.168 0.896 2.455 0.563 1.847 

St. Dev 0.031 0.047 0.243 0.031 0.279 0.438 0.170 0.317 

SE 0.004 0.006 0.031 0.004 0.036 0.057 0.022 0.041 

 

As a further test, the model simulation was run with the estimated parameters for each mission. 

The final area coverage performance by the end of the mission calculated by the simulation was 

compared to the experimental results for every mission. If the model were perfect, the simulated 

and experimental performance results would be equal, and regressing the simulated scores on the 

experimental scores would produce a slope of 1. The actual results for this regression showed a 

slope of 0.753, with an R
2
 value of 0.537. The slope of the relationship was significant (p < 

0.001) and 2.9 standard errors from unity, indicating a moderate correspondence between the 

actual and simulated final performance. 
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Appendix H: Model Parameters for High Task Load 

Experiment 

Table 22. All parameter values that remained constant across the two sets of missions: 30 Second Replan 

Prompting Interval and 45 Second Replan Prompting Interval.  

Parameter Value Units 

Automation Generated Search Speed 30 Cells/Second 

Base PPG 13 % PPG 

Base Search Task Rate 6 Search Tasks per Two Minute 

Interval 

Max Human Value Added 2 Cells/Second 

Max Search Task Rate 12 Search Tasks per Two Minute 

Interval 

Midpoint Trust 40 % Trust 

Min Human Value Added -1 Cells/Second 

Min Search Task Rate 0 Search Tasks per Two Minute 

Interval 

Mission Time Length 1200 Seconds 

PPG Max Slope 1.5 Dimensionless 

Sampling Interval 120 Seconds 

Search Task Creation Time Length 2.8 Seconds 

Search Task Rate Max Slope 0.25 Cells/(Second*Search Tasks per 

Two Minute Interval) 

Total Number of Cells 4150 Cells 

Trust Max Slope 6 Search Tasks per Two Minute 

Interval/% Trust 
 

Table 23. All parameter values that were allowed to vary across the two sets of missions: 30 Second Replan 

Prompting Interval and 45 Second Replan Prompting Interval. 

Parameter 30 Second Replan 

Prompting Interval 

45 Second Replan 

Prompting Interval 

Units 

Initial EP 33.6 31 Cells/Second 

Initial Human Trust 36.5 36.5 % Trust 

Initial NST 45 47 % Utilization 

Length of Time to Replan 2.9 3.2 Seconds 

NST Rate 0 -0.0001 % Utilization/ 

Second 

Replan Rate 5.1 4.5 Replans/ 

Search Tasks 

Time Horizon for Expected 

Performance 

235 60 Seconds 

Time to Perceive Present 

Performance (TPPP) 

400 333 Seconds 

Trust Change Time Constant 1550 2000 Seconds 
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Appendix I: Model Parameters for USAR Experiment 

Table 24. All parameter values that remained constant across the three groups: Low, Medium, and High 

Teleoperation Groups.  

Parameter Value Units 

Automation Generated Search Speed 0.011 Victims/Second 

Base Number of Teleoperations 200 Teleoperations 

Base PPG 5 % PPG 

Effect of Teleoperations on Workload 0.0013 % Utilization/ 

Teleoperations 

Max Human Value Added 0.01 Victims/Second 

Max Number of Teleoperations 800 Teleoperations 

Midpoint Trust 45 % Trust 

Min Human Value Added -0.0035 Victims/Second 

Min Number of Teleoperations 0 Teleoperations 

Mission Time Length 1500 Seconds 

Number of Teleoperations Max Slope 0.00125 Victims/(Second 

*Teleoperations) 

PPG Max Slope 1.25 Dimensionless 

Total Number of Victims 17 Victims 

Trust Max Slope 1.5 Teleoperations/% Trust 

 

Table 25. All parameter values that were allowed to vary across the three groups: Low, Medium, and High 

Teleoperation Groups. 

Parameter Low  

TeleOp 

Group 

Medium 

TeleOp 

Group 

High 

TeleOp 

Group 

Units 

Initial EP 0.041 0.041 0.041 Victims/Second 

Initial Human Trust 80 80 80 % Trust 

Time Horizon for Expected 

Performance 

100 100 290 Seconds 

Time to Perceive Present 

Performance (TPPP) 

30 30 240 Seconds 

Trust Change Time Constant 10000 466 165 Seconds 
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Appendix J: Monte Carlo Simulation Distributions 

The fitted distributions for the four model variables that were selected for use in Monte Carlo 

simulations are presented in Table 26. These were generated using the EasyFit
©

 Software 

package, with data from the OPS-USERS experiment described in Section 3.2. Graphical 

representations of the experimental data and fitted distributions are shown in Figure 89. 

Table 26. Fitted distributions for Monte Carlo simulation variables. 

Model Variable Lognormal Distribution Parameters 

Base Search Task Rate  = 0.56146,  = 0.91572, min=0.6, max=6 

Initial NST  = 0.31293,  = -0.99429, min=0.2, max=0.55 

Length of Time to Replan  = 0.77659,  = 1.5937, min=0.5, max=25 

Number of Replans per Search Task  = 0.33953,  = 0.29366, min=0.5, max=2.5 

 

  
(a)       (b) 

 
(c)       (d) 

Figure 89. Fitted distributions for (a) Base Search Task Rate. (b) Initial NST. (c) Length of Time to Replan. 

(d) Number of Replans per Search Task. 
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Appendix K: A Priori Priming Passages 

Both passages were derived from written comments from a previous OPS-USERS experiment 

(Clare, Cummings, How, et al., 2012): 

Positive Priming:  

To give you a better sense of how the Automated Scheduler works, here are some stats and quotes from 

previous operators who used this system: 

 87% percent of participants indicated that the automated scheduler was fast enough for this dynamic, 

time-pressured mission. 

 “Once you got the hang of it, it was easy to become quickly familiar with the system.” 

 “I liked that it gave instructions and helped us. It was easy to gain confidence.” 

 “The system is easy to use and intuitive to work with.” 

 “The automated scheduler was very fast.” 

 “There were times when I didn’t have to do anything except identify a new target.  I usually just 

accepted the plan created by the automated scheduler. 

 “Where can I get one of these?  This is fun!” 

 

Negative Priming: 

To give you a better sense of how the Automated Scheduler works, here are some stats and quotes from 

previous operators who used this system: 

 53% percent of participants indicated that they did not agree with the plans created by the automated 

scheduler and wanted to be able to manually assign tasks. 

 “I did not always understand decisions made by the automated scheduler…namely it would not assign 

tasks…while some vehicles were seemingly idle.” 

 “The automated scheduler makes some obviously poor decisions…I feel like a lot is hidden from me 

in the decision making…I felt like I had to trick it into doing things.” 

 “I wish I could manually assign vehicles to certain spots.  It seemed like the automated scheduler 

wasn’t great.” 

 “I wish that I could have rearranged tasks in the schedule created by the automated scheduler.” 

  “The automated scheduler would assign a different UAV than I would have picked.” 

 “The actual [automated scheduler] assigning robots to tasks was a little screwy…Maybe an option to 

let user designate certain missions to certain vehicles would take full advantage of the superior 

reasoning capacity of humans.” 
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Appendix L: Consent to Participate Form 
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Appendix M: Demographic Survey 
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Metacognitive Awareness Inventory 

 

  



  285 

 

 

  



286 

 

  



  287 

 

Appendix N: Demographic Descriptive Statistics 

Category N Min Max Mean Std. Dev. 

Age (years) 48 18 32 23.08 3.842 

Rating of past 2 nights of 

sleep (1-4) 

48 1 4 2.56 0.848 

Rating of TV watching (1-

5) 

48 1 5 2.27 1.106 

Rating of gaming 

experience (1-5) 

48 1 5 2.23 1.309 

Rating of comfort level 

with computers (1-4) 

48 2 4 3.54 0.617 

Rating of perception of 

unmanned vehicles (1-5) 

48 2 5 3.94 0.783 

Occupation 

(Student/Other) 

Undergraduate: 17 

Masters: 14 

Ph.D: 15 

Non-student: 2 

- - - - 

Military experience (Y/N) 5/43 - - - - 

Gender (M/F) 35/13 - - - - 

Metacognitive Awareness 

Inventory (MAI) Score 

48 141 229 189.71 18.96 
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Appendix O: Experiment Legend 
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Appendix P: Rules of Engagement 

The following Rules of Engagement were sent through the Chat Window to the operator at the 

specified times: 

 START: Cover as much area as possible to find new targets. Tracking found targets is 

low priority. Do not destroy any hostiles. 

 FIVE MINUTES:  Conduct search tasks in SE and SW Quadrants.  2nd priority: Track 

all targets previously found. Do not destroy any hostiles. 

 TEN MINUTES:  Track all targets closely - it is important not to lose any targets!  2nd 

priority: conserve fuel.  3rd priority: destroy hostile targets. 

 FIFTEEN MINUTES:  All Hostile Targets are now high priority - destroy all hostiles! 
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Appendix Q: Experiment PowerPoint Tutorials 
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Appendix R: Proficiency Tests 
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Appendix S: Questionnaires 
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Appendix T: Detailed Experiment Statistical Analysis and 

Descriptive Statistics 

This appendix presents the statistical results of the experiment described in Chapter 5. The 

experiment included three independent variables: A Priori Priming Level (Positive Priming, 

Negative Priming, No Priming), Real-time Priming Level (Low or High), and Information Time 

Delay (No Delay or With Delay). Numerous dependent variables were considered in the analysis 

of the data in order to capture and measure performance, workload, SA, and subjective ratings of 

performance, workload, confidence, and trust, as described in Chapter 5. An analysis of the 

dependent variables and all descriptive statistics is presented below. 

Statistical Analysis Overview 

All dependent variables were recorded by the computer simulation. For Area Coverage and 

Percentage of Time that Targets were Tracked, a 3 x 2 x 2 repeated measures Analysis of 

Variance (ANOVA) model was used (α = 0.05). These parametric dependent variables met the 

homogeneity of variance and normality assumptions of the ANOVA model. For three measures 

of primary workload (Utilization, Total Mouse Clicks, Length of Time to Replan), a MANOVA 

model was used because these dependent variables were moderated correlated. All other 

dependent variables, including reaction times and Likert scale data, did not meet ANOVA 

assumptions, and non-parametric analyses were used. All significant tests are underlined. 

Order Effects 

First, it should be noted that Information Time Delay level was a within-subjects variable, so 

every operator experienced both Information Time Delay levels with the order of presentation 

counterbalanced and randomized. All dependent variables were tested for order effects and there 

were only two dependent variables with significant order effects. MANOVA results showed that 

operators had a 16% lower average length of time to replan in the second mission as compared to 

the first mission, F(1,71) = 4.659, p = 0.034. Also, a Mann Whitney comparison showed that 

operators had a 21% faster reaction time to all embedded secondary tasks in the second mission 

as compared to the first mission (Z = -2.169, p = 0.030). Operators learned to replan faster 

between the two trials and had faster reaction times to embedded secondary tasks in the second 
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trial. While notable, these learning effects for using the interface did not have a significant 

impact on overall area system performance or other operator actions or ratings (Table 27), thus 

the analysis proceeded without including an order effect factor in ANOVA and MANOVA 

models, to increase the degrees of freedom in these analyses. 

Table 27. Summary of statistical tests for order effects. 

Metric Statistical Test Main Effect for Order  

(2 levels: First and Second Order) 

Area Coverage Repeated Measures ANOVA F(1,35) = 0.319, p = 0.576 

Targets Found Mann Whitney Z = -1.892, p = 0.058 

% Time Targets Tracked Repeated Measures ANOVA F(1,35) = 0.311, p = 0.581 

Correct Hostiles Destroyed Mann Whitney Z = -1.809, p = 0.070 

Mistaken Hostiles Destroyed Mann Whitney Z = -1.721, p = 0.085 

Utilization MANOVA F(1,71) = 2.421, p = 0.124 

Click Count MANOVA F(1,71) = 0.226, p = 0.636 

Average Length of Time to 

Replan 

MANOVA F(1,71) = 4.659, p = 0.034 

Chat Question Accuracy Mann Whitney Z = -1.308, p = 0.191 

Target Re-designation Accuracy Mann Whitney Z = -0.112, p = 0.911 

Embedded Secondary Tasks Mann Whitney Z = -2.169, p = 0.030 

Average Performance Rating Mann Whitney Z = -0.250, p = 0.803 

Average Expectations Rating Mann Whitney Z = -0.205, p = 0.838 

Average PPG Rating Mann Whitney Z = -0.970, p = 0.332 

Average Trust Rating Mann Whitney Z = -0.288, p = 0.774 

Confidence Rating Mann Whitney Z = -1.587, p = 0.113 

Workload Rating Mann Whitney Z = -0.707, p = 0.480 

Satisfaction with AS plans  Mann Whitney Z = -0.510, p = 0.610 
 

Mission Performance 

Mission performance was measured by overall mission performance metrics, computed at the 

end of the mission as well as errors made by operators who either destroyed friendly targets or 

who destroyed hostile targets against the Rules of Engagement. There were no significant 

correlations between these dependent variables. Additionally, Metacognitive Awareness 

Inventory (MAI) Score, a demographic variable, correlated with Area Coverage ( = -0.285, p = 

0.005) and Percentage of Time that Targets were Tracked ( = -0.201, p = 0.050). While these 

relationships were weak to moderate by human factors standards, MAI Score was used as a 

covariate in the ANOVA models for these two dependent variables. MAI Score was included in 

model to reduce error variance, not to investigate MAI Score as a primary research question. 
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Finally, Targets Found, Correct Hostiles Destroyed, and Mistaken Hostiles Destroyed were 

evaluated with non-parametric tests. 

 Area Coverage: 

o A Priori Priming Level, F(2,41) = 0.016, p = 0.984 

o Real-time Priming Level, F(1,41) = 0.002, p = 0.961 

o Information Time Delay, F(1,41) = 0.495, p = 0.486 

o MAI Score, F(1,41) = 5.885, p = 0.020 

o A Priori Priming Level*Real-time Priming Level, F(2,41) = 1.305, p = 

0.282 

o A Priori Priming Level*Information Time Delay, F(2,41) = 2.219, p = 

0.122 

o Real-time Priming Level*Information Time Delay, F(1,41) = 2.673, p = 

0.110 

o Information Time Delay*MAI Score, F(1,41) = 0.930, p = 0.341 

o A Priori Priming Level*Real-time Priming Level*Information Time 

Delay, F(2,41) = 1.396, p = 0.259 

 Targets Found 

o A Priori Priming Level, χ
2
(2, N=96) = 0.127, p = 0.939 (Kruskal-Wallis 

omnibus) 

o Real-time Priming Level, Z = -0.157, p = 0.875, (Mann-Whitney 

Independent) 

o Information Time Delay, Z = -1.293, p = 0.196, (Mann-Whitney 

Dependent) 

 Percentage of Time that Targets were Tracked 

o A Priori Priming Level, F(2,41) = 0.501, p = 0.610 

o Real-time Priming Level, F(1,41) = 3.403, p = 0.072 

o Information Time Delay, F(1,41) = 0.002, p = 0.968 

o MAI Score, F(1,41) = 5.105, p = 0.029 

o A Priori Priming Level*Real-time Priming Level, F(2,41) = 0.233, p = 

0.793 

o A Priori Priming Level*Information Time Delay, F(2,41) = 1.058, p = 

0.356 

o Real-time Priming Level*Information Time Delay, F(1,41) = 0.603, p = 

0.442 

o Information Time Delay*MAI Score, F(1,41) = 0.118, p = 0.773 

o A Priori Priming Level*Real-time Priming Level*Information Time 

Delay, F(2,41) = 3.992, p = 0.026 

 Correct Hostiles Destroyed 

o A Priori Priming Level, χ
2
(2, N=96) = 2.676, p = 0.262 (Kruskal-Wallis 

omnibus) 

o Real-time Priming Level, Z = -0.883, p = 0.377, (Mann-Whitney 

Independent) 

o Information Time Delay, Z = -0.860, p = 0.390, (Mann-Whitney 

Dependent) 
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 Mistaken Hostiles Destroyed 

o A Priori Priming Level, χ
2
(2, N=96) = 14.611, p = 0.001 (Kruskal-Wallis 

omnibus) 

 Mann-Whitney pairwise comparisons: 

 Negative Priming-No Priming: Z = -2.747, p = 0.006 

 Negative Priming-Positive Priming: Z = -3.101, p = 0.002 

 No Priming-Positive Priming: Z = -0.568, p = 0.570 

o Real-time Priming Level, Z = -0.209, p = 0.834, (Mann-Whitney 

Independent) 

o Information Time Delay, Z = -0.324, p = 0.746, (Mann-Whitney 

Dependent) 

 

 

 
Table 28. Performance Metrics Summary for A Priori Priming 

Metric A Priori 

Priming 

Mean Median Std Dev Min Max 

% Area 

Coverage 

Negative 62.9% 61.9% 8.6% 46.8% 80.0% 

No Priming 63.7% 63.3% 7.1% 43.4% 78.8% 

Positive 62.4% 62.6% 9.9% 39.6% 85.0% 

% Targets 

Found 

Negative 86.6% 90.0% 9.7% 60.0% 100% 

No Priming 85.3% 90.0% 11.1% 60.0% 100% 

Positive 85.9% 90.0% 11.6% 60.0% 100% 

% Time 

Targets 

Tracked 

Negative 88.7% 88.9% 7.0% 66.5% 100% 

No Priming 87.5% 88.2% 6.2% 73.9% 97.1% 

Positive 87.6% 88.9% 7.2% 68.7% 96.7% 

Correct 

Hostiles 

Destroyed 

Negative 2.9 3.0 1.1 0.0 5.0 

No Priming 3.1 3.0 1.2 1.0 5.0 

Positive 3.4 3.0 0.8 2.0 5.0 

Mistaken 

Hostiles 

Destroyed 

Negative 0.5 0.0 0.8 0.0 2.0 

No Priming 0.1 0.0 0.4 0.0 2.0 

Positive 0.1 0.0 0.4 0.0 2.0 
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Table 29. Performance Metrics Summary for Real-Time Priming 

Metric Real-Time 

Priming  

Mean Median Std Dev Min Max 

% Area 

Coverage 

Low 62.8% 64.3% 9.2% 39.6% 80.0% 

High 63.2% 61.4% 7.9% 48.9% 85.0% 

% Targets 

Found 

Low 85.8% 90.0% 10.5% 60.0% 100% 

High 86.0% 90.0% 11.1% 60.0% 100% 

% Time 

Targets 

Tracked 

Low 89.0% 90.6% 6.5% 73.9% 100% 

High 86.8% 88.2% 7.0% 66.5% 97.7% 

Correct 

Hostiles 

Destroyed 

Low 3.3 3.0 1.0 1.0 5.0 

High 3.0 3.0 1.1 0.0 5.0 

Mistaken 

Hostiles 

Destroyed 

Low 0.2 0.0 0.4 0.0 2.0 

High 0.3 0.0 0.7 0.0 2.0 

 

Table 30. Performance Metrics Summary for Information Time Delay 

Metric Info Time 

Delay  

Mean Median Std Dev Min Max 

% Area 

Coverage 

No Delay 60.8% 60.5% 9.3% 39.6% 85.0% 

With Delay 65.1% 64.3% 7.2% 43.4% 83.4% 

% Targets 

Found 

No Delay 87.3% 90.0% 10.9% 60.0% 100% 

With Delay 84.6% 90.0% 10.5% 60.0% 100% 

% Time 

Targets 

Tracked 

No Delay 90.0% 91.2% 6.1% 74.5% 100% 

With Delay 85.8% 86.9% 6.8% 66.5% 97.7% 

Correct 

Hostiles 

Destroyed 

No Delay 3.1 3.0 1.1 1.0 5.0 

With Delay 3.2 3.0 1.0 0.0 5.0 

Mistaken 

Hostiles 

Destroyed 

No Delay 0.2 0.0 0.6 0.0 2,0 

With Delay 0.2 0.0 0.5 0.0 2.0 

 

Workload 

Primary workload was measured through utilization, calculating the ratio of the total operator 

“busy time” to total mission time. Average Length of Time to Replan was evaluated as a 

component of workload. After the experiment, an evaluation of the total number of mouse clicks 

by each operator during the mission was conducted to further analyze workload. This measure 
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was not part of the original experiment design and its use is for post-hoc analysis only. As these 

three variables were moderated correlated, a MANOVA model was used for analyzing these 

three dependent variables. Additionally, Metacognitive Awareness Inventory (MAI) Score, a 

demographic variable, correlated with Average Length of Time to Replan (=0.229, p = 0.025). 

While this relationship was weak to moderate by human factors standards, MAI Score was used 

as a covariate in the MANOVA model. MAI Score was included in model to reduce error 

variance, not to investigate MAI Score as a primary research question 

In addition to these primary workload metrics, secondary workload was measured via reaction 

times to chat message information queries, as well as reaction times when instructed to create 

search tasks via the chat tool. As the chat messages and prompted search tasks were different and 

appeared at different times for the two missions performed by each operator, no statistical 

analysis was performed on the within-subjects variable of Information Time Delay for the 

reaction times. These reaction times did not satisfy the ANOVA assumptions, so non-parametric 

tests were used. 

 Utilization 

o A Priori Priming Level, F(2,83) = 1.444, p = 0.242 

o Real-time Priming Level, F(1,83) = 0.000, p = 0.986 

o Information Time Delay, F(1,83) = 0.005, p = 0.946 

o MAI Score, F(1,83) = 0.609, p = 0.437 

o A Priori Priming Level*Real-time Priming Level, F(2,83) = 0.663, p = 

0.518 

o A Priori Priming Level*Information Time Delay, F(2,83) = 0.399, p = 

0.672 

o Real-time Priming Level*Information Time Delay, F(1,83) = 0.351, p = 

0.555 

o A Priori Priming Level*Real-time Priming Level*Information Time 

Delay, F(2,83) = 0.956, p = 0.389 

 Total Mouse Clicks 

o A Priori Priming Level, F(2,83) = 2.089, p = 0.130 

o Real-time Priming Level, F(1,83) = 0.799, p = 0.374 

o Information Time Delay, F(1,83) = 0.158, p = 0.692 

o MAI Score, F(1,83) = 0.255, p = 0.615 

o A Priori Priming Level*Real-time Priming Level, F(2,83) = 1.313, p = 

0.275 

o A Priori Priming Level*Information Time Delay, F(2,83) = 0.910, p = 

0.406 
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o Real-time Priming Level*Information Time Delay, F(1,83) = 0.001, p = 

0.972 

o A Priori Priming Level*Real-time Priming Level*Information Time 

Delay, F(2,83) = 0.635, p = 0.532 

 Average Length of Time to Replan 

o A Priori Priming Level, F(2,83) = 0.498, p = 0.610 

o Real-time Priming Level, F(1,83) = 0.029, p = 0.865 

o Information Time Delay, F(1,83) = 0.000, p = 0.989 

o MAI Score, F(1,83) = 4.241, p = 0.043 

o A Priori Priming Level*Real-time Priming Level, F(2,83) = 0.810, p = 

0.448 

o A Priori Priming Level*Information Time Delay, F(2,83) = 0.386, p = 

0.681 

o Real-time Priming Level*Information Time Delay, F(1,83) = 0.440, p = 

0.509 

o A Priori Priming Level*Real-time Priming Level*Information Time 

Delay, F(2,83) = 0.432, p = 0.651 

 Chat #1 reaction 

o A Priori Priming Level, χ
2
(2, N=96) = 10.065, p = 0.007 (Kruskal-Wallis 

omnibus) 

 Mann-Whitney pairwise comparisons: 

 Negative Priming-No Priming: Z = -2.135, p = 0.033 

 Negative Priming-Positive Priming: Z = -3.115, p = 0.002 

 No Priming-Positive Priming: Z = -0.873, p = 0.383 

o Real-time Priming Level, Z = -0.799, p = 0.424, (Mann-Whitney 

Independent) 

 Chat #2 reaction 

o A Priori Priming Level, χ
2
(2, N=96) = 7.491, p = 0.024 (Kruskal-Wallis 

omnibus) 

 Mann-Whitney pairwise comparisons: 

 Negative Priming-No Priming: Z = -0.054, p = 0.957 

 Negative Priming-Positive Priming: Z = -2.391, p = 0.017 

 No Priming-Positive Priming: Z = -2.337, p = 0.019 

o Real-time Priming Level, Z = -1.301, p = 0.193, (Mann-Whitney 

Independent) 

 Chat #3 reaction 

o A Priori Priming Level, χ
2
(2, N=96) = 1.608, p = 0.447 (Kruskal-Wallis 

omnibus) 

o Real-time Priming Level, Z = -3.019, p = 0.003, (Mann-Whitney 

Independent) 

 Search task #1 reaction 

o A Priori Priming Level, χ
2
(2, N=96) = 2.514, p = 0.284 (Kruskal-Wallis 

omnibus) 

o Real-time Priming Level, Z = -1.636, p = 0.102, (Mann-Whitney 

Independent) 

 Search task #2 reaction 
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o A Priori Priming Level, χ
2
(2, N=96) = 5.469, p = 0.065 (Kruskal-Wallis 

omnibus) 

 Mann-Whitney pairwise comparisons: 

 Negative Priming-No Priming: Z = -0.762, p = 0.446 

 Negative Priming-Positive Priming: Z = -2.297, p = 0.022 

 No Priming-Positive Priming: Z = -1.513, p = 0.130 

o Real-time Priming Level, Z = -2.735, p = 0.006, (Mann-Whitney 

Independent) 

 

Table 31. Workload Metrics Summary for A Priori Priming 

Metric A Priori 

Priming 

Mean Median Std Dev Min Max 

Utilization Negative 47.8% 47.9% 5.30% 36.6% 61.0% 

No Priming 46.7% 46.2% 8.90% 30.6% 65.7% 

Positive 44.8% 45.3% 8.00% 31.0% 61.6% 

Total Mouse 

Clicks 

Negative 359 356 75.2 233 527 

No Priming 338 327 80.6 206 532 

Positive 318 296 84.8 186 542 

Length of 

Time to 

Replan 

Negative 7.40 6.90 2.70 3.36 12.4 

No Priming 7.50 6.60 3.60 2.15 15.5 

Positive 7.20 7.10 2.90 2.00 13.2 

Chat #1 

Reaction 

Time 

Negative 19.8 15.7 12.7 4.43 51.1 

No Priming 13.9 11.1 8.90 4.98 38.7 

Positive 12.3 9.40 8.80 4.81 43.3 

Chat #2 

Reaction 

Time 

Negative 26.9 21.3 16.0 7.30 60.0 

No Priming 27.4 24.2 16.7 7.55 60.0 

Positive 18.4 15.7 10.5 7.19 60.0 

Chat #3 

Reaction 

Time 

Negative 13.6 10.5 8.00 4.78 42.5 

No Priming 18.2 12.6 15.7 4.80 60.0 

Positive 14.4 9.60 13.5 4.91 60.0 

Prompted 

Search Task 

#1 Reaction 

Time 

Negative 27.8 20.0 21.4 3.14 60.0 

No Priming 27.6 17.3 20.5 5.41 60.0 

Positive 35.0 23.8 22.6 8.26 60.0 

Prompted 

Search Task 

#2 Reaction 

Time 

Negative 33.0 26.5 22.1 7.77 60.0 

No Priming 28.8 18.1 21.2 6.69 60.0 

Positive 18.2 13.7 13.0 6.44 60.0 
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Table 32. Workload Metrics Summary for Real-Time Priming  

Metric Real-Time 

Priming 

Mean Median Std Dev Min Max 

Utilization Low 46.5% 47.6% 7.60% 30.6% 65.7% 

High 46.4% 46.3% 7.60% 31.0% 63.5% 

Total Mouse 

Clicks 

Low 331 330 79.4 206 542 

High 345 331 83.1 186 532 

Length of 

Time to 

Replan 

Low 7.50 7.00 3.10 3.18 15.5 

High 7.20 6.90 3.10 2.00 13.2 

Chat #1 

Reaction 

Time 

Low 14.9 10.1 10.8 4.44 50.9 

High 15.7 11.1 10.7 5.50 51.1 

Chat #2 

Reaction 

Time 

Low 26.9 21.2 16.9 7.19 60.0 

High 21.6 18.9 12.7 7.55 60.0 

Chat #3 

Reaction 

Time 

Low 18.7 14.0 14.9 4.78 60.0 

High 12.1 8.90 9.50 5.23 57.5 

Prompted 

Search Task 

#1 Reaction 

Time 

Low 33.7 23.1 23.0 3.14 60.0 

High 26.7 18.0 19.6 5.41 60.0 

Prompted 

Search Task 

#2 Reaction 

Time 

Low 32.7 20.1 21.8 6.44 60.0 

High 20.6 13.1 16.1 6.69 60.0 

 

Table 33. Workload Metrics Summary for Information Time Delay  

Metric Info Time 

Delay 

Mean Median Std Dev Min Max 

Utilization No Delay 46.5% 47.2% 7.00% 30.6% 61.6% 

With Delay 46.4% 46.1% 8.20% 31.0% 65.7% 

Total Mouse 

Clicks 

No Delay 342 336 83.7 206 542 

With Delay 335 327 79.2 186 532 

Length of Time 

to Replan 

No Delay 7.40 6.70 2.90 2.00 13.2 

With Delay 7.40 7.10 3.30 2.15 15.5 

 

Situation Awareness 

Situation Awareness (SA) was measured through two metrics: the accuracy of responses to 

periodic chat box messages querying the participant about aspects of the mission and the 
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accuracy of re-designations of unknown targets based on chat intelligence information. For both 

metrics, non-parametric tests were needed.  

 Chat Question Accuracy 

o A Priori Priming Level, χ
2
(2, N=96) = 3.308, p = 0.191 (Kruskal-Wallis 

omnibus) 

o Real-time Priming Level, Z = -1.795, p = 0.073, (Mann-Whitney 

Independent) 

o Information Time Delay, Z = -0.022, p = 0.982, (Mann-Whitney 

Dependent) 

 Target ID Re-Designation Accuracy 

o A Priori Priming Level, χ
2
(2, N=96) = 0.498, p = 0.779 (Kruskal-Wallis 

omnibus) 

o Real-time Priming Level, Z = -0.965, p = 0.335, (Mann-Whitney 

Independent) 

o Information Time Delay, Z = -3.009, p = 0.003, (Mann-Whitney 

Dependent) 

 
Table 34. SA Metrics Summary for A Priori Priming 

Metric A Priori 

Priming 

Mean Median Std Dev Min Max 

Chat 

Question 

Accuracy 

Negative 58.5% 67.0% 22.6% 0.00% 100% 

No Priming 65.8% 67.0% 27.5% 0.00% 100% 

Positive 68.9% 67.0% 18.9% 33.0% 100% 

Target Re-

Designation 

Accuracy 

Negative 60.9% 66.7% 26.3% 0.00% 100% 

No Priming 59.9% 58.4% 31.6% 0.00% 100% 

Positive 65.1% 66.7% 27.8% 0.00% 100% 

 

Table 35. SA Metrics Summary for Real-Time Priming  

Metric Real-Time 

Priming 

Mean Median Std Dev Min Max 

Chat 

Question 

Accuracy 

Low 68.3% 67.0% 22.8% 0.00% 100% 

High 60.5% 67.0% 23.6% 0.00% 100% 

Target Re-

Designation 

Accuracy 

Low 58.7% 66.7% 29.2% 0.00% 100% 

High 65.3% 66.7% 27.5% 25.0% 100% 
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Table 36. SA Metrics Summary for Information Time Delay  

Metric Info Time 

Delay 

Mean Median Std Dev Min Max 

Chat Question 

Accuracy 

No Delay 64.0% 67.0% 21.7% 0.00% 100% 

With Delay 64.7% 67.0% 25.2% 0.00% 100% 

Target Re-

Designation 

Accuracy 

No Delay 71.4% 75.0% 29.8% 0.00% 100% 

With Delay 52.6% 50.0% 23.8% 0.00% 100% 

 

Real-time Subjective Responses 

Throughout the mission, a pop-up survey window appeared in the lower left corner of the Map 

Display to ask the operator to provide these three ratings: 

 How well you think the system is performing (1-7) 

 How well you expect the system to perform (1-7) 

 Your trust in the Automated Scheduler (1-7)  

 

A fourth metric, the Perceived Performance Gap (PPG) was calculated by taking the percent 

difference between the expectation and performance rating. For the analysis below, all ratings 

taken during the mission were averaged. Non-parametric tests were needed for this Likert scale 

data. 

 Performance 

o A Priori Priming Level, χ
2
(2, N=94) = 5.774, p = 0.056 (Kruskal-Wallis 

omnibus) 

 Mann-Whitney pairwise comparisons: 

 Negative Priming-No Priming: Z = -1.832, p = 0.067 

 Negative Priming-Positive Priming: Z = -2.160, p = 0.031 

 No Priming-Positive Priming: Z = -0.833, p = 0.405 

o Real-time Priming Level, Z = -2.122, p = 0.034, (Mann-Whitney 

Independent) 

o Information Time Delay, Z = -0.213, p = 0.831, (Mann-Whitney 

Dependent) 

 Expectations 

o A Priori Priming Level, χ
2
(2, N=94) = 11.767, p = 0.003 (Kruskal-Wallis 

omnibus) 

 Mann-Whitney pairwise comparisons: 

 Negative Priming-No Priming: Z = -0.395, p = 0.693 

 Negative Priming-Positive Priming: Z = -3.189, p = 0.001 
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 No Priming-Positive Priming: Z = -2.674, p = 0.007 

o Real-time Priming Level, Z = -2.145, p = 0.032, (Mann-Whitney 

Independent) 

o Information Time Delay, Z = -1.204, p = 0.229, (Mann-Whitney 

Dependent) 

 PPG 

o A Priori Priming Level, χ
2
(2, N=94) = 4.520, p = 0.104 (Kruskal-Wallis 

omnibus) 

o Real-time Priming Level, Z = -0.314, p = 0.753, (Mann-Whitney 

Independent) 

o Information Time Delay, Z = -0.225, p = 0.822, (Mann-Whitney 

Dependent) 

 Trust 

o A Priori Priming Level, χ
2
(2, N=94) = 14.740, p = 0.001 (Kruskal-Wallis 

omnibus) 

 Mann-Whitney pairwise comparisons: 

 Negative Priming-No Priming: Z = -1.036, p = 0.300 

 Negative Priming-Positive Priming: Z = -3.741, p < 0.001 

 No Priming-Positive Priming: Z = -2.614, p = 0.009 

o Real-time Priming Level, Z = -0.851, p = 0.395, (Mann-Whitney 

Independent) 

o Information Time Delay, Z = -0.895, p = 0.371, (Mann-Whitney 

Dependent) 

 

Table 37. Real-time Survey Metrics Summary for A Priori Priming 

Metric A Priori 

Priming 

Mean Median Std Dev Min Max 

Performance Negative 4.80 4.70 0.88 3.20 7.00 

No Priming 5.16 5.25 0.93 3.00 6.90 

Positive 5.33 5.50 0.98 3.40 6.70 

Expectations Negative 5.27 5.20 0.87 3.44 6.50 

No Priming 5.40 5.30 0.87 4.00 7.00 

Positive 5.96 6.00 0.66 4.73 7.00 

PPG Negative 7.16% 8.00% 13.1% -16.0% 35.0% 

No Priming 3.65% 2.90% 14.6% -23.0% 42.0% 

Positive 10.5% 7.70% 11.5% -2.00% 35.0% 

Trust Negative 4.46 4.70 1.01 2.20 6.00 

No Priming 4.82 4.80 1.04 2.60 6.90 

Positive 5.54 5.80 1.17 2.80 7.00 
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Table 38. Real-time Survey Metrics Summary for Real-Time Priming 

Metric Real-Time 

Priming  

Mean Median Std Dev Min Max 

Performance Low 5.31 5.30 0.95 3.00 7.00 

High 4.88 4.90 0.89 3.27 6.50 

Expectations Low 5.73 6.00 0.85 4.10 7.00 

High 5.36 5.20 0.82 3.44 7.00 

PPG Low 6.70% 5.00% 12.04% -15.0% 36.0% 

High 7.60% 4.00% 14.50% -23.0% 42.0% 

Trust Low 5.08 4.90 1.14 2.60 7.00 

High 4.81 4.90 1.17 2.20 6.80 

 

Table 39. Real-time Survey Metrics Summary for Information Time Delay 

Metric Info Time 

Delay  

Mean Median Std Dev Min Max 

Performance No Delay 5.11 5.00 0.95 3.27 6.90 

With Delay 5.09 5.20 0.95 3.00 7.00 

Expectations No Delay 5.58 5.64 0.83 3.50 7.00 

With Delay 5.52 5.83 0.88 3.44 7.00 

PPG No Delay 7.55% 4.00% 12.38% -15.0% 42.0% 

With Delay 6.76% 5.00% 14.21% -23.0% 36.0% 

Trust No Delay 4.99 4.90 1.13 2.20 7.00 

With Delay 4.91 4.90 1.20 2.60 7.00 

 

Pre- and Post-Mission Subjective Responses 

First, a survey immediately following the practice mission asked operators to rate their trust in 

the AS on a scale from 1-7 (low to high). Next, at the end of each mission, a survey was 

provided asking the participant for a subjective rating of his or her confidence, workload, and 

satisfaction with the plans generated by the AS on a Likert scale from 1-5 (1 low, 5 high). 

Finally, at the end of the entire experiment, all test subjects filled out a 12-question survey which 

is commonly used to measure trust in automation and has been empirically validated (Jian, et al., 

2000). Since each test subject experienced both Information Delay Levels, there is no analysis of 

the differences in the pre-experiment or post-experiment trust survey results between 

Information Delay Levels. Non-parametric tests were needed for this Likert scale data.  
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 Pre-Experiment Trust 

o A Priori Priming Level, χ
2
(2, N=47) = 11.636, p = 0.003 (Kruskal-Wallis 

omnibus) 

 Mann-Whitney pairwise comparisons: 

 Negative Priming-No Priming: Z = -0.807, p = 0.420 

 Negative Priming-Positive Priming: Z = -3.186, p = 0.002 

 No Priming-Positive Priming: Z = -2.570, p = 0.010 

o Real-time Priming Level, Z = -0.993, p = 0.321, (Mann-Whitney 

Independent) 

 Confidence 

o A Priori Priming Level, χ
2
(2, N=96) = 0.108, p = 0.947 (Kruskal-Wallis 

omnibus) 

o Real-time Priming Level, Z = -4.462, p < 0.001, (Mann-Whitney 

Independent) 

o Information Time Delay, Z = -1.483, p = 0.138, (Mann-Whitney 

Dependent) 

 Workload 

o A Priori Priming Level, χ
2
(2, N=96) = 1.116, p = 0.572 (Kruskal-Wallis 

omnibus) 

o Real-time Priming Level, Z = -0.707, p = 0.480, (Mann-Whitney 

Independent) 

o Information Time Delay, Z = -0.354, p = 0.723, (Mann-Whitney 

Dependent) 

 Satisfaction with AS Plans 

o A Priori Priming Level, χ
2
(2, N=96) = 1.073, p = 0.585 (Kruskal-Wallis 

omnibus) 

o Real-time Priming Level, Z = -0.589, p = 0.556, (Mann-Whitney 

Independent) 

o Information Time Delay, Z = -0.592, p = 0.554, (Mann-Whitney 

Dependent) 

 Post-Experiment Trust Survey 

o A Priori Priming Level, χ
2
(2, N=48) = 1.986, p = 0.371 (Kruskal-Wallis 

omnibus) 

o Real-time Priming Level, Z = -0.722, p = 0.470, (Mann-Whitney 

Independent) 
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Table 40. Post-Mission Survey Metrics Summary for A Priori Priming 

Metric A Priori 

Priming 

Mean Median Std Dev Min Max 

Pre-

Experiment 

Trust Survey 

Negative 5.13 5.00 0.92 3.00 6.00 

No Priming 5.44 5.50 0.81 4.00 7.00 

Positive 6.19 6.00 0.66 5.00 7.00 

Confidence Negative 2.50 2.00 0.98 1.00 5.00 

No Priming 2.47 2.00 0.98 1.00 5.00 

Positive 2.38 2.00 0.91 1.00 4.00 

Workload Negative 2.97 3.00 0.60 2.00 4.00 

No Priming 3.06 3.00 0.72 2.00 4.00 

Positive 2.84 3.00 0.77 1.00 4.00 

Satisfaction 

with AS Plans 

Negative 2.63 3.00 0.79 1.00 4.00 

No Priming 2.91 3.00 1.00 1.00 5.00 

Positive 2.69 3.00 0.69 1.00 4.00 

Post-

Experiment 

Trust Survey 

Negative 9.27 9.00 12.9 -16.0 28.0 

No Priming 14.1 15.0 13.1 -20.0 31.0 

Positive 15.3 16.5 15.1 -20.0 36.0 

 

Table 41. Post-Mission Survey Metrics Summary for Real-Time Priming 

Metric Real-

Time 

Priming  

Mean Median Std Dev Min Max 

Pre-Experiment 

Trust Survey 

Low 5.46 6.00 0.93 3.00 7.00 

High 5.74 6.00 0.86 4.00 7.00 

Confidence Low 2.88 3.00 0.89 1.00 5.00 

High 2.02 3.00 0.81 1.00 4.00 

Workload Low 3.02 3.00 0.73 2.00 4.00 

High 2.90 3.00 0.66 1.00 4.00 

Satisfaction 

with AS Plans 

Low 2.79 3.00 0.82 1.00 4.00 

High 2.69 3.00 0.85 1.00 5.00 

Post-

Experiment 

Trust Survey 

Low 13.8 14.0 15.9 -16.0 30.0 

High 12.1 13.0 11.3 -20.0 36.0 
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Table 42. Post-Mission Survey Metrics Summary for Information Time Delay 

Metric Info Time 

Delay  

Mean Median Std Dev Min Max 

Confidence No Delay 2.38 2.00 0.92 1.00 5.00 

With Delay 2.57 2.00 0.95 1.00 5.00 

Workload No Delay 2.94 3.00 0.76 1.00 4.00 

With Delay 2.96 3.00 0.62 2.00 4.00 

Satisfaction 

with AS Plans 

No Delay 2.70 3.00 0.86 1.00 5.00 

With Delay 2.77 3.00 0.84 1.00 5.00 

 

Gamer vs. Nongamer Click Count Analysis 

Descriptive statistics for comparison of click count between gamers and nongamers across the 

different A Priori Priming levels are shown in Table 43. 

Table 43. Descriptive statistics for gamers vs. nongamer click count analysis. 

Gaming 

Type 

A Priori 

Priming 

Mean Median Std Dev Min Max 

Gamers Negative 381 366 95.6 251 527 

No Priming 299 316 62.7 206 407 

Positive 277 269 42.1 229 347 

Nongamers Negative 348 354 63.8 233 467 

No Priming 368 356 81.5 217 532 

Positive 343 335 94.6 186 542 
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Statistical Analysis Summary 

The results of all omnibus factor level tests are summarized in Table 44, where the conditions 

with statistically significant results are shown in bold. 

Table 44. Summary of Experimental Findings 

Category Metric A Priori Priming Real-Timing Priming Information Delay 

System 

Performance 

% Area Coverage Indistinguishable 

(p = 0.984) 

Indistinguishable 

(p = 0.961) 

Indistinguishable  

(p = 0.486) 

% Targets Found Indistinguishable 

(p = 0.939) 

Indistinguishable 

(p = 0.875) 

Indistinguishable 

(p = 0.196) 

% Time Targets 

Tracked 

Indistinguishable 

(p = 0.610) 

Indistinguishable 

(p = 0.072) 

Indistinguishable 

 (p = 0.968) 

Correct Hostiles 

Destroyed 

Indistinguishable 

(p = 0.262) 

Indistinguishable 

(p = 0.377) 

Indistinguishable 

(p = 0.390) 

Mistaken Hostiles 

Destroyed 
Significant difference 

(p = 0.001) 

Indistinguishable 

(p = 0.834) 

Indistinguishable 

(p = 0.746) 

Primary 

Workload 

Utilization Indistinguishable 

(p = 0.242) 

Indistinguishable 

(p = 0.986) 

Indistinguishable 

(p = 0.946) 

Total Click Count Indistinguishable 

(p = 0.130) 

Indistinguishable 

(p = 0.374) 

Indistinguishable 

(p = 0.692) 

Average Length of 

Time to Replan 

Indistinguishable 

(p = 0.610) 

Indistinguishable 

(p = 0.865) 

Indistinguishable 

(p = 0.989) 

Secondary 

Workload 

Chat #1 reaction 

time 
Significant difference 

 (p = 0.007) 

Indistinguishable 

(p = 0.424) 

N/A 

Chat #2 reaction 

time 
Significant difference 

 (p = 0.024) 

Indistinguishable 

(p = 0.193) 

N/A 

Chat #3 reaction 

time 

Indistinguishable 

(p = 0.447) 
Significant difference 

 (p = 0.003) 

N/A 

Prompted Search 

Task #1 reaction 

time 

Indistinguishable 

(p = 0.284) 

Indistinguishable 

(p = 0.102) 

N/A 

Prompted Search 

Task #2 reaction 

time 

Positive Priming  

 (p = 0.065) 
Significant difference 

(p = 0.006) 

N/A 

Situation 

Awareness 

Chat question 

accuracy 

Indistinguishable 

(p = 0.191) 

Low 

(p = 0.073) 

Indistinguishable 

(p = 0.982) 

Target re-

designation 

accuracy 

Indistinguishable 

(p = 0.779) 

Indistinguishable 

(p = 0.335) 
Significant difference 

(p = 0.003) 

Real-Time 

Subjective 

Ratings 

Average 

Performance 
Significant difference 

 (p = 0.056) 

Significant difference 

 (p = 0.034) 

Indistinguishable 

(p = 0.831) 

Average 

Expectations 
Significant difference 

 (p = 0.003) 

Significant difference 

 (p = 0.032) 

Indistinguishable 

(p = 0.229) 

Average PPG Indistinguishable 

(p = 0.104) 

Indistinguishable 

(p = 0.753) 

Indistinguishable 

(p = 0.822) 

Average Trust Significant difference 

 (p = 0.001) 

Indistinguishable 

(p = 0.395) 

Indistinguishable 

(p = 0.371) 

Pre- and Post-

Mission 

Subjective 

Ratings 

Pre-Mission Trust 

Survey 
Significant difference 

 (p = 0.003) 

Indistinguishable 

(p = 0.321) 

N/A 

Confidence Indistinguishable 

(p = 0.108) 
Significant difference 

 (p < 0.001) 

Indistinguishable 

(p = 0.138) 

Workload Indistinguishable 

(p = 0.572) 

Indistinguishable 

(p = 0.480) 

Indistinguishable 

(p = 0.723) 

Satisfaction with 

AS plans 

Indistinguishable 

(p = 0.585) 

Indistinguishable 

(p = 0.556) 

Indistinguishable 

(p = 0.554) 

Post-Experiment 

Trust Survey 

Indistinguishable 

(p = 0.371) 

Indistinguishable 

(p = 0.470) 

N/A 
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Other Demographic Effects on Performance 

A set of linear regression analyses was performed to see if there were any significant predictor 

variables for high (or low) system performance, operator workload, and average trust. The linear 

regression estimates coefficients of a linear equation, with one or more predictor variables, that 

best predict the value of the dependent variable. As there would be 6 linear regressions, the 

typical  = 0.05 significance level was reduced to  = 0.008 using the Bonferroni correction 

(Kutner et al., 2004). A backwards elimination linear regression was utilized, which removed 

predictor variables that did not meet a significance level of  = 0.008, so that the most 

parsimonious model was derived for predicting the dependent variables. Potential predictor 

variables were age, gender, frequency of gaming, perception of UAVs, comfort with computers, 

recent amount of sleep, frequency of TV watching, education level, and Metacognitive 

Awareness (MAI). 

The results from the 6 backwards elimination linear regressions are shown in Table 45, including 

the variables that were significant predictors of the performance, workload, and trust metrics. 

The normality, homogeneity of variance, linearity, and independence assumptions of a linear 

regression were met by three of the four regressions that found significant predictor variables, 

with the exception of Targets Found, which violates the normality assumption. Also, there was a 

weak to moderate correlation between two of the dependent variables: Utilization and Targets 

Found (=0.338, p = 0.001). There were no significant predictor variables for the percentage of 

time targets were tracked and the number of hostiles destroyed. 

Table 45. Linear Regression Results 

Dependent 

Variable 

R
2
 β0 Gaming Military TV MAI 

Area Coverage 0.081 β = 0.875 

p < 0.001 

- - - β= -0.285 

p = 0.005 

Targets Found 0.089 β = 0.925 

p < 0.001 

- - β= -0.298 

p = 0.003 

- 

Time Targets 

Tracked 

0 β = 0.879 

p < 0.001 

- - - - 

Hostiles Destroyed 0 β = 3.146 

p < 0.001 

- - - - 

Utilization 0.202 β = 0.523 

p < 0.001 

β= -0.450 

p < 0.001 

- - - 

12-Question Trust 

Survey 

0.095 β= 27.851 

p < 0.001 

- β= -0.308 

p = 0.002 

- - 
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