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Abstract

This thesis mainly deals with the study of the category 'cit-mod of admissible

modules for the affine Kac-Moody algebra at the critical level 'cit and the study of

its center Z(, it-mod). The language used in this work is the one of chiral algebras,
viewed as either D-modules over a smooth curve X or as a collection of sheaves

over powers X( of the curve. In particular, we study the chiral algebra Ait

corresponding to the Kac-Moody algebra e,.it and its center 3cit. By considering

the categories of Acrit-modules and 3crit-modules supported at some point x in X,
we recover the categories e,.it-mod and Z(r.it-mod)-mod respectively. In this thesis

we also study the chiral algebra Dit of critically twisted differential operators on

the loop group G((t)) and its relation to the category of D-modules over the affine

Grassmannian GrG,x = G((t))/G[[t]].
In the first part of the thesis, we consider the chiral algebra Ait and its center

3,it. The commutative chiral algebra 3,it admits a canonical deformation into

a non-commutative chiral algebra Wh. We will express the resulting first order

deformation via the chiral algebra Dit of chiral differential operators on G((t)) at

the critical level.

In the second part of the thesis, we consider the Beilinson-Drinfeld Grassmannian

GrG and the factorization category of D-modules on it. We try to describe this cat-

egory in algebraic terms. For this, we first express this category as the factorization

category 'Deit-mod JG of chiral 'Derit-modules which are equivariant with respect to

the action of a certain factorization group JG. Then we express the factorization

category of chiral 3erit-modules as the category of modules over the factorization

space Op' of opers on the punctured disc. Using the Drinfeld-Sokolov reduction 9,
we construct a chiral algebra '3 and a functor Iq, from the category of D-modules on

GrG to the category of chiral '3-modules that are supported on a certain sub-scheme

of Op'. We conjecture that this functor establishes an equivalence between these
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two categories.
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Chapter 1

Introduction

Let g be a finite dimensional simple Lie algebra over an algebraically closed field

k of characteristic 0, and let G be the corresponding adjoint algebraic group. Fix

a smooth curve X over k, and a point x E X. Let t be a coordinate near x. For

any invariant bilinear form tj, denote by g the Kac-Moody algebra given as the

corresponding central extension of the loop algebra g 0 C((t)) by C. Denote by rKill

the Killing form on g and let ,.it be the critical level ,.it = -1/2nKill. For the

critical level, denote by U'it the appropriately completed twisted enveloping algebra

of cit. Consider the category eit-mod of continuous modules over U'it. These are

the same as discrete admissible eit-modules on which 1 E C acts as the identity.

At the critical level, unlike any other r,, the center of the category eit-mod is non-

trivial. For instance, in the case of s12, it is generated by the Sugawara operators.

We denote by 3 ,.it the center

,.it := Z('e,-it-mod )

This peculiarity makes the theory of eit-modules more interesting and more com-

plicated.

Denote by g the Langlands dual Lie algebra to g, and let X be a smooth curve
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over the complex numbers. Denote by Op ,x the space of b-opers on X, introduced

in [BD2]. Roughly speaking, an oper is a triple (To, 7, V), where To is a O-

bundle on X, 37 is a reduction to a fixed Borel b c 0 and V is a connection on

.To satisfying certain properties. For every point x E X, we denote by Op,(D ) the

ind-scheme of opers on the punctured disc D' = Spec(C((t))), and by Op§(Dx) the

scheme of regular opers i.e., opers on the disc D = Spec(C[[t]]).

The interplay between the representation theory of ' it and the space Op§,x

is given by a theorem of Feigin and Frenkel. In [FF], they prove the existence

of an isomorphism of commutative topological algebras 5,it ~ Fun(Op (D*)).

In the work [FG2] of D. Gaitsgory and E. Frenkel, they define a closed sub-ind-

scheme of Opj(D ), denoted by Opgm," corresponding to unramified opers. This

ind-scheme consists of those opers that are unramified as local systems. We denote

by ' it-modeg the subcategory of ' t-mod on which the action of Fun(Opb(D*))

factors through Fun(Opb(Dx)). Similarly we denote by 'git-modun, the subcate-

gory consisting of modules on which the action of Fun(Op6(D*)) factors through

the quotient Fun (Op,n)

Our basic tool in this paper is the theory of chiral algebras as introduced in [BD].

In fact, we will see in 2.1.1 how we can attach to the 'Dx-algebra Opbx a commu-

tative chiral algebra, and more generally, how an affine 'Dx-scheme corresponds to

a commutative chiral algebra. This suggests that the theory of chiral algebras is a

more suitable tool for the study of the above categories. In particular we will use

the chiral algebra A, attached to & as defined in [AG]. A chiral algebra on X,

is a Dx-module A equipped with a map {, } : j~j*(A Z A) -+ Ai(A), called the

chiral product, satisfying certain properties, where A : X -+ X 2 denotes the diago-

nal embedding and j the inclusion of the complement. We will denote by [,]A the

restriction of the chiral product to A Z A -4 j*j*(A 0 A). The rising interest in the

theory of chiral algebras has a twofold motivation. The first is that it has numerous
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applications in the study of conformal field theory in two dimensions. The second

is that, as explained in [BD], chiral algebras are the same as factorization algebras

on Ran(X), i.e., a sequence of quasi-coherent sheaves A(n) for every power of the

curve X", satisfying certain factorization properties. For instance, a co-unital affine

factorization space on Ran(X) is the same as a commutative chiral algebra on X.

This description makes the understanding of factorization algebras, and of modules

over them, easier.

1.1 W-algebras and chiral differential operators

on the loop group

Consider the chiral algebra A, attached to &. For r, = ,-it = -AKkill denote by

3
c,it the center of Ait := A,..i. This is a commutative chiral algebra with the

property that the fiber (3
c,.it), over any point x E X is equal to the commutative

algebra Endcri(Vc,.it), where

IndO cri C.
V, c,.it := Ind ,0

The chiral algebra 3,it is closely related to the center 3
eit of the category geit-mod.

In fact, for any chiral algebra A and any point x E X, we can form an associative

topological algebra A with the property that its discrete continuous modules are

the same as A-modules supported at x (see [BD] 3.6.6). In this case the topological

associative algebra corresponding to 3
cit is isomorphic to crit.

As we mentioned before, the importance of choosing the level r, to be scit relies

on the fact that the center ,it happens to be very big. Another crucial feature of the

critical level is that Lcrit carries a natural Poisson structure, obtained by considering

the one parameter deformation of rit given by scrit + hIkiil, as explained below
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in the language of chiral algebras. Moreover, according to [FF, F1, F2], the center

3,it is isomorphic, as Poisson algebra, to the quantum Drinfeld-Sokolov reduction of

U'(s,.t) introduced in [FF] and [FKW]. In particular the above reduction provides

a quantization of the Poisson algebra ,it that will be central in this work.

Since the language we have chosen is the one of chiral algebras, we will now

reformulate these properties for the algebra 3 ,it.

The commutative chiral algebra 3,it can be equipped with a Poisson structure

which can be described in either of the following two equivalent ways:

" For any h $ 0 let r, be any non critical level K = c,-it + hkik and denote by

Ah the chiral algebra A,. Let z and u be elements of 3,.it. Let zK and w" be

any two families of elements in As such that z = zK and w = wK when h = 0.

Define the Poisson bracket of z and w to be

{z, W} = [zK, WK]A, (mod h).
h

" The functor Tx of semi-infinite cohomology introduced in [FF] (which is the

analogous of the quantum Drinfeld-Sokolov reduction mentioned before and

whose main properties will be recalled later), produces a 1-parameter family of

chiral algebras {Wh} := {'x(Ah)} such that Wo ~- 3,it. Define the Poisson

structure on 3
cit as

{z, W} = [hIih (mod h)

where z = zal,_o and w = iGalao.

Although the above two expressions look the same, we'd like to stress the fact that,

unlike the second construction, in the first we are not given any deformation of 3,it.

In other words the elements zK and w, do not belong to the center of A, (that in
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fact is trivial). It is worth noticing that the associative topological algebras Ih

associated to them (usually denoted by Wh) are the well known W-algebras.

As in the case of usual algebras, the Poisson structure on 3,it gives the sheaf of

Kshler differentials Q£( 3 ,it) a structure of Lie* algebroid. A remarkable feature,

when dealing with chiral algebras, is that the existence of a quantization {Wh} of

3
cit allows us to construct what is called a chiral extension Qc( 3 ,it) of the Lie*

algebroid Q'(3,.it), and moreover, as it is explained in [BD] 3.9.11, this establishes

an equivalence of categories between 1-st order quantizations of 3,it and chiral ex-

tensions of W(3c,. This equivalence is the point of departure for this work.

1.1.1 Main Theorem

In [BD], the highly non-trivial notion of chiral extension of Lie*-algebroid is intro-

duced. Chiral extensions form a gerbe over a certain Picard category; in particular,

such extensions may not even exist. Given a chiral extension 2c of a Lie*-algebroid

, we can form its chiral envelope U(2c)ch. For example, for a Dx-space Y, and a

chiral extension of the Lie*-algebroid Oy of vector fields on Y, its chiral envelope is

a chiral algebra of twisted chiral differential operators on Y.

This project consists of comparing two, a priori different, chiral extensions of the

Lie*-algebroid Q1(3,). The first extension is defined using quantum W-algebras,

as explained before. Namely we consider the 1-paramenter family of chiral algebras

{Wa} :{= Px(Ah)}. As is shown in [FF], the cohomology of Tx(A,-it) = XFx(Ao)

is concentrated in degree zero, and its 0-th cohomology is isomorphic to the center

3,it. Therefore the chiral algebras {Wh} provide a 1-parameter family deformation

of 3,it, giving rise to the same Poisson structure as introduced above. According

to [BD], such a quantization gives rise to a chiral extension Qc(3c,-it) of Q'(3c-it).

The second extension is given via its chiral envelope.

We start with the chiral algebra Dit of critically-twisted differential operators
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on the loop group G((t)), introduced in [AG]. The algebra 'Drit admits two embed-

dings of A,it, corresponding to right and left invariant vector fields on G((t)). The

two embedding 1 and r of Acrit into D,it endow the fiber ('Dit), with a structure

of eit-bimodule. The fiber can therefore be decomposed according to these actions

as explained below.

Consider the topological commutative algebra 3cit. For a dominant weight A,

let VA be the finite dimensional irreducible representation of g with highest weight

A and let 'V, be the e it-module given by

IVA U(erit) ® VA.
Glerit U(g([t]jeC)

The action of the center crit on V,,it factors as follows

A End(V~cri).$crit -*-> 3c.,it :=E d( c,1 )

Denote by IA the kernel of the above map, and consider the formal neighborhood

of Spec(3A.) inside Spec(Ocrii). Let -it-modG[[t]] be the full subcategory of c

modules such that the action of g[[t]] can be integrated to an action of G[[t]]. We

have the following Lemma.

Lemma 1.1.1. Any module M in 'eit-modG[[t|| can be decomposed into a direct

sum of submodules M such that each MA admits a filtration whose subquotients are

annihilated by A.

As a bimodule over 'cit the fiber at any point x E X of 'Dit is G[[t]] inte-

grable with respect to both actions, hence we have two direct sum decompositions

of ('Dit), corresponding to the left and right action of 'cit, as explained in [FG2]:

('Drit)2= E ('Drit)\,
A daninant
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where ('Dit)A is the direct summand supported on the formal completion of Spec(3A it).

Denote by 'D, the Dx-module corresponding to (Dcrit). It is easy to see that Do

is in fact a chiral algebra.

Since the fiber of Acrit at x is isomorphic to V, the embeddings 1 and r must

land in the chiral algebra 'DOe,.t Hence we have

The above two embeddings give 'DOit a structure of Acit-bimodule, hence it makes

sense to apply the functor of semi-infinite cohomology Tx to it with respect to both

actions. Let us denote by Cc-it the resulting chiral algebra

Co.,. := (x 0 Tx)(Do..t).

The main result of this work is the following.

Theorem 1.1. The chiral envelope U(Qc(3crit)) of the extension

0 3 3crit -- Qc(3crit) -+ Q(3crit) + 0,

given by the quantization {Wh := T x(A)} of the center 3eit, is isomorphic to the

chiral algebra 930.

1.2 D-modules over the affine Grassmannian

1.2.1 The Beilinson-Bernestein Localization Theorem

Recall the theorem of A. Beilinson and J. Bernstein, that realizes 'D-modules on

the flag variety G/B as modules over the associative algebra given as the quotient

of U(g) by the maximal ideal of the center defined by its action on the trivial g-
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module. The main body of this second project tries to develop an analogue of

the above theorem in the affine case. More precisely, denote by GrG,z the affine

Grassmannian

GrG,x := G((t))/G[[t]

This is an ind-scheme of finite type classifying G-bundles on X with a given triv-

ialization on X - x. On the affine Grassmannian we can define the category

D-mod(Gra,x) of D-modules, and, as in the finite dimensional case, we are in-

terested in describing it in different terms. In particular, we would like to have

an algebraic description of it, where, by algebraic, we mean a description of it as

modules over some associative algebra. However, it turns out that the category that

can be realized as such is a critically-twisted version of D-mod(GrG,2). The reason

being that this new category is related to the category eit-mod and therefore to the

topological algebra Fun(Op4(D*)). This category, denoted by De,.it-mod(GrG,x) is

constructed in the following way. As it is explained in [BD2], there exist a canonical

line bundle

crit,x -+ GrG,x

on Gra,2. Critically twisted D-modules on GrG,x are just 0-modules on GrG,x with

an action of a particular sheaf 'Dc, attached to Leit,2. The functor M -+ M 9

Lrit,x defines an equivalence of categories

D-mod(GrG,x) ~> Deit-mod(GrG,x), (1.1)

therefore describing the RHS as modules over some associative algebra, would also

describe the category of D-modules on Grc,x as such. We can start by consid-

ering the functor F of global sections on GrG,2 as a functor from the category

De,it-mod(GrG,x) to the category of vector spaces Vect. It can be shown that the

action of 'D on a module M, gives a 'crit-module structure on the vector space
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F(GrG,x, M). We therefore have a functor

I : Deit-mod(GrG,x) -+ crit-mod.

However, unlike the finite dimensional case, this functor does not establish an equiv-

alence of categories. It is not hard to see that F factors through the sub-category

Oc-it-modreg. However, the resulting functor F : Dc,it-mod(GrG,2) -+ cit-modreg is

not an equivalence. Instead, the following conjecture was proposed in [FG3]:

" The action of the groupoid IsomOp,(DX) = Op (D.) x Opb(D2) on 3,it lifts to
-|G

an action on scrit-modreg compatible with the action of G((t)).

" The functor F establishes an equivalence between Dcit-mod(GrG,2) and the

category

(Scrit-modreg)somo" (D-) of IsomOp,(D.)-equivariant objects in 'crit-mdreg-

The above conjecture shows that F, viewed as a forgetful functor, does not realize

Derit-mod(GrG,x) as 3-mod, for some associative algebra 3.

In understanding how to describe the category De,it-mod(GrG,2), the questions that

arise are the following.

" Is there a different way of describing D-modules on GrG,x?

" What do we mean by algebraic description?

An answer to the above questions is given by the notion of modules over a chiral

algebra. In fact critically-twisted D-modules on the affine Grassmannian can be

described as chiral modules for the chiral algebra D,it satisfying certain properties.

In the second project, we will define a chiral algebra 3 and a functor

: D,it-mod(GrG,x) -+ 3-modz,

19



which will realize the LHS as modules supported at x E X for the chiral algebra

B. We believe that the functor F],, defines an equivalence between the RHS and

a certain subcategory of '-modx defined using the action of 3cit on Scit-mod.

However, we were only able to show the promised equivalence assuming a conjecture

concerning the functor Tx.

1.2.2 Construction of the functor

Consider the chiral algebra Ait. For this chiral algebra we have an equivalence

between the category Ac,-it-modx of Acrit-modules supported at x, and the category

,-it-mod introduced earlier. Let "ix denote the functor of semi-infinite cohomology,

which from now on will be simply called the Quantum Drinfeld-Sokolov reduction.

Tx : { Chiral Ac,.it-modules} -+ {Chiral 3c,.it-modules}.

By the theorem of Feigen and Frenkel we have an equivalence

3c.it-mod, c- QCoh(Opb (D )) := {discrete continuous Fun(Opb (D*))-modules}.

If we restrict the functor 'Ix to the category A,it-modx of Ac,-it-modules supported

at x, we therefore have a functor

IF : Ait-modx -+ QCoh!(Op§(D*)).

Consider now the chiral algebra Dit of chiral differential operators on the loop

group G((t)). Recall the two embeddings

Acrit -+ Dcrit *- Acrit,

20



corresponding to left and right invariant vector fields on G((t)). Chiral Deit-modules

supported at x should be thought as D-modules on G((t)). In particular, if we denote

by 7r the projection

r: G((t)) -* GrG,x,

given a module M E Deit-mod(Gra,2), we can regard F(G((t)), wr*(M)) as an object

in Dit-mod2. We define Fp,2 to be

F,, : D,it-mod(GrG,x,) 9crit-mod

Denote by 3 the chiral algebra

93: (id N Px ('De,.it ).

By construction, the action of it on rp,2(M) can be lifted to an action of 3.

Recall now the ind sub-scheme Op "r of Op6(D'), and denote by QCoh' (Op") the

category of continuous discrete Fun(Opg";)-modules. We have the following.

Conjecture 1.2.1. The functor Tpx establishes an equivalence of categories

D-mod(Gra,x) ~1_ Derit-mod(GrG,x,) ~_ 3-modunr,x
* Zcrit,z rq"

where 2-modunr denotes the category of 3-modules supported at x E X, which are

supported on Op," when regarded as objects in QCoh (OpO(D )).

1.2.3 The factorization picture

In trying to prove conjecture 1.2.1 we immediately realized that we needed an under-

standing the categories involved as the point x moves. More generally, for n distinct

points X1 , ... ,xn on X, we need to understand the categories De,.it-mod(GrG,xi) 0
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... 0 De,.it-mod(GrG,x,) and 3-modunr,x1 @ 0 3 modunr,x., as the n points move,

hence, in particular, as they collide.

In the second project we will state a conjectural equivalence of categories over

any power X" of the curve. In particular it will imply the equivalence of conjecture

1.2.1, by "taking the fiber at x E X". We will then explain how the conjecture

1.2.1 would follow from a conjecture concerning the functor XIx in its factorization

version, as explained below. The formulation of this conjecture uses the description

of chiral algebras in term of factorization algebras together with the notion of fac-

torization spaces.

An important example of factorization space is given by the Beilinson-Drinfeld

Grassmannian GrG on Ran(X). This is given by the assignment

I -+ GrG,

where I is a finite set, and GrGJ is the space over X' given in the following way.

For an affine scheme S, an S point of GrGI consists of a map S 4 XI, a G-bundle

PG on Xs := S x X and a trivialization of PG onXs - UiEIrFi, where 0, denotes

the graph of the i-th component of 4 in S x X. In particular, for I = {1, ... , n}, the

fiber of GrG,Xi at any (i 1 , .. ., Xn ), with xi # x, is the product of the corresponding

affine Grassmannians over each xi. This property of the Beilinson-Drinfeld Grass-

mannian is, indeed, one of the data in the definition of a factorization space.

On each GrGI there is a well defined notion of D-modules on it, and a well defined no-

tion of critically-twisted D-modules. We denoted this category by De,.it-mod(GrG,I)-

The latter is given using a line bundle cit on GrG, i.e. a collection

I -+ £Crit,1
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of line bundles over GrGI. We will be interested in the factorization category

Dcrit-mod(GrG) given by the assignment

I -4 Dcrt-mod(GrGI)-

As it is explained in [NR], given a chiral algebra A, we can define the category

A-mod, of chiral A-modules over XI. The assignment I -+ A-mod, defines a

factorization category, simply denoted by A-mod. When A is commutative, in 3.1.1,

we will explain how to describe the category A-mod, as the category of modules

over a space MAA over XI,

M19A -4 XI

canonically attached to A.

Consider the commutative chiral algebra A = 3,.it. We denote by Op' the

factorization space Op' = {I -+ Op,: M 93ct,} that should be thought as the

factorization version of opers on the punctured disc. For each I, the algebra of

function on Op", has a structure of topological algebra over X' and we have an

equivalence

Q Cohl (Op§,1) := {discrete continuous Fun(Opo,1 )-modules I ~ 3,it-modr.

We denote by QCoh(Opo) the factorization category given by the assignment

I -+ QCohl(Opo,j).

For every I, we can define a certain sub-functor Opgn C O pg,I corresponding to the

space of unramified opers from the previous section. It can be shown that this sub-

functor is represented by an affine-ind-scheme. This gives rise to a topology on the

algebra of functions Fun(OpuT ). As before, we will denote by QCoh(Op,) the
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category of discrete continuous Fun(Opg"/)-modules. By adapting the construction

of 1Ix to the factorization picture, we define functors

I : Acrit-mod, -+ QCoh1(OpO,I),

and use them to construct functors F], 1 : Dcit-mod(GrG,I) -+ 3-mod(QCoh (Op',I)).

Using the above functors, we arrive at the formulation of the Ran(X)-version of con-

jecture 1.2.1.

Conjecture 1.2.2. The collection {I -+ 1ij, 1} together with the equivalence 1.1 give

rise to an equivalence of factorization categories

D-mod(GrG) 24 3-mod(QCoh(Opb"')), (1.2)
rgo(.Lerit)

where 3-mod( QCoh ( Opu")) denotes the factorization category {I -+ 3-mod(QCoh! (Op"r))}

of 3-modules on X' which are supported on Opunj" when regarded as modules over

OpoI.

1.2.4 The main conjecture

As we mentioned before, the above conjecture, formally follows from a conjecture

concerning the functors TI. More precisely, consider the group Dx-scheme Jx(G)

as defined in 3.1.7. It acts on the category Acrit-modx of chiral Acit-modules on

X. We can therefore consider the sub-category Acrit-mod x(G) of strongly JX(G)-

equivariant objects in Ac,.it-modx. For instance, if we consider Acit-modules sup-

ported at x, then the category Acrit-modfx(G) is the category 9 eit-modGtll consist-

ing of crit-modules on which the action of g[[t]] can be integrated to an action of

G[[t]]. Consider the functor Tx,

Tx : Acit-modx -+ QCoh!(Opo,x).
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This functor has being studied by D. Gaitsgory and E. Frenkel. In particular, in

[FG2] they show that, when restricted to the sub-category Ac,it-mod 'x(G) it defines

an equivalence

Acit-modx(G) QCoh (Op"'). (1.3)
'T x

Similarly to the above, as it is explained in 3.1.7 and 3.3.3, there exists a factorization

group JG = {I -+ JG1 } acting on the factorization category Acit-mod. We can

consider the sub-category A,.it-modiG of Acit-modules on XI, which are strongly

JG-equivariant, and consider the restriction of I1 to this category,

I : Acit-modiG -+ QCoh(Op"i).

The main conjecture is the following.

Conjecture 1.2.3. The collection I := {I -+ IFI} defines an equivalence of factor-

ization categories

Acit-modJG g QCoh(Opnr).

1.2.5 How conjecture 1.2.3 implies conjecture 1.2.2

We will briefly explain how the equivalence in 1.2.3 would imply the equivalence

D-mod(GrG) -+ '3-mod(QCoh(Opnr)).
r,o(o(Lrita)

As it is explained in 3.1.3, given a factorization category C we can define (chiral)-

algebra objects in C. Moreover, as it is explained in 3.1.8, for an algebra object A

in a factorization category C, we can define a factorization category A-mod(C) of

A-modules in C. Consider now the factorization algebra

Acrit-mod JG = - Acit-modiG}.
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Using the right embedding Acrit -4 'Dit, we consider 'Dit as an algebra object in

Acrit-mod JG. We can therefore consider the factorization category 'Derit-mod(Acrit-mod JG)

Similarly, we can consider the chiral algebra '3 = qx('Deit) as an algebra object in

the category QCoh!(Op "'). Conjecture 1.2.3 implies that we have an equivalence

of factorization categories

Deit-mod(Acit-mod JG) ~ 'B-mod(QCoh! (Opnr)). (1.4)

In proposition 3.3.3 and in theorem 3.1 we will shown the following two facts.

" We have an equivalence 'Dit-mod(Acrit-mod JG) V Tcrit-mod JG

" There exist an equivalence of factorization categories

Dcit-mod(GrG) ODrit-mod JG

Therefore the equivalence (1.4) can be written as

Dit-mod(GrG) ~+ 'B-mod(QCoh(Opg"r)),

which immediately implies the equivalence stated in 1.2.2 after tensoring with the

factorization line bundle ,it as explained before.

1.3 Organization of the thesis

e In Chapter 2 we start by recalling the definition of the basic objects that will

be used in this thesis. In particular, we will recall the classical definition of

chiral algebras. We will focus on commutative chiral algebras and on Lie*-

algebroids acting on them. For a commutative chiral algebra 'Z we will be
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interested in studying Poisson structures on it. In particular, given a Poisson

structure on 'Z, in 2.2 we will define the notion of quantizations modulo h2 of

it. This will be used to state the equivalence between such quantizations of

'R and chiral extensions of the Lie*-algebroid Q'('R) presented in [BD]. More

precisely, If we denote by Qch('R) the groupoid of C[h]/h 2-deformations of a

chiral-Poisson algebra 'R, and by '(Q'(R)) the groupoid of chiral extensions

of Q ('R), there is a functor

'Pch(Ql(Z)) + Qch(R). (1.5)

In [BD] 3.9.10. they show that the above functor is an equivalence. In section

2.3 we will consider the chiral algebra Acit and its center 3 cit. We will define

a Poisson structure on it, and a quantization {Wr} of this Poisson structure.

The quantization will be constructed using the Drinfeld-Sokolov reduction Ix,

that will be introduced at the end of 2.3.1, as a special case of the BRST reduc-

tion, that will be studied in 2.3.1. We will then consider the chiral extension

Qc(3crit) of Q1( 3 cit) given by the above equivalence. The main theorem of

this chapter will describe Qc(3eit) in terms of the chiral algebra 'Deit of crit-

ically twisted differential operators on the loop group, whose definition will

be recalled in 2.4.1. More precisely, we will show that the chiral envelope

of Gc(3eit) coincides with the chiral algebra CO..t = ('Ix 0 xWx)('Do.it). The

proof of this theorem will rely on the explicit construction of the inverse to

the functor in (1.5) that will be given in 2.2.2. In fact, since the proof of the

equivalence 1.5 presented in [BD] does not provide such inverse, a large part

of this chapter will be taken by this construction. The last section will be de-

voted to the proof of theorem 2.3. In section 2.4.2 we will give an alternative

formulation of the Theorem that consists in finding a map F from Qc(3,it)

to C., with some particular properties. In section 2.4.3 we will finally define
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the map F and conclude the proof of the Theorem.

* Chapter 3 is divided into 7 sections. The main conjecture 1.2.3 will only appear

in section 3.6, the reason being that its formulation needs some foundational

preliminary notions that will be given in the previous sections.

In section 3.1 we introduce the right categorical setting in which we will be

working. In particular, since conjecture 1.2.2 states an equivalence between

two factorization categories, we will define the notion of abelian category over

Ran(X) and the notion of factorization category. We will then define the no-

tion of factorization algebra in a factorization category C and relate this notion

to the notion of chiral algebra. In 3.1.5 we will relate the notion of commuta-

tive chiral algebras to the notion of factorization spaces. We will then address

our attention to the factorization category of modules over a chiral algebra A.

In 3.1.8 we will see how this notion plays out in the case of a commutative

chiral algebra.

In 3.2 we recall the definition of action of a group G on a category, and, in 3.3

we define the notion of action of a Dx-group-scheme 9 on a factorization cat-

egory. In particular, in 3.3.1, we will study the action of the group Dx-scheme

9 of on the factorization category A-mod of chiral A-modules, as defined in

3.2. We will be interested in the category A-mod 9 of srtongly S-equivariant

objects in A-mod. In 3.3.3, we will apply this to the group Dx-scheme Jx(G)

of jets into G, defined in 3.1.7, acting on the factorization category Dit-mod

of De,.it-modules.

In section 3.4 we recall the definition of the Beilinson-Drinfeld Grassmannian

GrG. This will be defined as a factorization space, i.e. we will have a space

GrGI over X' for every finite set I. We will then explain, in 3.23, how to
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define the category D-mod(GrG,I) of D-modules on each GrGI. In 3.24, we

will then construct a line bundle Lcit,I over GrG,I and define the category

De,.it-mod(GrG,I) of critically-twisted-D-modules on GrG,I. In 3.4.4 we will

show how we can describe the category Dc,it-mod(GrGi) in terms of the cate-

gory 'D.it-mod, of 'De,.it-modules on XI. In fact, we will show that the former

category is equivalent to the category of strongly Jx(G)-equivariant objects

in 'D,it-mod1 . We will then move to the definition of the factorization space

Op, corresponding to the chiral algebra 3,it. More precisely, in 3.5 we will

recall the definition of opers on the punctured disc Op,(D ) as given in [BD2]

and construct the factorization space Op' corresponding to it. We will then

define the co-unital factorization space Op. of regular oper, and the factoriza-

tion space Op"', corresponding to opers on the disc, and to unramified opers

as defined in [FG2].

In 3.6 we will finally state the main conjecture from which we will derive con-

jecture 1.2.2. We will explain in details how to construct the factorization

functor {I -+ J1}, where

IF,: Acrit-modr -+ 3c-it-mod, = QCoh!(Op,i),

denotes the Drinfeld-Sokolov reduction for modules over X' that will be ex-

plained in 3.6.1. We will finally recall the equivalence (1.3) and state the

conjecture 1.2.3.

The last section combines together all the results from the previous ones to

finally come to the proof of conjecture 1.2.2. We will in fact use the Drinfeld-

Sokolov reduction on X to define the chiral algebra '3 = Tx(Dit), then we

will use results from section 3.6 and 3.4 to first define a functor from Deit-mod

to the category '3-mod(QCoh!(Op')) of '3-modules in QCoh!(Op'), as defined

in 3.1.8. The equivalence showed in 3.1 between strongly-equivariant Jx(G)-
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objects in 'Deit-mod and the category D,it-mod(GrG,x) will yield the factor-

ization functor {I -+ L',i}, where Ip,i is

e,,i : Dcrit-mod(GrG,I) -+ '3-mod(QCoh'(Op,I)).

Assuming conjecture 1.2.3, we will finally show that the above functors induce

equivalences of categories

Dcrit-mod(GrG,I) ~ '3-mod(QCohl(Op,"r)),
rv,I

and this will conclude the proof of conjecture 1.2.2, and therefore of conjecture

1.2.1.

* The Appendix is devoted to an explanation of how we think conjecture 1.2.3

can be proven. We will present two different approaches. The first, presented

in A.1, consists in constructing a functor

I : QCoh' (Op"") - Acrit-modJG

and show that 4) and I1 are mutually inverse equivalences of categories.

The second approach, presented in A.2, consists in deducing the equivalence

Acrit-mod 0 ~> QCoh'(Op,") over X' from the equivalence over X given in

(1.3). More generally, given a factorization functor G :e -4 D between two

abelian factorization categories inducing an equivalence Gx : x > 'Dx, we

will explain what conditions on it would guarantee equivalences G, : 4x ~

'Dx over XI.
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Chapter 2

W-algebras and chiral differential

operators at the critical level

2.1 Chiral algebras

We start this chapter by introducing the notion of chiral algebra as presented in

[BD]. We will see later, in section 3.1.3, how chiral algebras can be described as

factorization algebras, i.e. a sequence of quasi-coherent sheaves on X" satisfying

some properties. Since we will only use the latter description in the second chapter,

we prefer giving the classical definition here. Throughout this chapter A : X "

X x X will denote the diagonal embedding and j : U -4 X x X its complement,

where U = (X x X) - A(X).

For any two sheaves M and X denote by MMN the external tensor product 7r*M 0
OXxX

7r2N, where 7ri and 7r2 are the two projections from X x X to X. For a right 'Dx-

module M define the extension A,(M) as

Al(M) := j*j*(Qx Z M)/Qx Z M.
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Sections of A!(M) can be thought as distributions on X x X with support on the

diagonal and with values on M. If M and X are two right 'Dx-modules, we will

denote by M 0 N the right 'Dx-module M 0 N 9 Q*.

We will now recall the definition of unital chiral algebras as presented in [BD].

Definition 2.1.1. A unital chiral algebra A is as a right 'Dx-module Ad on X

equipped with a Dx-module homomorphism

p : j~j *(Ac' Z Ac) -+ A, (Ac)

where j: X x X - A(X) -+ X x X +- X : A, and an embedding

i : Qx "- Ac'

satisfying the following conditions:

" (skew-symmetry) y = -o12 0 P 0 0-12.

" (Jacobi identity) pi{2 3 } = P{1213 + /2{13}-

" (unit) The following diagram commutes:

j*j*(92x M A') > j~j* (Ad X Ad)

I I,
A i(Ac') i 0.Ai (Ac)

where the vertical map on the left comes from the sequence

£x ZAd A- j~j*(Qx Z A) -+ A!A'(Qx Z Ad)[1] ~ A,(Ad)

and -12 is the induced action on A by permuting the variables of X 2.
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The Jacobi identity above means the following: if we denote by j123 the inclusion

of the subset of X 3 where all the x's are different and by Aij the inclusion of the

diagonal xi = xy, then pi{23} : j~j * (Ad Z Ad Z Ad) -4 A, (Ad) is defined as the

composition

j~j*23 (Ad Z Ad Z Ad) 4 j xj* (Ad Z A(2 3)!Ad)

~ A(23)!i** (Ac Z Ac) 4 A(123)! (Ad),

the map p1{12}3 is the composition

j~j*23(A" Z Ad Z Ad) 4 j*,j*(A(1 2)!Ad E Ad)

~ A(12)! (j*jX2 3 (Ad N Ae)) 4 A(123)! (Ac),

and the map p2{i 3} is gives as

jji23 (Ad Ad A) 4 * 2 X3,XX (A(13)!Ad Z Ac)

~ A(13) * (Ac' Z Ac') 4 A( 1 2 3 )! (Ac).

The Jacobi identity means that, as a map taking place on X 3 , the alternating sum

of the above maps is zero.

2.1.1 Commutative chiral algebras

As in the world of classical algebras, there is a well defined notion of commutative

chiral algebra. We will see how these are the same as affine Dx-schemes. Moreover,

in 3.1.6, we will relate the factorization description of commutative chiral algebras

to the notion of co-unital factorization spaces.

Definition 2.1.2. Let (2, pu) be a unital chiral algebra. T is called commutative if
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the composition

'R M '9 > j~j * (' z 'R) 1 > A,('R) (2.1)

vanishes.

Denote by T' the left 'Dx-module given as 'ZR := 'R 0 £* . The diagram in (2.1)

implies, and is in fact equivalent, that t factors through a map

j~j*('R z 'R) A > A('R)

Therefore we obtain a map

This map yields a commutative product (because of the skew-symmetry) 9'R9 0' m+

z', making JZ' a 'Dx-algebra. On the other hand, if we are given a 'Dx-algebra 'R',

i.e. a left 'Dx-module with a map of Dx-modules JZ' R' -+ 9', we can consider

'Z := (')' and the composition

j*j*(RZ Y') = jj*(g' Z ') 0 j*j*(Ox Z Qx) 4 AiAI(9R Z 'R) 0 Ai(Qx) =

= A,(' 0 Z'I) 0 A,(%x) AId ) 0 A,(Qx) =

where m is the product map of 9'. This is a chiral operation on 'R. The above

establishes an equivalence

{Dx-algebras Z'} + {Commutative chiral algebras 'R}. (2.2)

For instance, in the case 'R = Ox, with chiral product defined as p(f(x, y)dxZdy) =

f(x,y)dx A dy (mod G'X), you simply recover the commutative product on the

sheaf of functions on X, which is in fact the left 'Dx-module corresponding to Ox.
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2.1.2 Chiral envelope of Lie*-algebras

The chiral algebras that we are mostly interested in are those that can be constructed

from Lie* algebras by taking their chiral envelope. Let L be a Lie*-algebra, as

introduced in [BD]. A Lie*-algebra L is, in particular, a right Dx-modules with a

map

[,IL : L M L - A,(L),

satisfying certain properties. The natural embedding

M M c j~j*(M0M)

defines an obvious forgetful functor

{ chiral algebras } -+ {Lie*-algebras}.

We will denote by ALie the Lie*-algebra corresponding to the chiral algebra A. The

above functor admits a left adjoint U,

U : {Lie*-algebras} -+ {chiral algebras }.

Given a Lie*-algebra L, we define its chiral envelope to be the chiral algebra U(L).

In particular, by definition, we have

Homch(A, U(L)) ~ HomLie (A Lie, L).

The chiral algebra U(L) is generated by the image of L which is a Lie*-subalgebra

of U(L). The corresponding filtration on U(L) is called the Poincare'-Birkhoff-Witt

filtration. We have a canonical surjection

Sym'L -* gr.U(L).
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As it is explained in [BD], when L is Ox-flat, the above surjection is an isomorphism.

2.1.3 The chiral algebra A,

Let g be a simple finite dimensional Lie algebra. Recall the Lie*-algebra L. = go'Dx

as defined in [AG]. For every symmetric invariant bilinear form

g g - C,

consider the pairing ;,

:( (Ox)g Ox) - Qx

(a, b) -+ (da, b),

and extend this pairing to a map Rx: L 9 0 Lg -+ A,(Qx 9 'Dx). The composition

KDX of Rex with the map Qx 0 'Dx -+ Qx defines a 2-cocycle on the Lie*-algebra

L.. We defineL' to be the Lie*-algebra extension corresponding to this cocycle.

We will denote by A, the twisted chiral envelope of L,

At := U(L")/1 - 1,

where 1 denotes the embedding of Qx given by the identity in U(L') and 1 denotes

the embedding of Qx given by the construction of L,.

Remark 2.1.1. Given a bilinear form n, we can consider the Lie-algebra extension

9,, given as

0 - C - 1 -+ gs - g((t)) - 0,

with bracket given by

[af(t), bg(t)] = [a, b]f (t)g(t) + r(a, b)Res(f dg) - 1,
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where a and b are elements in 9, and 1 is the central element.

Recall that we denoted by U' the appropriately completed twisted enveloping al-

gebra of i, and by i-mod the category consisting of i-modules M on which the

central element 1 acts as the identity and such that, for every m E M, the action

of atN on it is zero for N >> 0. Consider the chiral algebra A, and the category

AK-mod2 of A-modules supported at x E X. Recall the associative topological al-

gebra A attached to A, with the property that its discrete continuous modules are

the same as A-modules supported at x. When we take A to be AK, the topological

associative algebra A,; is isomorphic to U. In particular we have an equivalence

of categories

gi-mod ~ A-modx.

We will be interested in the critical level r. = rit:= -1/2KKill. Denote by Acrit

the chiral algebra A,, and by 3eit its center. The importance of choosing the

level r, to be rit relies on the fact that the center Z(4erit-mod) of the category

rit-mod := U',.it-mod, happens to be very big, unlike any other level r : r,it

where the center is in fact just C, as shown in [FF]. The chiral algebra 3erit is

closely related to the center Z(eit-mod), in fact we have an isomorphism

3cit,2 ~ Z(eit-mod)., (2.3)

in particular Z(-erit-mod)-mod is equivalent to the category 3cit-modx of 3cit-
modules supported at x.

2.1.4 Lie*-algebroids and 'R-extensions

Let 9Z a commutative chiral algebra. In this section we will recall the definitions of

Lie*-9Z algebroids and chiral J-extension of such. These definitions will be used in

2.1.6 to define the notion of chiral envelope of a chiral 9J-extension of an algebroid
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Let ('Z, m : Z 0 'R -+ 'R) be a commutative chiral algebra. Given a Lie* algebra L,

we say that L acts on 'R by derivations if we are given a Lie* L-action on 'Z

T : 'R 0 'R -+ A,('R),

which is a derivation of the product m.

Definition 2.1.3. Let L be a Lie* algebra acting by derivations on 'R via a map T.

An 'R-extension of L is a 'Dx-module Lc fitting in the short exact sequence

0 - 'R + Lc > L -+ 0

together with a Lie* algebra structure on Lc such that -r is a morphism of Lie*

algebras and the adjoint action of Lc on 'R C Lc coincides with r o r.

Definition 2.1.4. A Lie* 'R-algebroid Z is a Lie* algebra with a central action of

'Z ( a map 'R 0 Z - L) and a Lie* action rL of L on 'T by derivations such that

e T is 'R-linear with respect to the £-variable.

* The adjoint action of Z is a Tr-action of Z (as a Lie* algebra) on Z (as an

'-module).

In the next definitions we consider objects equipped with a chiral action of 'z instead

of just a central one.

Definition 2.1.5. Let R be a commutative chiral algebra, and Z be a Lie* 'R-

algebroid. A chiral '-extension of Z is a Dx-module L' such that

0 -9z 4 ZN e L -+ 0, (2.4)
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together with a Lie* bracket and a chiral '-module structure p,c on Z' satisfying

the following properties:

" The arrows in (2.4) are compatible with the Lie* algebra and chiral '-module

structures.

" The chiral operations pg and pgz,rc are compatible with the Lie* actions of L'.

" The * operation that corresponds to pars (i.e. the restriction of pz,,c to

'Z 0 Z') is equal to -i o o- o rzcz o -, where Tc,g is the Zc-action on 'Z given by

the projection Z' -4 Z and the Z action T3,_ on 'Z and o is the transposition

of variables. In other words the following diagram commutes

C A,(i)C
'R z 0 > t j*(R9 z) ,(e

Remark 2.1.2. The triples ('R, L, Lc) form a category in the obvious manner. For

fixed 'Z and Z, the chiral 'R-extensions of Z form a groupoid, denoted by '(L)

It is important to notice that 'Peh(Z) is not a Picard groupoid. The notion of

trivial chiral R-extension of L makes no sense. However, if we denote by 'Pc(Z)

the Picard groupoid of classical L-extensions, i.e. extensions in the category of

Lie*-algebroids, then we have that the Bear difference of two chiral extensions is a

classical one, therefore we have the following.

Proposition 2.1.1. If 'Ph (L) is non-empty, then it is a 'c(L)-torsor.

Definition 2.1.5 can be extended by replacing 'R with any chiral algebra e en-

dowed with a central action of 'R. More precisely a chiral C-extension of L is a
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'Dx-module Z' such that

0 -+ C -+ Lc -+ L -+ 0, (2.5)

together with a Lie* bracket and a chiral 'R-module structure [tjc on Lc such that:

" The arrows in (2.5) are compatible with the Lie* algebra and chiral '-module

structures.

" The chiral operations ye and ptZc are compatible with the Lie* actions of Lc.

" The structure morphism 'R -+ C is compatible with the Lie* actions of e.

" The * operation that corresponds to pryc (i.e. [Lsc restricted to 'R M Lc) is

equal to -ioo-oTjc,3oU, where rzcj is the Lc-action on 'R, a is the transposition

of variables and i is the composition of the structure morphism JZ -+ C and

the embedding C C Le.

Definition 2.1.6. The chiral envelope of the chiral extension ('R, C, ze, L) is a pair

(U(e, Lc), 4c), where U(C, Lc) is a chiral algbera and #' is a homomorphism of Lc

into U(C, Zc), satisfying the following universal property. For every chiral algebra

A and any morphism f : Lc -+ A such that:

e f is a morphism of Lie* algebras.

e f restricts to a morphism of chiral algebras on C C Lc.

e f is a morphism of chiral-'-modules (where the '-action on A is the one given

by the above point),
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there exist a unique map f: U(C, LC) -+ A that makes the following diagram

commutative

Le ---- L _>- A .

U(e, Zc)

It is shown in [BDI that such object exists. When C = we will simply write U(Lc)

instead of U('R, Le).

2.2 Quantization-deformation of commutative chi-

ral algebras

Definition 2.2.1. Let 'R be a commutative chiral algebra. R is called a chiral-

Poisson algebra if it is endowed with a Lie*-bracket, called the chiral-Poisson bracket

{, } :R T'R - A,(') that is a derivation of 'R in the sense of 2.1.4.

Example 2.2.1. Let At be a one-parameter flat family of chiral algebras; i.e., At is a

chiral k[t]-algebra which is flat as a k[t] -module. Assume that A := At=o := At/tAt

is a commutative chiral algebra. This means that the Lie*-bracket [, ]t of At is

divisible by t. Thus {, } := t- 1 [, ]t is a Lie*-bracket on At. Reducing this picture

modulo t, we see that A is a chiral-Poisson algebra, with bracket

{, } := {, }=0

One calls At the quantization of the coisson algebra (A, {, }) with respect to the

parameter t.
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2.2.1 Quantizations of chiral-Poisson algebras

As in the usual Poisson setting, one can consider quantizations mod tn+1 , n ;> 0,

of a given chiral-Poisson algebra (A, {, }). Namely, these are triples (A(), {, }(n)),
where A) is a flat chiral k[t]/tn+1-algebra, {, }(n) a k[t]/tn+'-bilinear Lie*-bracket

on A(n) such that t{, } equals the Lie*-bracket for the chiral algebra structure, and

a : A(n)/tA(n) -+ A an isomorphism of chiral algebras that sends {, }(n) (mod t) to

{, }. Quantizations modulo tn+ 1 form a groupoid.

Now, let 'Z be a commutative chiral algebra. As it is explained in [BD] 1.4.18,

a Poisson structure on 'R gives the module Q ('R) a structure of a Lie* algebroid.

In fact, the bracket {, } yields a Lie* 'R algebroid structure on 'R ' R. One checks

easily that the kernel of the projection 'R 0 9Z -4 
1 ('R), a 0 b -+ adb, is an ideal in

' 0 'R, therefore Q1 (') inherits the Lie*-'R algebroid structure.

Now consider the following: given a chiral extension

0 -+ 'R -4 Oc(,) -4Q1('R) -+ 0,

consider the pull-back of the above sequence via the differential d : 'R -+ Q1('R).

The resulting short exact sequence is a C[h]/h 2 -deformation of the chiral-Poisson

algebra '. If we denote by Qch(') the groupoid of C[h]/h 2 -deformations of the

chiral-Poisson algebra 'R, and by Pch(01('R)) the groupoid of chiral 'R-extensions of

Ql (') as defined in 2.1.2, the above map defines a functor

TchQ19Z) _ Qch(Z).

In [BD] 3.9.10. the following is shown.

Theorem 2.1. The above functor defines an equivalence between ych(Q1('R)) and

'If {, } denotes the Poisson bracket on 'R, this is indeed a quantization of (', 2{, })
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Qeh(R).

The above equivalence is the point of departure of this work.

Quantization of the center 3,it

Recall the commutative chiral algebra 3 ,it defined in 2.1.3. We will see later, that

the Drinfeld-Sokolov reduction qIx, introduced in 2.3.1, produces a 1-parameter

family of chiral algebras {Wh} :{= Tx(Ah)} .such that WO ~ 3 ,.it. According to

2.2.1, we therefore have a Poisson structure on 3,it defined by

{ } 1= [ih, wh'wh (mod h)
h

where z = zala--o and w = ivala=o. It follows from the definition of the functor

9x that this Poisson structure coincides with the one from 1.1. Consider now the

following diagram:

Pch (Q1('Z)) : {Lie* algebroid structures on 1(2)

Qch(jZ) : {Chiral-Poisson structures on 'R}.

A natural question to ask is the following: if we consider the quantization of

3,it introduced before, how does the corresponding chiral extension of Ql( 3 ,.it)

look like?

The answer to the above question is the main body of this chapter.

2.2.2 Construction of the inverse

In this section, we will give an explicit construction of Qc('R) for an arbitrary chiral-

Poisson algebra JZ. In the case where 'Z = 3,it we will see how this chiral extension
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relates to the chiral algebra of differential operators on the loop group G((t)) at the

critical level introduced in [AG], where G is the algebraic group of adjoint type

corresponding to g.

Let R be a commutative-Poisson chiral algebra and {'Rh} a quantization of the

Poisson structure. The equivalence of categories from Theorem 2.1 states the exis-

tence of a chiral extension

0 -+ 2 -+ Q'('R) + Gl('R) -+ 0

However the proof of this theorem doesn't provide a construction of it. This section

will be devoted to the construction of the above extension.

Starting from the Lie* algebra extension

0 -+ 'R -+ ' -+ 'R -+ 0,

where Z' :='JZ/h 2 'Ra acts on 'R via the projection R' -+ R and the Poisson bracket

on 'R, we will first construct a chiral extension (see Definition 2.1.5) Indh(Jc) fitting

into

0 ' -+ Indc('Rc) -+ 'R 0 R - 0,

where 'R 0 'R is viewed as a Lie* algebroid using the Poisson structure on 'R. The

chiral extension QG('R) will be then defined as a quotient IndRJZc).

More generally, in 2.2.2-2.2.2 we will explain how to construct a chiral extension

Ind (Lc) fitting into

0 -'Z -+ Ind (Lc) -4 'R & L -+ 0 (2.6)

for every Lie* algebra L acting on 'R by derivations and every extension
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The case where L = 'Z and Lc = 9Zc, will be presented in 2.2.2 as a particular case

of the above general construction.

Definition of Indh(L)

Let ('R, p) be a commutative chiral algebra and let L be a Lie* algebra acting on 'R

by derivations via the map r. The induced 'R-module 'R 9 L has a unique structure

of Lie* '-algebroid such that the morphism 1gz 0 idL : L -+ 'R 0 L is a morphism

of Lie* algebras compatible with their actions on 'R. Note that we have an obvious

map

i : L -+ ' & L.

The Lie* algebroid 9Z 0 L is called rigidified. More generally we have the following

definition.

Definition 2.2.2. A Lie* algebroid Z is called rigidified if we are given a Lie* algebra

L acting on 'R via the map T, and an inclusion i : L -+ Z, such that 'R 0 L + Z.

Let Z be a rigidified Lie* algebroid. Consider the map that sends a chiral exten-

sion of Z

.0 4'R 9z- L' - L -+ 0

to the 'R extension of L given by considering the pull-back of the map i : L -+ L.

Denote by 'Pc(Z) (resp. 'Ph (Z)) the groupoid of classical (resp. chiral) extensions of

L (where by classical we mean extensions in the category of Lie* algebroids), and by

P(L, r) the Picard groupoid of 'R-extensions of L. Clearly the map mentioned above

(that can be equally defined for classical extensions as well), defines two functors

'd(L) -+ 'P(L, r), 'chP() -+ 'P(LT

As it is explained in [BD] 3.9.9. the following is true.
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Proposition 2.2.1. If L is Ox flat, then these maps define an equivalence of

groupoids

d(L) ~4 'P(LT) ych(L) T (LT) (2.7)

Given a Lie* algebra extension 0 -+ 'R - Lc -+ L -+ 0, define Ind" (Lc) (resp.

Indc(Lc)) to be the classical (resp. chiral) extension corresponding to the above

sequence under the equivalences stated in the above proposition.

In 2.2.2 we will briefly recall the construction of the inverse functors to (2.7) in

the classical and chiral setting respectively (as presented in [BD]). However in 2.2.2

we will give a different construction of the inverse functor in the chiral setting, i.e. a

different construction of the chiral extension Ind"' (LC) associated to any 'Z-extension

of L. The latter construction will be used to define the chiral extension Qc(,R)

The classical setting

For the "classical" map 'M(L) - 'P(L, T), to an extension

0 4 '-+ Lc -+ L -+ 0, (2.8)

the inverse functor associates the classical extension Ind (Lc) of the Lie* algebroid

'Z 0 L = L given by the push-out of the extension

0 -9Z 'R 2 'R J 'o Lc -+ 'R (& L - 0

via the map m : 'Z D JZ -+ 'R.

The construction of the inverse functor in the "chiral" setting given in [BD] (i.e.

the construction of Indc(Lc)), uses the following two facts:
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. T'Pc() has a structure of 'PT"(Z)-torsor under Baer sum.

* 'hP(Z) is non empty.

The first fact follows from condition 3) in the definition of chiral :-extension, which

guarantees that the Baer difference of two chiral extensions is a classical one. In

other words the action of 9Z on the sum of two chiral extensions is automatically

central.

The non emptiness of 'ch (L) follows from the existence of a distinguished chiral

9Z-extension Indgz(L) attached to every Lie* algebra L acting on 9. Such object is

defined by the following:

Definition-Proposition 2.2.1. Suppose that we are given a Lie* algebra L acting

by derivations on 3Z via the map T, and let Z be a rigidified Lie* algebroid (see

Definition 2.2.2), so we have a morphism of Lie* algebras i : L -4 L such that

9Z 0 L ~+ Z. Then there exist a chiral extension Indjz(L) equipped with a lifting

i : L -+ Indjz(L) such that i is a morphism of Lie* algebras and the adjoint action

of L on R via i equals r. The pair (Indiz(L),7) is unique.

The proof of this proposition can be found in [BD] 3.9.8. However in 2.2.2 we

will recall the construction of Inda(L) and of the map i: L - Indjz(L).

To finish the construction of Indh(Lc) (or in other words, the construction of the

inverse to the functor 'Ph (9) - '(L, r)), we use the classical extension Ind" (LC)

given in 2.2.2 together with the '(L)-action on Ph(Z). To the extension 0 -+ 9-

Lc -+ L -+ 0 we associate the chiral T-extension

Indh(Lc) := Ind (Lc) + Inda(L)
Baer
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of 'JZ 9 L by 'Z, where IndT(L) is the distinguished classical extension defined in

2.2.1. Note that, after pulling back the extension

0-+ ' Ind h(Lc) - Z ~ 'R 9 L -+ 0

via the map L -+ Z ~ 'R 9 L, we obtain the Baer sum of the trivial exten-

sion (corresponding to Indg(L)) with LC, i.e. we recover the initial Lie* extension

0 -+ 'Z - Lc -+ L -+ 0 as we should.

Construction of Indj(L).

In this subsection we want to recall the construction and the main properties of the

distinguished chiral extension Ind)Z(L) given by Definition-Proposition 2.2.1.

Given a Lie* algebra L acting on 'R by derivations, we can consider the action

map 'Z M L -> Ai('R) and consider the following push out:

0 'RM L > j~j*('R Z L) > A(' 0 L) 0

If 4 1
0 > Ai('T) >, ('R) @ j,j* ('Z Z L)/'R Z L ->- At ('R 9 L) >0.

The term in the middle is a 'Dx-module supported on the diagonal, hence by Kashi-

wara's Theorem (see [?] Theorem 4.30) it corresponds to a 'Dx-module on X. This

'Dx-module has a structure of chiral extension and will be our desired Indg(L) (i.e.

we have Ai(Indz(L)) : A,(R) D jj*('Z 0 L)/'R Z L).

Remark 2.2.1. By construction we have inclusions 'Z -+ Indz(L) and a lifting
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i: L -+ Indg(L) of i L -+ 'R 0 L. In fact we can consider the following diagram

0 > x 0 L :1 j~j* (Qx Z L) >A(Qx L) ~_ A, (L) >0

I Ai(i)=At(unitgid)

0 > 'R M L : j~j*('Z Z L) A ('R L) 0

0 i(R :A('2) D j~j* (', Z L) /'R ZL A ' )>0.

By looking at the composition of the two vertical arrows in the middle, it is not hard

to see that this composition factors through A, (L). In fact the most left vertical

arrow from Qx Z L to A ('Z) is zero. We define i to be the map corresponding (under

the Kashiwara's equivalence) to Ai (i).

As it is shown in [BD] 3.3.6. the inclusions 'R -+ Indg(L), i: L -+ IndT(L) and the

chiral operation j~j*(' Z L) -+ Ai(IndJz(L)), uniquely determine a chiral action of

'R on Indjz(L) and a Lie* bracket on it. In other words they give Ind-T(L) a structure

of chiral 'R-extension.

Note that this chiral 'R-extension corresponds, under the equivalence given by The-

orem 2.2.1 (i.e. after we pull-back the extension via the map I/x : L -+ '9Z 0 Z), to

the trivial extension of L by 'R in '(L, T). To summarize we have seen that:

" If a Lie* algebra L acts on 'R we can construct the distinguished chiral ex-

tension IndjT(L) of Z with a lifting i : L -+ IndT(L) of the canonical map

i : L -+ Z.

" From an extension 0 -+ 'Z -+ L' -+ L -+ 0 we can construct a chiral extension

Indh(L') with a map L' -+ Ind h(Lc) given by the pull-back of L -+ L.
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Remark 2.2.2. Clearly, if we have the extension 0 -+ 'Z -+ Lc -+ L -+0, we

can also consider Lc as a Lie* algebra acting on 'R via the projection Lc -+ 'R. In

other words we forget about the extension and we only remember the Lie* algebra

Lc. From point one of the above summary we can construct the distinguished

chiral extension Ind(Lc) corresponding to this Lc action on 'R, together with a map

i : Lc -+ Indz(Lc).

Different construction of Indch(Lc).

We will now explain a different construction of the chiral extension

0 ' - Ind (Lc) - L ~' 9 L -+ 0

that will be used later to construct Qc(JZ).

As it is explained in the Remark 2.2.2, given an 'R-extension

0 -+ Lc -+ L -+ 0,

we can consider the action of Lc on 'Z given by the projection Lc -+ L and construct

the distinguished chiral extension Indg(Lc). This is a chiral J-extension fitting into

0 -+ A(' -+ A,(Indj(Lc)) -+ A,('R 0 LC) -+ 0,

where A,(Indz(Lc)) ~ A(R) ejj*('Z X LC) /'R M Lc. Since we ultimately want an

extension of 'R by 'R 0 L, we have to quotient the above sequence by some additional

relations. We will in fact obtain Ind h(Lc) by taking the quotient of Indg(Lc) by the

image of the difference of two maps from R 0 T' -+ Indgz(Lc).
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The above maps are given (under the Kashiwars's equivalence) by the following two

maps from Ai('R 0 9') to Ai (Ind,(Lc)).

1) The first map is given by the composition

A ('R (& 'R) -M+A 1 ('R) A 1 (IndT (Le))

2) For the second map, consider the following commutative diagram:

0 >Z 'R 9Z 'R > j*('R Z ') >l A('R @'R9) >0

jidOk I klid jidek

0 > 'RZ Lc :j~j*('R 0 L) A (' 0 Lc) 0

I 1 r 4
0 > A,('R) > A('Z) D j,j*( M Lc)/'Z M LC A ('R 0 Lc) 0.

A(Indj (Lc))

We claim that the composition of the two vertical arrows in the middle (i.e. 7r o

(k Z id)) factors through A,('R 0 9Z). In fact since the action of L' on 'R is given

by the projection Lc -+ 'R, the copy of 'Z inside L' via k acts by zero. Hence the

composition of the left most vertical arrows is zero, which shows that there is a well

defined map

k : A 0(R ) -+ A,(Inda (L')).

The quotient of Ind_(Lc) by the image of the difference of the above maps is exactly

Ind (Lc).

Remark 2.2.3. Note that the inclusion Lc -+ Ind 1(Lc) mentioned in the summary

in 2.2.2 corresponds to the composition

A,(Lc) =) AI(Ind,(Lc)) -w Ai(Ind'(Lc)). (2.9)
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A special case: deformations of 'R.

Let ('R, m : R 0 R -+ 'Z) be a commutative chiral algebra given as 'R := 'R,/h'R,

where {'R,1} is a family of chiral algebras. Denote by {, } the Poisson bracket on '

defined as

{z,w} = [zh,wr]n (mod h),

where zh = z (mod h), wr, = w (mod h) and [, Jr denotes the Lie* bracket on 'Ra

induced by the chiral product pr restricted to 'R, M 'R.

Consider the quotient J' = 'Z /h'9r. This is a Lie* algebra with bracket [, ]c

defined by

Consider the short exact sequence

0 'T T'- -+ 0, (2.10)

and let us regard 'Rc as a Lie* algebra acting on ' via the projection 'ZC -+ '

followed by the Poisson bracket multiplied by 2 1/2. This sequence is an '-extension

of 'R in the sense we introduced in Definition 2.1.3, therefore, from what we have

seen in 2.2.2, we can construct a chiral '-extension of 'Z ' R by 'R (here L = 'R and

LC ='ZC)

0 ~ c -+' pIdi'c) -+ 'R @'R -Z+ 0. (2.11)

Below we will use the above chiral extension to define the chiral algebroid Qc(9g).

The construction of c('R).

We can now proceed to the construction of Qc('). Recall that, because of the Pois-

son bracket on 'R, the sheaf Q1 ('R) acquires a structure of a Lie* algebroid.

2This correction is due to the fact that, as we saw in 2.2, the equivalence stated in Theorem
2.1 gives a quantization of 1/2{, }.
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Recall that we denoted by Qch('R) the groupoid of C[h]/h 2-deformations of our

chiral-Poisson algebra 'R, and that we want to understand how to construct the

inverse to the functor

'Pch pi(3Zg _4 genga)'

that assigns to a chiral extension 0 -+R -+ c(JZ) _+ gi('R) -+ 0, its pull-back via

the differential d : 'R - Q1('R).

The inverse functor will be constructed as follows: for any object in QGh(JZ), i.e.

to for any extension 0 -+ 'R - 'Rc -+ 'R -+ 0, we will consider the chiral extension

0 -+ 'R -+ Ind ('Rc) -+ 'R 'R -_+ 0

described in the previous subsection. We will quotient Ind ('zc) by some additional

relations in order to impose the Leibniz rule on 'R 0 'R. These relations will be

given, under Kashiwara's equivalence, as the image of a map from Ai(9c 0 ,Rc)

to A!(Ind ('Rc)). More precisely, we will construct a map from j~j*('Zc Z 9')

to A!(Indg('Rc)) such that the composition with the projection A!(Indz('Rc))

A,(Indc(Rc)) vanishes when restricted to 'ZC N 'Rc. Hence it will induce a map

A,(Zc 9 9Ze) -+ Ai(Ind h('Rc)). Form the sequence (2.11) we will therefore obtain a

chiral 'R-extension Qc(9) of the Lie* algebroid Q'('R)

0 -4 'R' -+ Q ('R) -+ Q1('R) -4 0.

We will then check that 'Z', which a priori is a quotient of 'R, is in fact 'Z itself, and

that the pull-back via the differential d: 'R -+ Ql('Z) is the original sequence (2.10),

with induced Poisson bracket given by {,}. This will imply that Qc(R) is in fact the

chiral extension Q'('Z) given by Theorem 2.1.
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The map from j,j * ('RC NJ) to Ai (IndT(9U)) is defined as the sum of the following

three maps:

1. The first map a1 is given by the composition

j~j* ( c N 'Rc) -4 ja* ('R z 'Rc) -+ A, (Indoz(9Zc)

where the first map comes from the projection 9ic -4 R

2. The second map a2 is obtained from the first one by interchanging the roles

of the factors in j~j*('Rc Z 'c).

3. For the third map a3, note that the chiral bracket pa on 'Zh gives rise to a

map

-pc : j~j* (g Z 'Rc) -4 A, ('RC)

and we compose it with the canonical map A!(Rc) -+ A(Ind,('Rc)).

Now consider the linear combination ai - a2 - 03 as a map from j~j* (Tc Z ,c) to

Ai(Indg('Rc)). If we compose this map with the inclusion 9Z Z J' -+ jj*('c 9,c)

and the projection onto Ind h ('R,), it is easy to see that the map vanishes. More

precisely we have the following:

Lemma 2.2.1. The composition

9Z Zc " ~ jKj*(JzC 0 j~c) al-E?2-013) A!(IndX~c)) - !(n~~R)

vanishes. Thus it defines a map Leib: A,(9Zc 0 eZe) _A (Ing f(c)).

Proof. Since the action of 9' on 'R is given by the projection 9Rc -+ 'T and the Poisson

bracket on R multiplied by 1/2, and because of the relation o- o {, } o o- = -{, },
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the maps ai and a2 factor as

'Ze Z C A (Ind('c)) > A (Indh('c))

Note that the above wouldn't have been true if we hadn't used the relation in

Ind(Z') as well. Moreover the third map, when composed with the projection to

A,(Ind ('Ze)) is exactly

'RC 0 'R - 'R Z 'a !'-4 A, (') -* A,(Indc('c)),

hence the combination a 1 - a 2 - a3 is indeed zero. From the above we therefore get

a map A,(' 0 9c) -+ Ai (Ind('Rc)).

We define Q2 ) to be the quotient of Indh(Rc) by the image of the correspond-

ing map from Tc 0 9Re to Ind ('Rc) under the Kashiwara's equivalence.

Remark 2.2.4. Note that the map Tc 9 'c -+ Ind 'Rc) indeed factors through

'Rc 0 9Ze -* 9Z '0 9. To show this it is enough to show that the map j j*Z(C q'RC) 4

A! (Indc (')) factors through j(j*('Rc 0 9c) - j,j* ('Z 0 'R). If so, then the diagram

below would imply that the composition 'Z Z R -+ Ai (Ind (c)) is zero, and we are

done:

0 > Z 'R 9Zc , g ,(,gc N 9Zc) , ,(9,e (9 -ge) >0 .

1'Id4 )Ai Idc , )
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To show that the map factors as

j~j* (9'R ') A (Indh(Rc))

j,j* (R M 'R)

we need to show that the composition of the map ai - a2 - a3 with the two em-

beddings j~j*(9' M 'R) <-+ j~j*(9c 0 9Ze) and j*j*('R M OZC) jj* (9 0 9zC) is

zero. We'll do only one of them (the second one can be done similarly). For the

first embedding the map a2 is zero (since we are projecting the second JZC onto 'Z)

whereas the first map (because of the relations in Indh(Zc)) is equal to minus the

composition

jj* (ac N 'R) -+ j~j*('R N 'R) 4 A,(-T) -+ A,(Ind (Rc))

which is exactly the third map when restricted to j*j*('Rc N 'R).

Recall that we defined 049Z) to be the quotient of Ind h('Rc) by the image of the

map Leib from 2.2.1 obtained using the combination 01-02-03. By construction we

have a short exact sequence

0 -+ ''- Q je(9) -> Q('R(2) -+ 0, (2.12)

where 'R' is a certain quotient of R. In the rest of this section we will show that the

above extension is in fact isomorphic to the extension of Q ('R) given in Theorem

2.1. This is equivalent to the following:

Proposition 2.2.2. Consider the extension of Q1(') given by (2.12). Then we

have

1. Z'R = 'R.
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2. The pull-back of (2.12) via the differential d :9Z -+ Q 1('R) is the original

sequence (2.10).

Proof. To show that 'R' = 'R, consider the chiral extension given by the equivalence

of Theorem 2.1. This is an extension of Q1 ('R) such that the pull back via the

differential R -+ Q'('Z) is the sequence (2.10). that is, we have the following diagram

0 2 'R- Qc(WR) , i(') -- 0, (2.13)

de d

0 :z > *r > >0

with dc a derivation, i.e. as maps from jj*('Rc MJZc) to A,(Oc('R)), we have dc(IIc) =

pAJ" (3)(7r, dc) - o- o a -(dc, ir), where pc is the chiral product on 'Rc and

pzQc(T) is the chiral action of JZ on Qc('Z). We claim that there is a map of short

exact sequences

0 :At('R) Ai (Indh (gc)) :A ('R 0R) - 0

jid4I

0 > A('R) > A(Q'c(9z) , (Q i('R)) 0

that factors through 0 -+ Ai('R') -+ A-(4)) - A!(Q 1 ('R)) -+ 0, and moreover

induces an isomorphism from p1 ('R) to Q 1('R). This would imply that JZ', which

a priori is a quotient of R, is in fact 'R itself. Furthermore, the fact that it is an

isomorphism on Q1 ('R), would also imply that Q0R) ~ Qc('R), hence the pull-back

via d : 'R -4 l('Z) would indeed be the original sequence 0 -9Z 4 'R -+ 'Z -+ 0.

To prove the claim, consider the map dc . Zc - Qc('R) given by (2.13). Using the

chiral '-module structure pzac(T) on Qc('R), we can consider the composition

jj * ('R X 'RC) iN j~j* ('RZ M c 9) ci( g))-
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The above composition can be extended to a map from Ai (R) D j,j* (T M 'C) -

A!(Qc('R)), by setting the map to be Ai(i) on A,('R). It is straightforward to check

that this map factors through a map Dc

D': A, (Indh('Rc)) (

Note that, by construction, the resulting map Dc -Z '0 9'R 4 Q('R) is the one given

by z 0 w 4 zdw, for z and w in 'R, and that the kernel of this map is just the ideal

defining the Leibniz rule.

To show that De factors through 0 - A!(J'') - A(Qc(T)) + A!( 1 (R)) -+ 0, we

need to show that the composition of De with the map

Leib: A,(RC 0 3zC) -+ Ai(Indc(Rc))

given in 2.2.2. vanishes. Hence we are left with checking that the composition

A (C 0 TC) Lb Ai (Ind h(ZC)) (Dc c((,))

is zero. For this, recall that the map Leib was constructed using the linear combi-

nation ai - a 2 - a3 of three maps ai, a 2 and a 3 from j~j*(Z' JUc). By looking at

the map

j'j*('RcZc) 01-a2-0 3 Ai (Ind 'c)) AS(DC c

we see that the condition on dc being a derivation, implies that the above composi-

tion vanishes. Indeed A (Dc) o ai is given by

jT j * (9ZCZ(DC) orad give by t ao idbdc a y the C t9ra o variables

The map A! (Dc) 0 a2 is given by the above by applying the transposition of variables
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o, whereas the third map

j~j*24 -L-)4 A, (Rc) -+ A, (Indc (gc)) Ai g('

is equal to j~j*(9c M 9Zc) / C A, (c) d) i (c(:)). Therefore the above maps

coincide with the terms in the relation dc(pc) = pgQc()(7r, dc) -o.g2,Qc(j)oo-(dc, 7r),

and hence A, (Dc) o Leib in zero. Note that the resulting map

A (Indi(2) A, (9Z (&J) > A, (Q I(2))

induces an isomorphism

AI(OPM) ~- A,('R (& 9)/Im(7r o Lei-b) ~ iG(R)

This conclude the proof of the proposition.

2.3 Quantization of the center 3 cit

Recall the commutative chiral algebra 3 ,it defined as the center of Acit. As we have

mentioned in the introduction, 3cit can be equipped with a chiral-Poisson structure

in the following two equivalent way:

* For any h # 0 let K be any non critical level 1 = ncit + hAnill and denote by

Ah the chiral algebra A,. Let z and w be elements of 3cit. Let z" and w, be

any two families of elements in Ar, such that z = z, and w = w, when h = 0.

Define the Poisson bracket of z and w to be

{z, W} = [z., W]^Ah (mod h).
h
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We will now introduce the Drinfeld-Sokolov reduction "Ix and explain how this

functor provides a 1-parameter family of chiral algebras {Wa} : {Tx(Ah)} such

that Wo ~ 3rit, that are a quantization of 3,it.

2.3.1 The Drinfeld-Sokolov reduction

We start by recalling the BRST complex for a chiral algebra A as presented in [BD].

We will also recall the BRST reduction for A-modules over X. Finally, in 2.3.1 we

will define the Drifeld-Sokolov reduction "x as a special case of the above,

"Ix : Ah-mod -+ Wh-mod,

and use it to define the quantization {Wh} of 3
cit.

The BRST reduction

For a finite dimensional Lie algebra L, consider the Lie*-algebra 2:= L 0 'Dx over

X. As it is explained in [BD], we can construct the Clifford Chiral algebra Cl'(2)

given by

Cl'(2) :U([]E 2*[-1] (D Qx)'.

We can also consider the PBW-filtration on Cl'(2) (e.g. Cli(Z) = 2[1]e2*[-1]e9x)

and the adjoint action ad of 2 on itself. We define 2 Ta4e to be the bull-back of the

following short exact sequence:

0 : -x > el02(2) -- Cl<(2)/f2x ~g(2) > 0.

a ad

0 > x > "ate 2 0

We have also an embedding i : 2[1] Cli'(2). Consider now the natural map

1 : 2 -Tate -+ U(2-Tate)', where U(2-T4te)' is the chiral twisted enveloping algebra
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of 2-Tate If we denote by A' the chiral algebra U(2C-T*)' & Cl'(2) we get a map

Lie:= a+l : 2-+ A

given by g - g01+19a(g). If we denote by Zt the DG Lie*-algebra Cone(2 i 2)

we can view i and Lie as the components of a map of graded Lie*-algebras

4 : Ct -4 A'.

We now define a differential on A in the following way. As it is explained in [BD]

1.4.10, there is an action of £f on the DG-algebra Sym(2*[-1]) compatible with

the differential 6 of Sym(2*[-1]) (see [BD] 3.8.9) and one has the following:

Lemma 2.3.1. The operations

[Lie, id2-[_1]], [i, ol*-_11] : 2 M 2*[-1] -+ A(Al)

coincide.

The above lemma allows us to define the map x. In fact it tells us that the map

p(Lie, id*[_1 ]) - p(i, 6|*.[.1]) : j*j*(2 M V*[-1]) -+ A,(A'[1])

vanishes on 2 M *, where p is the chiral operation on A'. Hence we get a map

(2.14)

We have h(2 2*) ~ End(2). We define Q to be the image of the identity endo-

morphism of 2, projected onto h(A'[1]),

Q = X(Idc) E h(A[1]).
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We have the following proposition:

Proposition 2.3.1. Q is the unique element in h(Al[1]) such that [Q, i(g)] = Lie(g)

for every g E Z, moreover [Q, Q] = 0. In particular if we denote by d the Lie action

of Q on A', then d is a derivation of A of degree 1 and square 0 and the map

# : Zt --+ (A', d)

is a map of DG Lie*-algebras.

The complex BRST(A) = (A, d) is called the BRST-reduction of U(2-Tate)'.

For a map of chiral algebras f : U(-Tate)' -+ 'R, the complex BRST(A:

'R 0 el'(2), dz := [f(Q), ]) is called the BRST reduction of 'R. The cohomology

of BRST(Az) is called the semiinfinite cohomology of 'R.

BRST reduction for modules

For an A'-chiral module M on X, the Lie-action QM of Q on it is a derivation

of square 0 and degree 1. If we denote such derivation by dM, then (M, dM) is a

BRST(A')-module. In particular we can take an U(2-Tte)'-module M and consider

the A'-module M 0 Cl' (). Moreover, if we are given a map of chiral algebras

f : U(2-Tate)' -4 'R we can do the same construction for any 'R-module M and get

a BRST(A,)-module. Hence we obtain a functor:

{'Z-modules on X} -- + {BRST(Ai)-modules on X}. (2.15)

Drinfeld-Sokolov reduction

In the above framework, we can take L to be the nilpotent sub-algebra n of g. We

denote by Z, the corresponding Lie*-algebra. Given any invariant bilinear form
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r = rcit + hr'Kill on g, we see that the natural map

lifts to a map 2C--te -+ Ah, and therefore to a map

We can consider the complex BRST(An 0 el(92 )). This complex, comes equipped

with a differential d = f(Q), as explained above. However, to define the Drinfeld-

Sokolov reduction we will consider a new differential dn = d +do, where do is defined

in the following way.

Let {e,, a E TI} be a basis of n, and let Xo be the non-degenerate character of n

given by

Xo(e.) = 1 if a is simple

0, otherwise.

As it is explained in [BD] 2.6.8. this defines a map To : , -+ Qx that we can

regard as an element in 9* C Cl(Z,) -+ Ah 9 Cl(2). We define do to be do := Xo, ].

Clearly d2 = 0, moreover do commutes with the differential d.

Definition 2.3.1. We define the Drinfeld-Sokolov reduction of Ah to be the DG-

chiral algebra

BRSTX (Ah) (Ah & Cl( 2), dn = d + do).

We have the following remarkable theorem, proved in [FBI.

Theorem 2.2. * For any t, = ,-it + h -Kill, the cohomology of the complex

(Ah 0 Cl(2n), dn = d +do) is concentrated only in degree zero. Thus, this DG-

chiral algebra reduces to a plain chiral algebra Wh := H 0 ((Ah 0 l(92n),da =

d + do)) called the W-algebra.
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e The chiral algebra Wo is isomorphic to the center 3,it of Ait. Moreover this

gives a quantization of 3,it viewed as a chiral-Poisson algebra.

From now on, we will denote by qIx the functor BRSTX. As we have seen in

2.15, this defines a functor

x : Ar,-modx:= {An-mod on X} W-modx.

We will be interested in r, = ,.it. By the above theorem, for the critical level we

can re-write the above functor as

I x := BRTSX : Ac,.it-modx -+ 3c,.it-modx. (2.16)

2.4 Main theorem

2.4.1 The chiral algebra of twisted differential operators on

the loop group

We will now recall the chiral algebra D, of r, twisted differential operators on the

loop group as presented in [AG|, for r, = r,-it + hr'Kill-

Let G be an algebraic group and consider the group scheme G x X on X. Let Jx (G)

be the corresponding 'Dx-scheme, where, by Jx we denoted the functor

Jx : {Ox-schemes} -+ {Dx-schemes}, (2.17)

right adjoint to the forgetful functor

For: {'Dx-schemes} -+ {9x-schemes}.
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Consider the Lie*-algebra L., and the invariant bilinear form r, = rit + hKKi on g.

The algebra 'Dr is constructed using the Lie*-algebra OJx(G) ( Lg. More precisely,

it is defined as

'Derit := U(0 Jx(G) (D Lg)/I,

where I is the ideal in U(OJx(c) D L.) generated by the kernel of the map

U((9Ja(c)) -+ Jx(G).

As it is explained in [AGI, the fiber ('Dr), of 'Dh at x E X is isomorphic to

('D). ~_ U(g.) 0 (9 G[[tl].
U(g[[t]]®C)

Moreover 'Dh comes equipped with two embeddings

An 1 'Dr, A-n (2.18)

corresponding to left and right invariant vector fields on the loop group G((t)). In

particular, for h = 0, we have An = An = Acrit and 'Dr = 'Dit. Therefore we

obtain two different embeddings, 1:= lo and r := ro of Acit into D,it

Ac,.it I ' Derit <'- Acrit.

If we restrict these two embeddings to 3,it, as it is explained in [FG] Theorem 5.4,

we have

(3 crit) = l(Acrit) n r(Acit) = r(3cit).

Moreover the two compositions

3 crit " Acrit D C '_ Acrit +- 3 crit
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are intertwined by the automorphism 7 : 3era -+ 3,.a given by the involution of the

Dynkin diagram that sends a weight A to -wo(A) (i.e. when restricted to 3cit we

have I = r o ).

The two embedding I and r of Ac, into D,u endow the fiber ('Deru)2 with a

structure of -era-bimodule. The fiber can therefore be decomposed according to

these actions as explained in the introduction.

These decompositions coincide up to the involution q and we have

('Dci-), (13 ('Dc,-),
A dominant

where ('D,.i)| is the direct summand supported on the formal completion of Spec(3Au).

Recall that we denote by ' the chiral algebra corresponding to ('Der)2. The em-

beddings 1 and r give 'Dc,. a structure of Ac,-bimodule, and we denote by 6C,.i the

resulting chiral algebra

CO.,.a := (Tx 0 Tx) ('Do,).

The following theorem relates the chiral algebra 'Do, to the extension of Ql( 3 rit)

arising from the quantization of 3 cit given by the 1-parameter deformation {Wa} =

{'Ix(Ah)} defined by 2.2, under the equivalence of theorem 2.1. This is the main

result of this chapter.

Theorem 2.3. The chiral envelope U(P(3c,t)) of the extension

0 -+ 3cr -+ c( 3
ert) -+ Q( 3 ,it) -+ 0,

given by the quantization {Wh := 'Ix(A)} of the center 3ert, is isomorphic to the

chiral algebra Co,.t.
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2.4.2 Proof of the theorem

The proof of Theorem 2.3 will be organized as follows: we will give an alternative

formulation of the Theorem that consists in finding a map F from GV(3ci,) to

c0,. with some particular properties. The definition of the above map will rely on

the explicit construction of the chiral extension Qc(3crit) that was given in Section

2.2.2. In Section 2.4.3 we will finally define the map F and conclude the proof of

the Theorem.

Reformulation of the Theorem

We will show how to prove Theorem 2.3 assuming the existence of a map F from

Gc( 3 cit) to COC,.t. In order to do so, we will use the fact that both U(Q2(3cit)) and

C,2 can be equipped with filtrations as explained below.

The chiral algebra U(Qc(3cit)), being the chiral envelope of the extension

0 - 3 crit - f'( 3 crit) -+ Q1 (3crit) -+ 0,

has its standard Poincari-Birkhoff- Witt filtration. In fact, more generally, given a

chiral-extension ('R, C, Le, Z), using the notations from Definition 2.1.6, we can define

a PBW filtration on U(C, ZC) as the filtration generated by U(C, L-)o := #c(C) and

U(C,, L)1 := Im(jj*(Lc +" 'le

- jj*(U(C, LC) Z U(C, Z')) - Ai(U(C, LC))).

Moreover, according to [BD] 3.9.11. we have the folloing.

Theorem 2.4. If' and C are Ox flat and L is a flat 'R-module then we have an
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isomorphism

e Synl -4 gr.U(C, Zc).

By applying the above to the case where C = 'R = 3,it and the extension of

Z = Q'(3crit) given by Z' = Qc(3,it) we get

gr.U(QC(3crit)) ~ Sym3*citQ(3erit).

The filtration on c,-it is defined using the functor Tx from 2.3.1.

Recall that, for any central charge K = hskill + crit, the functor Tx assigns to

a chiral Ar,-module a qIx(Ah) = Wr,-module. In particular, for every chiral algebra

3, and every morphism of chiral algebras # Ah -+ 3 we have

f chiral algebra morphism chiral algebra morphism

4: A A-+ 3 Jx(#): Wa -+ x(B)

Moreover recall that for h = 0 we have xIx(Ait) ~ 3,it.

As it is explained in [FG], the chiral algebra C,.it can be described as

(Rx Z Tx) (U (C, Zc)) ~ + 6C,-it = (xfx Z Tx)('Do.,it),

for some particular chiral algebra e and chiral extension L'. Hence it carries a

canonical filtration induced by the PBW-filtration on U(C, L). We will recall be-

low the definitions of the chiral algebra e and the chiral extension Le .

THE RENORMALIZED CHIRAL ALGEBROID. Recall that [FG] Proposition 4.5. shows

the existence of a chiral extension A"',' that fits into the following exact sequence

0 -+ (Ac.it 9 Acit ) -+ Aren, - G1(3cit ) -+ 0,
3
crit
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which is a chiral extension of (Ait 0 A,i) in the sense we introduced in Definition
3
crit

2.1.5. In particular, if we consider the chiral envelope U((Acrit 9 Ac0it) Are"'r), by
3

crit

Theorem 2.4 we have

gr.(U((Acrit 0 Acrit), Aref"'))
3 crit

S(Acit 0 Acit) 0 Sym3.c (Q'(3crit)).
3

crit 
3

crit

The chiral envelope U((Ait 0 Ait), Aren') is closely related to the chiral algebra
3crit

DO in fact in [FG] the following is proved:crit'7

Theorem 2.5. We have an embedding G of the chiral extension ArenT into 'Dit

such that the maps 1 and r are the compositions of this embedding with the canonical

maps

Ac,.it -t ( Ac,.it (2 Ac,.it) - A''
3crit

The embedding extends to a homomorphism of chiral algebras

U ((Ac,.it 0 Ac,.it), A r*"'' ) _4 'De,t
3

crit

and the latter is an isomorphism into 'D

Therefore we see that 6cit is given by applying the functor Tx N Tx to the chiral

envelope U(e, Zc), for

C = (Ait 0 Acit), and L' - A'.
3crit

In particular, since the functor qJx is exact, we obtain a filtration on C'cit induced

from the PBW-filtration on U(A,it Ait, Are"'j) such that

SymcitQ'(3c,.it) ~> gr.'3 0 ,
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where we used the fact that qIx(Acrit) ~ 3 crit.

Remark 2.4.1. Note that if we apply the functor Tx to the two embeddings in

(2.18), we obtain two embeddings

Wh -+ ('Ix Z -x)(Dr) ; W-A

such that 1 := l = ro or =: r o r/, where we are denoting simply by la and rA

the maps 'Ix(lh) and 'Ix(r) respectively. In particular, for h = 0, we obtain two

embeddings 1 and r of 3cit into ('lx N Tx)('Dc-it) that differs by r/. Moreover the

image of the two maps lands in 30, therefore we obtain two embeddings

3crit I + 3 + 3 crit.

From the above construction it is clear that 3 ,it corresponds to the 0-th part of

the filtration defined on 30. Moreover, by the definition of the map G from Theorem

2.5 (see [FG]), the embedding 3
crit " 30 induced by the inclusion (Ait 0 Ait) -4

3
crit

U((Ac. 9 Acri), Aren'r) under 'Ix Z Tx, coincides with 1.

Suppose now that we are given a map F : Qc( 3 ,it) -+ C,-it satisfying the con-

ditions stated in Definition 2.1.6. By the universal property of the chiral envelope,

we automatically get a map

U(Ge(3crit)) -+ Cc,-it-

Clearly not every such map will induce an isomorphism between the two chiral

algebras. Theorem 2.3 can be reformulated as saying that there exists a map as

above, that gives rise to an isomorphism U(Qc(3crit)) ~+ COit. More precisely we

have the following:
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Theorem 2.6. There exists a map F : Ge(3,-it) -+ (Ccit)1 - Cct compatible with

the 3eit structure on both sides that restricts to the embedding 1 of chiral algebras

on 3cit such that the following diagram commutes

Q(3rit)/ 3 crit F C it) 1/3crit.

Q1(3crit)

We will now show how Theorem 2.3 follows from Theorem 2.6. The proof Theorem

2.6 will occupy the rest of the article.

Proof of (Theorem 2.6 =- Theorem 2.3). To prove Theorem 2.3 we need to show

that the above F induces an isomorphism U(Qc(3crit)) ~> Ccit. This amounts to

showing that the following diagram commutes for every i:

gri+1U(Qc(3crt) F Ei+1 crit' (2'19)

Sym'+ g1'(3crit)

But this follows from the fact that the above filtrations are generated by their first

two terms. In fact, more generally, for any chiral envelope U(,c), we have

Ai(gri+1U(L c)) :=

Im jj*(U(zc) 1 z U(LCC)i) I Ijj*(U(Lfc) 1 z U(LC)i-i) -+

A! (U(LC)) / A I(U(fc)) /

It is not hard to see that the isomorphism Symi+ 1 Q'(3erit) ~> gri+1U(Q"(3crit))
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(and similarly for C',.it) is the one induced by the map

j~j*(Q (3 crit) M Sym,) -+ A (gri+1 U(G(3crit))),

that in fact vanishes when restricted to Q1(3erit) M Symi, and factors through the

action of 3crit. Therefore the diagram (2.19) commutes by induction on Z. 5

2.4.3 Construction of the map F

Recall that Theorem 2.6 amounts to the construction of a map of Lie* algebras

F : Ge( 3 erit) -+ CO-it compatible with the 3cit-structure on both sides and such

that:

1. F restricts to the embedding 1 (given in Remark 2.4.1) on 3,it.

2. The following diagram commutes:

G(3crit)/3rit Fcr

Q1(3crit)

Remark 2.4.2. Since A, (Qc(3eit)) was constructed as a quotient of A (Ind3 crit (3 c it))

and since, by definition,

At (Ind3c,.(3c,.it))= A,(3crit) @®jj*(3c-it 0 3
cit)/ 3 crit M 3 cit,

to construct any map F from Qc(3cit) to C. it we can proceed as follows:

. first we construct a map f : 3 cit - C.
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Using the chiral bracket p' on C, we consider the composition

j.j*3(3c,, Z jj*(CO i o 4 ,(Co

This composition yields a map

Fci A! Y3 rt ~ it) -+ ,(Oi)
#:A(3c,-e) (D j~j *(3c,4 Cr 3c,;)- (0,r)

by sending A(3cit) to CO., via A,(l).

" We check that the above map factors through a map

A,(Ind 3 ri1(3c,-it)) -+ Al(60,.t).

* We check that in fact if factors through F: A (Ind h., (3 ,.))- Ai(,.).

" We verify that the relations defining Ai(Qc(3,-it)) as a quotient of A (Ind .i( 3 .,it))

are satisfied, i.e. that F gives the desired map F from Q(3c,.i)C to CO..t under

the Kashiwara equivalence.

Remark 2.4.3. Note that any map F constructed as before, automatically satisfies

the first condition in 2.4.3, hence to prove Theorem 2.6, once the map f is defined,

we only have to verify that condition (2) in 2.4.3 is satisfied, i.e. that the diagram

above commutes.

Definition of the map f.

We will now define the map f : 3 .. -+ C ,it and hence, according to the first two

points in 2.4.2, the map F : A,(3,.it) T jj*(3.t Z 3..t) -+ At((CO ,t). Assuming

that it factors through a map F : Q(3.i;) -+ C'., we will then show that it

satisfies the second condition in 2.4.3. This will conclude the proof of Theorem
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2.6. The poof that it factors through D"(3cit) (which amounts to the proof of the

remaining last three points in 2.4.2) will be postponed until 2.4.4. To define the

map f : 3c.; -+ C-it we will use the following three facts:

1. There exist two embeddings

3 crit - 6.it & 3 crit

constructed by applying the functor Tx to the two embeddings in (2.18). In

fact, by doing it, we obtain two maps

Wa l (Ix Z 'Px)('DA) 41 W-rj

such that 1 := 10 = ro o' =: r o 7, where we are denoting by lh and rh the

maps Tx (l,) and qPx (rh) respectively. The two embedding of 3
crit correspond

to the above maps when h = 0.

2. There is a well defined map

e : Wr -4 W-a.

In fact, since Wh = Ix(Ar), and since Aqr is isomorphic to Ah as vector space

with the action of C[h] modified to h - a = -ha, a E A-h, we can consider the

map Wh -+ Wqa that simply sends h to -h.

3. The involution 7 : 3 cit - 3eit can be extended to a map 7 : Wh -+ Wh by

setting 7(h) = h.
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We define f in the following way: for every zh E 3',.t = Wh/h 2 Wh we set

1ln(zh) - r(r(~a)
f (zh) = h (mod h).

This is a well defined element in e0c,.t because 10 = ro or, i.e. the numerator vanishes

mod h.

Assuming the proposition below, we will now show that the resulting F satisfies

condition (2) of 2.4.3, which, according to Remark 2.4.3, concludes the proof of

Theorem 2.6. Proposition 2.4.1 will be proved later in 2.4.4.

Proposition 2.4.1. The map

F: A,(3crit) D jej*(3cru 0 3c,-) -+ A

obtained by using f : 3c,.i -+ C,.i from above, factors through a map F : A,(Qc(3ri)) -

A I(6c,.a).

End of the proof of Theorem 2.6

Proof. We are now ready to finish the proof of Theorem 2.6, which, according to

Remark 2.4.3, amounts to check that

Qc(3cric)r/3c F O r)1 / 3 crit

Q' (3c,.t)

commutes. In order to do so, we will show that it commutes when composed with

the map d : 3cru -+ Q 1 (3crit). By looking at the composition

3
erit A Q1(3c,.i) -+ Qc(3c-it)/3crt 4 (Co,-t) 1/3cru,
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we see that, for z E 3ciit, the resulting map is

1 lh(zh) - rh(r(e(zh))) (mod h), (2.20)
2 h

where zh is any lifting of z to 3cit. Note that this map is well defined only after

taking the quotient of C',it by 3,it.

For the other composition, we first need to recall how the isomorphism 1(3i2t4

(6,.t)1/3crit was constructed. Recall from 2.4.2 that the filtration on C,-it is the one

induced (under x1 x 0 xIx) from the isomorphism G given in Theorem 2.5. Therefore

the isomorphism above is the one corresponding to the composition

(Acrit 9 Acrit) 0 Q1(3erit) U(A*ren*)1/(Acrit ® Aerit) G
3

crit 
3
crit 

3
crit

'Dcit/l(Acrit)+r(Acit)

under (xIxEPx) (here, for simplicity, we are denoting the chiral envelope U((Acrit 0
3
crit

Acrit), Are") by U(Arn')). If we consider the inclusion of Ql(3crit) followed by

the first arrow from above, it is clear that the image in U(A'"')/(Ait 0 Acrit) is
3

crit

G[[t]] x G[[t]] invariant. In particular it means that the image of G 1(3cit) maps to

(x X Fx)(U(Aren',))/3crit. Now, by looking at the definition of the map G (see

[FG] 5.5.), we see that the the map

3crit + Q1 (3crit) -+ (,x M Tx) (U(A'"')1/3crit (x1)(G) O fei)1/3crit,

is indeed given by (2.20). This completes the proof of Theorem 2.3. O

We will now give the proof of Proposition 2.4.1, which will occupy the rest of

the chapter.
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2.4.4 Proof of Proposition 2.4.1

Recall that the proof of Proposition 2.4.1 consists in showing the following:

1. the map : A (3,it) D jj* (3cit Z 3c.it) -+ A (COit) factors through a map

F : Ai(Ind 3cril(3c it)) -+ AI(60,.4

2. the map F factors through F : A (Ind'hj (3,)) -+ A!(C%,;).

3. The relations defining A! (Qc( 3 ,it)) as a quotient of A! (Indch., (3..t)) are satis-

fied, i.e. F gives the desired map F from Q(3,it)c to C,.it under the Kashiwara

equivalence.

For this we will need the following Lemma.

Lemma 2.4.1. The composition

Wrl X W- > (WFx Z Tx) ('Dr) Z (T x Z Tx) ('Dr) ± A,((Wx M Wx) ('Dr))

is zero.

Proof. In [FG] Lemma 5.2 it is shown that the composition

Art Z A-r > 'D Z 'Dr, - Al('Dn)

is zero. In other words the two embeddings centralize each other. The Lemma then,

immediately follows by applying the functor (x Z Tx.

Proof of (1).To prove that P factors through

F: Ai(Indjht(32,.;)) c.
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we use Lemma 2.4.1. Recall that we defined f from 3'ru to C',. to be

f 1 l(zh) - rh(7q(e(zh))) (mod h).f (h

Because of the above Lemma, it is clear that, when we consider the inclusion 3ert M
3 crit '- j~j*(3cruitZ3rit) and the composition with the map to A,(C' ,t), the resulting

map factors as:

3 crit N 3 rit 2 jj*( 3 crit z 3
rit) a (eA,.) ,

3 crit Z 3 crit 2 : (3 crit)

which implies that the map factors through a map F A (Ind3 cri (3c,.it)) - At((C,-i)-

Remark 2.4.4. Note that when we restrict the map f : 3, i ., to 3cr 3
because of the flip from h to -h in the definition of e, we simply obtain the inclusion

3 crit 4 ecrit'

Proof of (2). Now we want to check that the relations defining A,(IndYh(3 ,.))

as a quotient of A (Ind3c1 (3 .,-)) are satisfied, i.e. that F factors through a map

F : A,(Indh (3,.)) A (,.

First of all, recall that to pass from A,(Ind 3crit(3cit)) to A (Indh (3. it)) we took

the quotient by the image of the difference of two maps from A (3ci @ 3 crui) to

A,(Ind3ct(35,-u)). The first map was given by

A,(3crit @ 3er.i) m A!(3ert) -+ A!(Ind 3crit(3eit)), (2.21)

while the second map was induced by the composition

j~j*(3erit Z 3cre) ) jej*(3crit Z crit) -* A,!(Ind3cri (3c,-t)),7
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which vanishes on 3c,.it M 3c,.; - j,j* (3 c,. M 3c,) . When we compose the map

(2.21) with F, we get 1 o m = o (1 M 1). However when we compose the second

map with

j,j* (3c,. 3.,.it) E4 jj*(, e M .,.i) Ai (C .,;),

because of Remark 2.4.4, we see that this map corresponds to p' o (1 Z 1) hence the

difference of the images goes to zero under F.

Proof of (3). Now we are left with checking that F factors through

FT: A, (Inds ct(3c,.it)) -+ Ai(Qc(3c,-i,)).

This will occupy the rest of the article. Recall that A (Qc('Z)) was given as a quotient

of A! (Indh i (3,. i)) by the map Leib. The Leibniz relation was given as the image

of a map

A,(3,.it 0 3.,) -+ A!(Indih (3c;))

and this map was the sum of three maps, ai, a 2 and a3, from j j*(3. i 3,.;i)
which vanished on 3c..t 3Z.,.t. Hence we want to check that the composition

A,(3,.t 0 3..t) A!(Ind ( A (

vanishes. Instead of considering the map from A, (3c,.t 0 3c.,.) we can consider the

three maps

j~j*(3,.it M 3Yt) a2 A2 (Ind ( (2.22)
Cr Cr C 3crit (crit) A I (2.22)t)
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and show that the composition F o (a 1 - a 2 - a3 ) is zero. Recall that the first map,

ai, was given by projecting onto j~j*(3,t Z 3 ), i.e.

a'

j~j* (3'c,.it Z 3Xit) >j~j *(3c,.t z 3,. i) >Ai (Indjh it(3c,.;t)) ,

where # denotes the second component of the projection

A, (3c,.;t) E j~j* (3c,-it Z 3 it) -* A i(Ind chit(3c it)).

The second map, a 2 , was given by o- o ai o -, and the third map a 3 was given by

the composition

jj(3cc4, Z 3 it) -4 A,(3 it) A, A(Ind~ma(5t)-
C -* A! (d 3 rrit (3ccrit))

- A (Indh N(3 ,t)).

When we compose a 3 with the map F : A,(Ind'h(3,.i)) -+ A!('B), it is easy to

see that the unit axiom implies that the composition is equal to

(2.23)

Now consider the chiral algebra (qJx Z Tx)('Dr) and denote by p'i its chiral operation.

Consider the map

f : W - (-+ x Z x)('D)

f(z) = I lh(z) - r(7(e(z)))f 2za =h W x(D~)

(i.e. we are not taking this element (mod h)). It is clear that the three maps a'',

a2 and a' given by

j~j* (Wh Z Wh) ">j~j*((,Px M Fx)('Dh)M (WFx M Tx) ('DO)
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i~*W Wh) -- -* j*j*(&4Px Z Tx(rj (4 'x Z 'Ix)(Dh) -~4

j~j*(Wh Z Wh) 4 A(WA) > A,(('Ix M x) ('D)) -+ Ai (C,.), (a'3)

respectively, vanish on j~j*(h 2 (Wh Z WA)) -4 j~j*(Wa Z WA), in particular they

define well defined maps from j~j*(3,. i 3.,.t) to A, (60,t). Moreover the resulting

maps coincide with c, a2 and as composed with F. In fact, the first and the last

coincide by definition. For the second one, simply note that, modulo h, the map

rA o 77 o e equals 1.

By the above, to show that the combination of the three maps given in (2.22)

is zero, it is enough to check that the combination a' - a' - a" of the above three

maps vanishes.

Let us denote by a', a' and a' the maps from j~j*(WflZWa) to At (('x 0 Tx) (DA))

corresponding to a', a' and a' respectively (i.e. before taking the maps (mod h)).

We will show that the combination c' - a' - a' is already zero.

Because (Tx N qIx)(DA) is h-torsion free, it is enough to show that the three maps

agree after multiplication by h. But now note that each of the maps

ha', ha', ha' E Hom(j~j*(Wa 0 WA), Al(('Fx 0 x)('D))),
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is the sum of two terms, and the sum of the resulting six maps is zero. Indeed ha'

equals the sum of the following two maps:

(2.24)

(2.25)

j,j* (Wh Z Wa)) j~j* ((,Px Z 'x) ('D)) L: A I('D),

j~j *(Wh Z Wh) lagrojo ((F ZT) D AI('Dh).

On the other hand, the map ha' is given by the sum of the following

(2.26)

(2.27)

jj*(Wa Z Wh) -4> A I(Wh) AI('D),

j~j* (Wa 0 Wa) Al0 A!('Dr).

It is clear that the map (2.24) equals minus the map (2.26). Similarly, the relation

p = -- o p o o guarantees that the two maps summing up to ha', given by

j~j*(Wa 0 Wh)jj (xZ'x)(raooes)o 0o'0 , )

and

j*j*(Wh Z Wh) (rro?7oeorh o1oe)ooj*j*((,x Z Tx)(Dh)) fop'

cancel with the remaining maps (2.25) and (2.27) respectively.

Hence the composition ai - a 2 - a3 as a map from j~j* (3, i 3, ) to A (C,-it) is

zero, i.e. the map F : Ai(Indih (31,.t)) -+ A (0,t) factors as

Ai(Ind it(3c,. ) -) A i ).

Ain3cr Cr)t )
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By Kashiwara we obtain the desired map F : O( 3
c,it)c 4 C it, and this concludes

the proof of Theorem 2.6.
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Chapter 3

Localization theorem for the affine

Grassmannian

3.1 Factorization categories and factorization spaces

In this section we start by defining the appropriate categorical setting that will be

needed to formulate Conjecture 1.2.2. In 3.1.1-3.1.5 we recall the definition of the

Ran space and define the notion of factorization category, algebras in a factorization

category, factorization spaces and factorization groups. We will then recall the

factorization description of chiral algebras.

In 3.2 we will define and study the factorization category A-mod = {I -

A-modI} of chiral A-modules. In particular, in 3.1.8, given a commutative chi-

ral algebra 3, we will describe the category 3-mod, of chiral-3-modules on XI

as the category of modules over a sheaf of topological associative algebras on X,

canonically attached to 3.

In 3.2 we will recall what it means for a group G to act on a category C, as ex-

plained in [FG3]. In Section 3.3 we will generalize the above to a factorization group

9 acting on a factorization category. The factorization category we will focus on

will be the factorization category A-mod of chiral A-modules. In particular, we will
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study the factorization sub-category A-mod 9 consisting of strongly 9-equivariant

objects in A-mod, as defined in 3.3.1. In 3.3.3, we will apply this to the chiral

algebra D,.t and the group 'Dx-scheme JG of Jets into G as defined in 3.1.7.

3.1.1 The Ran space

Let k be an algebraically closed field of characteristic zero, and denote by fSchaf f/k

the category of affine schemes of finite type over k. For a category 'D, denote by

Pshv('D) the category of pre-sheaves on it, i.e.

Pshv('D) := { functors 'DP -+ Gpd.j,

where Gpdo, is the category of oo-groupoids. Fix a smooth curve X over k.

Definition 3.1.1. The Ran space on X is the functor of points

fSch > Seta! f/k

S {F c Hom(S, X) : F is finite}.

The Ran space is more commonly defined as the colimit of the diagrams

Fin'. > Pshv(f Schaf f/k),

where FinP, denotes the category of finite sets with surjections as morphisms, and

a surjection of finite sets # : I -* J maps to the corresponding diagonal embedding

XC -< XI.

Note that a k-point Spec(k) -+ Ran(X) of Ran(X) consists of a finite collection F

of points F C X(k). In this perspective, we can think of Ran(X) as the moduli

space for finite subsets of X. More generally, for an affine scheme S, an S-point of

Ran(X) consists of a finite set of maps F = {f1,..., f} c Hom(S, X). We asso-

ciate to F the closed subscheme in Xs := X x S given by the union of the graphs
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1f t C Xs.

We will be interested in collections of categories over finite powers of the curve

X satisfying certain properties. We will use the notion of tensor product of abelian

categories as introduced in [FG7] 17.1.

As it is explained in loc. cit. the tensor product of two abelian categories is an

abelian category satisfying a certain universal property. In particular it may not

exist. We will always work in the following framework, in which the tensor product

does exist.

Let A 4 A' be a homomorphism of commutative algebras. Consider the abelian

categories A-mod and A'-mod. The map f gives rise to a monoidal action of A-mod

on A'-mod, moreover the monoidal action A-mod x A'-mod -+ A'-mod is right-exact

and commutes with direct sums. Assume now that we have an abelian category C

endowed with a monoidal action of A-mod such that the action map is right-exact

and commutes with direct sums. Under the above assumptions, as it is shown in

[FG7], the tensor product

A'-mod 0 C,
A-mod

exists. For instance, we can consider an abelian category C, with a map from A

to the center Z(C) of it. This map endows C with a monoidal action of A-mod,

satisfying the properties above. In this case the tensor product A'-mod 0 C can
A-mod

be described as follows. This is an abelian category whose objects are objects C in

C, endowed with an additional action of A', such that the two actions of A coincide,

where one action is the one coming from f : A -+ A', and the second is the one

coming from the map A -+ Z(C). Morphisms are morphisms C1 -+ C 2 in C that

intertwine the A'-action.

The categories of interest can be described as categories over the space Ran(X).
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More precisely, we have the following definition.

Definition 3.1.2. A category C over the Ran is the following data:

" For a finite set I we have an abelian category Cxi over XI, in other words, we

are given an action of the monoidal category QCoh(XI) on Cxi. We require

the monoidal action to be right-exact and to commute with direct sums.

" We have pairs of mutually adjoint functors

A* : CxI ' exJ : A'P,,

for every surjection # : I -* J.

" We require that the induced functor

QCoh(Xj) @ X Ax *Ide +x
QCoh(XI)

be an equivalence (as categories acted on by QCoh(Xj)).

We define the category C to be

ifl Cxi.

Given a map f Y- - X' and a category C over Ran(X), we denote by f*(C)yi

the category over Y' given as

I - f*()yi := QCoh(YI) 9 e
QCoh(XI)

where QCoh(XI) acts on QCoh(Y') via the map f '*.
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Definition 3.1.3. A functor F between two categories C and D over Ran(X),

consists of a family of functors

F1 : Cxi -+ Dxi,

such that, for #b: I -* J, we are given isomorphisms of functors A* o F, ~ F o A*,,

compatible with higher compositions.

3.1.2 Factorization categories

For every partition 7r: I - J of I, i.e. I = LJJEJIj, where Ij = 7r-1(j), consider the

open subset

j(I/J) : UCI/J) -+ XI,

where U(IJ) = (X) E X jxj X3 if (i) A r(j)}.

Definition 3.1.4. A factorization category is a category e over Ran(X) such that,

for every partition r: I - J of I, we are given equivalences

(j(I/J))*( exI) ~ i C 0r, ... 0 - x U(,/-7) , (3.1)

compatible with refinements of partitions.

Example 3.1.1. The most obvious example of factorization category is given by

the category QCoh(Ran(X)) of quasi-coherent sheaves on Ran(X), given by

I -4 QCoh(Ran(X))xi := QCoh(XI).

Definition 3.1.5. Given two factorization categories C and D, a functor F : C -+ D

is called a factorization functor if it is compatible with the equivalences in (3.1), in

the sense that

(F)|uIj) ~ (Fri 0 0 - F.)|IU(,j).
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3.1.3 factorization algebras

Let C be a factorization category over Ran(X). We are interested in chiral algebra

objects in C. In particular, we are interested is unital chiral algebras in the factor-

ization category QCoh(Ran(X)). These correspond to chiral algebras as defined in

2.1.

Definition 3.1.6. A (chiral) algebra A in C is the assignment I -+ A, E Cxi, such

that

" For every surjection < : I -- J, we have an isomorphism A*(A 1 ) ~ Ai.

" For every partition 7r : I -* J of I, we are given an isomorphism

(j(I1J))*(A1) ~- A,, Z -. - -~ I A1|(1p>) .

Definition 3.1.7. A unital chiral algebra over a curve X is an algebra in the fac-

torization algebra QCoh(Ran(X)) that satisfies the following.

e (unit) There exist a global section 1 E Ax, called the unit, with the property

that for every local section f E A(U), U C X, the section 1f E Ax2|U2_A(x),

(defined by the factorization isomorphism), extends across the diagonal, and

restricts to f E A ~ Ax2IA(x).

Remark 3.1.1. As it is explained in [BD], chiral algebras as defined in 2.1 are

the same as unital factorization algebras in QCoh(Ran(X)). In fact we have the

following proposition.

Proposition 3.1.1. There is an equivalence of categories

Unital factorization algebras ~

in-+ Unital chiral algebras},
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given by the assignment A -+ A := Ax 0 Qx.

Given a factorization algebra A in a factorization category C, there is a notion of

modules over A. The category of A-modules will in fact be a factorization category,

defined as follows.

Definition 3.1.8. Given a factorization algebra A in C, the factorization category

A-mod(e) of A-modules in C is the factorization category defined by the assignment

I -+ A-mod(Cxi), where A-mod(Cxi) is the category whose objects are collections

MILK E eXIUK, for every finite set K satisfying the following:

" For every surjection # : K -w K', we have an isomorphism A*,(MIUK) 2

MILK'-

" For every partition r : I u K -w K' of I U K, such that I C 7r- 1 (k') =: 7 for

some k' E K', we are given an isomorphism

(j(IUK/K'))*(MIUK) 11  ... A, Z MyIU(IUK/KI)

where I ui K = I1 ui -.-. U I,,_1 ui I.

" The above isomorphisms are compatible with sequence of surjections I U K ->

K' "' K" in the obvious sense, where

I U K = 7 U kEKI ' -(k) and I = I Uk"EK" Ik, with I C I.
kjyk' k"#1

For a chiral algebra A, we can consider the factorization category

A-mod := { unital A-modules in QCoh(Ran(X))} (3.2)

These are A-modules M in QCoh(Ran(X)) such that
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* (unit) If 1 E Ax denotes the unit section in A, then for every local section

f E M(U), U c XI, the section 1 M f E J3VlX{1uIU({)u/u)_A(xI), (defined by

the factorization isomorphism), extends across the diagonal, and restricts to

f E M ~ Mx{*u|A(xI).

3.1.4 Chiral modules over X"

From proposition 3.1.1, it is natural to expect the factorization category A-mod from

(3.2) to have a different description in terms of the right 'Dx-module Ad. Given a

unital chiral algebra Ad, and a finite set I, we can in fact define the notion of chiral

Ac-modules on X' in the following way.

For any finite set K and embedding < I -+ K, consider the Il-dimensional

closed sub-scheme HO C XK given by the union of the diagonal sub-schemes

HO:= U x = <,7 for i E K 1 } C XK1 X XI,
7r:Ki-*I

where K = K 1 U I, and xi and yj are coordinates on XK1 and X' respectively.

Consider the following diagram

HO XKi X XI U+,

PP2

X K1 XI

where UO denotes the complement of HO inside XKi x XI. For a quasi-coherent

sheaf M, on X', denote by ['e(MI) the module over XK1 x X' given by

Fi(M) := ii*(p*( )).

Definition 3.1.9. A chiral A"-module M, on X, is a quiasi-coherent sheaf on X,
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along with a map

It I jj'* (Ad M MI) - riciu{*} MI)

such that the following is satisfied.

" (unit) The following diagram commutes:

j*j*(Qx M Ad ) j*j* (Ad Z MI)

]pcru{*}(MI) id a ' Fpcu{*}(Ml)

* (Lie action) pP12}3 = /4{1,3}~-1,{23} where

i,{2,3} jj* (Ad Ad M) -+ jj* (Ad Z Fcu{*}(M')) -+FIcru{*,*}(M )
I

/12,{1,3} = P1,{2,3} 0 U12 , and

p/'1,2},3 : j~j* (Ad Z Ad Z JI') - A 1 2 jj*(Ad Z MI) -

-+ A12*(FIcru{*}(M')) - Iccu{*,*}(3 .

As it is explained in [NR], we have an equivalence of categories between the

category A-mod, introduced in (3.2), and the category of chiral Ad-modules on X',

where Ad = Ax 9 Qx.

Proposition 3.1.2. For every I finite set, there is an equivalence of categories

A-mod, ~> { chiral Ad -modules on X,

given by the assignment M 1 -+ M' M, 0 ?I0 .

Given a Ad-module MI over XI, the corresponding factorization module is con-

structed inductively. For instance, for the finite set I U {*}, the module MVIul*} is
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defined as the kernel of the chiral action

A jj* (Ad Z M') -+ Iclu{*}(M N

which is surjective thanks to the unit axiom. The inductive step, constructing the

modules MIUK for any finite set K, can be found in [NR] 3.5.

Now, let Ad and 3 d be two chiral algebras and

a morphism of chiral algebras. Let A and 3 be the corresponding factorization

algebras. Consider the factorization category e = A-mod. Since the map # endows

3 d with a chiral Ad-module structure, and therefore makes it an Ad-module over

X (and 3, and Ad-module over X'), we see that, by proposition 3.1.2, 3 becomes

a factorization-algebra object in the category A-mod. In fact, for every I we take

(3)i E A-modxi to be 3B itself, and for every K we take ( 3 )IUK to be the object in

A-modxUK given by the inverse to the functor in 3.1.2. We can therefore consider

the factorization category 3-mod(A-mod) as defined in definition 3.1.8. We have

the following proposition.

Proposition 3.1.3. We have an equivalence of factorization categories

3-mod(A-mod) ~_ 3-mod.

Proof. For every finite set I, there is a tautologically defined functor

3-mod(A-mod) -+ 3-mod1 ,

and proposition 3.1.2 says that this functor is an equivalence. In fact, let us consider

an object M1 E 3-mod(A-mod1 ). By definition, this corresponds to a collection of
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objects MILK E A-modIUK, satisfying the factorization property

(j(IN)')*(MIUJK) -- BI, ' '. ' SI.-i 0 ITU(I/J)

for every partition 7r : I U K -* K' of I U K such that I C r-'(k') I for some

k E K'. However, each MIUK, being an object of A-modIUK, corresponds to a

collection of objects MIUKUJ E A-modIUKUJ satisfies the factorization property

(j(I))*(MIUKUJ) AI Z ... Api_ Z MT

for every partition I, U -.. U I _1 u T of I U K U J, such that I U K c I. We will

therefore think of the object MI as a collection of objects MILJKLJJ satisfying the

factorization property for 93 with respect to the K finite set, and the factorization

property for A with respect to the finite set J.

Clearly, given an object MI E 3-mod(A-modI), the collection MIUK defines a 93-

module structure on MI. Hence we have the functor mentioned above. Conversely,

given an object NI E 3-modI, and hence a collection of objects NIUK E 3-modIUK,

we can construct the modules NIUKUJ in A-mOdIUKUJ using proposition 3.1.2 in

the following way. Using the object NIUK we can construct a chiral- 3c-module

structure on it. More precisely, consider the map <p I U K -+ I U K U {*}, and

the corresponding stratification HO 4 X x XILK 4- UO. Denote by N{*, the object

NIUKU{*}, and consider the Cousin complex for NII given by the above stratification,

0 -+ NII -+ jj*(93 NIUK) -+* -{*} 0-

It is not hard to see that the unit axiom for 3 implies a natural isomorphism

i~i* (NJ,)[l] ~ F+(NILK), and that the second map in the above sequence gives rise

to a 1d action on the right-D-module N2ILJK NIUK - Therefore, given

the object NILJK, we obtain a 3d-module N'UK on XIUK. Using the map of chiral
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algebras V) : Ad - 'B", we can regard it as a Ad-module on XI"K. Now, using

proposition 3.1.2, we can construct the corresponding factorization A-module, i.e.

the collection N2 IUKUJ.

3.1.5 Factorization spaces

We will now introduce the notion of factorization space. In particular we will be

interested in the factorization space attached to a Dx-scheme '. For Dx-schemes of

the form 1 = Jx(Z), where Z is an affine (x-scheme, and Jx is the functor defined

in 2.17. The corresponding factorization space will be studied in more details in

3.1.3. In 3.1.7 we will focus on the case of Z = G, for an affine group-scheme G over

X.

Definition 3.1.10. A factorization space is the assignment I - '1, for I finite

set, and i a space over XI, such that

" For every surjection <: I -w* J, we are given isomorphisms 'j|xj ~ j

" For every partition ir : I -+ J of I, we are given isomorphisms

(j(I/J))( 1) - IlX ... X %InhU(I/J)

A factorization space is called co-unital if it comes with a collection of maps

iI -4 X" X J2

for each partition I = I1 LJ I2 which extends the corresponding map over the com-

plement of the diagonal. We demand that these be isomorphisms over the formal

neighborhood of the diagonal.
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Example 3.1.2. We will see later that the space of opers on X , as defined in [BD2]

can be organized into a co-unital factorization space Op.. Moreover, we will have a

sequence of inclusions

Op, C Op c O

where the last two (non-counital) factorization spaces Opnr and Op' generalize the

notion of unramified opers and opers on the punctured disc as introduced in [FG3].

Remark 3.1.2. Given a factorization space , we can define the factorization cat-

egory QCoh( ) of quasi-coherent sheaves on it, by the assignment

I - QCoh( h).

In the special case in which we take 'j to be X1 , we recover the factorization category

QCoh(Ran(X)) from example 3.1.1.

3.1.6 From 'Dx-schemes to factorization spaces

Given a 'Dx-scheme ', we will now define and study factorization spaces J = {I -+

J1' } and M = {I -+ M 1 } canonically attached to 1. In studying these spaces,

we will use the notions of ind-scheme and formal schemes. In particular, given a

map # : S ' X' we will consider the union UiEIIrr of the graphs Fi's inside

X x S, and the completion UiEIFP, of X x S along UiEIP4i. As it is explained below,

we can regard UiEIII,i as a scheme or as a formal scheme. When regarded as a

scheme, we will denote it by Do and by D' the complement of F, inside Do. We

start by recalling the definition of ind-scheme.

Definition 3.1.11. An ind-scheme X is a presheaf on the category of affine schemes,

that can be represented by a filtered family of schemes,

X = l' Xa,
a
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where the transition maps i,, : X, - X# are closed embeddings, and the limit is

taken inside the category Pshv(fSchaff/k) as defined in 3.1.1.

We say that an ind-scheme X is of ind-finite type if each scheme X, is.

By a formal scheme we mean an ind-scheme whose reduced part is a scheme.

Let now S be a space over XI, we will now explain the difference between the formal

scheme Ui174 and the scheme Dp. Assume for a moment that X is the affine line,

S is just a point, and I is the one element set. Let x E X be the point corresponding

to pt -+ X. Denote by b2 the formal scheme

b2 := lin Spec(C[x]/z").
n

We could have also considered the disc as a non-formal scheme, in other words we

could have considered the scheme D2

D2 := Spec(Um C[X]/z").
n

By definition of direct/inverse limit, for an affine scheme S, we have

Hom(Db, S) ~ Hom(Dx, S).

However, the formal disc Dx is "too small", in the sense that it makes no sense to

talk about the formal punctured disc D2 - x. The same is not true if we consider

the disc D,. In fact, the latter, as a scheme, contains the closed point x, and we

denote by D' the complement of x inside D2.

To pass to the general situation, if S is an affine scheme mapping to XI, we can

consider the formal-scheme UiEIFk . We write it as

UiEIIO = li Spec(R/In),
n
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where R is a topological algebra, whose topology is given by Is's. As before, this

formal-scheme is not good enough for us. In particular it doesn't contain UiEIL'e, as

a closed sub-scheme. Therefore it makes more sense to consider the scheme DO

Do := Spec(Um R/I,). (3.3)
n

The scheme D, has a closed sub-scheme UiEII>,i, and we can consider the comple-

ment

D := Do - UiEIrI>,. (3.4)

The factorization space attached to a 'Dx-scheme

Let ' be a 'Dx-scheme over X. In the case that J is affine, this is the same as a

'Dx-algebra, hence, as we saw in 2.2, the same as a commutative chiral algebra. In

the general case, given a 'Dx-space , we can construct a factorization space J as

follows. For every finite set I, and test scheme S, we define J1 i (S) to be

S (''''>X ,

J1 ( S) =
a horizontal section D, -+ p

where by horizontal we mean a map of 'Dx-schemes. The above construction defines

a functor

{ Dx-spaces} -+ { Factorization spaces }.

The factorization space JJ naturally sits inside the factorization space M defined

as follows. For every finite set I and test scheme S, we define M 1  (S) to be

MA := (3.5)
a horizontal section D-
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where D' is the scheme defined in 3.4. Clearly Ji (S) corresponds to those sections

that are regular along UiElPi.

Remark 3.1.3. Given a commutative chiral algebra 2d, we can consider the corre-

sponding 'Dx-algebra 3 := B' 9 * . Since 3 corresponds to an affine Dx-scheme,

we can construct the corresponding factorization space. It is easy to see that the unit

axiom on B" translate into the co-unital property of the corresponding factorization

space. Therefore we have a functor

{ Commutative chiral algebras} -+ { affine counital factorization sapces }.

3.1.7 Factorization groups

Let 9x be an affine 'Dx-group scheme. From the above construction, we obtain a

factorization group 'Dx-scheme, i.e. for each power of the curve X', we have an

affine group scheme 9 , := JI9x over XI.

Consider now a group scheme G on X, and let Jx(G) be the correspond-

ing 'Dx-scheme, where Jx is the functor defined in (2.17). Denote simply by

JG the factorization space JJx (G). In this case, by the adjunction property of

Jx : {0-schemes} -+ {Dx-schemes }, we have

JG1 (S) =
S ' X I

a section Do -+ G

We denote by MG 1 the ind-scheme of meromorphic jets MG: M 1Jx(G),

MG1 (S) =
S (0"'.' > XI

a section D' - G

We will mostly focus on the quotient MG1/JG. We will see later, that its closed

points can be described as the set of G-bundles on X with a given trivialization
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outside a finite set of points.

3.1.8 Chiral modules over a commutative chiral algebra

Let now 3 d be a commutative chiral algebra. In this section, we will see how we can

describe the category of 3-modules on X, as quasi-coherent sheaves over the space

MI 1 3 defined in 3.5, for the 'Dx-scheme %3 corresponding to 3. More generally, in

3.1.1for a chiral algebra 3, not necessarily commutative, we will construct a sheaf

of topological algebras 3(I) over XI, such that modules over it will be equivalent to

the category of chiral-3-modules on XI. For this we will first need to recall some

constructions regarding the chiral envelope U(L) of a Lie*-algebra L.

For a Lie*-algebra L, we will start by recalling the definitions of Lie*-modules

and chiral L-modules over XI.

Definition 3.1.12. e A Lie*-L-module MI on X' is a quasi-coherent sheaf on

X' along with a map

PI : L Z M1 -+ rcI1*} (M)

such that the following is satisfied.

- (Lie action) p41,2},3 = 2,13} - where

1{23 = o : L N L Z M -+ L Z Fcru{l}(M) c ,

[12,{1 = 1{,3 } -*2, and

p/'1,2},3 = A I PL : L Z L N M -+ A.(L) Z M -+ A.(FIcru{}(M)) --+ FIcu{*,*}(M).

* A chiral L-module MI on X' is quasi-coherent sheaf on X' along with a map

pL : j.j*(L Z MI) -+ Fjcru{ }(M)
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such that the following is satisfied.

- (Lie action) Let U' c X x X' be the complement of the diagonals

{y1 = xi} and {y2 = xj-. Denote by j' the inclusion j' : U' -+ X x X'.

We require that pii,2}3 = 1., ,3} - /4{23} where

p ji,{2,3} : j*(L Z L Z M) -+ j~j*(L M L Z M) -+

P2,{1,3} = /11,{2,3} 0 0*2, and

/1i,2},3 j'*(L E L E M) -- A 12.jj*(L M M) -

-+ A 12*( FIcru{}(M)) -+ 1FIcru{*,*}(M).

Unlike in the world of usual Lie algebras, for a Lie*-algebra L, the category of

Lie*-modules on X' is not equivalent to the category of chiral U(L)-modules on XI.

Chiral U(L)-modules are in fact equivalent to chiral-L-modules, in the sense that

there exist an induction functor Ind, establishing an equivalence of categories

Ind,: {Chiral L-modules on XI} ~+ { chiral U(L)-modules on X'}. (3.7)

We can also describe chiral and Lie*-L-modules over X' as modules for some par-

ticular sheaves of topological Lie algebras on XI. For this, consider the following

diagram

H(1C10{I1 X X X, U.

X XI

Given a Lie*-algebra L, let

f(Il := hr(p1(L)[-I]) and 2(I) := hr(j*j*(p1(L)[-I])), (3.8)

102



where, for a sheaf M on X x X', we define hr(M) to be

hr(M) := 4mp 2 ,(M/M ), M such that M/M is supported on H.

The objects in (3.8) are sheaves of topological (xi-modules, moreover they have a

structure of Lie algebra, coming from the Lie*-algebra structure on L.

As it is explained in [NR], we have the following proposition.

Proposition 3.1.4. Let L be a Lie*-algebra. Then the category of Lie*-modules

(resp. chiral L-modules) on X' is equivalent to the category of 2('>-modules (resp.

2(M)-modules).

Chiral algebras and topological algebras attached to them

Let '3 be a chiral algebra. We will use the previous subsection to describe chiral

'B-modules over X' as modules over a sheaf of topological associative algebras.

The ideas is the following: consider a classical associative algebra B, and denote by

BLie the corresponding Lie algebra. We have an obvious forgetful functor from the

category of B-modules to the category of chiral-BLie-modules. Since chiral-BLie-

modules are the same as U(BLie)-modules we therefore have a functor

B-mod -4 U(BLie)-mod.

Let now K be the kernel of the natural map U(BLie) -4 B. It is clear that the

functor above defines an equivalence

B-mod ~ U(BLie)/K-mod.

We can apply the same idea to the world of chiral algebras. When the chiral al-

gebra '3 d is commutative, we can furthermore describe the (commutative) algebra
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corresponding to U(B"ie)/K as some scheme over X.

Consider the (commutative)-Lie*-algebra 3 Lie corresponding to Bc. Denote by

K the ideal in U(93Lie) generated by the kernel of the natural map

U(3Lie) -+ Bc3 .

From the definition it is clear that we have the following lemma.

Lemma 3.1.1. The functor Ind' from (3.7) induces an equivalence of categories

Ind: { Chiral 93d-modules on X' } ~ { chiral-U(3Lie)/ K-modules on X' }.
(3.9)

Let's now consider the sheaf of topological (commutative) Lie-algebras defined

in (3.8) for L = 3 Lie. Denote them simply by 3'BI) and 3(I) respectively. Because

of the chiral algebra structure on 3 "1, we have maps

U(p( )) + 9(I).

Denote by KCM) the ideal generated by the kernel of the above maps. Consider the

equivalence of proposition 3.1.4

{ chiral-U(3Lie)-modules on X1 } ~ {U(3(,))-modules on X1}.

We have the following proposition.

Proposition 3.1.5. The composition oJ

equivalence

{ Chiral 3de-modules on X'} 4

the above functor with (3.9) induces an

modules for the topological

associative algebra U(3(I))/K(')
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Proof. Clearly the functor { 3d-modules on X'} -+ { U(3('))-modules } given by

proposition 3.1.4 factors through

{ modules for the topological associative algebra U(3(I))/Kf)} -+ { U(3())-modules }

On the other hand, given a module MI for the associative algebra U(3(I))/K('),

we can consider it as a Lie-3(')-module. By the equivalence (3.7), together with

proposition 3.1.4, we can consider the module Ind'(Mr) as a chiral U(3Lie)-module

over XI, However, the fact that M_ was in fact a module for 3(I) when regarded

as an algebra, implies that the action of U(3 lie) on Ind'(MI) factors through the

chiral algebra U(3Lie)/K. Now, by Lemma 3.1.1 we therefore have that MI itself

is in fact a 93C-module on XI.

Example 3.1.3. The commutative case: For a commutative chiral algebra 3 d,

denote by B the corresponding co-unital affine factorization 'Dx-space. Recall from

3.1.6 and 3.5 that we have constructed spaces JAB and M,'W over X'. Denote by

p, the natural map

pI : M, 1A - XI,

and by Me' the object 0 1 := pI(O1y ,). Note that we have isomorphisms

Sym(3(I))/K(') ~ 3(i) (as sheaves) over XI. For I = {*}, the fiber of 3({*}) at

any point x E X coincides, by construction, with the topological associative algebra

3ass = Im $3)s" introduced in [BD] 3.6. As it is explained in loc. cit 2.4.7, for this

topological algebra, the ind-scheme Spf(3ss) := Spec($a') is the space of

horizontal sections of Spec(3) over the formal punctured disc D*. In other words,

we have

Lwa i tn m ( ( a r e =

Let now I be a finite set with ni elements, and T = (X1, . ,Xn) be a point in X',
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with xi $ xj for all i and j. Since both (I) and MI% factorize, we have

(,B(I)), ,!as ^as 0(re N )& .. (rl

and therefore we have

B(I) (orel

By the above, proposition 3.1.5 can be re-formulated in this particular case in the

following way.

Corollary 3.1.1. For a chiral algebra '3 we have the following equivalence

Chiral 93cmodules on X'} f4 continuous modules for the sheaf of topological

associative algebras (9d J

In the special case in which the commutative chiral algebra 3 d comes as the

'Dx-algebra corresponding to a Ox-algebra under the functor Jx from (2.17), we

will simply write JZ and MZ for the spaces JSJx(z) and MINJx(z) respectively.

Note that, by the adjunction property of Jx we have

MZ1 (S) :=
S X

a section D -+ M

and JZ is the subfunctor consisting of those sections that are well defined on

UiE1I>. Therefore in this case we take 'B1 to be 0 Jx(z) and we have an equivalence

{ Chiral (DJx(z)-modules on XI} -4
continuous modules for the topological

associative algebra (9"'z
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3.2 Action of a group scheme on a category

Let C be an abelian category, and let G be a group scheme. A weak action of G on

C consists of functors:

act* : QCoh(S) 9 C -+ QCoh(G x S) 0 C,

functorial in S -+ G, and two functorial isomorphisms related to these functors.

" (unit) The first isomorphism is between the identity functor in C and the

composition

C t QCoh(G) o C -+ C,

where the second arrow corresponds to the restriction to 1 E G.

" (associativity constrain) The second isomorphism is between the two functors

C -+ QCoh(G x G) 0 C given by the following diagram

a"t> QCoh(G) 0 C

4 act* I act,

QCoh(G) 9 G "QCoh(G x G) 9 C.

Example 3.2.1. The tautological map

triv* : C -+ QCoh(G) C, C -+ G 0 C,

defines an action of G on C. We will refer to this action as the trivial G-action on

C.

Definition 3.2.1. We say that an element C E C is weakly equivariant, if it comes
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equipped with an isomorphism

act*(C) ~ triv*(C) (3.10)

which is compatible with the associativity constraint of the G-action on C.

We denote by CwG the category consisting of weakly G-equivariant objects.

Example 3.2.2. If we take C = Vect, with the trivial G-action, then we have

Vecw,G = Rep(G).

3.2.1 Strong action on C

For a group scheme (or ind-scheme) G, we let G(1) = Spf(C E c g*) denote the

first infinitesimal neighborhood of the unit 1 E G, and we let G1 be the formal

completion of G at the unit. A weak action of G on C is called strong if either of

the following equivalent conditions are satised:

" We are given have functorial isomorphisms between the functors act* for any

pair of innitesimally close points #,#': S -+ G, satisfying certain compatibil-

ity conditions.

" We are given functorial trivializations of act* for any S -+ G 1 , respecting the

unit, the multiplication, and the adjoint action of G on G1 .

Remark 3.2.1. The second condition above is actually equivalent to a weaker

version. It is enough to be given a trivialization not on G1, but on G(1):

act* IG(1) triv* IG(i) (3.11)

which is compatible with the unit and the Lie algebra structure.
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Definition 3.2.2. Given a category C with a strong action of G, an object in

C E CS,G is called strongly equivariant, if the two isomorphisms

act* (C) ~ triv* (C)

coming from (3.10) and (3.11) coincide.

We denote by CG the category consisting of strongly equivariant objects.

3.2.2 The case C = A-mod.

Let us consider a scheme (or ind-scheme as defined in chapter ??) X and a group

scheme G acting on it. Consider the map

act: G x X -+ X.

This defines a functor act* : QCoh(X) -+ QCoh(G) 0 QCoh(X), and it defines an

action of G on QCoh(X) in the above sense. We have also the projection triv

G x X -+ X, and we can consider the diagram

act
G xX :X

triv

In this case, the objects of QCoh(X)wG are exactly those modules over X whose

pull-back on G x X along the above two maps are isomorphic. Obviously we have

a functor

QCoh(X) wG -+ QCoh(X/G).

The example 3.2.2 corresponds to the case X = Spec(k).

Let now X be affine, X = Spec(A), and suppose that A is acted on by a group

G. Then we have an action of G on the category of A-modules, that corresponds to

the above action on QCoh(X).
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More generally, let A be an associative algebra acted on by G. This defines a

weak action of G on the category of A-modules. In fact, we have a map

G x A-mod -+ A-mod

given by (g, M) -+ gM, where gM ~ M as vector spaces, but the action of A on it

is defined by a.(gm) = ((g.a)m). This defines the required map

A-mod - QCohG D A-mod, M -4 M,

where M(g) = gM E A-mod. The objects of (A-mod)wG are those A-modules M

that are endowed with an action of G.

As we have seen earlier, given a scheme (or an ind-scheme X) acted on by G,

we have a weak-action of G on the category QCoh(X). However, by considering the

category of D-modules on it, we see how this category carries a strong action of

G. The weakly equivariant objects in 'Dx-mod are exactly the weakly equivariant

'Dx-modules, and the strongly equivariant objects are the same as D-modules on

the quotient X/G.

As before, if we take an affine scheme X = Spec(A), we can translate what it means

for the G-action to be strong in terms of the G-action on A. In this case, a strong

action on A-modules, translates into the existence of a map

g -+ A

that coincides with the derived action of g on A coming from the G-action on it.

More generally, let A be any associative algebra, acted on by G via a map G -

Aut(A). The action of G on the category of A-modules is strong if the derivative of

the above map g -+ Der(A) factors through the algebra if inner derivations via a
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G-equivariant map #,
g > Der(A).

A

The objects of (A-mod) G are those A-modules M for which the following diagram

commutes
d(actc)

I

act

where actG : G -+ Aut(M) is the G-action of G on M coming from the forgetful

functor

3.3 Action of a factorization group on a factor-

ization category

We now want to explain what it means for a factorization category to be acted on

by a factorization group S.

Let X be a smooth curve over k, and let C be a factorization category and

9 = {I -4 9} a factorization group (see 3.1.7).

Definition 3.3.1. By a weak action of 9 on C we mean a collection of functors

act*: xi -+ QCoh(91 ) 9 Cxi,
QCoh(XI)

for every finite set I, compatible with the factorization isomorphisms. These functors

should satisfy the following:

e (unit) The first isomorphism is between the identity functor in Cxi and the
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composition
act*

Cx1 -- ; QCoh(91) 0 Cx1 -+ Cx1,
QCoh(XI)

where the second arrow corresponds to the restriction to the composition with

the pull-back along the identity section X' -+ 91.

e (associativity costraint) The second isomorphism is between the two functors

Cx, -+ QCoh(9, x 91) 0 Cx, given by the following diagram

Cxr I;P QCoh(9i) 0 Cxi
QCoh(XI)

act* Itc;g1 9

QCoh(9I) 0 -X i QCoh(S x 91) 0 Cxi.
QCoh(XI)

Example 3.3.1. For every I, the tautological map

triv*: Xi -+ QCoh(9,) 0 CxJ, C F-> ('9, 0 C,
QCoh(XI)

defines an action of 9 on C. We will refer to this action as the trivial 9-action on C.

Definition 3.3.2. Let e be a factorization category acted on by a factorization

group 9. We say that an object M E C is weakly equivariant, if for every I we have

act*(M) ~:_ triv* (M).

We will be interested in the case of a group 'Dx-scheme acting on a chiral algebra

A. Although we can define what it means for an action of a factorization group to

be strong, we will spell out the definition only in the case C = A-mod.

112



3.3.1 Action on the category A-mod

Let A be a chiral algebra, and let 9 x be a group Dx-scheme. Denote by 9 the cor-

responding factorization group. We want to apply the discussion above to the case

of C = A-mod. For this, we first need to define what it means for the 'Dx-scheme

9 x to act on the chiral algebra A.

Given a group 'Dx-scheme 9 x, we consider its coordinate ring 09 as a commu-

tative chiral algebra endowed with a map

6 : 0 SX -+ Ogx 0 Oq
Ox

of chiral algebras, i.e such that the following diagram commutes

ii*(OS9 @ 9) 0 ,(09s)

I I
i*i*(09 O Z9 0 0 cJ9 ) > A,(0 9X 0(99k).

Definition 3.3.3. An action of a group Dx-scheme Sx on a chiral algebra A, is a

'Dx-map of chiral algebras
act

A 4OA009O,,
Ox

such that (act 0 id) o act = (id 0 6) o act.

The condition on act to be a map of chiral algebras, translates into the commu-

tativity of the following diagram:

j~j*(A 0 A) A,(A)

I NI
jj*(A @9 QZ A 9 09x) > ,A 0 09x).

In this case the category A-modxi is acted on by the factorization group 9 attached
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to 9x, in other words, we have functors

A-modxi -+ A-modxi 0 QCoh(91 ).
QCoh(XI)

To see this, note that the action of 9x on A defines an automorphism V;"' of the

chiral algebra A 0 (9. This automorphism is defines as the composition

act : A @9 9, actoia) A i dq 9 > A 9 0,

where m denotes the commutative product on (9q when regarded as a commutative

chiral algebra on X. We denote by #yaw the map $yCt : A 0 (99, -+ A0 (9 09

corresponding to #ac. Moreover, we have an obvious forgetful functor

99x-modxi -+ QCoh(9 1 ).

We define the functor A-modxi -+ A-modxi 0 QCoh(91 ) in the following way.
QCoh(XI)

To a module M1 over X, we assign the image under the above forgetful functor of

the object M1 E A-modxi 0 9x-modx, defined in the following way. For
QCoh(XI)

every finite set K, we take (MI)K to be MILJK 0(SIUK and for every partition

7r : I Li K -* K' of I L K, such that I C Gr-'(k') 7 for some k E K', we define

factorization isomorphisms as the composition

(i(I/J))*(M~IU) = (j(I/J))*(-MIJ 0& OSIUK) -

A, Z.ZA ,, Mr( 0(% .A 1  Z.Z 9 -1 Z (M®9 9T -*(/

__cN..,Oc id
1  0-1 (9 q .. '_1 Z MT0 OsST U M1 0

SA,, Z ''' A,,,-1 Z MT g9 0 '''Z.. Z091,- _Z 097 IU(I/J)
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where I U K = I L ... LI -I,_1 U I, and where the first isomorphisms is the one

coming from the structure of A-module on X' on Mi.

The objects in (A-modxi)"' 9 1 are those chiral modules MI endowed with an

action of the group Vx-scheme 91.

3.3.2 Strong action on the category A-mod

We now want to understand what it means to have a strong action of 9 on A-mod.

For this, we will need some preliminaries concerning the notion of Lie'-coalgebras.

Definition 3.3.4. A Lie'-coalgebra on X is a 'Dx-module k on X endowed with a

map 6: 2 -+ 2 0 Z satisfying

a) (Id+r)o6=O

b) (Id+v+v2 )o(id+6)o6=0

where r(v 0 w) =w 0v and v(v 0w 0u) = 0 u0v.

Remark 3.3.1. Consider now Z = HomDe (k, Dx 0 Qx). This Dx-module has a

structure of a Lie*-algebra. In fact, more generally, for any Dx-modules M, N, V,

having a map

M-4NoV

is the same as having a map

M Z -4 A,(V)

and iterating the process again gives a map M E N 0 V -+ A,(Qx). This game

allows as to construct a map Z 0 Z -+ A,(L) from the original one. The Jacobi
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identity follows easily from conditions a) and b). Hence we obtain that 2 is a Lie*

algebra if and only if Z is a Lie!-coalgebra. Note also that in the same way we can

show that for any k-module, the map

M - M & k (3.12)

gives us a map M M 2 -+ A,(M) which defines an action of 2 on M.

Consider now a group 'Dx-scheme 9x and consider the unit section X + 9 x.

As it is explained in [NR], £9x := u*(Q9x/x) has a natural structure of a Lie!-

coalgebra. In fact this is very similar to the fact that for an algebraic group G, QG

has a structure of a Lie coalgebra. As we have said before, we can now consider the

Lie*-algebra

29x = Hom 9x(2x'Dx & Qx).

More generally, we can consider the group schemes Si over X', and take the pull

back along the identity section X' -"' 9, of the sheaf of differentials of 9j. We

denote such pull back by ks,

kg, := *(QS,711).

In this case the 'Dxi-module ks, acquires a structure of coalgebra over XI. Similarly

to what we have seen before, a module M, for 29, naturally becomes a comodule

for the coalgebra 9,,

{ 29,-modules } ++ { 2g,-comodules }. (3.13)

Let now 29x be the Lie*-algebra defined earlier, and let 2 be the sheaf of topolog-

ical Lie algebras defined in 3.8. Following [NR] , we have the following proposition.

Proposition 3.3.1. Let 9 x be an affine Dx-group scheme with Lie*-algebra 29x =
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Homs. (1S., 'Dx 0 Qx). Then the Lie coalgebra £g, is isomorphic to

Now note that, given a factorization group 9, a module M, for 9 , over X'

naturally becomes a comodule for Pg,. In fact the coaction map is obtained in the

same way as in the case of X = pt (in which case t9x = g*), i.e. you consider the

composition

M -+ M 0 CG -+ M @9 (G/(e)2 _+ M @g

where (e) is the maximal ideal in 0 G corresponding to the identity element. In

particular, by proposition 3.1.4, and the equivalence (3.13), the we have the following

corollary.

Corollary 3.3.1. For a 'Dx-group scheme 9 x, there is a functor

{9I-modules} -+ { Lie* -2x-modules on XI}

Consider now a chiral algebra A with an action of 9x

A -+ A & (9s.

As for usual algebras, corollary 3.3.1 allows us to derive, from such map, a Lie*-

action

23x Z A -+ A.(A) (3.14)

of the Lie*-algebra Z9g on it. We can now define what it means for the 9-action on

A-mod to be strong.

Definition 3.3.5. Let A be a chiral algebra acted upon by a group Sx-scheme Sx.

This action is called strong if there exists a 9x-equivariant map

,x--A
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such that the composition

29 M A -+ AM A -A,(A) (3.15)

coincides with (3.14).

Consider now the action of 9 on the category A-modxi of A-modules on X'.

Let MI be an object in A-mod"S. In particular it is a SI-module.

Definition 3.3.6. A module MI in A-modjs is called strongly 9-equivariant if

the two actions of the topological Lie algebra Z I on it coincide. Where the first

action comes from the map

29x -+ A, (3.16)

and the second action comes from the action of 9 , and by corollary 3.3.1.

Equivalently, we see that MI is strongly equivariant, if the action of 2 ) coming

from 3.16, can be integrated to an action of the group 91. We will denote by

A-mod 9 the category of strongly 9-equivariant objects in A-mod: A-modxi,

and by A-mod 9 the factorization category given by the assignment I - A-mods.

Consider now the following general set-up. Recall from 3.1.3 that a chiral algebra

morphism Ad -+ 3 d defines an equivalence of factorization categories

3-mod(A-mod) -4 3-mod.

Suppose now that the chiral algebras Ad and 3 are acted on by a group 'Dx-

scheme 9 x in a compatible way, in other words, suppose that the following diagram
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commutes:

Ae 3 Ae' @ 09, .(3.17)

V I@Vb®Id

e3C1 0 ,Cl 0 (')

Suppose that this action is strong. Denote by ki and k2 the two 9x-equivariant

maps

29x A", and 29x 93d.

The commutativity of the above diagram implies that the following diagram also

commutes

idWb Ij * 0

£sx Z 3d' A(3c)

We have the following proposition:

Proposition 3.3.2. In the conditions above, if the chiral algebra 3 d is in A-modox,

then we have an equivalence

S-mod(A-mod 9 ) ~ 3-mod9 .

Proof. First of all, note that 3d being in A-mod is equivalent to the commutativity

of the following diagram:

Ac 9L. (3.18)

Z9x

Now, let MI be a strongly equivariant object in 3-mod(A-mod1 ). This is the same

as a collection of objects MIUKUJ satisfying the factorization property for 3 with

respect to the finite set K, and the factorization property for A with respect to

the finite set J. However, as explained earlier, being strongly 9x-equivariant as a
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A-module on X' is the same as requiring that the Lie algebra action of 2I' on9x 0

the module M, can be integrated to an action of 91. However, when we regard Mr

as an object in 'B-mod1 , and hence we look at the 2(l) -action on it coming fromSx ,O

the map k2 , the commutativity of (3.18) implies that this action is also integrable.

Moreover, the 9, action coming from it, corresponds to the 91 -action on MI coming

from the weakly equivariance, in virtue of 3.17. This implies that the module M1 ,

is naturally an object of '3-modfX.

E]

3.3.3 Strong action on the category 'D,-mod

Let g be a simple finite dimensional Lie algebra and with an invariant bilinear form

r.. Recall the chiral algebras Ait and Dit defined in 2.1.3 and 2.4.1. In this section

we will define a strong action of the group Dx-scheme Jx(G) on Ait and Dit. We

will therefore use the notion of "action of a factorization group on a factorization

category" developed in 3.3.

Action of Jx(G) on the chiral algebra A,

Recall the construction of A, given in 2.1.3. It is constructed as the twisted-chiral

envelope of the Lie*-algebra L' = g 9 Dx e 2(X).

We have a natural action of Lg on L' defined by

g - (h + w) = [g, hLg + Dx (g, h) + w,

forgE Lg and (h+w) E L,.

Now consider the group-scheme Jx(G). Since the bilinear form , is Ad(G)-invariant,

we have a well defined action of Jx(G) on L' given as follows. Let k' be a horizontal

section of Jx(G) over X. This section corresponds to a section k of G over X. Set
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k' - (h + w) to be

k'- (h + w) := Adk(h) + to(k-ldk, h) +.

Strong action of Jx(G) on 'D,.i-mod

Recall from 2.4.1 the chiral algebra Di.. A better

the factorization picture. For this, we can define it

finite set I, we define 'Deat to be

way of describing it is by using

in the following way. For every

'Der,:= U(2Z(I) @ 0 OJG ,,
U(C4~'d)

where 24), and 2CI' are the topological Lie algebras over X' attached to L'"t as

defined in (3.8). As it is proven in [AG], 'De, comes equipped with two embeddings

Ac,.t -+ De,. - Ac, . . (3.19)

These two embedding endow 'De,. with a structure of chiral Ac,.-bimodule. In

particular, by considering the right Ac,.-action, we have the following lemma.

Lemma 3.3.1. The chiral algebra D,t is an algebra in Act-mod.

From the factorization description of 'Der, we see that the group Dx-scheme

Jx(G) acts on it via right-multiplication. We also have a natural map

L9 -+ 'Deri

given by the composition

LO 4 Acrit + Dcrit-

It is not hard to see that, from the construction of the right embedding r : Ac,

'Der given in [AG], the Lie*-action of L. on 'D, coming from the above map,
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coincides with the Lie*-action coming from the Jx(G)-action on it. Therefore we

have a strong action of Jx(G) on 'Deit, and hence fore, a strong action of Jx(G) on

the category Dit-mod.

Recall that we have defined an action of Jx(G) on Ait whose induced Lie*-L.-

action is given by the natural map

L9 -4 Acrit

followed by the Lie*-bracket on Ait. Consider now the chiral algebra map

Both Ait and Dit are equipped with a strong action of Jx(G), and moreover, the

maps from L. to Ait and Dit for these actions fit into the commutative diagram

rAcrit ---- 'Icrit-

IZ
LO

Consider now the factorization categories Acit-mod JG and 'Dc,it-mod JG. By lemma

3.3.1 it makes sense to consider the factorization category Deit-mod(Acit-mod JG)

By proposition 3.3.2, we have the following.

Proposition 3.3.3. We have an equivalence of factorization categories

'Deit-mod(Acrit-mod JG) _ Deit-mod JG.

In other words, Deit is a strongly Jx(G)-equivariant objects in Acrit-mod.
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3.4 The Beilinson-Drinfeld Grassmannian and crit-

ically twisted D-modules on it

In this section we are going to introduce the main players of this work: the Beilinson-

Drinfeld Grassmannian and the category of critically-twisted D-modules on it. We

will use the language introduced in Section 3.1. In particular, the Beilinson-Drinfeld

Grassmannian GrG will be a factorization space, and the category of D-modules on

it a factorization category.

For a smooth curve X over k, the Beilinson-Drinfeld Grassmannian, denoted by

GrG, generalizes the well-known affine Grassmannian GrG,X classifying G-bundles on

X with a given trivialization outside a point x E X. For every finite set I, we define

a space GrGI over XI. The factorization space GrG is given by the assignment

I -+ GrGI.

We start by defining, in 3.4.2, the local Beilinson-Drinfeld Grassmannian. We

will then show how the local Beilinson-Drinfeld Grassmannian is equivalent to GrG.

In proposition 3.4.1 we will show how this equivalence allows us to present the spaces

GrGI as quotients of two group schemes over XI. In 3.4.2 we will then define the

category De,.it-mod(GrG) of critically-twisted D-modules on GrG, using the existence

of a canonical line bundle £criI,I over GrGI, as explained in 3.4.3.

3.4.1 The Beilinson-Drinfeld Grassmannian

Let G be a semi-simple algebraic group of adjoint type, and let S = Spec(A) be an

affine scheme. Before going into the definition of GrG, we will recall some notions

regarding families of bundles/G-bundles over X. These will be used in 3.21 to obtain

a more manageable description of GrG-
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For every set I, with I = n, and a map 0 = (#1,... ,#)

S-P X1,S A X I,

recall the schemes Dp and D' defined in 3.3 and 3.4.

Definition 3.4.1. For X and S as above, we define the category of gluing data to

be the category of triples (Mx', MD,, 7), where Mx; is a bundle on X , MD" is a

bundle over D, and -y is an isomorphism

Morphisisms in this category are defined as morphisisms of vector bundles compat-

ible with the isomorphisisms 7's.

Consider now a vector bundle M on Xs. The assignment

M -+ (MIxg, MIDo, id)

defines a functor from the category of vector bundles on Xs to the category of gluing

data. Moreover, by Beauville-Laszlo theorem, this functor is an equivalence. In the

case of a Noetherian ring A, this is also a consequence of faithfully flat descent by

looking at the diagram

Dok

D, >Xs

If instead of considering vector bundles on Xs, we consider G-bundles, the above

statement remains true, and the same functor defines an equivalence

Res (PG,X' i PG,D ,7)
{G-bundles on Xs } - (3.20)

where y: PG,X I D' PG,D, D J
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where PG,X- and PG,D. are G-bundles on X and DO respectively.

We will now define the local and global Beilinson-Drinfeld Grassmannian and show

how the two notions coincide.

Definition 3.4.2. For every finite set I, and test scheme S, we define GrG to be

GrI'(S) S -4 X, (PG,D4,1) Y

where y : PG,DI D ,D D

where PG,D, denotes the trivial bundle on DO.

The assignment

I -+ GrIG

defines a factorization space, called local Beilinson-Drinfeld Grassmannian. The

global version of the above is what is called the Beilinson-Derinfeld Grassmannian

GrG. It is defined in the following way.

Definition 3.4.3. For every finite set I, and test scheme S, we define the space

GrG,I over X' to be

GrG,I(S) = -4X Ps

wher :PXs X PG,Xs X

Clearly, the restriction functor, defines a map

GrG,I -4 GrGI-

Moreover, if we have a pair (PG,D , y) in GrI, we can consider the object (P,XC, PG,D, 7

in the category of gluing data. Under the equivalence (3.20), this object corresponds

to a G-bundle on XS, with a trivialization on X , i.e. it corresponds to an object
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in Gra,1 . In other words, for every I, we have an equivalence

GrG,I ~ GrIOt, (3.21)

The above equivalence allows us to describe the space Grci as a quotient of a group

ind-scheme by a group scheme. Recall from 3.1.7 the group-scheme JG1 and MG1

over XI. Then we have the following:

Proposition 3.4.1. For every I, the space GrG,I can be described as the quotient

GrG,I ~ MG 1|JG1 .

Proof. For every affine scheme S = Spec(A), and S -+ XI, we can regard MG 1 (S)

as

MG1 (S) = Hom(Spec(A((ti,..., tn))), G) ~{ automorphisms of the trivial G-bundle POG D}

where t1 = (t - <* (t)), for t a local coordinate on X. Therefore, given an element

g E MG1 (S), we can define an element in Gr 1 (S) simply by taking PG,Dg to be

the trivial G-bundle P&,Dg on Dp, and -y to be given by g. This assignment defines

a map

MGr(S) -w> GrIOgrS)

and the fibers are acted simply transitively by the group of automorphisms of

the trivial G-bundle on Dp, which is isomorphic to JG1 (S). Therefore we have

MG 1(S)/JG(S) ~ GrI(S), and, by the equivalence (3.21), we have

MG1 |JG 1 ~_+ GrGI.
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In the next section we will be interested in the category of D-modules on GrG,I-

However, the presentation of GrGi given in proposition 3.4.1 does not make clear

how to define such category. However, as it is shown in [BD2], a remarkable feature

of GrG,I is that it can be represented as the inductive limit of schemes of finite type.

In fact we have the following.

Proposition 3.4.2. The functor GrG,I is represented by an ind-scheme of ind-finite

type (see remark ?? for the definition). Moreover, if G is reductive, then GrG,I is

ind-projective.

3.4.2 Critically twisted D-modules on GrG

We will now define the category of D-modules over the Beilinson-Drinfeld Grass-

mannian. Since for each I the space GrG,I can be represented by an ind-scheme

of ind-finite type, we start by developing the notion of D-modules on every such

scheme. Recall that if X is a classical scheme, we have a well defined forgetful

functor 'Dx-mod -+ QCoh(X). When X is an ind-scheme, we will explain below

the correct replacement for the category QCoh(X) of quasi-coherent sheaves on X

that will be used to construct the ind-version of the above forgetful functor.

We start with the definition of the category QCoh (X) replacing the usual notion

of quasi-coherent sheaves on X. Let X be an ind-scheme X = li Xa, and denote

by ip,,a the closed ambeddings X , X3. We have a pair of adjoint functors

QCoh(Xa) QCoh(XO) : i .

Consider the category C : QCoh(X,,). By definition, we have a map maps

--h* QCoh(X,).

Moreover, following [JB], we have the following.
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Proposition 3.4.3. The functors i : C -+ QCoh(X,,) admit left adjoints in,,,

ia,, : QCoh(Xa) -+ C.

We will denote by QCoh!(X) the category defined as

QCoh'(X) := !L QCoh(Xa). (3.22)

For two objects T and P' in QCoh!(X), a morphism # : T -+ ' is a collection of

maps #, : 3 - Y' compatible with i As it is shown in [JB], we have the

following.

Proposition 3.4.4. The category QCoh(X) is equivalent to C, i.e.

i QCoh(X,) ~ m QCoh(X).

Remark 3.4.1. The importance of the above proposition is the following. The

example of ind-scheme we should have in mind, it that of an affine ind-scheme, i.e

the scheme corresponding to an abelian, complete, separated topological ring whose

toplogy is generated by a ltered system of open ideals {Ii}, s.t. Ii + I is finitely

generated over ii Ij. The ind-scheme X is given as

X = l0 Xi := lSpec(A/Is).
i i

We are interested in the category of continuous discrete A-modules. This category

is given by the following.

Denote by iij the embeddings i : X - Xi, and consider the functors i, as

functors

4 , : (A/Is)-mod -+ (A/I)-mod.
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The category Ac',di-mod of continuous discrete A-modules, is by definition

Acdis-mod:= Im(A/Ii)-mod.

Since we can re-write the above as i QCoh(Xi), it seems natural to think that

this is the right category to consider. However, the presentation of it as a limit,

has the disadvantage that it is not clear how to compute maps out of it. However,

proposition 3.4.4 says that the category Ac,dis-mod can also be described as the

colimit under the maps

44,j,, : (A/Ij)-mod -+ (A/I;)-mod.

We will now define the category of D-modules on an ind-scheme X = 1iXa,

with X' s schemes of finite type. Recall that for a closed embedding is,3 : X -+ Xp,

we have a natural exact functor

: Dmod(X,) -+ D-mod(Xp),

satisfying Fp o i,, = 0,,, o F, where Fy denotes the forgetful functor F,

D-mod(X,) -+ QCoh(Xy). We define the category D-mod(X) to be

D-mod(X) := I' D-mod(Xa).

Note that we clearly have a forgetful functor

F: D-mod(X) - QCoh!(X).
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Consider the Beilinson-Drinfeld Grassmannian GrG given by the assignment

I -+ GrG,I.

By proposition 3.4.1 and 3.4.2, we have:

" The functor GrGI can be represented by the quotient MGI/JGI.

" The functor GrGI is represented by an ind-scheme of ind-finite type.

We will write GrG,I as

GrGI -1YI

In virtue of the above, it makes sense to consider the category QCoh!(GrG) given by

I -+ QCoh!(GrG,I),

and the category of D-modules on GrG defined as

D-mod(GrGi) := li D-mod(Y'). (3.23)

The assignment I -+ D-mod(GrG,I) defines a factorization category, denoted by

D-mod(GrG).

Twisted D-modules on GrG

We will be interested in the category of twisted-D-modules on GrG. These are de-

fined as modules on GrG endowed with an action of a sheaf of twisted-differential op-

erators on GrG. In particular, we will be interested in the category Dc,--mod(GrG)

of critically-twisted differential operators on GrG. We will now recall the definition

of these objects.
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Recall that, as it is explained in [BB], given a Picard algebroid on X, i.e. a sheaf

of Lie algebras ' on X, such that

0 -+ O x -+'P -+ Tx -+ 0,

and such that, for any r and r' in ' and f E Ox we have [+, frf] = f[r rf] ±

we can consider the algebra D,. This is the universal algebra equipped

with morphisms i :x . D, and i :'P -" Dj, such that

" i is a morphism of algebras.

" i, is a morphism of Lie algebras.

" for f E Ox,r E 'P one has ij,(fr/) = i(f)iT(q) and [i,(7), i(f)i = (7)f

We call D, a sheaf of twisted differential operators on X.

Consider now a line bundle L on X, and the algebroid 'P defined as the algebroid

of G1Im-invariant vector fields on the principal Gm-bundle associated to Z. We have

maps

0 -+ Ox -+ 'PL -+ Tx -+ 0,

making 'P a Picard algebroid over X.

Definition 3.4.4. We define the category D,-mod(X) of L-twisted Dx-modules to

be the category of Ox-modules endowed with an action of the sheaf Dj .

Note that we have an equivalence of categories

'Dx-mod ce Dz-mod(X)

given by M -+ M @ Z.
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Critically twisted differential operators on Gra,I

Let's now go back to the space Gro,I = MG 1 /JG over X' and the category

D-mod(GrG,I) as defined in (3.23). For every I, we will construct a line bundle

£crit,I

£erit,I -+ GrG,I,

and consider the category Derit-mod(GrG,I) defined as

Dcit-mod(GrG,I) := Dzcr-mod(GrG,I)- (3.24)

As we pointed out before, we have the following proposition

Proposition 3.4.5. For every I, there exists an equivalence of categories

D-mod( GrG,I) ~- Deit -mod( Gra,1),

given by M1 -+ M 1 0 "erit,1.

3.4.3 Construction of the line bunde Z i over the Beilinson-

Drinfeld Grassmannian

We will first recall the definition of the line bundle Lcit,x over the affine Grassman-

nian GrG,, presented in [BD2]. We will then generalize this construction for the

spaces GrG,I.

We will start by recalling some definitions from Tate linear algebra.

Definition 3.4.5. A Tate vector space V is a complete topological vector space

having a base of neighborhoods of 0 consisting of commensurable vector subspaces.

* A subspace P c V is bounded if for every open subspace U C V there exist a

finite set {vi, ... , Vn} E V such that P c U + kv 1 + - - - + kVn.
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* A c-lattice in V is an open bounded subspace.

* A d-lattice in V is a discrete subspace F C V, such that V = F + P, for some

c-lattice P C V.

Let x be a point in X and t a coordinate around it. Consider the formal disc

DX, and the formal punctured disc Do. Denote by Q1 (9) the ring C[[t]] and by X

the field C((t)).

Example 3.4.1. Given a vector bundle Q on X equipped with a non-degenerate

symmetric form

QQQ --+ Qx,

and a point x E X, we can consider Q@Q1 (9) C QX. The vector space V := QOX

is a Tate vector space, moreover it is equipped with a symmetric nondegenerate form

given by the residue. The subspace L := Q0 Q(Z) is a c-lattice in it. Moreover it

is a Lagrangian subspace.

More generally, for every non-empty finite set of points S C X, we have the Tate

vector spaces and corresponding Lagrangians,

L := DxceSQ @ Q1)x C V := DxesQ 0 X.

As a special case of the above example, given a square root Z of the line bundle

QDx, and a vector space W with a non-degenrerae symmetric form

W x W -+ C,

we can consider the vector bundle Q := Z 9 W. Let now W be equal to the Lie
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algebra g, and consider the killing form n'Kiu on g. The Tate vector space Vz,

Vz :=L®@r (g@X),

carries a non-degenerate bilinear form given by

VZ (9 V"'> -L Z (9 Z (9 ~- QD -

Consider the Lagrangian subspace Lz, equals to

Lz :=Z 0g.

Denote by Cl(V) the Clifford algebra associated to V and by M the irreducible

Cl(V)-module

M := Cl(V)/Cl(V)L.

Denote by Lagr(V) the ind-scheme of Lagrangian c-lattices in V = Vz as defined in

[BD2] 4.3.2.

There exist a canonical line bundle 'PM on Lagr(V) defined as follows.

Definition 3.4.6. We define 'M to be the line bundle over Lagr(V) whose fiber

over L' E Lagr(V) is

PM,L' = ML' = {m E MI L'- m = 0}.

Consider now the map #: G((t))/G[[t]] -+ Lagr(V) given by

g -+ gLg- 1 .

Following [BD2] 4.6.11 we have the following definition.

Definition 3.4.7. We define the line bundle Zit,x on GrG,z to be the pull-back,
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along # of the line bundle 'PM;

,-uri,2 := 4*'PM - GrG,x -

We will now try to generalize the above to powers of X. In particular, we will

construct a sheaf of Tate vector spaces over X'.

Let us fix a square root Z of the canonical bundle Qx. Consider the Dx-module

Vx given as

Vx = L Ox (g O'Dx).

As before, the killing form on X together with the fact that L 0 L ~ Qx, defines a

symmetric bracket

Vx 9 Vx -4 A, (Qx). (3.25)

In particular, we have a skew-symmetric pairing on Vx[1], and therefore a Lie*-

algebra structure on the direct sum V[1] e Qx. Define Cl(Vx) to be the twisted

enveloping chiral algebra of V[1] o Qx,

Cl(Vx) := U'(V[1] (D fx),

where we regard V[1] as a commutative Lie*-algebra. For every finite set I, consider

the sheaves of topological vectors spaces

L(I) = hr (p(Vx)[-I]) and V(I) := hr(jj*(P!(Vx)[-I])),

where the functor hr is the one defined in 3.8. The map (3.25) gives us a map

(, )(I) : & 0) -+ hr(jej*(P!(Qx)[-I]))- (3.26)

Note that, if we take the fiber of V(V) and L(M) at (Xi, ... , xn) E X', we recover the
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Tate vector space and the c-lattice from example 3.4.1. Moreover the map (3.26)

becomes

( Xi) x (E1Q 0 X) (Resi ResC x x C. (3.27)

The above topological vector spaces will be our family of Tate vector spaces.

More generally, we have the following definition.

Definition 3.4.8. Let R be a commutative ring. A Tate R-module is a topological

R-module isomorphic to P D Q*, where P and Q are infinite direct sums of finitely

generated projective R-modules.

" A c-lattice in a Tate R-module V is an open bounded submodule P C V such

that V/P is projective.

" A d-lattice in V is a submodule F C V, such that for some c-lattice P, one

has F rn P = 0 and V/(F + P) is a projective module of finite type.

Let's go back to the topological vector space V(') over X(').

Definition 3.4.9. We say that a c-lattice L' c V(') is Lagrangian, if for any geomet-

ric point (X1, . . , Xz) E X', we have that the maps in (3.27) define n non-degenerate

forms on the quotient V(I)/L'.

Denote by Lagr(V(')) the ind-scheme of Lagrangian sub-spaces in V(I). In par-

ticular, note that L(I) E Lagr(V(')). Consider now the chiral Cl(Vx)-module over

X' equal to

M1 = Cl(Vx) 1 .

From the definition of el(Vx), proposition 3.1.4, and the fact that we have maps

VI) -+ hr(jij*(p1(Vx @ Qx)[-])),
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we see that V(I) acts on any chiral-Cl(Vx)-module on XI. In particular it acts on

MI. Similarly to the above, we have the following definition.

Definition 3.4.10. We define the line bundle 'P, on Lagr(V(')) to be the line

bundle whose fiber over L' E Lagr(V(I)) is

'PI,,y = ML' = {m E Mil L'- m = 01.

The adjoint action of G on g, defines an action of MG, on V('), that we will still

denote by Ad. Consider now the map #1: MG1 /JG -+ Lagr(V(')) given by

g -+ Adg(L(I)).

Definition 3.4.11. Define the line bundle Leritj over GrG,I ~ MG1 /JG to be

thepull-back along #, of 'MP;

Scrit,I := *Pmj -+ GrG,I-

We therefore arrive to the following definition.

Definition 3.4.12. Let GrG be the Beilinson-Drinfeld Grassmannian. We define

the factorization category De,.it-mod(GrG) of critically twisted D-modules on GrG

to be the category given by the assignment

I -4 Dcrit-mod(GrG,I) = Dccrt -mod (GrG,),

where Dz,,-mod(GrG,I) is defined as in definition 3.4.4.

The reason why they are called critically twisted is given by the following propo-

sition (see [BD2]). Let - be the Lie algebra given in 2.1.1.

137



Proposition 3.4.6. Denote by ir the projection

,r : G((t)) -4 GrG,X.

Consider the pull back along 7r of the line bundle Leit,x. Denote by G((t)) the corre-

sponding Gm-bundle on G((t)). Then, the Lie algebra corresponding to the extension

1 -+ Gm, -+ G((t)) - G((t)) - 1,

is equal to

0- 4 crit -4 g((t)) -+ 0,

where 'cit denotes the Kac-Moody algebra at the critical level Ierit = -1/2ki.

3.4.4 D-modules on the Beilinson-Drinfeld Grassmannian

as chiral 'D,.-modules

Consider the factorization category 'Dcrit-mod JG = {I -+ Dit-mod J} of strongly

JG-equivariant 'Dc,it-modules. We want to relate this category to the factorization

category Deit-mod(GrG) = {I -+ Dcrit-mod(GrG,I)} of critically-twisted D-modules

on the Beilinson-Drinfeld Grassmannian GrG- We start by considering 'Derit-modules

supported at some point x E X, where this relation is completely understood (see

[AG]). We will then pass to the categories 'Deit-modiG and Dc,it-mod(GrG,I) over

XI.

The equivalence over the point

Recall from [AG], that to specify a structure of a chiral 'Deit-module supported at

x on a vector space M is the same as to endow it with continuous (w.r. to the

discrete topology on M) actions of Q'('R)G((t)) and -cit compatible in the sense that
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for 71 E -cit, f E OG((t)) and m e M,

.(f.m) = f.(77.m) + Lie7 (f).m,

where 77 is the corresponding left-invariant vector field on G((t)). This follows from

the construction of 'Derit and from the fact that M, when viewed as a chiral module
-ass,x

for Jx(G) supported at x, becomes a module for Jx(G) , and that

_- ass,x
Jx(G) ~ !G((t))- (3.28)

The right embedding of Ait into 'Dit given by (2.18), endows M with a structure

of right cit-module. This action is compatible with the OG((t))-action, in the sense

that for ( E -it, f E OG((t)) and m E M,

(.(f.m) = f.(.m) + Liegr(f).m,

where (' is the corresponding right-invariant vector eld on G((t)).

Consider now the category Dit-modx defined as

'De-it-mod G[ [t]: D,it-mod JG)

In other words, we are looking at those 'D,.it-modules at x on which the right action

of g[[t]] c cit can be integrated to an action of Jx(G)2 = G[[t]]. In the above, we

regard a module M E 'Deit-modx as a g[[t]l-module by means of the right action of

on it and the fact that the sequence

0+0-+ ,. - g((t)) -+ 0,

splits over g[[t]].

Consider now the affine Grassmannian GrG,x = G((t))/G[[t]], and the category
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Dc,-it-mod(GrG,x) of critically twisted D-modules on it. Recall that, by subsection

3.4.2, this category is isomorphic to the colimit

Dc,it-mod(GrG,x,) := I' D-mod(Yi),

where GrG,X = I Yi. In particular, recall that we have a forgetful functor D,.it-mod(GrG,z) -+

QCoh(GrG,2). We can describe the category D,.it-modu[ll as D-modules on GrG,z-

In fact, we have the following proposition.

Proposition 3.4.7. There exist an equivalence of categories

Derit -mod( GrG,x ) -Derit -mod G[ [t||

Proof. The proof of the above proposition can be found in [AG]. However it is useful

to recall how the functor is constructed. Let M be an object in Dcit-mod(GrG,x),

and denote by r the projection r : G((t)) -+ GrG,x. Consider the pull back 7r*(M).

We can define on the vector space P(G((t)), 7r* (M)) a structure of chiral 'D,.it-module

at x in the following way. The module F(G((t)), 7r*(M)) is naturally a discrete (9 G((t))-

module, and therefore, by (3.28) a Jx(G)-module supported at x. Moreover, the

projection 7r is right-G-invariant, the right D-module structure on M, gives rise to

the action of g((t)) on 7r*(M), therefore, F(G((t)),7r*(M)) is indeed a chiral Dit-

module supported at x. The fact that it belongs to D,it-mod ft]l follows from

noticing that the right action of g[[t]] on it coincides with the G[[t]]-action coming

from the G[[t]]-equivariant structure on 7r*(M). E

The equivalence over X,

Let's now consider the category 'Deit-mod, of 'D,it-modules on XI. Consider the

Jx(G)-action on Dit as defined earlier. Recall that the Lie*-L,-action coming from
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the Jx(G)-action coincides with the Lg-action coming from the composition

L94 Ac.t r 'Dcrit.

We are interested in the category Dit-mod Jx(G) of strongly Jx(G)-equivariant

objects in 'Dit-modi. Objects in this category can be described as modules M1 E

Dit-mod, on which the Lie action of 24J0 can be integrated to an action of the

group scheme JG1 over XI. Note that, by considering the case of I = 0, we recover

the discussion before, where 20, is exactly g[[t]].

We will start by describing the category 'De,.it-mod, in a more suitable way. Recall

the group ind-scheme MG, of meromorphic jets defined in (3.6). Let p' be the map

p' : MG1 -+ XI,

and denote by P MG1 the functorrel o

pMGI

QCoh (MGI) -e> { discrete 9MG 1-modules}

Note that this functor corresponds to the functor F(G((t)), ) if we take the fiber at

E X for 1= {*}. Denote by Ore, the sheaf of topological algebras over X' given

as

PMG'(OMG1 ) 0 MG-

We have the following proposition.

Proposition 3.4.8. To specify a structure of a chiral 'De,.it-module on X, on a

quasi-coherent sheaf M 1 is the same as to endow it with continuous (w.r. to the

discrete topology on M) actions of 0"G and r compatible in the sense that for

141



7 E 2'I', f E OJG1 and m G MI,

'7.(f.m) = f.(7.m) + Lie 7 (f).m,

where nq is the corresponding left-invariant vector field on JG1 . Where 23a denotes

the sheaf of topological Lie algebras defined in (3.8) for L = Lot .

Proof. From the construction of 'De,., we see that a chiral 'De,.-module M on

XI, is in particular a module for U((9Jx(G))/K, where K is the kernel of the map

U(OJx(G)) - OJx(G). Since, for a Lie*-algebra L, chiral modules for U(L) on X,

are in bijection with Lie modules for 2' defined in (3.8), we see that MI is naturally

a Lie*-module for the commutative topological sheaf of Lie algebras over X,

hr(jj*(pi(Jx(G)) [- 1(3.29)

However the sheaf of topological algebras in (3.29) coincides with 0(G1, therefore

MI becomes a continuous (9rd -module, i.e. a module over the group ind-scheme

MG. Moreover this is an equivalence between chiral modules for U((fJx(G))/K

over X- and discrete (g9l -modules, i.c. objects in QCoh(MGI), as explained in

corollary 3.1.1. Now, from the definition of 'D, in factorization terms, it is also

clear that MI comes equipped with a 2(4) -action and that the latter needs to be

compatible with the former (9MGc-action. []

Consider now the Beilinson-Drinfeld Grassmannian GrG. As it is explained by

proposition 3.4.1, for every finite set I, we can describe the space GrG,I as

GrG,I c- MG 1/JG1 .
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The above quotient is an ind-scheme,

GrG,I = I' i 7

and, as before, each Y,' is of finite type.

Consider now the category Dc,it-mod(GrG,I) of critically-twisted D-modules on

it. Denote by 7r, the projection

iri : MG, -- GrG,I.

For a D-module Th in D,it-mod(GrG,I), consider the pull-back ir(7 1 ). This is, by

definition, an object in QCoh(MG1 ), and, therefore, the object

FMGI (7;r (,T))Tel I

is a discrete module for 0G (see example 3.1.3 for the definition of (JG). We

claim that there is a natural 'De,.it-module structure on MI. In fact, we have the

following theorem.

Theorem 3.1. There exist an equivalence of factorization categories

D,it-mod(GrG) ' Deit-mod!"

given by T1 _ rMGI(71(T)).

Proof. As we explained before, the object MI = ]pMGI (7j (TI)) is a discrete Gr-

module, and therefore, a chiral U(Jx(G))/K-module over XI. Now, the (negative)

of the action of .. on T1 gives rise to an action of the same Lie algebra on MI,

compatible with the OrG,-action. Therefore, by proposition 3.4.8, the objects M,

is a 'Deit-module on XI. Now we claim that the right action of Z,it on MI coming

from the right embedding of Acit, is obtained by derivating the JG 1 -action on -r;(71)
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coming from the equivariant map -7r. This would imply that M, is indeed strongly

Jx (G)-equivariant. This fact is proved by repeating the argument presented in [AG]

Proposition 6.7.
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3.5 The space of Opers

In this section we will recall the definition of Opers as given in [BD2]. In particular,

given a curve X and a point x E X, we will recall the definition of opers on the disc

D, (resp. punctured disc D') and its presentation as a scheme (resp. ind-scheme).

We will also generalize the above definitions in order to obtain factorization spaces

and study the factorization categories of modules over them. In 3.5.1 we introduce

the factorization space Op. corresponding to the 'Dx-scheme of opers. In 3.5.2 we

construct the factorization space Op* corresponding to opers on the puncured disc,

and show how this can be represented as an ind-scheme. We will then introduce the

factorization space Op"' of unramified opers.

3.5.1 The space of opers

Let X be any smooth curve, G a simple algebraic group of adjoint type, and B C G

a Borel subgroup. For a B-bundle PB on X, denote by PG the induced G-torsor

PG = G x PB. We have the corresponding twisted Lie-algebras bp := bp, = b x PB
B B

and gG := 9PG = g X PG - g x PB. The Lie algebra gG is equipped with a
G B

standard filtration, induced from the filtration on g given by the choice of b. We

have g-r = g, and gi+1 = [9 i, n]; in particular we have g0 = b and g1 = b. Let now

V be a connection on PG. For any connection V' preserving PB, we can think of

V - V' as an element in 9G 0 QX = 9B 0 X We denote by c(V) the projection

onto (g/b)B 0 Qx

c(V) := (V - V') mod bB.

Definition 3.5.1. An oper on X, is a pair (PB, V), where PB is a B-bundle on X,

V is a connection on the induced G-bundle PG satisfying the following:

. c(V) E (0- 1/b)B 0 Qx C (g/b)B 0 Qx.
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* For any simple negative root a, we have that the a-component c(V)a E OG *@

Qx does not vanish on X.

Equivalently, we can think of opers in the following way. Lets choose a trivial-

ization of PB, and let Vo be the tautological connection on it. Denote by H the

set of simple roots of g. Then, as it is explained in [FG3], an oper is given by an

equivalence B(X)-class of connections V of the form

V = Vo + #E fe, + q,
aErI

where each #, is a nowhere vanishing one-form on X, and q is a b-valued one form.

Changing the trivialization of PB by g : X -+ B, the connection V get transformed

into V' = g-'Vg - g-'dg.

The above makes sense in families. Indeed, if S is a Dx-scheme S 4 X, then

we have a well defined notion of G-bundle with a connection V along X. It is a

G-bundle PG 4 S on S, such that PG is a Dx-scheme and the map 7r is horizontal,

i.e. a map of 'Dx-schemes. We define opers over S to be the set consisting of

pairs (PB, V), where PB is a B-bundle on S, and V is a connection along X on the

induced G-bundle PG such that the conditions above are satisfied, with Qx, replaced

by #*(Qx). It can be shown that the above functor is represented by an affine Dx-

scheme, denoted by Op,,X. According to 3.1.6, we therefore obtain a factorization

space {I -+ O pg, := JOp,,X} that we will simply denoted by Opg. Therefore we

have spaces Op,,, over XI, where for any test scheme S,

S is X', (Pa, PB, V),

Opg,(S) = where PG is a G-bundle on Dp, PB is a reduction to B,

and V is a connection on PG, satisfying the oper condition

Note that, if we take S = Spec(k), and I to be the set with one element, then

Opg,x(S) =: Op,(Dx) is the space of regular opers introduced in [FG3]. By con-
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struction we have the following.

Proposition 3.5.1. The assignment I -+ Op,, defines a co-unital factorization

space Op,. Moreover, 0 p,,X is affine, in particular it correspond to a commutative

chiral algebra on X.

3.5.2 Opers on the punctured disc

Recall now example 3.1.3. In particular recall that, for an affine 'Dx-scheme , we

have defined spaces M1  over XI, that contain J1 9, where

S ''''>X ,

MA (S) :=
a horizontal section D -+ Z

where Do is the scheme defined in 3.4. This construction, in the special case of

= Op,,x, generalizes the notion of opers on the punctured disc Op.(D*) introduced

in [BD2]. It is defined in the following way.

Definition 3.5.2. For every I finite set, and test scheme S, we define OpI, to be

the space over X' given by

S is '" XI, (PG, PBV),

Op",*(S) = where PG is a G-bundle on D', PB is a reduction to B

and V is a connection on PG, satisfying the oper condition

Note that, if we take S = Spec(k), and I to be the set with one element, then

Op,,X(S) = Op,(D.*). In particular, from example 3.1.3 we have the following.

Proposition 3.5.2. The assignment I -+ Op., defines a factorization space Op,.

Remark 3.5.1. Note that, as expected, the above factorization space, in contrast

to Op., is not co-unital. However, as it is explained in corollary 3.1.1, if we consider
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the chiral algebra op,,, then we have an equivalence

Chirl (0p.,, -oduls o Xcontinuous modules for the topological

"' ~associative Oxi-algebra 0"

where O~el was defined in example 3.1.3.

Relation with the center 3rit

Recall the commutative chiral algebra 3
cit defined as the center of Acit. Recall that

this chiral algebra is related to the space of G-opers, where G denotes the Langlands

dual group of G. In fact in [FF] they prove the following theorem.

Theorem 3.2. For the critical level ,.it, we have an isomorphism of chiral algebras

3 crit ~ (0sx)-

The above theorem allows us to describe the category of chiral 3,.it-modules

over X' in terms of modules over the topological algebra Ord. From the previous

remark we have the following equivalence

3cit-modi { Chiral 3,t-modules on XJ f 4 continuous modules for the topological

associative (xi-algebra 0 9e1

(3.30)

We will denote by QCoh'(Op,1) the category on the right hand side of the above

equivalence. We will denote by QCoh!(Op') the factorization category given by the

assignment

I -+ QCoh!(Opi,).

Equivalence (3.30) can be regarded as an equivalence of factorization categories

3cit-mod ce QCoh!(Op').
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3.5.3 Unramified opers

Recall now the sub-functor Op"' c Opg(D ) of unramified opers on D2 introduced

in [FG5] and [FG2]. It consists of opers on D*, that are unramified when regarded

as G-local systems. In other words, are those pairs (PB, V) such that V is G((t))-

Gauge equivalent to the trivial connection Vo = dt. As it is explained in [FG4]

the space Op,n can be described as a closed sub-scheme of Op9 (Do), in particular,

the algebra of functions (9 opunr on Op"' has a structure of a topological algebra.

We denote by QCoh(Opu"t ) the category of continuous discrete modules over this

algebra. We will now define the factorization space corresponding to OpuTn.

Definition 3.5.3. For every I finite set, and test scheme S, such that S

X1, we define the space Op, over X' by

(PB, V), where (PB, V) is an oper on D',
Op, (S) = 0

g,\ and the pair (PG, V) can be extended to the entire D,

Note that, if we take S = Spec(k), and I to be the set with one element, then

Opu,"(S) = Opu,". From the definition, we have the following lemma.

Lemma 3.5.1. The assignment I-+ Opu?"" defines a factorization space Op nr

Remark 3.5.2. It can be showed that the algebra ( ,1 has a structure of a

topological algebra over XI. As before, we denote by QCoh(Op,r) the category

QCoh! (Op ur) {continuous modules for the topological

associative Oxi-algebra (9U unr J
3.6 The Conjecture

Recall the Drinfeld-Sokolov reduction Tx as defined in 2.3.1. Consider the category

Acit-mod JG consisting of strongly JG-equivariant chiral modules on X as defined
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in 3.3.6. Consider the restriction of Tx to this category

Tx: Ar.,it-mod JG -+ 3c,.it-modx.

The above functor has been studied by D. Gaitsgoy and E. Frenke. In [FG2] they

show the following.

Theorem 3.3. Let Tx be the Drinfeld-Sokolov reduction at the critical level.

1. The functor Tx, restricted to Ac,.it-modcG is exact.

2. It defines an equivalence of categories

Tx: (A,it-modx)JG 4 QCoh( Op, )

where we regard QCoh! ( Op4) as a sub-category of 3c,.it-modx via the equiv-

alence 3.30 and the inclusion OpnX C Op,

3.6.1 The conjecture over X,

Consider the factorization category A,.it-mod = {I -+ Ac,.it-modi}. Recall that in

3.3.3 we have defined a strong action of the group 'Dx-scheme Jx(G) on the category

A,.it-mod. For every finite set I, we are interested in the category A,-it-mod/G of

strongly Jx(G)-equivariant objects in A,.it-mod1 . Conjecture 1.2.3 states that we

have a description of this category similar to the one provided by theorem 3.3.

In order to state the conjecture, in the next sub-section we define the Drifeld-Sokolov

reduction T, over X, as a functor

1F : Acit-modj -+ 3,it-mod1.
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Using 3.30, the functor 'IP can be seen as a functor

1 : Ait-mod, -+ D(QCoh!(OpOI)).

The assignment I -+ Wl defines a factorization functor IF

T : A,.it-mod -+ D(QCoh'(Op')).

We consider the restriction of IQ, to Ac,it-mod 1,

Tr : Acit-modG -+ D(QCoh (Op?,I)).

The main conjecture is that the same equivalence as the one in 3.3 holds for modules

over X 1 .

Conjecture 3.6.1. Consider the functors I,

T1 : Ait-modi G -4 D(QCoh (Opi)).

1. The above functor is exact.

2. The image of Ti is contained in QCoh(Opu" ).

3. The collection of functors T = {I -+ 'I} establishes an equivalence of factor-

ization categories

Ac,it-modJG 4 QCoh ( Op"'').

151



Drinfeld-Sokolov reduction for modules over X'

Recall from section 2.3.1 the BRST-reduction. Recall that, for any Lie*-algebra !

and any map of chiral algebras f : U(Z-Tate) -+ 'R, we defined a functor BRST,

BRST: R-modx -+ BRST('Z ® el(2))-modx.

We will start by generalizing the BRST reduction to modules over X'. In fact, the

construction of I' follows from the possibility of extending the BRST-reduction for

A = U(2-Tte) 0 el'(2)-modules over X to A-modules over XI. All we have to do,

is to be able to define a differential on any A-module M, over X,

BRST-reduction for modules on X'

Lets M, be a chiral A-module on X' and let us regard it as a Lie*-A-module. By

proposition 3.1.4, M1 is therefore a module for the topological Lie algebra A,)0 -

hr(pi(A)[-I]) (see Definition 3.8). We define the differential dM, on M, to be the

action on it of the element Q(), where

Q(I) E A()

is the section on A(,) corresponding to the image of the identity endomorphism

under the map X : 0 1* -+ A 1[1], where x is the map defined in 2.14. The pair

(MI, dm,) is naturally a BRST(A,)-module on X'. If we are given a map of chiral

algebras f: U(2j-Tate)' -4 'R and a Az-module M, on XI, then its BRST-reduction

will be a BRST(AT)-module on X'. Therefore, for every I, we have functors

{Aqz-modules on X'} BRST1> {BRST(A3)-modules on XI}.

We have the following proposition.
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Proposition 3.6.1. Given a map of chiral algebras f : U(2-Tate)' -+' 9, the assign-

ment I -> BRST defines a factorization functor

BRST: Am-mod -+ BRST(Az)-mod.

Proof. For every surjection < : I -* J, and for every partition 7r : I -w J of I, we

need to show that

Ap o BRST~ BRSTj o A*,

BRST|U(i/) ~ (BRST, 0 ... 0 BRST)Iu>iJ), (3.31)

where I = LgIj. These both follow from the fact that the topological Lie algebra A,

factorizes, and we have A*-(Q(,)) Q(J), and Q( Iup>j corresponds to the product

of the corresponding Q(I')'s in A .

If we consider the natural map U a)' A,it, and the chiral Cl(22) el(2.) 1

over XI, then, given an Ac,.it-module M1 , we can consider the corresponding Act 0

Cl(.22)-module M 1 0l(22) 1 . Therefore we have functors

BRST : Ait-mod1 -+ BRST(Ac,.it eCl(2))-mod1 .

As we have explained in 2.3.1, we can furthermore modify the differential using the

character x to obtain the Drinfeld-Sokolov reduction xI1,

I1 : A,it-mod, -+ BRSTx(A,it 0 Cl(.2))-mod1 ~ 3erit-mod1 ,

where the last isomorphism follows from theorem 2.2. Now, according to (3.30), we

can rewrite the above as

I,: Acrit-mod, -+ D(QCoh!(Op?,1,)).
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3.7 The localization Conjecture for the Beilinson-

Drinfeld Grassmannian

In this section we define a factorization algebra B and a factorization functor FL :

Deit-mod -+ B-mod(QCohl(Op?)). Assuming conjecture 3.6.1, we show that [>,

induces an equivalence of categories between D-modules on the Beilinson-Drinfeld

Grassmannian, and the factorization category of B-modules in QCoh'(Opr"'), as

stated in conjecture 1.2.2.

Recall the factorization category Acrit-mod, the factorization space Op' and its

factorization sub-space Opn". Consider the factorization categories QCoh'(Op?)

and QCoh!(Op'n) as defined in 3.5.2 and 3.5.3. Recall the functor TII,

'Tr Acrit-mod, -+ D(QCoh (Op?,j)).

By conjecture 3.6.1, the above functor, restricted to the category Acrit-mod!G is

exact and induces an equivalence of categories

Acit-modiG - QCohl(Op"/).
WI

3.7.1 Definition of the functor IT

Recall the chiral algebra 'Derit from 3.3.3. By Lemma 3.3.1, the corresponding

factorization algebra is a factorization algebra in Acit-mod, and moreover it has a

natural action of the factorization group JG, making it an algebra in Acit-modJG

We can therefore consider the factorization category

Dcrit-mod(Acrit-mod JG)
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where, for each finite set I, we take Dcit-mod(Ait-mod JG) to be 'Deit-mod(Ac,it-modiG)

as defined in definition 3.1.8.

Since 'Dit, is an object in Acit-mod J it makes sense to consider the object 31,

where

'31 := 1('Derit,1).

By definition, the assignment I -+ '3 defines a factorization algebra in QCoh!(Op').

However, by the second point of conjecture 3.6.1 it is in fact a factorization algebra

in QCoh (Op,nr). We will consider the factorization category

'3-mod(QCohl (Op,nr))

as defined in 3.1.8. For every I, the composition

D,.it-mod(Acit-modiG) Ait-modiG 4 QCohl(Opb"),

lifts to a functor, that we will still denote by TI,

TI: Dit-mod(Arit-modJG) -+ 3-mod(QCohl(Op "/)).

We denote simply by IF the collection of functors {I -+ T};

F: 'Deit-mod(Acit-mod JG) -+ 3mod(QCoh'(Op,"r)). (3.32)

Recall now the Beilinson-Drinfeld Grassmaniann GrG, and the factorization category

Dcrit-mod(GrG) of critically twisted D-modules on GrG, given by the assignment

I -+ Deit-mod(GrG,I).

In proposition 3.3.3 and in theorem 3.1 we have shown the following two facts.
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* We have an equivalence 'De,it-mod(Acrit-mod JG) Dcrit-mod JG

* There exist an equivalence of factorization categories

Deit-mod(GrG) Dcit-modJ

Recall that the second equivalence is constructed as follows. For every I, denote by

7r, the projection

Ari : MG, -+ GrG,I-

For a D-module Y1 in Dc,it-mod(GrG,I), consider the pull-back ir(Y,). This is, by

definition, an object in QCoh(MG1 ), and, therefore, the object

M = -,MGI (7tg (,T)) := (7X (.T))

i- ae dicrt (modul) for OrelIh

is a discrete module for G = pI(OMG1 ), where p, is the map p: MG1 -+ XI.

The equivalence above is given by the functor F

I, : Deit-mod(GrG,I) - cit-moG

:7-

Let's now consider the composition

Deit-mod(GrG,I) c4 Drit-mod!G
r,

3crit-mod(Acrit-mo G)

-+ '-mod(QCohI(Op,,r))-

Denote by Fr,, the resulting factorization functor

,: it-mod(GrG,I) ~+ '3-mod(QCoh(Op ")).
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We can finally state the main corollary of conjecture 3.6.1, from which conjecture

1.2.2 will follows using the equivalence

D-mod(Gra,I) ~ Deit-mod(GrG,I),

of proposition 3.4.5.

Conjecture 3.7.1. The collection {I -+ Fq,1 } gives rise to an equivalence of fac-

torization categories

Deit-mod( GrG) ~> 93-mod( QCoh' ( Ope"L)). (3.33)
r.

We will prove theorem 3.7.1 assuming the conjecture 3.6.1

proof of conjecture 3.7.1. By Theorem 3.6.1 2, the chiral algebra 3 is an algebra in

the factorization category QCoh'(Opf"). In particular, for every I, it makes sense

to consider the category 3-mod(QCohl (Op,)). Recall now that the functor 1P,7

is constructed as the composition

Dcrit-mod(GrG,I) 4 ,it-mod JG ,it-mod(Ac,-it-mod iG) 4 3-mod(QCoh'(Opu"/)).

However, conjecture 3.6.1 3. implies that the last functor gives rise to an equivalence

Derit-mod(Acit-modJG) 24 3-mod(QCohl(Op ,"/)),

therefore, we indeed get an equivalence

Dit-mod(GrG,I) 4 93-mod(QCoh1(Op,r)),

over XI, for every I, i.e. we have that Fy establishes an equivalence of factorization

categories.
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As we mentioned before, using the equivalence between Deit-mod(GrG) and

D-mod(GrG) we arrive at the algebraic description of the category of D-modules on

the Grassmannian GrG and of the category of D-modules on the affine Grassmannian

GrG,.-

Theorem 3.4. The composition

D-mod( GrG) * "'> Deit-mod(GrG) 2-mod(QCohg(QOpgn"))

is an equivalence of factorization categories.

Corollary 3.7.1. The functor M - , ( Lcit,. ) establishes an equivalence of

categories

D-mod( GrG,x) - 3 -modun,,x

where 3 -modun, denotes the category of 3-modules supported at x E X, which are

supported on Opu, when regarded as objects in QCohI(Opj(D )).
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Appendix A

How to prove conjecture 3.6.1

In this appendix we will explain how we think conjecture 3.6.1 could be proven. We

will present two different approaches. More precisely, in A.1, we will try to construct

an inverse to the functor

'I' : Ait-modiG - QCoh (Op"').

While, in A.2 we will try to deduce conjecture 3.6.1 from the equivalence XIx

Acit-modxcG ~4 QCoh(Op"') of theorem 3.3.

A.1 First approach

Recall the BRST-reduction introduced in 2.3.1. Given a Lie* algebra 2, and a finite

set I, it defines functors

BRST1 : {U(2-Tate)-modules on X'} -+ {BRST(A')-modules on XI}

where A- id the dg-chiral algebra A' = U(2)-Tate 0 el(2). Consider now the Lie*-

algebra LO = g 0 Dx. As it is explained in [AG], for this Lie*-algebra, the extension

L9-T t corresponds to the extension L.-KKil given by the Killing form -Kill on .

161



We therefore have a collection of functors

BRST1 : {U(LKill)-modules on XI} -+ {BRST(A')-modules on XI}.

Since the critical level ,.u is equal to -1/2rKiu, given any two Ac,i-modules M

and N, we can regard the tensor product M 9N as a U(L-KK -nKll -module.

This gives rise to a pairing

BRST1 : Acrit-modi 0 Acr-mod,

M ON

-+4

-4

Vect

BRST(M N).

Recall now the chiral algebra 'Der. A remarkable feature of this chiral algebra,

that was shown in [AG] and [FG7], is the following.

Proposition A.1.1. Let M be a chiral A,.ut-module on XI.

module (D,)1 corresponding to D,u. Then we have

Consider the A,-

BRST(M 9 ('Der)1) ~ M.

A.1.1 Construction of the inverse to T1

Consider now the functor

I1 : Acri-modiG _+ QCoh'(Op,"I).

A generalization of the argument presented in [FG7] can be used to show the second

point of the above conjecture.

lemma A.1.1. The image of the functor 1 restricted to the category Arit-modJG

is contained in QCoh ( Op;""|).

We can therefore consider 'I1 as a functor from Acrit-modG to the category
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QCoh (Op"'). We now want to construct an inverse (D to I,

(DI: QCohl(Op"') -+ Acrit-mod JG

Consider the chiral algebra 'Dit, and recall that it admits two embedding 1 and r

of Acit. Denote by Ceit the chiral algebra

c,it := (Tx Z WxJI)('Deit) E QCoh!(Op"') 0 QCoh!(Opu"/).

Th chiral algebra Ccit naturally defines a functor

< . >: Vect -+ QCoh6(Opg",) 0 QCohl(Opg,"/),

simply by sending the unit object C to < C >*:= cit.

The existence of the functor (D would follow from the following proposition.

Proposition A.1.2. For every finite set I there exists a pairing

< .0 . >I: QCoh'(Opey) & QCoh'( Op|j) -+ Vect,

such that, the following two properties are satisfied:

* the composition

QCoh'(Op"|) <,>,*&Id QCoh'(Opu"|) 9 QCoh'( Opgu) & QCohI( Opn)

Id®<.®.>: QCoh!( Opb,)

is the identity functor.

a For M and N in Ait-mod!G, we have

< 'I'(M) 0 TI (N) >,:=< (T" z WF,)(M 0 N) >r~- BRST,(M 0 N).
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Let's now show how proposition A.1.2 would allow us to construct the inverse

functor GD. Recall that we denoted by B the chiral algebra

'3 = (Id M Tx)('Derit) E (Acrit-modx) Jx(G) 0 QCoh!(Op,).

Given an object T in QCohl(OpW"), we define 11 (T) to be:

11 (Y) :=<3I 0 T >1 E Acrit-modIG

where we regard 'B as an object in Acit-mod/G 0QCohl (Opu"/). Using proposition

A.1.1, we can immediately check that the composition 'D o IF, is the identity on

Ac-it-modiG. In fact, for M a Acrit-module on XI, we have

1(IO1(M)) =< (Id Z 'FI)('Dcrit) 0 I1(M) >I~ BRST -^'ll(Dc,-it 0 M) ~ M.

Similarly, we can show that the composition xF' o D is the identity on QCoh!(Op "r).

In fact, by the first property in A.1.2, for N in QCoh!(Opu,), we have

I(G(N))= xF (< (Id Z Px)('Derit)I o N>) .- < (qfx E x)('Derit)I @ N>=

=<eerit OxN>= (<, >*7 Id) o(IdO < .O@. >)(N) ~ -N.

A.2 Second approach

Let C and 'D be two abelian factorization categories. Let G : C -+ 'D be a factor-

ization functor, G = {GI : C1 -+ 'D}. The idea of the second approach is to try to

understand what it takes for G to establish an equivalence of categories over XI, if

we assume that

* G induces an equivalence Cx -+ Dx (over one copy of the curve).

We start by the following general proposition.
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Proposition A.2.1. Let G : C -+ D be a factorization functor between two factor-

ization categories C and 'D. If for every finite set I, G1 induces an equivalence on

Hom's and Ext1 's, then G1 is an equivalence.

Proof. This follows from the following lemma.

Lemma A.2.1. Let G : C1 -+ C2 be an exact functor between abelian categories.

Assume that for X, Y E C1 the maps

Home, (X, Y) -+ Home2 (G(X), G(Y)),

Ext((X, Y) - Ext(G(X), G(Y))

are isomorphisms. If G admits a right adjoint functor F which is conservative, then

G is an equivalence.

In fact, under the above assumptions, the functor G, admits a right adjoint F,

which is conservative. To show this, we have to show that, for every N E 'Dxi, the

functor

M - Homox, (G (M), N)

is representable, where M E Cxi. Denote by C%0I the subcategory of compact

objects. Consider the category of pairs (X, f), where X E C%1I and f E G,(X).

Morphisms between (X, f) and (X', f') are maps # : X -+ X' , such that #,f') = f
. It is easy to see that the ob ject

colimX
(Xlf)

represents the functor GI.

To show that F, is conservative, it is enough to show that for every N E Dxi, there

exists M E Cxi such that HomD,(GI(M), N) is non zero. For this, consider the
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exact triangle

ii*-(N) -+ N jj*

If i*i*(N) is non zero, then it is in the image of GI, by induction on n, since G is an

equivalence over X. Hence we are done. If ii* (N) is zero, then N is quasi-isomorphic

to jj* (N), and we are done for the same reasons.

Proof of A.2.1. The fully faithfulness assumption on G implies that the adjunction

map induces an isomorphism between the composition FoG and the identity functor

on C1 . We have to show that the second adjunction map is also an isomorphism.

For X' E C2 let Y' and Z' be the kernel and cokernel, respectively, of the adjunction

map G o F(X') -4 X' . Being a right adjoint functor, F is left-exact, hence we

obtain an exact sequence

0 -+ F(Y') -+ F o G o F(X') -+ F(X').

But since F(X') -+ F o G(F(X')) is an isomorphism, we obtain that F(Y') = 0.

Since F is conservative, this implies that Y' = 0. Suppose that Z' $ 0. Since

F(Z') = 0, there exists an ob ject Z E C1 with a non-zero map G(Z) -+ Z'.

Consider the induced extension

0 -4 G o F(X') -+ W' -+ G(Z) -+ 0.

Since G induces a bijection on Exti , this extension can be obtained from an exten-

sion

0 -+ F(X') -+ W -+Z -+ 0

in C1 . In other words, we obtain a map G(W) -+ X', which does not factor through

G o F(X') C X', which contradicts the (G, F) adjunction. 0
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A.2.1 The case G = 4

Now, consider the factorization functor T. By lemma A.1.1, we can regard it as a

factorization functor I : Ac,-it-mod JG - D(QCohl (Op!nr)). By proposition A.2.1,

we have that conjecture 3.6.1 is equivalent to the following.

* For every I, the functor T, is exact.

a For every I, the functor Wi induces an isomorphism on Hom's and Ext's.

In trying to show these two points, we will use the assumption on Tx being an

equivalence. For the first point, we have the following:

Proposition A.2.2. If the functor F,, restricted to the category of strongly JG-

equivariant objects

T1 : Ait-mod|G -4 D(QCoh (Opi ))

is right exact, then it is exact.

Proof. Consider the following general setting. Let C and 'D be two abelian fac-

torization categories. Let F : D(C) -+ D(D) be a factorization functor. Assume

that

" Fx : Cx -+ D(Dx) is exact.

" For every I, F(D50(C1)) C DO'(DI).

Then the functors T1 are also exact. This simply follows from the fact that under

these hypothesis, we also have

F1 (D 0 (C1 )) c D2:(D,).

In fact, by induction on I, for M, E D O(C,), we can consider the triangle

MI - j,(M'.{,) -+ cone(MI -+
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Note that the second term of the above sequence is in D O (C,), and moreover, since

F1 {l,, is exact, we have that

FI(j,(M'r_1,1)) E D O('D,).

The same reasoning applies to the last term of the triangle, since the object cone(M, -

j , can be written as the colimit of push-forward of modules in D20(C1 {g,),

and F commutes with both colimits and A,. Therefore we see that, by applying FI,

we get

F(M ) -4 FI(j,(M',)) -+ F1 (cone(MI j ,

>0
EDI

which implies F1 (M1 ) E D 0 ('D).

For the second point, we proceed as follows. If C in an abelian category, we

say that an object C E C is quasi-perfect if for any directed system of objects, the

natural map

Ext'(C, li Ci) - 1 Ext'(C, Ci)

is an isomorphism for every i > 0.

Assume that G : e -+ D is a continuous factorization functor between factoriza-

tion categories as before. Suppose that:

" each Cx1 is generated by quasi-perfect objects.

" G induces an equivalence Cx -+ Dx (over one copy of the curve).

We have the following proposition.

Proposition A.2.3. Suppose that, in the conditions above, G1 : Cx1 -4 Dxi pre-

serves quasi-perfect objects. Then G is an equivalence.

Proof. By proposition A.2.1, it is enough to show that G, induces equivalences on

Hom's and Ext 1 's We will deal with the case n=2, the general case can be treated
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similarly. We need to show that for every M 1 and M 2 in CX2, Hom(M1, M 2 ) -+

Hom(G 2 (M1), G2 (M 2)) and Ext1 (M 1, M2) -+ Ext1 (G2(M1 ), G2(M 2)) are equiva-

lences. We can assume that M 1 is quasi-perfect. Since A, and j,, have both left

adjoints, and F commutes with them by definition, the statement is true for M 2 of

the form j,, (M) and A. (M), for M E Cx, where we are taking the 0-module direct

image. For arbitrary M 2, we can consider the exact triangle

M 2 -+ j(M'2) -+ M2

where M' is supported set-theoretically on the diagonal. Now, such M' can be

written as a colimit M' = colimA,(Mi). By applying Hom(M1, -) we get
2EI

--- >. Hom(M1, M2) >Hom(M1, j,(M')) >Hom(M1, colimA, (Mi)),j 2 iEI

- -- 2Hom(G 2(M1), G2 (M 2)) : Hom(G 2(M 1 ), G2 (j,(M'2))) > Hom(G 2 (M1), G 2 (colimA,(Mi
iEI

where the last isomorphism follows from the fact that M 1 is compact, therefore

G 2 (M 1 ) is, and Hom out of them commutes with colimits. Note that the same

argument applies for Ext1 's. 5

By proposition A.2.3 and proposition A.2.2 we see that conjecture 3.6.1 is equiv-

alent to the following:

1. The functor I, is right exact.

2. The category Ait-modiG is generated by quasi-perfect objects.

3. The functor I, preserves quasi-perfectness.

Currently, we don't know how the first point can be shown. For the second

point, for any n-duple of dominant weights A = (A,, ... , An), denotes by A},.; the
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Acit-module on X' given as

A Ind * (V 1 9 ... - V' ® Ox1), (A.2)

where ,2J andZ29) are the topological sheaves of Lie algebras introduced in 3.8. In

particular, for A = (0.... , 0), we recover the factorization algebra (Acit), attached

to Acrit.

We have the following proposition.

Proposition A.2.4. The category Acit-modJG is generated by the objects A. and

these objects are quasi-perfect.
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