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Abstract

This thesis mainly deals with the study of the category g..i;-mod of admissible
modules for the affine Kac-Moody algebra at the critical level g and the study of
its center Z(gerit-mod). The language used in this work is the one of chiral algebras,
viewed as either D-modules over a smooth curve X or as a collection of sheaves
over powers X of the curve. In particular, we study the chiral algebra A
corresponding to the Kac-Moody algebra g+ and its center 3..;. By considering
the categories of Ag;-modules and 3.-;-modules supported at some point z in X,
we recover the categories g.,i;-mod and Z(gri-mod)-mod respectively. In this thesis
we also study the chiral algebra D of critically twisted differential operators on
the loop group G((t)) and its relation to the category of D-modules over the affine
Grassmannian Grg, = G((t))/G[[t]].

In the first part of the thesis, we consider the chiral algebra A, and its center
3erit- The commutative chiral algebra 3..; admits a canonical deformation into
a non-commutative chiral algebra W;. We will express the resulting first order
deformation via the chiral algebra D of chiral differential operators on G((t)) at
the critical level.

In the second part of the thesis, we consider the Beilinson-Drinfeld Grassmannian
Gre and the factorization category of D-modules on it. We try to describe this cat-
egory in algebraic terms. For this, we first express this category as the factorization
category D..;-mod JG of chiral D.4-modules which are equivariant with respect to
the action of a certain factorization group JG. Then we express the factorization
category of chiral 3.;-modules as the category of modules over the factorization
space Opg of opers on the punctured disc. Using the Drinfeld-Sokolov reduction ¥,
we construct a chiral algebra B and a functor I'y from the category of D-modules on
Grg to the category of chiral B-modules that are supported on a certain sub-scheme
of Opg. We conjecture that this functor establishes an equivalence between these
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two categories.
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Chapter 1

Introduction

Let g be a finite dimensional simple Lie algebra over an algebraically closed field
k of characteristic 0, and let G be the corresponding adjoint algebraic group. Fix
a smooth curve X over k, and a point £ € X. Let t be a coordinate near x. For
any invariant bilinear form &, denote by g. the Kac-Moody algebra given as the
corresponding central extension of the loop algebra g® C((t)) by C. Denote by kxin

the Killing form on g and let x..; be the critical level Koy = —1/2kk;y. For the

14

critical level, denote by U, ,, the appropriately completed twisted enveloping algebra

of geriz. Consider the category gi-mod of continuous modules over U’

it~ Lhese are

the same as discrete admissible g..;;-modules on which 1 € C acts as the identity.
At the critical level, unlike any other s, the center of the category g.s-mod is non-
trivial. For instance, in the case of sl,, it is generated by the Sugawara operators.

We denote by écm the center
3erit 1= Z(Geri-mod)

This peculiarity makes the theory of g.;-modules more interesting and more com-
plicated.
Denote by g the Langlands dual Lie algebra to g, and let X be a smooth curve
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over the complex numbers. Denote by Op; x the space of g-opers on X, introduced
in [BD2]. Roughly speaking, an oper is a triple (Fg, Fz, V), where Fy is a G-
bundle on X, Fj is a reduction to a fixed Borel B C G and V is a connection on
F s satisfying certain properties. For every point = € X, we denote by Opé(D;’) the
ind-scheme of opers on the punctured disc D} = Spec(C((t))), and by Ops(D;) the
scheme of regular opers i.e., opers on the disc D = Spec(C[[¢]])-

The interplay between the representation theory of @e.; and the space Op; x
is given by a theorem of Feigin and Frenkel. In [FF}, they prove the existence
of an isomorphism of commutative topological algebras 3ei; =~ Fun(Op,(D3)).
In the work [FG2] of D. Gaitsgory and E. Frenkel, they define a closed sub-ind-
scheme of Op,(D3), denoted by Opy,, corresponding to unramified opers. This
ind-scheme consists of those opers that are unramified as local systems. We denote
by @cri-mod,, the subcategory of gerie-mod on which the action of Fun(Opé(Dg))
factors through Fun(Opg(D)). Similarly we denote by geri-modusr the subcate-
gory consisting of modules on which the action of Fun(Ops(D3)) factors through

the quotient Fun(Opg7y )

Our basic tool in this paper is the theory of chiral algebras as introduced in [BDJ.
In fact, we will see in 2.1.1 how we can attach to the Dx-algebra Op; x a commu-
tative chiral algebra, and more generally, how an affine D x-scheme corresponds to
a commutative chiral algebra. This suggests that the theory of chiral algebras is a
more suitable tool for the study of the above categories. In particular we will use
the chiral algebra A, attached to §. as defined in [AG]. A chiral algebra on X,
is a Dx-module A equipped with a map {, } : j.j* (AR A) = A(A), called the
chiral product, satisfying certain properties, where A : X — X? denotes the diago-
nal embedding and j the inclusion of the complement. We will denote by [,]4 the
restriction of the chiral product to ARA < j,j*(AR.A). The rising interest in the

theory of chiral algebras has a twofold motivation. The first is that it has numerous
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applications in the study of conformal field theory in two dimensions. The second
is that, as explained in [BD], chiral algebras are the same as factorization algebras
on Ran(X), i.e., a sequence of quasi-coherent sheaves A™ for every power of the
curve X", satisfying certain factorization properties. For instance, a co-unital affine
factorization space on Ran(X) is the same as a commutative chiral algebra on X.
This description makes the understanding of factorization algebras, and of modules

over them, easier.

1.1 W-algebras and chiral differential operators

on the loop group

Consider the chiral algebra A, attached to §.. For k = keir = —%nkm denote by

3erie the center of Ay := A, This is a commutative chiral algebra with the

crit ®

property that the fiber (3..), over any point z € X is equal to the commutative
algebra Endg_, (VY .;,), where

Gcrit

V9 i = Inderit .C

g,crit - (eeT™"

The chiral algebra 3., is closely related to the center 36,“ of the category gers-mod.
In fact, for any chiral algebra A and any point z € X, we can form an associative
topological algebra A, with the property that its discrete continuous modules are
the same as A-modules supported at = (see [BD] 3.6.6). In this case the topological
associative algebra corresponding to 3. is isomorphic to 3mt.

As we mentioned before, the importance of choosing the level k to be kg relies
on the fact that the center 3. happens to be very big. Another crucial feature of the
critical level is that f)m-t carries a natural Poisson structure, obtained by considering

the one parameter deformation of k. given by &erip + Rk, as explained below

13



in the language of chiral algebras. Moreover, according to [FF, F1, F2], the center
Bmt is isomorphic, as Poisson algebra, to the quantum Drinfeld-Sokolov reduction of
U’(@erie) introduced in [FF] and [FKW]. In particular the above reduction provides
a quantization of the Poisson algebra 3m-t that will be central in this work.

Since the language we have chosen is the one of chiral algebras, we will now

reformulate these properties for the algebra 3...

The commutative chiral algebra 3..;; can be equipped with a Poisson structure

which can be described in either of the following two equivalent ways:

e For any A # 0 let & be any non critical level & = k4 + Akry and denote by
Ap the chiral algebra A,. Let z and w be elements of 3. Let 2z, and w, be
any two families of elements in Ap such that z = 2, and w = w, when & = 0.
Define the Poisson bracket of z and w to be

{z,w} = % (mod H).

e The functor ¥y of semi-infinite cohomology introduced in [FF] (which is the
analogous of the quantum Drinfeld-Sokolov reduction mentioned before and
whose main properties will be recalled later), produces a 1-parameter family of
chiral algebras {Ws} := {¥x(As)} such that Wy >~ 3. Define the Poisson
structure on 3.. 88

{z,w} = ___[Zn,’t‘;n]w,, (mod h)

where z = Z|n—¢ and w = Wg|s=o-

Although the above two expressions look the same, we’d like to stress the fact that,
unlike the second construction, in the first we are not given any deformation of 3.

In other words the elements 2, and w, do not belong to the center of A, (that in
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fact is trivial). It is worth noticing that the associative topological algebras Wh
associated to them (usually denoted by W) are the well known W-algebras.

As in the case of usual algebras, the Poisson structure on 3. gives the sheaf of
Kihler differentials Q'(3..;;) a structure of Lie* algebroid. A remarkable feature,
when dealing with chiral algebras, is that the existence of a quantization {Wy} of
3crit allows us to construct what is called a chiral extension Q°(3.;) of the Lie*
algebroid Q'(3.rit), and moreover, as it is explained in [BD] 3.9.11, this establishes
an equivalence of categories between 1-st order quantizations of 3..;; and chiral ex-

tensions of Q(3.-;). This equivalence is the point of departure for this work.

1.1.1 Main Theorem

In [BD], the highly non-trivial notion of chiral extension of Lie*-algebroid is intro-
duced. Chiral extensions form a gerbe over a certain Picard category; in particular,
such extensions may not even exist. Given a chiral extension £° of a Lie*-algebroid
£, we can form its chiral envelope U(£°)%. For example, for a Dx-space Y, and a
chiral extension of the Lie*-algebroid ©y of vector fields on Y/, its chiral envelope is
a chiral algebra of twisted chiral differential operators on Y.

This project consists of comparing two, a priori different, chiral extensions of the
Lie*-algebroid Q'(3). The first extension is defined using quantum W-algebras,
as explained before. Namely we consider the 1-paramenter family of chiral algebras
{Wi} := {Tx(As)}. Asis shown in [FF], the cohomology of Ux(A.ri:) = ¥x(Ao)
is concentrated in degree zero, and its 0-th cohomology is isomorphic to the center
3crit- Therefore the chiral algebras {W5} provide a 1-parameter family deformation
of 3.ty giving rise to the same Poisson structure as introduced above. According
to [BD], such a quantization gives rise to a chiral extension Q°(3.i:) of Q(3crit)-
The second extension is given via its chiral envelope.

We start with the chiral algebra D,.;; of critically-twisted differential operators
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on the loop group G((t)), introduced in [AG]. The algebra D, admits two embed-
dings of A, corresponding to right and left invariant vector fields on G((t)). The
two embedding ! and 7 of A into D, endow the fiber (D.i), with a structure
of gerii-bimodule. The fiber can therefore be decomposed according to these actions

as explained below.

Consider the topological commutative algebra 3erit. For a dominant weight X,
let V* be the finite dimensional irreducible representation of g with highest weight

A and let V2 _., be the g.;-module given by

g,crit

Vz\

g,crit =

U(acrit) &® V'\-
U(g[lt]loT)

The action of the center 3”“ on V{;\,mt factors as follows

?)crit —» 3;\1-1'3 = End(V;\,cm)-
Denote by I* the kernel of the above map, and consider the formal neighborhood
of Spec(3)..,) inside Spec(f}m-t). Let Gerie-mmod €U be the full subcategory of Gerie-
modules such that the action of g[[t]] can be integrated to an action of G|[[t]]. We

have the following Lemma.

Lemma 1.1.1. Any module M in ﬁait—modG[[t]] can be decomposed into a direct
sum of submodules M), such that each M, admits a filtration whose subquotients are

annihilated by I*.

As a bimodule over g.; the fiber at any point z € X of Dy is G[[t]] inte-
grable with respect to both actions, hence we have two direct sum decompositions

of (Derit), corresponding to the left and right action of gerit, as explained in [FG2):

(Dcrit)x = @ (Dcrit)i 3

Adominant
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where (iDmt);\ is the direct summand supported on the formal completion of Spec(gg\ﬁt).

Q
erit

Denote by D? ., the D x-module corresponding to (‘Dm-t)g. It is easy to see that D

crit
is in fact a chiral algebra.

0

a.crit» the embeddings  and r must

Since the fiber of A..;; at z is isomorphic to V

0

land in the chiral algebra D¢ ;.. Hence we have

Ir 0
Acit = Do —> Dpis.

erit

The above two embeddings give D2, a structure of A..;;-bimodule, hence it makes

sense to apply the functor of semi-infinite cohomology ¥x to it with respect to both
0

actions. Let us denote by €., the resulting chiral algebra

@Y, = (Ix R Tx)(DL,).

erit
The main result of this work is the following.

Theorem 1.1. The chiral envelope U(Q(30rit)) of the extension
0 = 3erie = Q°(Berit) = Q3erit) — 0,

given by the quantization {Wy := Ux(Ap)} of the center 3., is isomorphic to the
chiral algebra B°.

1.2 D-modules over the affine Grassmannian

1.2.1 The Beilinson-Bernestein Localization Theorem

Recall the theorem of A. Beilinson and J. Bernstein, that realizes D-modules on
the flag variety G/B as modules over the associative algebra given as the quotient

of U(g) by the maximal ideal of the center defined by its action on the trivial g-
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module. The main body of this second project tries to develop an analogue of
the above theorem in the affine case. More precisely, denote by Grg, the affine

Grassmannian

Gre, == G((t)/G[[¢]]

This is an ind-scheme of finite type classifying G-bundles on X with a given triv-
ialization on X — z. On the affine Grassmannian we can define the category
D-mod(Grg,,) of D-modules, and, as in the finite dimensional case, we are in-
terested in describing it in different terms. In particular, we would like to have
an algebraic description of it, where, by algebraic, we mean a description of it as
modules over some associative algebra. However, it turns out that the category that
can be realized as such is a critically-twisted version of D-mod(Grg ). The reason
being that this new category is related to the category g.-;-mod and therefore to the
topological algebra Fun(Op;(D;z)). This category, denoted by Dc;-mod(Grg ;) is
constructed in the following way. As it is explained in [BD2], there exist a canonical
line bundle

'Ccrit,:z - GrG,x

on Grg,. Critically twisted D-modules on Grg, are just O-modules on Grg, with

an action of a particular sheaf D, attached to Leit .. The functor M — M ®

crit,z

Lorit z defines an equivalence of categories
D-mod(Grg ;) = Derig-mod(Grg ), (1.1)

therefore describing the RHS as modules over some associative algebra, would also
describe the category of D-modules on Grg, as such. We can start by consid-
ering the functor T’ of global sections on Grg, as a functor from the category
Dy-mod(Grg ) to the category of vector spaces Vect. It can be shown that the

action of Dg_., . on a module M, gives a Beri--module structure on the vector space
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I'(Grg z, M). We therefore have a functor
[ : Deig-mod(Grg ) = Gerig-mod.

However, unlike the finite dimensional case, this functor does not establish an equiv-
alence of categories. It is not hard to see that I' factors through the sub-category
Oerir-mod,.,. However, the resulting functor T' : Dei-mod(Grgz) — Berie-mOd g is

not an equivalence. Instead, the following conjecture was proposed in [FG3]:

e The action of the groupoid IsomOPB(DI) = Op;y(D:) ;( Opy(Dz) on 3erie lifts to
/G

an action on geri-mod,., compatible with the action of G((t)).

e The functor T' establishes an equivalence between D.ri-mod(Grg.) and the
category

pd I . . . . -~
(Berit-mOod,eg) SOMOpy(Dz) of Isomopg( p,)-equivariant objects in gerit-modyeq.

The above conjecture shows that I', viewed as a forgetful functor, does not realize
D.is-mod(Grg ;) as B-mod, for some associative algebra B.
In understanding how to describe the category De.;-mod(Grg ), the questions that

arise are the following.

¢ Is there a different way of describing D-modules on Grg;?

e What do we mean by algebraic description?
An answer to the above questions is given by the notion of modules over a chiral
algebra. In fact critically-twisted D-modules on the affine Grassmannian can be

described as chiral modules for the chiral algebra D..; satisfying certain properties.

In the second project, we will define a chiral algebra B and a functor

[y z ¢ Derip-mod(Grg,z) —+ B-mod,,
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which will realize the LHS as modules supported at z € X for the chiral algebra
B. We believe that the functor 'y, defines an equivalence between the RHS and
a certain subcategory of B-mod, defined using the action of 3m-t on geri--mod.
However, we were only able to show the promised equivalence assuming a conjecture

concerning the functor ¥ x.

1.2.2 Construction of the functor

Consider the chiral algebra Ag.;;. For this chiral algebra we have an equivalence
between the category A.4-mod, of A..;-modules supported at x, and the category
Oerii-mod introduced earlier. Let ¥x denote the functor of semi-infinite cohomology,

which from now on will be simply called the Quantum Drinfeld-Sokolov reduction.
U : { Chiral A -modules} — {Chiral 3.;-modules} .

By the theorem of Feigen and Frenkel we have an equivalence

Feri-mod, ~ QCoh!(Opﬁ(D;)) := {discrete continuous Fun(Opy(D3))-modules} .

If we restrict the functor ¥y to the category Ac-;-mod; of A..;-modules supported

at x, we therefore have a functor
U, ¢ Aerig-mod, — QCoh'(Op, (D).

Consider now the chiral algebra D.; of chiral differential operators on the loop

group G((t)). Recall the two embeddings

1 T
-A-crit - Dcrit — Acr'it)
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corresponding to left and right invariant vector fields on G((¢)). Chiral D.;-modules
supported at z should be thought as D-modules on G((t)). In particular, if we denote
by 7 the projection

7: G((t) - Grgg,

given a module M € D ;;-mod(Grg ), we can regard I'(G((t)), 7*(M)) as an object
in Dry-mod,. We define I'y ,, to be

Iys: Dey-mod(Grg,) — Berie-mod
M = (IR Tx)(T(G(), 7 (M))).

Denote by B the chiral algebra
B = (2d X \Ifx)(ch”;t).

By construction, the action of gei¢ on I'y (M) can be lifted to an action of B.

Recall now the ind sub-scheme Op;”" of Op;(D3), and denote by QCoh!(Opg;T) the

8,%

category of continuous discrete Fun(Op}y

5= )-modules. We have the following.

Conjecture 1.2.1. The functor I'y , establishes an equivalence of categories

D-mod(Grg,) =~

crit,x

D rip-mod(Grg ) = B-modynrz
v,z

where B-mod,,,, denotes the category of B-modules supported at x € X, which are

supported on Opy’, when regarded as objects in QCoh!(Opé(D;)).

1.2.3 The factorization picture

In trying to prove conjecture 1.2.1 we immediately realized that we needed an under-
standing the categories involved as the point z moves. More generally, for n distinct

points z1,...,%T, on X, we need to understand the categories D.y-mod(Grgz,) ®
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+++ ® Derig-mod(Grg s, ) and B-modunrz, ® - - - ® B-modunr.z,, as the n points move,
hence, in particular, as they collide.

In the second project we will state a conjectural equivalence of categories over
any power X" of the curve. In particular it will imply the equivalence of conjecture
1.2.1, by “taking the fiber at x € X”. We will then explain how the conjecture
1.2.1 would follow from a conjecture concerning the functor ¥y in its factorization
version, as explained below. The formulation of this conjecture uses the description
of chiral algebras in term of factorization algebras together with the notion of fac-
torization spaces.

An important example of factorization space is given by the Beilinson- Drinfeld

Grassmannian Grg on Ran(X). This is given by the assignment
I - GI‘GJ,

where [ is a finite set, and Grg is the space over X! given in the following way.
For an affine scheme S, an S point of Grg s consists of a map S 2 x1 , a G-bundle
Pg on Xg:= 5 x X and a trivialization of Pz on Xg — U;eily,, where 'y, denotes
the graph of the i-th component of ¢ in S x X. In particular, for I = {1,...,n}, the
fiber of Grg xr at any (z1,...,2,), with 2; # z;, is the product of the corresponding
affine Grassmannians over each z;. This property of the Beilinson-Drinfeld Grass-
mannian is, indeed, one of the data in the definition of a factorization space.

On each Grg,; there is a well defined notion of D-modules on it, and a well defined no-
tion of critically-twisted D-modules. We denoted this category by Derii-mod(Grg ).

The latter is given using a line bundle £..; on Grg, i.e. a collection

I — Lerig 1
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of line bundles over Grg;. We will be interested in the factorization category

D_rit-mod(Grg) given by the assignment
I = Dgip-mod(Grg 1).

As it is explained in [NR], given a chiral algebra A, we can define the category
A-mod; of chiral A-modules over X!. The assignment I — A-mod; defines a
factorization category, simply denoted by A-mod. When A is commutative, in 3.1.1,
we will explain how to describe the category A-mod; as the category of modules
over a space MY, over X7,

MY — X!

canonically attached to A.

Consider the commutative chiral algebra A = 3. We denote by Opj the
factorization space Opy = {I — Opg; := M/Y3,,,} that should be thought as the
factorization version of opers on the punctured disc. For each I, the algebra of
function on Opj; has a structure of topological algebra over X T and we have an

equivalence
QCoh'(Opg ;) := {discrete continuous Fun(Op; ;)-modules } = 3¢-i-mod;.
We denote by QCoh!(Opg) the factorization category given by the assignment

I - QCoh'(Opg ).

For every I, we can define a certain sub-functor Op;’y” C Opg ; corresponding to the

space of unramified opers from the previous section. It can be shown that this sub-
functor is represented by an affine-ind-scheme. This gives rise to a topology on the

algebra of functions Fun(Opy7). As before, we will denote by QCoh!(Op‘ﬁ‘"}’) the
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category of discrete continuous Fun(Op:7

5.1 )-modules. By adapting the construction

of Ux to the factorization picture, we define functors
U; : Aerig-mod; — QCoh'(Opg ),

and use them to construct functors I'y ; : Deri-mod(Grg ;) — B-mod(QCoh' (Opg 1))-
Using the above functors, we arrive at the formulation of the Ran(X)-version of con-

jecture 1.2.1.

Conjecture 1.2.2. The collection {I — 'y ;} together with the equivalence 1.1 give

rise to an equivalence of factorization categories

~

D-mod(Grg) = = B-mod(QCok'(Op™)), (1.2)

F‘Il °('®Lcrit)

where B-mod(QCoh!(Opgm)) denotes the factorization category {I — B-mod(QCok! (Ops7 )}

of B-modules on X! which are supported on Op,7 when regarded as modules over

Opg, I-

1.2.4 The main conjecture

As we mentioned before, the above conjecture, formally follows from a conjecture
concerning the functors ¥;. More precisely, consider the group Dx-scheme Jx(G)
as defined in 3.1.7. It acts on the category Ag-mody of chiral Agqi-modules on
X. We can therefore consider the sub-category .Am-rmodj?‘ @ of strongly Jx(G)-
equivariant objects in A..;;-modyx. For instance, if we consider A,.;-modules sup-
ported at z, then the category Amt-mod;f" @ is the category ’gfmt-modG[[‘” consist-

ing of gerie-modules on which the action of g[[t]] can be integrated to an action of

G[[t]]. Consider the functor Ty,

Wy Aese-modx — QCOh!(Opg,X )-
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This functor has being studied by D. Gaitsgory and E. Frenkel. In particular, in
[FG2| they show that, when restricted to the sub-category Aq-mod ;X @ it defines
an equivalence

Aeriz-mod ¥ §> QCoh'(Opy™y). (1.3)
X

Similarly to the above, as it is explained in 3.1.7 and 3.3.3, there exists a factorization
group JG = {I — JG,} acting on the factorization category A.i-mod. We can
consider the sub-category ./lc.,it—modIJG of Aci-modules on X7, which are strongly

JG-equivariant, and consider the restriction of ¥; to this category,
U, : Agri-mod;® — QCoh'(Opg ).
The main conjecture is the following,.

Conjecture 1.2.3. The collection ¥ := {I — U} defines an equivalence of factor-
1zation categories

Agris-mod’C %) QCoh!(Opg"’").

1.2.5 How conjecture 1.2.3 implies conjecture 1.2.2

We will briefly explain how the equivalence in 1.2.3 would imply the equivalence

D—mod(GrG)F = B-mod(QCoh'(Opy™)).

\Po('®£4crit)

As it is explained in 3.1.3, given a factorization category € we can define (chiral)-
algebra objects in €. Moreover, as it is explained in 3.1.8, for an algebra object A
in a factorization category €, we can define a factorization category A-mod(€) of

A-modules in €. Consider now the factorization algebra

Acrir-mod ’¢ = {I = Ai-mod/¢} .
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Using the right embedding Acri: L Deris, we consider Doy a8 an algebra object in
Aeri-mod 7¢. We can therefore consider the factorization category D rip-mod(Aqrii-mod JG).
Similarly, we can consider the chiral algebra B = ¥ x(D.;;) as an algebra object in

the category QCoh!(Opg"T). Conjecture 1.2.3 implies that we have an equivalence

of factorization categories

Derig-mod (Agp-mod 7¢) ~ B-mod(QCoh!(Opgm)). (1.4)

In proposition 3.3.3 and in theorem 3.1 we will shown the following two facts.

e We have an equivalence D..;-mod (Aerie-mod J G) ~ Dopip-mod 7€,

e There exist an equivalence of factorization categories

Di-mod(Grg) = Deris-mod JG,

Therefore the equivalence (1.4) can be written as
Di-mod(Grg) = fB-mod(QCoh!(Opg'"’)),

which immediately implies the equivalence stated in 1.2.2 after tensoring with the

factorization line bundle £, as explained before.

1.3 Organization of the thesis

e In Chapter 2 we start by recalling the definition of the basic objects that will
be used in this thesis. In particular, we will recall the classical definition of
chiral algebras. We will focus on commutative chiral algebras and on Lie*-

algebroids acting on them. For a commutative chiral algebra R we will be
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interested in studying Poisson structures on it. In particular, given a Poisson
structure on R, in 2.2 we will define the notion of quantizations modulo h? of
it. This will be used to state the equivalence between such quantizations of
R and chiral extensions of the Lie*-algebroid Q'(R) presented in [BD]. More
precisely, If we denote by Q°*(R) the groupoid of C[h]/h*-deformations of a
chiral-Poisson algebra R, and by P°*(Q2!(R)) the groupoid of chiral extensions
of Q1(R), there is a functor

P (QL(R)) — QH(R). (1.5)

In [BD] 3.9.10. they show that the above functor is an equivalence. In section
2.3 we will consider the chiral algebra A.n; and its center 3..;. We will define
a Poisson structure on it, and a quantization {Wj} of this Poisson structure.
The quantization will be constructed using the Drinfeld-Sokolov reduction ¥,
that will be introduced at the end of 2.3.1, as a special case of the BRST reduc-
tion, that will be studied in 2.3.1. We will then consider the chiral extension
Q°(3cris) of Q1(3eri) given by the above equivalence. The main theorem of
this chapter will describe Q¢(3.r) in terms of the chiral algebra D of crit-
ically twisted differential operators on the loop group, whose definition will
be recalled in 2.4.1. More precisely, we will show that the chiral envelope
of Q°(3cri) coincides with the chiral algebra €2, = (Ux X Ux)(DY..,). The
proof of this theorem will rely on the explicit construction of the inverse to
the functor in (1.5) that will be given in 2.2.2. In fact, since the proof of the
equivalence 1.5 presented in [BD] does not provide such inverse, a large part
of this chapter will be taken by this construction. The last section will be de-
voted to the proof of theorem 2.3. In section 2.4.2 we will give an altérnative

formulation of the Theorem that consists in finding a map F' from Q°(3cri:)

to €0 .. with some particular properties. In section 2.4.3 we will finally define
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the map F' and conclude the proof of the Theorem.

Chapter 3 is divided into 7 sections. The main conjecture 1.2.3 will only appear
in section 3.6, the reason being that its formulation needs some foundational
preliminary notions that will be given in the previous sections.

In section 3.1 we introduce the right categorical setting in which we will be
working. In particular, since conjecture 1.2.2 states an equivalence between
two factorization categories, we will define the notion of abelian category over
Ran(X) and the notion of factorization category. We will then define the no-
tion of factorization algebra in a factorization category € and relate this notion
to the notion of chiral algebra. In 3.1.5 we will relate the notion of commuta-
tive chiral algebras to the notion of factorization spaces. We will then address
our attention to the factorization category of modules over a chiral algebra A.
In 3.1.8 we will see how this notion plays out in the case of a commutative
chiral algebra.

In 3.2 we recall the definition of action of a group G on a category, and, in 3.3
we define the notion of action of a Dx-group-scheme G on a factorization cat-
egory. In particular, in 3.3.1, we will study the action of the group D x-scheme
G of on the factorization category A-mod of chiral A-modules, as defined in
3.2. We will be interested in the category A-mod? of srtongly G-equivariant
objects in A-mod. In 3.3.3, we will apply this to the group D x-scheme Jx(G)
of jets into GG, defined in 3.1.7, acting on the factorization category D.;-mod

of D.;;-modules.

In section 3.4 we recall the definition of the Beilinson-Drinfeld Grassmannian
Grg. This will be defined as a factorization space, i.e. we will have a space

Grg over X ! for every finite set I. We will then explain, in 3.23, how to
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define the category D-mod(Grg ) of D-modules on each Grg . In 3.24, we
will then construct a line bundle L. over Grg,r and define the category
D rip-mod(Grg r) of critically-twisted-D-modules on Grg;. In 3.4.4 we will
show how we can describe the category Dri;-mod(Grg,r) in terms of the cate-
gory Derir-mod; of Dip-modules on X7, In fact, we will show that the former
category is equivalent to the category of strongly Jx(G)-equivariant objects
in D.r-mod;. We will then move to the definition of the factorization space

Op-

; corresponding to the chiral algebra 3..;. More precisely, in 3.5 we will

recall the definition of opers on the punctured disc Op,(Dj) as given in [BD2]
and construct the factorization space Op; corresponding to it. We will then
define the co-unital factorization space Op, of regular oper, and the factoriza-
tion space Op,™, corresponding to opers on the disc, and to unramified opers
as defined in [FG2].

In 3.6 we will finally state the main conjecture from which we will derive con-
jecture 1.2.2. We will explain in details how to construct the factorization

functor {I — ¥}, where
Vs : Agrig-mody — 3erip-mody = QCoh!(Opg’,),

denotes the Drinfeld-Sokolov reduction for modules over X7 that will be ex-
plained in 3.6.1. We will finally recall the equivalence (1.3) and state the
conjecture 1.2.3.

The last section combines together all the results from the previous ones to
finally come to the proof of conjecture 1.2.2. We will in fact use the Drinfeld-
Sokolov reduction on X to define the chiral algebra B = U x(D,,;), then we
will use results from section 3.6 and 3.4 to first define a functor from D..;;-mod
to the category B-mod(QCoh!(Opg)) of B-modules in QCoh!(Opg), as defined

in 3.1.8. The equivalence showed in 3.1 between strongly-equivariant Jx(G)-
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objects in D,;-mod and the category Dgqii-mod(Grg ) will yield the factor-

ization functor {I — I'y s}, where 'y s is
Iy 1 : Derig-mod(Grgr) — 3—mod(QCoh!(Opg,I)).

Assuming conjecture 1.2.3, we will finally show that the above functors induce

equivalences of categories
Dcriy-mod(Grg 1) = B-mod(QCoh'(Opgy ),
¥,

and this will conclude the proof of conjecture 1.2.2, and therefore of conjecture

1.2.1.

The Appendix is devoted to an explanation of how we think conjecture 1.2.3
can be proven. We will present two different approaches. The first, presented

in A.1, consists in constructing a functor
®; : QCoh'(Op}) — Acri-mod;®,

and show that ®; and ¥; are mutually inverse equivalences of categories.
The second approach, presented in A.2, consists in deducing the equivalence
Aerig-mod]¢ 5 QCoh!(Opg"}T) over X' from the equivalence over X given in
(1.3). More generally, given a factorization functor G : € — D between two
abelian factorization categories inducing an equivalence Gx : €x = Dx, we
will explain what conditions on it would guarantee equivalences Gy : Cx1 —

D1 over X1,
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Chapter 2

W-algebras and chiral differential

operators at the critical level

2.1 Chiral algebras

We start this chapter by introducing the notion of chiral algebra as presented in
[BD]. We will see later, in section 3.1.3, how chiral algebras can be described as
factorization algebras, i.e. a sequence of quasi-coherent sheaves on X™ satisfying
some properties. Since we will only use the latter description in the second chapter,
we prefer giving the classical definition here. Throughout this chapter A : X —
X x X will denote the diagonal embedding and 5 : U — X x X its complement,
where U = (X X X) — A(X).
For any two sheaves M and N denote by MXIN the external tensor product WIMO ®
XxX

3N, where 7y and 7, are the two projections from X x X to X. For a right Dx-

module M define the extension Ay(M) as

AYM) = g™ (2x B M)/ BN
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Sections of Aj(M) can be thought as distributions on X x X with support on the

diagonal and with values on M. If M and N are two right D x-modules, we will
!

denote by M ® N the right Dx-module M @ N ® Q%.

We will now recall the definition of unital chiral algebras as presented in [BD].

Definition 2.1.1. A unital chiral algebra A is as a right Dx-module A% on X

equipped with a D x-module homomorphism
G gAY R AL — A(AY
where j: X x X — A(X) > X x X + X : A, and an embedding
it Qx < A
satisfying the following conditions:

o (skew-symmetry) 4 = —o13 0 g o oya.

o (Jacobi identity) pif2sy = pi12ys + Ho(isy-

o (unit) The following diagram commutes:

J«J” (QX X ‘Ad) — " (‘Ad X 'Ad)

| l

A(AY) i Ay(AD)

where the vertical map on the left comes from the sequence
Qx BAY = 4,5*(Qx RAY) - AN (Qx BADY[1] =~ A (AY)

and o1 is the induced action on A by permuting the variables of X2.
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The Jacobi identity above means the following: if we denote by 5123 the inclusion
of the subset of X*® where all the z/s are different and by A;; the inclusion of the
diagonal x; = z;, then (o3} : Gei* (AR A R AY — A(A) is defined as the
composition

j*jfzs (-Ad AR -Ad) = j*jzlaézg,zx;éma (-Ad X A(23)!-Ad) =

~ A3 Jadnpas (AT RAY) B Auasp(A?),
the map py;2;3 is the composition

Gt AT RAYRAN) B gt o ries(Daap A RAY)
~ Aoy (Jadhypay AT RAN) B Apggp (A,

and the map pg(3; is gives as

j*j;m(-/ld XAK Ad) 5 j*j;#xa,xl;em (A(13)!-Ad X .Ad) ~
~ A(l3)!j*j;2;é13 (-A-d X -Ad) ﬁ) A(123)!(,Ad)_

The Jacobi identity means that, as a map taking place on X3, the alternating sum

of the above maps is zero.

2.1.1 Commutative chiral algebras

As in the world of classical algebras, there is a well defined notion of commutative
chiral algebra. We will see how these are the same as affine D x-schemes. Moreover,
in 3.1.6, we will relate the factorization description of commutative chiral algebras

to the notion of co-unital factorization spaces.

Definition 2.1.2. Let (R, 1) be a unital chiral algebra. R is called commutative if
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the composition
RRR— j,j* (RER) 2> Ay(R) (2.1)
vanishes.

Denote by R the left D x-module given as R! ;= R ® %. The diagram in (2.1)

implies, and is in fact equivalent, that yu factors through a map

Go§" (R B R) —— Ay(R)

~

AR R)

Therefore we obtain a map

]
RRIR->R.

This map yields a commutative product (because of the skew-symmetry) R’ @ R RN
R!, making R! a Dx-algebra. On the other hand, if we are given a Dx-algebra R,
i.e. a left Dx-module with a map of Dy-modules R ® R* — R!, we can consider

R := (R)" and the composition
G (RER) = 7,7 (R'BR) ® 7.5 (U B Qx) = HAA R B R @ A(2x) =

= AR @ RN ® A(Qx) 2849 AR @ A(S2x) = A(R)
where m is the product map of R!. This is a chiral operation on R. The above

establishes an equivalence

{Dx-algebras R'} = {Commutative chiral algebras R}. (2.2)

For instance, in the case R = Qx, with chiral product defined as u(f(z, y)dzRdy) =
f(z,y)dz A dy (mod Q% ), you simply recover the commutative product on the

sheaf of functions on X, which is in fact the left D x-module corresponding to Qx.
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2.1.2 Chiral envelope of Lie*-algebras

The chiral algebras that we are mostly interested in are those that can be constructed
from Lie* algebras by taking their chiral envelope. Let L be a Lie*-algebra, as
introduced in [BD]. A Lie*-algebra L is, in particular, a right Dx-modules with a
map

[,]o: LWL — A(L),

satisfying certain properties. The natural embedding
MEM < 7,5 " (MEM)
defines an obvious forgetful functor
{ chiral algebras } — {Lie"-algebras} .

We will denote by A the Lie*-algebra corresponding to the chiral algebra A. The

above functor admits a left adjoint U,
U : {Lie"-algebras} — {chiral algebras }.

Given a Lie*-algebra L, we define its chiral envelope to be the chiral algebra U(L).

In particular, by definition, we have
Hom®(A,U(L)) ~ Hom™(A%* L).

The chiral algebra U(L) is generated by the image of L which is a Lie*-subalgebra
of U(L). The corresponding filtration on U(L) is called the Poincare’-Birkhoff-Witt

filtration. We have a canonical surjection

Sym' L — gr.U(L).
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As it is explained in [BD], when L is O x-flat, the above surjection is an isomorphism.

2.1.3 The chiral algebra A,

Let g be a simple finite dimensional Lie algebra. Recall the Lie*-algebra Ly = g®Dx

as defined in [AG]. For every symmetric invariant bilinear form
k:g®g—C,
consider the pairing &,

K: (9®0x)x(g®0x) =  Qx
(a,b) ~  k(da,b),

and extend this pairing to a map Kp, : Ly ® Ly — A, (Qx @ Dx). The composition
kp, Of Kp, with the map Qx ® Dx — Qx defines a 2-cocycle on the Lie*-algebra
Ly. We defineLf to be the Lie*-algebra extension corresponding to this cocycle.

We will denote by A the twisted chiral envelope of L,

A= U(LE)/1-1,

where 1 denotes the embedding of 2x given by the identity in U(L}) and 1 denotes
the embedding of Qx given by the construction of L.

Remark 2.1.1. Given a bilinear form &, we can consider the Lie-algebra extension
Ox given as

0->C-1-3.—g(t) =0,

with bracket given by

[af(£), bg(t)] = [a, 6] £ (¥)g(t) + K(a, b)Res(fdg) - 1,
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where a and b are elements in g, and 1 is the central element.

Recall that we denoted by U] the appropriately completed twisted enveloping al-
gebra of g,, and by g.-mod the category consisting of g.-modules M on which the
central element 1 acts as the identity and such that, for every m € M, the action
of at™ on it is zero for N >> 0. Consider the chiral algebra A, and the category
Ax-mod, of A.-modules supported at x € X. Recall the associative topological al-
gebra A, attached to A, with the property that its discrete continuous modules are
the same as A-modules supported at z. When we take A to be A, the topological
associative algebra f[m is isomorphic to U,.. In particular we have an equivalence
of categories

8x-mod ~ A, -modz.

We will be interested in the critical level K = ke = —1/2kk;y. Denote by A

the chiral algebra A and by 3. its center. The importance of choosing the

Kerit
level & to be K.y relies on the fact that the center Z(g..;-mod) of the category
erie-mod = Ul,,-mod, happens to be very big, unlike any other level & # K¢
where the center is in fact just C, as shown in [FF]. The chiral algebra 3. is

closely related to the center Z(g.r4-mod), in fact we have an isomorphism
?)crit,:c =~ Z(amit‘mOd)'; (23)

in particular Z(g:-mod)-mod is equivalent to the category 3.i-mod; of 3eri-

modules supported at z.

2.1.4 Lie*-algebroids and R-extensions

Let R a commutative chiral algebra. In this section we will recall the definitions of
Lie*-R algebroids and chiral R-extension of such. These definitions will be used in

2.1.6 to define the notion of chiral envelope of a chiral R-extension of an algebroid
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£.
Let (R, m: R ® R — R) be a commutative chiral algebra. Given a Lie* algebra L,

we say that L acts on R by derivations if we are given a Lie* L-action on R
T:RER - A(R),

which is a derivation of the product m.

Definition 2.1.3. Let L be a Lie* algebra acting by derivations on R via a map 7.

An R-eztension of L is a Dx-module L€ fitting in the short exact sequence

Ky

00R=>SL=SL—0

together with a Lie* algebra structure on L€ such that 7 is a morphism of Lie*

algebras and the adjoint action of L¢ on R C L€ coincides with 7 o 7.

Definition 2.1.4. A Lie* R-algebroid £ is a Lie* algebra with a central action of
R (amap R® L — L) and a Lie* action 75 of £ on R by derivations such that

e 7; is R-linear with respect to the L-variable.

e The adjoint action of £ is a 7¢-action of £ (as a Lie* algebra) on £ (as an

R-module).

In the next definitions we consider objects equipped with a chiral action of R instead

of just a central one.
Definition 2.1.5. Let R be a commutative chiral algebra, and £ be a Lie* R-

algebroid. A chiral R-extension of £ is a Dx-module L£¢ such that

0+ R L5— L —0, (2.4)
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together with a Lie* bracket and a chiral R-module structure pg c- on £°¢ satisfying

the following properties:

e The arrows in (2.4) are compatible with the Lie* algebra and chiral R-module

structures.
e The chiral operations pg and px ¢ are compatible with the Lie* actions of £°.

e The * operation that corresponds to pgc- (i.e. the restriction of pgce to
RK L) is equal to —i0g 0 T4e g 00, where Tz 5 is the L¢-action on R given by
the projection £¢ — £ and the £ action 75 on R and o is the transposition

of variables. In other words the following diagram commutes

HR, L<

RR L — j,j*(R K L) 225 A,(£9).

Ay(R)

oot ROT

RXL

Remark 2.1.2. The triples (R, £, £¢) form a category in the obvious manner. For
fixed R and £, the chiral R-extensions of £ form a groupoid, denoted by P*(L).
It is important to notice that P**(L) is not a Picard groupoid. The notion of
trivial chiral R-extension of £ makes no sense. However, if we denote by P(L)
the Picard groupoid of classical L-extensions, i.e. extensions in the category of
Lie*-algebroids, then we have that the Bear difference of two chiral extensions is a

classical one, therefore we have the following.
Proposition 2.1.1. If P**(L) is non-empty, then it is a P%(L)-torsor.

Definition 2.1.5 can be extended by replacing R with any chiral algebra € en-

dowed with a central action of R. More precisely a chiral C-extension of £ is a
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D x-module £ such that
0->C—> L= L0, (2.5)

together with a Lie* bracket and a chiral R-module structure pg cc on £ such that:

e The arrows in (2.5) are compatible with the Lie* algebra and chiral R-module

structures.

e The chiral operations pe and pg c- are compatible with the Lie* actions of £¢.

e The structure morphism R — € is compatible with the Lie* actions of L.

e The * operation that corresponds to px ce (i.e. px ce restricted to R &K .L€) is
equal to —iooo7ge goo, where 7¢e x is the L%-action on R, o is the transposition
of variables and ¢ is the composition of the structure morphism R — € and

the embedding € C £°.

Definition 2.1.6. The chiral envelope of the chiral extension (R, €, £¢, L) is a pair
(U(C, L), ¢°), where U(C, L) is a chiral algbera and ¢¢ is a homomorphism of £¢
into U(C, £¢), satisfying the following universal property. For every chiral algebra
A and any morphism f : £¢ — A such that:

e f is a morphism of Lie* algebras.

e [ restricts to a morphism of chiral algebras on € C £°.

e f is a morphism of chiral-R-modules (where the R-action on A is the one given

by the above point),
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there exist a unique map f : U(€,£°) — A that makes the following diagram

commutative

ge—7

oA

U(C, L)

A.

It is shown in [BD] that such object exists. When € = R we will simply write U(£°)
instead of U(R, £°).

2.2 Quantization-deformation of commutative chi-

ral algebras

Definition 2.2.1. Let R be a commutative chiral algebra. R is called a chiral-
Poisson algebra if it is endowed with a Lie*-bracket, called the chiral-Poisson bracket

{, }: RR R — A|(R) that is a derivation of R in the sense of 2.1.4.

Example 2.2.1. Let A, be a one-parameter flat family of chiral algebras; i.e., A; isa
chiral k[t]-algebra which is flat as a k[t]—module. Assume that A := A, := A, /tA;
is a commutative chiral algebra. This means that the Lie*-bracket [, ], of A; is
divisible by ¢. Thus {, }; := t71[, ] is a Lie*-bracket on .A;. Reducing this picture

modulo ¢, we see that A is a chiral-Poisson algebra, with bracket

=1 h=o

One calls A, the quantization of the coisson algebra (A, {, }) with respect to the

parameter ¢.
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2.2.1 AQuantizations of chiral-Poisson algebras

As in the usual Poisson setting, one can consider quantizations mod t"*!, n > 0,
of a given chiral-Poisson algebra (A, {, }). Namely, these are triples (A™, {, Yy
where A™ is a flat chiral k[t]/t"* -algebra, {, }n) a k[t]/t"+ -bilinear Lie*-bracket
on Ay, such that ¢{, } equals the Lie*-bracket for the chiral algebra structure, and
a : Ay /tAm) = A an isomorphism of chiral algebras that sends {, }¢,) (mod t) to

{, }- Quantizations modulo ¢"*! form a groupoid.

Now, let R be a commutative chiral algebra. As it is explained in [BD] 1.4.18,
a Poisson structure on R gives the module Q2!(R) a structure of a Lie* algebroid.
In fact, the bracket {, } yields a Lie*-R algebroid structure on R ® R. One checks
easily that the kernel of the projection R® R — Q(R), a ® b — adb, is an ideal in
R ® R, therefore Q(R) inherits the Lie*-R algebroid structure.

Now consider the following: given a chiral extension
0= R— Q(R) = QY(R) = 0,

consider the pull-back of the above sequence via the differential d : R — Q(R).
The resulting short exact sequence is a C[h]/h*-deformation of the chiral-Poisson
algebra R'. If we denote by Q°(R) the groupoid of C[h]/h?-deformations of the
chiral-Poisson algebra R, and by P**(Q1(R)) the groupoid of chiral R-extensions of
Q1(R) as defined in 2.1.2, the above map defines a functor

Pr(QY(R)) — Q*(R).

In [BD] 3.9.10. the following is shown.

Theorem 2.1. The above functor defines an equivalence between P*(QY(R)) and

1f {, } denotes the Poisson bracket on R, this is indeed a quantization of (®,2{, })
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Q% (R).

The above equivalence is the point of departure of this work.

Quantization of the center 3.

Recall the commutative chiral algebra 3..; defined in 2.1.3. We will see later, that
the Drinfeld-Sokolov reduction ¥y, introduced in 2.3.1, produces a 1-parameter
family of chiral algebras {Wy} := {¥x(As)} such that Wy =~ 3. According to
2.2.1, we therefore have a Poisson structure on 3..; defined by

_ [2n, Walw,
{z,w} = — (mod h)

where z = Zj|p—0 and w = Wylp—p. It follows from the definition of the functor
¥+ that this Poisson structure coincides with the one from 1.1. Consider now the

following diagram:

Ph(Q1(R)) — {Lie* algebroid structures on Q!(R)}

: -

Qh(R) {Chiral-Poisson structures on R} .

A natural question to ask is the following: if we consider the quantization of
3erit introduced before, how does the corresponding chiral extension of Q(3.4)

look like?

The answer to the above question is the main body of this chapter.

2.2.2 Construction of the inverse

In this section, we will give an explicit construction of 2°(R) for an arbitrary chiral-

Poisson algebra R. In the case where R = 3..;; we will see how this chiral extension
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relates to the chiral algebra of differential operators on the loop group G((t)) at the
critical level introduced in [AG], where G is the algebraic group of adjoint type

corresponding to g.

Let R be a commutative-Poisson chiral algebra and {R} a quantization of the
Poisson structure. The equivalence of categories from Theorem 2.1 states the exis-

tence of a chiral extension
0= R—QR) - QAR) =0

However the proof of this theorem doesn’t provide a construction of it. This section
will be devoted to the construction of the above extension.

Starting from the Lie* algebra extension
0o>R->R—>R—0,

where R® := Ry/h2Ry, acts on R via the projection R® — R and the Poisson bracket
on R, we will first construct a chiral extension (see Definition 2.1.5) IndS*(R¢) fitting
into

0= R—IhdF(R) > RRR— 0,

where R ® R is viewed as a Lie* algebroid using the Poisson structure on R. The
chiral extension Q°(R) will be then defined as a quotient Ind$*(R¢).
More generally, in 2.2.2-2.2.2 we will explain how to construct a chiral extension

Ind$*(L°) fitting into
0—R—=IndL) > RQL -0 (2.6)
for every Lie* algebra L acting on R by derivations and every extension

0>R—->L—-L—N0.
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The case where L = R and L¢ = R, will be presented in 2.2.2 as a particular case

of the above general construction.

Definition of Ind$*(L°)

Let (R, 1) be a commutative chiral algebra and let L be a Lie* algebra acting on R
by derivations via the map 7. The induced R-module R ® L has a unique structure
of Lie* R-algebroid such that the morphism 1 ® id;, : L - R ® L is a morphism
of Lie* algebras compatible with their actions on R. Note that we have an obvious
map

i:L—-R®L.

The Lie* algebroid R ® L is called rigidified. More generally we have the following

definition.

Definition 2.2.2. A Lie* algebroid £ is called rigidified if we are given a Lie* algebra

L acting on R via the map 7, and an inclusion ¢ : L — £, such that R® L = L.

Let £ be a rigidified Lie* algebroid. Consider the map that sends a chiral exten-
sion of £

DR LL—0

to the R extension of L given by considering the pull-back of the map i : L — L.

Denote by P%(L) (resp. P°*(L)) the groupoid of classical (resp. chiral) extensions of
L (where by classical we mean extensions in the category of Lie* algebroids), and by
P(L, 7) the Picard groupoid of R-extensions of L. Clearly the map mentioned above

(that can be equally defined for classical extensions as well), defines two functors
PUL) - P(L,7), PPL)— P(L,7T).
As it is explained in [BD] 3.9.9. the following is true.
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Proposition 2.2.1. If L is Ox flat, then these maps define an equivalence of
groupoids

PHL) S P(L,T), PRL) S P(L,T), 2.7

Given a Lie* algebra extension 0 — R — L¢ — L — 0, define Indg(L¢) (resp.
Ind$*(L€)) to be the classical (resp. chiral) extension corresponding to the above

sequence under the equivalences stated in the above proposition.

In 2.2.2 we will briefly recall the construction of the inverse functors to (2.7) in
the classical and chiral setting respectively (as presented in [BD]). However in 2.2.2
we will give a different construction of the inverse functor in the chiral setting, i.e. a
different construction of the chiral extension Ind$"(L¢) associated to any R-extension

of L. The latter construction will be used to define the chiral extension Q¢(R).

The classical setting

For the ”classical” map P?(L) — P(L, ), to an extension
0—>R—L°— L0, (2.8)

the inverse functor associates the classical extension Ind3(L¢) of the Lie* algebroid

R® L = L given by the push-out of the extension
0>RIRFIROL -RQL -0

viathemapm : R® R - R.

The construction of the inverse functor in the ”chiral” setting given in [BD] (i.e.

the construction of Ind$(L¢)), uses the following two facts:
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e P(L) has a structure of P¢(L)-torsor under Baer sum.

e P(L) is non empty.

The first fact follows from condition 3) in the definition of chiral R-extension, which
guarantees that the Baer difference of two chiral extensions is a classical one. In
other words the action of R on the sum of two chiral extensions is automatically

central.

The non emptiness of P*(L) follows from the existence of a distinguished chiral
R-extension Indgx(L) attached to every Lie* algebra L acting on R. Such object is
defined by the following:

Definition-Proposition 2.2.1. Suppose that we are given a Lie* algebra L acting
by derivations on R via the map 7, and let L be a rigidified Lie* algebroid (see
Definition 2.2.2), so we have a morphism of Lie* algebras i : L — L such that
R® L = L. Then there exist a chiral extension Indg(L) equipped with a lifting
i: L — Indg(L) such thati is a morphism of Lie* algebras and the adjoint action

of L on R via i equals 7. The pair (Indg(L),7) is unique.

The proof of this proposition can be found in [BD] 3.9.8. However in 2.2.2 we
will recall the construction of Indz(L) and of the map i : L — Indx(L).

To finish the construction of Ind5*(L¢) (or in other words, the construction of the
inverse to the functor P*(R) — P(L, 7)), we use the classical extension Ind3 (L)
given in 2.2.2 together with the P¢(L)-action on P*(L£). To the extension 0 — R —

L¢ —- L = 0 we associate the chiral R-extension

Ind$*(L€) := Ind$ (L) + Indg(L)
Baer
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of R ® L by R, where Indx(L) is the distinguished classical extension defined in
2.2.1. Note that, after pulling back the extension

0= R—IndP(L) > LRQL =0

via the map L — £ ~ R ® L, we obtain the Baer sum of the trivial exten-
sion (corresponding to Indgx(L)) with L¢, i.e. we recover the initial Lie* extension

0= R— L —> L — 0 as we should.

Construction of Indg(L).

In this subsection we want to recall the construction and the main properties of the

distinguished chiral extension Indx(L) given by Definition-Proposition 2.2.1.

Given a Lie* algebra L acting on R by derivations, we can consider the action

map RX L — Ay(R) and consider the following push out:

0—RXL

J i (RBL) A(R® L) —>0

l l

0 — Ay(R) —= Ay(R) ® 5,5 (RRL)/R KR L — Ay(R @ L) —=0.

The term in the middle is a D x-module supported on the diagonal, hence by Kashi-
wara’s Theorem (see [?] Theorem 4.30) it corresponds to a D x-module on X. This

D x-module has a structure of chiral extension and will be our desired Indz(L) (i.e.

we have A (Indx(L)) ~ Ay(R) & j,j*(RR L)/RR L).

Remark 2.2.1. By construction we have inclusions & — Indx(L) and a lifting
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i: L — Indg(L) ofi: L - R® L. In fact we can consider the following diagram

!
0—=Qx XL jej*(Qx B L) A(Qx ® L) =~ Ay(L) —=0

/ lAg(i):Ag(unit@id)
0 RR L 55" (R R L) —2t A(R® L) 0

. 1

0 AY(R) A(R)®5,5* RV L) /pm T, A(R® L)

0.

By looking at the composition of the two vertical arrows in the middle, it is not hard
to see that this composition factors through A;(L). In fact the most left vertical
arrow from Qx XL to Ay(R) is zero. We define i to be the map corresponding (under

the Kashiwara’s equivalence) to A(3).

As it is shown in [BD] 3.3.6. the inclusions R — Indx(L), i : L — Indg(L) and the
chiral operation 7,j*(R® L) — A(Indx(L)), uniquely determine a chiral action of
R on Indx(L) and a Lie* bracket on it. In other words they give Indx(L) a structure

of chiral R-extension.

Note that this chiral R-extension corresponds, under the equivalence given by The-
orem 2.2.1 (i.e. after we pull-back the extension via the map ¥x : L - R ® L), to

the trivial extension of L by R in P(L, 7). To summarize we have seen that:

o If a Lie* algebra L acts on R we can construct the distinguished chiral ex-
tension Indg(L) of £ with a lifting 4 : L — Indz(L) of the canonical map
i:L— L.

e Irom an extension 0 = R — L¢ = L — 0 we can construct a chiral extension

Ind$*(L¢) with a map L¢ — IndZ*(L°) given by the pull-back of L — £.
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Remark 2.2.2. Clearly, if we have the extension 0 - R — L* — L — 0, we
can also consider L° as a Lie* algebra acting on R via the projection L — R. In
other words we forget about the extension and we only remember the Lie* algebra
Lf. From point one of the above summary we can construct the distinguished

chiral extension Indx (L) corresponding to this L action on R, together with a map

i:L°— Indm(Lc).

Different construction of Ind$'(L¢).

We will now explain a different construction of the chiral extension
03 R—-IndP(L) > L~RQL -0

that will be used later to construct Q¢(R).

As it is explained in the Remark 2.2.2, given an R—extension
0 RS Ie5 L0,

we can consider the action of L¢ on R given by the projection L — L and construct

the distinguished chiral extension Indx(L¢). This is a chiral R-extension fitting into
00— A;(R) — A‘(Indgg(Lc)) — A|(IR & Lc) — 0,

where A(Indg(L¢)) ~ Mi(R) @ i (RB L) /5 g L. Since we ultimately want an
extension of R by R® L, we have to quotient the above sequence by some additional
relations. We will in fact obtain Ind$*(L¢) by taking the quotient of Indx(L¢) by the
image of the difference of two maps from R ® R — Indx(L°).
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The above maps are given (under the Kashiwars’s equivalence) by the following two
maps from Ay (R ® R) to A(Indx(L°)).
1) The first map is given by the composition

2) For the second map, consider the following commutative diagram:

0—RRR i (RBR) A(R @ R) —0
t1d¥k 1k®id jid@k
0—=RR L joj* (RR LE) A(R® L) —0

0 — AY(R) —= A((R) © 4uj* (R R L) /R B L — AR & L) —0.
Av(Indz(L%))

We claim that the composition of the two vertical arrows in the middle (i.e. 7o
(k X id)) factors through A;(R ® R). In fact since the action of L on R is given
by the projection L¢ — R, the copy of R inside L€ via k acts by zero. Hence the
composition of the left most vertical arrows is zero, which shows that there is a well
defined map

k: AR R) = Ay(Indx(L)).

The quotient of Indx(L¢) by the image of the difference of the above maps is exactly
Ind$*(L°).

Remark 2.2.3. Note that the inclusion L° — Ind§*(L°) mentioned in the summary

in 2.2.2 corresponds to the composition

AVLF) 29 A (Indg(L9)) — Ay(IndZH(L9)). (2.9)
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A special case: deformations of R.

Let (R, m : R® R — R) be a commutative chiral algebra given as R := Ry;/kRy,
where {R} is a family of chiral algebras. Denote by {, } the Poisson bracket on R
defined as

{20} = tlenwls (mod B),

where z; = z (mod k), ws = w (mod k) and [, |5 denotes the Lie* bracket on Ry
induced by the chiral product pjy restricted to Ry X Rj.

Consider the quotient R® = Ry/h*R;. This is a Lie* algebra with bracket [, ].
defined by

1
[Z%, Wr|c = ‘ﬁ'[zf‘n Wh)h-

Consider the short exact sequence
05 RDB R R0, (2.10)

and let us regard R¢ as a Lie* algebra acting on R via the projection R — R
followed by the Poisson bracket multiplied by? 1/2. This sequence is an R-extension
of R in the sense we introduced in Definition 2.1.3, therefore, from what we have
seen in 2.2.2, we can construct a chiral R-extension of R®@ R by R (here L = R and
Le = R%)

0> R— mdF(R) > RRIR - 0. (2.11)

Below we will use the above chiral extension to define the chiral algebroid Q¢(R).

The construction of Q¢(R).

We can now proceed to the construction of Q°(R). Recall that, because of the Pois-

son bracket on R, the sheaf Q(R) acquires a structure of a Lie* algebroid.

2This correction is due to the fact that, as we saw in 2.2, the equivalence stated in Theorem
2.1 gives a quantization of 1/2{, }.
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Recall that we denoted by Q°*(R) the groupoid of C[h]/k?*-deformations of our
chiral-Poisson algebra R, and that we want to understand how to construct the

inverse to the functor

PHQNR)) > Q(R),

that assigns to a chiral extension 0 — R — Q°(R) — Q(R) — 0, its pull-back via
the differential d : R — Q(R).

The inverse functor will be constructed as follows: for any object in Q°*(R), i.e.

to for any extension 0 - R LY, N, N 0, we will consider the chiral extension
0 R IdP(R) > ROR -0

described in the previous subsection. We will quotient Ind$*(R¢) by some additional
relations in order to impose the Leibniz rule on R ® R. These relations will be
given, under Kashiwara’s equivalence, as the image of a map from A(R° ® R°)
to Ay(Ind$*(R)). More precisely, we will construct a map from j,5*(R° & R)
to Ay(Indgz(R€)) such that the composition with the projection A;(Indgz(R¢)) —
Ay(Ind$*(R¢)) vanishes when restricted to R¢ & R, Hence it will induce a map
AR @ RE) — Ay(Ind$(R€)). Form the sequence (2.11) we will therefore obtain a

————

chiral R-extension Q¢(R) of the Lie* algebroid Q!(R)

—_———

0= R = Q(R) = QY(R) = 0.

We will then check that R’, which a priori is a quotient of R, is in fact R itself, and
that the pull-back via the differential d : R — Q!(R) is the original sequence (2.10),

with induced Poisson bracket given by {, }. This will imply that ©2¢(R) is in fact the
chiral extension Q¢(R) given by Theorem 2.1.
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The map from j,j*(R*RR°) to Ay(Indx(R¢)) is defined as the sum of the following

three maps:

1. The first map o, is given by the composition
JJH(RERRY) = 4 (RBR) = Ay(Indx(R9)),

where the first map comes from the projection R¢ — R.

2. The second map a» is obtained from the first one by interchanging the roles

of the factors in 7,7*(R¢ X R¢).

3. For the third map a3, note that the chiral bracket us on R gives rise to a
map

the = Jag T (RE R RE) = A(RS)
and we compose it with the canonical map A}(R¢) — A,(Indz(R)).

Now consider the linear combination a; — as — a3 as a map from 7,5*(R¢ B R°) to
Ay(Indz(R°)). If we compose this map with the inclusion R¢ ® R¢ — j,7*(R* X R)
and the projection onto Ind$*(R¢), it is easy to see that the map vanishes. More

precisely we have the following:

Lemma 2.2.1. The composition
REE R — 4, 5" (RERRE) L2223 A (Indg(RE)) = A(Ind(R9))

vanishes. Thus it defines a map Leib : A (R ® RE) — Ay(IndZ(R)).

Proof. Since the action of R¢ on R is given by the projection R® — R and the Poisson

bracket on R multiplied by 1/2, and because of the relation o {, } oo = —{, },
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the maps a; and o factor as

Re ® RE — Ay(Indx(R°)) — Ay(Ind$(R)) .

a1=3{,}=—a3
Ay(R)
Note that the above wouldn’t have been true if we hadn’t used the relation in

Indx(R¢) as well. Moreover the third map, when composed with the projection to

A(Indg(R9)) is exactly

RERRE - RER Lh AY(R) — A(IndS(R)),

hence the combination a; — ay; — a3 is indeed zero. From the above we therefore get
a map Ay(Re ® R¢) = A (Ind§ (R9)).
O

We define KTC\(ER/) to be the quotient of Ind$*(R¢) by the image of the correspond-

ing map from R ® R to Ind3*(R°) under the Kashiwara’s equivalence.

Remark 2.2.4. Note that the map R°® R° — Ind$*(R¢) indeed factors through
Re® R —» R® R. To show this it is enough to show that the map j,j*(R°KR¢) —
A (Indg(R°)) factors through j,j* (R K R®) — j,j*(RRR). If so, then the diagram
below would imply that the composition RBRR -+ A (Ind*(R¢)) is zero, and we are
done:

0—REHR— 4, 7*(REH R) — A (R ® RT) —0..

l |

0—RHR— 5 (RRR) —> A(R®R) — 0

l

A(Indg' (R<))
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To show that the map factors as

Gud* (R R REY — A (Ind§H(R))

.

B (RER)

we need to show that the composition of the map a; — ay ~ a3 with the two em-
beddings 7,j*(R° K R) — 7,7*(R R R) and 4,7 (R K R¢) — 7,5"(R° K R) is
zero. We'll do only one of them (the second one can be done similarly). For the
first embedding the map s is zero (since we are projecting the second R¢ onto R)
whereas the first map (because of the relations in Ind$*(R¢)) is equal to minus the

composition
Gef (REE®R) ~ 7,7 (RBR) & AYR) = A(IndS(R))

which is exactly the third map when restricted to j,j*(R° X R).

———

Recall that we defined Q°(R) to be the quotient of IndZ*(R¢) by the image of the
map Leib from 2.2.1 obtained using the combination a;-as-a3. By construction we

have a short exact sequence

—~——

0— R — Q¢(R) = B(R) - 0, (2.12)

where R’ is a certain quotient of R. In the rest of this section we will show that the
above extension is in fact isomorphic to the extension of Q!(R) given in Theorem

2.1. This is equivalent to the following:

Proposition 2.2.2. Consider the extension of Q1(R) given by (2.12). Then we

have

1. R =R
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2. The pull-back of (2.12) via the differential d : R — QYR) is the original
sequence (2.10).

Proof. To show that R’ = R, consider the chiral extension given by the equivalence
of Theorem 2.1. This is an extension of Q}(R) such that the pull back via the
differential R — Q!(R) is the sequence (2.10). that is, we have the following diagram

0 — R —= Q4(R) — Q}(R) —0, (2.13)
R
0—=R Re—T >R 0

with d° a derivation, i.e. as maps from 7,7*(R°®R) to A,(Q2¢(R)), we have d°(p.) =
B ge@®) (T, d°) — 0 o prgery © 0(d°, w), where p. is the chiral product on R® and
Kxoe(x) is the chiral action of R on ¢(R). We claim that there is a map of short

exact sequences

0 — AYR) — A(IndF(R)) — A (RQ R) —=0

] l

0 —= Ay(R) —= A(Q(R)) — A(QL(R)) —= 0

—

that factors through 0 — A (R) = A(Q¢(R)) = A(QH(R)) — 0, and moreover
induces an isomorphism from Q!(R) to Q}(R). This would imply that R’, which
a priori is a quotient of R, is in fact R itself. Furthermore, the fact that it is an
isomorphism on Q!(R), would also imply that m =~ 2°(R), hence the pull-back

via d : R = Q}(R) would indeed be the original sequence 0 - R — R¢ = R = 0.

To prove the claim, consider the map d° : R® — Q¢(R) given by (2.13). Using the

chiral R-module structure pggqex) on Q°(R), we can consider the composition

J M (RE RS BE, 5 (R R Q(R)) 220 A (Q(R)).
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The above composition can be extended to a map from A((R) & 7.5*(R K R°) -
Ay (Q2°(R)), by setting the map to be A(i) on Ay(R). It is straightforward to check
that this map factors through a map D¢

D : Ay(Ind$(R%)) — A(Q5(R)).

Note that, by construction, the resulting map D° : R® R — Q!(R) is the one given
by z ® w — zdw, for z and w in R, and that the kernel of this map is just the ideal
defining the Leibniz rule.

—————

To show that D¢ factors through 0 — A}(R') = A(Q(R)) = A(QYR)) — 0, we

need to show that the composition of D¢ with the map
Leib : Ay(R° ® R°) — Ay(IndS(R))
given in 2.2.2. vanishes. Hence we are left with checking that the composition
Ay(RE @ RE) £ A\(IndSh(RY)) 220 A(Q(R))

is zero. For this, recall that the map Leib was constructed using the linear combi-
nation a; — @z — a3 of three maps o, a2 and a3 from 7,5 (R° X R€). By looking at
the map

3o (R BRE) S22 A (Indg(R)) S5 A(Q4(R)),

we see that the condition on d° being a derivation, implies that the above composi-
tion vanishes. Indeed A,(D¢) o a; is given by
*Rid, idRd°

G (RERREY 22 M RRRY) LB2E L (RRQAR)) 2D, A(Q(R)).

The map Ay(D¢)oay is given by the above by applying the transposition of variables
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o, whereas the third map
Jd (RERRE) 25 AYRY) — A(Ind2(R%)) 25 A(Q(R))

is equal to j,j*(R¢ B R) £5 AY(Re) iGN A(Q2°(R)). Therefore the above maps
coincide with the terms in the relation d*(u.) = pz ae(®)(7, d°) — oo ux ge(r) 00 (d°, 7),

and hence A(D¢) o Leib in zero. Note that the resulting map
chrmpe . A!(ﬁc) 1
A(IndF(RF)) - AR Q@ R) —= A2 (R))
induces an isomorphism

AYQL(R)) = A(R @ R)/Im(w o Leib) = A((QY(R)).

This conclude the proof of the proposition. O

2.3 Quantization of the center 3.

Recall the commutative chiral algebra 3..;; defined as the center of A.;;. As we have
mentioned in the introduction, 3..; can be equipped with a chiral-Poisson structure

in the following two equivalent way:

e For any s # 0 let x be any non critical level kK = &y + hrgy and denote by
Ayj, the chiral algebra A,. Let z and w be elements of 3..;. Let z, and w, be
any two families of elements in Ay such that z = z; and w = w, when i = 0.

Define the Poisson bracket of z and w to be

(z,w} = % (mod k).
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We will now introduce the Drinfeld-Sokolov reduction ¥x and explain how this
functor provides a 1-parameter family of chiral algebras {Ws} := {¥x(Ax)} such

that Wy ~ 3.0, that are a quantization of 3..;.

2.3.1 The Drinfeld-Sokolov reduction

We start by recalling the BRST complex for a chiral algebra A as presented in [BD].
We will also recall the BRST reduction for A-modules over X. Finally, in 2.3.1 we

will define the Drifeld-Sokolov reduction ¥x as a special case of the above,
Ux : Ap-mod - Wy-mod,

and use it to define the quantization {Ws} of 3.ri:.

The BRST reduction

For a finite dimensional Lie algebra L, consider the Lie*-algebra £ := L ® Dx over
X. As it is explained in [BD], we can construct the Clifford Chiral algebra Cl'(£)
given by

Cr(g)=U(Ll] @ £ [-1] ® Qx)".

We can also consider the PBW-filtration on CI'(£) (e.g. €l (£) = £[l]@ L [-1dNx)
and the adjoint action ad of £ on itself. We define £7%¢ to be the bull-back of the

following short exact sequence:

0 ——> Qx — CI%,(£) — CI%,(L)/Qx ~ gl(£) —>0 .

T [+

0 Qx glate £ 0

We have also an embedding i : £[1] — €I7!(£). Consider now the natural map
l: g~Tate — U(g-Tote)’ | where U(£-T%¢) is the chiral twisted enveloping algebra
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of £7T4% If we denote by A" the chiral algebra U(£-T%¢)' ® CI'(£) we get a map
Lie:=a+1:2£— A"

given by g = g®1+1®a(g). If we denote by £; the DG Lie*-algebra Cone(£ “, £),

we can view i and Lie as the components of a map of graded Lie*-algebras
¢ 21- - A

We now define a differential on A in the following way. As it is explained in [BD]
1.4.10, there is an action of £; on the DG-algebra Sym(£*[—1]) compatible with
the differential & of Sym(£*[—1]) (see [BD] 3.8.9) and one has the following:

Lemma 2.3.1. The operations
[Lie,idgs(_q)), [i,6]g~-q] : £R L [—1] = A(AY)
coincide.

The above lemma allows us to define the map x. In fact it tells us that the map
p(Lie, idge-1)) = p(3, Ole--1)) : 53" (SR L7[—1]) = AL (A'[1])
vanishes on £ X £*, where p is the chiral operation on A'. Hence we get a map
X £® £ — A1) (2.14)

We have h(£ ® £*) ~ End(£). We define @ to be the image of the identity endo-
morphism of £, projected onto h{(A'[1]),

Q = x(Ide) € h(A[1)).
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We have the following proposition:

Proposition 2.3.1. @Q is the unique element in h(A'[1]) such that [Q,i(g)] = Lie(g)
for every g € £, moreover [Q,Q] = 0. In particular if we denote by d the Lie action
of Q@ on A, then d is a derivation of A" of degree 1 and square 0 and the map

¢: L = (A,d)

is a map of DG Lie*-algebras.

The complex BRST(A) = (A',d) is called the BRST-reduction of U(£-Tate)’.
For a map of chiral algebras f : U(L~T%) — R, the complex BRST(Aj :=
R® Cl(L),dx = [f(Q),]) is called the BRST reduction of R. The cohomology
of BRST(Ag) is called the semiinfinite cohomology of R.

BRST reduction for modules

For an A'-chiral module M on X, the Lie-action Qy of @ on it is a derivation
of square 0 and degree 1. If we denote such derivation by dy, then (M, dyy) is a
BRST(A’)-module. In particular we can take an U(£-7%¢)"-module M and consider
the A-module M ® CI'(£). Moreover, if we are given a map of chiral algebras
f:U(£7Te) - R we can do the same construction for any R-module M and get

a BRST(Ay)-module. Hence we obtain a functor:
{R-modules on X} — {BRST(A%)-modules on X} . (2.15)

Drinfeld-Sokolov reduction

In the above framework, we can take L to be the nilpotent sub-algebra n of g. We

denote by £, the corresponding Lie*-algebra. Given any invariant bilinear form
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K = Kerit + DK gy Oon g, we see that the natural map
£, Ay
lifts to a map £ — Ay, and therefore to a map
Uestatey 4y 4,

We can consider the complex BRST (A, ® €I(£,)). This complex, comes equipped
with a differential d = f(Q), as explained above. However, to define the Drinfeld-
Sokolov reduction we will consider a new differential d,, = d+ dy, where dj is defined
in the following way.

Let {e,,a € II} be a basis of n, and let xo be the non-degenerate character of n
given by

1, if a is simple
XO(ea) =
0, otherwise.

As it is explained in [BD] 2.6.8. this defines a map %, : £ — Qx that we can
regard as an element in £} C CI(£,) - Ar® Cl(L,). We define dp to be dy = [Xy, |-

Clearly d? = 0, moreover dy commutes with the differential d.

Definition 2.3.1. We define the Drinfeld-Sokolov reduction of A to be the DG-
chiral algebra

BRSTX(A) := (An ® CL(Lx), d = d + do).
We have the following remarkable theorem, proved in [FB].

Theorem 2.2. o For any K = Kei + Nkgan, the cohomology of the complex
(Ar® Cl(Ly),dn = d+dp) is concentrated only in degree zero. Thus, this DG-
chiral algebra reduces to a plain chiral algebra Wy, := HO((Ar ® CU(L,), d, =
d + dy)) called the W-algebra.
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o The chiral algebra Wy is isomorphic to the center 3emi 0f Aeris- Moreover this

gives a quantization of 3.4 viewed as a chiral-Poisson algebra.

From now on, we will denote by ¥y the functor BRSTX. As we have seen in

2.15, this defines a functor

Uy : Ap-mody := {Az-mod on X} — W-mody.

We will be interested in k = k4. By the above theorem, for the critical level we

can re-write the above functor as

\IIX .= BRTSX : .Aa-it—mOdX - Sait'mOdX- (216)

2.4 Main theorem

2.4.1 The chiral algebra of twisted differential operators on
the loop group

We will now recall the chiral algebra Dy, of « twisted differential operators on the
loop group as presented in [AG], for & = Kerir + AR K-
Let G be an algebraic group and consider the group scheme G x X on X. Let Jx(G)

be the corresponding D x-scheme, where, by Jx we denoted the functor

Jx : {Ox-schemes} — {Dx-schemes}, (2.17)

right adjoint to the forgetful functor

For : {Dx-schemes} — {Ox-schemes}.
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Consider the Lie*-algebra L;, and the invariant bilinear form & = k¢ + Ak gin on g.
The algebra Dy, is constructed using the Lie*-algebra O;,(g) ® Lg. More precisely,
it is defined as

Dcrit = U(oJx(G) ® Lg)/I7

where I is the ideal in U(O,(g) @ Lg) generated by the kernel of the map

U(OJX(G)) — Jx (G)

As it is explained in [AG], the fiber (D), of Dy at x € X is isomorphic to

Ds), ~ U(9x ® O .
(Dx) (8 )U(g“t]]%) i)

Moreover Dy comes equipped with two embeddings
An 2 Dy & Ay (2.18)

corresponding to left and right invariant vector fields on the loop group G((¢)). In
particular, for A = 0, we have Ay = A_y = Aeriz and Dy = D Therefore we

obtain two different embeddings, | := ly and r := rg of Ay into Dy
1
-Aait - Dcrit (L -Acrit-

If we restrict these two embeddings to 3., as it is explained in [FG] Theorem 5.4,

we have

l(3m-t) = l(-Acrit) N T(-Acrit) = T(Bcrit)-

Moreover the two compositions

1 r
3crit — Acrit — DC'r‘llt — ~Acrit « 301'it
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are intertwined by the automorphism 7 : 3¢ — 3eri: glven by the involution of the
Dynkin diagram that sends a weight A to —wg()) (i.e. when restricted to 3..; we
have | =7 o).

The two embedding [ and r of A into D, endow the fiber (Derir), with a
structure of geri-bimodule. The fiber can therefore be decomposed according to
these actions as explained in the introduction.

These decompositions coincide up to the involution n and we have

(:Dcrit)x = @ (®crit): y

A dominant

where (Dmt);\ is the direct summand supported on the formal completion of Spec(32.;;,)-

Recall that we denote by DY .. the chiral algebra corresponding to (Dmt)g. The em-

crit
beddings ! and r give DY, a structure of A;-bimodule, and we denote by €2, the

resulting chiral algebra

egﬂ't = (xR ‘DX)(Dgrit)~

The following theorem relates the chiral algebra DY, to the extension of Q(34r4)
arising from the quantization of 3..; given by the 1-parameter deformation {W;} =
{Ux(As)} defined by 2.2, under the equivalence of theorem 2.1. This is the main

result of this chapter.

Theorem 2.3. The chiral envelope U(2°(3rit)) of the extension
00— 3crit — Qc(:))crit) — Q(Bcrzt) - 07

given by the quantization {Wy := Ux(An)} of the center 3e, is isomorphic to the

0
crit®

chiral algebra €
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2.4.2 Proof of the theorem

The proof of Theorem 2.3 will be organized as follows: we will give an alternative
formulation of the Theorem that consists in finding a map F from Q¢(3c.:) to
€Y ., with some particular properties. The definition of the above map will rely on
the explicit construction of the chiral extension Q¢(3..:) that was given in Section
2.2.2. In Section 2.4.3 we will finally define the map F and conclude the proof of

the Theorem.

Reformulation of the Theorem

We will show how to prove Theorem 2.3 assuming the existence of a map F' from

Q°(3erit) to €2 .. In order to do so, we will use the fact that both U(Q(3¢r::)) and

crit”
€9 ., can be equipped with filtrations as explained below.

The chiral algebra U(Q¢(3.i)), being the chiral envelope of the extension
0 — Berie = Qc(scrit) - Ql(3crit) — 0,

has its standard Poincaré-Birkhoff- Witt filtration. In fact, more generally, given a
chiral-extension (R, €, £¢, £), using the notations from Definition 2.1.6, we can define

a PBW filtration on U(C, £€) as the filtration generated by U(€, £¢)p := ¢°(€) and
U(€, £); := Im(j,j* (£ B ) L=,
— 5.5 (U, L) BU(C, L)) — A(U(E, £))).

Moreover, according to [BD] 3.9.11. we have the folloing.

Theorem 2.4. If R and € are Ox flat and £ is a flat R-module then we have an
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isomorphism
€ ® Symal 3 grU(e, L£o).
By applying the above to the case where € = R = 3. and the extension of
L = QY(3eit) given by £ = Q°(34rit) We get

gr.U(Q(3erie)) =~ Symgcruﬂl(l’;mt)-

The filtration on €2, is defined using the functor ¥ x from 2.3.1.

Recall that, for any central charge k = hkgiy + Keris, the functor ¥y assigns to
a chiral Az-module a Ux(Az) = Wp-module. In particular, for every chiral algebra

B, and every morphism of chiral algebras ¢ : Ay — B we have

chiral algebra morphism chiral algebra morphism
_}

(i):Ah—)B Wx(d))wh—')‘llx(g)

‘Ifxl

Moreover recall that for i =0 we have Ux(Aqrit) = Ierit-

As it is explained in [FG], the chiral algebra €2 ., can be described as

(Tx RUx)(U(C, L)) = Cue = (¥x B Ux)(Ders),

crit T

for some particular chiral algebra € and chiral extension £¢. Hence it carries a
canonical filtration induced by the PBW-filtration on U(€, £¢). We will recall be-

low the definitions of the chiral algebra € and the chiral extension £°€ .

THE RENORMALIZED CHIRAL ALGEBROID. Recall that [FG] Proposition 4.5. shows

the existence of a chiral extension A™™7 that fits into the following exact sequence

0 - (-Acrit X ~Ac1'it) — Aren;r - Ql(acrzt) - 0’

crit
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which is a chiral extension of (At ® Aerie) in the sense we introduced in Definition
crit
2.1.5. In particular, if we consider the chiral envelope U((Aeit @ Aerit), A™™7), by
crit

Theorem 2.4 we have

gt (U((Aerit ® Acrie), A™™T)) ~

erit

> (Aerit ® Acrie) ® Syms_ (9 (3eri))-

crit crit

The chiral envelope U((Aerit ® Aerit), A™™7) is closely related to the chiral algebra
crit
'DO

crit?

in fact in [FG] the following is proved:

Theorem 2.5. We have an embedding G of the chiral extension A™™" into Dery
such that the maps |l and r are the compositions of this embedding with the canonical
maps

Acrit = Acrit @ Agrir) > AT

crit

The embedding extends to a homomorphism of chiral algebras

U((-Acrit ® -Acrit)y Arm,r) — I)crit

crit

0

and the latler is an isomorphism into D_,,.

Therefore we see that €2 ., is given by applying the functor ¥x X ¥ x to the chiral
envelope U(C, £°), for

C=(Aerit ® Acrir), and L= AT

crit

In particular, since the functor Uy is exact, we obtain a filtration on €2, induced

from the PBW-filtration on U({Aeit ® Aeriz, A™™7) such that

Symj_ ' (3crit) — gr.B°,
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where we used the fact that U x(Agmit) = 3erit-

Remark 2.4.1. Note that if we apply the functor Ux to the two embeddings in
(2.18), we obtain two embeddings

N (Ux B Ux)(Dp) <> W_s

such that [ := ly = rgon =: r on, where we are denoting simply by l; and 5
the maps Vx(ls) and Ux(rs) respectively. In particular, for A = 0, we obtain two
embeddings [ and r of 34 into (Vx ® ¥x)(D,;:) that differs by 1. Moreover the

image of the two maps lands in B°, therefore we obtain two embeddings
1
scrit — 80 <L 3crit-

From the above construction it is clear that 3. corresponds to the 0-th part of
the filtration defined on B?. Moreover, by the definition of the map G from Theorem
2.5 (see [FG]), the embedding 3. — BP induced by the inclusion (Aeri; @ Aeriz) =
U((Aerit ® Aerir), A™™7) under ¥x & ¥y, coincides with . .

crit

Suppose now that we are given a map F : Q°(3eit) — €2, satisfying the con-
ditions stated in Definition 2.1.6. By the universal property of the chiral envelope,

we automatically get a map
U(Q(3erit)) — Conir-

Clearly not every such map will induce an isomorphism between the two chiral
algebras. Theorem 2.3 can be reformulated as saying that there exists a map as
above, that gives rise to an isomorphism U(Q¢(3cri)) — €2, More precisely we

have the following:
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Theorem 2.6. There exists a map F : Q°(3erit) = (€21 — €., compatible with
the 3.4 Structure on both sides that restricts to the embedding I of chiral algebras

ON 3crit Such that the following diagram commutes

Qc(Bcrit)/Scrit E (Cgrit)l/:imt.

\/

Ql (Bcrit)

We will now show how Theorem 2.3 follows from Theorem 2.6. The proof Theorem

2.6 will occupy the rest of the article.

Proof of (Theorem 2.6 = Theorem 2.3). To prove Theorem 2.3 we need to show

that the above F induces an isomorphism U(Q°(3.:)) — €%,,. This amounts to

erit*

showing that the following diagram commutes for every ¢:

L1 U(Q(Berit)) F gr; G, (2.19)

SymH-l Ql (scrzt)

3erit

But this follows from the fact that the above filtrations are generated by their first

two terms. In fact, more generally, for any chiral envelope U(L£€), we have

A(gri U(L9)) =

Cm Jeg* UL N BUL):) — /m Geg* (U (L) RU(LY—g) —
A(U(£9)) A(U(L9))

It is not hard to see that the isomorphism Sym3™ Q'(3erie) = g1, U(Q°(Berit))
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0
crit

(and similarly for € ,) is the one induced by the map

Gx5" (2 (Berie) ®Sym3_) — Ai(griy U(Q(3erie)),

that in fact vanishes when restricted to Q!(3q:) X Symgcm, and factors through the

action of 3..;. Therefore the diagram (2.19) commutes by induction on 3. O

2.4.3 Construction of the map F

Recall that Theorem 2.6 amounts to the construction of a map of Lie* algebras
F : Q°(3erit) — €2, compatible with the 3..-structure on both sides and such
that:

1. F restricts to the embedding ! (given in Remark 2.4.1) on 3..

2. The following diagram commutes:

Qc(3crit)/3c'rit £ (egrit)l/scrit-

O (3erit)

Remark 2.4.2. Since A(Q¢(3.ri)) was constructed as a quotient of A (Inds,_, (35.4))

and since, by definition,
A!(Ind3crit (321%)) = A!(Bcrit) © j*j*(scrit X Sgrit)/?’crit DX Bgritv
to construct any map F' from °(3.:) to €, we can proceed as follows:

e first we construct a map f : 35, — C%.,.
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e Using the chiral bracket u’ on €2, we consider the composition

o c =
Gud" Berit B 3%5) 2 5 (€ R E2L) £ AYCL,).

This composition yields a map
A!(Bcrit) @j*j*(scrit X 321%) — A!(eocrit))

by sending Ay(3eri:) to €2, via Ay(D).

» We check that the above map factors through a map

F‘ : A‘ (Ind3crit( )

crit

) = Ay(€,)-

e We check that in fact if factors through F : Ay(Ind§"  (3%.:)) = Ai(€%)-

e We verify that the relations defining Ay(Q¢(3cr4)) a8 a quotient of Ay(Ind§’ _ (35,:))
are satisfied, i.e. that F gives the desired map F' from Q(3i)¢ to €2, under

the Kashiwara equivalence.

Remark 2.4.3. Note that any map F' constructed as before, automatically satisfies
the first condition in 2.4.3, hence to prove Theorem 2.6, once the map f is defined,
we only have to verify that condition (2) in 2.4.3 is satisfied, i.e. that the diagram

above commutes.

Definition of the map f.

We will now define the map f : 3¢, = €2, and hence, according to the first two

erit
points in 2.4.2, the map F : A\(3erit) ® jnd* (Beri B 35;,) = A(€L,,). Assuming

that it factors through a map F : Q%(3.:) — €2, we will then show that it

crit)

satisfies the second condition in 2.4.3. This will conclude the proof of Theorem
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2.6. The poof that it factors through £2¢(3.+) (which amounts to the proof of the
remaining last three points in 2.4.2) will be postponed until 2.4.4. To define the

map f : 35, — €2, we will use the following three facts:

1. There exist two embeddings
!
3crit - egﬂt 4‘1"‘ 3crit

constructed by applying the functor ¥Ux to the two embeddings in (2.18). In

fact, by doing it, we obtain two maps
Wi B (Ux B Ux) (D) <& W_n

such that [ := ly = ry on =: r o n, where we are denoting by Il; and 75 the
maps U x(ls) and ¥x(ry) respectively. The two embedding of 3. correspond

to the above maps when A = 0.

2. There is a well defined map
e: Wy — W—h-

In fact, since Wy = W x(Ap), and since A_j is isomorphic to Ay, as vector space
with the action of C[A] modified to %i-a = —ha, a € A_p, we can consider the
map Wy — W_j that simply sends & to —h.

3. The involution 7 : 3¢t — 3t can be extended to a map 7 : Wy — Wy by
setting n(h) = h.
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We define f in the following way: for every z; € 35, = Wnr/h*Ws we set

f(zh) _ %lh(zh) — T;(Tl(e(zh))) (mod h)

0

This is a well defined element in C.;,

mod k.

because lg = rgoT, i.e. the numerator vanishes

Assuming the proposition below, we will now show that the resulting F' satisfies
condition (2) of 2.4.3, which, according to Remark 2.4.3, concludes the proof of
Theorem 2.6. Proposition 2.4.1 will be proved later in 2.4.4.

Proposition 2.4.1. The map

F 2 A(Berit) @ Gnd* (Berie ®3S.,) = A(CLL),

obtained by using f : 3,;, — €L, from above, factors through a map F : A\(Q2°(Berit)) —

A (e(c)rit)'

End of the proof of Theorem 2.6

Proof. We are now ready to finish the proof of Theorem 2.6, which, according to
Remark 2.4.3, amounts to check that

Q°(Berit)/ erie F (€%:)1/Bcrit

\/

Ql (3crit)

commutes. In order to do so, we will show that it commutes when composed with

the map d : 3ei — Q1(3eri). By looking at the composition

erit 2 O Berit) = QX Gerie)/Jerit = €)1/ 3erits

75



we see that, for z € 3., the resulting map is

— %l"(z"‘) - "’;i("(e(zﬁ))) (mod %), (2.20)

where z; is any lifting of z to 3 Note that this map is well defined only after

crit-
taking the quotient of €%, by 3cri-
For the other composition, we first need to recall how the isomorphism Q!(3qi:) —
(€9..)1/3¢cris was constructed. Recall from 2.4.2 that the filtration on €2, is the one
induced (under ¥ x X x) from the isomorphism G given in Theorem 2.5. Therefore

the isomorphism above is the one corresponding to the composition

(Acrit ® Acrit) ® N Berie) = U(A™ )1/ (Aeris © i) 4,

crit crit crit

= D /U Acrit) + r(Acrit)

under (¥ x®Y x) (here, for simplicity, we are denoting the chiral envelope U ((Aeris ®
crit

Acrit), A™™T) by U(A™™T)). If we consider the inclusion of Q'(3..:) followed by
the first arrow from above, it is clear that the image in U(A™™7) /(Awit @ Acrit) is
G[[t]] x G[[t]] invariant. In particular it means that the image of QI(BM;r)“maps to
(Tx B Ux)(U(A™7))/3erie- Now, by looking at the definition of the map G (see

[FG] 5.5.), we see that the the map

VxR x)(G
Berit 2 Q' (Berie) = (Tx B ) UA N1/ Ferie 0D (€2 )1/ Feri,
is indeed given by (2.20). This completes the proof of Theorem 2.3. O

We will now give the proof of Proposition 2.4.1, which will occupy the rest of
the chapter.
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2.4.4 Proof of Proposition 2.4.1

Recall that the proof of Proposition 2.4.1 consists in showing the following:

1. the map F': A\(3erie) ® Gui* Berie ® 35,5,) = A(€L,,) factors through a map

F: A(Inds,, ., (35:)) = Ai(€%:).

2. the map F factors through F : Ag(Indf;;’z",z (35..,)) = A(CLL).

crit

3. The relations defining As(2°(34i)) as a quotient of Ay(Ind$®  (3¢,;,)) are satis-

Berit

fied, i.e. F gives the desired map F from (3rit)¢ to €%, under the Kashiwara

equivalence.
For this we will need the following Lemma.

Lemma 2.4.1. The composition
WL B W_p, I, (Ux RUx)(Dp) K (Vx XTx)(Dp) £, A((Tx BT x)(Dr))

18 zero.

Proof. In [FG] Lemma 5.2 it is shown that the composition
1By W
AsRKA_; — Dh X Dh — Al(i)h)

is zero. In other words the two embeddings centralize each other. The Lemma then,
immediately follows by applying the functor (Ux & W x).
O

Proof of (1).To prove that  factors through

F: A!(Indéf,,-t (3erit)) = A!(egrit)
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we use Lemima 2.4.1. Recall that we defined f from 3¢ ., to %, to be

crzt erit

ey = Llen) = ritole) gy

Because of the above Lemma, it is clear that, when we consider the inclusion 3.4 X
3% = JuJ*(Beri®3E,,) and the composition with the map to A(€%,;,), the resulting

map factors as:

Berit B 355 — 327" (Berie B 355) — A(€L00)

! ©

3crit X 3crit A!(Bcrit)

which implies that the map factors through a map F : A\(Inds_, (35.;,)) = A(C2,).

Remark 2.4.4. Note that when we restrict the map f : 3¢, — €2, t0 3¢ A 3

because of the flip from % to —A in the definition of e, we simply obtain the inclusion

1
3crit - e(c)rit

Proof of (2). Now we want to check that the relations defining Ay(Ind§" (3¢,))
as a quotient of Ay(Indj,,,,(3%,;,)) are satisfied, i.e. that F factors through a map
F A (Indf}c"g( crzt)) - A (ecnt)

First of all, recall that to pass from A(Inds,,,(3%.;)) to A(Ind§ . (35,,)) we took

crit

the quotient by the image of the difference of two maps from Ay(3erit ® 3erit) tO
Ay(Inds,,,, (35.:)). The first map was given by

Ar(Berit ® Jerie) = Ai(Berie) = Aa(Inds,,, (3540)), (2.21)

while the second map was induced by the composition

JxJ (3crzt X 3crzt) 1@’}'} Jud" (3cnt X 3crzt) - A‘(Ind3cr-.t (Bcrzt)
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which vanishes on 3qi ® 3eris > Fad*(3erit 8 3eriz). When we compose the map
(2.21) with F, we get lom = ' o (I®1). However when we compose the second
map with

-7*-7 (30"‘“ g 301'1.1&) Ef') ]*-7 (e(c)mt E egrzt) L) A'(egnt)

because of Remark 2.4.4, we see that this map corresponds to p’ o (I ®1) hence the

difference of the images goes to zero under F.

Proof of (3). Now we are left with checking that F factors through
F : A! (Ind?’;}:ﬂt (cht)) - A'(Qc(scﬂt))

This will occupy the rest of the article. Recall that A(Q2¢(R)) was given as a quotient
of Ay(Ind*

3cr1t

(3%.;.)) by the map Leib. The Leibniz relation was given as the image

of a map

AV(35: ® 3orie) = Ag(Indg’;“ (3erit)

and this map was the sum of three maps, oy, a2 and as, from j,5*(35. X 35..)

& 3¢

which vanished on 3¢ € it~

crit

Hence we want to check that the composition

Av(35s ® 353) 225 A(Ind$ | (35:)) 2 A(C,)

vanishes. Instead of considering the map from A(3¢,, ® 3¢

¢.iz) we can consider the

three maps

al

Jed* (35 B 3¢ zt) — A (Ind3mt( orit)) > A‘( grit)! (2.22)
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and show that the composition F o (at; — aa — a3) is zero. Recall that the first map,

oy, was given by projecting onto juj*(3crie B 35.5), 1-

(43}

”’_‘-’_d———\*
]*J (3cr1,t X 3cr'l.l.‘) —_>-.7*.7 (BCT“ X 3cm.t) _)' A (Ind3cr,¢ (357‘1.13)) ’

where (3 denotes the second component of the projection

A\Berit) @ Jad" (Berie B 355) = A (Ind3cm (3erie))-

The second map, as, was given by o o a; o 0, and the third map a3 was given by

the composition

Fud" (350 B 35:) 25 A(354) S Ad(Inds,,, (35.4))
— A(IndS"  (35:))-

When we compose a3 with the map F : A(Ind§’ (35:,)) = Ai(BP), it is easy to

see that the unit axiom implies that the composition is equal to
T ] c c Ar(f
3o (3 3570) 25 A(35) 2D A(€,). (2.23)

Now consider the chiral algebra (¥ x X x )(Dy) and denote by u}, its chiral operation.
Consider the map

fo Wi = (Ix BT x)(Dy)

Lin(2n) — ra(n(e(zn)))

falzn) = 5 5

€ (Ux ¥ Ux)(Dy,n),

(i.e. we are not taking this element (mod k)). It is clear that the three maps of,

2 and of given by

Go3" (Wa B Wp) 220 5 5 (Ux B Ux) (Dy) B (Tx B Tx)(Dp)) 25
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f—;i) A‘((‘px ® ‘IJX)(I)ﬁ)) - A!(e(c)rit)a (alll

ugt (Wa W) DRI, i (I x BT ) (Dp) R (Tx BTy ) (Dy) 222

5 A((Tx ® Tx)(Dr)) — Ai(€D,), (o)
a3 (Wr R Wa) 25 Ay(Ws) 2% AY(Tx R Tx)(DR)) = A€, (o

respectively, vanish on j,5*(A2(Wy ® W;)) = 7.5"(Wr B W), in particular they
define well defined maps from j,5*(3%.;, ® 35.;.) to A(€2,,). Moreover the resulting
maps coincide with oy, oz and as composed with F. In fact, the first and the last
coincide by definition. For the second one, simply note that, modulo A, the map

rsonoe equals [

By the above, to show that the combination of the three maps given in (2.22)

oy — ag of the above three

is zero, it is enough to check that the combination o} —
maps vanishes.

Let us denote by o}, ab and o4 the maps from 7,7*(WxBW;) to A/((¥xRT x)(Ds))
corresponding to of, o and of respectively (i.e. before taking the maps (mod A)).
We will show that the combination o} — o) — o5 is already zero.

Because (¥ x ® Ux)(Ds) is h-torsion free, it is enough to show that the three maps

agree after multiplication by h. But now note that each of the maps

ha'l, ha'2, ha:’; € Hom(j*j*(Wﬁ X Wﬁ),A!((\IJX X ‘I’X)(gﬁ))),
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is the sum of two terms, and the sum of the resulting six maps is zero. Indeed ha}

equals the sum of the following two maps:

Gud (Wa B W) 22 5 i (Tx B Ux)(Dn) 25 A(Dy), (2.24)
Gudt (Wi BWy) 218 S (T R Ux)(Dn)) 225 A(Da). (2.25)

On the other hand, the map hofj is given by the sum of the following

Ged" (W R W) 255 A,(Wy) 2825 A (D)), (2.26)
G (Wn BWy) 2225 A (W_p) 20 A (D). (2.27)

It is clear that the map (2.24) equals minus the map (2.26). Similarly, the relation

Ky = —0 o iy o o guarantees that the two maps summing up to haj, given by

j,,j*(Wh X Wh) (rronoell; Yoo

5o (Ux B Ux)(Dy)) 25 A(Dy),

and

- rronoelrponoejor . . oo
o3 (W B Wy) LR, (e B x)(Da)) 25 A(Dn),

cancel with the remaining maps (2.25) and (2.27) respectively.

Hence the composition a; — @z — a3 as a map from j,7* (3%, X 3<,.,) to A(€2,,) is

zero, i.e. the map F : Ay(Ind$* (35.:.)) — A(€Y,;,) factors as

(Ind3¢r.t (3cr1,t ) —L A' (eg'rzt)

|

A((3erie))

82



By Kashiwara we obtain the desired map F : Q(3crit)¢ = €2, and this concludes

the proof of Theorem 2.6.
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Chapter 3

Localization theorem for the affine

Grassmannian

3.1 Factorization categories and factorization spaces

In this section we start by defining the appropriate categorical setting that will be
needed to formulate Conjecture 1.2.2. In 3.1.1-3.1.5 we recall the definition of the
Ran space and define the notion of factorization category, algebras in a factorization
category, factorization spaces and factorization groups. We will then recall the
factorization description of chiral algebras.

In 3.2 we will define and study the factorization category A-mod = {I —
A-mod;} of chiral A-modules. In particular, in 3.1.8, given a commutative chi-
ral algebra B, we will describe the category B-mod; of chiral-B-modules on X?
as the category of modules over a sheaf of topological associative algebras on X?
canonically attached to B.

In 3.2 we will recall what it means for a group G to act on a category C, as ex-
plained in [FG3]. In Section 3.3 we will generalize the above to a factorization group
G acting on a factorization category. The factorization category we will focus on

will be the factorization category A-mod of chiral A-modules. In particular, we will
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study the factorization sub-category A-mod? consisting of strongly G-equivariant
objects in A-mod, as defined in 3.3.1. In 3.3.3, we will apply this to the chiral
algebra D4 and the group Dx-scheme JG of Jets into G as defined in 3.1.7.

3.1.1 The Ran space

Let & be an algebraically closed field of characteristic zero, and denote by fSch, Ff/k
the category of afline schemes of finite type over k. For a category D, denote by
Pshv(D) the category of pre-sheaves on it, i.e.

Pshv(D) := { functors D? — Gpd},

where Gpd,, is the category of oo-groupoids. Fix a smooth curve X over k.

Definition 3.1.1. The Ran space on X is the functor of points

f Sch;”;e i/ Ran—(X)) Set

S —  {F Cc Hom(S, X) : F is finite}.

The Ran space is more commonly defined as the colimit of the diagrams
I
Fin®, 2% Psho(fSchay /i),

where Fing, denotes the category of finite sets with surjections as morphisms, and
a surjection of finite sets ¢ : I — J maps to the corresponding diagonal embedding
X7 — X1

Note that a k-point Spec(k) — Ran(X) of Ran(X) consists of a finite collection F’
of points FF C X (k). In this perspective, we can think of Ran({X) as the moduli
space for finite subsets of X. More generally, for an affine scheme S, an S-point of
Ran(X) consists of a finite set of maps F = {fi,..., fo} C Hom(S, X). We asso-
ciate to F' the closed subscheme in Xg := X x S given by the union of the graphs
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Ffi C Xg.

We will be interested in collections of categories over finite powers of the curve
X satisfying certain properties. We will use the notion of tensor product of abelian

categories as introduced in [FGT7] 17.1.

As it is explained in loc. cit. the tensor product of two abelian categories is an
abelian category satisfying a certain universal property. In particular it may not
exist. We will always work in the following framework, in which the tensor product

does exist.

Let AL A bea homomorphism of commutative algebras. Consider the abelian
categories A-mod and A’-mod. The map f gives rise to a monoidal action of A-mod
on A’-mod, moreover the monoidal action A-mod x A’-mod — A’-mod is right-exact
and commutes with direct sums. Assume now that we have an abelian category €
endowed with a monoidal action of A-mod such that the action map is right-exact
and commutes with direct sums. Under the above assumptions, as it is shown in
[FG7], the tensor product

A-mod ® G,
A-mod

exists. For instance, we can consider an abelian category €, with a map from A
to the center Z(€) of it. This map endows € with a monoidal action of A-mod,
satisfying the properties above. In this case the tensor product A’-mod A®Od € can
be described as follows. This is an abelian category whose objects are ob;;cts Ci
€, endowed with an additional action of A’, such that the two actions of A coincide,
where one action is the one coming from f : A — A’, and the second is the one

coming from the map A — Z(€). Morphisms are morphisms C; — C; in € that

intertwine the A’-action.

The categories of interest can be described as categories over the space Ran(X).
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More precisely, we have the following definition.
Definition 3.1.2. A category € over the Ran is the following data:

e For a finite set J we have an abelian category €x: over X7, in other words, we
are given an action of the monoidal category QCoh(X') on €x:. We require

the monoidal action to be right-exact and to commute with direct sums.

¢ We have pairs of mutually adjoint functors
A;} : exl__>ex.l : Aq&,*

for every surjection ¢ : I —» J.

e We require that the induced functor

J A¢,‘* ®Idex1
QCoh(X?) ® i ——*,e.,
QCoh(XT)

be an equivalence (as categories acted on by QCoh(X7)).

We define the category € to be

El exl.
A*

S I—=J

Given amap f’: Y7 — X' and a category € over Ran(X), we denote by f*(€)y:

the category over Y/ given as

I f*((i’)y; = QCOh(YI) ® Gy,
QCoh(XT)

where QCoh(X7) acts on QCoh(Y?) via the map f1*.
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Definition 3.1.3. A functor F' between two categories € and D over Ran(X),

consists of a family of functors
FI : GXI — Dxl,

such that, for ¢ : I - J, we are given isomorphisms of functors A} o Fr ~ F; 0 A,

compatible with higher compositions.

3.1.2 Factorization categories

For every partition w: I — .J of I, i.e. I = Ujc;1;, where I; = 771(j), consider the
open subset

FID gl oy x !
where U/ = {(z;) € X" |z; # z; if 7(3) # =(j§)}.

Definition 3.1.4. A factorization category is a category € over Ran(X) such that,

for every partition 7 : I — J of I, we are given equivalences
Gy (Cxr) = Cxn, @ -+ ® Cxta sy (3.1)

compatible with refinements of partitions.

Example 3.1.1. The most obvious example of factorization category is given by

the category QCoh(Ran(X)) of quasi-coherent sheaves on Ran(X), given by
I = QCoh(Ran(X)) xr := QCoh(X7).

Definition 3.1.5. Given two factorization categories € and D, a functor F': € - D
is called a factorization functor if it is compatible with the equivalences in (3.1), in

the sense that

(FI)IU(I/J) ~(Fpn®:- @ Fm)|yus-

89



3.1.3 factorization algebras

Let € be a factorization category over Ran(X). We are interested in chiral algebra
objects in C. In particular, we are interested is unital chiral algebras in the factor-
ization category QCoh(Ran(X)). These correspond to chiral algebras as defined in
2.1.

Definition 3.1.6. A (chiral) algebra A in € is the assignment I — Ay € Cx:, such
that

e For every surjection ¢ : I — J, we have an isomorphism A;(AI) ~Aj.

e For every partition 7 : I — J of I, we are given an isomorphism

(j(I/J))*(.AI) ~ A ®---BAL |y -

Definition 3.1.7. A unital chiral algebra over a curve X is an algebra in the fac-

torization algebra QCoh(Ran(X)) that satisfies the following.

o (unit) There exist a global section 1 € Ay, called the unit, with the property
that for every local section f € A(U), U C X, the section 1Xf € Axz|y2_a(x),
(defined by the factorization isomorphism), extends across the diagonal, and

restricts to f € A ~ Axz2|a(x)-

Remark 3.1.1. As it is explained in [BD], chiral algebras as defined in 2.1 are
the same as unital factorization algebras in QCoh(Ran(X)). In fact we have the

following proposition.

Proposition 3.1.1. There is an equivalence of categories

Unital factorization algebras

= {Unital chiral algebras},
in QCoh(Ranz(X))
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given by the assignment A — A% := Ax ® Qx.

Given a factorization algebra A in a factorization category €, there is a notion of
modules over A. The category of A-modules will in fact be a factorization category,

defined as follows.

Definition 3.1.8. Given a factorization algebra A in €, the factorization category
A-mod(€) of A-modules in € is the factorization category defined by the assignment
I - A-mod(€xr), where A-mod(Cx) is the category whose objects are collections

Mk € Cxnx, for every finite set K satisfying the following:

e For every surjection ¢ : K — K’, we have an isomorphism A;(MIUK) o~

MIUK/.

e For every partition 7 : I U K — K’ of I U K, such that I ¢ 7=*(k’) =: T for

some k' € K’, we are given an isomorphism
(G (Myug) = Ar B BAL L RMyg|yumy »

where TUK =L U---UT,_;UT.

e The above isomorphisms are compatible with sequence of surjections I LK

I/
K’ Z5 K" in the obvious sense, where

I L K — TU’CEK' Iﬂ-—l(k) and 7 = TUk"EK" Tk”7 With I C T.

kAk! k' #£E

For a chiral algebra A, we can consider the factorization category
A-mod := { unital A-modules in QCoh(Ran(X))} (3.2)

These are A-modules M in QCoh(Ran(X)) such that
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e (unit) If 1 € Ax denotes the unit section in A, then for every local section
FeMU), U c X!, the section 1R f € Mxmuz|U({,.)u1/1>_A(X1), (defined by
the factorization isomorphism), extends across the diagonal, and restricts to

[ €M = Myur|axny-

3.1.4 Chiral modules over X!

From proposition 3.1.1, it is natural to expect the factorization category A-mod from
(3.2) to have a different description in terms of the right D x-module A%. Given a
unital chiral algebra A%, and a finite set I, we can in fact define the notion of chiral
A-modules on X? in the following way.

For any finite set K and embedding ¢ : I — K, consider the |I|-dimensional

closed sub-scheme Hy C XX given by the union of the diagonal sub-schemes

Hy = U {; = yn), forie K} C X5 x X7,

K11

where K = Ky U I, and z; and y; are coordinates on X*1 and X7 respectively.

Consider the following diagram
Hy—is X8 x X1 2y,

D2
n
XK 1 XI

where U, denotes the complement of H, inside X% x X!. For a quasi-coherent

sheaf M; on X7, denote by T's(M;) the module over X% x X! given by
Ly(My) = ii* (p5(My))-

Definition 3.1.9. A chiral A%-module M! on X! is a quasi-coherent sheaf on X!
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along with a map

pl g gt (AT R M) — Lrerugs (M)
such that the following is satisfied.

e (unit) The following diagram commutes:

743 (Qx WAL) — j, j* (A R M)

l

Crerupe (M) —e Trcrugsp (M)
o (Lie action) pi{; 415 = s, w3~ “{,{2,3} where

11 03y ¢ Jed (AT BATRM) — 5,5 (A% B Trerupy (M) = Trenpey (M),

131,33 = H1,42,3} © 0, and

Wy Jed (AT RATRM) = A g* (AT R M) —

= Ap(TrerupeyMD)) o Trerigea (M.

As it is explained in [NR], we have an equivalence of categories between the
category A-mod; introduced in (3.2), and the category of chiral A%-modules on X7,
where A9 = Ay ®@ Qx.

Proposition 3.1.2. For every I finite set, there is an equivalence of categories
A-mod; = {chiral A%-modules on X'},

given by the assignment M; - M :=M; ® Q;I[,.

Given a A%-module M! over X!, the corresponding factorization module is con-

structed inductively. For instance, for the finite set I U {*}, the module M.} is
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defined as the kernel of the chiral action
pl g gt (AR M) — FIcIu{*}(MI)7

which is surjective thanks to the unit axiom. The inductive step, constructing the
modules Mk for any finite set K, can be found in [NR] 3.5.

Now, let A% and B¢ be two chiral algebras and
¢: A% — B¢

a morphism of chiral algebras. Let A and B be the corresponding factorization
algebras. Consider the factorization category € = A-mod. Since the map ¢ endows
B¢ with a chiral A%-module structure, and therefore makes it an A% module over
X (and B; and A%-module over X'), we see that, by proposition 3.1.2, B becomes
a factorization-algebra object in the category A-mod. In fact, for every I we take
(B)r € A-modxr to be By itself, and for every K we take (B),ux to be the object in
A-modyx given by the inverse to the functor in 3.1.2. We can therefore consider
the factorization category B-mod(A-mod) as defined in definition 3.1.8. We have

the following proposition.

Proposition 3.1.3. We have an equivalence of factorization categories
B-mod(A-mod) ~ B-mod.
Proof. For every finite set I, there is a tautologically defined functor
B-mod(A-mod;) — B-mod;,

and proposition 3.1.2 says that this functor is an equivalence. In fact, let us consider

an object M; € B-mod(A-mod;). By definition, this corresponds to a collection of
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objects My x € A-modj g, satisfying the factorization property
Gy Muug) = B, R - R By, BM] 0/,

for every partition 7 : I U K — K’ of I U K such that I € n~*(k") =: I for some
k € K’. However, each My g, being an object of A-modj x, corresponds to a
collection of objects My ks € A-mod ks satisfies the factorization property

(j(I/J))*(MIUKuJ) = AI{ X---X 'AIvlr—l X MI_’ vus/n’

for every partition I{ U--- U I, UT of IUK LU J, such that 1 LUK C I'. We will
therefore think of the object M; as a collection of objects My k; satisfying the
factorization property for B with respect to the K finite set, and the factorization
property for A with respect to the finite set J.

Clearly, given an object My € B-mod(A-mody), the collection My x defines a B-
module structure on M;. Hence we have the functor mentioned above. Conversely,
given an object N; € B-mod;, and hence a collection of objects Ny g € B-mody ,
we can construct the modules Ny ks in A-modj k7 using proposition 3.1.2 in
the following way. Using the object Ny x we can construct a chiral-B-module
structure on it. More precisely, consider the map ¢ : T UK — I U K U {*}, and
the corresponding stratification H, 4 X x XK L Us. Denote by Ny,; the object

Nrukugs}, and consider the Cousin complex for Ny,; given by the above stratification,
0— :N{*} — j*j*(B X :NIl_lK) — ’i*i*(N{,})[l] - 0.

It is not hard to see that the unit axiom for B implies a natural isomorphism
458" (Np)[1] = T3(N1uk), and that the second map in the above sequence gives rise
to a B action on the right-D-module N7, := Ny x ® Qlf(';’,f{,l Therefore, given

the object Nk, we obtain a B¢-module N}, on XX, Using the map of chiral
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algebras ¢ : A9 — B we can regard it as a A%-module on XK, Now, using
proposition 3.1.2, we can construct the corresponding factorization A-module, i.e.

the collection Ny g s. |

3.1.5 Factorization spaces

We will now introduce the notion of factorization space. In particular we will be
interested in the factorization space attached to a Dx-scheme Y. For D x-schemes of
the form Y = Jx(Z), where Z is an affine O x-scheme, and Jx is the functor defined
in 2.17. The corresponding factorization space will be studied in more details in

3.1.3. In 3.1.7 we will focus on the case of Z = G, for an affine group-scheme G over

X.

Definition 3.1.10. A factorization space Y is the assignment I — Y;, for [ finite

set, and Y; a space over X/, such that

e For every surjection ¢ : I — J, we are given isomorphisms Yr|xs >~ Y,

e For every partition m : I — J of I, we are given isomorphisms

(j(I/J))*(yI) ~Yp X% 131,,|U(1/1) .

A factorization space Y is called co-unital if it comes with a collection of maps
Yr— X" x Yy,

for each partition I = I LI I which extends the corresponding map over the com-
plement of the diagonal. We demand that these be isomorphisms over the formal

neighborhood of the diagonal.
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Example 3.1.2. We will see later that the space of opers on X , as defined in [BD2]
can be organized into a co-unital factorization space Op,. Moreover, we will have a
sequence of inclusions

Op, C Op,™" C Op;,

unr

where the last two (non-counital) factorization spaces Op;

and Op, generalize the

notion of unramified opers and opers on the punctured disc as introduced in [FG3|.

Remark 3.1.2. Given a factorization space Y, we can define the factorization cat-

egory QCoh(Y) of quasi-coherent sheaves on it, by the assignment
I - QCoh(Yy).

In the special case in which we take Yy to be X, we recover the factorization category

QCoh(Ran(X)) from example 3.1.1.

3.1.6 From Dx-schemes to factorization spaces

Given a D y-scheme Y, we will now define and study factorization spaces JY = {I —
JrY} and MY = {I — MY} canonically attached to Y. In studying these spaces,
we will use the notions of ind-scheme and formal schemes. In particular, given a
map ¢ : S M) X1 we will consider the union U;e Ty, of the graphs I';’s inside
X x S, and the completion U’i;ﬁi of X xS along U;crT'y,;. As it is explained below,
we can regard U,-/G;F\,m as a scheme or as a formal scheme. When regarded as a

scheme, we will denote it by Dy and by D the complement of 'y inside Dy. We

start by recalling the definition of ind-scheme.

Definition 3.1.11. An ind-scheme X is a presheaf on the category of affine schemes,

that can be represented by a filtered family of schemes,
X = li_n;Xa,
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where the transition maps ig, : Xo — Xj are closed embeddings, and the limit is
taken inside the category Pshv(fSchayss/k) as defined in 3.1.1.
We say that an ind-scheme X is of ind-finite type if each scheme X, is.

By a formal scheme we mean an ind-scheme whose reduced part is a scheme.
Let now S be a space over X, we will now explain the difference between the formal
scheme U’i‘;l?d’i and the scheme Dy. Assume for a moment that X is the affine line,
S is just a point, and I is the one element set. Let € X be the point corresponding

to pt = X. Denote by D, the formal scheme
D, := lig Spec(Clz]/x").

We could have also considered the disc as a non-formal scheme, in other words we

could have considered the scheme D,

D, := Spec(lim C[z]/z").

n

By definition of direct/inverse limit, for an affine scheme S, we have
Hom(D,, S) ~ Hom(D,, S).

However, the formal disc D, is "too small”, in the sense that it makes no sense to
talk about the formal punctured disc D, — z. The same is not true if we consider
the disc D,. In fact, the latter, as a scheme, contains the closed point z, and we
denote by D the complement of z inside D,.

To pass to the general situation, if S is an affine scheme mapping to X’, we can

consider the formal-scheme U’i/E;F(ﬁs' We write it as
Uierly, = l_ig}Spec(R/In),
n

98



where R is a topological algebra, whose topology is given by I,,’s. As before, this
formal-scheme is not good enough for us. In particular it doesn’t contain U;erl'y, as

a closed sub-scheme. Therefore it makes more sense to consider the scheme Dy

Dy := Spec(lim R/L.). (3.3)

The scheme Dy has a closed sub-scheme UiefT'y,, and we can consider the comple-
ment

Dz = D£ - UieIF,,;,.. (34)

The factorization space attached to a Dx-scheme

Let Y be a Dx-scheme over X. In the case that Y is affine, this is the same as a
D x-algebra, hence, as we saw in 2.2, the same as a commutative chiral algebra. In
the general case, given a Dx-space Y, we can construct a factorization space JY as

follows. For every finite set I, and test scheme S, we define J/Y(S) to be

a horizontal section Dy — Y
where by horizontal we mean a map of D x-schemes. The above construction defines
a functor

{Dx-spaces} — { Factorization spaces }.
The factorization space JY naturally sits inside the factorization space MY defined

as follows. For every finite set I and test scheme S, we define M;Y(S) to be

S (4517---!4571) _XI
MIH == y (35)

o horizontal section D — Y
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where D; is the scheme defined in 3.4. Clearly J;Y(S) corresponds to those sections

that are regular along Use Ty,.

Remark 3.1.3. Given a commutative chiral algebra B¢ we can consider the corre-
sponding D x-algebra B! := B ®0%. Since B! corresponds to an affine D x-scheme,
we can construct the corresponding factorization space. It is easy to see that the unit
axiom on B¢ translate into the co-unital property of the corresponding factorization

space. Therefore we have a functor

{Commutative chiral algebras} — { affine counital factorization sapces }.

3.1.7 Factorization groups

Let Gx be an affine D x-group scheme. From the above construction, we obtain a
factorization group D x-scheme, i.e. for each power of the curve X, we have an
affine group scheme G; := J;Gx over X7'.

Consider now a group scheme G on X, and let Jx(G) be the correspond-
ing Dx-scheme, where Jx is the functor defined in (2.17). Denote simply by
JG the factorization space JJx(G). In this case, by the adjunction property of

Jx : {O-schemes} — {Dx-schemes }, we have

S (¢l7--~;¢")} X[
JGi(S) =
o section DQ -G

We denote by MG the ind-scheme of meromorphic jets MGy := M;Jx(G),

MG;(S) = ) (3.6)
o section D;’, -G

We will mostly focus on the quotient MG;/JG;. We will see later, that its closed

points can be described as the set of G-bundles on X with a given trivialization
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outside a finite set of points.

3.1.8 Chiral modules over a commutative chiral algebra

Let now B¢ be a commutative chiral algebra. In this section, we will see how we can
describe the category of B-modules on X' as quasi-coherent sheaves over the space
M1 defined in 3.5, for the D x-scheme Y3 corresponding to B. More generally, in
3.1.1for a chiral algebra B, not necessarily commutative, we will construct a sheaf
of topological algebras B over X!, such that modules over it will be equivalent to
the category of chiral-B-modules on X!. For this we will first need to recall some

constructions regarding the chiral envelope U(L) of a Lie*-algebra L.

For a Lie*-algebra L, we will start by recalling the definitions of Lie*-modules

and chiral L-modules over X?.

Definition 3.1.12. e A Lie*-L-module M’ on X’ is a quasi-coherent sheaf on

X! along with a map
plLRM — Crciupg (M)
such that the following is satisfied.
— (Lie action) .Ufl,z},s = lu’é,{l,(i} - N{,{2,3} where

#’{,{2,3} = ,LLI O/JI X ILXM LR FICIL.I{*}(M) — FICIU{*,*}(M)»

Né,{1,3} = j1,{2,3} © O]y, and

phoys=plop, : LRLRM — A(L)RM = A (Trenpy(M)) = Trcnpoa(M).

e A chiral L-module M; on X7’ is quasi-coherent sheaf on X' along with a map

pl TR M) — Lrengs (M)
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such that the following is satisfied.

— (Lie action) Let U’ C X% x X! be the complement of the diagonals
{11 = z;} and {y2 = z;}. Denote by j the inclusion 7' : U’ — X? x X'.

We require that “f1,2},3 = ué, (13} “{,{2,3} where

N{,{2,3} . ]i]l*(L L g M) — J*]*(L & L x M) — Flclu{*,*}(M)7

“5,{1,3} = [1,{2,3} © 07y, and

Wy R (LRLRM) = Apgg (LB M) -

- A12*(FICII_}{*}(M)) — chm{*,*} (M)

Unlike in the world of usual Lie algebras, for a Lie*-algebra L, the category of
Lie*-modules on X is not equivalent to the category of chiral U(L)-modules on X?.
Chiral U(L)-modules are in fact equivalent to chiral-L-modules, in the sense that

there exist an induction functor Ind’ establishing an equivalence of categories
Ind’ : {Chiral L-modules on X'} 5 { chiral U(L)-modules on X'}.  (3.7)

We can also describe chiral and Lie*-L-modules over X! as modules for some par-
ticular sheaves of topological Lie algebras on X?. For this, consider the following
diagram

H(chu{*}) -1—>X X XI -<]—U

I

X X!
Given a Lie*-algebra L, let
£y = he(py(L)[-1]) and  £D := he(ig" ((D)[-1))), (3.8)
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where, for a sheaf M on X x X!, we define hr(M) to be

hr(M) := lim pa . (M/M¢), M such that M /M is supported on H.
3

The objects in (3.8) are sheaves of topological O x:-modules, moreover they have a
structure of Lie algebra, coming from the Lie*-algebra structure on L.

As it is explained in [NR], we have the following proposition.

Proposition 3.1.4. Let L be a Lie*-algebra. Then the category of Lie*-modules
(resp. chiral L-modules) on X' is equivalent to the category of 2((,1)—modules (resp.
£0D modules).

Chiral algebras and topological algebras attached to them

Let B be a chiral algebra. We will use the previous subsection to describe chiral
B-modules over X! as modules over a sheaf of topological associative algebras.

The ideas is the following: consider a classical associative algebra B, and denote by
B the corresponding Lie algebra. We have an obvious forgetful functor from the
category of B-modules to the category of chiral-BX¢-modules. Since chiral-BL%*-

modules are the same as U(B**)-modules we therefore have a functor
B-mod — U(B¥¢)-mod.

Let now K be the kernel of the natural map U(B%*®) — B. It is clear that the

functor above defines an equivalence
B-mod ~ U(B%*¢)/K-mod.

We can apply the same idea to the world of chiral algebras. When the chiral al-

gebra B is commutative, we can furthermore describe the (commutative) algebra
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corresponding to U(B%*)/K as some scheme over X.
Consider the (commutative)-Lie*-algebra BX* corresponding to B%. Denote by

K the ideal in U(B%%) generated by the kernel of the natural map
U(Ble) —» B2,
From the definition it is clear that we have the following lemma.

Lemma 3.1.1. The functor Ind! from (3.7) induces an equivalence of categories

Ind" : { Chiral B -modules on X! } = { chiralU (BY*) / K -modules on X! }.
(3.9)

Let’s now consider the sheaf of topological (commutative) Lie-algebras defined
in (3.8) for L = B Denote them simply by ‘B(()I) and BY respectively. Because

of the chiral algebra structure on B¢, we have maps
U(BD) - B,

Denote by KD the ideal generated by the kernel of the above maps. Consider the

equivalence of proposition 3.1.4
{ chiral-U(B%*)-modules on X’ } =~ {U(BD)-modules on X7} .

We have the following proposition.

Proposition 3.1.5. The composition of the above functor with (8.9) induces an

equivalence

modules for the topological

{ Chiral B*-modules on X'} =
associative algebra U(BW)/ KD
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Proof. Clearly the functor { B¢-modules on X'} — { U(B")-modules } given by
proposition 3.1.4 factors through

{ modules for the topological associative algebra U(B!)/KD} — { U(BD)-modules } .

On the other hand, given a module M; for the associative algebra U(B®)/ KD,
we can consider it as a Lie-B)-module. By the equivalence (3.7), together with
proposition 3.1.4, we can consider the module Ind’/(M;) as a chiral U(B%*¢)-module
over X!, However, the fact that M; was in fact a module for BY) when regarded
as an algebra, implies that the action of U(BL*) on Ind!(M;) factors through the
chiral algebra U(B%*)/K. Now, by Lemma 3.1.1 we therefore have that M; itself

is in fact a B%-module on X7.

O

Example 3.1.3. The commutative case: For a commutative chiral algebra B¢,
denote by Y3 the corresponding co-unital affine factorization D x-space. Recall from
3.1.6 and 3.5 that we have constructed spaces J;Ys and MYz over X?. Denote by
p! the natural map

pI : Mﬂég — XI,

and by 033, the object 0%y := pl(Opy,). Note that we have isomorphisms
Sym(BW)/ KD ~ B (as sheaves) over X!. For I = {x}, the fiber of B{*}) at
any point z € X coincides, by construction, with the topological associative algebra
Bass = lim_ @:;s introduced in [BD] 3.6. As it is explained in loc. cit 2.4.7, for this
topological algebra, the ind-scheme Spf (isg”) = liﬂj Spec(@gj-” is the space of

horizontal sections of Spec(B) over the formal punctured disc DJ. In other words,

we have
* )
BID ~ (057 yp)e-
Let now I be a finite set with n elements, and T = (z1,...,Z,) be a point in X?,
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with z; # z; for all 7 and j. Since both B and M;Ys factorize, we have
(BD)r = B @ @B = (034 ® - 8 (05 ys)an = (O )r

and therefore we have

B ~ 07y,

By the above, proposition 3.1.5 can be re-formulated in this particular case in the

following way.

Corollary 3.1.1. For a chiral algebra B¢ we have the following equivalence

~ continuous modules for the sheaf of topological
{ Chiral B -modules on XI} 'y f f of topolog

ot rel
assoctative algebras Ojp y_

In the special case in which the commutative chiral algebra B¢ comes as the
D x-algebra corresponding to a Ox-algebra under the functor Jx from (2.17), we
will simply write JZ; and M Z; for the spaces Jidj,(z) and MY ;. (z) respectively.
Note that, by the adjunction property of Jx we have

S (¢1y~ny¢n) XI
MZ](S) =
a section D; - M

and JZ; is the subfunctor consisting of those sections that are well defined on

UierT'y;. Therefore in this case we take B to be O Jx(z) and we have an equivalence
continuous modules for the topological

{ Chiral 0, (z-modules on X'} =

fadd rel
associative algebra Oj7z
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3.2 Action of a group scheme on a category

Let € be an abelian category, and let G be a group scheme. A weak action of G on

€ consists of functors:
acty : QCoh(S) ® € — QCoh(G x S)® €,
functorial in § — G, and two functorial isomorphisms related to these functors.

e (unit) The first isomorphism is between the identity functor in € and the
composition

e 2 QCoh(G) ® € — €,

where the second arrow corresponds to the restriction to 1 € G.

e (associativity constrain) The second isomorphism is between the two functors

€ = QCoh(G x G) ® € given by the following diagram

e act” , QCoh(G)® €

] act* lact&

QCoh(G) ® G —4'QCoh(G x @) ® €.

Example 3.2.1. The tautological map

triv*: € - QCoh(G)® €, C— Ve®C,

defines an action of G on C. We will refer to this action as the trivial G-action on

.

Definition 3.2.1. We say that an element C' € € is weakly equivariant, if it comes
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equipped with an isomorphism
act*(C) ~ triv*(C) (3.10)

which is compatible with the associativity constraint of the G-action on €.

We denote by €*C the category consisting of weakly G-equivariant objects.

Example 3.2.2. If we take € = Vect, with the trivial G-action, then we have
Vec®® = Rep(G).

3.2.1 Strong action on C

For a group scheme (or ind-scheme) G, we let G(;) = Spf(C @ € - g*) denote the
first infinitesimal neighborhood of the unit 1 € G, and we let 5'1 be the formal
completion of G' at the unit. A weak action of G on € is called strong if either of

the following equivalent conditions are satised:

e We are given have functorial isomorphisms between the functors act} for any
pair of innitesimally close points ¢, ¢’ : S — G, satisfying certain compatibil-

ity conditions.

e We are given functorial trivializations of act} for any S — @1, respecting the

unit, the multiplication, and the adjoint action of G on Gj.

Remark 3.2.1. The second condition above is actually equivalent to a weaker

version. It is enough to be given a trivialization not on 61, but on Gyy:
act*|g,, = triv*|g,, (3.11)

which is compatible with the unit and the Lie algebra structure.
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Definition 3.2.2. Given a category € with a strong action of G, an object in

C € @G ig called strongly equivariant, if the two isomorphisms
act*(C) ~ triv*(C)

coming from (3.10) and (3.11) coincide.

We denote by CF the category consisting of strongly equivariant objects.

3.2.2 The case C = A-mod.

Let us consider a scheme (or ind-scheme as defined in chapter ??) X and a group

scheme G acting on it. Consider the map
act : G x X = X.

This defines a functor act* : QCoh(X) = QCoh(G) ® QCoh(X), and it defines an
action of G on QCoh(X) in the above sense. We have also the projection triv :

G x X — X, and we can consider the diagram

act
GxX—TX.
triv

In this case, the objects of QCoh(X)“ are exactly those modules over X whose
pull-back on G X X along the above two maps are isomorphic. Obviously we have
a functor

QCoh(X)¥% — QCoh(X/G).

The example 3.2.2 corresponds to the case X = Spec(k).
Let now X be affine, X = Spec(A), and suppose that A is acted on by a group
G. Then we have an action of G on the category of A-modules, that corresponds to

the above action on QCoh(X).
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More generally, let A be an associative algebra acted on by G. This defines a

weak action of G on the category of A-modules. In fact, we have a map
G x A-mod — A-mod

given by (g, M) = gM, where gM ~ M as vector spaces, but the action of A on it
is defined by a.(gm) = ((g.a)m). This defines the required map

A-mod — QCoh ® A-mod, M — M,

where M(g) = gM € A-mod. The objects of (A-mod)*C are those A-modules M

that are endowed with an action of G.

As we have seen earlier, given a scheme (or an ind-scheme X) acted on by G,
we have a weak-action of G on the category QCoh(X). However, by considering the
category of D-modules on it, we see how this category carries a strong action of
(. The weakly equivariant objects in Dy-mod are exactly the weakly equivariant
Dx-modules, and the strongly equivariant objects are the same as D-modules on
the quotient X/G.

As before, if we take an affine scheme X = Spec(A), we can translate what it means
for the G-action to be strong in terms of the G-action on A. In this case, a strong

action on A-modules, translates into the existence of a map
g A

that coincides with the derived action of g on A coming from the G-action on it.
More generally, let A be any associative algebra, acted on by G via a map G —
Aut(A). The action of G on the category of A-modules is strong if the derivative of

the above map g — Der(A) factors through the algebra if inner derivations via a
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G-equivariant map ¢,
g— Der(A).
l“’/
A
The objects of (A-mod)¢ are those A-modules M for which the following diagram

commutes

d{actg)

0 222% End(M),

l act

A

where actg : G — Aut(M) is the G-action of G on M coming from the forgetful
functor

(A-mod) ™€ — Vect™C ~ Rep(G).

3.3 Action of a factorization group on a factor-

ization category

We now want to explain what it means for a factorization category to be acted on
by a factorization group §.
Let X be a smooth curve over k, and let € be a factorization category and

G = {I — S} a factorization group (see 3.1.7).

Definition 3.3.1. By a weak action of G on € we mean a collection of functors

act? : Cxr - QCoh(S;) ®  Cyu,
QCoh(Xx7)

for every finite set I, compatible with the factorization isomorphisms. These functors
should satisfy the following:
e (unit) The first isomorphism is between the identity functor in Cxs and the
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composition

Cour 20, QCOM(S)) ® Cxr = Cyr,
QCoh(XT)

where the second arrow corresponds to the restriction to the composition with

the pull-back along the identity section X7 — ;.

e (associativity costraint) The second isomorphism is between the two functors

Cxr = QCoh(G x G1) ® Cxr given by the following diagram

Cr L QCoh(S;) ® €y
QCoh(X7)
act} 1act§'1

QCoh(S;) B Cxr 2L QCoh(Ss X S1) ® Cxr.

oh(

Example 3.3.1. For every I, the tautological map

trivy : Cxr > QCoh(S;) ® €x1, CrH Og, ®C,
QCoh(X 1)

defines an action of § on €. We will refer to this action as the trivial G-action on C.

Definition 3.3.2. Let C be a factorization category acted on by a factorization

group 9. We say that an object M € € is weakly equivariant, if for every I we have

act}(M) =~ trivi(M).

We will be interested in the case of a group D x-scheme acting on a chiral algebra
A. Although we can define what it means for an action of a factorization group to

be strong, we will spell out the definition only in the case € = A-mod.
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3.3.1 Action on the category A-mod

Let A be a chiral algebra, and let Gx be a group D x-scheme. Denote by § the cor-
responding factorization group. We want to apply the discussion above to the case
of € = A-mod. For this, we first need to define what it means for the D x-scheme

Gx to act on the chiral algebra A.

Given a group Dx-scheme Gx, we consider its coordinate ring Og, as a commu-

tative chiral algebra endowed with a map
6:09)( - ng & ng
Ox

of chiral algebras, i.e such that the following diagram commutes

j*j*(OSX ® OSx) A*(OSX)

| l

j*j*(OSX ® O9x b OSX ® OSX) —>A*(09x ® OSX)-

Definition 3.3.3. An action of a group D x-scheme §x on a chiral algebra A, is a
D x-map of chiral algebras

act

A— A ® Og,,
Ox
such that (act ® id) o act = (id ® §) o act.

The condition on act to be a map of chiral algebras, translates into the commu-

tativity of the following diagram:

(A RA) AL(A)

J |

j*j*(‘A ®0g, NA® OSX) —’A*(‘A ® OSX)'

In this case the category A-modyr is acted on by the factorization group § attached
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to Gx, in other words, we have functors
A-modxr = A-modyr ®  QCoh(Sr).
QCoh(XT)

To see this, note that the action of Gx on A defines an automorphism % of the

chiral algebra A ® Og,. This automorphism is defines as the composition

Pt A® 0g, 2% AR 0, ®0g, A Ag0,,,
where m denotes the commutative product on (g, when regarded as a commutative
Sx
chiral algebra on X. We denote by ¥$* the map ¥§* : A; ® Og, = A1 ® O,

corresponding to 1%t. Moreover, we have an obvious forgetful functor
ng—modxz - QCOh(S[).

We define the functor A-mody: — A-mody: ® QCoh(G;) in the following way.
QCoh(X1)

To a module M; over X! we assign the image under the above forgetful functor of

the object JV[I € A-modyr ®  Og,-modyxs defined in the following way. For
QCoh(X 1)

every finite set K, we take (j\V/[I) Kk to be M x ® Og, , and for every partition
m:IUK —» K of I UK, such that I ¢ n~Y(k’) =: I for some k € K’, we define

factorization isomorphisms as the composition

GO (M) = () Mok ® Ogp) >
> AR R BAL BMr®05, B--- R0, KOs, varn
~ A ® 0911 X---KA, ,® 091,.-; Mz @ 097 ) -
’/’?ftm"'m?:t-1gid
> ‘A'Il ®0911 x...gA["_l ®OSI"_1 EMT@OST U(I/J) =
~ .A.Il g s E-Aln_l E MT® OSII g Tt g Og’n—l E OST U/
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where TUK = I U---UI,_; UT, and where the first isomorphisms is the one
coming from the structure of A-module on X! on M.
The objects in (A-modx:)*! are those chiral modules M; endowed with an

action of the group D x-scheme G;.

3.3.2 Strong action on the category A-mod

We now want to understand what it means to have a strong action of § on A-mod.

For this, we will need some preliminaries concerning the notion of Lie'-coalgebras.

Definition 3.3.4. A Lie'-coalgebra on X is a Dx-module £ on X endowed with a
y . !
map § : £ — £ ® £ satisfying

a) (Id+71)od=0

b) (Id+v+v?)o(id+68)od=0
where T(vQ@uw) =w@vand v(vRW Ru) =w R U v.

Remark 3.3.1. Consider now £ = Homop, (Q, Dx ® Qx). This Dy-module has a
structure of a Lie*-algebra. In fact, more generally, for any Dx-modules M, N, V,
having a map

!
M—->N®V

is the same as having a map
MRN — A, (V)

and iterating the process again gives a map M RN KV — A,(Qx). This game

allows as to construct a map £X £ — A,(L) from the original one. The Jacobi
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identity follows easily from conditions a) and b). Hence we obtain that £ is a Lie*
algebra if and only if £ is a Lie'-coalgebra. Note also that in the same way we can

show that for any £-module, the map
M-sMeZL (3.12)

gives us a map M X £ — A, (M) which defines an action of £ on M.

Consider now a group D x-scheme Gx and consider the unit section X 5 Gy
As it is explained in [NR], £, := u*(Qgx/x) has a natural structure of a Lie'-
coalgebra. In fact this is very similar to the fact that for an algebraic group G, Q¢
has a structure of a Lie coalgebra. As we have said before, we can now consider the
Lie*-algebra

L5 = Homg, (L, Dx ® Q).

More generally, we can consider the group schemes G; over X/, and take the pull
back along the identity section X7 21y G, of the sheaf of differentials of G;. We

denote such pull back by Qg !

Lo, = uj(Qg,/x1).

In this case the D yr-module fig , acquires a structure of coalgebra over X!. Similarly
to what we have seen before, a module M; for £g,, naturally becomes a comodule

for the coalgebra £g,,
{ £g,-modules } ++ { £5,-comodules } . (3.13)

Let now £g, be the Lie*-algebra defined earlier, and let ng o be the sheaf of topolog-
ical Lie algebras defined in 3.8. Following [NR] , we have the following proposition.

Proposition 3.3.1. Let Gx be an affine Dx-group scheme with Lie*-algebra £g, =
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Homg, (£5,, Dx ® Ux). Then the Lie coalgebra £, is isomorphic to ‘Q(SI)Z,O'

Now note that, given a factorization group G, a module M; for G; over X’
naturally becomes a comodule for £g,. In fact the coaction map is obtained in the
same way as in the case of X = pt (in which case £g, = g*), i.e. you consider the
composition

M—-M®0;—>M®0/(e)}) > M®g*

where (e) is the maximal ideal in Og corresponding to the identity element. In
particular, by proposition 3.1.4, and the equivalence (3.13), the we have the following

corollary.

Corollary 3.3.1. For a Dx-group scheme Sx, there is a functor
{Sr-modules} — { Lie*-£g, -modules on X T }
Consider now a chiral algebra A with an action of Gx
A - AR O0Og,.

As for usual algebras, corollary 3.3.1 allows us to derive, from such map, a Lie*-
action

Lo, DA = AL (A) (3.14)

of the Lie*-algebra £g, on it. We can now define what it means for the G-action on

A-mod to be strong.

Definition 3.3.5. Let A be a chiral algebra acted upon by a group §x-scheme Gx.

This action is called strong if there exists a §x-equivariant map

Loy — A
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such that the composition
Lo, WA - ARA = A,(A) (3.15)

coincides with (3.14).

Consider now the action of § on the category A-mody: of A-modules on X7.

Let M; be an object in .A—mod;}g. In particular it is a §-module.

Definition 3.3.6. A module M; in .A—mod;("’,9 is called strongly G-equivariant if
the two actions of the topological Lie algebra 2;2 o on it coincide. Where the first
action comes from the map

[ (3.16)

and the second action comes from the action of §; and by corollary 3.3.1.

Equivalently, we see that M is strongly equivariant, if the action of Qg)z o coming

from 3.16, can be integrated to an action of the group §;. We will denote by
jl—modI9 the category of strongly G-equivariant objects in A-mod; := A-mody:,

and by A-mod? the factorization category given by the assignment I — A-mod Ig

Consider now the following general set-up. Recall from 3.1.3 that a chiral algebra

morphism ¢ : A% — B¢ defines an equivalence of factorization categories
B-mod(A-mod) — B-mod.

Suppose now that the chiral algebras A¥ and B are acted on by a group Dx-

scheme Gx in a compatible way, in other words, suppose that the following diagram
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commutes:
A4 A4 @ O, . (3.17)
zpl J¢®Id
el %2, pd g Og,
Suppose that this action is strong. Denote by k; and k; the two Gx-equivariant
maps

k
Lo B A%, and £g, =2 BY

The commutativity of the above diagram implies that the following diagram also
commutes

Lo, MAL — A (A).

uﬂxhlil IA-W)

Lo, BB —— A, (B)

We have the following proposition:

Proposition 3.3.2. In the conditions above, if the chiral algebra B¢ is in A-modSx,

then we have an equivalence
B-mod(A-mod®) ~ B-mod>.

Proof. First of all, note that B being in A-mod 5 is equivalent to the commutativity

of the following diagram:

Acl ¥

Bt
k /
SSX

Now, let M; be a strongly equivariant object in B-mod(A-mod;). This is the same

(3.18)

as a collection of objects M;_ ks satisfying the factorization property for B with
respect to the finite set K, and the factorization property for A with respect to

the finite set J. However, as explained earlier, being strongly §x-equivariant as a
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A-module on X7 is the same as requiring that the Lie algebra action of 2(92,0 on
the module M; can be integrated to an action of §;. However, when we regard M;
as an object in B-mod;, and hence we look at the ng’o-action on it coming from
the map ke, the commutativity of (3.18) implies that this action is also integrable.
Moreover, the §; action coming from it, corresponds to the G;-action on M; coming
from the weakly equivariance, in virtue of 3.17. This implies that the module M,

is naturally an object of B—modst .

3.3.3 Strong action on the category D..;-mod

Let g be a simple finite dimensional Lie algebra and with an invariant bilinear form
k. Recall the chiral algebras A..;; and D,,;; defined in 2.1.3 and 2.4.1. In this section
we will define a strong action of the group D x-scheme Jx(G) on Arip and Depip. We
will therefore use the notion of ”action of a factorization group on a factorization

category” developed in 3.3.

Action of Jx(G) on the chiral algebra A,

Recall the construction of A, given in 2.1.3. It is constructed as the twisted-chiral
envelope of the Lie*-algebra Lf = g ® Dx @ Q(X).

We have a natural action of Ly on L defined by
g- (b +w) =[g,hl1, + riny (9, ) +w,

for g € Ly and (h +w) € Lj.
Now consider the group-scheme Jx (G). Since the bilinear form « is Ad(G)-invariant,
we have a well defined action of Jx(G) on Lf given as follows. Let &’ be a horizontal

section of Jx(G) over X. This section corresponds to a section k of G over X. Set
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k' - (h+w) to be
k' - (h + w) = Adk(h) + KDy (k—ldk, h) + w.

Strong action of Jx(G) on D..;-mod

Recall from 2.4.1 the chiral algebra D.;. A better way of describing it is by using
the factorization picture. For this, we can define it in the following way. For every

finite set I, we define Dy 1 to be

Deriey := U(Q(I) ® Oy,

erit

I
U('gﬂg‘zrit

where £), and Q((]Qn.t are the topological Lie algebras over X' attached to L™ as

defined in (3.8). As it is proven in [AG|, D, comes equipped with two embeddings
Aerit 2 Derit & Acrir (3.19)

These two embedding endow D.,.;; with a structure of chiral A..;-bimodule. In

particular, by considering the right A..;-action, we have the following lemma.
Lemma 3.3.1. The chiral algebra D..;; is an algebra in A ris-mod.

From the factorization description of D..;;, we see that the group D x-scheme

Jx (@) acts on it via right-multiplication. We also have a natural map
Lg - DC-,-“
given by the composition
Lg — Acrit I—) Dcr'it-

It is not hard to see that, from the construction of the right embedding » : Agiz —

Derie given in [AG], the Lie*-action of Ly on D coming from the above map,
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coincides with the Lie*-action coming from the Jx(G)-action on it. Therefore we
have a strong action of Jx(G) on D.rit, and hence fore, a strong action of Jx(G) on

the category D..;;-mod.

Recall that we have defined an action of Jx(G) on A whose induced Lie*-Lg-

action is given by the natural map
Ly = Acrie
followed by the Lie*-bracket on A..;. Consider now the chiral algebra map
Acrit = Deris-

Both A and D, are equipped with a strong action of Jx(G), and moreover, the

maps from Ly to A and D, for these actions fit into the commutative diagram

r
-Ac'r'it > Dait-

|~

Ly

Consider now the factorization categories Acriz-mod ’¢ and Di-mod /€. By lemma,
3.3.1 it makes sense to consider the factorization category Dpi-mod(Aeprip-mod JG).

By proposition 3.3.2, we have the following.

Proposition 3.3.3. We have an equivalence of factorization categories
Dmt—mod(./lcm—modm) ~ D is-mod’C.

In other words, Doy s a strongly Jx(G)-equivariant objects in Aii-mod.
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3.4 The Beilinson-Drinfeld Grassmannian and crit-

ically twisted D-modules on it

In this section we are going to introduce the main players of this work: the Beilinson-
Drinfeld Grassmannian and the category of critically-twisted D-modules on it. We
will use the language introduced in Section 3.1. In particular, the Beilinson-Drinfeld
Grassmannian Grg will be a factorization space, and the category of D-modules on
it a factorization category.

For a smooth curve X over k, the Beilinson-Drinfeld Grassmannian, denoted by
Grg, generalizes the well-known affine Grassmannian Grg ; classifying G-bundles on
X with a given trivialization outside a point x € X. For every finite set I, we define

a space Grg s over X!. The factorization space Grg is given by the assignment
I— GI‘G,I.

We start by defining, in 3.4.2, the local Beilinson-Drinfeld Grassmannian. We
will then show how the local Beilinson-Drinfeld Grassmannian is equivalent to Grg.
In proposition 3.4.1 we will show how this equivalence allows us to present the spaces
Grg, as quotients of two group schemes over X?. In 3.4.2 we will then define the
category De-mod(Grg) of critically-twisted D-modules on Grg, using the existence

of a canonical line bundle L. ; over Grg s, as explained in 3.4.3.

3.4.1 The Beilinson-Drinfeld Grassmannian

Let G be a semi-simple algebraic group of adjoint type, and let S = Spec(A) be an
affine scheme. Before going into the definition of Grg, we will recall some notions
regarding families of bundles/G-bundles over X. These will be used in 3.21 to obtain

a more manageable description of Grg.
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For every set I, with |I| =n, and a map ¢ = (¢1,...,én)

s& x!

recall the schemes DQ and D; defined in 3.3 and 3.4.

Definition 3.4.1. For X and S as above, we define the category of gluing data to
be the category of triples (Mxg, Mp,,7), where Mxs is a bundle on Xg, Mp, is a

bundle over D, and v is an isomorphism
v : Mxg|pg = Mp,|ps.

Morphisisms in this category are defined as morphisisms of vector bundles compat-

ible with the isomorphisisms ~’s.

Consider now a vector bundle M on Xg. The assignment
M- (Mixg, MIDQ’ Zd)

defines a functor from the category of vector bundles on X to the category of gluing
data. Moreover, by Beauville-Laszlo theorem, this functor is an equivalence. In the
case of a Noetherian ring A, this is also a consequence of faithfully flat descent by
looking at the diagram

D — X5

|

D¢, — X S
If instead of considering vector bundles on Xg, we consider G-bundles, the above
statement remains true, and the same functor defines an equivalence

Res (PG,Xg, PG,D£7 ’Y)’

{G-bundles on Xg } — (3.20)

where v : Pg, X§|Dg ~ P G,Dy ID;’,
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where Pg xg and Pg p, are G-bundles on Xg and Dy respectively.
We will now define the local and global Beilinson-Drinfeld Grassmannian and show

how the two notions coincide.
Definition 3.4.2. For every finite set I, and test scheme S, we define GrlgfI to be

ol
GI’IGOCI(S):-' S:'Xv (PG,Dgny)

. ~ PO
where v PG,DilD; >~ PG’DQIDZ

where P& p, denotes the trivial bundle on Dy.

The assignment

loc
I — Grgy

defines a factorization space, called local Beilinson-Drinfeld Grassmannian. The
global version of the above is what is called the Beilinson-Derinfeld Grassmannian

Grg. It is defined in the following way.

Definition 3.4.3. For every finite set I, and test scheme S, we define the space

Grgr over X' to be

¢
S>> X, (Pexe
GI'G’I(S) — ( G Xs FY)

. o~ 0
where « : PG,XS'X_‘S’ ~ P G,XS|X§

Clearly, the restriction functor, defines a map

!
Grg, = Grgy-

. . : loc : : 0
Moreover, if we have a pair (Pg p » 7) in Grgf, we can consider the object (Fg; x3 F6,Dy) ~¥)

in the category of gluing data. Under the equivalence (3.20), this object corresponds

to a G-bundle on Xg, with a trivialization on X§, i.e. it corresponds to an object
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in Grg,r. In other words, for every I, we have an equivalence
Grg, ~ Grigy (3.21)

The above equivalence allows us to describe the space Grg ; as a quotient of a group
ind-scheme by a group scheme. Recall from 3.1.7 the group-scheme JG; and MGj

over X!. Then we have the following:

Proposition 3.4.1. For every I, the space Grg,1 can be described as the quotient
G’I‘G’I ~ MGI/JGI

Proof. For every affine scheme S = Spec(A), and S — X!, we can regard MG/(S)

as
MG (S) = Hom(Spec(A((t1,...,tn)),G) ~ { automorphisms of the trivial G-bundle Pg’DZ} ,

where t; = (t — ¢ (t)), for t a local coordinate on X. Therefore, given an element
g € MG(S), we can define an element in Gr’é’fI(S) simply by taking Pg,p, to be
the trivial G-bundle Pg, D, O1 Dg, and 7 to be given by g. This assignment defines
a map

MG(S) - Grg’fI(S),

and the fibers are acted simply transitively by the group of automorphisms of
the trivial G-bundle on Dy, which is isomorphic to JG(S). Therefore we have
MG(S)/JG(S) =~ Grg5(S), and, by the equivalence (3.21), we have

MG]/JG[ :‘-) GI‘GJ.
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In the next section we will be interested in the category of D-modules on Grg ;.
However, the presentation of Grg; given in proposition 3.4.1 does not make clear
how to define such category. However, as it is shown in [BD2], a remarkable feature
of Grg s is that it can be represented as the inductive limit of schemes of finite type.

In fact we have the following.

Proposition 3.4.2. The functor Grg,; is represented by an ind-scheme of ind-finite
type (see remark ?? for the definition). Moreover, if G is reductive, then Grgy is

ind-projective.

3.4.2 Critically twisted D-modules on Grg

We will now define the category of D-modules over the Beilinson-Drinfeld Grass-
mannian. Since for each I the space Grg s can be represented by an ind-scheme
of ind-finite type, we start by developing the notion of D-modules on every such
scheme. Recall that if X is a classical scheme, we have a well defined forgetful
functor Dy-mod — QCoh(X). When X is an ind-scheme, we will explain below
the correct replacement for the category QCoh(X) of quasi-coherent sheaves on X
that will be used to construct the ind-version of the above forgetful functor.

We start with the definition of the category QCoh' (X) replacing the usual notion
of quasi-coherent sheaves on X. Let X be an ind-scheme X = lig}a X4, and denote

by ig,. the closed ambeddings X, iﬁ—’“) Xp. We have a pair of adjoint functors
igax - QCoh(X,) __ QCoh(Xp) : iy, -
Consider the category € := L&lig,a QCoh(X,)- By definition, we have a map maps
€ %= QCoh(X.).

Moreover, following [JB], we have the following.
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Proposition 3.4.3. The functors i., : € = QCoh(X,) admit left adjoints i .,
iax : QCoh(X,) — C.
We will denote by QCoh'(X) the category defined as

QCob'(X) := lim QCoh(Xa). (3.22)

iﬁ,a,m
For two objects F and F in QCoh'(X), a morphism ¢ : F — F is a collection of
maps ¢, : F, = F, compatible with ig,.. As it is shown in [JB], we have the

following.

Proposition 3.4.4. The category QCol'(X) is equivalent to G, i.e.

l_lg} QCoh(X4) = lim QCoh(X.,).

18,a,% ZB o
s

Remark 3.4.1. The importance of the above proposition is the following. The
example of ind-scheme we should have in mind, it that of an affine ind-scheme, i.e
the scheme corresponding to an abelian, complete, separated topological ring whose
toplogy is generated by a ltered system of open ideals {I;}, s.t. I; + I; is finitely

generated over I; N I;. The ind-scheme X is given as
X = ll_I];l_X,, = mSPGC(A/I,)
i i

We are interested in the category of continuous discrete A-modules. This category
is given by the following.

Denote by i;; the embeddings 4;; : X; — X;, and consider the functors zlj as
functors

i ; 1 (A/L;)-mod — (A/I;)-mod.
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The category A>#*-mod of continuous discrete A-modules, is by definition

A®¥_mod := lim(A/I;)-mod.

R¥]

Since we can re-write the above as @ii.j QCoh(X;), it seems natural to think that
this is the right category to consider. However, the presentation of it as a limit,
has the disadvantage that it is not clear how to compute maps out of it. However,
proposition 3.4.4 says that the category A®%¢-mod can also be described as the

colimit under the maps

ii54 - (A/I;)-mod — (A/I;)-mod.

We will now define the category of D-modules on an ind-scheme X = I'QXQ,
with X s schemes of finite type. Recall that for a closed embedding ig : X = X3,

we have a natural exact functor
ig,a, - Dmod(X,) = D-mod(Xpg),

satisfying Fj 0 igay) = igax © Fa, where F, denotes the forgetful functor F, :
D-mod(X,) - QCoh(X,). We define the category D-mod(X) to be

D-mod(X) := lim D-mod(X,).

28,a,!

Note that we clearly have a forgetful functor

F : D-mod(X) — QCoh'(X).
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Consider the Beilinson-Drinfeld Grassmannian Grg given by the assignment
I- GrG,I-

By proposition 3.4.1 and 3.4.2, we have:

e The functor Grg ; can be represented by the quotient MG/ JGy.

e The functor Grg ;s is represented by an ind-scheme of ind-finite type.
We will write Grg s as

GI‘G’[ = 1_113 Yil.

In virtue of the above, it makes sense to consider the category QCoh'(Grg) given by
I—- QCOh!(GI‘G,I),
and the category of D-modules on Grg defined as

D-mod(Grg ) := limy D-mod(Y;). (3.23)
kI

.

The assignment I — D-mod(Grg) defines a factorization category, denoted by
D-mod(Grg).

Twisted D-modules on Grg

We will be interested in the category of twisted-D-modules on Grg. These are de-
fined as modules on Grg endowed with an action of a sheaf of twisted-differential op-
erators on Grg. In particular, we will be interested in the category D ;-mod(Grg)
of critically-twisted differential operators on Grg. We will now recall the definition

of these objects.
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Recall that, as it is explained in [BB|, given a Picard algebroid on X, i.e. a sheaf
of Lie algebras P on X, such that

O%OX—-)T—TL)T)(—)O,

and such that, for any n and 7/ in P and f € Ox we have [n, f7'] = fln,7'] +
(m(n)f)n', we can consider the algebra Dp. This is the universal algebra equipped

with morphisms i : Ox < Dy and ip : P < Dy such that

e i is a morphism of algebras.

e ip is a morphism of Lie algebras.

e for f € Ox, 1 € P one has ip(fn) = i(f)iz(n) and [iz(n), i(f)] = i(x(n)f)-
We call Dy a sheaf of twisted differential operators on X.
Consider now a line bundle £ on X, and the algebroid P defined as the algebroid
of G,,-invariant vector fields on the principal G,,-bundle associated to £. We have
maps
0> 0x 5P, >Tx =0,
making P a Picard algebroid over X.

Definition 3.4.4. We define the category Dg-mod(X) of £-twisted Dx-modules to

be the category of O x-modules endowed with an action of the sheaf Dy,.

Note that we have an equivalence of categories

Dx-mod =~ Dg-mod(X)

given by M - M ® L.
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Critically twisted differential operators on Grg

Let’s now go back to the space Grgr = MG;/JG; over X and the category
D-mod(Grg ;) as defined in (3.23). For every I, we will construct a line bundle
'Ccrit,I

Lcrit,[ - GrG,Ia

and consider the category D.n;-mod(Grg ;) defined as

D i-mod(Grg,r) := Dy, ,-mod(Grg,1). (3.24)

As we pointed out before, we have the following proposition

Proposition 3.4.5. For every I, there ezists an equivalence of categories
D-mod(Grg 1) =~ Degi-mod(Grg 1),

given by My — M; ® Lerig 1-

3.4.3 Construction of the line bunde £ over the Beilinson-

Drinfeld Grassmannian

We will first recall the definition of the line bundle £, over the affine Grassman-
nian Grg, presented in [BD2]. We will then generalize this construction for the
spaces Grg ;.

We will start by recalling some definitions from Tate linear algebra.

Definition 3.4.5. A Tate vector space V is a complete topological vector space

having a base of neighborhoods of 0 consisting of commensurable vector subspaces.

e A subspace P C V is bounded if for every open subspace U C V there exist a
finite set {vy,...,v,} € V such that P C U + kvy + - - - + kv,
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e A c-lattice in V is an open bounded subspace.

e A d-lattice in V is a discrete subspace I' C V, such that V =T + P, for some
c-lattice P C V.

Let z be a point in X and ¢ a coordinate around it. Consider the formal disc
D,, and the formal punctured disc D?. Denote by m the ring C[[t]] and by X
the field C((t)).

Example 3.4.1. Given a vector bundle Q on X equipped with a non-degenerate
symmetric form

0®a9 - Qy,

and a point x € X, we can consider Q®m C Q®X. The vector space V := Q@X
is a Tate vector space, moreover it is equipped with a symmetric nondegenerate form
given by the residue. The subspace L := Q& m is a c-lattice in it. Moreover it
is a Lagrangian subspace.

More generally, for every non-empty finite set of points S C X, we have the Tate

vector spaces and corresponding Lagrangians,
L:=B,esQ@Q(R), CV = BaesQ2 @ K.

As a special case of the above example, given a square root £ of the line bundle

Qp,, and a vector space W with a non-degenrerae symmetric form
W xW — C,

we can consider the vector bundle Q := £L ® W. Let now W be equal to the Lie
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algebra g, and consider the killing form kg;; on g. The Tate vector space Vg,

o~

Ve =L @i (9 ©X),

carries a non-degenerate bilinear form given by

Kkili Res

VeV, —)L®L®5€:QD§ — C.
Consider the Lagrangian subspace L, equals to
LL =L ® g.

Denote by €I(V) the Clifford algebra associated to V and by M the irreducible
Cl(V)-module
M := €i(V)/elV)L.

Denote by Lagr(V') the ind-scheme of Lagrangian c-lattices in V' = V;; as defined in
[BD2] 4.3.2.

There exist a canonical line bundle Pjs on Lagr(V') defined as follows.

Definition 3.4.6. We define Py, to be the line bundle over Lagr(V) whose fiber
over L' € Lagr(V) is

Py =M ={me ML -m=0}.

Consider now the map ¢ : G((t))/G[[t]] = Lagr(V) given by

g—gLg™".

Following [BD2] 4.6.11 we have the following definition.

Definition 3.4.7. We define the line bundle £, on Grg, to be the pull-back,
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along ¢ of the line bundle Py;

Leritg = ¢"Pu = Grgz.

We will now try to generalize the above to powers of X. In particular, we will
construct a sheaf of Tate vector spaces over X'.
Let us fix a square root £ of the canonical bundle §2yx. Consider the Dx-module
Vx given as

Vx =L oy (3 ® Dx).

As before, the killing form on X together with the fact that £ ® £ ~ Qx, defines a
symmetric bracket

VX®VX —> A*(Qx) (325)

In particular, we have a skew-symmetric pairing on Vx[1], and therefore a Lie*-
algebra structure on the direct sum V[1] @ Qx. Define Cl(Vx) to be the twisted
enveloping chiral algebra of V[1] & Qx,

Cl(Vx) :=U'(V[1] & Q2x),

where we regard V[1] as a commutative Lie*-algebra. For every finite set I, consider

the sheaves of topological vectors spaces
LD = he(m(Vx)[=1]) and V= he(hg* (i (Vx)[-1])),
where the functor hr is the one defined in 3.8. The map (3.25) gives us a map
()@ VO RVE - he (55 (py (L) [-1])). (3.26)

Note that, if we take the fiber of V() and LY at (z4,...,2,) € X’, we recover the
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Tate vector space and the c-lattice from example 3.4.1. Moreover the map (3.26)

becomes
n ~ n -~ (Res1,...,Resy)
(Br,90K,,) x (#1209 K,,) —— > Cx---x C. (3.27)
The above topological vector spaces will be our family of Tate vector spaces.

More generally, we have the following definition.

Definition 3.4.8. Let R be a commutative ring. A Tate R-module is a topological
R-module isomorphic to P & @Q*, where P and @ are infinite direct sums of finitely

generated projective R-modules.

e A c-lattice in a Tate R-module V is an open bounded submodule P C V such
that V/P is projective.

e A d-lattice in V is a submodule I' C V, such that for some c-lattice P, one

has NP =0 and V/(I' + P) is a projective module of finite type.
Let’s go back to the topological vector space V) over XD,

Definition 3.4.9. We say that a c-lattice L’ C VD is Lagrangian, if for any geomet-
ric point (zy, . ..,Z,) € X7, we have that the maps in (3.27) define n non-degenerate

forms on the quotient VO /L.

Denote by Lagr(VD) the ind-scheme of Lagrangian sub-spaces in V). In par-
ticular, note that LY € Lagr(V®). Consider now the chiral €l(Vx)-module over
X7 equal to

My = EU(Vy)y.

From the definition of €I(Vy), proposition 3.1.4, and the fact that we have maps

VI S he (G (B (Vx & )= T,
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we see that V() acts on any chiral-Cl(Vx)-module on X?. In particular it acts on

M;. Similarly to the above, we have the following definition.

Definition 3.4.10. We define the line bundle Py, on Lagr(V®)) to be the line
bundle whose fiber over L’ € Lagr(V\)) is

Pry =ME = {me M| L' -m =0}.

The adjoint action of G on g, defines an action of MG, on VD, that we will still
denote by Ad. Consider now the map ¢; : MG/ JG; — Lagr(V) given by

g~ Ad, (L"),

Definition 3.4.11. Define the line bundle L. ; over Grg; ~ MG;/JG| to be
thepull-back along ¢; of Py, ;

Loiet = ¢7Pw;, = Grg,r.

We therefore arrive to the following definition.

Definition 3.4.12. Let Grg be the Beilinson-Drinfeld Grassmannian. We define
the factorization category D.;-mod(Grg) of critically twisted D-modules on Grg

to be the category given by the assignment

I = Dgiyp-mod(Grg 1) = D, -mod(Grg 1),

erit, I
where Dg_,, ,-mod(Grg ;) is defined as in definition 3.4.4.

The reason why they are called critically twisted is given by the following propo-
sition (see [BD2]). Let g, be the Lie algebra given in 2.1.1.
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Proposition 3.4.6. Denote by m the projection
7: G(t) = Grgg-

Consider the pull back along 7 of the line bundle L.y . Denote by C:’EGS) the corre-
sponding Gp,-bundle on G((t)). Then, the Lie algebra corresponding to the extension

1 Gm — G(1) = G(t) = 1,

s equal to
0 € = Bori > 9((8) > 0,
where riy denotes the Kac-Moody algebra at the critical level Keriy = —1/2K k-

3.4.4 D-modules on the Beilinson-Drinfeld Grassmannian

as chiral D, ;;-modules

Consider the factorization category D, ;-mod IG {I - Deir-mod }] G} of strongly
JG-equivariant D..;;-modules. We want to relate this category to the factorization
category Depip-mod(Grg) = {I = Depig-mod(Grg r)} of critically-twisted D-modules
on the Beilinson-Drinfeld Grassmannian Grg. We start by considering D.,;;-modules
supported at some point z € X, where this relation is completely understood (see
[AG]). We will then pass to the categories I)mt—modIJ G and D ir-mod(Grg 1) over
XTI,

The equivalence over the point

Recall from [AG], that to specify a structure of a chiral D..;;-module supported at
z on a vector space M is the same as to endow it with continuous (w.r. to the

discrete topology on M) actions of Q'(R)g() and geri; compatible in the sense that

138



forn € ﬁait, fe oG((t)) and me M,

n.(f.m) = f.(n.m) + Liey(f).m,

where 7! is the corresponding left-invariant vector field on G((¢)). This follows from
the construction of D, and from the fact that M, when viewed as a chiral module

for Jx(G) supported at z, becomes a module for m)asm, and that

e A 88,T

Ix(G) = Og(y- (3-28)

The right embedding of A into D,;; given by (2.18), endows M with a structure
of right g.ri-module. This action is compatible with the Og)-action, in the sense

that for £ € Gerit, f € Ogey and m € M,
£.(f.m) = f.(§.m) + Liegr(f).m,

where £7 is the corresponding right-invariant vector eld on G((t)).

Consider now the category D, ;;-mod, defined as
Derie-modSH) := (D y-mod {€),.

In other words, we are looking at those D,.;;-modules at x on which the right action
of g[[t]] C @it can be integrated to an action of Jx(G), = G[[t]]. In the above, we
regard a module M € D-mod, as a g[[t]]-module by means of the right action of

Berie o0 it and the fact that the sequence
0— C— gerir — 9((t) = 0,

splits over g[[t]].

Consider now the affine Grassmannian Grg, = G((t))/G][t]], and the category
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D, ii-mod(Grg») of critically twisted D-modules on it. Recall that, by subsection
3.4.2, this category is isomorphic to the colimit

Derip-mod(Grg ) == lim D-mod(Y;),
k

i,

where Grg ; = 1_51; Y;. In particular, recall that we have a forgetful functor Der-mod(Grg z) —
QCoh'(Grg ). We can describe the category D ey -modSl as D-modules on Grg .

In fact, we have the following proposition.

Proposition 3.4.7. There exist an equivalence of categories
Derit-mod(Grgz) = Derig-modCltl

Proof. The proof of the above proposition can be found in [AG]. However it is useful
to recall how the functor is constructed. Let M be an object in Dgr;;-mod(Grg z),
and denote by 7 the projection 7 : G((t)) = Grg,. Consider the pull back 7*(M).
We can define on the vector space ['(G((t)), 7*(M)) a structure of chiral D;;-module
at  in the following way. The module I'(G((t)), #*(M)) is naturally a discrete Oggy)-
module, and therefore, by (3.28) a Jx(G)-module supported at z. Moreover, the
projection 7 is right-G-invariant, the right D-module structure on M, gives rise to
the action of g((t)) on 7*(M), therefore, I'(G((t)), 7*(M)) is indeed a chiral Depis-
module supported at z. The fact that it belongs to ’Dmt—modf [ follows from
noticing that the right action of g[[t]] on it coincides with the G[[t]]-action coming
from the G[[t]}-equivariant structure on #*(M). O

The equivalence over X7

Let’s now consider the category D..i-mod; of Dgi-modules on X!, Consider the

Jx (G)-action on D as defined earlier. Recall that the Lie*-Lg-action coming from

140



the Jx(G)-action coincides with the Lg-action coming from the composition
Lg - -Acrit L) Dcrz't-

We are interested in the category Dei-mod IJ x(@) of strongly Jx(G)-equivariant
objects in D.,.;-mod;. Objects in this category can be described as modules M; €
D.rir-mod; on which the Lie action of 'Q(G{,)o can be integrated to an action of the
group scheme JG; over X!. Note that, by considering the case of I = (, we recover
the discussion before, where 22;’0 is exactly g[t]]-

We will start by describing the category Derii-mod; in a more suitable way. Recall

the group ind-scheme MG} of meromorphic jets defined in (3.6). Let p! be the map

pI : MGp —> XI,
and denote by TF” the functor
' MC;
QCoh'(MGy) —— { discrete Opq,-modules}
F1 - ACE

Note that this functor corresponds to the functor I'(G((t)), ) if we take the fiber at
z € X for I = {x}. Denote by O}”&’Gl the sheaf of topological algebras over X/ given

as

L’ (Oma,) = 03, -

rel

We have the following proposition.

Proposition 3.4.8. To specify a structure of a chiral Doyu-module on X! on a

quasi-coherent sheaf M is the same as to endow it with continuous (w.r. to the

discrete topology on M) actions of OR}’GI and S.‘,g_zt compatible in the sense that for
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ne SS;I), fe OJGI and m € My,

n.(f.m) = f.(n.m) + Lie,(f).m,

0

where n* is the corresponding left-invariant vector field on JG;. Where £}, denotes

the sheaf of topological Lie algebras defined in (3.8) for L = L.

Proof. From the construction of D..;, we see that a chiral D..;-module M; on
X7, is in particular a module for U(Q;,(g))/K, where K is the kernel of the map
U(9sxc)) = Oux(c)- Since, for a Lie*-algebra L, chiral modules for U(L) on X!
are in bijection with Lie modules for £/ defined in (3.8), we see that M; is naturally

a Lie*-module for the commutative topological sheaf of Lie algebras over X<

hr (3" (P (Ouc ) [ 11])) (3.29)

However the sheaf of topological algebras in (3.29) coincides with O} , therefore
M; becomes a continuous (‘)R}’G,—module, i.e. a module over the group ind-scheme
MG;. Moreover this is an equivalence between chiral modules for U(0Q,,(¢))/K
over X! and discrete O75; -modules, i.c. objects in QCoh'(MGy), as explained in
corollary 3.1.1. Now, from the definition of D..; in factorization terms, it is also
D

clear that M; comes equipped with a £;,-action and that the latter needs to be

compatible with the former Oy g,-action. O

Consider now the Beilinson-Drinfeld Grassmannian Grg. As it is explained by

proposition 3.4.1, for every finite set I, we can describe the space Grg ; as

GI'GJ o~ MGI/.]GI
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The above quotient is an ind-scheme,
Grg,r = lim Y,
i

and, as before, each Y/ is of finite type.
Consider now the category D.;-mod(Grg ) of critically-twisted D-modules on

it. Denote by 7; the projection
;e MG] — GI‘G,I.

For a D-module F; in D..y-mod(Grg ), consider the pull-back #7(F;). This is, by
definition, an object in QCoh'(MGy), and, therefore, the object

My == TME (n}(F1))

rel

is a discrete module for 035, (see example 3.1.3 for the definition of O} ). We
claim that there is a natural D..;-module structure on M;. In fact, we have the

following theorem.

Theorem 3.1. There exist an equivalence of factorization categories

Derig-mod( Grg) = D oig-mod”’C,

given by Fr — F%,G’ (71 (F1)).

Proof. As we explained before, the object M; = nglc’ (w3(F)) is a discrete OR,‘}’G’—
module, and therefore, a chiral U(Jx(G))/K-module over X!. Now, the (negative)
of the action of £2, on F; gives rise to an action of the same Lie algebra on My,
compatible with the (‘J’,’ﬁ,’cl—action. Therefore, by proposition 3.4.8, the objects M;
is a D.riy-module on X!. Now we claim that the right action of £ on M; coming

from the right embedding of A, is obtained by derivating the JG-action on #}(Fr)
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coming from the equivariant map n;. This would imply that M; is indeed strongly
Jx(G)-equivariant. This fact is proved by repeating the argument presented in [AG]

Proposition 6.7.
O
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3.5 The space of Opers

In this section we will recall the definition of Opers as given in [BD2]. In particular,
given a curve X and a point z € X, we will recall the definition of opers on the disc
D, (resp. punctured disc D2) and its presentation as a scheme (resp. ind-scheme).
We will also generalize the above definitions in order to obtain factorization spaces
and study the factorization categories of modules over them. In 3.5.1 we introduce
the factorization space Op, corresponding to the Dx-scheme of opers. In 3.5.2 we
construct the factorization space Opj corresponding to opers on the puncured disc,
and show how this can be represented as an ind-scheme. We will then introduce the

factorization space Op."™" of unramified opers.

[}

3.5.1 The space of opers

Let X be any smooth curve, G a simple algebraic group of adjoint type, and B C G
a Borel subgroup. For a B-bundle Pg on X, denote by Pg the induced G-torsor
Po=G g Pg. We have the corresponding twisted Lie-algebras bp := bp, = b g Pg
and gg = gp; = 9 é P; ~ g 2 Pg. The Lie algebra gg is equipped with a
standard filtration, induced from the filtration on g given by the choice of b. We
have g~ = g, and gi*! = [g, n]; in particular we have g° = b and g! = b. Let now
V be a connection on Pg. For any connection V' preserving Pg, we can think of
V — V' as an element in gg ® Qx = gp ® Qx. We denote by ¢(V) the projection
onto (g/b)s ® Qx
c(V):=(V~-V') mod bp.

Definition 3.5.1. An oper on X, is a pair (Pg, V), where Pg is a B-bundle on X,

V is a connection on the induced G-bundle Fg satisfying the following:

e (V) €(g7/b)p®Qx C (9/b)s ® Nx.
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e For any simple negative root a, we have that the a-component ¢(V)* € g5*®

Qx does not vanish on X.

Equivalently, we can think of opers in the following way. Lets choose a trivial-
ization of Pg, and let Vg be the tautological connection on it. Denote by II the
set of simple roots of g. Then, as it is explained in [FG3], an oper is given by an

equivalence B(X)-class of connections V of the form

V=Vo+) ¢a-fatq,
€l
where each ¢, is a nowhere vanishing one-form on X, and q is a b-valued one form.
Changing the trivialization of Pg by g : X — B, the connection V get transformed
into V' = ¢g7'Vg — g ldg.

The above makes sense in families. Indeed, if S is a D x-scheme S 4 X , then
we have a well defined notion of G-bundle with a connection V along X. It is a
G-bundle Pz = S on S, such that Pg is a Dx-scheme and the map = is horizontal,
i.e. a map of Dx-schemes. We define opers over S to be the set consisting of
pairs (Pg, V), where Pg is a B-bundle on S, and V is a connection along X on the
induced G-bundle Pg such that the conditions above are satisfied, with Q2 x, replaced
by ¢*(f2x). It can be shown that the above functor is represented by an affine D y-
scheme, denoted by Op, x. According to 3.1.6, we therefore obtain a factorization
space {I — Op, ; := J;Op, x} that we will simply denoted by Op,. Therefore we

have spaces Op, ; over X I where for any test scheme 9,

S M} XI, (PG,PB,V),
OPgJ(S) = where Fg is a G-bundle on DQ, Pg is a reduction to B,

and V is a connection on Pg, satisfying the oper condition

Note that, if we take S = Spec(k), and I to be the set with one element, then

Op, x(S) =: Opy(D.) is the space of regular opers introduced in [FG3]. By con-

146



struction we have the following.

Proposition 3.5.1. The assignment I — Op, ; defines a co-unital factorization
space Op,. Moreover, Op, x is affine, in particular it correspond to a commutative

chiral algebra on X.

3.5.2 Opers on the punctured disc

Recall now example 3.1.3. In particular recall that, for an affine D x-scheme Y, we

have defined spaces M;Y over X!, that contain J;Y, where

S (¢1)"'y¢ﬂ) XI
M[H(S) =

« horizontal section D;’, — 7

where Dj is the scheme defined in 3.4. This construction, in the special case of
Y = Opg x, generalizes the notion of opers on the punctured disc Op,(Dj) introduced

in [BD2]. It is defined in the following way.

Definition 3.5.2. For every [ finite set, and test scheme S, we define Op; ; to be

the space over X! given by

§ ), X1, (Pg, Py, V),
OPE,I(S )= where Pg is a G-bundle on DS, Pg is a reduction to B

and V is a connection on Pg, satisfying the oper condition

Note that, if we take S = Spec(k), and I to be the set with one element, then

Op, x(S) = Op,(D3). In particular, from example 3.1.3 we have the following.
Proposition 3.5.2. The assignment I — Op; ; defines a factorization space Op;.

Remark 3.5.1. Note that, as expected, the above factorization space, in contrast

to Op,, is not co-unital. However, as it is explained in corollary 3.1.1, if we consider
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the chiral algebra Ogp_ ,, then we have an equivalence

N~ continuous modules for the topological
{ Chiral Ogp, ,-modules on X } - ;

iat] rel
associative O yr-algebra Oop;,,

where O} ; was defined in example 3.1.3.

Relation with the center 3..:

Recall the commutative chiral algebra 3. defined as the center of A.n;. Recall that
this chiral algebra is related to the space of G-opers, where G denotes the Langlands
dual group of G. In fact in [FF| they prove the following theorem.

Theorem 3.2. For the critical level k.., we have an isomorphism of chiral algebras

Berit 2 O(0p, x)-

The above theorem allows us to describe the category of chiral 3..;-modules
over X! in terms of modules over the topological algebra Og‘éo R From the previous
g8,

remark we have the following equivalence

) "o~ continuous modules for the topological
3erie-mody := { Chiral 3.4-modules on X'} 5
associative O yi-algebra Og’l’)g i

2,

(3.30)
We will denote by QCoh!(Opg’ ;) the category on the right hand side of the above
equivalence. We will denote by QCoh!(Opg) the factorization category given by the
assignment

I — QCoh'(Opg p)-
Equivalence (3.30) can be regarded as an equivalence of factorization categories
3erie-mod = QCoh'(Op).
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3.5.3 Unramified opers

Recall now the sub-functor Op.;" C Opy (D7) of unramified opers on D, introduced
in [FG5] and [FG2]. It consists of opers on D2, that are unramified when regarded
as G-local systems. In other words, are those pairs (Pg, V) such that V is G((¢))-
Gauge equivalent to the trivial connection Vy = dt. As it is explained in [FG4]

unr

the space Op,’; can be described as a closed sub-scheme of Op,(D3), in particular,
the algebra of functions Oopn- on Opy,;” has a structure of a topological algebra.
We denote by QCoh' (Op, ) the category of continuous discrete modules over this

algebra. We will now define the factorization space corresponding to Opy7'.

Definition 3.5.3. For every I finite set, and test scheme S, such that S M

X!, we define the space Opyy over X' by

Op(S) = (Pg, V), where (Pg, V) is an oper on DS,

and the pair (Pg, V) can be extended to the entire Dy

Note that, if we take S = Spec(k), and I to be the set with one element, then
Opyx(S) = Opyy . From the definition, we have the following lemma.

Lemma 3.5.1. The assignment I — Op_y defines a factorization space Opy™ .

Remark 3.5.2. It can be showed that the algebra Oge}’).mr has a structure of a

topological algebra over X!. As before, we denote by QCoh' (Opg7 ) the category

continuous modules for the topological
QCoh' (Opg7) :=

associative Oxi-algebra O iun-
&

3.6 The Conjecture

Recall the Drinfeld-Sokolov reduction ¥x as defined in 2.3.1. Consider the category

Arir-mod3C consisting of strongly J G-equivariant chiral modules on X as defined
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in 3.3.6. Consider the restriction of Ux to this category
Uy ..A'crit-mOd;G — :’)m-t-modx.

The above functor has been studied by D. Gaitsgoy and E. Frenke. In [FG2] they

show the following.
Theorem 3.3. Let Uy be the Drinfeld-Sokolov reduction at the critical level.

1. The functor Ux, restricted to .Ac,it—mod)‘z'c is exact.

2. It defines an equivalence of categories
Ty i (Aerir-modx)’® 5 QCoh!(OpEY),

where we regard QCoh!(Opg’";) as a sub-category of 3.ri-modx via the equiv-

alence 3.30 and the inclusion Opy’y C Op; .

3.6.1 The conjecture over X!

Consider the factorization category Acry-mod = {I — A..;-mod;}. Recall that in
3.3.3 we have defined a strong action of the group D x-scheme Jx (G) on the category
Acii-mod. For every finite set I, we are interested in the category Ag-;-mod IJ G of
strongly Jx(G)-equivariant objects in A.;-mod;. Conjecture 1.2.3 states that we
have a description of this category similar to the one provided by theorem 3.3.

In order to state the conjecture, in the next sub-section we define the Drifeld-Sokolov

reduction ¥; over X! as a functor

U;: Agie-mod; — 340-mod;.
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Using 3.30, the functor ¥; can be seen as a functor
U Aie-mod; — D(QCoh!(OpgyI)).
The assignment I — ¥ defines a factorization functor ¥
U : Agi-mod — D(QCoh'(Opg)).
We consider the restriction of ¥; to A4-mod IJ ¢

Uy 2 Agrig-modj€ — D (QCOh!(OPE,I))-

The main conjecture is that the same equivalence as the one in 3.3 holds for modules

over X71.

Conjecture 3.6.1. Consider the functors ¥y,
U 2 Aerip-mod;]© — D(QCoh!(Ong)).

1. The above functor is ezxact.

2. The image of V; is contained in QCoh!(Op’g,’}’ .

3. The collection of functors U = {I — U;} establishes an equivalence of factor-
tzation categories

Acrig-mod?® Y5 QCok'(OpE™).
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Drinfeld-Sokolov reduction for modules over X/

Recall from section 2.3.1 the BRST-reduction. Recall that, for any Lie*-algebra £
and any map of chiral algebras f : U(£77%¢) — R, we defined a functor BRST,

BRST : R-mody — BRST(R ® €1(£))-mody.

We will start by generalizing the BRST reduction to modules over X'. In fact, the
construction of ¥; follows from the possibility of extending the BRST-reduction for
A = U(£-ToeY @ Cl'(£)-modules over X to A-modules over X’. All we have to do,

is to be able to define a differential on any A-module M; over X!

BRST-reduction for modules on X7

Lets M; be a chiral A-module on X' and let us regard it as a Lie*-A-module. By
proposition 3.1.4, M; is therefore a module for the topological Lie algebra .A((f) =
hr(p(A)[~1]) (see Definition 3.8). We define the differential dy, on M; to be the

action on it of the element QU), where
I I
Q( ) e q(() )

is the section on .A((,I) corresponding to the image of the identity endomorphism
under the map x : £ ® £* — A![1], where x is the map defined in 2.14. The pair

(M, dy,) is naturally a BRST(A,)-module on X’. If we are given a map of chiral

algebras f : U(£~T%¢) — R and a Az-module M; on X7, then its BRST-reduction
will be a BRST(Aj)-module on XI. Therefore, for every I, we have functors

{Ag-modules on X'} ZE%T, { BRST(Az)-modules on X'} .

We have the following proposition.
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Proposition 3.6.1. Given a map of chiral algebras f : U(L-T%*) — R, the assign-
ment I — BRST} defines a factorization functor

BRST : Ax-mod - BRST(Az)-mod.

Proof. For every surjection ¢ : I — J, and for every partition « : I — J of I, we
need to show that

A¢ o BRSTI ja-d BRSTJ o} A;;,
BRST_[|U(I/J) ~ (BRSTI1 R---R BRST]n)IU(I/J), (3.31)

where I = L I;. These both follow from the fact that the topological Lie algebra Af
factorizes, and we have AL(QD) = Q), and QP|yu/s) corresponds to the product

of the corresponding Q%)’s in Ay . O

If we consider the natural map U(£,) — A, and the chiral CI(£,) CI(L,);
over X7, then, given an A.;-module M;, we can consider the corresponding A ®

Cl(L,)—module M; ® CI(£,);. Therefore we have functors
BRST] : .Am't—modz — BRST(-Acnt &® Cl(ﬁn))—modj.

As we have explained in 2.3.1, we can furthermore modify the differential using the

character x to obtain the Drinfeld-Sokolov reduction ¥y,
\I‘[ I .Amt—modl — BRSTX (-Acrit ® (‘fl(Sn))—mod, ~ 3m-t—mod1,

where the last isomorphism follows from theorem 2.2. Now, according to (3.30), we

can rewrite the above as

Uy : Agig-mody — D (QCOh!(OPE,I))-
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3.7 The localization Conjecture for the Beilinson-

Drinfeld Grassmannian

In this section we define a factorization algebra B and a factorization functor I'y :
Derig-mod — fB—mod(QCoh!(Opg)). Assuming conjecture 3.6.1, we show that I'y
induces an equivalence of categories between D-modules on the Beilinson-Drinfeld
Grassmannian, and the factorization category of B-modules in QCoh!(Opg""), as

stated in conjecture 1.2.2.

Recall the factorization category A..;-mod, the factorization space Opg and its

factorization sub-space Op;™.

and QCoh!(Opg’") as defined in 3.5.2 and 3.5.3. Recall the functor ¥y,

Consider the factorization categories QCoh!(Opg)

Uy : Agir-mod; — D(QCob'(Opg ).

By conjecture 3.6.1, the above functor, restricted to the category .Am-t-modIJ ¢ is

exact and induces an equivalence of categories

~

Aorii-mod IJ G ;) QCoh!(Opg,’}T).
I

3.7.1 Definition of the functor I'y

Recall the chiral algebra D from 3.3.3. By Lemma 3.3.1, the corresponding
factorization algebra is a factorization algebra in A..;-mod, and moreover it has a
natural action of the factorization group JG, making it an algebra in Arig-mod’C.

We can therefore consider the factorization category

Deriz-mod (Aerip-mod 76),
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where, for each finite set I, we take D jp-mod (Aqrie-mod JG) 1 to be Depip-mod(Aepig-mod IJ G)
as defined in definition 3.1.8.

Since Dery 1 is an object in Aqi-mod JG, it makes sense to consider the object By,
where

By = ‘I’I(Dm't,l)-

By definition, the assignment I — B defines a factorization algebra in QCoh!(Opg).
However, by the second point of conjecture 3.6.1 it is in fact a factorization algebra

in QCoh!(Op'g"T). We will consider the factorization category
3-mod(QCoh!(Opg"T ),
as defined in 3.1.8. For every I, the composition
D erig-mod (A gi-mod ] %) Lo, Arip-mod;© AZN QCoh!(Ongr),
lifts to a functor, that we will still denote by ¥,
U1 : Derig-m0od(Acrig-mod; ) — B-mod(QCoh'(Opy7)).

We denote simply by ¥ the collection of functors {I — ¥;};

U : Drig-mod(Arip-mod %) — B-mod(QCoh'(OpET)). (3.32)

Recall now the Beilinson-Drinfeld Grassmaniann Grg, and the factorization category

Dcrii-mod(Grg) of critically twisted D-modules on Grg, given by the assignment

I- Dm-t—mod(GrG,I).

In proposition 3.3.3 and in theorem 3.1 we have shown the following two facts.
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o We have an equivalence D ;-mod(Acrie-mod JG) ~ D, ;-mod 7€,

e There exist an equivalence of factorization categories

Derie-mod(Grg) = Depig-mod 7¢.

Recall that the second equivalence is constructed as follows. For every I, denote by
7r the projection

VT MGI — GI‘G’[.
For a D-module F; in D..;-mod(Grg 1), consider the pull-back #7(JF7). This is, by

definition, an object in QCoh'(MGY), and, therefore, the object

M = DM (73 (1)) == pL(x}(F7))

rel

is a discrete module for 0%k, = pI(Opg,), where p! is the map p! : MG, — X'
MGy * 1

The equivalence above is given by the functor I';

T;: Dgy-mod(Grgr) — Dei-mod;C

F; - TME(ax(T).

rel

Let’s now consider the composition

Derig-mod(Grg 1) ;j-s Derie-mod /¢ ~ D ip-mod(Aeip-mod ;) 2,
I

— B-mod(QCoh'(Opy7y)).
Denote by I'y s the resulting factorization functor

Ly : Deig-mod(Grg,r) = B—mod(QCoh! (Opy))-
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We can finally state the main corollary of conjecture 3.6.1, from which conjecture

1.2.2 will follows using the equivalence
D-mod(Grg,1) ~ Deri-mod(Grg r),

of proposition 3.4.5.

Conjecture 3.7.1. The collection {I — T'y 1} gives rise to an equivalence of fac-

torization categories
D.y-mod( Grg) F1> B-mod(QCok'(Ops™)). (3.33)
'

We will prove theorem 3.7.1 assuming the conjecture 3.6.1

proof of conjecture 3.7.1. By Theorem 3.6.1 2, the chiral algebra B is an algebra in

the factorization category QCoh'(Op¥™

5 ). In particular, for every I, it makes sense

to consider the category B-mod(QCoh' (Op;7)). Recall now that the functor 'y s

is constructed as the composition
Derse-mod(Gre,r) = Deriemod 7€ = Deri-mod (Acrie-mod;®) 5 B-mod(QCol' (OpLT)).
However, conjecture 3.6.1 3. implies that the last functor gives rise to an equivalence
D eri-mod(Aeip-mod ] ) 21, ﬁ-mod(QCoh!(Opg,’}T )s
therefore, we indeed get an equivalence
Derit-mod(Grg 1) 1“%?1 B-mod(QCoh'(Opy7)),

over X! for every I, i.e. we have that I'y establishes an equivalence of factorization

categories.
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O

As we mentioned before, using the equivalence between D..;-mod(Grg) and
D-mod(Grg) we arrive at the algebraic description of the category of D-modules on
the Grassmannian Grg and of the category of D-modules on the affine Grassmannian

Grg,m .

Theorem 3.4. The composition
D-mod(Grg) Bherie, D vit-mod(Grg) Ly, B-mod(QCoh!(Op'g"r))

is an equivalence of factorization categories.

Corollary 3.7.1. The functor M > D'y ;(M ® Lerir ) establishes an equivalence of
categories

D-mod(Grg z) = B-modynr»

where B-mod,,, denotes the category of B-modules supported at x € X, which are
supported on Op.v when regarded as objects in QCoh!(Opﬁ(D;)).

B’I
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Appendix A

How to prove conjecture 3.6.1

In this appendix we will explain how we think conjecture 3.6.1 could be proven. We
will present two different approaches. More precisely, in A.1, we will try to construct

an inverse to the functor
U; : Agir-mod] — QCoh'(OpiT).
While, in A.2 we will try to deduce conjecture 3.6.1 from the equivalence ¥y :

Acrir-mod € = QCoh'(Opt™¥) of theorem 3.3.

A.1 First approach

Recall the BRST-reduction introduced in 2.3.1. Given a Lie* algebra £, and a finite

set I, it defines functors
BRST; : {U(£77**)-modules on X'} — {BRST(A’)-modules on X'},

where A’ id the dg-chiral algebra A" = U(£)~79*¢ ® CI(£). Consider now the Lie*-
algebra Ly = g® Dx. As it is explained in [AG], for this Lie*-algebra, the extension

Ly Tate corresponds to the extension Lg“"’“" given by the Killing form —xg;y on g.
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We therefore have a collection of functors
BRST; : {U(L;*™)-modules on X'} — {BRST(A')-modules on X'} .

Since the critical level k.4 is equal to —1/2kk;u, given any two Ae-modules M
and N, we can regard the tensor product M ® N as a U(L;"%#) = A_, ,,~-module.

This gives rise to a pairing

BRSTy: Aguy-mod; @ Agp-mod; — Vect
MRN ~ BRST;(MQ®N).

Recall now the chiral algebra D..;;. A remarkable feature of this chiral algebra,
that was shown in [AG] and [FG7], is the following.

Proposition A.1.1. Let M be a chiral Aqi-module on XI. Consider the A;-

module (D)1 corresponding to Deriy. Then we have

BRSTI(M X (Dcrit)l) ~ M.

A.1.1 Construction of the inverse to ¥,

Consider now the functor
Uy .Am-t—mod,m — QCoh!(Op‘g’J).

A generalization of the argument presented in [FG7] can be used to show the second

point of the above conjecture.

lemma A.1.1. The image of the functor U restricted to the category .Am-t-modIJ ¢
is contained in QCoh!(Opg"_‘,' .

We can therefore consider ¥; as a functor from Ac,it-mod," G to the category
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QCoh'(Op7y). We now want to construct an inverse &; to ¥y,
& : QCoh'(Op¥T) — Acrir-mod; .

Consider the chiral algebra D..;, and recall that it admits two embedding ! and r

of Aerie. Denote by @i the chiral algebra
Corit = (¥x B ¥x)(Derie) € QCoh'(Opy") ® QCoh' (OpET).
Th chiral algebra €,.;; naturally defines a functor
<. >} Vect - QCoh’(opgf_;r) ® QCoh! (Opi™),

simply by sending the unit object C to < €C >*:= €.

The existence of the functor ®; would follow from the following proposition.

Proposition A.1.2. For every finite set I there erists a pairing
< .® . >1 QCok'(Oply) ® QCok(OptT") — Vect,
such that, the following two properties are satisfied:

o the composition

<,>}®Id

QCOh!(Opg:';r QCOh ( p;w}r) ® QCOh (Opunr) ® QCOh (O um-) 1d®<.®.>

1d®<.®. >I; QCoh (Opun’r)

is the identity functor.
o For M and N in .Amt—mod}m, we have
< ‘I}](M) & \III(N) >ri=< (‘I’] X \I/[)(M & N) > BRST](M ® N) (Al)
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Let’s now show how proposition A.1.2 would allow us to construct the inverse

functor ®;. Recall that we denoted by B the chiral algebra
B ={IdR Vx)(Derie) € (Aerir-modx) "% @ QCoh'(Op¥).
Given an object F in QCoh!(Opg}r), we define @/(F) to be:

®;(F) ;=< B; ® F >1€ Aga-mod;C,

unr

where we regard By as an object in Ay -mod;¢ ®QCoh!(Op§7 7). Using proposition
A.1l.1, we can immediately check that the composition ®; o ¥; is the identity on

Ami-mod IJ G In fact, for M a Am-module on X, we have

(T (M) =< (Id B U))(D i) ® ¥1(M) >~ BRST KH4(D iy @ M) ~ M.

unr

Similarly, we can show that the composition ¥;0®, is the identity on QCoh!(Opé, 7).
In fact, by the first property in A.1.2, for N in QCoh!(Opg"}r), we have

‘I/[(q)I(N)) = ‘I/I(< (Idg \Ifx)(Dcﬂ‘t)[ RN >) ~ < (\IJX X \I;X)(Dcrit)l QN >=

=< Cert N >= (<,>1 ®Id)o (Id® <.® .>[)(N) ~N.

A.2 Second approach

Let € and D be two abelian factorization categories. Let G : € — D be a factor-
ization functor, G = {G;: €; — D;}. The idea of the second approach is to try to
understand what it takes for G to establish an equivalence of categories over X7, if

we assume that
e G induces an equivalence Cx — Dx (over one copy of the curve).

We start by the following general proposition.
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Proposition A.2.1. Let G : € = D be a factorization functor between two factor-
wzation categories € and D. If for every finite set I, Gy induces an equivalence on

Hom'’s and Ext'’s, then G is an equivalence.
» q

Proof. This follows from the following lemma.

Lemma A.2.1. Let G : €1 — C; be an ezact functor between abelian categories.

Assume that for XY € € the maps
Home, (X,Y) — Home, (G(X), G(Y)),

Bxth, (X,Y) — Bt (G(X), G(Y)

are isomorphisms. If G admits a right adjoint functor F which is conservative, then

G is an equivalence.

In fact, under the above assumptions, the functor G; admits a right adjoint Fy
which is conservative. To show this, we have to show that, for every N € Dy, the

functor

M+ Homp_, (G(M), N)

is representable, where M € €y :. Denote by Gg{, the subcategory of compact
objects. Consider the category of pairs (X, f), where X € €%, and f € Gi(X).
Morphisms between (X, f) and (X', f') are maps ¢ : X — X’ | such that ¢.(f') = f
. It is easy to see that the ob ject

colimX
(X.£)

represents the functor Gj.
To show that F7} is conservative, it is enough to show that for every N € Dy, there

exists M € Cxs such that Homyp,(G;(M),N) is non zero. For this, consider the
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exact triangle

" (N) = N = 5" (N).

If 7,5*(N) is non zero, then it is in the image of G, by induction on 7, since G is an
equivalence over X. Hence we are done. If i,i*(N) is zero, then N is quasi-isomorphic

to j.j*(N), and we are done for the same reasons. O

Proof of A.2.1. The fully faithfulness assumption on G implies that the adjunction
map induces an isomorphism between the composition FoG and the identity functor
on Gy . We have to show that the second adjunction map is also an isomorphism.
For X’ € C; let Y’ and Z’ be the kernel and cokernel, respectively, of the adjunction
map G o F(X') - X' . Being a right adjoint functor, F is left-exact, hence we

obtain an exact sequence

0> F(Y') > FoGoF(X') > F(X').

But since F(X’) — F o G(F(X’)) is an isomorphism, we obtain that F(Y”') = 0.
Since F is conservative, this implies that Y’ = 0. Suppose that Z’ # 0. Since
F(Z") = 0, there exists an ob ject Z € €; with a non-zero map G(Z) — Z'.

Consider the induced extension

05> GoF(X'Y->W - G(Z)—0.

Since G induces a bijection on Ext, , this extension can be obtained from an exten-
sion

0> FX)Y>W—=>Z-0

in €. In other words, we obtain a map G(W) — X', which does not factor through

G o F(X') ¢ X', which contradicts the (G, F') adjunction. 0
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A.2.1 The case G=VY

Now, consider the factorization functor ¥. By lemma A.1.1, we can regard it as a

factorization functor ¥ : A-mod’® — D(QCoh' (Op;™)). By proposition A.2.1,

we have that conjecture 3.6.1 is equivalent to the following.

e For every I, the functor ¥ is exact.

e For every I, the functor ¥; induces an isomorphism on Hom’s and Ext'’s.

In trying to show these two points, we will use the assumption on ¥x being an

equivalence. For the first point, we have the following:

Proposition A.2.2. If the functor ¥y, restricted to the category of strongly JG-

equivariant objects
Ut Agrig-mod] 7 — D(QCOh!(OPg,I))

is Tight exact, then it is ezact.

Proof. Consider the following general setting. Let € and D be two abelian fac-
torization categories. Let F' : D(€) — D(D) be a factorization functor. Assume

that

e Fx:Cx = D(Dx) is exact.

e For every I, F1(D=°(€;)) c D=(Dy).

Then the functors J; are also exact. This simply follows from the fact that under

these hypothesis, we also have
F1(D>°(€))) c D2°(Dy).
In fact, by induction on I, for M; € D2%(€;), we can consider the triangle

My = Ju(Mi_gsy) > cone(Mp = 5. (Mi_r,4))-
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Note that the second term of the above sequence is in DZ°(€;), and moreover, since

Fr_gs} is exact, we have that
Fr(5.(M7_())) € D>%(Dy).

The same reasoning applies to the last term of the triangle, since the object cone(M; —
J»(M]_,y)) can be written as the colimit of push-forward of modules in D=°(C;_}),
and F commutes with both colimits and A,. Therefore we see that, by applying 7,
we get

Fr(M;) — Fl(j*(M,I—{*})) — Fr(cone(M; — j*(M,I—{*})))Jv

e;,z"
which implies F;(M;) € D=%(Dy). |
For the second point, we proceed as follows. If € in an abelian category, we
say that an object C' € € is quasi-perfect if for any directed system of objects, the

natural map

Ext¢(C, lim C;) — lig Extg (C, Ci)

is an isomorphism for every i > 0.
Assume that G : € — D is a continuous factorization functor between factoriza-

tion categories as before. Suppose that:

e each Cx: is generated by quasi-perfect objects.

¢ G induces an equivalence C€x — Dx (over one copy of the curve).
We have the following proposition.

Proposition A.2.3. Suppose that, in the conditions above, Gy : €x1 — Dx1 pre-

serves quasi-perfect objects. Then G is an equivalence.

Proof. By proposition A.2.1, it is enough to show that G induces equivalences on

Hom’s and Ext!’s We will deal with the case n=2, the general case can be treated
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similarly. We need to show that for every M; and My in €x2, Hom(M;, M;) —
Hom (G2(M,), G2(Mg)) and Ext!(M;, M) — Ext!'(G2(M;), G2(Mz)) are equiva-
lences. We can assume that M, is quasi-perfect. Since A, and j, have both left
adjoints, and F' commutes with them by definition, the statement is true for M, of
the form j,(M) and A,(M), for M € €x, where we are taking the O-module direct

image. For arbitrary M., we can consider the exact triangle
M2 - .7*( ,2) — M,2,7

where M is supported set-theoretically on the diagonal. Now, such Mj can be

written as a colimit Mj = cqlz'}nA,(M,-). By applying Hom(M,, — ) we get
1€

HOIII(MI, Mz)

Hom(M, j.«(M3))

Hom(M,, cqliImA* (M),
€

~ ~ ~

e — Hom(Gz (Ml), Gz (Mg)) _— Hom(Gg(Ml), Gz(]*(Mg))) — HOHI(GQ(Ml), GQ(C(ZZEZI’ITLA*(M,:

where the last isomorphism follows from the fact that M; is compact, therefore
G2(M,) is, and Hom out of them commutes with colimits. Note that the same

argument applies for Ext!’s. O

By proposition A.2.3 and proposition A.2.2 we see that conjecture 3.6.1 is equiv-

alent to the following:

1. The functor ¥y is right exact.
2. The category A..;-mod IJ @ is generated by quasi-perfect objects.

3. The functor ¥; preserves quasi-perfectness.

Currently, we don’t know how the first point can be shown. For the second

point, for any n-duple of dominant weights A = (Ay,...,A,), denotes by A2 the

crit
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Aerie-module on X! given as

)
Ay =Tndge (VM@ @V ®0x), (A.2)
G,0 xI

where ’S(G{,)O and sﬁ_ﬁzt are the topological sheaves of Lie algebras introduced in 3.8. In
particular, for A = (0,...,0), we recover the factorization algebra (A.;)s attached

to -A-crit .

We have the following proposition.

Proposition A.2.4. The category Acris-mod’C is generated by the objects Afm.t and

these objects are quasi-perfect.
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