
Encoding Data into Physical Objects with

Digitally Fabricated Textures

by

Travis Rich

B.S., Boston University (2010)
M.S., Boston University (2011)

ARCHIVES
MASSACHUSETTS INSilTIftE

OF TECHNOLOGY

JUL 19 23

LIBRARIES

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning

in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2013

© Massachusetts Institute of Technology 2013.

A u th or

A

All rights reserved.

Program in Media Arts and Sciences,
May 6, 2013

Certified by..
Andrew Lippman

Associate Director & Senior Research Scientist, MIT Media Lab
Thesis Supervisor

Accepted by
Professor Patricia Maes

Associate Academic Head, Program in Media Arts and Sciences

.....................

2

Encoding Data into Physical Objects with Digitally

Fabricated Textures

by

Travis Rich

Submitted to the Program in Media Arts and Sciences,,
School of Architecture and Planning

on May 18, 2013, in partial fulfillment of the
requirements for the degree of

Master of Science in Media Arts and Sciences

Abstract

This thesis presents and outlines a system for encoding physical passive objects with
deterministic surface features that contain identifying information about that object.
The goal of such work is to take steps towards a self-descriptive universe in which
all objects contain within their physical structure hooks to information about how
they can be used, how they can be fixed, what they're used for, who uses them,
etc. By exploring modern manufacturing processes, several techniques for creating
these deterministic textures are presented. Of high importance is the advancement
of 3D printing technologies. By leveraging the rapid prototyping capabilities such
machines offer, this thesis looks at how personalized objects and draft models may
be encoded with data that allows annotations, ideas, and notes to be associated with
physical points across that object. Whereas barcodes, QR codes, and RFID tags are
often used to associate a single object with a single piece of data, this technique of
encoding surfaces will allow for many points of identification to be placed on a single
object, enabling applications in learning, group interaction, and gaming.

Thesis Supervisor: Andrew Lippman
Title: Associate Director & Senior Research Scientist, MIT Media Lab

3

Encoding Data into Physical Objects with Digitally

Fabricated Textures

by

Travis Rich

The following people served as readers for this thesis:

Thesis R eader
Patricia Maes

Professor of Media Technology
Program in Media Arts and Sciences

7-)

Thesis Reader
/ V. Michael Bove, Jr.

Principal Research Scientist
Media Lab

4

Acknowledgments

Like all good adventures, landing at the end of writing your thesis is filled with as

much excitement for the end result as bewilderment at the path it took to get there.

As twisting and windy as that path may have been, there are always hoards of people

who have kept me from skidding past the sharp turns and sinking too far into the

deep dives. To that end, thank you everyone who helped me get from A to B (and

Z, H, K, and M in between).

The Media Lab is unlike any community I've ever been a part of and I'm extremely

grateful to have been able to complete this work as part of it. Thank you everyone for

the Friday teas, 99 Fridays, ping pong, free appetizers, foodcam rations, and Muddy

brainstorms.

With the utmost gratitude, I thank my advisor, Andy Lippman, for bringing me

to the Lab and providing amazing experiences throughout this two years Master's.

I'm extremely grateful for all the support, advice, and ideas you've given me.

Thank you to my readers, Pattie Maes and Mike Bove, for helping me funnel the

sparks in my head down into something worthwhile and exciting. It's been wonderful

working with you.

Thanks to the Viral Spaces group (Matt Blackshaw, Kwan Hong Lee , Julia Ma,

Dawei Shen, Shen Shen, Dan Sawada, Jonathan Speiser, Eyal Toledano, Deb Widener,

Grace Woo, and Polychronis Ypodimatopoulos) for being in the trenches with me and

giving me enough fuel for thought to last decades.

Thanks to all the MIT friends who have been there to get food, drinks, and free

t-shirts for these past two years. Nothing is sadder than the fact that we don't get

to always play in the same building.

In more ways than I can count, I'm indebted to my family - Dad, Mom, Josh, and

Peter - for raising me to be eager and interested in exploring the world's questions.

Thank you. To my non-genetic family at 9 Rollins, thanks for keeping me sane and

happy.

To Grace Lin, thanks for being there every step of the way. I'm couldn't be

5

happier that I get to share countless adventures with you.

To all my friends inside and outside the Lab, thank you for taking me to where I

am today.

6

Contents

1 Introduction 17

1.1 Thesis Work Context and Perspective 17

1.2 A Self-descriptive Universe . 18

1.3 The Right Information at the Right Time 19

1.4 A Rational for Physical Encoding . 21

1.4.1 Modalities of Sensing . 23

1.4.2 Optical. 23

1.4.3 Tactile . 24

1.4.4 Acoustic . 25

1.4.5 Electromagnetic . 26

1.5 Thesis Map . 26

2 Background 29

2.1 Computer Aided Design . 29

2.2 Digital Fabrication . 31

2.2.1 Personal Fabrication . 32

2.3 Rapid Hardware Production . 34

2.4 Physical Tagging . 35

2.4.1 Taxonomy . 36

3 Related Work 41

3.1 Tag-Facilitated Interaction . 42

3.2 Physical Encoding . 43

7

3.3

3.4

3.5

Just-in-Time Information Systems .

Collaborative Annotation .

Methods for Decoding Texture .

4 Encoding Planar Surfaces

4.1 Encoding Shape and Pattern

4.1.1 Existing Patterns

4.1.2 Testing Simple Primitives

4.1.3 Generating the Primitives

4.2 Detecting Simple Primitives

4.2.1 Image Processing Environment Setup

4.2.2 Primitive Detection

4.2.3 Reading Codes Through Noise

4.3 Fabricating the Primitives

5 Planar Surfaces Live Test and Evaluation

5.1 99 Fridays Tokens

5.1.1 Token Design and Fabrication . .

5.1.2 Physical Decoder Box

5.2 Live Decoding Software

5.2.1 Bit Detection

5.2.2 Orientation

5.3 Collected Data

5.3.1 User Feedback

5.4 Test Results

5.4.1 Read Error Rates

6 Encoding 3-Dimensional Surfaces

6.1 Simple CAD Encoding

6.1.1 Simple CAD Fabrication

6.2 Encoding Complex Geometries

8

45

46

47

51

51

52

52

53

54

54

54

56

58

61

. 61

. 62

. 64

. 65

. 65

. 66

. 67

. 67

. 6 8

. 6 9

75

75

77

78

6.2.1 Displacement Maps . 79

6.2.2 Subdividing Meshes . 82

6.3 Fabricating Complex Geometries . 85

6.4 Decoding 3D surfaces . 87

6.5 Characterization . 89

6.5.1 Feasible Data Density . 89

6.5.2 Optical Decoder Performance 90

7 Interface and Backend Design 93

7.1 Web Sockets . 95

7.2 Mobile Platform . 96

7.3 Basic Interface Functionality . 96

7.4 Interface Features . 97

7.4.1 Rendering STL Model . 97

7.4.2 Spotlight Selection . 99

7.4.3 Leaving Annotations . 99

7.4.4 Selecting Parts of the Current Object 100

7.4.5 Camera Viewfinder . 100

8 Encoded Applications Beyond 3D Printing 101

8.1 Fabrics . 101

8.2 Food . 104

8.3 B eyond . 107

9 Discussion and Future Work 109

9.1 Presented Opportunities . 109

9.2 Remaining Challenges . 109

9.2.1 Integration With Design Tools 110

9.2.2 Scalable Pattern Recognition 110

9.2.3 Characterizing the Robustness of Tags111

9.3 Encoded Surfaces as a Means to Evolve111

9

10 Conclusion 113

A Source Code 115

A.1 Primitive Generation 115

A.2 Prim itive Detection 117

A .3 Coin Generation . 121

10

List of Figures

1-1 The edit, fabricate, scan cycle. 22

1-2 Probing an ultrasonic response as determined by surface texture. . . . 25

2-1 Ivan Sutherland in front of his Sketchpad demonstration. 30

2-2 CAD Model as represented in the Catia software package 31

2-3 Nanoscale 3D printed F1 racecar model. 32

2-4 A Form1 3D desktop printer and sample output. @Formlabs 34

2-5 The successive narrowing of each requirement. The examples in blue

are for simple demonstration. 36

3-1 An installation by Tesco Home Plus for QR-code grocery shopping. 43

3-2 Acrylic strips that have been etched to create acoustic barcodes. . . 44

3-3 Comparison from [36] showing the Anoto pattern printed on paper

(left) and printed on an object with a multi-color 3D printer (right). . 45

3-4 Bradley Rhodes wearing his remembrance agent. 45

3-5 David Merrill usiig the Invisible Media system to learn about a car

engine. 46

3-6 Two users interacting with the Second Surface project. 47

3-7 An example setup for using an accelerometer to detect surface features. 48

3-8 Sample results from [18] showing the high resolution that is achievable. 48

4-1 Varying patterns and noise levels generated to test a 2D decoding al-

gorithm . 53

11

4-2 Sample Hough decoding showing poor results which led to a decision

to search for alternative algorithms. 55

4-3 Sample decoding showing the ability to differentiate between various

shape types. 56

4-4 Plot showing the number of objects that are detected as noise levels

increase. 16 objects are 'intentional'. 57

4-5 Several lasercutting results. The left shows attempts at making pos-

itive features (a lengthier and less-desired process), the middle shows

arrays of patterns at various sizes, and the right shows a macro shot

of a sm all pattern. 58

4-6 An example of the milling process. The left shows the CAD model and

mill paths. The middle shows the resulting wax mold. The right shows

the final silicone cast. 59

5-1 Left: A few sample cut tokens. Right: A close-up of one of the early

token prototypes. 62

5-2 Results of laser cutter testing to produce surface cavities that are of

the highest contrast and precision . 63

5-3 Several tokens generated for laser cutting. 64

5-4 The fabricated tokens on the laser cutter bed after being manufactured.

Each token has 32 bits if unique identifying information. 71

5-5 A close up showing the illuminated opening of the final token reader. 72

5-6 A user placing his token onto the token reader 73

5-7 The software identifying potential bit locations in blue. 73

5-8 Software screen showing the orientation line being detected and the fit

line being drawn. 74

5-9 A sample of the various encoded tokens that have been generated. . . 74

6-1 A simple cube with extruded cavity encodings. 76

6-2 A simple cylinder with wrapped cavity encodings. 77

6-3 A simple sphere with extruded cavity encodings. 77

12

6-4 1", 0.75", and 0.5" diameter cubes and cylinders 3D printed to test

the printer resolution. A pen is shown at top for scale. 78

6-5 Steps for applying a displacement map in Blender. 81

6-6 STL model of head with a circular encoded pattern applied as a dis-

placem ent m ap. 82

6-7 Low-poly mesh of a contoured surface. Note the long stretching triangle

faces. 83

6-8 Low-poly mesh of a contoured surface after multiple subdivisions (left

fewer subdivisions, right more subdivisions). Note the long stretching

triangle faces. 84

6-9 Re-meshed surface. Left is after the base re-meshing, right is after

subdividing the re-meshed surface. Note the nice, point-like triangle

faces that contrast the faces seen in Figure 6-8. 84

6-10 Mesh representing the negative of a surface encoded race car. 85

6-11 3D printed result of using a bad mesh model. 86

6-12 Process and result of fabricating the race car with encoded surface. 87

6-13 A sample triangle code used to encode a surface area. 88

6-14 Data density as a function of the side-length of the fabricated code. . 90

7-1 A preliminary chart describing the tasks and steps of the mobile device,

server, and browser. 94

7-2 A screenshot of the browser UI being used to explore the car model. 97

7-3 A screenshot of the mobile UI being used to explore the car model. 98

8-1 Decodable stitches and a screenshot of the mobile UI upon scanning. 102

8-2 A screenshot of scanning a decodable shirt pattern, as produced as

part of Jennifer Jacobs' thesis work. 103

8-3 Failed results of the attempt to encode the bottom of cookies through

layers of various cut materials. 105

8-4 A screenshot of scanning a decodable cookie pattern. 106

13

14

List of Tables

2.1 Taxonomy of tagging technologies . 39

5.1 Token Testing Results. 68

5.2 Token Testing Results for a second set of tokens 69

6.1 Characterizing the read range for various code sizes. Green denotes

the code can be read at that distance. Red denotes the code cannot

be read at that distance. 91

15

16

Chapter 1

Introduction

Connecting all life, as we know it, is the powerful mechanism of self-encoding. The

source-code for any life form is contained within nearly every part of its being. The

DNA found in the skin, hair, bone, muscle, or other tissue not only completely de-

scribes the being, but it can be used to produce copies of the being. Interestingly, this

fundamental paradigm that directs our very existence is not replicated in the worldly

objects that we as humans produce. The objects we build and fabricate and often

completely separate from the plans and designs that were used to build those objects.

While this arose out of simplicity, our manufacturing and technical understanding is

reaching a point where the capability of embedding our physical objects with descrip-

tive information is simple and achievable. This is due to both advancements in the

resolution with which we can fabricate objects and advancements in the resolution

with which we can sense objects. This thesis explores the paradigm of encoding in-

formation into the physical structure of our tangible objects, from the manufacturing

techniques and procedures to the sensing modalities and architectures.

1.1 Thesis Work Context and Perspective

This work was performed in the Viral Spaces group at the MIT Media Lab, led by Dr.

Andrew Lippman. From its origins in viral communications and infrastructure-free

radio systems, it has grown to explore mobile device ecologies, their influence on our

17

physical spaces, and most recently, their ability to create meaningful experiences in

our everyday lives. Building on this past experience, the group has transitioned from

designing communicative spaces to creative spaces. Spaces that enable experiences

that are instructive, creative, and engaging. This history and bias provides a useful

perspective from which to understand this work and the motives. To that end, this

thesis explores beyond the domain of radios and electronics to the 'classic' part of our

environments - the passive objects that don't have built in communication hardware,

sensors, and batteries - in hopes of creating more instructive, creative, and engaging

physical environments.

Furthermore, this thesis work strives to uphold a design paradigm in which new

technologies are built to start small (providing value at that small scale) and scale

efficiently (growing in value as the idea scales). For example, technologies like the

internet (which provides value to the original owner of the network and grows in value

as more participate) are preferred over technologies like fax machines (a technology

which only provides value at large scale and is useless to the first owner). This

technological design bias is maintained through much of this thesis work, and there

is a strong emphasis to create a system which is useful even if it is only ever used by

a single person, but would surely grow in value if it were to become well adopted.

1.2 A Self-descriptive Universe

The ultimate goal of this direction of research is to create a self-descriptive universe.

In a self-descriptive universe, all of our objects reveal themselves to you: how they're

made, who uses them, how they're used, how they can be fixed, what principles and

concepts guide their function. This ties with the DNA metaphor in by taking one

step further. Our objects will not only have encodings that describe themselves, as

biological beings have DNA, but we will have the tools to interact with and read these

encoded objects.

The idea of a self-descriptive universe can be seen, in some respect, as an extension

beyond the typical internet-of-things idea. The internet-of-things is an idea that

18

suggests the connection of all of our gizmos; if it plugs into a wall, it should plug into

the network. In such a network, my oven can talk to my toaster, which can talk to

my fridge and turn on my lights which react to my alarm, all of which are controlled

by my phone, for example. A self-descriptive universe extends beyond that to passive

objects: my hat, my shirt, my car engine, a bike chain, etc. What would these things

have to say, if we could make them talk? Perhaps they would tell you where they

were made, or how people use them, or what their CAD file is so that we can 3D

print another copy. They would become self-descriptive.

While this vision is decidedly longer-term than a Master's thesis, steps in the

right direction can be taken. While the future of sensing and the wearable tools is

unknown, we can begin by creating this self-descriptive world to leverage the sensors

we currently carry - and evolve over time as need be. That said, this thesis takes a

strong bias towards devising a sensing paradigm that leverages the sensors found in

common mobile phones. While this introduces a level of industrial bias (perhaps the

sensors Samsung has decided are best for profits are not the best technical solution

for my cause), it drives an important idea that the sensing used is to be common and

ubiquitous.

1.3 The Right Information at the Right Time

Throughout our lives we encounter many interactions that make for rich learning

experiences in which an expert teaches a subject matter around a physical object.

For example, a mechanic teaching an apprentice about car engines, a doctor using a

model to explain an injury to a patient, or a physics teacher using demo kits to teach

Newtonian mechanics. In these situations, I claim that the richness of the experience

comes from two main factors: 1) having an expert that can act as a knowledge

source, and 2) having the physical object present to allow specific pointing, touching,

and exploration. However, these occurrences are rare and we typically do not have a

knowledge expert or an object that allows direct interaction available. So the question

becomes, how can we enable normal, everyday objects to afford that same experience,

19

same interactivity of being able to touch and either submit or consume information

about that spatially specific touch point? How can we deliver the right information,

at the right time? We explore these questions to create technologies that enable us

to learn from what is physically around us.

The growth of the internet and the era of digitization has led to a state where

much of the world's knowledge it cataloged and accessible to a large population.

However, the mechanisms for accessing this data are not always convenient or even

useful. Take, for example again, the scenario of trying to learn about your car engine.

In this sort of scenario, it is difficult to search for the information you want as you

don't know the name of the thing you're interested in. The ideal situation is to have

a mechanic near-by who could tell you, based on their experience, what any given

part of a car engine is when you point (an attempt to solve similar problems has been

performed be Maes and Merrill [22] and will be further discussed in Chapter 3). The

middle ground that this thesis tries to create is one where the digitized information of

the web can be associated with the specific object through a physical encoding that is

found on the object. In this way, rather than a mechanic, one could use their mobile

sensors to 'read' the physical encoding and gather information about their car engine.

Referring again to the DNA analogy, such interaction can be akin to the example of

a biologist using DNA testing to understand the relatives and specific characteristics

of millennia-old, preserved animal tissue.

In this way, delivering the right information at the right time and place (i.e.

based on the context and situation a person is in) can be extraordinarily valuable

for exploration and learning. The vision that I am driven by is one of a real-world

wikipedia. One where the span of human knowledge regarding a physical object is

not accessed through a web-browser, but through physical interaction with the item.

In this way, users could stumble across information based on the new things they

encounter everyday. Higher level representations could also be made. By mapping

the objects a person interacts with and understands, unique learning experiences can

be produced. By seeing that a person is interacting with bike chains and fishing rods,

perhaps a lesson on mechanical advantage could be delivered with higher efficacy.

20

1.4 A Rational for Physical Encoding

The enabling technology of this thesis is advanced digital fabrication tools.Key ad-

vancements have led to an increase in accessibility and power of digital fabrication.

With advancements in CNC cutters, laser cutters, 3D printers, and casting com-

pounds, to name a few, it is now possible to fabricate objects with a specificity and

resolution that was previously out of reach. This allows us to create deterministic

textures that encode data in their physical variations.

In addition to making such fabrication physically possible, such advancements

raise interesting social and community based needs. In a world where at-home 3D

printing and fabrication is common place, it will be important to establish a mecha-

nism for identifying the source and ownership of a given object. Encoding the physical

object itself with identifying surface textures could be one solution. Furthermore, it

may be beneficial to create a technology by which sharing designs and source models

would be simple and straightforward. By encoding the surface texture of an object,

one could either link a source file to the encoded data, or the encoded data itself could

contain the raw CAD file source material. This would allow for people to duplicate

physical 3D objects simply by scanning and reading the encoded CAD file embed-

ded within that object, and then 3D printing the direct result. At the extreme, this

approaches an ecosystem like that seen in the open-software world. Source code is

easily shared, distributed, reproduced, and remixed in different contexts for different

purposes.

Figure 1-1 demonstrates a cycle that is possible with an encoded surface technol-

ogy. Here, the evolution of an object is cyclical and revisions can be made directly on

top of the existing model by retrieving the CAD model from the object itself. This

contrasts with a typical linear manufacturing chain. In such a manufacturing chain,

an object is designed, fabricated, and distributed. Future iterations of that object

are then only made by the original manufacturer. Slight alterations or personalized

changes could not be made and fabricated by another party without first making an

effort to duplicate the entire original object.

21

Begin

Figure 1-1: The edit, fabricate, scan cycle.

Physically encoding the surface of an object also provides a unique robustness.

Given sufficient encoding resolution, broken pieces could be read and the entire object

as a whole could be re-printed from the broken piece (in the same way a single cell

could be used to clone an entire biological being). This could provide value in repairing

larger systems. For example, finding a broken component in a home refrigerator would

no longer be a cause for worry. Regardless of whether the name of the broken piece

is known, it can be scanned, re-fabricated, and replaced.

Most importantly, a physical encoding means that the data is entirely contained

in the source CAD file that describes this object. In this way, the software file can be

distributed and shared through traditional means and every iteration of the fabricated

piece will contain an identical encoding (as dictated by the source CAD file). Thus,
by creating a web-connected backend interface driven by this encoding, the physical,

passive objects can in a sense be networked. The physical data markings on the

object can be used to link to a single community web location where comments, tips,

22

and details about that object can be stored.

1.4.1 Modalities of Sensing

When considering how to physically encode an object, one must simultaneously con-

sider the matching decoding mechanism that will be used. Furthermore, it is impor-

tant to also consider the earlier mentioned Viral Spaces value of leveraging technology

ecosystems such that a system is designed to scale effectively and with value. In this

sense, it is powerful to leverage the existing mobile device ecosystem as our decod-

ing backbone. While this created a potentially arbitrary limit, it aids in creating an

argument for the viability of this idea. Thus, for this thesis, I consider leveraging

the sensors and devices found commonly in mobile phones: speakers, microphones,

cameras, accelerometers, and magnetometers. However, for the majority of this work

I use optical means for my method of detection due to the robustness and ubiquity of

modern optical sensors, the large amount of existing image processing reference, and

the simplicity of the user experience it provides.

1.4.2 Optical

One of the most heavily used mobile sensors today is the camera installed in many new

phones. Given the ubiquity of camera phones and smart phones, many applications

have been made to leverage this new widespread optical sensor. Many augmented

reality (AR) applications have been envisioned and produce and there exist many

mobile-based image processing libraries for real-time processing. Furthermore, be-

yond the mobile domain, there exist many image processing techniques and software

packages that could be applied to this project.

Using an optical solution (i.e. the camera) has the advantage of being a very

common sensor with much existing prior and open work on image processing, yet does

still suffer from a few drawbacks. One of the largest challenges with image processing

techniques and optical means of sensing is that the results are often influenced by

the given lighting situation. Separate considerations must be made to perform the

23

same task in outdoor day versus outdoor night versus indoors. Furthermore, the

optical properties of the material that is being sensed can play a large and varying

role. Detecting opaque surfaces of certain colors is a different process than detecting

surfaces of translucent or varying color materials.

One technique that can be used to make optical sensing more powerful and robust,

given the mobile form factor that we are constrained to, is exploring the use of

optical attachments. Additional lensing, lighting, or shielding can be used to create a

more defined optical environment to sense. This can result in much higher resolution

sensing and high quality results. Prior work that has been done in the domain of

optical sensing at micro-scales will be further discussed in Section 3.5.

1.4.3 Tactile

An alternative method of sensing would be to use the accelerometer found in many

mobile devices to map the surface features of a given object. Such a technique has

the advantage of ubiquity, as accelerometers are increasingly common among newly

made mobile devices. However, using the accelerometer proposes a scenario that,

while technically arbitrary, is constrained by the manufacturing constrains imposed

by mobile developers. To accurately map a surface using the accelerometer, a high

sampling rate (kHz at least) is desired. However, because this is not the use case that

is often envisioned by the phone manufacturers, the sample rate of the accelerometer

is often limited to around 100Hz. This is a constraint that is imposed in the hardware

design of the mobile handsets. An alternative solution would be to manually attach

an additional accelerometer chip to the case of the phone, with the argument that in

the future, it would be trivial to change the software implementation that currently

limits accelerometer read rates.

However, the accelerometer also suffers from the issue that to map a surface, the

phone must be dragged or swiped across the surface. This can present issues and

challenges associated with rotation and orientation of the device. Dragging in one

direction may not provide the same result as dragging over the same area in a different

direction. This may prove to be a challenging user experience issue. Prior work that

24

has been done to map surfaces using an accelerometer will be presented in Section

3.5.

1.4.4 Acoustic

Acoustic, or rather ultrasonic, methods of identifying surfaces are also an option.

The idea is to design the surface material such that when probed with ultrasound,

it demonstrates a unique response. Here, the probe may be an array of ultrasonic

emitters that can be sequentially transmitting or receiving to effectively image the

surface properties. Because we have full control of the system (we design the material

and the probe), we can model the ultrasonic transmission for a given surface or texture

and match this to what our probe actually reads. Figure 1-2 demonstrates this idea.

Figure 1-2: Probing an ultrasonic response as determined by surface texture.

By creating varying surfaces with different cavities, features, resonances, or com-

positions, we can tailor the response. The optimal solution would be to use the

microphone and speakers that are found in a mobile device to produce and receive

these ultrasonic pings. Unfortunately, the chips used in current mobile phones do not

perform at the acoustic frequencies that are needed, so this would have to be more

25

of an exercise in exploring future possibilities.

1.4.5 Electromagnetic

Leveraging the magnetometer or NFC chips often found in mobile devices could also

provide a means to sensing encoding objects. In the case of the magnetometer,

the idea would be to embed deterministic magnetic particles across the surface of a

material. By then swiping the phone across the material and detecting the pattern of

magnetic material, it would be possible to decode some amount of information. This

suffers from the challenge of actually encoding the material, as methods for creating

deterministically magnetic materials are not well explored.

Alternatively, there is the possibility of using the NFC chips that are being put

in some new phone models for reading and interacting with RFID tags. RFID tags

have undergone significant research and come in many shapes, sizes, and material

containers. There has been some work ([42] [44]) on printing RFID tags which may

provide a fruitful route of exploration. However, because these processes used to

create the RFID tags do not directly interface with other digital fabrication methods,

it would likely be a cumbersome process to integrate such encoding into the surface

of a material (and certainly not possible to have that represented in modern CAD

systems).

1.5 Thesis Map

Chapter 2 of this thesis will provide additional in-depth background regarding the

history and state-of-the-art of many of the fundamental technologies and processes

that are discussed and explored through this work. Chapter 3 goes on to describe

the more recent related work that has been done with a similar vision as the one I

outline here.

Chapter 4 begins to dive into work performed for this thesis and documents the

relatively simpler challenge of encoding and decoding planar surfaces. Chapter 5

presents an evaluation of the technical features of this work and takes a look at live

26

user interaction studies.

Chapter 6 moves onto non-planar surfaces and explores the fabrication (with a

heavy emphasis on 3D printing), encoding schemes, and decoding algorithms that

are involved. Chapter 7 leverages the previous chapter and describes the technical

implementation of a mobile and web interface for interacting with these 3-dimensional

surface encodings. Chapter 8 goes on to explore some simple applications of the work

described in Chapters 6 and 7, beyond the domain of 3D printing.

Chapter 9 begins to close out this thesis document by taking a step back and

looking at the future work that could be performed and discussing some of the im-

plications of the ideas presented in this thesis. Chapter 10 provides thoughts and a

conclusion.

27

28

Chapter 2

Background

2.1 Computer Aided Design

Computer Aided Design (CAD) tools are programs that allow designers, engineers,

architects, and technicians to construct and represent physical 3-dimensional drawings

of arbitrary objects. CAD tools are often used when prototyping new products or

devices to define the physical dimensions and properties of the given object. CAD

tools can often be favorable over hand-drawn documentation because they provide

exact dimensional precision and offer relational dimensions. If one is designing a ball-

and-socket joint, for example, the socket can be defined in respect to the ball, such

that if the ball size changes, the socket also changes accordingly.

One of the first instances of a CAD tool was created by Ivan Sutherland. His tool,

Sketchpad [37], allowed users to interact with a computer screen with a specialized

pen to draw lines and 2D geometric shapes. These shapes could be connected to one

another through geometric and constraint-based relationships.

Since Sutherland's initial work, CAD tools have made enormous advancements,

in part due to the growth of computational power. Modern CAD tools now offer

full design suites for whatever domain a user may be working in. Several CAD

tools provide engineers with full physics simulators to provide them with quantitative

measurements of how their design will perform under certain conditions. Using CAD

programs has become a staple in workflow of designing nearly every modern product.

29

Figure 2-1: Ivan Sutherland in front of his Sketchpad demonstration.

Buildings, cars, airplanes, pens, mobile devices, and many other products first exist

as a 3D CAD model.

These models are typically represented as a mesh, though this design decision is

often debated. A mesh defines the object by defining its outward facing surface and

any features it may have - it defines the shell of the object. That is to say, most

CAD models are 'hollow', even if the final product they represent is not. Such a

representation allows for relatively simple and quick graphical rendering (as only the

parts that could possibly be seen are rendered), but produces some challenges under

certain conditions. With the advent of 3D printers, for example, using a mesh to define

the volume that the 3D printer will fabricate sometimes leads to ambiguities and

challenges. For this reason, there is much completed and ongoing work exploring the

use of volumetric representations of CAD models [32] [27]. Such representations were

not practical during the early development days of CAD tools, as the computational

power that was available was simply insufficient.

The current state of CAD tools is roughly divided between commercial (paid)

tools and open-source products. The commercial tools, while generally regarded

as providing better interfaces, features, and efficiency, often cost several thousands

30

Figure 2-2: CAD Model as represented in the Catia software package.

of dollars. Open-source tools on the other hand, while seen as marginally weaker

in comparison, are free and are helping to drive the current maker movement, a

movement that seeks to involve all people in the process of design and fabrication.

2.2 Digital Fabrication

The real power of a rich CAD ecosystem is its ability to integrate with Computer

Aided Manufacturing (CAM) tools. A full CAM toolset is able to take the output of

a CAD program and convert it into the necessary tool paths, motor speeds, etc, to

drive a CNC (computer numerical control) machine to produce the model as described

by the CAM software. A CNC machine can be anything from numerically driven

mills, lathes, high-powered lasers, plastic deposition head, plasma beams, drills, or

any other tool that can add or subtract matter from a given model. In this way, a

CAM toolset provides the direct means to take a given CAD model and fabricate it

into a real physical prototype [43].

31

For the majority of time since the advent of modern CNC machines (around the

middle of the 1900s), they have been used in large-scale industrial settings. Due

to the cost, noise, and technical expertise needed to drive these machines, they were

typically relegated to commercial manufacturing means. They also found a nice home

in industry because of their ability to reliably reproduce identical objects. A single set

of instructions could exactly define the process for producing thousands of identical

(to a tolerance) parts. This drastically lowered the cost of many consumer products

and led to a growth in the automation of manufacturing.

2.2.1 Personal Fabrication

Recently, thanks to lowered production costs, heightened motor efficiency, and widespread

access to software tools and packages, there has been a growing trend in the domain

of personal fabrication. Most notably, laser-cutting and 3D printing tools have made

it extremely easy for a user of no prior experience to quickly build prototypes they

have designed in any number of CAD tools [3] [9] [26].

Figure 2-3: Nanoscale 3D printed F1 racecar model.

32

Growth in 3D printing technology has especially fueled this trend, as novice users

are able to precisely fabricate 3-dimensional objects. There exist a large swath of

different printing technologies (most of which are additive, meaning the incrementally

add material to form the final object), such as fuse deposition modeling, selective laser

sintering, stereolithography, or laminated object manufacturing, to name a few. These

processes vary in their minimum resolutions (some in the nano-scale - see Figure 2-3

[4]), materials, and speeds.

However, regardless of the precise mechanisms, these efforts demonstrate the large

and growing field that 3D printing represents. Many of the efforts in this domain are

also targeted towards the simplification, minimization, and cost-reduction of these

processes, with the end goal of providing affordable at-home 3D printers.

Such a proposition, everyone having access to 3D printers at home, raises inter-

esting social and community based issues. It is foreseeable that many manufacturing

industries will go through a similar challenge that software companies experienced

during the growth of personal computers regarding the reproduction of patented or

copyrighted products. When the quick and inexpensive fabrication of arbitrary prod-

ucts and objects is feasible in everyone's home, the manufacturing industries that

currently perform these tasks will likely have a major restructuring.

As a step in between industrial manufacturing and at-home production, several

companies have begun to emerge that offer to fabricate the 3D CAD models that are

designed by individual users. Companies such as Shapeways [34] and Sculpteo [33]

offer to 3D print CAD models that are uploaded through their website. A user simply

uploads their file, chooses from a selection of available materials and colors, and waits

for their uniquely designed product to arrive. Around these sites, cultures of remixing

and sharing models and designs have spurted; a phenomenon that is similar to what

was being seen with the advent of the open-software community.

33

Figure 2-4: A Form1 3D desktop printer and sample output. @Formlabs

2.3 Rapid Hardware Production

Software development has advanced to its current state, in part, thanks to the open-

source software movement. Open software is the idea that code should be accessible

and free to all, granting each user the right to duplicate, edit, and republish any bit of

code. This movement has led to not only a rich and diverse code ecosystem, but also

to a growing developer population. By encouraging anybody and everybody to access

open software, non-professionals are becoming engaged and contributing members of

the community. Similar strides are being made for hardware. The advent of these

rapid prototyping machines, advanced software design tools, and access to resources

like Shapeways and others, is creating a situation very similar to the early days of the

open software movement. Hardware design is very quickly becoming more accessible

to a broader audience. We are near (or even at) the threshold where sending a digital

CAD file to a person who then fabricates that CAD model, is faster and easier than

simply sending the original object itself.

Furthermore, efficiencies in supply chains and increased factory automation have

led to significant growth in the in industrial manufacturing side of things. Develop-

34

ment tasks that used to be very expensive, requiring an order of tens of thousands,

can now be done on an individual prototype scale for a cost-effective price. This not

only allows large companies to more efficiently and quickly prototype new ideas and

products, but it also, importantly, lowers the barrier of entry and levels the playing

field for many startup companies and smaller corporations.

2.4 Physical Tagging

The increase in manufacturing efficiencies, capabilities, and accessibility has led to

a growth in the demand for physical tags. As the product ecosystem becomes more

diverse, and created by a larger set of participants, it is helpful and necessary at times

to have some mechanism for identifying or interacting with these physical objects. In

the case of this thesis, tagging is explored as I seek to create materials that are self-

descriptive. Materials that contain within them some digitally identifiable code. Such

materials can then be used for delivering targeting learning opportunities, storing

documentation, or any other application where a bridge between physical objects

and their digital representation is needed. Thus, identifying a strategy to embed

these digital codes into a material is of key importance. There exist many tagging

technologies that have been designed for varying applications and given the broad

amount of previous research, it is useful to have a taxonomy that outlines some of

this existing work.

For my system, I am seeking a tagging solution that demonstrates several key

characteristics:

1. Is passive (i.e. does not require active powering)

2. Can be made ubiquitous across the material (i.e. the material can be identified

even if it breaks, or is probed from an arbitrary direction)

3. Can be simply decoded. That is, an ideal solution does not require processing at

a lab or any expensive, cumbersome equipment. In the best case, a solution can

35

Passive Tags RFID
QR Codes Magnetic Tag Taggants Printed Barcodes

Chemical Scent

Embeddable Tags
Tags that can be ubiquitous across a material.

Magnetic Tag Taqqants

Chemical Scent

Simply Decoded Tags
Can interface to mobile.

No cumbersome equipment.
Magnetic Tag Taggants

Figure 2-5: The successive narrowing of each requirement. The examples in blue are
for simple demonstration.

be integrated to work with existing mobile devices with little (to no) additional

hardware.

These tend to limit the number of approaches that are desirable, and each is succes-

sively more restrictive. The funnel diagram in Figure 2-5 depicts the narrowing scope

of each characteristic.

The following taxonomy explores passive tagging technologies and provides a brief

description along with references for more detailed specifications.

2.4.1 Taxonomy

Technology Description Strengths Weaknesses Ref

RF Harmonic Tags RFID tags that Passive. Cheap. Localized. Depen- [1]

can be sensing at Large address dent on geometry [38]

a variety of ranges space. (antenna cross- [7]

using a variety of section must be

frequencies. flat).

36

1D Barcodes Printed stripes Well known. Dependent on ge- [12]

of varying con- Cheap to pro- ometry of material. [38]

trast that can be duce. Scanning Direction of scan

optically read. technology easily dependent. Not

available. suited for harsh or

dirty environments

Organic Com- UV absorbing, High absorption Broad absorption [1]

pounds visible emitting cross section. bands.

inks and dyes with Invisible under

known spectral normal conditions.

patterns

Organic Com- UV absorbing, High absorption Broad absorption [1]
pounds visible emitting cross section. bands.

inks and dyes with Invisible under

known spectral normal conditions.

patterns

Rare earth oxides Doping materials Narrow absorp- Cost. Dispersing [1]

with rare earth ox- tion and emission rare earth oxides

ides to give it spe- bands. into material is

cific narrow-band non-trivial.

optical properties

Chemical Scent Using fluorocar- Sensing at a dis- Move useful for [1]

bons of nitro com- tance detection, than

pounds to create precise identifica-

distinct negative tion. Expensive

ion mass spectra detecting technol-

ogy. Small address

space.

2D Printed codes Printed arrays Well known and Dependent on ge- [12]

(including QR) of varying con- cheap to produce. ometry of material. [31]

trast that can be Scanning tech- Direction of scan [25]

optically read nology widely dependent. Using

available. common scanners,

the tag must be

large.

37

Taggants Small pieces of Very robust. Can Requires micro- [39]

plastic with unique be easily inte- scopically capable [41]

microscopic color grated into materi- optics. Not eas-

bands. Often used als. ily commercially

in explosive ma- available due to

terial to identify military use.

bombs after deto-

nation.

Magnetic Tags A substrate with a Invisible. Difficult to manu- [8] [6]

number of varying facture.

magnetic sections.

Magnetic sections

can then be sensed

in a variety of

ways to deliver

tag.

GPS Using GPS lo- Widely available Address space is [2][40]

cation of a fixed technology. Cheap spatially limited to

item with reference to implement. resolution of GPS.

to a database to Not passive.

identify the object.

Holographic Tag Embedding small Relatively cheap to Many techniques [16]

holographic tags produce. Provide outlined are only [14]

into various mate- data over angular for authenticity

rials for identifica- dimension. identification -

tion. not for use with

computer readable

IDs.

Acoustic Barcode Microphone de- Simple to man- Direction depen- [13]

tects that noise ufacture. Simple dent. Microphone

produced from interaction. must be attached

scraping over to surface of inter-

ridges cut into est. Only shown

material for use with planar

surfaces.

38

Radioactive Tags Radioactive iso- Can be sensed at Health and safety [10]

topes are put large distances. concerns. Little

into an object for Leaves trail of way of creating

detection using movement. large address

standard Geiger space.

instruments

Acoustic Tag Specific acoustic Sense at a dis- Not passive. Diffi- [24]

frequencies are tance. cult to incorporate

generated and into material.

detected for the

sake of unique

identification.

Bio/DNA ID Covering a mate- Invisible. Large Health and safety [23]

rial in some biolog- address space. concerns. Cost [28]

ical substance that of decoding. Lab

contains specific required.

properties that can

be tested. Often

used in biology to

identify specific

proteins, etc.

Table 2.1: Taxonomy of tagging technologies.

39

40

Chapter 3

Related Work

This thesis contributes to a host of projects that are designed around the goal of

merging the digital and physical worlds. Many of the design principles that are

featured in prior works are also seen in this work, and as such, it is important to

review and understand the motives and accomplishments of these past projects.

When working in this domain the question often comes down to where you place

the intelligence that is facilitating the digital/physical interaction. One option, which

has been gaining traction as camera systems become more powerful, is to put the

intelligence in the environment - where the environment is often a camera and lots of

computer vision processing. In this situation, the object itself has no intelligence and

a camera is using any marker it can find to orient and understand what it's looking

at. This often comes with the disadvantages that the system needs a lot of training,

is dependent on the lighting in a given space, and is frequently not precise enough

to enable specific touch interactions. To avoid some of these problems, you could aid

the environmental systems in recognizing objects by placing tags on the object, thus

creating a more distinct environment and easier processing task. The final iteration

in this progression would be to put the intelligence into the object itself through an

extra post-processing step. A host of projects have explored the relative strengths

and weaknesses of these approaches, as I will discuss in the following sections.

My unique contribution to this type of work it to introduce an alternative means

of merging the physical and digital interaction world by altering the manufacturing

41

process itself to create objects which are inherently machine readable, yet do not

significantly differ from their original intended form.

3.1 Tag-Facilitated Interaction

In many situations, it is simplest and easiest to apply a tag to an object that one

wishes to interact with. Given the very low cost of laserjet and inkjet printing,

many of these tags come in the form of paper-based barcodes or QR codes [31]. The

benefit of using barcodes and QR codes in the current technology ecosystem, is that

their readers are widely, and freely, available. This makes them an obvious choice in

many advertising and industrial applications. The most familiar form of such tagging

is found on all of our consumer products, whose packaging often contains a UPC

barcode for identification.

More elaborate interactions have also been created. The Electronic Pricetags

project by Matt Blackshaw, Rick Borovoy, and Andy Lippman from the MIT Media

Lab is a demonstration of using QR codes to facilitate interaction with large datasets.

The project consists of a large shelf of cereal boxes, each with a dedicated screen

displaying their price. Upon tapping the screen, a QR code is presented, which, when

scanned, provides the user with a list of options such as price, calorie content, sugar

content, gluten content, etc. Upon selecting an option, all screens update to display

the detailed information about their dedicated cereal box. In this way, data about

an entire array of products can be quickly and easily consumed.

A similar project, produced in Korea by the Tesco Home Plus supermarket chain

placed large banners across subway walls. The banners depicted a typical supermarket

shelf found in a Tesco Home Plus store. Each item on the shelf had an associated QR

code that could be scanned to allow the user to purchase that item. Upon selecting

all of their items, the subway commuter could place an order to have those groceries

delivered to their home.

Moving beyond the simplicity of a printed QR code, the Bokode project from

the MIT Media Lab offers an active printed code with distinct benefits [25] . The

42

Figure 3-1: An installation by Tesco Home Plus for QR-code grocery shopping.

project relies on the bokeh effect to allow cameras to focus on an extremely small,

and otherwise unresolvable, printed code. To achieve this effect, the codes must be

actively backlit, but in exchange allow for the tag to be scanned at much further

distances.

3.2 Physical Encoding

As mentioned above, a second option for creating interactive physical objects is to

embed some sort of intelligence into the object itself.

The Acoustic Barcodes [13] project is a recent notable example that uses the

physical structure of a material to encode information (see Figure 3-2). The project

relies on objects that have parallel grooves etched into the body of an object and a

microphone that rests on the same surface as that object. When a rigid object (pen,

fingernail, phone, etc) is dragged over the etched lines, a time sequenced series of

clicks is generated. These clicks are captured by the microphone and decoded. This

technique is dependent on the correct drag direction and the drag time.

43

Figure 3-2: Acrylic strips that have been etched to create acoustic barcodes.

Commercial options have also been hinted at, specifically by the company Visu-

alant [17], who proposes the idea of using their LED based spectroscopy tools for

decoding implanted optical codes. Visualant has recently patented the technique of

using sequential illumination of varying light frequencies to identify the unique opti-

cal properties of biological samples, materials, and certain dyes. While the technique

requires complex illumination, it is certainly a solution that could fit into the larger

idea of identifying self-descriptive materials and objects.

In a similar realm, digital paper is a technology that uses very fine ink dots on

a regular piece of paper to encode many locations across the surface [11]. The small

dots can be resolved with a special pen that has a built-in camera. This pen is

frequently used to track a user's writing across the surface of the paper so that it

can be digitally stored and viewed. Anoto is a company that has produced a popular

version of digital paper that they sell along with proprietary pens for these uses. One

group has attempted to map the Anoto pattern to 3D objects through applying the

pattern on top of produced object and through the use of a multi-color 3D printing

process. The group found difficulty in replicating the pattern accurately using the

transfer technique and had no success in reading the pattern that had been directly

3D printed [36]. This thesis is interested in creating a experience similar to that of

44

Anoto paper for arbitrary 3D objects through the use of physical features.

Figure 3-3: Comparison from [36] showing the Anoto pattern printed on paper (left)
and printed on an object with a multi-color 3D printer (right).

3.3 Just-in-Time Information Systems

Another important aspect of this thesis, as first introduced in Section 1.3, is the idea

of presenting the right information at the right time [30]. Such systems that achieve

this are often called just-in-time information systems.

Figure 3-4: Bradley Rhodes wearing his remembrance agent.

45

One strong example of prior work in this domain comes from the MIT Media Lab,

where Rhodes introduced the Remembrance Agent: a wearable system for augmented

memory [29]. This system was worn on the head and provided a display in front of

the eye that provided contextual information that the system deemed useful to the

user.

Another example, also from the Media Lab, is the Invisible Media Project [22].

This project, in addition to proposing a tagging technology, explores an interaction

scheme that is enabled through multiply-tagged objects. In this work, active infrared

transponders are placed over the surface of an object and an IR sensor attached to an

earpiece is used to determine where the user's gaze is focused. The system delivers

audio information corresponding to where the user is looking at any given time to the

worn earpiece (see Figure 3-5).

Figure 3-5: David Merrill using the Invisible Media system to learn about a car
engine.

3.4 Collaborative Annotation

There also exists work in designing and building around collaborative annotation

spaces. There are many web-based tools for collaboratively creating documents, pre-

sentations, and other files. Most notably, Google Docs is a full web-based system for

46

creating and collaborating, in real-time, such documents. An earlier effort, and one

that pertains to CAD models, was performed at the University of Washington, where

work was done to explore web-based tools for interacting and annotating models in

a 3D virtual environment [20].

Second Surface provides a more recent entry into this field. Using augmented re-

ality computer-vision libraries, tablet devices are used to allow collaborative drawing

in a 3D space (see Figure 3-6) [21].

Figure 3-6: Two users interacting with the Second Surface project.

The key enabled in many of these projects is the growth and ubiquity of fast,

always-on network connections. By using the internet as a backbone, near real-time

experiences can be created that connect two parties through their devices.

3.5 Methods for Decoding Texture

More prior work that is critical to explore in relation to this thesis is various technical

work on sampling and 'reading' textures. While these prior works are often performed

with different motives than the ones presented in this thesis, they provide critical

technical routes that will allow us to decode surface textures into binary data.

47

Accelerometer Flexible
Attachment

Mounting
Bracket

Z
Y x

Steel
Stylus 11*

Figure 3-7: An example setup for using an accelerometer to detect surface features.

Several projects have attempted to leverage vibro-tactile surface responses to cat-

egorize varying materials [5] [35]. This work typically uses an accelerometer with a

high sampling rate attached to a rigid tip (see Figure 3-7). The tip is then dragged

over varying surfaces and the resulting response is used as a sort of fingerprint for

identifying the material. The work has demonstrated the ability to differentiate be-

tween varying materials, but in both cases, suffers from the requirement that the

same drag pattern is always performed.

'I

Figure 3-8: Sample results from [18] showing the high resolution that is achievable.

48

Another well researched method for identifying small surface features is the use

of an optical photometric stereo technique [15] [19] . This procedure has shown

impressive abilities to capture and interpret very fine surface features (e.g. resolving

the depth of the ink on a dollar bill - see Figure 3-8 [18]). These methods use an

array of illumination and a simple camera. By illuminating the texture of interest

with lights at a different position and color (or time), the shape and depth of the

object can be determined from its varying shadows. Using this to sense the surface

profile of interest, computer vision algorithms can then be used to determine, in the

case of this thesis, an encoded bit sequence.

49

50

Chapter 4

Encoding Planar Surfaces

The main process of encoding a 3-dimensional (3D) non-planar surface is similar to

that of encoding a 2-dimensional (2D) planar surface. More specifically, that process

entails identifying a primitive that will be used to denote a bit, planning a scheme to

arrange many primitives, and creating algorithms to identify the presence and spatial

position of each primitive. By first exploring 2D planar surfaces, an understanding of

the available techniques, primitives, and encoding schemes can be attained. This will

be an easier first step towards designing 3D encoded textures than making a direct

leap. Furthermore, there exist a host of very powerful 2D rapid prototyping and

CNC tools (such as laser cutters, vinyl cutters, etc) that offer a unique opportunity

to integrate the manufacturing and encoding of an object. Due to the increasing

resolution at which these machines operate, it is now possible to not only form our

2D object in a single process, but to simultaneously encode it with deterministic

surface features.

4.1 Encoding Shape and Pattern

When choosing an encoding scheme, it is important to identify both a primitive and

an encoding pattern. Furthermore, issues of scale, rotational invariance, and surface

geometries must be explored. To know how to design a robust encoding scheme, it

is important to first understand the characteristics of algorithms that will be using

51

in decoding, what they are well suited for identifying, and to design the encoding

scheme in reference to this.

4.1.1 Existing Patterns

A good first step is to identify existing patterns and determine whether they could

be mapped to a surface encoding scheme. One obvious and direct mapping would be

to use braille, given the shared use of physical features for encoding. However, the

data density of braille is designed to make it human-readable, rather than achieve

the highest possible bits/area. The most common digital 2D tag is a traditional

UPC barcode. While this has the benefit of already having many readers in the

world, it is designing for print and may not function well when mapped to non-planar

surfaces. Mapping the Anoto pattern is also an option - and something that has

been tried by the ModelCraft project [36]. However, the group building this project

ran into trouble , which I believe stems from the fact that the encoding scheme uses

only a single primitive (and blank space). On 3D objects, where the surface can be

contoured, a strict reliance on the relative positioning of primitives (and thus the

measurement of empty space between them) may not be an ideal choice.

4.1.2 Testing Simple Primitives

Depending on the image processing technique that is used, the shape of a data prim-

itive may be relatively easier or harder to decoder. To explore the intricacies of this

challenge, I began to test five different primitives:

1. Circles

2. Squares

3. Triangles

4. Horizontal Lines

5. Vertical Lines

52

The plan was to use multiple primitives to define a patterned code. To decide

which primitives are best to use, one must first understand which are most robust

- that is, most easily detected by the chosen image processing techniques. Such

a decision also requires looking at which primitives are most reliably detected in

the presence of noise. To test these properties, arrays of primitives are generated

and several different image processing algorithms are used to identify the patterns.

Noise is then added to the source array and the processing algorithms are run again,

demonstrating the robustness of detection at each noise level.

4.1.3 Generating the Primitives

To generate the arrays of primitives, simple Processing code is used. I define functions

to build arrays of each of the primitive types and take, as the input variables, the

spacing between primitives and the size of the primitives. I have a main function

that loads a noise image, generates the primitive array, and then overlays the noise

image with varying opacity. Image files are created for each noise image opacity from

1 (0% opacity) to 255 (100% opacity). I run this for each primitive type, yielding a

set of images with the arrays behind varying levels of noise. The code can be found

in Appendix A, Section A.1.

Crkes - 0% opadty

Figure 4-1: Varying patterns and noise levels generated to test a 2D decoding algo-
rithm.

53

4.2 Detecting Simple Primitives

4.2.1 Image Processing Environment Setup

There exist many methods to complete image processing tasks. These methods vary

between platform, language, and functionality. I spent some time weighing the options

and trying to settle on a single workflow that would carry me through the full scope

of the thesis (i.e. would be easy to port to mobile devices, embedded devices, etc). I

first looked at using Matlab because of the extensive and powerful image processing

library it includes. To overcome the challenges of porting these image processing

abilities to mobile devices I considered 1) doing the image processing server-side and

2) using the Matlab Java Builder to port any Matlab code to Android devices. In

the end, neither of these options are completely desirable as the complication they

would introduce would not be worth the slightly simpler image processing work flow.

I instead decided to use OpenCV: a common computer vision library. Specifically, the

Cinder implementation of OpenCV is used. Cinder is an open-source C++ library

that is suited for visual processing and generation. Cinder has the nice characteristics

that it can be directly compiled for iOS devices and has OpenCV integration. To use

OpenCV in Cinder, one must first add the OpenCV block. Fortunately, OpenCV has

an Android implementation as well, so if needed the same algorithms can be used

outside of the Cinder environment.

4.2.2 Primitive Detection

I began looking at detecting the circle primitives. Searching the OpenCV database

of functions for the keyword 'circle' leads to a page describing an implementation of

the Hough Circle Transform. After implementing this function, I had initial success

in detecting circles, but as I tried to refine the results I ran into a few challenges. The

Hough Circle Transform seems to depend heavily on a few parameters that define

the behavior of the transform. A couple of tutorials emphasized that the key to the

Hough Transform was getting these parameters correct (often through trial and error

54

routines). This would pose somewhat of an issue for my application given that the

material and size of the encoding could depend across the entire application-space of

encoded surfaces - meaning that correct parameters may be difficult to set (or slow to

find). Furthermore, I found that the Hough Transform would generate some strange

false-positives if the parameters were wrong. Empty space would be identified as a

circle and some circles would be found while other (identical) circles would be missed.

It was not only mischaracterizing circles, it was missing blobs entirely. Given these

weak results, I decided to look for another solution.

Figure 4-2: Sample Hough decoding showing poor results which led
search for alternative algorithms.

to a decision to

I decided to focus on a routine that, rather than look simply for circles, first

looks for blobs and then tries to iterate and identify each blob. This would provide

a foundation that could be used for detecting the other primitives. There exists a

CVBlob library, but I had trouble integrating it into the Cinder work flow. I leveraged

an AForge shape detection tutorial (http: //www. af orgenet .com/art i cles/shape-_

checker/) to implement my primitive detection. Note, this latter tutorial is not

55

written for OpenCV, but the concepts and algorithms can be applied. Implementing

a triangle, square, and rectangle identifier was relatively simple from this point.

Figure 4-3: Sample decoding showing the ability to differentiate between various
shape types.

The code used to properly detect these primitives is given in Appendix A, Section

A.2.

4.2.3 Reading Codes Through Noise

I then began to run these primitive detection routines on the noisy images I had gen-

erated. The idea being that I would be able to identify a noise threshold, after which

56

the image processing routines would be unable to correctly identify the primitives. I

expected this threshold to be different for each primitive, so I ran test cases for each

one.

As Figure 4-4 shows, all of the primitives are correctly detected up to a noise

opacity of 5% noise. From this point, there are a handful of false-positives mixed in

with correct readings. This points to needing dynamically adjusting parameters and

identifying routines.

Object Detection in the Presence of Noise
140 1 1 -

120

Tnade

Square
Horizontal

-Vertical

100[

CL
80 -

60-

40

201-

"0 50 100 150
Noise Opacity (255 = 100%)

200 250

Figure 4-4: Plot showing the number of objects that are detected as noise levels
increase. 16 objects are 'intentional'.

It is interesting to note that the circles, in particular, have a large spike as the

noise level gets too high, whereas other shapes are simply no longer detected. This

may be a good argument for choosing a shape other than a circle, given that there

are many false-positive circles under noisy conditions.

57

While for the time being, it is sufficient to use static photos to test the decoding

software, a more robust and real-time implementation must eventually be made to

facilitate actual interaction. Such an implementation, and the associated challenges,

will be discussed in Chapter 5.

4.3 Fabricating the Primitives

After several tests, it became clear that cavities were a great option for fabrication.

Not only were they easy to fabricate, but importantly, if made deep enough, they

would stay sufficiently dark under many lighting conditions, making the textured

surface and optical decoding techniques much more robust.

Figure 4-5: Several lasercutting results. The left shows attempts at making positive
features (a lengthier and less-desired process), the middle shows arrays of patterns at
various sizes, and the right shows a macro shot of a small pattern.

I explored two main method of fabricating 2D planar surfaces. The first was to

use the laser cutter. With the laser cutter, a black and white image file is loaded

and sent to the laser cutter. By rasterizing this image, the laser cutter takes the

dark portions of the file and etches those to a maximum depth and leaves the white

portions at a minimum depth. If there had been any grey-levels, they would have

been accordingly etched between the maximum and minimum depths. The maxima

and minima are determined by the settings one inputs to the laser cutter. There is

no exact method for choosing inputs; the exact selection process is more of an art

that relies on past experience and guess-and-checking. The laser cutter is able to

achieve very fine resolutions. While technically it states it is capable of printing at a

58

resolution of 1200DPI, I found the real workable DPI to be more around 600DPI; still

plenty sufficient for the needs of this work. After many tests, the resulting minimum

cavity size that I found achievable is .015"

I also used a milling machine to make a wax mold (of a negative pattern) which I

later cast silicone rubber into. The milling machines resolution is limited by the size

of the bit that is being used. In this case, the smallest bit available to me was a 1/64"

bit. Unfortunately though, the flute of the bit was larger and the bit depth was not

long enough, so there is also a maximum depth one can achieve in their cut as set by

the length of the bit. The silicone has a nice opaque and non-reflective finish, which

makes it quite ideal for optical processing.

Figure 4-6: An example of the milling process. The left shows the CAD model and
mill paths. The middle shows the resulting wax mold. The right shows the final
silicone cast.

59

60

Chapter 5

Planar Surfaces Live Test and

Evaluation

To begin transitioning from an encoded surface simulation, to a real functioning

system, it is important to make several advancements. The software must first be

transitioned from using static images to using a live video stream and, secondly, a

wide selection of encoded surface objects must be made with which we can test the

system. To build out a test scenario, arrays of circular tokens with encoded patterns

were fabricated. These tokens were distributed and used at a local event to grant

access. The unique encoded pattern on each token ensures the authenticity of the

token. This both pushed the development of exploring fabrication techniques, as

well as created a pressure to have a live, working decoder by the end of the week.

Furthermore, the event (and the hundreds of scans that ensued), acted as a debug

test of the decoder and encoding robustness.

5.1 99 Fridays Tokens

The original goal in building these tokens is to work on the decoding algorithms that

will be used in this thesis work. As an added bonus however, it also turned out that

building these token systems worked to identify patterns and encoding schema worked

well and which didn't, as well as provide some useful insight on the behavior of users

61

with the system.

5.1.1 Token Design and Fabrication

The laser cutter was used to quickly develop a handful of test patterns. I found that

it was feasible to reliably generate cavities as small as .015". I also explored with

creating negative lasercut stencils for the purposes of casting silicone in the future.

For these purposes, the resolution was also impressive. I created a couple sample

tokens , with the design such that the encoding is put in the "99" label on the token

(see Figure 5-1). The final design would vary a bit, but the general concept remained.

Figure 5-1: Left: A few sample cut tokens. Right: A close-up of one of the early
token prototypes.

This first iteration of the token encoding had issues with merging cavities at

times - the thresholding was quite sensitive. To alleviate this, future designed can be

made with the spacing between cavities larger. A few orientation marks may also be

included also to ease the process (though the eventual goal is to have the orientation

contained in the encoding itself).

I spent more time fine tuning the laser cutter properties to provide surface cavities

that are of the highest contrast and precision (see Figure 5-2). Matching the image

62

resolution and the laser cutter resolution, as well as lowering the speed of the cutter,

provided useful results. I also found that editing the horizontal and vertical spacing

of the bit cavities was very important. While the laser cutter claims it can cut at a

resolution of 1200 DPI, in reality, the precision is not quite that accurate. The burning

of the material and effects of the moving laser head cause imperfect features to be

made at 1200 DPI, leading to cavities that are merged together, or non-symmetric

and difficult to read.

Figure 5-2: Results of laser cutter testing to produce surface cavities that are of the
highest contrast and precision.

I also decided to put a horizontal orientation line below the '99' that can be used

to determine the correct orientation of the encoding. While I ideally would like to use

the bit cavities themselves to perform the orientation step, I included the line as a

backup measure given the short timeline I have available to finish this project before

the event. The orientation is the width of the '99' numbers and is a single pixel wide.

Given that it is the largest 'blob' on the token, it should be fairly straightforward to

detect.

63

To generate the drawing file, I used Processing to procedurally generate all of the

varying token patterns. My technique was to start with a full token - i.e. all of the

bits as cavities - and then based on the token number, draw white circles over the

desired '0' bit locations, effectively removing the cavity. I created a 16x16 array of

tokens, yielding a total of 256 varying ID numbers. The tokens have a total of 32

bits, which is split up into 4 redundant codes of 8-bits. The redundancy is used in the

event that the decoder misses a bit, it still has other opportunities to read the correct

value (and additional readings to verify the correct value). A sample of several final

tokens in Figure 5-3.

lays Fridays Fridays Fridays Fridays Frida

2013 Jan 11, 2013 Jan 11, 2013 Jan 11, 2013 Jan 11, 2013 Jan 11,

lays Fridays Fridays Fridays Fridays Frida

, 2013 Jan 11, 2013 Jan 11, 2013 Jan 11, 2013 Jan 11, 2013 Jan 11,

lays Fridays Fridays Fridays Fridays Frida

, 2013 Jan 11, 2013 Jan 11, 2013 Jan 11, 2013 Jan 11, 2013 Jan 11,

,2013 Jan 11, 2013 Jan 11, 2013 Jan 11, 2013 Jan 11, 2013 Jan 11,

Figure 5-3: Several tokens generated for laser cutting.

The Processing code to generate the tokens can be found in Appendix A, Section

A.3.

5.1.2 Physical Decoder Box

One issue that I immediately ran into after adjusting the code for the tokens, is that

the blob-detecting algorithm does not handle interior blobs well. That is, if the edge

of the token itself is detected as a blob, nothing inside that blob (i.e. all the data) will

64

be detected. The solution I found was that the edge transition from token to token-

holder had to be sufficiently homogeneous in comparison to the transition between

cavity and no-cavity. This way, a threshold can be applied that will wash out the

edge transition, but not the cavity transition. I found that using a white acrylic and

bottom illuminating the whole support structure allows for such conditions. Thus, to

consistently provide these conditions, I built a simple testing box that has a groove

for the token to fit in, and a secured camera below. This allows me to simulate a

final environment where the token position relative to the camera is known, and the

illumination is standardized. The camera that I used was a PS3 Eye webcam. I added

a lens to the front of the webcam to allow me to focus at a shorter range - allowing

the token to take up the entire field of view of the camera, while also being in focus.

There is an addressable RGB LED strip that is driven by an Arduino board that is

used for illumination. This token reader box has the added benefit that it simplifies

the user interaction and makes the alignment issues nearly fool-proof.

The final box was created from 1/2" thick white acrylic (see Figure 5-6). There

is a middle platform that holds the camera and the camera is kept perpendicular by

having it's flat edge glued perpendicular to the plate. The box is press fit, and all

sides are fixed in place with acrylic bonder, except for one panel that serves as an

access panel. Below the middle panel is the an Arduino that drives the LEDs and

a hole that allows cables to be fed through the back. The LEDs are arranged in a

circular loop that surround and face inwards towards the camera. A video of the final

construction working is shown below. A green flash indicates a correctly read token,

a red flash indicates that something was found, but it was not an identifiable token.

5.2 Live Decoding Software

5.2.1 Bit Detection

To begin detecting the encoding on these tokens, I started with the base code that

was generated and explained in Section 4.2.2. Luckily, since there are only 'circular'

65

cavities on these tokens, the code can be simplified and does not need to differentiate

between triangles, rectangles, and squares. The bits are detected by knowing the

location of each bit in relation to some orientation marker. In this case, the orientation

marker is the horizontal line below the '99' marks. Once the token is rotated (in

software) to the correct position, the bit locations are identical between all tokens.

This of course requires that the camera be perpendicular to the token face, so that

the rotation of the token does not skew locations. This is taken into consideration in

design of the final enclosure. An image showing the software identifying the potential

location of bits is given in Figure 5-7.

5.2.2 Orientation

To correct for orientation I use the horizontal reference line that is inscribed below

each of the '99' marks on the tokens. I detect this line by looking for the blob that

has a radius greater than a certain set value (as determined through trial and error)

and a width to height ratio that is greater than a set value. The line is unique on

the token as one of the only features with a long, skinny profile, and this is used to

the advantage of the code to detect it. Once the orientation line has been found, its

endpoints are calculated and a line is fit to that. The slope is calculated, and the

arctan is taken to find the angle from horizontal. Of course, the arctan may return a

value that orients the token upside-down, with the orientation line being flat at the

top of the image, rather than the bottom. To fix this, I do a check after the rotation

to ensure that the line's center is below the middle pixel of the image, and if it isn't

rotate by an additional 180 degrees. The rotation is performed every two seconds, to

handle the introduction of new tokens with varying orientations.

The tokens and token reader were used at several events (and continue to be used

in current 99 Friday events). The tokens are fabricated uniquely for each event and

distributed a few days prior. A review of the various encoded tokens that have been

generated are shown in Figure 5-9.

66

5.3 Collected Data

During one 99 Fridays event, data was collected by the token reader. The reader

recorded the ID of each token read, as well as a timestamp of when the token was

read. The token IDs were not connected with individual identities, so there was

no concern of gathering potentially personal data. A total of 306 tokens-readings

occurred over the course of the 6-hour event. No values were out of the expected

range of inputs, so while there exist some permutations of bit shifting that would

go unnoticed, there were no detectable errors in this set of data. There were some

ideas that such information could be used to promote safe habits in an event such as

this one. For example, if the system sees that an identical ID was scanned too many

times or too frequently, indicating that a person was consuming too much alcohol too

quickly, the box may be able to flash a distinct color or pattern, letting the user know

that they should slow down.

5.3.1 User Feedback

Some of the most useful feedback from this event came in the form of observing

people's behavior with the system. It was a useful tool for realizing which aspects of

the tokens and the reader were intuitive and which were perhaps poorly designed. One

recurring behavior that I noticed was that people tried to self-orient the tokens. Even

though the reader can accept a token at any rotation, many users would often try to

put the token right-side-up as they deemed from the depiction on the token (either the

face or numbers). While this didn't hinder the system in any way, it was additional

work by the user that was unnecessary (and perhaps a point of confusion about how

the system worked). Another behavior that I noticed a couple users displaying was the

tendency to continually rotate the token once it had been placed down in the slot. I

assume their motivation was that the continually rotating the token would eventually

land it in the right orientation. However, this actually would have the reverse effect

given the current implementation of the software as the code re-orients each new

token once, and then processing given that orientation. A continually rotating token

67

will likely not be correctly identified.

The typical response from users was generally positive. People seemed to enjoy

the feedback of the flashing box upon successful reads, and many expressed interest

in seeing the tokens used at future events. This suggests that many found the means

of interaction to be not only a simple one, but an effective and enjoyable one, perhaps

giving support to the idea that using physically tangible encoded objects is a valuable

means of interaction.

5.4 Test Results

To provide further performance characterization, I ran a test using 10 tokens (each

with a unique ID). Each token was scanned 10 times, that is placed on the token reader

and then removed, and the results were collected. The token is left on the reader

until a decision is made (as signified by green or red flashing). The token is randomly

rotated on each placement. The 10 tokens were randomly sampled. The tokens varied

in their quality, as chosen from the random sampling of the manufactured lot. Some

of the tokens have slightly altered wood grain patterns while others seem to have

burned a slight amount more, producing more discoloration. The table of results

from this test is given in Table 5.1.

Token ID Correct Reads Incorrect Reads
128 7 3
66 4 6
68 6 4
93 9 1
57 5 5
60 0 10
75 10 0

153 10 0
67 1 9

225 5 5

Table 5.1: Token Testing Results.

A second identical test was run a few weeks later after a new set of tokens were

68

fabricated. These tokens incorporated new design features in response to the failure

points of previous tokens. Notably, a smaller central image and smaller orientation

line were used. The test was again a set of 10 tokens each scanned 10 times. The

results for this second test are shown in Table 5.2.

Token ID Correct Reads Incorrect Reads
131 9 1
143 10 0
56 10 0

126 10 0
240 10 0
64 9 1

159 10 0
155 10 0
41 10 0

129 8 2

Table 5.2: Token Testing Results for a second set of tokens.

As is shown in the table of read results for the second test, the newly incorporated

design features lead to much more robust decoding.

5.4.1 Read Error Rates

Qualitatively, inspecting the tokens as the results from Table 5.1 were generated,

there seemed to be three main reasons for token-read failure: 1) the token had a

large and strong wood grain discoloration across an important part of the encoding,

2) the token was fabricated slightly askew, resulting in a orientation line that was

not entirely in the view of the camera, and 3) dust from the cutting process created

slight discoloration across the orientation marker resulting in the thresholding not

adequately isolating the marker. These mostly seem to be challenges that could be

addressed in the fabrication process. Perhaps more delicate cutting and machining

would result in more consistent tokens. Furthermore, regarding the wood grain,

perhaps a more homogeneous material could be used for future tokens (or large wood

grain marks could be avoided in favor of 'cleaner' sections of wood).

69

From the 100 scan samples, there was a resultant 57% read accuracy. While this

seems to be relatively low, it should be noted that two tokens with strong discoloration

led to a 100% and 90% read failure. This suggests that higher fabrication standards

of quality would lead to significantly better read accuracies. Furthermore, the data

also shows that only one token was completely unreadable, while the others could be

successfully read on a separate placement with differing rotation.

From the second test, as documented in Table 5.2, the 100 sample reads had a

resulting read accuracy of 96% - a dramatic increase from the test with the first set

of tokens.

70

Figure 5-4: The fabricated tokens on the laser cutter bed after being manufactured.
Each token has 32 bits if unique identifying information.

71

Figure 5-5: A close up showing the illuminated opening of the final token reader.

72

Figure 5-6: A user placing his token onto the token reader.

Figure 5-7: The software identifying potential bit locations in blue.

73

". ratis

lfaradlsel2* 4 &CSe-21f

L' t red4LyeL3s tfl{

fg itte f13 I_ e :;It vat,; l 1

e n f i:- et in 11 Q| iIetVOd 4 1

Figure 5-8: Software screen showing the orientation line being detected and the fit
line being drawn.

Figure 5-9: A sample of the various encoded tokens that have been generated.

74

I

- n t e-g det - oe vi uptib

Chapter 6

Encoding 3-Dimensional Surfaces

This chapter explores the techniques and challenges of fabricating non-planar, 3-

dimensional objects whose surfaces have been patterned with a texture encoding.

Specifically, leveraging what was learned in the planar encoding chapter, these tex-

tured encodings will be fabricated from a series of deterministic cavities that will be

optically read and decoded. The work presented here focuses on using 3D printers to

fabricate the 3D object, or a 3D negative of the object which can later be cast with

a rubber or plastic.

6.1 Simple CAD Encoding

To begin, I look at defining a workflow for simple 3D objects. I start with simple

geometries to build some of the fundamental ideas and requirements. To start, the

common 3D modeling software SolidWorks is used. One downside is that Solidworks

does not allow for robust scripting, as do some CAD softwares like Rhino. This means

that the beginning efforts will be mostly manual. However, beginning with a more

manual process may be useful for giving more specific insights into the pros and cons

of different techniques.

Beginning with the most basic 3D geometry, a cube, common extrude cut functions

can be used to cut cavities into a surface as defined by a 2D sketch element. This is

the most straightforward technique, but is still useful for some situations. A sample

75

cube has been cut with a cavity test pattern composed of circles and triangles and is

shown in Figure 6-1.

Figure 6-1: A simple cube with extruded cavity encodings.

For certain non-planar surfaces, SolidWorks provides a wrap function. The wrap

feature lets you take a planar, cylindrical, or extruded surface and wrap a 2D sketch

element around it. Furthermore, there is a deboss option that allows you to make

direct cavities from this wrapped feature. While this achieves the exact functionality

needed, it is only suited for a limited domain of elements. The wrap feature does not

work on arbitrary surface elements or spherical elements. This means that additional

techniques must be implemented to achieve the generality I am seeking. A sample

cylinder model has been modeled using the wrap feature to apply four differing cavity

codes to the surface. An image of the cylinder example is given in Figure 6-2.

As mentioned above, the Wrap feature doesn't work on spherical objects. One

possible option is to perform extrusion cuts and selecting to do them from the surface

of a particular face. This essentially projects a 2D sketch pattern onto a face and

performs the extrusion from that point inwards. This has a large downside in that

the projection does not conform to the contours of the object, but if the codes are

sufficiently small in comparison to the contour, this may be acceptable on a large

scale. This is probably the biggest weakness in using a tool like SolidWorks and

should be taken as a sign that alternative methods will be required for more complex

geometries. A sample of this technique, projected onto a sphere is shown in Figure

76

Figure 6-2: A simple cylinder with wrapped cavity encodings.

6-3.

Figure 6-3: A simple sphere with extruded cavity encodings.

6.1.1 Simple CAD Fabrication

Despite the issues with modeling more complex models with the above technique, I

printed the test cylinder and test cube that are shown above. I created three versions

of each shape, each version at a varying scale and size. I created a 1", .75" and .5"

diameter version of each of the shapes. The result is shown in Figure 6-4.

While the 3D printer was able to accurately print all of the small features as

77

Figure 6-4: 1", 0.75", and 0.5" diameter cubes and cylinders 3D printed to test the
printer resolution. A pen is shown at top for scale.

defined in the CAD models, the fabricated objects did suffer from the minuteness

in a different way. The 3D printer used produces wax support material around the

printed object to provide structure to any component that may be hanging or 'floating'

during fabrication. This wax is usually melted off in a warm oven and then dissolved

in a solvent bath, thus removing the wax support and leaving the printed object clean.

Unfortunately, the wax within the small cavities of these models did not melt away

as desired. The adhesive forces between the very narrow walls of the object seem to

be sufficiently strong as to hold the wax in place even once melted. Furthermore,

as previously suggested, the resultant model is far too translucent to robustly detect

encoded cavities. A solution to this problem would be to 3D print the negative of

whatever object is desired, and then to cast rubber or plastic to produce the final

object,

6.2 Encoding Complex Geometries

While it is straightforward to map a 2D pattern to 3D objects of revolution, such as

cylinders and cones, spheres and more complex bodies do not have as straightforward

78

of a method. While these simpler objects have a proper mapping of 2D codes, more

complex objects simply had a flat projection that produce less than desirable results.

As a result, it is necessary to explore a different workflow and figure out a solution

more generally applicable. Displacement maps can serve as a solution.

6.2.1 Displacement Maps

Bump maps are a familiar and often used tool in the field of computer graphics.

Bump maps effect the lighting that falls on a model to produce the appearance of

textures or bumps. That is, a bump map doesn't actually change the mesh geometry

of the object, rather just the behavior of the light that falls on it. Displacement maps

are similar to bump maps, in that they can be applied as a 'texture' to the object,

but critically, they actually deform the geometry of the model. An open source and

powerful tool that is capable of displacement mapping objects is Blender.

A key component to displacement mapping is performing what is called UV un-

wrapping, or UV mapping. This process entails 'unwrapping' the 3D model to a 2D

surface, defining a 2D bitmap and overlaying the two. The magic comes in the ability

to define seams along the 3D model where the unwrapping should take place. This

lets you define boundaries for complex 3D objects that otherwise would not have a

trivial 2D unwrap. Blender, being a well developed piece of software with a vibrant

community, provides many tutorials and examples on how such techniques can be

performed.

Displacement maps work by physically moving mesh faces up or down (as defined

by an axis or by the normal of that face). The result, is that the displacement

mapping is only as accurate as the underlying mesh. You cannot have small surface

displacements represented on a low-polygon model as the entire face is moved as

a single unit. To work around such issues, it is therefore important to subdivide

any many that is being used to an appropriate resolution. The downside of such

a technique is that to achieve the resolution and accuracy desired, CAD models

with many millions of faces are often needed. Even with modern computing power,

manipulating such large mesh datasets can be very slow and tedious. Thus, it is

79

important to weigh the tradeoffs of higher accuracy versus modeling capability and

to find the proper balance.

To document the process of applying a displacement map, I have created a step-by-

step guide that explains the workflow in Blender. The workflow is subject to change

based on the given geometry and other detailed considerations, but the provided

process is a good baseline. The steps are listed below and associated images are given

in Figure 6-5.

1. Import .STL File

2. Split screen and choose to make one display UV view

3. Either make new image or open existing image

4. Select model, enter Edit Mode and select Vertex selection

5. Shift+select a line that will define a seam. Cntrl+e and select 'mark seam'

6. Press 'a' twice to deselect all and then select model. Click u and select unwrap

7. Cntrl+a, to normalize unwrapped pieces, Cntrl+p to fit to image

8. Create material, Textures

9. Add Displacement and SubSurface Modifiers

10. Apply and export STL

80

I

56

9 10

Figure 6-5: Steps for applying a displacement map in Blender.

Instead of using a testing geometry bitmap, we can now apply an encoded pattern

as a displacement map. If we take a series of circular primitives as the baseline for

81

our encoded pattern, the result can be something as is shown in Figure 6-6. Note in

this figure, that the mapping is not always perfect. The encoded pattern consists of

circles of identical size, yet not all circular cavities are of the same diameter. In some

instances, the mapping is not completely perfect, and results in skewed or stretched

features.

Figure 6-6: STL model of head with a circular encoded pattern applied as a displace-
ment map.

6.2.2 Subdividing Meshes

One feature that I think is important to note concerns the effectiveness of subdividing

a surface mesh. While there are many algorithms for subdividing a surface (some

provide a smoothing function, others are just splitting triangles in two), for the sake

of displacement mapping, it is common to apply a very simple subdivide. That is, we

do not wish to alter the geometry in any way, we just want more faces. As a result,

Blender will simply chop the mesh triangle into two in what it deems simplest.

However, depending on the characteristics of the mesh, this may not always pro-

vide the best results. If we take for example a simple contoured surface (as shown in

Figure 6-7), sometimes the simplest way to model this with triangles is to use long

82

Figure 6-7: Low-poly mesh of a contoured surface. Note the long stretching triangle
faces.

triangles that extend across the entire surface. When subdividing a mesh like this,

what can often happen is that the triangle will be dividing lengthwise as opposed

widthwise. This results in two long skinny triangles, as opposed to two medium-

length medium-width triangles. This is not the desired effect. Figure 6-8 shows the

effect of taking such subdivisions through several iterations.

These resulting polygons are not well suited for displacements because they effect

a very wide area, as opposed to a small one. To fix this situation, one can simply

first re-mesh a surface, export to STL, and then re-import the new STL. The result

is that Blender will re-mesh a surface by creating smaller and smaller square (or

rectangular) mesh faces. Upon export, these faces are converted to near-equilateral

triangles. Thus, once the model is re-imported, rather than the long stretching mesh

faces, one has small, roughly-square faces. Now, upon subdivision, each face becomes

more and more point-like, which is the ideal situation for applying a displacement

map. See Figure 6-9

A finalized mesh that has been created and will be used in final application use

83

Figure 6-8: Low-poly mesh of a contoured surface after multiple subdivisions (left
fewer subdivisions, right more subdivisions). Note the long stretching triangle faces.

Figure 6-9: Re-meshed surface. Left is after the base re-meshing, right is after sub-
dividing the re-meshed surface. Note the nice, point-like triangle faces that contrast
the faces seen in Figure 6-8.

cases is shown in Figure 6-10. This mesh of a race car was produced by taking

a low-poly model, selectively subdividing the surface (that is, only subdividing the

regions where surface encodings will be applied), applying a displacement map, and

then subtracting that entire mesh from a rectangle. The result is a negative that can

be used as a cast after 3D printing. The mesh features are small triangles that are

84

placed on a grid, and then randomly shifted vertically and horizontally, and rotated.

Note the loss of fidelity in the edges of the triangles as a result of the mesh not being

sufficiently subdivided. The decision to finalize the mesh in this state came from

analyzing the tradeoff between hi-poly meshes and sufficient modeling performance.

Subdividing any further for more defined triangular features renders the model in a

state that is nearly unworkable.

Figure 6-10: Mesh representing the negative of a surface encoded race car.

6.3 Fabricating Complex Geometries

Fabricating a 3D model once the STL has been generated is typically straight forward

with 3D printers. The typical workflow is that the 3D STL model is imported into

the 3D printer software, analyzed, printed, and then a final step of removing whatever

support material that exists finishes the procedure. However, due to the peculiarity

and sharp features that are introduced in many surface encoding iterations, the 3D

printer software does not always operate how one would expect.

Specifically, issues with inverted normals (all faces must have an associated normal

component that defines the outside of the object), holes in the mesh, and other

geometric peculiarities can send the 3D printer into a job that does not finish in a

way that resembles the graphical rendering. An attempt to print the 3D head model,

85

shown in Figure 6-6, produced the result shown in Figure 6-11. The problem was

that the mesh was actually generated as two sets of 'shells' rather than a single mesh

surface. The result is that there was a very small discontinuity between that caused

a layer of unwanted support material to be printed through the middle of the head

model. Such errors can typically only be cause once the model has been printed,

leaving a certain degree of chance to the entire fabrication process when using a new

model.

Figure 6-11: 3D printed result of using a bad mesh model.

As further reference, the car model that is shown in Figure 6-10 went through over

10 revisions before a suitable mesh was generated. Issues with creating a negative

model through boolean operations, displacement mapping very small features, and

high polygon count caused for some very rough and undesirable meshes. Once a

final mesh has been produced, though, the 3D printing process is straight forward.

Moving forward with the race car example, once the 3D negative had been printed,

I was able to simply cast Silicone rubber to generate the positive of a race car model

with an encoded surface. The encoding used on this surface is composed of many 7x7

triangle arrays. Each array in the triangle is shifted by some random amount and also

86

rotated by a random number. The result is a deterministic pattern of high density

and uniformity. The resultant car, and processing steps, can be seen in Figure 6-12.

Figure 6-12: Process and result of fabricating the race car with encoded surface.

6.4 Decoding 3D surfaces

The important task of decoding the surface features is now approachable. The main

dichotomy in techniques for doing this comes down to deciding whether a pattern

matching approach (i.e. looking for known features and identifying) or raw decoding

approach (i.e. looking for primitives and decoding information straight from those

primitives) is to be used. A raw decoding approach is like that used in Chapter 5.

While this approach worked very well in the planar case, given the fixed environment,

there are several strong benefits to using a pattern matching technique once moving

to 3D non-planar surfaces in a dynamic environment. The strongest case for pattern

matching in such a scenario is that identifiers can be read even with the loss of bits.

That is, if a pattern is seen to be 98% matched, for example, (the remaining 2% being

lost to obstruction, damaged material, etc) a correct ID can still be made. This is not

always the case in raw decoding, where a flipped bit can entirely change a message.

Such errors can be approached with error-correcting codes and with check-sums, but

such techniques are useful when a message can be resent. In the case of a physical

encoding, if a piece of the material is broken or damaged, those bits can never be

resent, so simply detecting an error will not be useful. Pattern matching does have

the disadvantage that it relies on some known library of patterns, which increases the

87

data requirements and backend needed to successfully implement a scaled system.

However, given the processing power, memory, and cloud access of many modern

mobile devices these increased requirements are an acceptable cost. Thus, for this

system, I have decided to implement a pattern matching library to decode 3D encoded

surface objects. In this case, I am leveraging the freely available Qualcomm Vuforia

toolkit.

Such an implementation comes with the further advantage in that any object

of sufficiently high contrast can be easily identified and decoded. That is, a large

range of 3D materials and things can fit into this self-descriptive world ecosystem.

For example, stitch patterns can be used as encoding on fabrics, as can embroidered

patches and screen printed decals. This opens the doors to creating a wide range of

fabric based encodings.

TA4)O4'

Figure 6-13: A sample triangle code used to encode a surface area.

Returning to the case of the 3D printed car, it is important to consider what

types of surface encodings can be robustly detected and interpreted given the chosen

pattern matching algorithms. The image processing routines work best with patterns

of high contrast and sharp edges. Gradients, rounded edges, and smooth transitions

are not well detected and should not be used to encode information. Given that, I

base my encoding patterns on arrays of black triangles over a white surface. In the

implemented system, the minimum code size is set to a 7x7 array of triangles, where

88

each triangle is individually shifted and rotated by a random amount. Figure 6-13

shows a sample code. To encode the 3D printed car, a large array consisting of these

smaller 7x7 arrays is created. This large encoding array is then used as the image

that dictates the displacement mapping applied to the model.

6.5 Characterization

6.5.1 Feasible Data Density

Given the resolution 3D printer being used and certain limitations in the CAD mod-

eling (i.e. the workable resolution to which a surface can be subdivided), a minimum

implementable bit density can be calculated. I have found that each 7x7 triangle

array can be reliably produced on an area of 0.55"xO.55". This yields a surface area

of 0.3025 square inches. If we simplify and assume the 7x7 array of triangles can only

be encoded through the presence or absence of a triangle (this is not the case given

each triangle can be shifted and rotated), this yields 49 bits per array, which when

combined with the figure above, yields a bit density of over 161 6t. For comparison,

a typical UPC barcode encodes around 50 bits on an area of 1.5" x 1". This results

in a bit density of just over 33 b. Furthermore, many RFID tags typically transmit

a 32 bit ID code.

Promisingly, as 3D printers become capable of higher resolutions it will become

possible to scale this bit density to larger numbers. Furthermore, if an alterna-

tive manufacturing technique is used, bit densities of much higher magnitude can be

achieved. Assuming the same 7x7 triangle pattern, Figure 6-14 shows the relation-

ship between code size and data density. At the extreme end, a physical encoding like

that used in standard hard-disk drives represents the current physical limit of data

density. While this work strives to land on something much more simply detectable

(i.e. with a mobile device rather than with an ultra-precise magnetic head), this may

be a useful benchmark by which to calibrate expectations.

89

500

400

300

200

100

0
0 1 2 3 4 5

Code Size Pnches]

Figure 6-14: Data density as a function of the side-length of the fabricated code.

6.5.2 Optical Decoder Performance

The feasible data density factors in the performance of the modeling workflow, fab-

rication processes, and decoding mechanism. However, the bottleneck in this perfor-

mance is most strongly driven by fabrication and modeling limitations. The optical

decoder can perform at resolutions beyond what we've found to be workable from a

fabrication angle. In this section, we provide further quantitative measurements on

the performance of the optical decoder.

To test this a setup is built that allows the mobile device (camera) to be mounted

a fixed distance from the code at consistent intervals. The code is a standard 7x7

triangle array printed on a piece of paper for simplicity. A mount is placed on top

of this paper that raises the mobile device above the code. The base height of the

mount is 0.45" and each successive height increase is 0.375". The distance is varied

from a range of 0.45" to 5.7". The camera is positioned such that its field of view

is center on the code laying beneath. Furthermore, a series of codes are printed at

different sizes. The total code area is a square and the side lengths are varied from

90

0.159" to 0.55". A chart summarizing the distances at which certain sized codes can

and cannot be read is given in Table 6.1.

Code Size Distance between camera and code [inches]
.45 .825 1.2 1.5711.95 2.32 2.7 3.08 3.45 3.83 4.2 4.58 4.95 5.32 5.7

0.495"1
0.446"7
0.356"5
0.285"7
0.228"7
0.159"

Table 6.1: Characterizing the read range for various code sizes. Green denotes the
code can be read at that distance. Red denotes the code cannot be read at that
distance.

Table 6.1 shows two read-range cutoffs. One at close distances and one at far

distances. The cutoff at near distances is identical for all of the codes. This is a

function of the fixed focal length of the camera that is being used. At a sufficiently

close distance, the camera can no longer focus and the code is unreadable. At the other

end, the far distance cutoff, the value varies between code sizes. This demonstrates

the limited ability of the camera's resolution. Beyond a sufficiently far distance, the

code becomes too small to be readable. It thus follows that the smaller codes thus

have a nearer cutoff than the larger codes.

Also of note, the 0.285" code was the smallest readable code. The 0.228" code

was also tested without the fixed structure support to verify that the code was too

small to be read even at some intermediary distances not allowed by the step-wise

test structure. Indeed, even when using freehand movement, the 0.228" code was too

small to be read at any sufficient distance. To verify that this is a function of the

camera and not of the code, a magnifying lens was placed over the code to produce

a larger view. When this magnifying view was scanned, it was indeed read correctly.

This proves that the limitation in the reading is due to the optics of the mobile device

camera and not the printed resolution of the code.

91

92

Chapter 7

Interface and Backend Design

In creating a self-descriptive universe it is important to consider how a user will

interact with their passive world. At a baseline, it has been established that, for

this thesis, a mobile device will be used for decoding purposes. Given this, it seems

straightforward and useful to have some UI elements contained on the screen of the

mobile device itself. However, this poses certain limitations and it may not always

be desirable to lock the entire interaction to a single mobile screen. For this reason,

I have decided to implement a simultaneous browser-based UI that can work as a

complement (if desired) to the mobile interface. This browser UI could be loaded

on another mobile device or on a larger personal computer with a larger screen.

This chapter will explore the features that are delivered between these two interface

modalities as well as some of the earlier exploratory work that led to the final technical

implementation.

One of the main challenges that will be addressed is the task of synchronizing the

browser and mobile device. Selections and scans made by the camera of the mobile

device should be reflected on the browser in near real-time. One solution would be

to post data points to a database that is referenced from the browser. This database

will store the points that have been 'scanned' on the physical model, and be used

to render markers and annotations on other screens. Ideally, this interaction will

happen in a manner such that the external displays will render the points read from

the physical object in real time.

93

Opens Camera On URL receive, check Find 3D model of device

L
for coordinates in URL

Starts checking Frames Coordinates found:

for Code package into JSON and Load in model
r Cinsert into database

On Find: add ID to array Render spotlight to show
n scanned location

Check webView
isLoaded on some

interval

if page loaded: if page not loaded:
Package array into a url Keep on scanning until

and webview load next id found

Figure 7-1: A preliminary chart describing the tasks and steps of the mobile device,
server, and browser.

I initially thought of using Django. Django is a python-based MVC web frame-

work that I've used many times in the past and am quite familiar with. I thought

of a system where the mobile device would simply call a specified url, and the url

handler (written in python) would make an entry to the database based on the URLs

content, which would contain information about the scan (e.g. www. example. com/

?id=2463&locX=23&locY=39). I quickly realized that I need a framework that allows

me to refresh the browser display with each update of the database. I need a respon-

sive, live interaction - similar to that seen in a collaborative browser applications,

like Google docs. I began exploring Node.js and Socket.io to create a websocket style

application that would maintain an open connection. Node.js and Socket.io are two

94

open-source free web frameworks that provide a set of predefined functionalities. Fur-

ther libraries were also explored, such as Derby, Meteor, and Tornado. In the end I

found Tornado to be the most flexible and appropriate platform form which to start

development.

One important factor in choosing the right web framework is that I wish to render

a 3D environment that can display the model CAD file and provide dynamic feedback

on where the user is pointing their mobile device. For example, this rules out using

the Meteor framework as, in its current state, it does not allow for arbitrary javascript

packages to be cleanly integrated. Tornado on the other hand does. This allows me to

use developed WebGL rendering libraries to create a dynamic 3D environment within

a responsive web framework.

To describe in more detail the mechanisms and functionality of these UI elements,

the following section describes exactly what I mean by a responsive framework.

7.1 Web Sockets

Web sockets are a recent browser-side technology that allows for persistent connec-

tions to be kept open between a server and browser client. This allows a server to

push messages to a browser and have those messages reflected in the layout in real

time. A common example of an application of this would be Google Docs, where mul-

tiple people can be remotely collaborating on a single word processing document, and

all edits are displayed to everyone in near real-time. This is done by sending update

messages to the server which are in turn pushed out to all open clients (browsers).

Such a technology can be used to synchronize the mobile device and browser

layout. The mobile device can push messages to the server whenever a code is read

and the server can then push a message to all open browser clients with the relevant

information. Thus, in this way, the CAD model can be updated, annotations can be

made, and other features showing which code was just read, all in near real-time.

The tornado framework previously introduced creates a simple interface for han-

dling such web socket messages and provides a set of methods and function calls that

95

allow for easy socket manipulation and creation.

7.2 Mobile Platform

For the implementation of this thesis, I have chosen to develop the mobile architecture

for the Android platform. I made this decision because of the relatively more open

architecture that Android provides. While the base Android and iOS SDKs provide

very similar functionality, Android provides lower-level access to an NDK (Native

Development Kit) which exposes lower-level functionality that may be useful for this

intensive application.

7.3 Basic Interface Functionality

The browser-side and mobile-side interfaces display a common set of data, but leverage

different techniques to do so. The browser-side client uses web sockets to dynamically

update the content on any given page. This allows for elements to be dynamically

added or removed from a page to reflect the current set of data that is contained in

the database.

The mobile side interface, however, does not have the capability of leveraging

web sockets. This is due to the implementation of the mobile-side webView class

that is used to render html elements within a native application. To work around

this problem, the server that regularly sends web socket messages, simultaneously

creates a new mobile site each time the data in the database is changed. This mobile

site is then used to display the appropriate information. To display this updated

information correctly, the mobile-side interface refreshes the webView element at

appropriate intervals.

96

C i trex.medLa.mit.edu:8801

Figure 7-2: A screenshot of the browser UI being used to explore the car model.

7.4 Interface Features

This section will describe the features that are provided to the user and outline their

implementation and functionality on both the browser and mobile side. All mobile-

side features are developed and integrated into a single native application, while the

browser side interface is accessible by a URL on all modern browsers.

7.4.1 Rendering STL Model

On the browser-side client, a 3D model of the most recently scanned object is dis-

played. This object is rendered in an interactive environment and the model can be

rotated with the mouse and zoom-in/zoom-out functionality is available. This allows

the user to see every aspect of the model of interest. An open source canvas library,

THREE.js is used. THREE.js which is a javascript library for rending 3D scenes.

97

Figure 7-3: A screenshot of the mobile UI being used to explore the car model.

The library is capable of producing very impressive rendering with relative simplicity

in the code.

One of the bigger hurdles was that THREE.js does not natively support the display

of .STL files. Given that this is what most of my 3D CAD files are exported as, this

is a problem. Luckily, there exists an example that provides simple loading of .STL

objects. Looking at the source code of this example and copying over the necessary

files, I was able to implement this on my own site. One minor caveat though is that

98

It only works on ASCII STL files (i.e. not binary STL files).

When a new object is scanned, the current mesh is removed and the new one is

loaded. This can cause a slight lag on some computers (in my experience, a drop

from 60fps rendering to 30fps rendering).

7.4.2 Spotlight Selection

Again on the browser client, in the same environment that the 3D model is rendered,

a spotlight effect is created to depict which area of the object is current being scanned.

This spotlight effect is dynamic in that is refreshes with each new code that is received.

This can produce the illusion that the camera's field of view is represented by the

spotlight in the browser-side rendering environment.

7.4.3 Leaving Annotations

Annotations can be left in both the browser and mobile interfaces. Annotations are

associated with specific locations on the object. In the browser side, a field is present

that allows users to comment on whichever part is currently highlighted within the

browser-side environment (this is not necessarily the most recently scanned location,

as there is a feature to browse all parts of an object in this interface). Upon clicking

the 'add' button, the comment is added to the database and the server pushes the

comment to all open sockets to have the note dynamically added to the page.

In the mobile side interface, a similar text field is presented for leaving comments.

Comments are automatically associated with the most recently scanned location.

Because the mobile interface is a static page (i.e. does not leverage web sockets),

upon clicking the add button the comment is posted to the server, which dynamically

recreates the mobile site, and the mobile interface is refreshed to reveal the newly

generated content.

99

7.4.4 Selecting Parts of the Current Object

The browser side interface allows for different parts of the current object to be re-

viewed at any time. This feature was created with the intention of allowing many

parties to use the browser interface remotely and to explore the object as a whole,

along with any annotations that have been made. All currently scanned parts of an

object are displayed in a list. The current location is highlighted in blue. Upon click-

ing any alternative location, the spotlight will reposition itself to reflect the change

and any associated annotations will be displayed. This allows users to see both the

location and the notes associated with that location by clicking through the list of

locations.

7.4.5 Camera Viewfinder

The most important part of the mobile side interface is a viewfinder that shows the

view of the camera. This view allows a user see what part of the object they are

currently attempting to read. The viewfinder will overlay a red dot at the center of

any code that has been successfully read to provide feedback to the user.

100

Chapter 8

Encoded Applications Beyond 3D

Printing

Remembering the vision outlined in Chapter 1 for a self-descriptive universe, one will

note that the universe is made up of more than simply 3D printed objects and 2D

tokens. For that reason, I believe it is important to keep in mind that the ideas

and processes laid out in this thesis are intended to speak to a bigger picture. A

picture which cannot be entirely addressed in the scope of the thesis, but whose core

concepts can be demonstrated. To this end, I have explored some alternatives beyond

the work of 3D printed models and lasercut tokens. One of the driving ideas to keep

in mind is that the encoding process, regardless of what is being encoded, should take

place in the manufacturing of that object. If a post-processing step is required, little

advantage is gained over traditional techniques of applying barcodes, printed stickers,

or RFID tags.

8.1 Fabrics

One of the first forays into this new space was towards the domain of soft goods and

fabrics. I began by looking at what the constituent parts of my clothing were for a

baseline. The bias introduced here, is that I tend to where solid-color garments. The

result of this is that the most 'encodable' aspects of the clothes I wear appears to

101

be the stitching. The fine thread that holds my pieces of apparel in place are not

only an integral part of the manufacturing process, but importantly, could be altered

in many ways while still providing identical functionality. This leads to the idea of

encoding clothing through the use of deterministic stitch patterns.

Figure 8-1: Decodable stitches and a screenshot of the mobile UI upon scanning.

To demonstrate this idea, I created an array of several different types of stitching.

Each stitch, though composed of identical thread, is unique in the pattern, shape, and

curvature it represents. I integrated these 'codes' into my mobile decoder application

to create a simple tool that would allow you to identify the different types of stitches

(and demonstrate the ability to encode identifiers into stitch patterns). In this case,

the stitches were all sewn on a Bernina sewing machine, so the stitch's respective

102

Bernina Stitches

StitchOS

1 dd

Bernina ID number is retrieved upon scanning. Figure 8-1 shows the array of stitches

that were fabricated and the mobile interface upon the successful scan of a code.

Figure 8-2: A screenshot of scanning a decodable shirt pattern, as produced as part
of Jennifer Jacobs' thesis work.

I was also fortunate to be speaking with Jennifer Jacobs about her thesis around

the time I was working on these stitch codes. Jennifer's thesis focuses on creating a

set of tools and methods for creating algorithmically defined clothing. She is working

on a software interface that creates simple to write, yet powerful, code for program-

matically generating clothing patterns. This being an open source tool, she expressed

103

Procedural Shirt

radialPattern

Add

......

..... -- -----------

interest in somehow making her clothing patterns 'decodable' in a way that would

allow wearers or people passing by to grab the original source code that generate

that specific piece of clothing. Given that her software generates unique and varied

patterns, it was a natural fit for my system.

By integrating the patterns Jennifer has created for her demonstrations (which

have a specific representation in code) with my system, I am able to create a backend

and interface that allows one to scan the piece of clothing and receive any information,

source code, or attributions associated with the garment. The smooth integration of

this with the exact same mechanism used for decoding the 3D printed bodies and

stitches shows the value of using a pattern recognition approach. Figure 8-2 shows

one of Jennifer's shirts and the mobile interface after a successful scan.

8.2 Food

Another interesting opportunity in the self-descriptive universe realm is to look at

food. Techniques for producing food vary widely between cultures and individual

dishes, so there is a wide array of techniques that could potentially be altered in a

way such that the resultant food is encoded. One basic example of such an idea looks

at the simple process of baking cookies.

Anyone who has baked cookies more than a few times has had the experience

of making cookies that are of varying texture, color, or consistency. Given all the

factors that go into baking cookies (e.g. cook temperature, cook time, cooking sur-

face, etc), it is easy to have one small change create a slightly different outcome. A

common example of this is slightly overcooking a batch of-cookies and having their

bottom surfaces come out darker or even burnt. Perhaps such a phenomenon could

be leveraged to create an encoded cookie bottom. Such encoding may be able to

deliver information regarding the ingredients or baker or perhaps instructions on how

to make them yourself.

One option for trying to encode cookies would be to create a cookie sheet with a

varying texture bottom. Little dimples in the cookie sheet could give rise to a textured

104

Figure 8-3: Failed results of the attempt to encode the bottom of cookies through
layers of various cut materials.

cookie bottom which could be decoded. A first step along these lines is also to try a

cooking surface of varying material. The idea here being that differing surfaces with

conduct heat in different ways, resulting in a cookie bottom that similarly varies.

To test out this hypothesis, I baked a batch of cookies with three different cooking

surfaces: aluminum, parchment paper, and oil. A fourth set of cookies was also

made that were placed flat on the cookie sheet to serve as the control group. The

parchment paper and aluminum foil were cut in a way that small exposed holes were

created. These holes would allow certain parts of the cookie bottom to lay flat on the

cookie sheet, while the rest was insulated by the respective material. For the oil set of

cookies, drops of cooking oil were placed around varying parts of the cookie bottom

before being placed on the cookie sheet. The results (shown in Figure 8-3) were not

very promising. The cookie bottoms did not show significant variation across any of

the test cases. This could be due to the specific recipe of the cookie being used, or

simply because there was not enough variation in heat transfer properties between

the control group bottoms and test group bottoms.

An alternative technique, suggested by Janice Wang and Dan Novy was to use egg

wash. Egg wash is typically used in baking to provide a nice browned color to the top

of various items. Such a technique could instead be used to apply egg wash through

a sort of stencil, resulting in a deterministic pattern of darkened areas. These dark

areas could then be used as the primitive in encoding any baked good.

To demonstrate the idea, mechanical means were used to create a textured pattern

on the bottom of a baked cookie. The cookie and resultant mobile interface are shown

105

Figure 8-4: A screenshot of scanning a decodable cookie pattern.

in Figure 8-4.

While cookies and baked goods represent one possible domain of encoded food,

there still remain many techniques that have yet to be explored. Grilling immediately

comes to mind, as items such as steak branders have been used to sear a mark onto

a steak before serving. Similar techniques could be used to grill food such that it

is inherently seared with a pattern telling you about the food you are about to eat.

More interestingly, perhaps, would be a technique where the darkness of the searing

106

is proportional to the cook time. In this way a correlation could be made between

how well done a piece of meat is and the resultant encoding. Scanning the encoding

could tell patrons if their steak was rare, well-done, etc.

8.3 Beyond

While a couple more instances of how a self-descriptive universe could be fabricated

are discussed in this chapter, there are many more that will unfortunately go without

noting. As fabrication technologies become more accurate and our mobile devices

become more powerful, the opportunities and abilities of a self-descriptive world will

only grow. The key in thinking about any self-descriptive object is to understand

how it can be fabricated and what aspects of that fabrication process can be altered.

Furthermore, it is useful to consider scenarios where the encoding has a secondary

effect that leverages the physical nature of encoding. As an example, encoding the

bottom of shoes by creating deterministic textured rubber patterns could provide the

functionality of making the shoe self-descriptive in a way that it reveals what it is

made out of, who wears it, etc, but it introduces a secondary effect in that it leaves

tracks. The textured encoding, as the user walks through rain, mud, dirt, or other

conditions will leave behind a texture pattern that could similarly be decoded. I

believe this secondary nature is very powerful and in certain cases could provide be

some wonderfully surprising and practical applications.

107

108

Chapter 9

Discussion and Future Work

9.1 Presented Opportunities

The system outlined in this thesis tries to solve the challenge of imbuing our passive

physical object with information that makes them self-descriptive. That is, through

the use of physical texture codes, systems are built to link object location IDs with

collections of annotations about how the object works, where it was made, how it can

be fixed, etc. While this thesis represents a first look at such systems, it attempts to

open the doors to larger ideas and opportunities. That said, there do exist a handful

of limitations and remaining challenges that are worth discussing.

9.2 Remaining Challenges

There exist some challenges that, while not necessarily important to the research

aspect of such a domain, are important to the scalability and mass adoption of such

ideas. For example, the system as presented is limited to working on Android devices

only. No implementation for other operating systems or mobile devices is provided.

While there are no foreseeable technical limits that would restrict such development,

it would require a large amount of time to make user-friendly applications that exist

across all platforms. Furthermore, there is an element of manual labor to the work

that would not be ideal for a scaled system. For example, the STL models that are

109

generated and displayed in the browser interface are manually selected and labeled.

There is no large backend system for handling the addition of new CAD models. It is

foreseeable that one workable implementation would be to allow manufacturers and

developers to upload models into a networked system directly, but such an interface

does not exist. Without such an infrastructure, the system as a whole is limited to

the domain of a prototype demo. Furthermore, and potentially more importantly,

the process for encoding an object is quite manual and requires a custom approach

for each new item.

9.2.1 Integration With Design Tools

One of the challenges of created 3D CAD models with an encoded surface is the man-

ual process of generating a code, unwrapping the model, performing mesh subdivision,

and then applying a displacement map. This process must be tweaked and performed

in a custom fashion for each new object that is to be encoded. Such a process is not

trivial and exact metrics for when a displacement map and resultant surface encoding

is 'good enough' are not established. It would be important in future work to have

this streamlined. The ideal scenario, in my mind, is one where in the export step

of any CAD software there exists the option to 'apply surface encoding'. Checking

this option and continuing to export would result in the desired CAD model with the

appropriately textured encoded surface features. The algorithms for applying this

generally are the topic of entire thesis on its own, but its value is understandable.

Simple parameters could be included as advanced options, such as the ability to set

the minimum resolution of the pending fabrication process or the bit density that is

desired. A one-click approach such as this would certainly be challenging, but would

likely lead to a much greater adoption of the idea of a self-descriptive universe.

9.2.2 Scalable Pattern Recognition

Another area that could be improved comes from the decoding process. To decode 3D

objects, pattern recognition algorithms are used. These algorithms work by defining

110

a set of keypoints across the given image and checking to see if any known images in a

database match that particular arrangement of key points. Key points are generated

at locations of high contrast or sharp edges. While this technique works very well

in the presented system, given its prototype scale, the challenge becomes a slightly

different one if we are to work towards a scaled system with millions or more known

codes. Fortunately, the growing speed and memory of cloud systems presents one

possible future where large scaled databases would work, but whether it would be

fast enough to provide the right experience is yet to be seen. Furthermore, relying on

a cloud system would require that network connectivity is established, limiting the

potential applications.

Moving away from pattern recognition to a system of raw data decoding is another

option. While this option would be more challenging to implement, and perhaps more

prone to errors and failures, it may be possible with advancing image processing

techniques and mobile device hardware to provide a useable experience.

9.2.3 Characterizing the Robustness of Tags

A topic that is not addressed, but would be of high importance for commercial ap-

plications, would be to assess the robustness of the encoded textures after normal

wear and tear. Longitudinal studies that measure the bit-error rate and read accu-

racy could be made at multi-month intervals on items that are handled and used

regularly. This would provide insight into the robustness of specific encoding schemes

given typical usage patterns. These measurements would surely depend on the ma-

terial of the object. Silicone molds would perform differently over time as compared

to a plastic 3D printed object or metal cast object.

9.3 Encoded Surfaces as a Means to Evolve

Looking to the future of how such a system may grow in use cases and application

domains, it is exciting to consider possible advancements of the idea assuming the

technical implementations are established. Returning to the analogy present in the

111

first line of Chapter 1 where an argument for creating a 'DNA' for physical objects

is presented, it is interesting to carry that metaphor further. Initially the argument

is that like biological DNA, which entirely describes a living being, there is value in

creating a passive DNA encoded into the physical structure of our objects that can

entirely describe the CAD file of that given object. However, one of the most impor-

tant features of biological DNA is that it can mutate and, through these mutations,

evolve. So let's take that metaphor to the similar domain.

Perhaps the surface encoding could also be used as a type of memory that describes

the environmental conditions experienced by the object. A model that is weak at

some point could show a deformation or change in the original surface encoding.

This change could be decoded and analyzed to understand that future iterations of

the object should be made stronger at that critical location. In this way, we allow

objects to evolve as a function of the environmental conditions that they are subject

to. This idea becomes even more powerful if coupled with the previous notion of

connecting mass-produced items based on their shared surface encoding: a product

line could evolve from generation to generation based on the reading of deformed or

altered surface encodings. I think it would be an interesting experiment to create

such an object, and every week 3D print whatever iteration is deemed current by the

surface encoding that had been altered during that week. Slowly, over time you would

begin to get objects that look entirely different than what you started with. Perhaps

future soda bottles will have a lineage as rich, diverse, and unexpected as those that

lead to present day life forms.

112

Chapter 10

Conclusion

This thesis presents and outlines a system for encoding physical passive objects with

deterministic surface features that contain identifying information about that object.

The goal of such work is to take steps towards a self-descriptive universe in which

all objects contain within their physical structure hooks to information about how

they can be used, how they can be fixed, what they're used for, who uses them, etc.

By exploring modern manufacturing processes, several techniques for creating these

deterministic textures are presented. Of high importance is the advancement of 3D

printing technologies. By leveraging the rapid prototyping capabilities such machines

offer, this thesis looks at how personalized objects and draft models may be encoded

with data that allows annotations, ideas, and notes to be associated with physical

points across that object.

A mobile application is provided that provides decoding capabilities and an in-

terface for reading past annotations or writing new notes related to scanned texture

codes. A browser interface is also described and built that allows for multiple remote

parties to be annotating, exploring, and viewing the CAD file and associated data of

physical objects.

The decoding mechanism relies on powerful pattern recognition algorithms that

allow this system to extend beyond 3D printed objects and into other things that have

within them a deterministic encoded pattern. This sets the ground work for scaling

this idea to a wide set of domains that encompass many of the physical passive objects

113

that surround our everyday environments.

I hope that future researchers can use this work to explore their own set of ideas

about what a self-descriptive universe would look like and the exciting new applica-

tions and opportunities it would create.

114

Appendix A

Source Code

A.1 Primitive Generation

//Height and Width of window

int width 400;

int height = 400;

//Define noise overlay image
Plmage noiseImg;

void setupo{

size(width,height);

//background = black
background (255);

noiseImg = loadImage("noise.png");

//Function calls for reference

1/ drawTriangles(80,40);
II drawCircles(80,40);

II drawSquare(80,40);

// drawHorz(80,40);

II drawVert(80,40);

for(int i=0; i< 256; i++){

drawCircles(80,40); // Draw array of primitives

tint(255, i); //Define image opacity (opacity decreases as i goes to 255)

image(noiseImg, 0, 0); //Load noise image (will use previous opacity)

String fileName = "images/vert_"+i+".png"; //Generate filename of image
to save

save(fileName); //Save primitive array as file

}

115

}

void drawTriangles(int spacing, int length){

for(int xdim = spacing; xdim<width; xdim = xdim+spacing){
for(int ydim = spacing; ydim<height; ydim = ydim+spacing){
fill(0);

triangle(xdim, ydim+length/2, xdim+length/2, ydim-length/2,

xdim-length/2, ydim-length/2);

}
}

}

void drawCircles(int spacing, int diameter){

for(int xdim = spacing; xdim<width; xdim = xdim+spacing){
for(int ydim = spacing; ydim<height; ydim = ydim+spacing){
fill(0);

stroke(0);

ellipse(xdim, ydim, diameter, diameter);

}
}

}

void drawSquare(int spacing, int length){

for(int xdim = spacing; xdim<width; xdim = xdim+spacing){
for(int ydim = spacing; ydim<height; ydim = ydim+spacing){
fill(0);

rect(xdim-length/2, ydim-length/2, length, length);

}
}

}

void drawVert(int spacing, int length){

for(int xdim = spacing; xdim<width; xdim = xdim+spacing){
for(int ydim = spacing; ydim<height; ydim = ydim+spacing){
fill(0);

rect(xdim-length/2, ydim-length/2, length/3, length);

}
}

}

void drawHorz(int spacing, int length){

for(int xdim = spacing; xdim<width; xdim = xdim+spacing){
for(int ydim = spacing; ydim<height; ydim = ydim+spacing){
fill(0);

rect(xdim-length/2, ydim-length/2, length, length/3);

}

116

}
}

A.2 Primitive Detection

#include "cinder/app/AppBasic.h"

#include "cinder/gl/gl.h"

#include "cinder/gl/Texture.h"

#include "CinderOpenCV.h"

#include "cinder/Rand.h"

#include "cinder/params/Params.h"

using namespace ci;

using namespace ci::app;

using namespace std;

class openCVTestApp : public AppBasic {
public:

void setupo;

void updateO;

void drawo;

void prepareSettings(Settings* settings);

params::InterfaceGl mParams;

float mThreshold, mBlobMin, mBlobMax;

gl::Texture mDepthTexture, mCvTexture;

Surface mDepthSurface;

int imageCounter;

int numofCircles;
int numofTri;
int numofVert;
int numofHorz;
int numofSquare;

void openCVTestApp::prepareSettings(Settings* settings)
{

settings->setWindowSize(640, 720);

}

void openCVTestApp::setup()

{
mThreshold = 200.0f;

117

mBlobMin = 5.0f;

mBlobMax = 100.0f;

mParams = params::InterfaceGl("Hand Tracking", Vec2i(10, 10));
mParams.addParam("Threshold", &mThreshold, "min=0.0 max=255.0

step=1.0 keyIncr=s keyDecr=w");

mParams.addParam("Blob Minimum Radius", &mBlobMin, "min=1.0 max=200.0

step=1.0 keyIncr=e keyDecr=d");

mParams.addParam("Blob Maximum Radius", &mBlobMax, "min=1.0 max=200.0

step=1.0 keyIncr=r keyDecr=f");

imageCounter=-1;

}

void openCVTestApp::update()

{
imageCounter++;

numofCircles = 0;

numofTri = 0;

numofVert =0;

numofHorz =0;

numofSquare=0;

if(imageCounter<255){

// if(1){ //Uncomment if you want to run just a single image.

//Generate File name to pass to loadResource

std::string label = "circ_";
std::string post = png

std::string result = label +

boost::lexical-cast<std::string>(imageCounter) + post;
ci::Surface8u surface(loadImage(loadResource(result)));

// ci::Surface8u surface(loadImage(loadResource("circ.png")));
//Uncomment if you want to run just a single image

gl::Texture depthImage = gl::Texture(surface);
// make a texture to display

mDepthTexture = depthImage;
// make a surface for opencv

mDepthSurface = surface;

if(mDepthSurface){

cv::Mat input-inv(toOcv(Channel8u(mDepthSurface))),
blurred, thresholded, thresholded2, output;

cv::Mat input;

cv::bitwisenot(input-inv, input);

cv::blur(input, blurred, cv::Size(10,10));

118

// make two thresholded images one to display and one

// to pass to find contours since its process alters the image

cv::threshold(blurred, thresholded, mThreshold, 255,

CVTHRESHBINARY);

cv::threshold(blurred, thresholded2, mThreshold, 255,

CVTHRESHBINARY);

// 2d vector to store the found contours

vector<vector<cv::Point> > contours;
// find em

cv::findContours(thresholded, contours, CVRETREXTERNAL,

CVCHAINAPPROXSIMPLE);

// convert theshold image to color for output

// so we can draw blobs on it
cv::cvtColor(thresholded2, output, CVGRAY2RGB);
int i = 0;
// loop the stored contours

for (vector<vector<cv::Point> >::iterator it=contours.begin()

it < contours.endo; it++){
i++;

// center and radius for current blob

cv::Point2f center;

float radius;

// convert the contour point to a matrix

vector<cv::Point> pts = *it;
cv::Mat pointsMatrix = cv::Mat(pts);

// pass to min enclosing circle to make the blob

cv::minEnclosingCircle(pointsMatrix, center, radius);

int isTriangle = 0;
int isCircle = 0;

int isNothing = 1;

vector<cv::Point> approx;

cv::approxPolyDP(pts,approx,radius*.2,TRUE);

if (approx.size()==3){

isCircle = 0;

isTriangle = 1;
isNothing = 0;
numofTri++;

}

if (approx.sizeo==4){

isCircle = 1;

119

isTriangle = 1;

isNothing = 0;

numofSquare++;

}

// calculate mean distance between provided edge points

// and estimated circle's edge

float meanDistance = 0;
int ii;

for (ii = 0; ii < pointsMatrix.rows; ii++)
{

meanDistance += abs((float)

sqrt(pow(center.x-pts[ii].x,2)+pow(center.y-pts[ii].y,2))

- radius);

}
meanDistance /= ii;

if(meanDistance<2 & approx.size() != 4){
isCircle = 1;
isTriangle = 0;

isNothing = 0;

numofCircles++;

}

cv::Scalar blobColor = CVRGB(255*isCircle, 255*isTriangle,
255*isNothing);

if (radius > mBlobMin && radius < mBlobMax) {
// draw the blob if it's in range

cv::circle(output, center, radius, blobColor,3);

}
}
cout<<numofSquare<<endl;

mCvTexture = gl::Texture(fromOcv(output));

}
}

}

void openCVTestApp::draw()

{
gl::clear(Color(0.5f, 0.5f, 0.5f));

gl::disableDepthWriteO;

gl::disableDepthRead(;

glPushMatrix(;

gl::scale(Vec3f(-0.5, 0.5, 1));

120

if(mDepthTexture)
gl::draw(mDepthTexture,Vec2i(-640, 420));

if (mCvTexture){
gl::draw(mCvTexture,Vec2i(-1280, 420));

}
glPopMatrixo;

gl::enableDepthWriteo;

gl::enableDepthReado;

params::InterfaceGl::draw();

//Draw the FPS on screen

gl::drawString(std::string("FPS: "+

boost::lexicalcast<std::string>(getAverageFpso)), Vec2f(400.Of,
20.Of), Color::white());

}

CINDERAPPBASIC(openCVTestApp, RendererGl)

A.3 Coin Generation

int width = 9920;

int height = 9920;

//int width = 2000;

//int height = 2000;

int numWidth = 169;

int numHeight= 257;
PImage numtrans;

int[] xpos-bitsl = {179,215,251,161,269,161,269,179};
int[] ypos.bitsl = {202,202,202,238,238,274,274,310};

int[] xpos-bits2 = {233,269,197,269,161,269,197,233};
int[] ypos-bits2 = {310,310,328,346,382,382,400,400};

void setupo{

size(width,height);

background(255);

numtrans = loadImage("99trans.png");

121

// Coins froms 0 to 255

for(int ii = 0; ii < 16; ii++){
for(int jj = 0; jj < 16; jj++){
generateCoin(ii*16+jj,620*jj,620*ii);

}
}
save("coinsFinal.png"); //Save primitive array as file

}

void drawCircles(int spacing, int diameter, int xstart, int ystart){

for(int xdim = spacing; xdim<numWidth; xdim = xdim+spacing){
for(int ydim = spacing; ydim<numHeight; ydim = ydim+spacing){
fill(0);

stroke(0);

ellipse(xstart+xdim, ystart+ydim, diameter, diameter);

// textSize(7);

// fill(0, 102, 153);

// text(ystart+ydim,xstart+xdim, ystart+ydim);

}
}

}

void generateCoin(int coinNum, int xstartCoin,int ystartCoin){

String binStr = binary(coinNum,8);

drawCircles(18,6, xstartCoin+125,ystartCoin+166); // Draw array of

primitives

drawCircles(18,6, xstartCoin+304,ystartCoin+166); // Draw array of

primitives

image(numtrans, xstartCoin+125, ystartCoin+166);

image(numtrans, xstartCoin+304, ystartCoin+166);

for(int i=0;i<8;i++){

if(binStr.charAt(i) == '0'){ //if binary 0, create white circle to

hide the bit

fill(255);

strokeWeight(2);

stroke(255);

ellipse(xstartCoin+xpos.bitsl[i], ystartCoin+ypos-bitsl[i], 6, 6);

//first nine - top half

ellipse(xstartCoin+xpos-bits2[i], ystartCoin+ypos-bits2[i], 6, 6);

//first nine - bottom half

ellipse(179+xstartCoin+xpos-bitsl[i], ystartCoin+ypos-bitsl[i], 6,

6); //second nine - top half

122

ellipse(179+xstartCoin+xpos-bits2 [i], ystartCoin+ypos-bits2 [i], 6,

6); //second nine - bottom half

}
}

textSize (50);

fill(0);

text("Jan 11, 2013",xstartCoin+146, ystartCoin+125);

textSize(60);

fill(0);

text("Fridays",xstartCoin+200, ystartCoin+525);

stroke (0);

line(xstartCoin+143,ystartCoin+454,xstartCoin+466,ystartCoin+454);

//Comment out for final version for lasercutter

stroke(0);

strokeWeight(1);

noFill();

// ellipse (xstartCoin+300,ystartCoin+300,600,600);

//
}

123

124

Bibliography

[1] M.R. Ackermann, P.A. Cahill, T.J. Drummond, and J.P. Wilcoxon. A brief
examination of optical tagging technologies. Sandia National Laboratories Albu-
querque, New Mexico, 87185, 2003.

[2] K.J. Brodie. Global positioning system tag system, July 30 2002. US Patent
6,427,121.

[3] Chee Kai Chua, Kah Fai Leong, and Chu Sing Lim. Rapid prototyping: principles
and applications. World Scientific Publishing Company Incorporated, 2010.

[4] Klaus Cicha, Zhiquan Li, Klaus Stadlmann, Aleksandr Ovsianikov, Ruth
Markut-Kohl, Robert Liska, and Jurgen Stampfl. Evaluation of 3d structures fab-
ricated with two-photon-photopolymerization by using ftir spectroscopy. Journal
of Applied Physics, 110(6):064911-064911, 2011.

[5] Patrick Dallaire, Daniel Emond, Philippe Giguere, and Brahim Chaib-Draa. Ar-
tificial tactile perception for surface identification using a triple axis accelerom-
eter probe. In Robotic and Sensors Environments (ROSE), 2011 IEEE Interna-
tional Symposium on, pages 101-106. IEEE, 2011.

[6] Andrew Nicholas Dames. Multi-bit magnetic tag and its method of manufacture,
April 16 1998. WO Patent WO/1998/015,853.

[7] K. Finkenzeller. RFID handbook: fundamentals and applications in contactless
smart cards, radio frequency identification and near-field communication. Wiley,
2010.

[8] R.J. Gambino, A.G. Schrott, and R.J. Von Gutfeld. Magnetic tag using acoustic
or magnetic interrogation, October 15 1996. US Patent 5,565,847.

[9] Neil Gershenfeld. Fab: The coming revolution on your desktop-from personal
computers to personal fabrication. Basic Books, 2007.

[10] D.R. Griffin. Radioactive tagging of animals under natural conditions. Ecology,
33(3):329-335, 1952.

[11] F. Guimbretiere. Paper augmented digital documents. In Proceedings of the 16th
annual ACM symposium on User interface software and technology, pages 51-60.
ACM, 2003.

125

[12] F.A. Hansen. Ubiquitous annotation systems: technologies and challenges. In
Proceedings of the seventeenth conference on Hypertext and hypermedia, pages
121-132. ACM, 2006.

[13] C. Harrison, R. Xiao, and S. Hudson. Acoustic barcodes: passive, durable and
inexpensive notched identification tags. In Proceedings of the 25th annual ACM
symposium on User interface software and technology, pages 563-568. ACM,
2012.

[14] J.F. Heanue, M.C. Bashaw, L. Hesselink, et al. Volume holographic storage and
retrieval of digital data. Science (New York, NY), 265(5173):749, 1994.

[15] T. Higo, Y. Matsushita, N. Joshi, and K. Ikeuchi. A hand-held photometric stereo
camera for 3-d modeling. In Computer Vision, 2009 IEEE 12th International
Conference on, pages 1234-1241. IEEE, 2009.

[16] B. Holat. Method of a making and applying a holographic identifier for garments,
March 14 2000. US Patent 6,036,810.

[17] Visualant Incorporated. Technology Overview, 2012.
http://www.visualant.net/overview.html.

[18] M.K. Johnson and E.H. Adelson. Retrographic sensing for the measurement of
surface texture and shape. In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, pages 1070-1077. IEEE, 2009.

[19] M.K. Johnson, F. Cole, A. Raj, E.H. Adelson, et al. Microgeometry capture
using an elastomeric sensor. ACM Transactions on Graphics (TOG), 30(4):46,
2011.

[20] Thomas Jung, Mark D Gross, and Ellen Yi-Luen Do. Annotating and sketch-
ing on 3d web models. In Proceedings of the 7th international conference on
Intelligent user interfaces, pages 95-102. ACM, 2002.

[21] Shunichi Kasahara, Valentin Heun, Austin S Lee, and Hiroshi Ishii. Second
surface: multi-user spatial collaboration system based on augmented reality. In
SIGGRAPH Asia 2012 Emerging Technologies, page 20. ACM, 2012.

[22] D. Merrill and P. Maes. Invisible media: Attention-sensitive informational aug-
mentation for physical objects. In Seventh International Conference on Ubiqui-
tous Computing (UbiComp05), 2005.

[23] J.J. Mihalov, A. Der Marderosian, and J.C. Pierce. Dna identification of com-
mercial ginseng samples. Journal of agricultural and food chemistry, 48(8):3744-
3752, 2000.

[24] RB Mitson and TJ Storeton-West. A transponding acoustic fish tag. Radio and
Electronic Engineer, 41(11):483-489, 1971.

126

[25] A. Mohan, G. Woo, S. Hiura, Q. Smithwick, and R. Raskar. Bokode: impercepti-
ble visual tags for camera based interaction from a distance. A CM Transactions
on Graphics (TOG), 28(3):98, 2009.

[26] Catarina Mota. The rise of personal fabrication. In Proceedings of the 8th ACM
conference on Creativity and cognition, pages 279-288. ACM, 2011.

[27] Alexander Pasko, Valery Adzhiev, Alexei Sourin, and Vladimir Savchenko. Func-
tion representation in geometric modeling: concepts, implementation and appli-
cations. The Visual Computer, 11(8):429-446, 1995.

[28] J.M. Prober, G.L. Trainor, R.J. Dam, F.W. Hobbs, C.W. Robertson, R.J. Za-
gursky, A.J. Cocuzza, M.A. Jensen, K. Baumeister, et al. A system for rapid
dna sequencing with fluorescent chain-terminating dideoxynucleotides. Science
(New York, NY), 238(4825):336, 1987.

[29] Bradley J Rhodes. The wearable remembrance agent: A system for augmented
memory. Personal and Ubiquitous Computing, 1(4):218-224, 1997.

[30] Bradley James Rhodes and Pattie Maes. Just-in-time information retrieval
agents. IBM Systems Journal, 39(3.4):685-704, 2000.

[31] J. Rouillard. Contextual qr codes. In Computing in the Global Information Tech-
nology, 2008. ICCGI'08. The Third International Multi- Conference on, pages
50-55. IEEE, 2008.

[32] Utpal Roy and Yaoxian Xu. 3-d object decomposition with extended octree
model and its application in geometric simulation of nc machining. Robotics and
Computer-Integrated Manufacturing, 14(4):317 - 327, 1998.

[33] Sculpteo. Sculpteo - Your 3D design turns into reality with 3D printing, 2013.
http://www.sculpteo.com/en/.

[34] Inc. Shapeways. Shapeways - Make, buy, and sell products with 3D Printing.,
2013. http://www.shapeways.com/.

[35] Jivko Sinapov, Vladimir Sukhoy, Ritika Sahai, and Alexander Stoytchev. Vibro-
tactile recognition and categorization of surfaces by a humanoid robot. Robotics,
IEEE Transactions on, 27(3):488-497, 2011.

[36] H. Song, F. Guimbretiere, C. Hu, and H. Lipson. Modelcraft: capturing freehand
annotations and edits on physical 3d models. In Proceedings of the 19th annual
ACM symposium on User interface software and technology, pages 13-22. ACM,
2006.

[37] Ivan E Sutherland. Sketch pad a man-machine graphical communication system.
In Proceedings of the SHARE design automation workshop, pages 6-329. ACM,
1964.

127

[38] R. Want, K.P. Fishkin, A. Gujar, and B.L. Harrison. Bridging physical and vir-
tual worlds with electronic tags. In Conference on Human Factors in Computing
Systems: Proceedings of the SIGCHI conference on Human factors in computing
systems: the CHI is the limit, volume 15, pages 370-377, 1999.

[39] R. Want and D.M. Russell. Ubiquitous electronic tagging. Distributed Systems
Online, IEEE. http://www. computer. org/dsonline/articles/ds2wan. htm, 2000.

[40] J. Werb, K. Underriner, and M. Long. Asset and personnel tagging system
utilizing gps, March 2 2004. US Patent 6,700,533.

[41] C. Wu. Tagged out. Science News, in Taggants: Barcodes for Bombs, 1996.

[42] Li Yang, Amin Rida, Rushi Vyas, and Manos M Tentzeris. Rfid tag and rf
structures on a paper substrate using inkjet-printing technology. Microwave
Theory and Techniques, IEEE Transactions on, 55(12):2894-2901, 2007.

[43] Ibrahim Zeid. CAD/CAM theory and practice. McGraw-Hill Higher Education,
1991.

[44] Linlin Zheng, Saul Rodriguez, Lu Zhang, Botao Shao, and Li-Rong Zheng. De-
sign and implementation of a fully reconfigurable chipless rfid tag using inkjet
printing technology. In Circuits and Systems, 2008. ISCAS 2008. IEEE Inter-
national Symposium on, pages 1524-1527. IEEE, 2008.

128

