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Abstract

In this thesis, I present a near real-time algorithm for interactively exploring a collectively
captured moment without explicit 3D reconstruction. This system favors immediacy and
local coherency to global consistency. It is common to represent photos as vertices of a

weighted graph, where edge weights measure similarity or distance between pairs of pho-
tos. I introduce Angled Graphs as a new data structure to organize collections of photos in a

way that enables the construction of visually smooth paths. Weighted angled graphs extend
weighted graphs with angles and angle weights which penalize turning along paths. As a

result, locally straight paths can be computed by specifying a photo and a direction. The

weighted angled graphs of photos used in this paper can be regarded as the result of dis-
cretizing the Riemannian geometry of the high dimensional manifold of all possible photos.
Ultimately, this system enables everyday people to take advantage of each others' perspec-
tives in order to create on-the-spot spatiotemporal visual experiences similar to the popular
bullet-time sequence. I believe that this type of application will greatly enhance shared
human experiences spanning from events as personal as parents watching their children's
football game to highly publicized red carpet galas. In addition, security applications can

greatly benefit from such a system by quickly making sense of a large collection of visual
data.
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Chapter 1

Introduction

All of us like going to public events to see our favourite stars in action, our favourite sports

team playing or our beloved singer performing. Attending these events in first person at

the stadium, or at the concert venue, provides a great experience which is not comparable

to watching the same event on television.

While television typically provides the best viewpoint available to see each moment

of the event (decided by a director), when experiencing the event in first person at the

stadium, the viewpoint of the observer is restricted to the seat assigned by the ticket, or

his/her visibility is constrained by the crowds gathered all around the performer, trying to

get a better view of the event.

Figure 1-1: Imagine you are at a concert or sports event and, along with the rest of the
crowd, you are taking photos (a). Thanks to other spectators, you potentially have all
possible perspectives available to you via your smart phone (b). Now, almost instantly, you
have access to a very unique spatiotemporal experience (c).

15



In this work, we describe a solution to this problem by providing the user with the

possibility of using his/her cellphone or tablet to navigate specific salient moments of an

event right after they happened, generating bullet time experiences of these moments, or

interactive visual tours. To do so, we exploit the known fact that, important moments of an

event are densely photographed by its audience using mobile devices. All of these photos

are collected on a centralized server, which sorts them spatiotemporally, and sends back

results for a pleasant navigation on mobile devices (See Figure 1-1).

To promote immediacy, and interactivity, our system needs to provide a robust, lightweight

solution to the organization of all the visual data collected at a specific moment in time.

Today's tools that address spatiotemporal organization mostly start with a Structure From

Motion (SFM) operation [14], and largely assumes accurate camera poses. However this

assumption becomes an overkill when immediacy and experience is more important than

the accuracy on these estimations. Furthermore, SFM is a computationally heavy operation,

and does not work in a number of scenarios including non-Lambertian environments.

Our solution instead focuses on immediacy and local coherency, as opposed to the

global consistency provided by full 3D reconstruction. We propose to exploit sparse fea-

ture flows in-between neighbouring images, and create graphs of photos using distances

and angles. Specifically, we build Weighted Angled Graphs on these images, where edge

weights describe similarity between pairs of images, and angle weights penalize turning

on angles while traversing paths in the subjacent graph. In scenarios where the number of

images is large, computational complexity of finding neighbours is reduced by employing

visual dictionaries. If the event of interest has a focal object, we let the users enter this re-

gion of interest via simple gestures. Afterwards, we propagate features from user provided

regions to all nodes in the graph, and stabilize all flows that has the target object. In order

to globally calculate optimum smoothest paths, we project our graph to a dual space where

triplets become pairs, and angle costs are projected to edge costs and therefore can simply

be calculated via shortest path algorithms.

16



1.1 Contributions

In this work, my contributions are as follows:

" Novel way to collaboratively capture and interactively generate spatiotemporal expe-

riences of events using mobile devices

" Novel way to organize captured images on an Angled Graph by exploiting the intrin-

sic Riemannian structure

" A way to compute the geodesics and the globally smoothest paths in an angled graph

" An optional object based view stabilization via collaborative segmentation
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Chapter 2

Related Work

2.1 Large Collections of Images

There is an ever-increasing number of images on the internet, as well as research pur-

suing storage [7] and uses for these images. However, in contrast with exploring online

collections, we focus on transient events where the images are shared in time and space.

Photo Tourism [24] uses online image collections in combination with structure from mo-

tion and planar proxies to generate an intuitively and browsable image collection. We

instead do not aim at reconstructing any structure, shape, or geometry of the scene. All

the processing is image based. [23, 22, 19] achieved smooth navigation between distant

images by extracting paths through the camera poses estimated on the scene. Similar tech-

niques were used to create tourist maps [10], photo tours [14], and interactive exploration

of videos [2, 26]. Along with the same line of research, we also present, in this work, how

to navigate between the images. In contrast to prior work however, we do not require ex-

pensive pre-processing steps for scene reconstruction. The relationship between images is

calculated in near-real time. Other works using large image collections to solve computer

vision problems include scene recognition [20, 27] and image completion [12].
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2.2 Computing Shortest Paths

Finding the shortest path between two points in a continuous curved space is a global

problem which can be solved by writing the equation for the length of a parameterized

curve over a fixed one dimensional interval, and then minimizing this length using the

calculus of variations.

Computing a shortest path connecting two different vertices of a weighted graph is a

well studied problem in graph theory which can be regarded as the discrete analog of this

global continuous optimization problem.

A shortest path is a path between the two given vertices such that the sum of of the

weights of its constituent edges is minimized. In a finite graph a shortest path always

exists, but it may not be unique.

A classical example is finding the quickest way to get from one location to another on

a road map, where the vertices represent locations, and the edges represent segments of

roads weighted by the time needed to travel them.

Many algorithms have been proposed to find shortest paths. The best known algo-

rithms for solving this problem are: Dijkstra's algorithm [8], which solves the single-pair,

single-source, and single-destination shortest path problems; the A* search algorithm [11],

which solves for single pair shortest path using heuristics to try to speed up the search;

Floyd-Warshall algorithm [9], which solves for all pairs shortest paths; and Johnson's al-

gorithm [13], which solves all pairs shortest paths, and may be faster than Floyd-Warshall

on sparse graphs.

2.3 Organizing Images

Existing techniques use similarity-based methods to cluster digital photos by time and im-

age content [5], or other available image metadata [28, 17]. For image based matching,

several features have been proposed in literature, namely, KLT [25], SIFT [15], GIST [18]

and SURF [3]. Each of these features have its own advantages and disadvantages with re-

spect to speed and robustness. In our method, we propose to use SIFT features, extracted

20



from each tile of the image, and to individually quantized them using a codebook in order

to generate a bag-of-words representation [6].

Collaborative Mobile Real-time Robust
Photo Tourism [24]

Photo Synthbad on Phto Tourism X

[24]
Unstructured VBR [2] X

VideoScapes [26] X X
Photo Tours [14] X X

CrowdCam X X X X

Figure 2-1: Comparing leading alternatives to CrowdCam in terms of major features.

21





Chapter 3

Algorithm Overview

Our approach starts with users taking photos on their mobile devices using our web-app.

As soon these photos are taken, they are uploaded to a central server along with metadata

consisting of time and location, if available. Afterwards, applying a coarse spatiotempo-

ral filtering using this metadata provides us the initial "event" cluster to work on. Event

clusters are sets of images taken at similar time and location (Section 4).

Sparse feature flows within neighbouring images are then estimated. For large event

clusters, computational complexity of calculating feature flow for each pair of images is

drastically reduced by employing visual dictionaries (Section 5).

The computed feature flows are then used to build a Weighted Angled Graph on these

images (Section 6). Each acquired image is represented as a node in this graph. Edge

weights describe similarity or distance between pairs of photos, and angle weights penalize

turning on angles while traversing paths in the subjacent graph.

Once a user swipes his finger towards a direction, the system computes the smoothest

path in that direction and starts the navigation. This results in a bullet time experience of

the captured moment. Alternatively user can pick a destination photo, and the system finds

the smoothest path in between.

The algorithm ensures that the generated paths lie on a geodesic of the Riemannian

manifold of the collected images. This geodesic is uniquely identified by the initial photo

(taken by the user) and the finger swiping direction. To this end, Section 6.2 introduces

the novel concept of straightness and of minimal curvature in this space (Section 6.4), and
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Figure 3-1: A set of input images (I) are converted to a set of SIFT features (F). In case of

a large number of the images, a visual dictionary (D) is employed to represent every image
via a high dimensional vector (C). Nearest Neighbours (NN) are found for each image, and
sparse feature flow (FF) vectors are extracted. If there is a object of interest, and few users

have manually entered its region, this input is used to stabilize (S) the views. A graph (G)
is generated where nodes are images and edges represent distances. In this graph, angles
are present but only on triplets. The graph (G) is then projected to a dual graph (G*), where

edges have both distance and angle costs. Then given the desired Navigation (N) mode
from user, the system creates the smoothest path (P), and generates a rendering (R). Please

note that boxes with * on the top right corner are optional.

propose an efficient algorithm to solve for it. In particular, to simplify the calculations

and to ensure near realtime performances, in finding the globally optimum smoothest path,

we project our graph to a dual space where triplets become pairs, and angle costs are pro-

jected to edge costs. Then Dijkstra's shortest path algorithm is applied to give us globally

optimum smoothest path.

For each event cluster, if there is a focal object of interest, the user can enter the ob-

ject's region via a touch gesture. Our algorithm propagates the features from user provided

regions to all the nodes in the graph, and stabilize all the flows related to the target object.

Figure 3-1 shows an overview of the proposed pipeline.
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Chapter 4

Coarse Spatiotemporal Sorting

Photos are uploaded continuously to the server, as soon as they are taken. The server

performs an initial clustering of these images based on the location and time information

stored in the image metadata. Depending on the event, and the type of desired experi-

ence, users can interactively select the spatiotemporal window within which to perform the

navigation, as in Figure 4-1. For instance, for a concert and a sports event, users might

prefer large spatial windows whereas, for a street performance, small spatial windows are

preferred. Concerning the time dimension, this can go between 1 or 2 seconds for very

fast events, to 10 seconds in case of almost static scenarios or very slow events, like an

Figure 4-1: GUI showing photos that are within specified spatio-temporal distance.
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orchestra performance.

In terms of temporal resolution, cellphone time is quite accurate thanks to indirect sync-

ing of its internal clock to the atomic clocks installed in satellites and elsewhere. However,

spatial information provided by sensors needs extra care as it is too coarse to be used in

smooth visual navigation ( See Figure 4-2 and Figure 4-3. ). Its accuracy drastically de-

creases in case of indoor events. In order to attain better spatial resolution, we exploit sparse

feature flows in between neighbouring photos, as described in the following sections.

Figure 4-2: GPS information can be quite unreliable. Below is a depiction of GPS

location and orientation of all photo positions and orientations taken around the Al-

chemist sculpture( http://web.mit.edu/newsoffice/201 0/plensa-installed.html ) in MIT. Ide-

ally points should correspond to a full circle.
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Figure 4-3: Same as Figure 4-2, but this time, position information is overwritten using

only orientation and centre of rotation information. Although this is much more improved
than previous state, some of the positions are swapped due to noisy orientation output from
the sensors.
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Chapter 5

Efficiently Finding Neighbours with

Visual Dictionaries

The graph generated from a collection of images is fully connected. However, the set of

edges utilized by desirable traversals of such a graph is a small subset. Intuitively, this is

because given a particular image, the set of next images is restricted to those that are similar

in space and time. Thus, we can generate a sparse graph composed of the same nodes,

whose edges connect only similar images as in Figure 5-1. Computing the angled graph

representation on the latter graph enables us to find the optimal traversal but at significantly

reduced computational complexity.

Naively, the computational complexity of calculating the feature flow for each pair of

images would be O(N 2 ), and therefore posits infeasible when the number N of photos in

the cluster is large. In these cases, we reduce the computational complexity by employing

a visual dictionary [6], and near-neighbor search algorithms [16]. By doing this, we reduce

the complexity to O(KN) where K is the number of neighbours.

Dictionaries can be catered for specific venues, or specific events. They can be created

on the fly, or can be re-utilized per location. For instance, in a fixed environment like a bas-

ketball stadium, it is really advisable to create a dictionary for the environment beforehand

and cache it for that specific location. For places where the environment is unknown, and

the number of participants is large, it is advisable that a dictionary is created on the fly at

the very beginning of the event, and shared by all. For the samples we used, our rule of
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Figure 5-1: Sample graph showing view similarities based on visual dictionaries. You see

6 photos taken in different perspectives, and on each edge, you see a distance measure.
Notice that the largest distance is between nodes 2 and 5, since these are the end points of
the arc formed by the spectator positions.

thumb was that we employed a dictionary if the number of photos were more than 50.
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Chapter 6

Weighted Angled Graph

In mathematics a geodesic is a generalization of the notion of a straight line to curved

spaces. In the presence of a Riemannian metric, geodesics are defined to be locally the

shortest path between points in the space. In Riemannian geometry geodesics are not the

same as shortest curves between two points, though the two concepts are closely related.

The main difference is that geodesics are only locally the shortest path between points. The

local existence and uniqueness theorem for geodesics states that geodesics on a smooth

manifold with an affine connection exist, and are unique. More precisely, but in simple

terms, for any point p in a Riemannian manifold, and for every direction vector VY away

from p (V' is a tangent vector to the manifold at p) there exists a unique geodesic that passes

through p in the direction of V'.

A weighted graph can be regarded as a discrete sampling of a Riemannian space. The

vertices correspond to point samples in the Riemannian space, and the edge weights to some

of the pairwise distances between samples. However, this discretization neither allows us

to define a discrete analog of the local geodesics with directional control, nor the notion

of straight line. Given two vertices of the graph connected by an edge, we would like to

construct the straightest path, i.e. the one that starts with the given two vertices in the given

order, and continues in the same direction with minimal turning.

To define a notion of straight path in a graph we augment a weighted graph with angles

and angle weights. An angle of a graph is a pair of edges with a common vertex, i.e., a

path of length 2. Angle weights are non-negative numbers which penalizes turning along
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the corresponding angle.

Graph angles are related to the intuitive notion of angle between two vectors defined by

an inner product. This definition extends the relation between edges and edge weights in a

natural way to angles and angle weights. In a Riemannian space, using the inner product

derived from the Riemannian metric, the angle a between two local geodesics passing

through a point p with directions defined by tangent vectors & and W' is well defined. In

fact, the cosine of the angle (0 < a < 7r) is defined by the expression

cos(a) = ,T K (6.1)

where (6, ') is the inner product of & and W' in the metric, and | denotes the length (L 2

norm) of the vector V'. Within this context, angle weights can be defined as a non-negative

function s(a) > 0 defined on the angles.

A graph G = (V, E) comprises a finite set of vertices V, and a finite set E of vertex

pairs (i, j) called edges. A weighted graph G = (V, E, D) is a graph with edge weights

D, an additional mapping D : E -+ R which assigns an edge weight dij > 0 to each edge

(i, j) E E. An Angled Graph G (V, E, A) is a graph augmented with a set of angles A.

Given a path (i, j, k), an angle is defined as the high dimensional rotation between edges

(i, j) and (j, k). Finally, a Weighted Angled Graph G = (V, E, D, A, S) is an weighted

graph augmented with a set of angles A and and angle weights S, a mapping S : A -+ R

which assigns an angle weight Sijk > 0 to each angle (i, J, k) E A. Since edges (j, i) and

(j, i) are considered identical, angles (i, j, k) and (k, j, i) are considered identical as well.

6.1 Angles as Navigation Parameters

We are more interested in minimizing the path energy one step at a time, i.e. within the

neighborhood of each vertex: if (i, j) is an edge, the vertex k in the first order neighborhood

of j which makes the path (i, j, k) straightest is the one that minimizes Sijk. The local

straightest path is the path with the lowest energy to the next node with respect to edge and
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(a) Path in
d23  weighted graph

(b) Path in
d S123  d23  angled graph

(c) Convert angled

uw> graph to weighted
~u 2 graph G*

012 2

Figure 6-1: The angled graph is converted to a weighted graph in order to simplify the

computation of the global shortest path.

angle weights. This energy is written as a linear combination of both measurements:

A dig + (1 - A) skij (6.2)

Where node k is the previous node in the path. The parameter A is chosen by the user, or

globally optimized, as described in the next section. Section 6.3 describes how to com-

pute the image-space distances dij, while Section 6.4 describes how to compute the angle

weights skij.

6.2 Computing Global Smoothest Paths

A path in a weighted graph cannot be regarded as parameterized by unit length because

the length of the edges vary. If traversed at unit speed, the edge lengths are proportional

to the time it would take to traverse them. Given a path 7r = (ii, i 2 , ... , iN) the following
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expressions are the length of the path, and the lack of straightness

N-1 N-1

L(7r) = Z djisi K(7r) = sj,_11 . (6.3)
1=0 1=1

Given a scalar weight 0 < A < 1, we consider the following path energy

E(7r) = A L(7r) + (1 - A) K(7r) . (6.4)

The problem is to find a minimizer for this energy, amongst all the paths of arbitrary length

which have the same endpoints (iO, iN). For A = 1 the angle weights are ignored, and the

problem reduces to finding a shortest path in the original weighted graph. But for 0 < A,

in principle it is not clear how the problem can be solved. We present a solution which

reduces to finding a shortest path in a derived weighted graph which depends on the pair

(i, iN). To simplify the notation it is sufficient to consider path (0, 1, 2, 3) of length three.

It will be obvious to the reader how to extend the formulation to paths of arbitrary length.

For a path of length three, the energy function is

E(7r) = A (do1 + d12 + d2 3 ) + (1 - A) (8012 + S123) (6.5)

Rearranging terms we can rewrite it as

E(7r) = U0 1 + w 012 + w 123 + U23  (6.6)

where

Uoi = (A/2) doi

W0i2 = (A/2) do1 + (1 - A) 8012 + (A/2) d1 2  (6.7)

Wi23 = (A/2) d 12 + (1 - A) 8123 + (A/2) d2 3

U23 = (A/2) d2 3

Now we create a weighted directed graph G* (more precisely G*(io, iN)) composed of

the edges (i, j) of G as vertices, the angles (i, j, k) of G (regarded as pairs of edges
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((i, j), (j, k))) as edges, and the following value as the ((i, j), (j, k))-edge weight:

Wijk - (A/2) dij + (1 - A) Sijk + (A/2) dyk (6.8)

We still need an additional step to account for the two values uoi and u23 of the energy.

We augment the graph G* by adding the two vertices 0 and 3 of the original path as new

vertices. For each edge (0, i) of the original graph, we add the weight

o= (A/2) d (6.9)

to the edge (0, (0, i)), and similarly for the other end point. Now, minimizing the energy

E(7r) amongst all the paths in G* from 0 to 3 is equivalent to solving the original problem.

This conversion is demonstrated in Figure 6-1.

6.3 Defining Image-Space Distance & Angle Measures

Sparse SIFT flow is employed to compute the spatial distances between image pairs, and

to compute the angles between image triplets. An example of SIFT flow computed for two

representative pairs of images is shown in Figure 6-2. The spatial distance 6ij between

image i and image j is computed as the median of the L2 norms of all the flow vectors

between these two images. The image-space distance d between i and j is then computed

as

dig = 6i + /3ti - tj| (6.10)

where 6 ij denotes the spatial distance between i and j, and |tj - t| denotes the time dif-

ference in which these two images were taken. 3 is a constant used to normalize these two

quantities. The angle between a triplet of images i, j and k is defined as the normalized dot

product of the average vector flows in these two pairs of images, i and ifjk, respectively.

Formally,

Oijk = arCCOS 3 jk
ri|iJ|||j|kj
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Figure 6-2: (Top) Three neigbouring images A, B and C. (Middle) Feature flows computed
between the images A, B and C after being stabilized with respect to the object of interest
in the scene (the person with blue T-shirt). (Bottom) Zoom of the image AB.

6.4 Defining The Angle Weights S

As introduced in Section 6 and Section 6.2, the angle weight function S : A -+ R needs to

provide an accurate notion of lack of straightness for each chosen triplet (i, j, k) in A, such

that the term K(7r) of Equation 3 represents the overall lack of straightness of the selected

path r. We formalize this concept as the total curvature of a smooth curve passing through

36



all the vertices of the path ir. Let -y denotes this curve, its total curvature is defined as

1I" (X) 2 dx. (6.12)

We define the curve -y to be a piecewise union of quadratic B6zier curves having as control

points the vertices it_ 1, i1 and i1 1, for each index 1 along the path 7r. Therefore, its total

curvature corresponds to the sum of all the total curvatures corresponding to each B6zier

curved segment, which, for a given triplet (i, JI k), corresponds to

Sijk = d2 + d3k + dijdjk COS (7F - Oijk) (6.13)

where Oijk is defined as in Equation 6.11. We therefore use Equation 6.13 to define the cost

of choosing a specific edge in the angle graph, Sijk. See Appendix A for the details on this

calculation.

6.5 Preventing Cycles

Since each edge of G corresponds to a vertex of G*, and each angle of G corresponds to

an edge in G*, if we consider all possible such angles, each vertex in the original graph

corresponds to a clique in G* composed of all the angles with the given vertex in the

middle. When consecutive edges for a candidate shortest path in G* are picked from the

same clique, such as (i, j, k) and (k, j, 1), the corresponding path in the original graph G

forms a cycle (i, j, k, j, 1). As a result the shortest path in G* may correspond to a path

in G with cycles. For example if the weights associated with angles (i, j, k), (k, j, 1), and

(i, j, 1) satisfy the following relation Wijk + WkjI < wisj, the total angle cost of traversing

path (i, j, k, j, 1) is lower than (i, jI 1). We can prohibit the angle weights to satisfy these

inequalities for every pair of angles which share an edge, but this is not sufficient to prevent

the problem, since longer cycles may nevertheless form. To prevent all cycles we need to

require the inequality Wijk + Whjl > wiji to hold for each tern of angles (i, j, k), (h, j, 1),

and (i, j, 1). However, for the target application it is appropriate to allow longer cycles, for

example to create infinite movies which visit a large number of images.
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Chapter 7

Semi-Automatic View Stabilization and

Collaborative Segmentation

If a focal object is present, and view stabilization is desired, we exploit the possibility of an

optional collaborative labeling of the region of interest from the users. In fact, after taking

a photo, the user can choose to label the object of interest on the screen for the image just

taken. This information is sent to the central server also. This is an optional step, and it is

not mandatory. However, if a label is present, this allows the system to generate animations

stabilized with respect to the object of interest.

This is performed by propagating SIFT features from the selected regions to the other

nodes, where such information is not present. In cases where there are not enough SIFT

features, we rely on color distribution of the region. In case, multiple users label the object

of interest, this information is propagated in the graph, and fused with the information

collected from other users as well.

We observed that, in order to achieve the best visual quality results, a label has to be

entered at least every 60 degrees or in cases of zoomed levels above 100% in scale factor.

To increase the accuracy of the selected region, we employed graph cut techniques which

also greatly simplify user input by requiring only a simple stroke( See Figure 7-1).

After establishing the region of interest for the focal object, the photo is stabilized to

a canonical view where the object of interest is at the same position and have the same

size in all photos (see Figure 9-1). This is accomplished by applying an affine transform
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Figure 7-1: (Left) User indicates the object of interest by drawing a stroke on it. (Right)
Showing perfect segmentation of object of interest in a different perspective via feature
propogation and graph cut techniques.

to all images. This step effects all parameters down the stream, including feature flows,

distances, and angles (see Figure 3-1).
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Chapter 8

Implementation

8.1 Overall Architecture

Our main philosophy in the design and architecture of this implementation was capture,

access and process anywhere. Secondly we wanted to apply our second principle of "write

once, deploy many". Therefore for client side we chose HTML5, and for servers, we used

LAMP(Linux, Apache, MySQL, PHP) architecture (See Figure 8-1).

8.2 Mobile Framework

With the use of HTML5, we had a web-app that would work in all major operating systems,

and also provide access to all sensor data required. We initially wanted to utilize the EXIF

data embedded in the image itself, which has all of this data already. However, we quickly

realized that the browser environment strips out this information just before uploading the

data due to potential privacy issues. Therefore we wrote ancillary modules to extract sensor

data explicitly and send this information along with the photo to the server (See Figure 8-2

). When this data is accessed explicitly, the user needs to give permission for this access,

therefore eliminates basic privacy concerns.
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Figure 8-1: High level diagram showcasing information flow, and platform agnostic archi-
tecture. Sensor information, such as geolocation, orientation, time, context and visual data
is sent to cloud framework and shared amongst participating devices.

8.3 Server Architecture

LAMP utilizes Linux, Apache, MySQL and PHP software stack, and is a quite popular

choice for server architecture. When the sensor data is sent to the server, it creates a

database entry, and saves image files accordingly. Server can be queried for various tasks,

such as asking about photo uploads at a specific time and centered at specific latitude and

longitude with a radius of R. At the end, the server is designed to be a dynamic information

hub for sharing data, and not necessarily for processing. The reason for this choice is that

we wanted to be able to do processing anywhere, spanning from the least sophisticated mo-

bile platform to the most powerful cloud computing framework. All of these computation

platforms at the end need one thing, which is fast access to all data, and this architecture
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provided us the simplest form of that.

Figure 8-2: HTML5 based app showing all the sensor information collected from the mo-
bile device.

8.4 Navigation

The user can choose between three different navigation modes. In the first mode, the user

swipes his/her finger towards a direction, and the system computes the smoothest path in

that direction and creates a navigation with some momentum. In the second mode, the

user selects a photo, and the system responds by providing the best possible next photo and

stops. This gives user the ability to "surf" step by step in the sea of images- akin to surfing

over the Riemannian manifold. Finally, user can pick a destination photo, and the system

finds the smoothest path between start and end photos as shown in Figure 8-3. ( Please

also see supplementary video in Appendix C. ).
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Start photo

Enid photo Sot k-

Figure 8-3: By providing start and end photos, system can provide smooth video tours of a
city.

8.5 View Interpolation

For view interpolation, we tried three different techniques, namely blending, view interpo-

lation with meshification [4], and view morphing [21]. Although view morphing provides

great results, we have ruled it out early on as we needed a solution that applies to all pos-

sible camera configurations, and view morphing does not work when the optical center of

one camera is in the field of view of other. In the current implementation, the user can

select either simple blending or view interpolation with meshification [4]. Meshification is

performed using the previously computed feature flows.
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Chapter 9

Results

We evaluated our system on 18 real world scenarios spanning events like street perform-

ers, basketball games, and talks with a large audience. For each experiment, we asked few

people to capture specific moments during these events using their cellphones and tablets.

iPhones, iPads, and Nokia and Samsung phones were used for these experiments. The cap-

tured images were then uploaded to the central server which performed the spatiotemporal

ordering.

Figure 9-2 and Figure 9-3(top row), show two navigation paths computed using our

approach. The obtained results can be better appreciated in the supplementary video in

Appendix C. Here we will address, one by one, the different scenarios shown in the video.

In the indoor scenario, where a person was throwing a ball in the air, the moment

was captured using 7 cellphones. The time difference between the different shots was in

the order of half a second. Despite this temporal misalignment, the overall animation in

pleasant to experience. In this scene, the obtained graph was linear since the cameras were

recording all around the performer.

The basketball scenarios were captured from 16 different perspectives. In one of the

examples, three people were performing. The usage of the performer stabilization in this

case drastically increased the visual quality of the resulting animation, and made it more

pleasant to visualize. To prove this fact, we provide in the video a side by side comparison

between the results obtained using our algorithm with and without performer stabilization.

This can also be seen partially in Figure 9-1.
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(original images) (stabilized images)

Figure 9-1: (Left) Four neighbouring images. (Right) Same images stabilized in scale and
position with respect to the object of interest in the scene (red rectangles).

In order to evaluate the effectiveness of our angled graph approach, we compared it with

a naive approach where only image similarities were considered, see Figure 9-3(bottom

row). This corresponds to setting A equals to 1 in Equation 4. The obtained result was quite

jagged. It is visible that for some frames (marked with red rectangles), the camera motion
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Figure 9-2: Example of smooth path generated by our algorithm.

seems to be moving back and forth. Using the angle graph instead (A = 0.5), the resulting

animation is more smooth, see Figure 9-3(top row). This comparison was run on a dataset

of 235 images inside a lecture room. These results can also be seen in the submitted video.

The properties of the angled graph allow for an intuitive navigation of the image col-

lection. The hall scene in the video demonstrates this feature. The user simply needs to

specify the direction of movement and our algorithm ensures that the generated path lies

on a geodesic of the Riemannian manifold embedding all the collected images. The paths

shown in the video were 36 photos long.
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Figure 9-3: (Top row) Transition obtained using our approach. (Bottom row) Transition

obtained using a simpler approach accounting only for image similarities without angles.

9.1 Time Performance

The client interface was implemented in HTML5 and accessible by the mobile browser.

The server architecture consisted of a 4 core machine working at 3.4GHz. On the server

side, the computational time required to perform the initial coarse sorting, using the dictio-

nary, was on an average less than 50 milliseconds. To compute the sparse SIFT flow, we

used the GPU implementation described in [29], which took around 100 milliseconds per

image. Feature matching took instead almost a second for a graph with an average connec-

tivity of 4 neighbours. Both these tasks however are highly parallelizable. Computing the

shortest path instead is a very fast operation, and took on an average less than 100 millisec-

onds. Concerning the uploading time, this depends on the size of the collected images and

the bandwidth at disposal. To optimize this time, the images were resized on the client side

to 960x720. Using a typical 3G connection, the upload operation took under a second to

be completed.

9.2 Comparison to prior approaches

In the context of photo collection navigation, the work most similar to ours is Photo

Tours [14]. This method first employs structure form motion (SFM), and then computes the

shortest path between the images. To compare our approach with respect to this method,

we run SFM on our sequences. In particular, we used a freely available implementation of

SFM from [24]. As a result, for an average of 80% of the images it was not possible to
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recover the pose, due to sparse imagery, lack of features, and/or reflections present in the

scene.

Compared to our approach, SFM is computationally heavier. As an example, the imple-

mentation provided by [I], used a cluster of 500 cores. The overall operation took about 5

minutes per image. In [14] instead, 1000 CPUs were used, and it took more than 2 minutes

per image.

Since our aim is to create smooth navigation in the image space, we do not need to

care about global consistency. This drastically simplifies the solution. In essence, we favor

visually smooth transitions and near-realtime results to global consistency.
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Chapter 10

Conclusions

In this work, we presented a near real-time algorithm for interactively exploring a collec-

tively captured moment without explicit 3D reconstruction. Through our approach, we

are allowing users to visually navigate a salient moment of an event within seconds after

capturing it.

To enable this kind of navigation, we proposed to organize the collected images in

an angled graph representation reflecting the Riemannian structure of the collection. We

introduced the concept of geodesics for this graph, and we proposed a fast algorithm to

compute visually smooth paths exploiting sparse feature flows.

In contrast to past approaches, which heavily rely on structure from motion, our ap-

proach favors immediacy and local coherency as opposed to the global consistency pro-

vided by a full 3D reconstruction, making our approach more robust to challenging scenar-

ios (See Figure 2-1).

We proposed to exploit sparse feature flows and angled graph representation to find

geodesics in Reimannian manifolds, which correspond to visually smoothest paths in a

discrete photo collection of a salient moment.

Ultimately, our system enables everyday people to take advantage of each others' per-

spectives in order to create on-the-spot spatiotemporal visual experiences. We believe

that this type of application will greatly enhance shared human experiences spanning from

events as personal as parents watching their children's football game to highly publicized

red carpet galas.
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10.1 Limitations

The list of current limitations of the CrowdCam system includes:

* When the quantity of input visual data is large, our system relies heavily on visual

dictionaries. Therefore, a geo-registered database of visual dictionaries would be

handy for large events that happen in similar surroundings( e.g. stadiums, concert

halls, theatres, etc.)

" System currently relies on time tags for temporal filtering, and its resolution limits

the quality of final experience. While some systems provide milisecond accuracy

using GPS or radio signals, others don't.

" For users to have meaningful results, there needs to be reasonably dense coverage

of an event. If coverage is too sparse, the experience will not be as satisfactory as it

could be.

10.2 Future Work

There are a few very exciting future directions for this work.

" Video: Our system can be extended to video, where key frames are processed,

and dynamically adjusted to users' real-time view, thereby enabling spatio-temporal

traversal from video to video.

" Time-Warp: For improved quality, scenes can be visually "time-warped". To achieve

this, scenes can first be targeted for a temporally desirable configuration, such as

monotonically increasing, decreasing or stable data-set. Then, image samples can be

segmented out to "super-pixels", and these can in turn be interpolated or extrapolated

for the desired temporal fit. (e.g. moving the player limbs and the ball to the expected

position in a sports action photo. )

" View Clustering: For photo tours, clustering views and creating canonical images

for potential popular destinations would be useful.
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" Sound Synchronization: Since sound sampling is much higher than the frame rate

of a typical video, temporal precision of our system can be improved by applying

sound synchronization.

" Angled Graphs Theory: Expand on the theoretical foundations of angled graphs,

and explore additional applications of these concepts.

" Collaborative Object Recognition & AR: As users are selecting what they are in-

terested in, and the platform propogates this information around, our framework can

be utilized for collaborative object recognition, labelling, and augmented reality.
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Appendix A

Details on the Angle Weights S

As described in the thesis, we formalized the concept of lack of straightness as the total

curvature of a smooth curve y passing through all the vertices of the selected path 7. We

also defined -y to be a piecewise continuous and differentiable union of quadratic Bezier

curves 73, for each index 1 along the path 7r.

Figure A- 1 shows how the curve 7 is subdivided into Bezier curved segments y;, each

related to a triplet of type (ij_1, i1 , ij+1). The three control points of 7y corresponds respec-

tively to the midpoint between il- 1 and il, the midpoint between il and i 11 , and the node

il. Let

1
i 1 - (i1 - 1 + ii) (A.1)

2
iz1= (i1+1 + i1) (A.2)

denotes these midpoints. By definition, the B6zier curve having il_ 1, ii, and i1+1 as control

points is

_Y1 (t = (1 - t) ((1 -- t) il- + t ii) + t ((1 - t) ii + t Z1+) (A.3)

and its total curvature is equal to

||7' (t)_ 2 dt = ||(z_1 - i1 ) + (i1+1 - i() 2 A.4)

= d2- +±d2, + d,_, 1 d1+1 1, cos (7r - 0) (A.5)

55



where 0 is the angle between the segment iiz and the segment i',izl, as described in

Figure A-1. The total curvature of -y is therefore

0/ |" (t) 2 dt
N-1 i

= ||7"(t) 2 dt

N- +

[X d1

(A.6)

(A.7)+ di,_,idi,li, cos (7r

By defining the cost of selecting the triplet (ij_1, ii, i+1±) as

si,_1 ,1,,1, 1 = dl li + d?2+ 1+ d. -di, 1-, cos (- ) (A.8)

the cost K (7r) indicating the lack of straightness of 7 becomes equal to the total curvature

of -Y.

0

Figure A-1: The curve -y is subdivided into Bdzier curved segments 71, each related to a
triplet of type (i1 _1, ii, i l+1).
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Appendix B

Publications and Presentations

Aydin Arpa, Luca Ballan, Gabriel Taubin, Rahul Sukthankar, Marc Pollefeys and Ramesh

Raskar,CrowdCam: Instantaneous Navigation of Crowd Images using Angled Graph,

IEEE 3DV, June 2013, Seattle, WA, USA

Aydin Arpa, Otkrist Gupta, Gabriel Taubin, Rahul Sukthankar, and Ramesh RaskarPersonal

to Shared Moments with Angled Graphs of Pictures, IEEE CVPR, Workshop for Com-

putational Cameras and Displays, June 2012, Providence, RI, USA
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Appendix C

Supplementary Media

" IEEE 3DV Submission Video: http: //goo. gl/3P75G

" IEEE CVPR Poster: http: //goo. gl/SZkra
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