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Abstract

In this thesis I study the role of extrinsic (sensors placed on the body) versus intrin-
sic sensing (instruments placed on an artificial limb) and determine a robust set of
sensors from physical and reliability constraints for a terrain adaptation in a robotic
ankle prosthesis. Further, during this thesis I collect a novel data-set that contains
seven able-bodied participants walking over 19 terrain transitions and 7 non-amputees
walking over 9 transitions, forming the largest collection of transitions to date us-
ing an exhaustive set of sensors: inertial measurement units, gyroscopes, kinematics
from motion capture, and electromyography from 16 sites on the lower limbs for non-
amputee subjects and 9 sites or amputee subjects. This work extends previous work
[3] by using more conditions, a larger subject group, and more sensors on amputees,
and includes non-amputees.I present a novel machine learning algorithm that uses
sensor data during rapid transitions from pre-foothold to just prior to post-foothold
to predict different terrain boundaries. This advances the field of biomechatronics, our
understanding of terrain adaptation in people both with and without amputations,
contributes to the development of a fully terrain adaptive robotic ankle prosthesis,
and improves the quality of life for the physically challenged. Specifically we set out
to prove between pre and post-foothold the ankle and knee positions calculated us-
ing an IMU attached to an amputees powered prosthetic ankle can discriminate with
greater than 99% accuracy between 9 conditions. Our results suggest that myography
as a non-volitional sensing modality for terrain adaptive protheses was not needed.
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Chapter 1

Introduction

1.1 Executive Summary

Modern ankle prostheses are still very simple devices. Only very recently have they

incorporated more advanced control strategies to adapt to varying walking speed

and minor slope changes. This work makes them more useful on a wider range of

terrain. However, a major question in the field of robotic prostheses is how to go

about designing a practical interface for a robotic prothesis. A major limitation of

previous studies in this space is the lack of available data on how subjects behave

during walking - amputee subjects are difficult to find and recruit for demanding

studies. Further, the use of particular sensors do not often make sense.

Electromyography, and other extrinsic sensing, has long been assumed to be useful
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since it measures aspects of an amputee's physiology. Indeed this could be true,

but for practical purposes EMG can often be quite difficult to use for the measure

of repeatable muscle activations and has seen limited product application outside of

upper-limb prostheses. Intrinsic sensors are much easier and have well-understood

mechanical components that make them more ideal as a long-term solution, but will

they work as well as electromyography and other externally worn sensors?

Below-knee amputees still face problems when navigating varying terrain; they risk

falls during rapidly changing terrain. The existing solutions that allow people to

change the mode of their prostheses tend to encumber the user, and are difficult to

use on a daily basis. To solve this problem prosthesis designers have focused on using

a simpler set of sensors to achieve terrain adaptation.

In this thesis, I present an algorithm that uses biological data from able-bodied

subjects, and determines the best set of sensors and features for terrain adaptation

when amputees are wearing a robotic ankle prosthesis. The novel data-set consists

of subjects with intact limbs and subjects with a below-knee amputation wearing

a robotic prosthesis. Each dataset contains information obtained from 16 channels

of electromyography (EMG), gyroscopes, inertial measurement units, pressure, and

kinematic motion from motion capture on 19 different types of transitions for non-

amputees and 9 transitions for amputees. Then 11 features are extracted from each

channel that result in the final training data-set, that contains a total of 290 features

for non-amputee subjects and fewer for amputee subjects, with between 100 and 200

16



features (depending on the number of available muscles). These data are then run

through a pattern recognition algorithm utilizing a Naive Bayes classifier with an un-

informed prior, and then sequential floating forward search is applied to the training

matrix. For each subject, the algorithm results in the best set of features to accurately

determine the terrain underneath the foot (right before foot-fall on the opposite side

of a terrain change). Then these results are compared against the results of other

methods.

Specifically we set out to prove that between pre- and post-foothold the ankle and knee

positions calculated using an IMU attached to an amputees powered prosthetic ankle

can discriminate with greater than 99% accuracy between the following 9 conditions:

1. level ground and a 15 degree incline,

2. level ground to a 15 degree decline,

3. 15 degree incline to 15 degree decline,

4. 15 degree incline to level ground,

5. 15 degree decline to a 15 degree incline,

6. 15 degree decline to level ground

7. level ground to stair descent,

8. level ground to stair ascent,
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9. level ground without incline or decline.

If the ankle is transitioning between two terrain types that vary less than 15 (degrees)

then the passive compliance of the ankle should be able to manage the terrain and

produce the appropriate amount of power.

The design specifications of the algorithm were determined by the need to solve two

particular problems: robustness and ease of use. Robustness, for this thesis, is defined

as when the classifier has > 90% accuracy in identifying the terrain underneath the

foot. The features are chosen to be the most robust, with the particular classifier

chosen, for that particular subject, or, in indicated cases, with multiple subjects.

We evaluate these features, after we have decided which sets product above 95% ac-

curacy, to see which ones are the least invasive. The most invasive are those features

which belong to sensors that are placed directly on the body like EMG, a button, cam-

era, sound sensing, and those that are least invasive are those that are a mechanical

component of the prosthesis.

To evaluate the algorithm, we will evaluate the classifier's performance on the data

collected in a series of experiments with both non-amputee and amputee participants.

Each amputee will be wearing a robotic or passive prosthesis. Finally, these data are

evaluated to discover the role of EMG sensing in below-knee amputees.

This research has been approved by the MIT Committee on the Use of Humans as Ex-

perimental Subjects (COUHES). Each experiment consists of one approximately five
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hour session during which subjects are asked to traverse 19 unique terrain transitions

while wearing the suite of sensors described above.

My dissertation improves our understanding of how terrain adaptation takes place

in humans and how to apply these principals to bionic systems. These objects are

poised to improve the lives of people living with disabilities.

1.2 Introduction

In the United States alone, there are 1.7 million people living with a leg amputation

(NLLIC, 2008). In addition, each year there are 134,000 new amputations in the

United States and 30% (40,200) of those are below-knee amputations (Adams, 1999,

Ziegler-Graham, 2008). The loss of a limb causes several health problems that can

be traced to an amputee's relative lack of mobility. This includes an increased risk of

falls, stumbles, and injuries arising from these varying terrain. While recent advances,

most notably robotic prosthetic ankles, can improve metabolic economy and produce

a biomimetic gait, the state of the art cannot adapt to a wide variety of changing

terrain conditions robustly.

Most robotic prostheses incorporate a computerized controller, so that users can walk

on even terrain. These prostheses provide power while walking up and down very

small grade ramps that are typically less than 8.5 degrees. Innovations, like those
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mentioned, and the use of embedded computers make complicated locomotion tasks

more tractable.

Intrinsic control in a robotic prostheses takes sensor information from the internal

sensors (sensors that compose a mechanical part of the robotic ankle) to control the

behavior of the ankle during a typical gait cycle. An intrinsic sensor can be thought of

as, "a sensor that measures the state of the robotic ankle and provides torques to the

joint in response to the environment." Extrinsic control, on the other-hand, is usually

something apart from the prosthetic limb and measures physiological properties of

the body. For example, people measure things like electrical properties, non-affected

limb joint angles, and their positions in space, using sensors attached to the non-robot

part of the body.

Currently, users with extrinsic controls can manually change the mode of their pros-

thesis at the cost of a relatively non-intuitive interface [8]. A button or switch is

too cumbersome for biomimetic terrain adaptation. For example, non-amputees do

not have to stop and press a button to change locomotion modes. I want to address

this problem so that the algorithm described in this thesis can utilize a group of sen-

sors attached to an instrumented limb to discover how able-bodied subjects smoothly

transition between terrain modes. Then from these sensors, I pick the sensors that

are minimally invasive for the user and will stand up to daily wear.

I take insights from biomechanics and machine learning to find the "best" set of
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sensors and features for terrain adaptation. In particular, I get the set of sensors

I need to accurately and robustly determine the type of slope underneath the foot

at the most critical moments during locomotion. The sensors are either placed on

the body of the amputee (extrinsic), or they are a physical part of the robotic limb

(intrinsic). From each individual sensor there is a data stream that is analyzed by

the algorithm which is developed in this thesis. It reveals the nature of biomimetic

terrain adaptation using real internal measurement unit (IMU) data collected from a

robotic ankle during locomotion.

I end the thesis with a discussion of how this algorithm could be used to control the

behavior of a powered-ankle prostheses for terrain adaptation using real IMU data

collected on a robotic ankle during locomotion. I also make suggestions based on the

results of the algorithm I developed, and talk about the specific minimal set sensors

that are needed for each subject. Finally, I will cover the improvements that could

be made to the algorithm and make suggestions for future work.

Specifically we set out to prove that between pre- and post-foothold the ankle and knee

positions calculated using an IMU attached to an amputees powered prosthetic ankle

can discriminate with greater than 99% accuracy between the following 9 conditions:

1. level ground and a 15 degree incline,

2. level ground to a 15 degree decline,

3. 15 degree incline to 15 degree decline,
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4. 15 degree incline to level ground,

5. 15 degree decline to a 15 degree incline,

6. 15 degree decline to level ground

7. level ground to stair descent,

8. level ground to stair ascent,

9. level ground without incline or decline.

If the ankle is transitioning between two terrain types that vary less than 15 (degrees)

then the passive compliance of the ankle should be able to manage the terrain and

produce the appropriate amount of power.
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Chapter 2

Background

2.1 Related Previous Literature

Recently, robotic prostheses for the lowerlimbs have been shown to improve the effi-

ciency of level-ground walking [5]. These prostheses incorporate computerized control

and can assist users with level-ground walking. The use of embedded computers makes

complicated locomotion tasks tractable by allowing more powerful control algorithms

to be used during movement. Most robotic prostheses take sensor information from

internal sensors (sensors that are located on the prosthesis) to control the behavior of

the ankle during a typical gait cycle - this is called intrinsic control. Less frequently,

a robotic prosthesis can take information from external sources of information for

control algorithms - this is called extrinsic control.
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Currently, users can change the mode of their prosthesis manually at the cost of a

relatively non-intuitive interface [8]. We feel that these interfaces are too cumbersome

for biomimetic terrain adaptation. An interface that requires the user to stop and

start when they want to change their mode of locomotion or stare at their hands

during movement is never going to be as efficient as human locomotion adaptation.

Our solution is to develop a robotic prosthesis that can utilize a group of sensors

attached to an instrumented limb to smooth transitions between terrain modes.

Electromyography (EMG) has been used in upper-limb prosthesis control for decades[9] [10] [11] [12].

It is the primary neural control input to the majority of robotic upper-limb prosthe-

ses. It has been shown to be effective when used with pattern recognition algorithms

that infer the intention of the user. More recently, the desire to make lower-limb

prostheses that can adapt to terrain in a biomimetic way has spurred interest in us-

ing neural signals as a control input. Very recently, a pattern recognition method

for identifying locomotion modes from EMG has been developed[3]. The results sug-

gest that the thigh muscles of a trans-femoral amputee might be sufficient to obtain

reasonably accurate identification of terrain during steady-state walking, but they

concluded that classification with EMG alone may not be sufficient for robust clas-

sification of different locomotion modes. Earlier work by Praeer et. al. [7], show

that there is a difference in EMG envelope, which suggests that hip-muscles might be

useful in discriminating different locomotion modes. Huang et. al [3], also observed

this and developed a system around it capable of discriminating different user-modes.
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However, the author of this study did not select those features of the EMG signal

that were the most useful. In 2006, Jin et. al. [6] developed an algorithm that

identified terrain during level-ground walking. However, the features were extracted

from one entire gait-cycle, which would make implementation in a real-time system

dangerous; the delay introduced by waiting one whole gait-cycle to determine terrain

can easily lead to falls. Farrell, et. al. [13] reports that an optimal controller delay for

upper-limb prosthesis is between 100ms and 125ms, and there is a linear performance

degradation as the system delay is increased. Based on the previous work, it is our

opinion that a strategy that employs very fast updates should be used to identify user

locomotion modes on varying terrain.

The EMG signal is difficult to use for locomotion mode discrimination; it is time

varying and the features of the signal change within the same task over time. In order

to quickly discriminate between locomotion modes, the electromyographic recording

of each task needs to have a repeatable difference that can be observed by a collection

of features. Using a larger window can increase the amount of information available

for decision making with a pattern recognition algorithm. However, by using a larger

window it is possible that features between two modes might overlap and decrease

the accuracy of a pattern recognition algorithm, so instead we used short windows

( 200ms) to extract EMG information. This was observed between toe-off and heel-

strike during some trials in [3].

Until a reliable form of neural-control is developed, robotic prostheses will likely use
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data-fusion [14], incorporating sensor information from a variety of sensors, to deter-

mine the type of terrain the user is walking over. Without a good feature selection

algorithm it would be impossible to develop a robust data-fusion algorithm that can

estimate terrain. More specifically, a data-fusion algorithm uses the features of a

signal to estimate the state of the robotic-ankle prosthesis continuously. For the

data-fusion algorithm to track variables continuously, or discriminate between loco-

motion modes, the features should have strong discriminatory power. In this work,

we take the first step in developing a data-fusion algorithm by first understanding

which features of both EMG and other internal sensors are useful in discriminating

between locomotion modes.

Outside of EMG there are a large range of sensors that can be used, and that are

placed directly inside a lower-limb prostheses. Many studies have used accelerometers,

gyros, strain gauges, and goniometers to infer the state of the ankle in the real world

(see [17] and references within).

Our approach, in this thesis is to use a wrapper-based feature selection algorithm with

sequential feature selection methods[15] to focus on those features and muscles that

provide the lowest-error classifiers for two trans-femoral amputees and one trans-

tibial amputee. Hargrove, et al. [2] have used similar approaches for upper-limb

prostheses. The researchers successfully used uncorrelated linear discriminant analysis

(ULDA) to discriminate between movement classes in upper-limb prostheses. Their

results suggest that using several different classifiers that train between several pairs of
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different tasks might be more practical than building one classifier for all classes. Later

work [3] showed it is possible to extract large amounts of neuromuscular information

from electromyography from windows at important points of the gait cycle. However,

in previous work no one has picked out the particular features of the lower limbs

that are mostly responsible for classification accuracy. Our work builds off these two

studies and develops a novel feature selection method that can be used with above-

knee and below-knee amputees, and that directly attribute classification accuracy

with specific features. Specific results concerning both groups are discussed alongside

ways to improve this method.

2.2 Biomechanics Background

2.2.1 Electromyography (EMG)

Starting largely with the development of upper-limb prostheses, researchers realized

that myographic signals from residual muscles can be used to improve the ability of

grasping in single-degree of freedom robotic hands. In 1972, Woodie Flowers explored

the use of proportional myoelectric control in a pneumatic robotic knee [1]. Since then

bioelectric signals have been used less frequently than mechanical sensing from the

actual prosthesis. This was the result of advances in microelectronics and computing

power at a small scale - the use of accelerometers, small circuit boards, etc, all con-
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tributing to the relative abandonment of bioelectric sensing in lower-limb prostheses.

In addition, since quality of life and comfort is so important, adding sensors to the

body incurs a cost.

Advances in the myoelectric and neural control of upper-limb prostheses brought

about interest in the possibility of controlling lower-limb prostheses using bioelectric

signals [2]. Most of the advanced control frameworks for upper-limb prosthesis control

have used pattern recognition to find control signals. Hu and Hargrove [18][2] have

written good reviews of pattern recognition techniques for myoelectric systems that

detail the use of upper-limb prostheses.

The typical physiological signals used for the control of lower-limb prostheses are

electromyographic (EMG) signals recorded either inside the muscle, or on the surface

of the skin, or internally with IMES (Implantable Myoelectric Sensors) [21]. However,

it is less practical because it requires surgeons to implant the electrodes and usually

a special battery powered receiver needs to be wound around the socket, and non-

invasive signals can be obtained from an electrode placed on the surface of the skin

close to the muscle belly. While this does increase the delay, until the surgery is more

common-place it's use is suspect.

More recently, Professor Loeb at USC, [21] has developed Internal Myoelectric Sensors

(IMES) to measure EMG at the muscle-implanted location of the electrode. The value

of this technology being that, "the distance from the site of motor unit activation
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matters, so IMES readings should be more accurate and less noisy than traditional

surface EMG."

Minimizing the noise in EMG is very important and system developers need to under-

stand how sensitive their systems are to variance and changes in the underlying EMG

signal. Hogan and Clancy [19] developed the first mathematical models of EMG that

used the amplitude of the signal as a rough estimate of force produced by the muscle.

The amplitude is often used as a control input for upper-limb prostheses, while for

lower-limb prostheses, surface EMG is used [5] for control of plantar flexion of their

devices. Note that the algorithm needs training and frequently requires re-training

to use properly [5].

Ferris [20] also uses amplitude as an approximation of muscle motor unit recruitment

for plantar flexion of the ankle. This strategy, called proportional myoelectric control,

is the oldest and perhaps most widely used control strategy because it is also the

simplest [19] [11]. However, many more complicated representations of the EMG signal

have been used over time [18]. In most of these cases a typical EMG controlled system

will be composed of a collection of electrodes, amplifiers, filters, software for feature

extraction and classification, and a controller to servo the prosthesis into position,

see Fig2-1 below.
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Figure 2-1: Many control systems that are based on electomyography tend to present a
very similar structure. This structure replicates a hypothetical EMG control system
that would be developed from this work. This thesis focuses primarily on parts
extending from the surface electrode to the classification of the signal into a category
that can be used in a controller.

2.3 Intrinsic Signals Background

2.3.1 IMU/Gryoscope Background

With the miniaturization of electronics have come wearable Inertial Measurement

Units (IMU). An IMU is typically composed of an accelerometer and/or gyroscope

and has been used for applications such as counting steps, measuring stride length, or

detecting changes in acceleration [22]. IMUs have also been used in measuring changes

in angular velocity [23] [24], a single IMU may be a reliable enough to accomplish these

things.
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However, lower-limb prostheses that will work with terrain adaption might require

several IMUs on the body. In particular, for detecting transitions between different

terrains it might be impossible to use a single IMU without some other type of intrinsic

sensing or a fusion of extrinsic sensing. The literature is not clear on this last point

and only recently [3] have fusion algorithms started to show up that use both intrinsic

and extrinsic sensing for terrain adaptation.

IMUs pose some challenges. The reason for using an IMU is to know something about

the forward velocity of a limb, the orientation of the body in space, or the position

of the IMU relative to some fixed position. All of these things require the device to

integrate the accelerometer data up to the velocity or the position. This means that

errors are incorporated into the estimates for velocity and position can cause drift in

the measurements. However, it is possible to use information from other sensors to

correct for this drift. In particular, exploits magnetometers and knowing the timing

of heel-strike can correct for drift by combining measurements in a Kalman Filter.

Correction to integration errors of IMUs for gait is well understood. In fact, it is

possible to obtain absolute estimation of ambulatory foot orientation and position

using accelerometers and gyroscopes, with force sensors that detect foot-ground con-

tact and force [24]. This works because the foot is approximately at rest and directly

on the ground during foot-flat, no matter the type of surface. This resets the bounds

of integration to be reset during cyclic-walking [25] [26].
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Chapter 3

Sensor Selection Algorithm

The sensor selection algorithm described in this thesis combines several different areas

of machine learning to make a prediction about which feature/sensor combination will

produce the most powerful combination of sensors that will perform best on actual

clinical data. For a graphical representation see Figure 3-1.

3.1 Wrapper-based Feature Selection

The goal of the sensor selection algorithm is to reduce the number of sensors a patient

has to wear during the daily usage of their device. Wrapper selection methods provide

a way to do this by searching through a collection of features and measuring them

against a cost function. The cost function in our case is Naive Bayes with cross
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validation. There are many different types of wrapper-based search available [15],

and an infinite number of cost functions that can be used with each of these selection

methods.

The sensor selection algorithm uses sequential-forward-search (SFS) and sequential-

floating-forward-search (SFFS). These are very basic algorithms, and while there are

more advanced selection algorithms available, these are very powerful - the sensor

selection algorithm reduced the number of features by as much as 98% - this is clearly

powerful enough to do a good job with our data at hand. More advanced methods[29]

do exist, but depending on the type of training matrix the performance of each of

these algorithms can vary widely - there is no optimal feature selection algorithm for

all training sets.

During SFS and SFFS the best performing features will be those that produce very

accurate measurements of the terrain. Later in this thesis, we study which objec-

tive function will perform best with SFFS or SFS, since we are trying to maximize

classification rate.
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all feature/sensor combinations

patient specific reduced
feature/sensor combinations

further evaluation accuracy for
specific terrains

Figure 3-1: The sensor selection algorithm.
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3.1.1 Theoretical Framework - Feature Extracting Algorithm

3.2 Terrain Classification

Phase-dependent Naive Bayes Classifier

The phase-dependent classifier was introduced in [3] to account for the non-stationary

behavior of EMG over time and increase the responsiveness of the system. The

windows are placed near important times in the signal. Typically the location where

it would make sense to encounter strong muscle contraction is during loading of the

limb. The majority of muscular information is likely to be present in the extrinsic

and intrinsic signals primarily during stance and near the beginning of swing.

Classifiers that use longer time windows are subject to continual changes in the EMG

signal. The phase-dependent classifier relies on the quasi-cyclic nature of the EMG

signal at these key moments in the gait cycle. At these points the signal has low-

variation in the second order moment of the signal, is quasi-stationary, and repeatable

at the same time in the gait-cycle. This benefits any classifier that uses the statistics

of the signal to perform pattern recognition.

The naive bayes classifier is a simple probabilistic classifier that makes strong as-

sumptions about the independence of the features - essentially, it is an independent

feature model. Mathematically, given a terrain of type, T, and a feature vector
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X = (X1,... , X,) we have likelihood of the data as,

n

P(X|T) = fi P(Xi|T).
i=1

The decision rule to assign a particular terrain to sample is derived by the following

argument. Given that we do not know the frequency at which a certain terrain will

appear we can use an uninformed prior,

1
P(T1) - P(T 2) = ... = P(Tn).n

From this we model the decision rule is the maximum a posteriori that picks the most

likely terrain given a sample,

argmax P(TjIX) = arg max P(X.I7T)P(X
Ti Ti P(Ti)

By assmption, P(T) = for i = 1, 2,... , n. This mean that P(T) and P(X) can ben

factored out of the maximum that results in decision criteria becoming,

n

nP(X) -arg max P(XITj) = nP(X)) -argmax fl P(XjITj),
Ti ~T.=

which gives
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n

f (T) = arg max fJ P(XiITi)

where this final decision criteria form is obtained by combining this derivation with

the expansion of the likelihood in terms of terrains.

This assumption is highly unrealistic since the majority of features are related in com-

plicated ways. The success of the method is largely due to the nature of optimality in

terms of the zero-one (loss see http://www.cc.gatech.edu/ isbell/reading/papers/bayes-

opt.pdf) which does not require a high-fidelity model of the probability distribution.

The optimal classifier is obtained as long as the actual and estimated probability

distributions agree on the most likely class[27].

For trans-tibial amputees, the window was much smaller (on average 0.6 sec) for just

the transition. This was largely due to the nature of a transition between terrain. In

particular our participants transitioned very quickly between terrains, so it is possible

that a slower transition speed could produce better results with EMG-based features.

The mechanical sensors, for simplicity, were also sampled in a window that had the

same length as the EMG analysis window. Mechanical sensors typically have less

variance than EMG, so this window-length should be sufficient for the purpose of

classification.
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Pre-Foot Hold/Post-Foot Hold and Heel-Contact Toe-Off Windows for a

Trans-tibial Amputee

Analysis windows, as mentioned above, are usually taken around the times where

the most muscular information is likely to be available. The standard configuration

uses the toe-off and heel-contact points to extract musculo-skeletal information for

terrain identification. We believe it is better to determine the type of terrain before

an instrumented leg comes into contact with the terrain.

Transitions between terrain, in the standard window setup without pattern classifi-

cation or predictive algorithms, would cause the ankle to fail. An example of this is

given in Figure 3-2.

In this work, the analysis window is taken when the instrumented leg lifts off the

ground and ends right before the heel hits the ground. This is assuming there is

enough time to servo into the correct position, on the final terrain. In this way,

the instrumented leg knows nothing about what the un-instrumented leg experiences

on the first part of the terrain. In Figure 3-2, this analysis window occurs during

up-ramp, so that it does not effect the classifier for the opposite side, in this case

down-slope.

To test this algorithm, it needed to be verified using actual data collected from am-

putees and non-amputees walking over a variety of terrains.
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Red: Instrumented
Blue: Un-instrumented
Orange:Time Needed for Servo to Adjust Position

Figure 3-2: If the instrumented leg (red) does not encounter the up-slope ramp with
a high-peak and has to adapt to a down-slope current IMU based algorithms and the
standard window method will fail.
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Chapter 4

Clinical Study 1 - Non-Amputee

Subjects

In the first of three studies are to be discussed a study involving the collection of

sensors and transitions from non-amputees, then amputees wearing a BiOM, and

finally a smaller study with amputees and a conventional prostheses will test the

feasibility of the approach described in Chapter 3. Summarized in the following

table, we ran the following studies,

* Clinical Study 1 - Non-amputee Study: A total of seven participants with intact

limbs walked over 19 different terrain

o Clinical Study 2 - Amputee with Robotic Ankle: This study have a total of

sever participants walking over a total of 9 terrain types.
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Figure 4-1: The physical characteristics
cluded in this study.

of the non-amputee subjects that were in-

* Clinical Study 3 - Amputee with Conventional Prosthesis: This study had 3

amputees using conventional prostheses walking over a total 9 terrain.

4.1 Participants

During this study we recruited a total of seven non-amputee participants. Our method

of recruitment was to use flyers around campus advertising the study. Study partici-

pants were free of musculoskeletal injuries and could walk over each terrain normally.

After the study each participant was compensated for their participation. A list of

the physical characteristics of each participant is in Table 4-1.

4.2 Methods

The purpose of this study is to understand the roles of intrinsic (IMU) and extrinsic

(EMG) sensors non-amputee subjects use to predict terrain with 99% accuracy. After

42

Subject ID Age Weight Height
S1 28 190 5' 11"
S2 36 208 6'
S3 41 180 5' 10"
S4 33 142 5' 9"
S5 53 190 6' 2"
S6 26 170 5' 11"
S7 35 135 5' 11"



we have understood which features are valuable we find the features that perform up

to the 99% threshold. Then we use that to influence how we evaluate the results with

a robotic ankle prosthesis and later describe future directions this work can influence.

The seven non-amputee subjects listed in Table 4-1 have participated in these ramps

trials. The ramps were built out of wood and placed in the motion capture area and

comprised 19 different transitions, Figure 4-2. Then participants were asked to walk

over the ramps (5 times per transition). Note that in each case the particular features

that result in robust classification vary, see Table 7-12. However, the algorithm picks

out those features which maximize the difference between particular classes through a

greedy search of the features that in this case was sequential floating forward search.

In the examples of feature spaces, the different classes (depicted with different colors)

tend to cluster in one region. This suggests that this method maximizes the differences

among clusters and visually confirms the algorithm is finding the correct features,

Figure 7-12.

From the feature spaces for each subject it is evident, even though none of these are

100% accurate with only three features, that some transitions are closer together in

three-space than others. While it might be the case that each cluster is farther apart

in higher-dimensional spaces a qualitative inspection is not possible.
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Non-Amputee Transitions
Level ground

-30-> 15
-15 ->30

-15 ->0
0 -> 15

0->-30
30->0

-30 -> 0
0 -> 30

-30 <-> 30

Stairs ->0
0 -> Stairs

0->-15
15->0

15 <->-15

-15 <->15

30 <-> -30

15-> -30
30->-15

Figure 4-2: Arrows indicate the first direction of travel and then going back in the
opposite direction. If up and down stairs are included this results in 19 total transi-
tions. The transitions were physically built to be wooden platforms with hand-rails.
The level ground condition did not use a ramp or a wooden structure unless it was
attached to a down-ward slope, to ensure safety during the transition to level-ground.

4.2.1 Obtaining a classifier

We obtained a classifier for each subject that classifies each of the 19 different ter-

rain by using the algorithm described in Chapter 3. The process is worked out in
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Nave Bayes Support Vector Machine
SlABBD Num Features 6 9
S2ABBD Num Features 4 9
S3ABBD Num Features 4 8
S4ABBD Num Features 4 8
S5ABBD Num Features 4 9
S6ABBD Num Features 4 9
S7ABBD Num Features 3 5

Avg Num Features 4.1 8.1

Figure 4-3: The algorithm running with a naive bayes classifier performs better than
supper vector machine with a linear kernel.

mathematical detail in the Appendix. Here is it is worth noting that we used SFFS

with a 5-fold cross validation and a naive bayes classifier with a decision function that

chooses the class with the highest probability of being the correct terrain.

4.2.2 Comparison of support vector machines and naive bayes

performance

The algorithm chosen in this thesis uses only a naive bayes classifier. Any other type

of classifier that produces predictions on terrains could potentially also be used. One

other important type of classifier that could be used is the support vector machine.

Typically, the support vector machine with a linear kernel (other kernel types also

didn't show an improvement), was the best kernel to use, but still produces models

with about twice as many features. For this reason we chose the naive bayes classifier

as the suggested one to use with these data.
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4.3 Results of Clinical Study 1

The results of running this algorithm on non-amputee data show that it is possible

to discriminate between each of the 9 ramp conditions with each subject. The multi-

classifier approach does work, though it is limited by the fact that it uses a more

complicated model that could make it less generalizable on new data. There are

boundary cases where applying this algorithm would not make sense, such as when

the number of degrees between terrain is too small (see Amputee with BiOM study).

Also, we use sequential floating forward search with a naive bayes classifier because it

performs well on the data - it does not make sense to use a classifier that results in a

worse reduction or decreased the explanatory ability of the data, unless the resulting

classifier had properties that made the model easier to work with beyond having fewer

parameters.

The areas for concern are the sensitivity of the phase-dependent algorithm with data

from amputee subjects are

1. chanes in the size of the analysis window;

2. could this algorithm work both above and below knee amputees;

3. and when using ramps that have a small angle between pre and post foothold

what is the performance.
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4.3.1 Non-Amputee results from sensor selection algorithm

After running the sensor selection algorithm described in Chaper 3 on a data set

containing both extrinsic and intrinsic features, we arrived a reduced feature set that

also maximized accuracy on individual subjects. Typically most participants had

classifiers with more intrinsic than extrinsic sensors. We also studied the comparative

result of just using intrinsic sensors, and then using extrinsic sensors from a simulated

transtibial amputee that uses data from non-amputees later in this chapter. Those

results suggest that for a practical system just intrinsic sensors should be sufficient

for controlling a robotic ankle prosthesis.

4.3.2 Confusion Matrix Results

After we have obtained the classifiers that give us the most accurate and minimal

set of features necessary to classify walking data into one of the 19 different classes

outlined previously. Figure 7-8 contains the confusion matrix for each subject in order

from 1 to 5. Note that most of the elements are on the diagonal. This means that the

classifier is picking the correct transition almost all the time. However, the figures

also show that some classifiers do confuse some conditions. The rows correspond to

the true class and the columns correspond to the predicted class. Therefore, anything

that sits "off-axis" is a miss-classification. The goal of our classifier is to minimize

missclassifications to prevent improper functioning of the robotic limb.
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Subject 1 Table Subject 2 Table
Feature Accuracy Feature Accuracy

max shank x pos 0.602 min knee x pos 0.441
max knee z pos 0.854 waveform right m gastroc 0.838

waveform right glute max 0.947 rms knee y pos 0.937
AR(3) shank y pos .977 may knee y pos 0.977

may ankle z 0.99 zcs right glute max 0.99
Subject 3 Table Subject 4 Table
Feature Accuracy Feature Accuracy

ssc right m gastroc 0.472 min knee z pos 0.644
max ankle x pos 0.78 may knee y pos 0.933

max shank x 0.876 min right glute max 0.97
min left vastus lateralis 0.934 may shank y pos 0.99

min left semitend 0.972
AR(3) right vases lateralis 0.99

Subject 5 Table Subject 6 Table
Feature Accuracy Feature Accuracy

rms ankle x pos 0.546 max ankle y 0.893
max ankle z pos 0.838 min shank z 0.957

mean right adductor magnus 0.94 ssc knee x 0.96
may knee x pos 0.99 max knee x 1.0

Subject 7 Table
Feature Accuracy

min ankle z 0.819
max ankle z pos 0.838

mean right adductor magnus 0.94
may knee x pos 0.99

Table 4.1: The features, along with their respective sensors, are listed in the table
above. The dominant features are all taken from the vicon markers instead of extrinsic
sensors like EMG. This suggests that a strategy that uses primarily intrinsic sensors
would adequately predict the 19 different ramp conditions from the trial. This is
indicated by the 99% accuracy associated with the top features.

Ultimately, the purpose of the confusion matrix is to give a way for prosthesis design-

ers to evaluate the effectiveness of the classifier on comparisons between terrains and

find areas of potential improvement for each subject. Improvements could take the

form of new control methods or heuristics that try disambiguate the distinct classes.
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4.3.3 Sensitivity Analysis of Phase-Depdendent Algorithm

The algorithm the was derived for the use with non-amputees made no prior assump-

tions about how sensitive the features, and the performance of the models, would be

to window length. In particular, if the extraction windows are too small or if the data

are too noisy the algorithm might not work. The first experiment was to successively

reduce the length of the data extraction windows, moving closer to the pre-foothold

and early into swing phase Figure 4-6.

If the algorithm is sensitive to the amount of data in the windows then the reduction

in the size of the window should result in a comparable change in the feature/sensor

combination selected by the algorithm.

Table 4-6 shows the results of taking smaller windows on the types of features that

come out of the algorithm. For almost all of the subjects (except maybe S3ABBD)

the features derived by the algorithm are very stable. This suggests that to create

a robust control system, that would work under potential time-dilations, is possible.

The way to evaluate the table is by looking at each subject. Then within that subject

see which features are changing. In all cases many of the features that are present at

25% of the window are also present at 50% of the window. Further, at 25% of the

window, we were able to classify with 100% accuracy, so despite slight variation in

the features the algorithm still produces reliable results at varying window sizes.

The results in Figure 4-6 can be interpreted using Figure 4-4. The "feature order" in
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Sensor Muscle Ranges Feature Order
knee x NA 1 to 11 1 autoregressive coef 1
knee y 12 to 22 2 autoregressive coef 2
knee z 23 to 33 3 autoregressive coef 3
ankle x NA 34 to 44 4 rms
ankle y 45 to 55 5 may
ankle z 56 to 66 6 zcs
shank x NA 67 to 77 7 ssc
shank y 78 to 88 8 waveform
shank z 89 to 99 9 max
EMG 100 to 274 10 min

11 mean

Figure 4-4: Glossary of feature numbers for non-amputee subjects.

Subject Name
Full Window

S1 75, 31, 253
S2
S3
S4
S5
S6
S7

4,65,228
65,42,8

64,15,141
42,31,64
53,31,36

31,20,7

50% of Window
75,31,7

4,65,228
31,75,207
65,15,176

42,31,64
53,42,12

31,20,7

25% of Window
75,31,7

4,65,228
65,37,75

98,15,261
42,31,64
53,44,12

31,20,7

Figure 4-5: Results from running the sensor selection algorithm with reduced available
decision sizes.

the figure indicates that ordered sequence the features were taken in. For example,

feature 36 is actually autoregressive coefficient 3 of the knee z position.

Above and Below Knee Amputation Simulation

It is unclear, from the data, if the algorithm will work well on both above and below

knee amputees. Upon removing the EMG sensors below the knee the algorithm should

still produce results that suggest an IMU strategy is superior to one with EMG alone.

50



...% 12% 25% 50% 100%
Red: leg with sensing
Blue: leg without sensing

Figure 4-6: By reducing the size of the window by successive halves you reduce the
amount of data available to algorithm. This tests the robustness of the algorithm.

The methodology in this analysis was to only use those data that corresponded to

IMUs at the knee, shank, and ankle. When EMG was included we used the data from

the residual limbs of a transtibial amputee in the below-knee case. Then we fused the

IMU and EMG in one particular case at the feature level.

Indeed this is what we find in Figure 4-7 and Figure 4-8. The Above Knee EMG

are, on average, about three times greater than using the EMG features from the

IMU alone. While the EMG from the residual muscles in the simulated below-knee

amputees require two times as many features as the case where IMU features alone

are used.
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Figure 4-7: Using only EMG to control a prostheses through various terrain transi-
tions is nearly three times as hard as just using features from IMUs.

Figure 4-8: Using only EMG to control a prostheses through various terrain transi-
tions is nearly two times as hard as just using features from IMUs.
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4.3.4 Multiuser Classification

While the main algorithm of this thesis works well on individuals, one might want to

build a more general classifier to evaluate the set of features that are most useful in

classifying terrains for all participants.

One approach is to simply concatenate all the data together from all subjects after

normalizing subjects and then run the same algorithm again. This was particularly

effective with amputee subjects wearing the BiOm. Using an IMU that was reset

after every heel-strike produce a common origin and frame among different subjects.

Mathematically, given a subject S there is an associated training data set Xs for each

subject. The main algorithm, denoted f : Xs - f, maps Xs to a function that takes

new examples as an argument. Then for each subject there exists a classifier fS for

each subject, i. Then I propose that instead of having individual participant specific

classifiers, we have one multi classifier that is trained from a stacked training matrix

as follow.

Let XS1, Xs2,... , Xs, be the training matrices for n subjects. Then let the total

training matrix is denoted, Xtotai = XS, IXS2 ... |Xsn, so that we obtain a more

general classifier by applying this matrix as, f(Xtotal) = fmulticlassifier.
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Accuracy Feature Number
Subject 1
0.812- 21
0.913- 4
0.957- 9
0.992- 132
Subject 2
0.859- 9
0.986- 26
Subject 3
0.789- 20
1.000- 32

Figure 4-9: Using vicon markers gave a very sparse representation of the model's
feature space. It also surprising to note that only one of the features selected belong
to an EMG sensor. All of the others came from vicon markers.

4.3.5 Multiuser Classifier for Amputees wearing a conven-

tional prosthesis

For each subject that was tested using the conventional prosthesis, we stacked those

training data together and matched labels. The result is that the number of features

does not increase dramatically, see Figure (insert figure). This was done using a

combination of intrinsic and extrinsic sensors. Then the best sensors selected are

those that work for all subjects and are more general.

Normalization with Z-Score only

We used two ways to normalize between subjects. The first is to normalize using the

z-score and the other is to do so using a combination of biomechanical normalization

combined with a z-score.
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The data collected from subjects can be treated as a collection of random variables,

X ~ N(EX, o(X)2 ), drawn independently from a normal distribution. Then the

z-score is defined mathematically as,

Z= X - E(X)
-(X)2

where E(X) is defined as the expected value of the random variable X under the

normal distribution. Assuming there is no bias in the expectation this is usually the

sample mean taken from experimental data while, o is the variance of the sample and

is mathematically,

E(X - E(X)) 2.

Often it is useful to look at this formula in terms of the individual samples taken

from clinical data. Then the sample mean is E(X) = X = L' E' Xi, where each

exemplar is Xi for i = 1 ... , n is taken from the rows of the dataset.

4.3.6 Best Set of Sensors and Features

Through all of these clinical studies the results consistently suggest across amputees

and non-amputees that intrinsic sensors only, are needed predict terrain transitions.
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Obviously, we would like to implement these algorithms in a real robotic ankle to

predict terrains.

The study in Chapter 5 uses transtibial amputees and real IMU data collected from

the ankle, that is the same as the data that would be collected while an amputee would

be walking on the experimental transitions. These data suggest that the IMU coming

from the ankle and the constituent estimates about height and distance would be

enough to predict all 9 terrain the amputees were asked to walk over. Between those

ramp conditions a controller that utilized the passive compliance of the ankle would

be enough to adapt to the terrain difference between pre-foothold and post-foothold.

4.4 Conclusions

The results suggest that an intrinsic control strategy could be used for terrain adapta-

tion on 19 different ramp transitions. The non-amputee study covered in this chapter,

that was run with vicon markers with non-amputee extrinsic data suggest that the

simplest model that is most likely to generalize is one that uses intrinsic data taken

from an IMU and has been processed to have similar accuracy as the vicon markers.

Extrinsic sensors, such as EMG, have problems with donning and doffing that would

make their application to a robotic prosthesis worn daily difficult.
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Chapter 5

Clinical Study 2 - Amputee with

Powered Ankle Prosthesis

5.1 Participants

In order to test the performance of this algorithm on a real robotic prosthesis we

collected data on seven transtibial amputee subjects while wearing a BiOM robotic

ankle. We looked at IMU performance to see if there existed a strategy that resulted

in very high accuracy on all 9 terrains with a single IMU. We show that, based on

this experiment it was possible to achieve high levels of predictive accuracy with

information that is only from the saggital plane of the IMU.

Each subject had EMG electrodes placed on their vastus laterals, gluteus maximus,
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Subject ID Age Weight (lbs) Height
Subject 1 33 192 5' 10"
Subject 2 38 150 5' 8"
Subject 3 38 200 6' 3"
Subject 4 31 185 5' 8"
Subject 5 26 165 5' 9"
Subject 6 46 195 5' 7"
Subject 7 47 160 6' 1"

Figure 5-1: The seven transtibial participants were age, weight, height matched.

rectus femurs, bicep femoris, adductor magnus, and their vastus medials. Markers

were placed on the lower half of the body according to the Helen Hayes model. For

these sets of experiments, the BiOM robotic ankle calibration was performed for each

subject to make sure the actuation of the ankle was within biological constraints for

the weight of the subject and comfortable for their use.

5.2 Methods

The calibration normalized how power should be produced during fast and slow walk-

ing. After this calibration phase each subject was asked to walk over a set of 9 terrain

transitions, Table 5-2. An additional experiment was run with ramps ranging from

2 to 6 degrees to measure resolution of the main algorithm when applied to IMU

position data.

The algorithm described in Chapter 3 was applied here using windows that were 0.4

seconds long. Then the training matrix was applied with only IMU data using SFFS,
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9 Terrain Transitions

Level ground

Stairs -> 0
0 -> Stairs

-15 ->0
0 -> 15

15 <-> -15

0 -> -15
15 ->0

-15 <-> 15

Figure 5-2: During this experiment 9 ramp transitions were used to simulate an
environment with varying terrain.

and a 5-fold cross validation with a naive bayes classifier. The features extracted were

consistent with those described in Table 7-1.

The IMU data were taken from the BiOM ankle and vicon marker data, were taken

from motion capture, are very similar both qualitatively and quantitatively. To give

the reader a more qualitative description of the accuracy, here we show one particular

transition that is often important is going from a downhill ramp to level-ground. In

Figure 5-3 and Figure 5.2, the two curves are similar and the average distance between

the two curves (taken point-wise), was about 3.08 cm in height by the end and 12.5

cm in distance over the course of approximately 0.6 seconds (60 samples * 1 second
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/ 100 samples).

Estimated Z position error of the IMU measurement

4I
4.'
4'

0.15

0.1

0.05

-0.05

Z

IMUZ

0 20 40 60 0 100 1.0

Available Decision Zone (0.68 Sec)
About 3.08 cm difference at end

Figure 5-3: The trajectories of the IMU and the Markers are very similar both in
maximum height and minimum height. The final distance between both curves was
3.08 cm

The typical decision window length was around 0.6 seconds long. Then the 0.3 second

sliding windows were used to extract features from the available decision zone as

depicted in Figure 5-5. This resulted in a about 30 examples by 11 features per

signal times the number of signals for a particular participant. As an example, a the

structure of a typical training matrix is depicted in Figure 5-6.

These training matrices were then analyzed using the algorithm described in Chapter

3 with a naive bayes classifier and the sensors and features described above.
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Estimated Y position error of the IMU measurement

Y
14

iMU Y

04

04

04 Marker Y (reference)

20 A 6'# at 1 20

Available Decision Zone (0.68 Sec)

About 12.5 cm difference at the end

Figure 5-4: The trajectories of the ankle in forward motion as measure from the ankle
by an IMU (blue
and vicon marker data (red). As in the previous case the difference between the two
curves is small and they qualitatively look appropriate. The distance between curves
is about 12.5 cm.

5.3 Results

Overall, with seven transtibial amputee subjects, and real IMU data the algorithm was

able to find a strategy using only sagittal plane directions. In Figures 7-13, 7-14, 7-15,

7-16, 7-17, 7-18, 7-19 the reduction was still significant with a naive bayes classifier

that performs with at least 95% accuracy (from the original feature space since the

reduction went from 192 features to an average of 14 features (a 92% reduction)). The

features had overlap between subjects. However, many of the features are slightly
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0.3 s long window

Figure 5-5: To build the training matrix we extracted data from a sliding window,
applying 11 features to each signal. From that approximately 30 rows in the training
matrix were produced.

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Feature 7 Feature 8 Feature 9 Terrain Number
Tine 0.01 0.997 -9.99E-0S 0.0207 2.1976 2.1792 0 0 0.0504 2.4693 1
Tirne 0.02 -0.997 -3.94E-05 0.0207 2.2178 2.2013 0 0 0.0504 2.471 1
Time 0.03 -0.998 5.72E-06 0.0208 2.2373 2.2224 0 0 0.0507 2.4721 1
Time 0.04 -0.998 -0.0002 0.0209 2.2559 2.2427 0 0 0.0505 2.473 1
Time 0.05 -0.998 -9A3E45 0.0208 2.2738 2.2621 0 0 0.0503 2.4736 1
Time 0.06 -0.997 -0.0002 0.0208 2.2908 2.2805 0 0 0.0503 2.4746 1
Time 0.07 4.0997 0.0001 0.0206 2.307 22981 0 0 0.0504 2.4754 1
Time 0.08 -0.997 -0.0001 0.0205 2.3224 2.3147 0 0 0.0502 2.4762 1
Time 0.09 -0.997 -3.15E-05 0.0204 2.3369 2.3303 0 0 0.0503 2.4768 1
Time 0.10 -0.992 0.00037 0.0172 2.7158 2.689 0 0 0.0304 3.2318 2
Time 0.11 -0.991 0.00029 0.0167 2.6852 2.6571 0 0 0.0289 3.2187 2
TIme 0.12 0.991 0.00035 0.0162 2.654 2.6247 0 0 0.0279 3.2031 2
Time 0.13 0.99 0.00024 0.0157 2.6223 2.5919 0 0 0.0269 3.1854 2
Time 0.14 -0.989 8.32E-05 0.0154 2.5902 2.5587 0 0 0.0267 3.1655 2
Time 0.15 -0.989 -7.12E-05 0,0151 2.5577 2.5252 0 0 0.0271 3.1436 2
Time 0.16 -0.988 -0.0002 0.0149 2.525 2.4916 0 0 0.0283 3.1205 2
Time 0.17 -0.988 -0.0001 0.0145 2.4922 2AS8 0 0 0.0306 3.0966 2

Figure 5-6: The rows of a training matrix are extracted from the analysis windows
and the columns are the features extracted during the sliding window procedure.
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The most common first 5 festures among 7 amputees
4

3
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S 2.5
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Feature Number

31]
35 40

Figure 5-7: This figure shows the most frequently powerful features. Found by taking
the first five features and then seeing which one are the most common. The most
frequently powerful is the maximum of the ankle y position. Among the features that
do appear (many do not appear at all), 28% of the features appear twice, 7% appear,
65% appear once.

different between participants. Figure 5-7 shows all of the features among the 7

different amputees collected and plotted to show frequency. These data suggest that

predicting all terrain with just an IMU is possible, suggesting our hypothesis.
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Figure 5-8: Similar to the non-amputee case the amputee with a BiOm also had that
the IMU alone is simplest model and most practical model to use.

5.3.1 Comparison of EMG and IMU sensing with Robotic

Prosthesis

In the previous study with non-amputees, we wanted to understand the trade off

between extrinsic and intrinsic sensing as sensing methodologies. In this part of

this study we compared the results if we used only intrinsic sensing, here IMU, and

compared it to extrinsic alone, and combining both to see which model was simpler.

By averaging the results over all 7 subjects we can see that the model with the smallest

number of parameters is the one created with IMU and EMG. However, donning and

doffing problems associated with EMG make it less desirable than just using the IMU

model, that has only a few more features in it's model, Figure 5-8.
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5.3.2 Multiclass Considerations

There are two primary ways to process each subject's data:

1. Concatenate all the subject data into one large training data set and then

process

2. Train each subject individually generating user specific classifiers

The primary trade-off between 1) and 2) is that by combining all the data together

there are more features that results from the main algorithm. By using a subject

specific classifier the solution has fewer features, in comparison to the case where a

classifier is trained for all subjects.
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Source Glossary

Ankle Y 1 to 11
Ankle Z 12 to 22
Knee Y 23 to 33
Knee Z 34 to 44

Feature Glossary
1 autoregressive coef 1
2 autoregressive coef 2

3 autoregressive coef 3
4 rms

5 may

6 zes

7 ssc

8 waveform

9 max

10 min
11 mean



In Table 5-9, the results suggest that it is possible to combine all of the training data

together and use the same algorithm that was developed for individuals and apply it

across subjects. However, this is at the cost of having a simpler model, that is, fewer

features. The trade-off is actually is actually quite drastic, see Table 7-13, Table 7-14,

Table 7-15.

Among the features that do appear twice or three times the following patterns can

be discerned.

* 3 x root-mean-square, 3 x mean-absolute-value, 2 x mean were the transforma-

tions that appeared the most frequently among mapping of the sensors;

* Each of the sensors are fairly well represented.

If myographic signals were going to be very powerful, as a source to use for discrimi-

nation with the BiOm, then it should have produced a powerful classifier and EMG

features separate classes on-par or faster than features taken from intrinsic sources.

As it stands the performance of surface EMG was unable to match using real IMU

data obtained on the BiOm.

5.3.3 Small ramp analysis

Another confounding condition to be aware of is the limits of discrimination among

users of a controller that adopts this methodology. When the difference between
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Feat Num Classification Accuracy Feature Type Feature Type Source
1 0.358- 20 max Knee Y
2 0.484- 11 mean Ankle Z
3 - 0.507- 17 waveform Knee Z

4 0.540- 33 mean Knee Y
5 - 0.559- 9 max Knee Y
6 - 0.606- 37 rms Ankle Z
7 0.629 - 10 min Ankle Y
8 - 0.663- 22 mean Knee Z

9 0.684- 1 autoregressive coef 1 Ankle Y
10 - 0.702 8 waveform Ankle Y
11 - 0.724- 30 waveform Knee Y

12- 0.745- 29 ssc Ankle Y
13- 0.758- 18 ssc Ankle Z
14- 0.779- 31 max Knee Y
15- 0.786 21 min Ankle Z
16- 0.807 28 mav Knee Y
17- 0.810- 2 autoregressive coef 2 Ankle Y
18- 0.827- 3 autoregressive coef 3 Ankle Y
19- 0.830- 7 ssc Ankle Y
20- 0.852- 42 max Knee Z
21- 0.846 6 zcs Ankle Y
22- 0.857- 43 min Knee Z
23- 0.854 23 autoregressive coef 1 Knee Y
24- 0.856- 19 waveform Ankle Z
25- 0.865 32 min Knee Y
26- 0.874 38 mav Knee Z
27- 0.874 12 autogressive coef 1 Ankle Z
28- 0.877 41 waveform Knee Z
29- 0.875- 4 rms Ankle Y
30- 0.874 - 13 autoregressive coef 2 Ankle Z
31- 0.871- 14 autoregressive coef 3 Ankle Z
32- 0.878- 25 autoregressive coef 3 Knee Y
33- 0.882 26 rms Knee Y
34 - 0.892 24 autoregressive coef 2 Knee Y
35- 0.902 40 waveform Knee Z
36- 0.886 5 mav Ankle Y
37- 0.892 15 rms Ankle Z
38- 0.900 16 mav Ankle Z

Figure 5-9: This table shows the result after combining three amputee subjects to-
gether. Then we run the main algorithm to get one model to predict nine different
terrain. The sources of data were limited to the Ankle Y/Z position and the Knee
Y/Z position - essentially sagittal plane motion.
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Maximal Accuracy Achieved Before 0.95 accuracy
Subject 1 Subject 2 Subject 3 Subject 4

2 degree difference 0.75 0.95 0.85 0.95
4 degree difference 0.95 0.95 0.93 0.95

Figure 5-10: These results suggest that trying to classify at small ramp angle is
difficult and many not produce a useful classifier below a 4 degree difference in terrain.

ramp conditions becomes tiny the main algorithm should have difficult in telling the

difference between the slopes of the terrain.

The feature space shown in Figure 5-15 sh-ows the space when then world consists

of level ground, t 15 degree ramps, and ± 8 degree ramps. The distance between

clusters of points is important in establishing the discriminability of two classes.

To further, analyze this situation we conducted a smaller study with four amputees

walking,

e level ground to positive 2 degrees and 2 degrees down to level ground

. level ground to positive 4 degrees and 4 degrees down to level ground

The results of running this algorithm with 0.2 second window lengths inside the

available decision zone result mixed results for 2 degrees and acceptable results for 4

degrees 5-10.
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Figure 5-11: In the case of an amputee walking on ramps with a smaller degree
difference, discriminability becomes slightly more difficult. Note that the Level (red)
and Level to +8 condition are similar.
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3 features result in 70% accuracy -n o improvement wit h more features
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Figure 5-12: The feature space for this subject is very cluttered and scattered. The
motions for small degree ramps are too similar to effectively discriminate between
conditions.
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22 features re quire d bef ore an acc uracyIevel of 98% is reac he d. Below is 64%.
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Figure 5-13: Again the feature space for this subject is very cluttered without clear
divisions between small angle classes. However, a model was found with 22 features,
but relative to the reductions apparent in other cases this is a very complicated model.
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Top 3 Features - Feature Space with 77% accuracy. Takes avery complicated model to reach 99%
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Figure 5-14: Again the feature space for this subject is very cluttered without clear
divisions between small angle classes. However, a model was found with 16 features
to get 99%, but relative to the reductions apparent in other cases this is a very
complicated model.
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Top 3 Features accounting for 73%accuray- 14 features required for 99%
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Figure 5-15: Again the feature space for this subject is very cluttered without clear
divisions between small angle classes. However, a model was found with 15 features
to get 99%, but relative to the reductions apparent in other cases this is a very
complicated model.
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5.3.4 Analysis of the relationship between slope degree and

discriminability

The proposed algorithm in this dissertation should be accurate for a range of ramps

between flat ground and 15 degrees. To test this, we conducted studies with 8 degree

ramps to simulate the discriminability of ramps that amputees would encounter in a

real-world situation.

To test this we conducted a study with four amputees wearing a BiOm prosthesis.

The intrinsic sensing was a simulated IMU that took data from the ankle and knee.

EMG was left out, because we have established for 15 degrees differences that with

data from a single IMU, that has been integrated so that we have positions, and

translated to the position of the ankle and the knee, that the IMU at the knee and

ankle, can perform robustly for larger degree changes.

The results are interesting, because the algorithm is able to work on these small ramp

transitions as well. However, the feature reduction in all cases was far less than the

case of more drastic transitions. In comparison, for non-amputees the reduction was

very significant for all terrain types with a vicon marker with far more terrain. In

comparison, this is not as strong a reduction with a threshold of 95% accuracy and

suggests that the algorithm is having difficulty with such small variations in terrain,

Figure 5-16.

The use of the algorithm appears to be limited to degree transitions that are greater
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than or equal to 4 degrees. A further study should be conducted to exhaustively test

all degree transitions between 0 and 15 degrees to parameterize the exact level of

accuracy one can expect in an actual device.

Classification Accuracy Feature Number
0.347- 31
0.511 - 4
0.579 - 21
0.649- 15
0.677- 1
0.715- 8
0.748- 18
0.778- 27
0.790- 25
0.815- 10
0.842- 12
0.851- 29
0.853- 11
0.867- 20
0.886- 22
0.906- 19
0.914- 32
0.917 30
0.925- 26
0.923- 9
0.930 - 23

Figure 5-16: Despite there existing a relatively powerful classifier to determine the
difference between level ground, 2,4,and 6, degree ramps the simulated IMU is more
accurate than an actual IMU. Due to this the reduction witnessed here would be
expected to be worse in that case and more difficult to classify.
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Chapter 6

Clinical Study 3 - Amputee with

Conventional Prosthesis Study

The main algorithm finds the minimal features and sensors that discriminate between

each terrain condition with near perfect accuracy for non-amputees. The advantage

of this algorithm is that it works generally across amputees and non-amputees wear-

ing conventional prostheses. Below is a study conducted to confirm the proposed

hypothesis that the EMG should be even weaker in an amputee's lower limbs, so the

algorithm will find that IMUs are the preferred sensor over EMG.
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6.1 Small Study Summary

Similar to the non-amputee study we have amputees walk over a given set of ramps

and stairs, along with, level ground. Each amputee wore their self-chosen conventional

prosthesis. Conventional, in this case, refers to there being no motorized or computer

controlled actuation on the device beyond passive spring behavior. Some of the

amputees used a prosthetic liner produced by Alps that has EMG leads stitched into

the fabric to read signals from the medial gastrocnemius, lateral gastrocnemius, and

the tibialis anterior muscles of the amputee, Figure 6-1. However, eventually this

liner was abandoned in favor of a conventional liner. It turns out very few amputees

had sockets that would fit the EMG liner. If we forced them to use it, their gait

would have been affected due to a phenomena called, "pistoning".

Transtibial amputees will often have difficulty navigating steep slopes for long periods

of time. In later studies the conventional prosthesis condition was replaced by a

robotic ankle prosthesis (BiOm) that fires at inappropriate times during walking and

as a result this study removes all conditions that contain a 30 degree ramp Figure

5-2.

The study was run on three unilateral amputees, and one of them used an 8 degree

ramp in addition to the the full set. On each person a full set of EMG, IMUs,

and markers were used. In general, there were fewer features required to perfectly

discriminate the different terrain conditions in comparison to the non-amputee study.
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This is likely due to the removal of the 30 degree condition. However, 30 degree

ramps are rare in the typical urban environment, so the range of ramps used in the

study are still realistic. Beyond that there is also the possibility that an amputee's

gait, being slightly pathological with a conventional prosthesis, actually enhances the

ability of pattern classifiers to detect terrain transitions.

The difference between level ground and 15 degree ramps is still rather large (for

example see Figure 7-6), and some might argue, too large to pose a challenge to the

prediction task - especially when most urban handicap ramps are approximately 8.5

degrees.

On 8.5 degree ramps the main algorithm is still able to differentiate between conditions

with a minimal set of features, Figure 5-15. This is signifiant because in order for the

classifier to work you have to produce a good enough signal to noise ratio, so that

clusters are easy to discriminate. However, beyond this the BiOm ankle is able to

handle variations in terrain that are less than this degree, so a specific control of the

ankle might not be needed.

This study shows that it is possible to discriminate with 100% accuracy between the

each ramp condition using only intrinsic sensing. For example, consider Figure 7-3,

where the first feature, the maximum of the ankle height, was able to discriminate

with 90% accuracy. Adding the second feature results in a classifier that discriminates

among the 9 different terrains with 100% accuracy. The reason for this powerful
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discrimination has to do with the different heights and lengths of swing associated with

each terrain transition. For example, consider Figure 7-4, where only two features

are needed for SlA to get to perfect discrimination. In this case the space was well

separated into regions. One hypothesis, is that the geometry of the transition is

fundamentally different once you consider the heights of the ramps and the length of

the stride for each individual.

Figure 6-1: In order to record signals from inside of the socket, a typical Alps liner
was modified with EMG leads placed inside the socket to record the signals from the
residual Tibialis Anterior, Medial and Lateral, Gastrocnemius.
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Chapter 7

Conclusions

7.1 Future Work

This work highlights how powerful the height and reach measured from one IMU can

be determining terrain. IMU data is capturing the motion of our bodies, and our

bodies in response to the ground beneath our feet. This interaction is reflected in

the motion of limbs to avoid, to respond to, adjust, and slow our bodies down over

varying terrain. However, despite all of these complicated motion a simple sensor can

make each of these adjustments clearer.

This work opens up new directions for future reach in biomedical engineering and

product design. By building on this work it is my hope to one day see amputees

dancing and hiking with more ease than non-amputees.
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7.1.1 Further Refinements

The algorithm presented in this thesis has been taken to the point of being ready

for hardware implementation. Implementing this on hardware involves taking the

presented classifier and building a digital controller that runs continuously, so that

after heel-strike the classifier determines the current terrain right before post-foothold.

7.1.2 New Directions

This algorithm is quite general and the fact that it works with amputee gait also

suggests it might be useful with predictions of other types of gait. One potential area

of future work might be in identifying if children have autism based on their gait.

Gait pathologies have been cited in cases involved children with developmental issues

and this could be a warning sign that can be applied.

Another interesting connection to draw is the similarity of this method and hand

writing recognition used on tables and PCs. The motion of the leg over terrain is

similar to a finger tracing the outline of a letter. By drawing this connection the basic

pattern recognition algorithm could be improved with as more data is collected.

7.2 Final Conclusions

The main contributions of this thesis are summarized as,
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* Intrinsic sensory information is sufficient to detect a large number of terrain.

* The forward and vertical motion of the ankle and knee provide 95% accuracy

on 9 terrain for amputees.

* The forward and vertical motion of the ankle and knee provide 95% accuracy

on 10 different terrain for non-amputees

" Novel methodology in-terms of approach of using features to drive insights about

sensors from a set of data.

* Largest amputee and non-amputee number of subjects compared to similar

relevant literature (7 non-amputee and 7 amputee).

" Largest variety of transitions collected compared to similar relevant literature

(19 for non-amputee and 9 for amputee).

The results of this thesis suggest the hypothesis that one IMU can differentiate with

95% accuracy between 9 different terrain conditions. To study this question we de-

veloped a hypothesis that looked at the role of EMG in non-amputees and amputees

wearing a BiOM prosthesis. To determine the role of EMG we used a sequential

floating forward feature selection algorithm with features common to EMG and IMU

processing. Also we used an established sliding window technique to pick those sensors

that contribute most to making a classifier robust.
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In each case, IMU sensors were able to accurately determine the type of transition

between pre and post foot hold. In the case of using actual IMU data from the

BiOM, versus vicon data, the most relevant sources of data are those that deal with

translations and the height of the foot moving through space.

As a result, designers of terrain adaptive robotic prostheses can use sagittal plane

translations and heights to accurately predict the terrain prior to post-foothold. Based

on the clinical studies contained in previous chapters this appears to be possible. The

studies indicated that very few features are needed to predict a large range of terrain

with a modest classifier.

In the case of a non-amputee the reduction using the main algorithm - the feature

space was very large and the number of conditions to be predicted was also relatively

large at 19 different transitions.

As a caveat, the reduction in the number of terrain transitions did improve the per-

formance of the classifier for the amputee case. This suggests that scaling up to a

larger number of terrains could potentially decrease the performance of this type of

classifier. However, in most practical settings encountered in the real world, the set

of transitions that were chosen is exhaustive and easily cover handicap ramps up, as

well as, steep roads that would be encountered in many urban areas or while hiking.

Another potential area for future improvement would be to find ways to improve the

detection of slight terrain variation below 4 degrees. At 4 degrees we observed from
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four amputees that powerful discrimination could be obtained, but the results below

4 degrees were inconsistent.

This algorithm enables the development of controllers for robotic limbs to implement

terrain adaptive controls. It helps a prosthesis designer choose which sensor modality

will perform at a level that an amputee will require in daily tasks. It is also flexible

enough for the addition of other sensors. The flexibility of the algorithm lies in linear

dependency of sensors being used in this algorithm - adding one sensor just increases

the size of the space that the search algorithm has to act over.
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Appendix

Appendix A - EMG Feature Extraction

The features that are used throughout this work are derived from literature as those

that are most useful for pattern recognition in myoelectric prothsetic sensing, see

Figure 7-1.

Perhaps the most difficult feature to understand are the autogregressive features. The

EMG in some cases can be modeled as a linear AR time series such that,

p

x(n) = - akx(n - k) + u(n),
k=1

Where x(n) is the recorded signal at time n and n E Z, where {ak, k = 1, 2, ... ,p}

are autoregressive model coefficients, p is the order of the autoregressive model, and

u(n) is the residual white noise. The autoregressive model assumes that the present

value of the time series x(n) is linear dependent on the past values of the time series
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Feature Summary
Feature Name Description|
Autoregressive a 3 x 1 vector that contains the coefficients of a linear interpolation fit of
Root-Mean-Square I (ir t + X2)

Mean-Absolute-Value "|r,
Zero-Crossings Gives a rough idea of how the signal spectrum changes 1271.
Slope-Sign Changes The number of times the slope of the raw EMG signal changes.
Waveform The length between adjacent samples. i.e. 1 Where Ax, . -
Min the maximum value in the window
M__an ihe imnean value in Ihe window
Max ___ the miaximun value in the window_

Figure 7-1: The features that are used in this thesis are a combination of features
taken from literature on pattern recognition in electromyography and intrinsic sensing.
They can both be applied to the either set of data.

x(n - 1), x(n - 2), ... as described in [30].

Appendix B - Acquiring Positions from IMU Data

In the algorithm that is applied to the actual BiOm ankle, the position data of the

ankle and knee is produced from a single IMU that is embedded in the ankle. The

following work and insights are taken from Patent Application Number: 12552013,
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"Hybrid Terrain -Adaptive Lower-Extremity Systems".

The main variables that we need to estimate to use the algorithm are orientation,

Oankle' position, Pankle, and velocity, anlge.

The orientation, Oankle, is represented by either a quaternion or a 33 rotation matrix

that defines the orientation of the local frame attached to the ankle joint in relation

to the world frame that is defined by gravity, g.

The ankle joint is defined to be at the center of the ankle joint axis of rotation, while

the orientation is attached to the lower leg shaft. After defining these points, the

position of the joint center, along with, the velocity and acceleration are computed.

In this thesis, it is important to numerically integrate so that we can obtain a position

of the ankle after heel-strike. To do this we need to remove the effects of scale, drift

and cross-coupling with the world-frame orientation, from the velocity and position

estimates that are introduced by integrating the accelerometer and rate-gyro signals.

The correction comes in the form of a zero-velocity update that averages over a short

period of time during controlled dorsifiexion. The IMU measurements,aIMU, are

digitized in MATLAB and the ankle joint acceleration is derived using the following

rigid body equation,

aIYUaIMU +± X X IMU4  (7.1)
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where W and Wv are the angular velocity and the angular acceleration in the IMU

frame.

Equation 7.1, can be solved by using numerical integration with the following con-

straints,

= QWW)~jkle(7.2)
ankle nkle

f w = n e [0 0 , 9
=aankle - Y'gT(7.3)

Pwankle =ankle

oot ankle'kooe _wRotationx(Q)

(7.4)

(7.5)

Then, this becomes,

Vheel -vankle ankle[, 0, Olwrheel-ankle

V toe = ankle ankle[Q 0, Olwrtoe-ankle

(7-6)

(7.7)

(7.8)

(7.9)

(7.10)

Pheel = Pankle + Theel-ankle

Ptoe = Pankle + toe-ankle

r W foot 4  w - arheel-ankle = f oot krheel rankle)
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rw foot 4$~W t~te rnl)(7.11)
rtoe-ankle - foottoe - rankle)

In the above the matrix, , can be used interchangeably with the orientation matrix,

0IMU'

Finally, the ankle joint velocity and position are derived from between the last, jth

zero-veloicty update to the current moment according to the following equations,

VankleW = JAUP(i) IMU ankle

t
W (V -j W dt (.3Vankle Z IZAUP(i) Vankle

where P'jnkl,(t = ZVUP(i)) is reset to zero for all i.

The accuracy of this method depends on the time over which the silent period is

averaged and the thresholds used during that measurement. The designers of the

iWalk ankle used logs of internal measurement unit data acquired from the IMU that

was onboard the robotic ankle, and that the accelerations measured on the ankle in

the z-direction (the direction of gravity) was about 1g. This combined with the ankle

being in a controlled dorsiflexion state (the loading period during walking) along

with the variance of the z-acceleration less than an experimental threshold of 0.005g 2

suggested that the ankle was stationary and rotating about the ankle joint.

By using knowledge about the ankle joint and accelerations a reliable quiet period
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can be approximated on this part of the foot that is co-located with an IMU. It is

from these information that a zero-velocity update can be performed on successive

gait cycles.

Due to the nature of walking a quiet stationary period almost always exists in a

controlled dorsiflexion state. Even while walking over varying terrain a quiet control

dorsiflexion state exists. This is due to the needs of the body to propel itself forward

requiring the body to compress like a spring and rotate over the ankle joint.

During each of the zero-velocity update, three terms are evaluated to correct for

changes in the pose of the ankle. The 66, of the world frame z-axis about the x-axis,

that is the vector aligned with the ankle joint axis of rotation during the zero-velocity

update during the previous step; the tilt, 6, of the world frame z-=axis about the

y-axis; and the IMU scaling along the vertical axis, 6g. From these values the post

of the ankle is corrected, since the ankle is a rigid body moving through R3.

When calculating the orientate, velocity and position integration, a sensitivity matrix,

M(t) is calculated that relates the velocity error that would be introduced by the

vector of errors, a = [6 6w 66, 6g]T.

Formally, this relationship is,

M(t) = (OW'MU nk e
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that can be numerically integrated to generate the overall terminal velocity sensitivity,

M*,

M* = JM(t)dt.
ZVUPi-1

From this value we can now update a Kalman Filtering algorithm that uses the Penrse

psuedo-inverse, M*-1, which can be included in the optimal innovations gail, K* in

the optimal linear feedback algorithm.

To actually use this algorithm the errors have to put back into the algorithm to

update further estimates of pose and positions. Given that we know the zero-velocity

update at a given step, i, the value of a would be determined by,

a = M*-Vanke (ZVUPi),

where the innovations corrector vector is given by a. Since this is a physical system,

part of the non-zero velocity results partly from noise in the accelerometers and

angular rate measurements, so that not all of the correction, a, is applied.

To account for this a scaling factor is introduced that scales the filtering contestant,

k, that depends on the magnitude of the noise in the system. From this a new

orientation matrix, Oawnke, and gravity magnitude, g, are determined based on:
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Oawnkle(ZVUPi+) = Ox(-ka(1))Oy(-ka(2))awnkIeO(ZVUP;-),

and

g(ZVUP+) = g(ZVUP-) - ka(3),

where O2(tip) and O,(tilt) denote incremental rotations of the tip and tilt about

the x and y axes respectively, and ZVUPi+ and ZVUP- denote the times after and

before the ZVUP, respectively.
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Figure 7-2: This is the schematic illustration a method for determining ankle joint,
heel and toe trajectories of a prosthetic ankle.
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1.3

1.2

With the Mximum oft he Ankle Height the classifier performv with 90% accuracy

1.1 [-

0.9

U 20 40 60 80 100
SampleNumber

o Level
-15<-> 15

o 15 <->-15
o -15<->0
0 15<->0
o Stairs

120 140 160 180

Figure 7-3: The first feature, of the two that comprise 100% accuracy, accounts for
about 90% of the classification power of the algorithm. This is a large reduction and
can be visualized by looking at the feature itself. The maximum height of the ankle in
each extraction window separates almost all of the conditions except two which tend
to overlap. The second feature teases out the difference between these two conditions.
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EMG Channel Table (1 - 16)
S1 S2 S3

Right Medial Gastroc Right Medial Gastroc Right Medial Gastroc
Left Medial Gastroc Left Medial Gastroc Left Medial Gastroc

Right Tibialis Anterior Right Tibialis Anterior

Left Tibialis Anterior Left Tibialis Anterior Left Tibialis Anterior
Right Bicep Femoris Right Bicep Femori Right Bicep Femoris
Left Bicep Femoris Left Bicep Femoris Left Bicep Femoris

Right Rectus Femoris Right Rectus Femoris Right Rectus Femoris
Left Rectus Femoris Left Rectus Femoris Left Rectus Femoris

Right Semitend Right Vastus Laterlis Right Adductor Magnus
Left Semitend Left Adductor Magnus

Right Vastus Lateralis Right Semitend. Right Vastus Lateralis
Left Vastus Lateralis Left Semitend Left Vastus Lateralis

Right Gluteus Maximus Right Glute Maximus Right Vastus Lateralis
Left Gluteus Maximus Right Glute Maximus Left Vastus Lateralis

Right Tibialis Anterior Right Gluteus Maximus
Left Tibialis Anterior Left Gluteus Maximus

EMG Channel Table (1 - 16)
S4 S5

Right Medial Gastroc Right Medial Gastroc
Left Medial Gastroc Left Medial Gastroc

Right Tibialis Anterior Left Tibialis Anterior
Right Bicep Femoris Right Tibialis Anterior
Left Bicep Femoris Right Bicep Femoris

Right Rectus Femoris Left Bicep Femoris
Left Rectus Femoris Left Rectus Femoris

Right Vastus Lateralis Right Rectus Femoris
Left Vastus Lateralis Right Adductor Magnus

Right Vastus Lateralis Left Adductor Magnus
Left Vastus Lateralis Left Vastus Lateralis

Right Adductor Magnus Right Vastus Lateralis
Right Glute Max Left Vastus Lateralis
Left Glute Max Right Vastus Lateralis

Left Adductor Magnus Right Gluteus Maximus
Left Gluteus Maximus

Table 7.1: The EMG electrode recording sites varied little between subjects. Though
on occasion some refinements were made to the number of the electrodes to improve
the signal. This did not reveal any change in the overall influence of EMG as compared
with intrinsic sensing.
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By ad din g two f eat ures we ac hieve p erf ect discriminiation among th six classes
1.3

1.2-

1.1

0.9 -

0
E
E 0.8 -

0.7 -

0.6 -

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
mean of the ankle y position

Figure 7-4: The two features extracted for the S1 A were able to perfectly discriminate
between 6 different conditions. The power of this method lies in the nature of the
features that use the maximum, mean, and minimum values of the height and forward
distance in the classifier.
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With two feat ures t h e diff erent reamp con ditions can be cilassifie d with 10 0% accuracy

I

**

*1

I I I__- -

I1

-0.6 -0.5 -0.4 -0.3 -0.2
Mean Ankle X

Figure 7-5: As in the case of
between clusters.

liii '1 P

-0.1 0 0.1 0.2

S2 A the resultant feature space of 100% is well separated

100

N

1.3

1.2

1.1

1

0.9

0.8
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Figure 7-6: The feature space of the first amputee subject.
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Figure 7-7: The feature space of the second amputee subject.
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Si ABBD -Top 3 Features
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0.5
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maxkneez 0 0.1 maxs hank x pos

S2 ABD -Top 3 Features

4

Figure 7-9: The first two feature spaces of subject Si and S2. Shown are the top 3
features ordered by classification accuracy from X, Y, Z axes. Four out of five of the
features for S1 were from intrinsic sensors and three out of five were from intrinsic
sensors for S2.
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S3ABBD-Top 3 Features
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maxankle x pos 0.1 0.2 wavef orm right medial gestroc

S4ABBD-Top 3 Features
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Figure 7-10: The next set of feature spaces of subject S3 and S4. Shown are the top 3
features ordered by classification accuracy from X, Y, Z axes. Two out of six features
for S3 were from intrinsic sensors and three out of four features were from intrinsic
sensors.
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35 ABBd -Top 3
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0.8 . . - -- .0.4
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min ankle z pos 0.4 0 rms ankle x pos

Figure 7-11: The next set of feature spaces of subject S5. Shown are the top 3 features
ordered by classification accuracy from X, Y, Z axes. Three out of 4 features were
from intrinsic sensors with S5.
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Feature Space for Subject 6 accounting for 93 accuracy

0.4,

0.35,

0.3,

0.25 ,

0.2,

0.15,

0,

1.4 1.

max akle zmin ankle x

Tap 3Feetureseccountingfor94%accaucy
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0.005
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Figure 7-12: The final set of feature spaces for subjects S6 and S7. Four out of four
sensors were from intrinsic sensors with S6 and three out of four were from for S7.
The seven able-bodied subjects their associated feature spaces. Note that all the
feature spaces shown here do not represent 100% classification accuracy. However,
despite being below 100% there is already significant separation in most cases among
classes with only three features.
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Figure 7-13: Results for Subject 1 using sensors and
tions in the saggital plane.

Figure 7-14: Results for Subject 2 using sensors and
tions in the saggital plane.

measuring heights and transla-

measuring heights and transla-

108

Accuracy Feature Number Feature Type Source
0.513- 44 mean knee z
0.696 - 33 mean knee y
0.748- 21 min ankle z
0.836- 25 autoregressive coef 3 knee y
0.878- 37 rms knee z
0.921- 16 zcs ankle z
0.937- 11 mean ankle y
0.969- 20 max ankle z
0.977- 25 autoregressive coef 3 knee y
0.990- 40 waveform knee z

Accuracy Feature Number Feature Type Source
0.501- 43 min knee z
0.592- 10 min ankle y
0.744- 15 rms ankle z
0.865- 32 max knee y
0.920- 16 may ankle z
0.960- 37 rms knee z
0.955- 1 autoregessive coef 1 ankle y
0.965- 4 rms ankle y
0.976- 5 may ankle y
0.988- 26 rms knee y



Figure 7-15: Results for Subject 3 using sensors and
tions in the saggital plane.

measuring heights and transla-

Accuracy Feature Number Feature Type Source
0.484 11 mean ankle y
0.654 9 max ankle y
0.789 20 max ankle z
0.919 32 min knee y
0.949 29 may ankle z
0.971 21 min ankle z
0.985 26 rms knee y

Figure 7-16: Results for Subject 4 using sensors and measuring heights and transla-
tions in the saggital plane.
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Accuracy Feature Number Feature Type Source
0.446- 20 max ankle z
0.556- 4 rms ankle y
0.620- 31 max knee y
0.656- 9 max ankle y
0.734- 42 max ankle z
0.761- 1 autoregressive coef 1 ankle y
0.804- 15 rms ankle z
0.815- 16 may ankle z
0.829 - 5 may ankle z

0.842- 2 autoregressive coef 2 ankle y
0.838- 3 autoregressive coef 3 ankle y
0.859 - 11 mean ankle y
0.869- 25 autoregressive coef 3 knee y
0.889- 27 may knee y
0.904- 22 mean ankle z
0.911- 14 autoregressive coef 3 ankle z
0.920- 7 ssc ankle y
0.941- 44 mean knee z
0.950- 17 ssc ankle y
0.947- 6 zcs ankle y
0.959- 8 waveform ankle y



Accuracy Feature Number Feature Type Source
0.44 31 max knee y
0.571 9 max ankle y
0.603 20 max ankle z
0.659 5 may ankle y
0.743 33 mean knee y
0.809 4 rms ankle y
0.836 10 min ankle y
0.866 22 mean ankle z
0.895 43 min knee z
0.919 27 ssc knee y
0.931 40 waveform knee z
0.938 1 ar coef 1 ankle y
0.945 32 min knee y

Figure 7-17: Results for Subject 5 using sensors and measuring heights and transla-
tions in the saggital plane.

Accuracy Feature Number Feature Type Source
0.472 3 ar 3 ankle y
0.548 9 max ankle y
0.699 5 may ankle y
0.786 43 min knee z
0.843 26 rms knee y
0.902 10 min ankle y
0.933 17 may ankle z
0.952 34 ar 1 knee z

Figure 7-18: Results for Subject 6 using sensors and measuring heights and transla-
tions in the saggital plane.
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Figure 7-19: Results for the Subject 7
translations in the saggital plane.

using sensors and measuring heights and

111

Accuracy Feature Number Feature Type Source
0.55 20 max ankle y
0.64 41 waveform knee z
0.701 32 min knee y
0.74 14 ar 3 ankle z
0.773 28 may knee y
0.78 1 ar 1 ankle y
0.794 9 max ankle y
0.812 10 min ankle y
0.837 11 mean ankle y
0.86 15 rms ankle z
0.873 33 mean knee y
0.905 43 min knee z
0.915 36 ar 3 knee y
0.93 44 mean knee z
0.941 18 waveform ankle z
0.952 31 max knee y
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