
ARCHVES

Functional Signatures

by

Ioana Ivan

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2013

@ Massachusetts Institute of Technology 2013. All rights reserved.

A uthor
Department of Electrical Engineering and Computer Science

May 22, 2013

Certified by..-....
Shafria Gol wasser

RSA Professor of Electrical Engineering and Computer Science
Thesis Supervisor

A ccepted by
Leslie A. Kolodziejski, PrZfessw"6 Electrical Engineering

Chair of the Committee on Graduate Students

2

Functional Signatures

by

Ioana Ivan

Submitted to the Department of Electrical Engineering and Computer Science
on May 22, 2013, in partial fulfillment of the

requirements for the degree of
Masters of Science in Computer Science and Engineering

Abstract

In this thesis, we introduce the notion of functional signatures. In a functional sig-
nature scheme, in addition to a master signing key that can be used to sign any
message, there are signing keys for a function f, which allow one to sign any message
in the range of f. An immediate application of functional signature scheme is the
delegation by a master authority to a third party of the ability to sign a restricted
set of messages. We also show applications of functional signature in constructing
succinct non-interactive arguments and delegation schemes.

We give several constructions for this primitive, and describe the trade-offs be-
tween them in terms of the assumptions they require and the size of the signatures.

Thesis Supervisor: Shafrira Goldwasser
Title: RSA Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I would like to thank my advisor, Shafi Goldwasser for suggesting this problem, and

for all her advice and encouragement. I am very grateful to be her student and to

have the opportunity to learn from her.

This thesis is based on joint work with Elette Boyle. I want to thank her for many

stimulating discussions and for reviewing a draft of this thesis.

Finally, I'd like to thank my family and friends for their support.

5

6

Contents

1 Introduction

1.1 Summary of Our Results

1.2 Related W ork .

1.2.1 Functional Encryption

1.2.2 Connections to Obfuscation

1.2.3 Homomorphic Signatures

1.3 Overview of the Thesis

2 Preliminaries

2.1 Signature Schemes .

2.2 Non-Interactive Zero Knowledge

2.3 Succinct Non-Interactive Arguments (SNARGs)

2.4 Delegation Schemes .

3 Functional Signatures: Definition and Constructions

3.1 Formal Definiton .

3.2 Certificate-based construction

3.3 NIZK based construction

3.4 Construction based on SNARKS

4 Applications of Functional Signatures

4.1 SNARGs from Functional Signatures

4.2 Connection between functional signatures and delegation

7

9

. 11

. 13

. * 13

. 14

. 15

. 15

17

17

18

20

21

25

25

27

32

35

37

. . . . 37

. . . . 39

8

Chapter 1

Introduction

A digital signature scheme is a cryptographic primitive used for authenticating infor-

mation. A signature on a message gives the receiver a way to verify that the message

has been created by a proclaimed sender, and has not been modified by anyone else.

The sender has a secret key, used in the signing process, and there is a corresponding

verification key, which is public and can be used by the receiver to verify that a sig-

nature is valid. In [13], Goldwasser et al. formalized the generally adopted security

requirement we require a signature scheme to satisfy, unforgeability against chosen

message attack. Namely, an adversary that runs in probabilistic polynomial time and

is allowed to request signatures for a polynomial number of messages of his choice,

cannot produce a signature of any new message with non-negligible probability.

In this thesis, we introduce the notion of functional signatures. In a functional

signature scheme, in addition to a signing key that can be used to sign any message(the

master signing key), there are signing keys for a function f(called skf), which allow

one to sign any message in the range of f. These additional keys are derived from

the master signing key. The notion of security such a signature scheme should satisfy

is that any probabilistic polynomial time (PPT) adversary, who can request signing

keys for functions fi ... f, of his choice, and signatures for messages mi1 , ... mq of his

choice, can only produce a signature of a message m with non-negligible probability,

if m is equal to one of the messages m 1 , ... mq, or if m is in the range of one of the

functions fi ... fj

9

An immediate application of a functional signature scheme is the ability to dele-

gate the signing process from a master authority to another party. Suppose someone

wants to allow their assistant to sign on their behalf only those messages with a cer-

tain tag, such as "signed by the assistant". Let P be a predicate that outputs 1 on

messages with the proper tag, and 0 on all other messages. In order to delegate the

signing of this restricted set of messages, one would give the assistant a signing key

for the following function:

m if P(m) = 1

I otherwise

P could also be a predicate that checks if the message does not contain some phrases,

or if i i's related to a certain subject, or if it satisfies a more complex policy.

Another application of functional signatures is in certifiable computation. In this

setting, there is a client and a server who performs computations for the client. The

client gives out keys for a set of functions {fi}, and wants to test whether the response

from the server is indeed the output of one the {f}'s on an input. For a concrete

example, suppose we have a digital camera that produces signatures of the photos

taken with the camera, which can be used to prove that a photo has not been altered.

In this case, we might want to allow minor modifications, like changing the color

scale, but not allow more significant changes such as merging two photos or cropping

a picture. We can use functional signatures to solve this problem, by giving out

signing keys for the functions that capture the permissible modifications.

An additional property one might desire from a functional signature scheme is

function privacy: the signature should reveal neither the function f that the secret

key used in the signing process corresponds to, nor the message m that f was applied

to. For example, in the delegation of the signing algorithm context, the master

authority might not wish to reveal which set of messages the assistant is allowed to

sign. In the example with the signed photos, one might not wish to reveal the original

message, just that the final photographs was obtained by running one of the allowed

10

functions on some image taken with the camera.

1.1 Summary of Our Results

We provide three constructions of functional signatures with various tradeoffs in com-

putational assumptions and achieved security/efficiency.

Theorem 1 (Informal). Assuming the existence of one way functions, there exists a

functional signature scheme that supports signing keys for any function f computable

by a polynomial sized circuit. This scheme satisfies the unforgeability requirement for

functional signatures, but not function privacy.

Overview of the construction:

Assuming the existence of one way functions, Rompel constructs a signature scheme

that is existentially unforgeable under chosen message attack in [15].

In the setup algorithm for our functional signature scheme, we sample a key pair

(msk, mvk) for the standard signature scheme, and set the master signing key for the

functional signature scheme to be msk, and the master verification key to be mvk.

To generate a signing key for a function f, we sample a new signing and verification

key pair (sk', vk'), and sign the concatenation of f and vk', f vk' using msk. The

signing key for f consists of this certificate together with sk'. Given this signing key,

a user can sign any message m* = f(m) by signing m using sk', and outputting this

signature, together with the signature of f vk' under msk .

There are two aspects of this construction that could be improved: the scheme

doesn't satisfy function privacy, and the size of a signature output by the algorithm

Sign (skf, m) depends on the size of a circuit computing f. Ideally, we would want to

signature to only depend on the size of the output f (m) and the security parameter(or

just the security parameter), and to hide both f and m.

Theorem 2 (Informal). Assuming the existence of non-interactive zero knowledge ar-

guments of knowledge (NIZKPoK) for NP, there exists a functional signature scheme

that supports signing keys for any function f computable by a polynomial sized circuit.

11

This scheme satisfies both the unforgeability requirement for functional signatures and

function privacy. The size of the signature is still dependent on the size of f and m.

Overview of the construction:

A (NIZKPoK) argument system for an NP language L with corresponding relation

R, consists of a prover, P, and verifier V, that share a common reference string. The

prover, who has a witness w such that R(x, w) = 1, can output a proof that convinces

V that x E L. On the other hand, the soundness property guarantees that if x is

not in L, no polynomial time prover can output a proof that would make the verifier

accept with non-negligible probability. For our construction, we actually need our

proof system to be "proof of knowledge" which informally means that, if there exists

a prover that can convince the verifier that x E L, we can use this prover to extract

a witness w such that R(x, w) = 1. These requirements are formalized in Chapter 2.

The setup algorithm for the functional signature scheme is the same as in the

previous scheme: we sample a key pair (msk, mvk) for the standard signature scheme,

and set the master signing key for the functional signature scheme to be msk, and the

master verification key to be mvk.

In the key generation algorithm for a function f, we just output a signature of f

under mvk as the signing key skf.

To sign a message m* = f(m) using skf, we generate a NIZKPoK for the following

statement 3(o-, f, m) such that m* = f(m) and o- is a valid signature of f under mvk.

To verify the signature, we run the verification algorithm for the NIZKPoK proof

system.

While this signature satisfies both unforgeability and function privacy, that size

of a signature is still polynomial in the security parameter, Iml and Ifl. We improve

this parameter in the next construction.

Theorem 3 (Informal). Assuming the existence of succinct non interactive arguments

of knowledge (SNARKs) and NIZKPoK for NP languages, there exists a functional

signature scheme that supports signing keys for any function f computable by a poly-

nomial sized circuit. This scheme satisfies both the unforgeability requirement for

12

functional signatures and function privacy. The size of the signature only depends on

the security parameter and the size of f(m).

Overview of the construction:

A SNARK system for an NP language L with corresponding relation R is a proof

system where the size of a proof is sublinear in the size of the witness corresponding to

an instance. The running time of the verifier is required to be sublinear in the running

time of R. SNARK schemes have been constructed under various non-falsifiable

assumptions. For example, Bitansky et al. [3] construct SNARKs where the length

of the proof and the verifiers running time are bounded by a polynomial in the security

parameter, the size of the instance, and the logarithm of the time it takes to verify a

valid witness for the instance assuming the existence of extractable collision resistance

hash functions. More details are given in Chapter 2.

To get a functional signature scheme where the size of a signature is independent

of If I and |ml, we modify our NIZK-based construction as follows: instead of using a

NIZK argument of knowledge, we use a zero-knowledge SNARK.

1.2 Related Work

1.2.1 Functional Encryption

This work is inspired by recent results on the problem of functional encryption. In

the past few years there has been significant progress on the problem of functional

encryption([14], [11], [12]). In this setting, a center with access to a master secret key

can generate a secret key for any function f, which allows a third party who has this

secret key and an encryption of a message m to learn f(m), but nothing else about

m. In [11], Goldwasser et al. construct a functional encryption scheme that can

support general functions, where the ciphertext size grows with the maximum depth

of the functions for which keys are given. They improve this result is improved in a

follow up work([12]), which constructs a functional encryption scheme that supports

decryption keys for any Turing machine. Both constructions are secure according to

13

a simulation based definition, as long as a single key is given out. In [1], Agrawal

et al. show that constructing functional encryption schemes achieving this notion

of security in the presence of an unbounded number of secret keys is impossible for

general functions. In contrast, no such impossibility results are known in the setting

of functional signatures.

1.2.2 Connections to Obfuscation

The goal of program obfuscation is to construct a compiler 0 that takes as input a

program P and outputs a program O(P) that preserves the functionality of P, but

hides all other information about the original program. In [2] Barak et al. formalize

this, requiring that, for every adversary having access to an obfuscation of P that

outputs a single bit, there exists a simulator that only has blackbox access to P and

whose output is statistically close to the adversary's output:

Pr[A(O(P)) = 1] - Pr[S'(1 1 1) = 11 = neg(IPI)

[2] construct a class of programs and an adversary for which no simulator can

exist, therefore showing that this definition is not achievable for general functions.

Furthermore, in [10], Goldwasser and Kalai give evidence that several natural cryp-

tographic algorithms, including the signing algorithm of any unforgeable signature

scheme, are not obfuscatable with respect to this strong definition.

Consider the function Sign o f, where Sign is the signing algorithm of an unforge-

able signature scheme, f is an arbitrary function and o denotes function composition.

Based on the results in [10] we would expect this function not to be obfuscatable

according to the blackbox simulation definition. A meaningful relaxation of the defi-

nition is that, while having access to an obfuscation of this function might not hide

all information about the signing algorithm, it does not completely reveal the secret

key, and does not allow one to sign messages that are not in the range of f. In our

function signature scheme, the signing key corresponding to a function f achieves

exactly this definition of security, and we can think of it as an obfuscation of Sign o f

14

according to this relaxed definition.

1.2.3 Homomorphic Signatures

Another related problem is that of homomorphic signatures. In a homomorphic sig-

nature scheme, a user signs several messages with his secret key. A third party can

then perform arbitrary computations over the signed data, and obtain a new sig-

nature that authenticates the resulting message with respect to this computation.

In [8], Gennaro and Wichs construct homomorphic message authenticators, which

satisfy a weaker unforgeability notion than homomorphic signatures, in that the ver-

ification is done with respect to a secret key unknown to the adversary. They impose

an additional restriction on the adversary, who is not allowed to make verification

queries. For homomorphic signature schemes with public verification, the most gen-

eral construction of Boneh and Freeman([6]) only allows the evaluation of multivariate

polynomials on signed data.

Constructing homomorphic signature schemes for general functions remains an open

problem.

1.3 Overview of the Thesis

In Chapter 2, we describe several primitives which will be used in our constructions.

In Chapter 3, we give a formal definition of functional signature schemes, and present

three constructions satisfying the definition.

In Chapter 4, we show how to construct delegation schemes and succinct non-

interactive arguments (SNARGs) from functional signatures schemes.

15

16

Chapter 2

Preliminaries

In this chapter we define several cryptographic primitives that are used in our con-

structions of functional signatures.

2.1 Signature Schemes

Definition 4. A signature scheme for a message space M is a tuple (Gen, Sign, Verify):

" Gen(1k) --+ (sk, vk): the key generation algorithm is a probabilistic, polynomial-

time algorithm which takes as input a security parameter lk, and outputs a

signing and verification key pair (sk, vk).

" Sign (sk, m) -+ o-: the signing algorithm is a probabilistic polynomial time algo-

rithm which is given the signing key sk and a message m E M and outputs a

string o- which we call the signature of m.

" Verify(vk, m, o-) -4 {0, 1}: the verification algorithm is a polynomial time al-

gorithm which, given the verification key vk, a message m, and signature a,

returns 1 or 0 indicating whether the signature is valid.

A signature scheme should satisfy the following properties:

Correctness

Va E Sign(sk, m), Verify(vk, m, a) = 1

17

Unforgeability under chosen message attack

A signature scheme is unforgeable under chosen message attack if the winning proba-

bility of any probabilistic polynomial time adversary in the following game is negligible

in the security parameter:

" The challenger samples a signing, verification key pair (sk, vk) <- Gen(lk) and

gives vk to the adversary.

" The adversary requests a signature for message of his choice, and the challenger

responds with a signature. This is repeated a polynomial number of times.

Each query can be chosen adaptively, based on vk, and the signatures received

for the previous queries.

" The adversary outputs a signature o*, and wins if there exists a message m*

such that Verify(vk, m*, o-*) = 1, and the adversary has not previously received

a signature of m* from the challenger.

Lemma 5 ([15|). Under the assumption that one-way functions exist, there exists

a signature scheme which is secure against existential forgery under adaptive chosen

message attacks by polynomial-time algorithms.

2.2 Non-Interactive Zero Knowledge

Definition 6. [7, 4, 5]: H = (Gen, Prove, Verify, S = (Sr", SPoof)) is an efficient

adaptive NIZK proof system for a language L E NP with witness relation R if

Gen, Prove, Verify, S",SP *f are all PPT algorithms, and there exists a negligible

function y such that for all k the following three requirements hold.

" Completeness: For all x, w such that R(x, w) = 1, and for all strings crs <-

Gen(1k),

Verify(crs, x, Prove(x, w, crs)) = 1.

" Adaptive Soundness: For all adversaries A, if crs <- Gen(1k) is sampled

uniformly at random, then the probability that A(crs) will output a pair (x, 7r)

18

such that x g L and yet Verify(crs, x, 7r) = 1, is at most p(k).

* Adaptive Zero-Knowledge: For all PPT adversaries A,

Pr[ExpA(k) = 1] - Pr[ExpS (k) = 1] I p1 (k),

where the experiment ExpA(k) is defined by:

crs <- Gen(1k)

Return AProve(crs,,-) (crs)

and the experiment ExpS(k) is defined by:

(crs, trap) <- Sc(lk)

Return As'(cr,trap,.-)(crs),

where S'(crs, trap, x, w) = SProo'f (crs, trap, x).

We next define the notion of a NIZK proof of knowledge.

Definition 7. Let I = (Gen, Prove, Verify, S = (Scr SProf)) be an efficient adaptive

NIZK proof system for an NP language L E N P with a corresponding NP relation R.

We say that II is a proof-of-knowledge if there exists a PPT algorithm E = (E1, E2)

such that for every PPT adversary A,

I Pr[A(crs) = 1|crs <- Gen(1k)] Pr[A(crs) = 1|(crs, trap) <- E1 (1k)]| = negl(k),

and for every PPT adversary A,

Pr[A(crs) = (x, 7r) and E(crs, trap, x, r) = w* s.t. Verify(crs, x, 7r) = 1 and (x, w*) V R]

= negl(k),

where the probabilities are taken over (crs, trap) +- E1 (1k), and over the random coin

19

tosses of the extractor algorithm E2.

Remark. There is a standard way to convert any NIZK proof system 17 to a NIZK

proof-of-knowledge system H'. The idea is to append to the crs a public key pk

corresponding to any semantic secure encryption scheme. Thus, the common reference

string corresponding to l' is of the form crs' = (crs, pk). In order to prove that x E L

using a witness w, choose randomness r +- {,1 }poly(k), compute c = Encpk(w, r)

and compute a NIZK proof 7r, using the underlying NIZK proof system H, that

(pk, x, c) E L', where

L' {(pk, x, c) : 3(w, r) s.t. (x, w) E R and c = Encpk(w, r)}.

Let 7r' = (7r, c) be the proof.

The common reference string simulator E1 will generate a simulated crs' by gener-

ating (crs, trap) using the underlying simulator S", and by generating a public key pk

along with a corresponding secret key sk. Thus, trap' = (trap, sk). The extractor al-

gorithm E2 , will extract a witness for x from a proof 7r' = (7r, c) by using sk to decrypt

the ciphertext c.

Lemma 8 ([7]). Assuming the existence of enhanced trapdoor permutations, there

exists an efficient adaptive NIZK proof of knowledge for all languages in NP.

2.3 Succinct Non-Interactive Arguments (SNARGs)

Definition 9. H = (Gen, Prove, Verify) is a succinct non-interactive argument for a

language L E NP with witness relation R if it satisfies the following properties:

" Completeness: For all x, w such that R(x, w) = 1, and for all strings crs +-

Gen(1k),

Verify(crs, x, Prove(x, w, crs)) = 1.

" Adaptive Soundness: For all PPT adversaries A, if crs +- Gen(1k) is sampled

uniformly at random, then the probability that A(crs) will output a pair (x, 7r)

20

such that x 0 L and yet Verify(crs, x, 7r) = 1, is at most p(k).

9 Succinctness: The length of a proof is given by Iirl = poly(k) - o(|x + wI).

Definition 10. A SNARG I = (Gen, Prove, Verify) is a succinct non-interactive ar-

gument of knowledge(SNARK) for a language L E NP with witness relation R if it

also satisfies the following property: there exists a PPT algorithm E such that for

every PPT adversary A,

Pr[A(crs) = (x, 7r) and E(crs, trap, x, 7r) = w* s.t. Verify(crs, x, ir) = 1 and (x, w*) (R]

= negl(k).

There are several constructions of SNARKs known, all based on non-falsifiable

assumptions. A falsifiable assumption is an assumption that can be modeled as a

game between an efficient challenger and an adversary. Most standard cryptographic

assumptions are falsifiable. This includes both general assumptions like the existence

of OWFs, trapdoor predicates, and specific assumptions (discrete logarithm, RSA,

LWE, hardness of factoring).

For example, in [3] Bitansky et al. give a construction of SNARKs assuming the

existence of extractable collision-resistant hash functions

Lemma 11 ([3]). If there exist ECRHs and then there exist SNARKs for all languages

in NP.

In [9] Gentry and Wichs show that no construction of SNARGs can be proved

secure under a black-box reduction to a falsifiable assumption. A black-box reduction

is one that only uses oracle access to an attacker, and does not use that adversary's

code in any other way.

2.4 Delegation Schemes

A delegation scheme allows a client to outsource the evaluation of a function F to

a server, while allowing the client to verify the correctness of the computation. The

21

verification process should be more efficient than computing the function. We for-

malize these requirements below.

Definition 12. A delegation scheme for a function F consists of a tuple of algorithms

(KeyGen, Encode, Compute, Verify)

" KeyGen(1k, F) -+ (enc, evk, vk): The key generation algorithm takes as input a

security parameter k and a function F, and outputs a key enc that is used to

encode the input, an evaluation key evk that is used for the evaluation of the

function F, and a verification key vk that is used to verify that the output was

computed correctly.

" Encode(enc, x) -+ o-: The encoding algorithm uses the encoding key enc to

encode the function input x as a public value o-, which is given to the server

to compute with.

" Com pute(evk, o-) -+ (y, 7ry): Using the public evaluation key, evk and the en-

coded input ax, the server computes the function output y = F(x), and a proof

iry that y is the correct output.

" Verify(vk, x, y, 7ry) -+ {0, 1}: The verification algorithm checks the proof ry and

outputs 1(indicating that the proof is correct), or 0 otherwise.

We require a delegation scheme to satisfy the following requirements:

Correctness

For all vk, X, y, ry such that (y, Iry) <- Com pute(evk, o-), o-x <- Encode(enc, x), (enc, evk, vk) <-

KeyGen(1k, F),

Verify(vk, x, y,wr) = 1

Authentication

22

For all PPT adversaries, the probability that the adversary is successful in the fol-

lowing game is negligible:

" The challenger runs KeyGen(1', F) -+ (enc, evk, vk), and gives (evk, vk) to the

adversary.

" The adversary gets access to an encoding oracle, Oenc() = Encode(enc, -).

" The adversary is successful if it can produce a tuple (x, y, 7r.) such that y = F(x)

and Verify(vk, x, y,wr) = 1.

Efficient verification

Let T(n) be the running time of the verification algorithm on inputs of size n. Let

TF(n) be the running time of F on inputs of size n. We require the worst-case running

time of the verification algorithm to be sub linear in the worst case running time of

F,

T(n) E o(TF(n))

23

24

Chapter 3

Functional Signatures: Definition

and Constructions

3.1 Formal Definiton

We now give a formal definition of a functional signature scheme, and explain in

more detail the unforgeability and function privacy properties a functional signature

scheme satisfies.

Definition 13. A functional signature scheme for a message space M consists of

algorithms (FS.Setup, FS.KeyGen, FS.Sign, FS.Verify):

" FS.Setup(lk) - (msk, mvk): the setup algorithm takes as input the security

parameter and outputs the master signing key and master verification key.

" FS.KeyGen(msk, f) -4 ski: the KeyGen algorithm takes as input the master

signing key and a function f (represented as a circuit), and outputs a signing

key for f.

" FS.Sign(skf, m) -4 (f(m), o-): the signing algorithm takes as input the signing

key for a function f and an input m, and outputs f(m) and a signature of f(m).

" FS.Verify(mvk, m*, a) -* {0, 1}: the verification algorithm takes as input the

master verification key mvk, a message m and a signature a, and outputs 1 if

25

the signature is valid.

We require the following conditions to hold:

Corectness:

Vm, f, (msk, mvk) <- FS.Setup(lk), skf +- FS.KeyGen(msk, f), (m*, o) <- FS.Sign(skf, in),

FS.Verify(mvk, m*, o) = 1.

Unforgeability:

The scheme is unforgeable if the advantage of any PPT algorithm A in the following

game is negligible:

" The challenger generates (msk, mvk) +- FS.Setup(lk), and gives mvk to A

" The adversary is allowed to query a key generation oracle Okey(f) = FS.KeyGen(msk, f),
and a signing oracle Oig,(f, m) = FS.Sign(skf, m), where skf 4- FS.KeyGen(msk, f).

" The adversary wins if it can produce (m*, c-) such that

- FS.Verify(mvk, n*, o-) = 1.

- there does not exist m such that n* = f(n) for any f which was sent as

a query to the Okey oracle.

- there does not exist a (f, im) pair such that (f, im) was a query to the Osign

oracle and m* = f (m).

Function privacy:

The advantage of any PPT adversary in the following game is negligible:

" The adversary is given mvk and access to the Okey and Oign oracles, as in the

unforgeability game.

" After the query phase, the adversary chooses no, i 1 , fo, fi such that fo(mo) =

fi (mi) and sends them to the challenger.

26

" The challenger chooses b E {0, 1} and gives the adversary FS.Sign(skf,, mb),

where skfb +- FS.KeyGen(msk, fb).

" The adversary wins the game if he guesses the bit b correctly.

3.2 Certificate-based construction

In this section we give a construction of a functional signatures from a standard

signature scheme (i.e. existentially unforgeable under chosen message attack). Our

functional signature scheme satisfies the unforgeability property given in Definition

13, but not function privacy. Since we can build standard signature schemes based

on one-way functions (OWF) [15], this shows that we can also construct functional

signature schemes under the assumption that OWFs exist.

The main idea in this construction, is that, as part of the signing key for a function

f, the signer receives from the central authority a signature of f together with a new

verification key (under the master verification key).

We can think of this signature as a certificate proving that the signer has gotten

permission to sign messages that are in the range of f.

We describe the construction below:

Let (Sig.Setup, Sig.Sign, Sig.Verify) be a signature scheme that is existentially unforge-

able under chosen message attack. We construct as functional signature scheme

(FS1.Setup, FS1.KeyGen, FS1.Sign, FS1.Verify) as follows:

" FS1.Setup(1k):

- Sample a signing and verification key pair for the standard signature

scheme (msk, mvk) <- Sig.Setup(1k), and set the master signing key to

be msk, and the master verification key to be mvk.

" FS1.KeyGen(msk, f):

27

- choose a new signing and verification key pair for the original signature

scheme: (sk', vk') +- Sig.Setup(1k).

- using msk, compute -" <- Sig.Sign(msk, fIvk'), a signature of f concate-

nated with the new signing key vk'.

- create the certificate c = (f, vk', a").

- output skf = (sk', c).

" FS1.Sign(skf, m):

- parse skf as (sk', c), where sk' is a signing key for the existentially unforge-

able signature scheme, and c is a certificate as described in the KeyGen

algorithm.

- sign m using sk': Sig.Sign(sk', m) -+ o'.

- let o- = (m, c, -')

- output (f (m), or)

" FS1.Verify(mvk, m*, a):

- parse o- = (m, = = (f, vk', -"), o-') and check that:

1. m* = f(m).

2. Sig.Verify(vk', m, -') = 1: -' is a valid signature of m under the verifi-

cation key vk'.

3. Sig.Verify(mvk, vk'Ilf, o-") = 1: o-" is a valid signature of f vk' under

the verification key mvk.

While this construction is secure under very general assumptions(the existence of one

way functions), its efficiency can be greatly improved. The size of a <- FS.Sign(sk, m)

is proportional to the size of f + Im I plus the size of a signature of the standard

signature scheme. Ideally, we would want the signature size to be proportional to

|f(m) , instead of IfI +mI . The verification process is inefficient: the verifier has to

compute f(m) on its own, and, as mentioned before, we don't achieve any function

privacy guarantees.

28

Our next construction satisfies both unforgeability and function privacy, although

the size of a signature and the verification time are still not optimal.

Theorem 14. If the signature scheme (Sig.Setup, Sig.Sign, Sig.Verify) is existentially

unforgeable under chosen message attack, the functional signature scheme (FS1.Setup,

FS1.KeyGen, FS1.Sign, FS1.Verify) as specified above satisfies the unforgeability re-

quirement for functional signatures.

Proof. Suppose there exists an adversary AFS that makes at most Q(k) queries to the

Okey and Osign oracles, and wins the unforgeability game for functional signatures with

non-negligible probability, g, where P and Q are polynomials. We will use him to

construct an adversary Aig that breaks the underlaying signature scheme, which is

assumed to be secure against chosen message attack.

For AFS to wins the unforgeability game, it must produce a message signature pair,

(m*, o), where o = (m, (f, vk', "), o-') such that:

" o-' is a valid signature of m under the verification key vk'.

" o-" is a valid signature of f vk' under mvk.

* f(m) = m*.

" AFS has not sent the query Okey(f) to the signing key generation oracle for any

f that has m* in its range.

* AFS hasn't sent the query Osgn(f,ffi) to the signing oracle for any f, ii such

that f(rn) = m*

There are two ways AFS can produce a forgery:

* Type I forgery: AFS produces a signature o-" of (f vk') under mvk, for a

function f not queried from the Okey oracle.

" Type II forgery: AFS obtains Sig.Sign(msk, f vk'), and Sig.Sign(sk', m) as part

of a query O,;gn(f, M) to the signing oracle, and then forges Sig.Sign(sk', m'), for

a different message m'.

29

In the security game for the standard (existentially unforgeable under chosen message

attack) signature scheme, Aig is given the verification key vk, and access to a signing

oracle OReg,;g. He is considered to be successful in producing a forgery if he outputs a

valid signature for a message that was not queried from ORegig-

We now describe the constructed signature adversary, Aig. Aig interacts with AFS,

playing the role of the challenger in the security game for the functional signature

scheme. This means that Aig must simulate the Okey and 0 ,ign oracles. AFS flips a

coin b, indicating his guess for the type of forgery AFS will produce, and places his

challenge accordingly.

Case 1: b = 1: Aig guesses that AFS will produce a Type I forgery:

" first Aig gives vk to AFS as the master verification key.

" to answer a key generation query for a function f, A,;g generates a new key pair

for the regular signature scheme, (sk',vk') <- Sig.Setup(lk), forwards (f vk') to

its signing oracle, obtains a" <- ORegi(f vk') and returns skf = (sk', a") to AFS-

" to answer a signing query for (f, m), Asig chooses a new signing, verification

key pair (sk', vk), obtains a signature of f vkf from its signing oracle '" +-

OReg, j(fIvke), signs m using sk, himself, a' <- Sig.Sign(sk', m), and outputs

(f(m), -), where a = (m, c = (f, vk', '), a").

If Aig guessed correctly, eventually AFS will output a Type I forgery, which must

include a forgery with respect to to vk, and A,;g can use this forgery as its own forged

signature in the unforgeability game for the standard signature scheme.

Case 2: b = 0: Aig guesses that AFS will produce a Type II forgery:

* Aig generated a new key pair (msk, mathsfmvn) himself, and forwards mvk to

AFS.

30

" when AFS makes a Okey query for a function f, As;g generates a new key pair

(sk',vk') <- Sig.Setup(l), generates a signature o-" +- Sign(msk,fjvk') and

outputs skf = (sk', c = (f, vk', -")).

" to answer the signing queries for (f, m)

- Asig chooses a random i E [1, Q(k)] corresponding to the query in which he

will embed the challenge.

- for all signing queries other than the ith one, Asig chooses a new signing, ver-

ification key pair (sk', vk'), generates a signature o-' <- Sig.Sign(msk, f vk'),

and a signature o-' +- Sign(sk', m), and outputs - = (f(m), (m,c =

(f , vk', o-"/), o-'/).

- Asig plants his challenge verification key in the ith query. It queries its

oracle for a signature of m under vk, o-' +- OReg,.(m), computes a" -

Sig.Sign(msk, f vk)), and outputs (f(m), -), where o = (m, c = (f, vk, c-"), -').

Eventually, if Asig guessed correctly, AFs will output a forgery that Asig can use that

as its forgery in the unforgeability game for the regular signature scheme.

Aig is successful in the unforgeability game if:

* he guesses b correctly

" in the case that b = 0, he guesses the query i correctly

" AFS outputs a forgery

His success probability is therefore:

1 1 1 1

2 Q(k) P(k) 2Q(k)P(k)

This contradicts the unforgeability guarantee for the regular signature scheme, and

therefore, assuming the original signature scheme satisfied unforgeability, the func-

tional signature scheme in the construction above must also be unforgeable. 0

31

3.3 NIZK based construction

In order to get a functional signature scheme that also satisfies the function privacy re-

quirement, we modify the previous construction to use non-interactive zero-knowledge

proofs of knowledge (NIZKPoK). We remark that our construction hides the function

f, but it reveals the size of a circuit computing f.

Let Sig = (Sig.Setup, Sig.Sign, Sig.Verify) be a signature scheme that is existentially

unforgeable under chosen message attack. Let fl = (Gen,Prove,Verify,S = (Scr, SProof),

E = E1, E2) be an efficient adaptive NIZK proof of knowledge system for the following

NP language L:

X = (m*, mvk) E L if 3(f, m, o-) such that:

* f(m) = m*

* Sig.Verify(mvk, f, o-) = 1

Given the signature scheme Sig and the NIZKPOK II, we'll construct a functional

signature scheme (FS2.Setup, FS2.Keygen, FS2.Sign, FS2.Verify) as follows:

" FS2.Setup(1k):

- choose a new signing, verification key pair for the regular signature scheme

(sk, vk) <- Sig.Setup(lk).

- choose a new crs for the NIZKPOK, crs <- I.Gen(1k).

- set the master secret key msk = vk, and the master verification key mvk =

(vk, crs).

" FS2.KeyGen(msk, f):

- create a certificate consisting of f, and a signature of f under the master

verification key: c = (f, Sig.Sign(msk, f)).

- output skf = c

32

* FS2.Sign(skf, m):

- let 7r = fl.Prove((f (m), mvk), (f, m, ski), crs) be a NIZKPOK that f ((m), mvk) E

L, where L is defined as above. Informally, 7r is a proof that the signer

knows a pair (f, m) such that f(m) = m*, and also knows a signature of

f under the master verification key.

- output (m* = f (m), - = wr)

* FS2.Verify(mvk, m*, o-):

- output fl.Verify(crs, m*, o-): verify that - is a valid proof of knowledge of

a pair (f, m) such that f(m) = m* , and a signature of f under the master

verification key.

Theorem 15. If the signature scheme (Sig.Setup, Sig.Sign, Sig.Verify) is existentially

unforgeable under chosen message attack, and fl = (Gen,Prove,VerifyS = (S,,, SPr*f),

E = E1 , E2) is a non-interactive zero knowledge proof of knowledge, the functional

signature scheme (FS2.Setup, FS2.KeyGen, FS2.Sign, FS2.Verify) as specified above

satisfies both the unforgeability requirement and the function privacy requirement for

functional signatures.

Proof. Proof of unforgeability

Suppose there exists an adversary AFS that produces a forgery in the functional sig-

nature scheme with non-negligible probability. Assuming the NIZKPOK system H

satisfies the extraction requirement in Definition 7, we show how to construct an

adversary Aig that produces a forgery in the underlying signature scheme.

In the security game for the standard (existentially unforgeable under chosen

message attack) signature scheme, Aig is given the verification key vk, and access to

a signing oracle ORegig- He is considered to be successful in producing a forgery if he

outputs a valid signature for a message that was not queried from ORei-

Aig interacts with AFS, playing the role of the challenger in the security game

for the functional signature scheme. Aig generates (crs, trap) +- Sos(1k), a simulated

crs for the NIZKPoK, together with a trapdoor, and forwards (vk, crs) as the master

33

verification key in the functional signature scheme to AFS.

Note that by the perfect extraction property, we can guaranteed that the probability

of AFS producing a forgery when given the simulated crs can only decrease by a

negligible amount.

AFS makes two types of queries:

" Okey(f), which Asig answers by forwarding f to its signing oracle.

" O,;gn(f, m), in which case Aig forwards to the signing oracle the function f',
which is the constant function that outputs f(m) on any input, and receives a

signature - <- ORegg(f) - It then outputs 7r +- H.Prove((f(m)mvk), (f', f(m), o-), crs)

as its signature of f(m). Note that this signature is generated differently than

in FS.Sign algorithm, but, because of the zero knowledge property of the proof

system H, we can guaranteed that the probability of AFS producing a forgery

can only decrease by a negligible amount.

After quering the oracles, AFS will output a proof 7r* that (m*, vk) E L for an m* such

that:

* there is no f that was a query to Okey such that m* = f(m) for some m.

o there is no (f, m) tuple that was a query to Oign such that m* = f(m)

Aig can run E2 (crs,trap, (m*,vk),7r) to recover a witness w = (f,m,o-) such that

m* = f (m) and Sig.Verify(vk, f, a-) = 1.

Aig can use o as a forgery in the unforgettability game for the regular signature

scheme.

Proof of function privacy

For an adversary to win the function privacy game, it must be able to distinguish be-

tween 7ri - 11.Prove((m, mvk), (fi, i 1, -1), crs) and 7r2 +- U.Prove((m, mvk), (f2, m 2, C-2), crs),

where m = fi(mi) = f 2 (m 2) and ais a valid signature of fi, and o-2 is a valid signa-

ture of f2.

34

This adversary can break the zero-knowledge property of the proof system, since

it can distinguish between proofs generated using different witnesses.

3.4 Construction based on SNARKS

In this section, we discuss a functional signature scheme that is secure under less

standard assumptions, but greatly improves some parameters of the previous two

schemes: the size of a signature and the running time of the verification algorithm

are now polynomial in the security parameter and If(m) 1, instead of I+f 1. Our

construction is based on SNARKs.

Theorem 16 ([3]). If there exist SNARKs, there exist zero-knowledge SNARKs.

Let (FS3.Setup, FS3.Keygen, FS3.Sign, FS3.Verify) be a functional signature scheme

which is identical to our previous construction FS2, except that we use a zero knowl-

edge SNARK n' system instead of the NIZKPoK n.

Theorem 17. If (Sig.Setup, Sig.Sign, Sig. Verify) is an existentially unforgeable sig-

nature scheme, and n' is a SNARK, our new functional signature construction (FS3.Setup,

FS3.Keygen, FS3.Sign, FS3.Verify) satisfies both unforgeability and function privacy.

We can use the proof from the previous section, since a zero-knowledge SNARK

and a NIZK satisfy the same zero-kowledge and extractability properties that are used

in the proof. The only difference is that a SNARK has a more efficient verification

algorithm, and shorter proofs, while a NIZK can be constructed under more general

assumptions.

35

36

Chapter 4

Applications of Functional

Signatures

In this section we discuss applications of functional signatures to other cryptographic

problems, such as constructing delegation scheme and succinct non-interactive argu-

ments.

4.1 SNARGs from Functional Signatures

Recall that in a SNARG protocol for a language L, there is a verifier V, and a prover P

who is supposed to convince the verifier that an input x is in L. We require the proofs

produced by prover to be sublinear in the size of the input plus the size of the witness.

We show how to use a functional signature that supports key for any function f,
and has short signatures (i.e of size poly(k) - o(If(m)I + Iml)) can be used to con-

struct a SNARG scheme with preprocessing for any language L E NP with proof size

poly(k) - o(l|+jxl), where w is the witness and x is the instance.

Let L be an NP complete language, and R the corresponding relation. The main idea

in the construction is for the verifier to give out a single signing key for a function

whose range consists of exactly those strings that are in L. Then, with skf, the prover

37

will be able to sign only those messages that are in the language L and uses that as

his proof. The proof is succinct and publicly verifiable. The construction is as follows:

" f.Gen(lk):

- run the setup for the functional signature scheme, and get (mvk, msk) +-

FE.Setup(lk)

- generate a signing key skf +- FS.KeyGen(msk, f) where f is the following

function:

Sxif R(x, w) = 1
f(xlw) :

_ otherwise

- output crs = (mvk, skf)

" n.Prove(x, w, crs)

- output FS.Sign(skf, xjw)

" n.Verify(crs, x, 7r)

- output FS.Verify(mvk, x, 7r)

Theorem 18. If (FE.Setup, fl.Prove, FS.Sign, FS.Verify) is a functional signature scheme,

(n.Gen, n.Prove, n.Verify) is a succinct argument of knowledge.

Correctness

The correctness property of the SNARG follows immediately from correctness prop-

erty of the functional signature scheme.

Soundness

The soundness of the proof system follows from the unforgeability property of the

signature scheme: since the prover is not given keys for any function except f, he can

only sign messages that are in the range of f, and therefore in L.

Succinctness

The size of a proof is equal to the size of a signature in the functional signature

38

scheme, poly(k) -o(If(m)+ Iml) = poly(k) -o(lxl + |Il).

We remark that Gentry and Wichs show in [9] that SNARG schemes with proof size

o(wI + lx) can not be obtained using black-box reductions to falsifiable assumptions,

and therefore, in order to obtain a functional signature scheme with signature size

o(If(m)I+ ml) we must either rely on non-falsifiable assumptions (as in our SNARK

construction) or make use of non blackbox techniques.

4.2 Connection between functional signatures and

delegation

Recall that a delegation scheme allows a client to outsource the evaluation of a func-

tion f to a server, while allowing the client to verify the correctness of the computa-

tion. The verification process should be more efficient than computing the function.

Given a functional signature scheme with with signature size 6(k), and verification

time t(k) we can get a delegation scheme in the preprocessing model with proof size

6(k) and verification time t(k).

We construct a delegation scheme as follows:

" KeyGen(1kf):

- run the setup for the functional signature scheme and generate (mvm, msk) <-

FS.Setup(1k).

- let f'(x) = (x, f (x)), and get a signing key for f', skf, 4- FS.KeyGen(msk, f').

- output enc = I, evk = skf,, vk = mvk.

" Encode(enc, x) = x : no processing needs to be done on the input.

" Com pute(evk, oX):

- let skf, = evk, x = o

- get a signature of (x, f(x)), o- <- FS.Sign(skf,, x)

- output (f(), 7r =)

39

* Verify(vk, x, y, ry):

- output FS.Verify(vk, y, 7r,)

Theorem 19. If (FE.Setup, n.Prove, FS.Sign, FS.Verify) is a functional signature scheme,

(KeyGen, Encode, Compute, Verify) is a delegation scheme.

Correctness

The correctness of the delegation scheme follows from the correctness of the func-

tional signature scheme.

Authenticity

By the unforgeability property of the functional signature scheme, the server will only

be able to produce a signature of (x, y) that is in the range of f', that is if y = f(x).

So the server won't be able to sign a pair (x, y) with non-negligible probability, unless,

y = f(x).

40

Bibliography

[1] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee.
Functional encryption: New perspectives and lower bounds. In CRYPTO, 2013.

[2] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs.
In CRYPTO, pages 1-18, 2001.

[3] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From ex-
tractable collision resistance to succinct non-interactive arguments of knowledge,
and back again. In ITCS, pages 326-349, 2012.

[4] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge
and its applications (extended abstract). In STOC, pages 103-112, 1988.

[5] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Nonin-
teractive zero-knowledge. SIAM J. Comput., 20(6):1084-1118, 1991.

[6] Dan Boneh and David Mandell Freeman. Homomorphic signatures for polyno-
mial functions. In EUROCRYPT, pages 149-168, 2011.

[7] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowl-
edge proofs based on a single random string (extended abstract). In FOCS, pages
308-317, 1990.

[8] Rosario Gennaro and Daniel Wichs. Fully homomorphic message authenticators.
IACR Cryptology ePrint Archive, 2012:290, 2012.

[9] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments
from all falsifiable assumptions. In STOC, pages 99-108, 2011.

[10] Shafi Goldwasser and Yael Tauman Kalai. On the impossibility of obfuscation
with auxiliary input. In FOCS, pages 553-562, 2005.

[11] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan,
and Nickolai Zeldovich. Succinct functional encryption and applications:
Reusable garbled circuits and beyond. IA CR Cryptology ePrint Archive,
2012:733, 2012.

41

[121 Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan,
and Nickolai Zeldovich. Overcoming the worst-case curse for cryptographic con-
structions. In CRYPTO, 2013.

[13] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281-
308, 1988.

[14] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryp-
tion with bounded collusions via multi-party computation. In CRYPTO, pages
162-179, 2012.

[15] John Rompel. One-way functions are necessary and sufficient for secure signa-
tures. In STOC, pages 387-394, 1990.

42

