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Abstract
Magnetic resonance imaging (MRI) is a medical imaging technique that is used to obtain
images of soft tissue throughout the body. Since its development in the 1970s, MRI has
gained tremendous importance in clinical practice because it can produce high quality
images of diagnostic value in an ever expanding range of applications from neuroimaging
to body imaging to cancer.

By far the dominant signal source in MRI is hydrogen nuclei in water. The
presence of water at high concentration (-50M) in body tissue, combined with signal
contrast modulation induced by the local environment of water molecules, accounts for
the success of MRI as a medical imaging modality. As opposed to conventional MRI,
which derives its signal from the water component, magnetic resonance spectroscopy
(MRS) acquires the magnetic resonance signal from other chemical components, most
frequently various metabolites in the brain, but also signals from tumors in breast and
prostate. The spectroscopic signal arises from low concentration (-1 - 10mM) compounds,
but in spite of the challenges posed by the resulting low signal-to-noise ratio (SNR), the
development of MRS is motivated by the desire to directly observe signal sources other
than water. The combination of MRS with spatial encoding is called magnetic resonance
spectroscopic imaging (MRSI). MRSI captures not only the relative intensities of
metabolite signals at each voxel, but also their spatial distributions.
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While MRSI has been proven to be clinically useful, it suffers from fundamental
tradeoffs due to the inherently low SNR, such as long acquisition time and low spatial
resolution. In this thesis, techniques that combine benefits from both model-based
reconstruction methods and regularized reconstructions with prior knowledge are
proposed and demonstrated for MRSI. These methods address constraints on acquisition
time in MRSI by undersampling data during acquisition in combination with improved
image reconstruction methods.

Thesis Supervisor: Elfar Adalsteinsson

Title: Associate Professor of Electrical Engineering and Computer Science

Associate Professor of Institute of Medical Engineering and Science
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Chapter 1

Magnetic Resonance Spectroscopic
Imaging

By far the dominant signal source in MRI is hydrogen nuclei in water. The presence of

water at high concentration (-50M) in body tissue, combined with signal contrast

modulation induced by the local environment of water molecules, accounts for the

success of MRI as a medical imaging modality. As opposed to conventional MRI, which

derives its signal from the water component, magnetic resonance spectroscopy (MRS)

acquires the magnetic resonance signal from other chemical components, most frequently

various metabolites in the brain, but also signals from tumors in breast and prostate. The

spectroscopic signal arises from low concentration (-1-10mM) compounds, but in spite

of the challenges posed by the resulting low signal-to-noise ratio (SNR), the development

of MRS is motivated by the desire to directly observe signal sources other than water.

In most MRS brain applications, the primary metabolites include N-acetyl

aspartate (NAA) - a marker of neuronal density, creatine (Cr) - an energy supplier to all

cells in the body, choline (Cho) - a water-soluble necessary nutrient for basic functions of

memory and muscular system, and lactate - an end product of anaerobic metabolism [1,

2]. The magnetic resonance signal acquired from a particular chemical component can be

distinguished from that obtained from other components because of consequences of the

chemical shift phenomenon, which is explained in detail in the following subsection.

With MRS, the information about cellular activities could be inferred in addition to the

structural information obtained from the conventional MRI.
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The combination of MRS with spatial encoding is called magnetic resonance

spectroscopic imaging (MRSI). MRSI captures not only the relative intensities of

metabolite signals at each voxel, but also their spatial distributions (metabolite maps).

Irregular changes of the metabolite concentration in specific brain regions can be used to

indicate specific physiological abnormalities. For instance, a dramatic reduction in NAA

concentration in the specific brain regions is a precursor of many neurodegenerative

diseases such as X-linked adrenoleukodystrophy (X-ALD) [3], multiple sclerosis (MS)

[4, 5], and Alzheimer's disease [6, 7]. A creatine deficiency is an indicator of brain

tumors such as gliomas, astrocytomas, and meningiomas [8]. An elevation of choline is

related to acute demyelination diseases and a certain type of brain tumor [9, 10]. An

increased lactate level indicates an abnormal metabolism [2, 11].

This chapter introduces basic concepts of magnetic resonance spectroscopic

imaging (MRSI), which consist of a chemical shift, J-coupling, a magnetic field

inhomogeneity, water and lipid resonances, noise in MRI, and a signal-to-noise ratio

(SNR). Then, a conventional MRSI acquisition is briefly described. Finally, a brief

description of the problem statement and the organization of this thesis with

bibliographical contributions are presented at the end of this chapter.

1.1 Introduction to Magnetic Resonance Spectroscopic

Imaging (MRSI)

1.1.1 Chemical Shift

In nuclear magnetic resonance (NMR) spectroscopy, the chemical shift is defined as a

small displacement of the resonant frequency of a nucleus caused by an electron

shielding. Although a heterogeneous object is placed in the homogenous main magnetic

field (BO), all nuclei do not experience the same field strength because of the shielding

effect created by the orbital motion of the surrounding electrons in response to the

applied BO field [2, 12]. In fact, shielding electrons act to shield the valence electrons

from the force of attraction exerted by any applied magnetic field, thus different nuclei in

that object experience different amounts of shielding. The effective field (Beff)

experienced by a particular nucleus can be expressed as
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Beff = BO(1 - a) (1-1)

where a represents the shielding constant, which is dependent on the chemical

environment. It follows from the Larmor relationship that

Weff = yBefr

= yBO(1 - a)

= WO(1 - a)

= (O - OO (1-2)

where y is the gyromagnetic ratio, and aoo is the displacement of the resonant

frequency, which is directly proportional to the BO field. The chemical shift S is usually

expressed in parts per million (ppm) to accentuate the comparison of results. Let Wref

and w, be the reference frequency and the resonant frequency of a specific sample,

respectively. The chemical shift can be computed as

s - Wref
=X x106

(Oref

O o(1 - Us) - &o(1 - Uref) X 106

o (1 - Oref)

Orref -s 6

1 - Uref

(Urer - Us) x 106 (1-3)

where the approximation is acceptable because Oref « 1-

Both Equation (1-2) and (1-3) explain why the NMR spectrum obtained from the

MRI scanner shows peaks at different frequencies instead of a single peak at exactly one

frequency. Figure 1-1 shows the effect of the chemical shift phenomenon on the synthetic

IH NMR spectrum of the acetic acid (CH 3COOH). The chemical shift axis in the NMR

spectroscopy is shown in the ppm unit, and the frequency axis is flipped due to historical

reasons. Specifically, the frequency decreases from left to right. There are two peaks at

two different frequencies because the single proton in the carboxyl group (-COOH)

experiences a different chemical shift than the protons in the methyl group (-CH3).

Specifically, the valency of the oxygen atoms in the carboxyl group leads to less
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shielding for the single proton in this group compared to the protons in the carbonyl

group. With less shielding, the resonant frequency deviates more from the reference

frequency at 0 ppm than that of the protons in the carbonyl group. It can also be seen that

the area under the carboxyl peak is approximately three times lower than the area under

the methyl peak because the area under each peak positively correlates with the number

of nuclei resonating at this specific frequency.

1.1.2 J-Coupling

Not only the chemical shifts due to electron shielding effects, but also an indirect dipole-

dipole coupling or J-coupling have a major impact on the appearance of the NMR

spectrum. Interactions between nuclei, which are physically close to one another, lead to

peak-splitting or line-splitting in the NMR spectrum [2, 13]. Figure 1-2 shows the effect

of J-coupling on the synthetic 1H NMR spectrum of lactate. The single proton in the

-CH group couples with each of the three methyl protons resulting in the peak-splitting

into four peaks. Similarly, the signal corresponding to the methyl protons is split into two

peaks due to an interaction between the methyl protons and the single proton in the -CH

group.

1.1.3 Magnetic Field Inhomogeneity

The magnetic field inhomogeneity affects the NMR spectrum by not only shifting all

peaks along the frequency axis by approximately the same amount, but also modifying a

spectral linewidth of each peak, a width at half maximum. Specifically, the magnetic field

inhomogeneity leads to dephasing of the time signal called free induction decay (FID).

The dephasing of the FID results in an increase in the spectral linewidth. In practice, the

maximum acceptable spectral linewidth for quantifiable MRSI data is equal to 0.1 ppm

[14]. Consequently, the magnetic resonance signal from particular anatomical regions

with strong magnetic field inhomogeneity such as tissue-bone and tissue-air boundaries is

not collected in some quantification MRSI experiments.
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1.1.4 Water and Lipid Resonances

In 'H-MRSI, water and lipid produce a much larger signal than that from target

metabolites. With the magnetic field inhomogeneity, the artifacts arose from water

components could contaminate metabolite signals. To mitigate such artifacts, water

suppression techniques such as frequency selective RF pulses are adopted [14]. In

addition to water artifacts, artifacts from the lipid signal due to a point spread function

(PSF) further contaminate metabolite signals. In practice, it is not possible to achieve an

infinite sampling extent of k-space, where k represents a spatial-frequency variable,

because spatial resolution is constrained by the total acquisition time and low signal-to-

noise ratio (SNR) of the metabolite signals [15]. Such the finite sampling extent can

create Gibb's ringing artifacts from truncation in the spatial-frequency domain. In 1H-

MRSI, lipid components in subcutaneous tissues, which produce a signal that are as much

as 1000 times stronger than metabolite signals, bleed into nearby voxels contaminating

the desired metabolite signals. To achieve higher quality of MRSI data, various lipid

suppression techniques, which aim to attenuate truncation artifacts arose from lipid

components, have been proposed such as the inversion recovery [16, 17], the outer-

volume suppression (OVS) [18, 19], the selective brain-only excitation [20, 21], and the

combination between the dual-density sampling and the lipid-basis orthogonality [15].

1.1.5 Noise Sources and Signal-to-Noise Ratio

There are various main sources of noise in MRI that affect imaging quality. They consist

of the body noise, the noise of the receiver electronics, and thermal noise of the coil. The

dominating source of noise is due to thermal fluctuations of electrolytes in the body (i.e.,

the body noise). The noise is typically characterized as being additive, Gaussian

distributed, and white [12]. The resulting image quality is measured by the signal-to-

noise ratio (SNR). While SNR is typically defined as the ratio between the signal power

and the noise power in statistical communication community, it is defined differently in

the MR community as

SNR A signal amplitude (1-4)
Unoise
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where anoise is the standard deviation of the noise. Because the magnetic resonance

signal from metabolites has much lower signal strength than that from the water

component, noise greatly affects the resulting image quality in MRSI. Consequently, it is

desirable to achieve high SNR in order to avoid the metabolites from being buried in

noise, which leads to an improvement in the MRSI reconstruction. One way to increase

SNR is to increase the acquisition time (e.g., to acquire multiple averages) and use a

larger voxel size.

1.1.6 Example of MRSI data

As opposed to the conventional MRI that focuses on contributions from the water

component, magnetic resonance spectroscopy aims to acquire the magnetic resonance

signal from metabolites. For single voxel MRS (SV-MRS), the magnetic resonance signal

at a specific spatial location is acquired over a certain period of time and yields a

spectrum with multiple peaks at different frequencies due to the effects of the chemical

shift phenomenon, J-coupling, and other complications. Figure 1-3 shows a noise-free,

lipid-free, water-suppressed synthetic spectrum with signal components from compounds

observed in human brain tissues.

As an extension of SV-MRS, magnetic resonance spectroscopic imaging (also

known as multi-voxel spectroscopy) has been developed and widely used in many

clinical applications especially in the study of in vivo metabolism. MRSI captures not

only the relative intensities of metabolite signals at each voxel, but also their spatial

distributions. Figure 1-4 shows NAA, Cr, and Cho maps that were extracted from the

MRSI data acquired fully-sampled at 1.5 Tesla with a total scan time of 15:20 minutes

and a resolution of 1.1 cc. The water resonance was suppressed using spin-echo spectral-

spatial pulses. Inversion recovery with an inversion time of 170 milliseconds was used to

suppress lipid components. The magnitude of each pixel in these metabolite maps is

computed by summing the absolute value of the spectrum over the frequency range of the

metabolite of interest. Figure 1-5 shows a spectroscopic image obtained by summing the

absolute value of the spectra over the whole frequency range, and the corresponding

spectra from the voxels within the black box. These maps and spectra were extracted

from the same data set as those in Figure 1-4.
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Figure 1-1: The effect of the chemical shift phenomenon without J-coupling on the

synthetic 1H NMR spectrum of acetic acid (CH 3COOH). The single proton in the

carboxyl group (-COOH) experiences a different chemical shift than the protons in the

methyl group (-CH3) due to the different chemical environment [12].
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Figure 1-2: The effect of J-coupling on a synthetic 'H NMR magnitude spectrum of

lactate that was acquired at three Tesla. The durations of the acquisition window were

equal to 0.25 seconds (red) and 7.77 seconds (blue) with the bandwidth of 3.003 kHz.
The single proton in the -CH group couples with each of the three methyl protons

resulting in the peak-splitting into four peaks. Similarly, the signal corresponding to the
methyl protons is split into two peaks due to interaction between the methyl protons and

the single proton in the -CH group.
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Figure 1-3: A noise-free, lipid-free, water-suppressed synthetic spectrum with signal

components from compounds observed in human brain tissues. This data set was

acquired at three Tesla. The durations of the acquisition window were equal to 0.25
seconds (red) and 7.77 seconds (blue) with the bandwidth of 3.003 kHz.

Figure 1-4: NAA map (left), Cr map (middle), and Cho map (right) that were extracted

from the in vivo MRSI data acquired fully-sampled at 1.5 Tesla.
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Figure 1-5: Spectroscopic image obtained by summing the absolute value of the spectra
over the whole frequency range (top), and the corresponding spectra from the voxels
within the black box (bottom) of the in vivo MRSI data acquired fully-sampled at 1.5
Tesla.
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1.2 Conventional Magnetic Resonance Spectroscopic Imaging
Acquisition

While magnetic resonance spectroscopic imaging has been proven to be clinically useful

[5, 10, 22-25], it suffers from fundamental tradeoffs due to the inherently low SNR, such

as the long acquisition time and low spatial resolution. Since MRSI acquires a time

dimension(s) in addition to the three dimensions normally acquired in the conventional

MRI, the acquisition time is greatly increased. Moreover, multiple averages are normally

acquired in order to increase the SNR to an acceptable range, which further increases the

acquisition time.

The conventional procedure to acquire the MRSI data is to move to a specific

(kx, ky, kz) location and collect the magnetic resonance signal at that location over a

certain period of time. Then, the same procedure is repeated at different locations until

the resolution and field-of-view (FOV) requirements are satisfied. This method allows

acquisition only at a specific (kx, ky, kz) location for each repetition time (TR). By

staying at only one (kx, ky, kz) location for each excitation, an analog to digital converter

(ADC) oversamples the data. Thus, the acquisition process can be sped up by getting time

samples at more than one spatial location during a single TR period, while satisfying the

Nyquist constraint. The spiral-based k-space traversal is one of the most efficient ways to

perform such a task [1, 26].
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1.3 Problem Statement and Outline with Bibliographical Notes

1.3.1 Problem Statement

Even with the spiral trajectory, the acquisition time is still considerably long in practice.

In this work, two model-based reconstruction methods are proposed to not only further

reduce the acquisition time, but also provide an improvement in the reconstruction

quality compared to that of existing methods. With parametric modeling, only a few

parameters are needed to describe the underlying data. Thus, an undersampling of the k-

space data becomes possible. By undersampling the k-space data, both aliasing and

undersampling artifacts are introduced to the data in the object domain, which corrupts

the observed data. With the presence of such artifacts, the conventional reconstruction

methods, such as methods that seek for a minimum-norm solution, lead to an inaccurate

reconstruction. In order to improve the reconstruction accuracy, the proposed methods

incorporate prior information into the reconstruction process. With fewer parameters to

estimate, the reconstruction process becomes more robust.

1.3.2 Thesis Outline

The detailed structure of this thesis is as follows. Chapter 2 is a review of a regularized

optimization. It presents a canonical least-squares problem and an unconstrained penalty

function approximation problem. In addition, effects of various penalty functions on the

solution of the penalty function approximation problem are illustrated. Toward the end of

the chapter, a few examples of the unconstrained penalty function approximation problem

formulation for various applications including magnetic resonance spectroscopic imaging

are presented.

Chapter 3 reviews a mathematical model for a typical magnetic resonance

spectroscopic imaging spectrum. It then describes the proposed reconstruction procedure

under this mathematical model in detail. We demonstrated on the experimental data

obtained from a healthy human subject that the proposed method yields the more accurate

reconstruction compared to that of the conventional least-squares method.
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Chapter 4 reviews a conventional mathematical model and presents an alternative

mathematical model of metabolite maps. The relationship between these two models is

then explained. Next, the reconstruction procedure is described in detail. Finally, the

performance of the proposed method is compared to that of the conventional method on

two data sets, which consist of a numerical magnetic resonance spectroscopic imaging

phantom and in vivo acquisitions, using the root-mean-square error as a criterion.

1.3.3 Bibliographical Notes

The contents of Chapter 3 appear in:

* I. Chatnuntawech, B. Bilgic, E. Adalsteinsson. Undersampled Spectroscopic

Imaging with Model-based Reconstruction. International Society for Magnetic

Resonance in Medicine 21st Scientific Meeting, Salt Lake City, Utah, USA, 2013.

The contents of Chapter 4 appear in:

* I. Chatnuntawech, B. Bilgic, B.A. Gagoski, T. Kok, A.P. Fan, E.

Adalsteinsson. Metabolite Map Estimation from Undersampled Spectroscopic

Imaging Data using N-Compartment Model. International Society for Magnetic

Resonance in Medicine 21st Scientific Meeting, Salt Lake City, Utah, USA, 2013.
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Chapter 2

Regularized Reconstruction

Under certain conditions, a signal can completely be characterized and recoverable from

its samples equally spaced in the same domain. Specifically, if a bandlimited signal is

uniformly sampled above the Nyquist rate, the perfect reconstruction of such a signal is

guaranteed [27]. However, if a signal is sampled at or below the Nyquist rate and/or

nonuniformly sampled, it becomes much harder to achieve a highly accurate

reconstruction without any prior information. One way to improve the reconstruction

accuracy is to incorporate prior knowledge of the data into the reconstruction process.

In magnetic resonance imaging, the data is typically acquired below the Nyquist

rate because of limitations on both physical and physiological constraints. Consequently,

aliasing and undersampling artifacts distort the underlying data and greatly reduce the

reconstruction quality. In order to mitigate such contaminations, reconstruction methods

that exploit prior knowledge of the data have been proposed. Popular prior knowledge

exploited by the compressed sensing community is sparsity [25].

In this chapter, mathematical definitions of norm, sparsity, and compressibility

are presented. Using these definitions, a canonical least-squares problem and an

unconstrained penalty function approximation problem are described. The effects of

various penalty functions on the solution of the penalty function approximation problem

are also illustrated. This chapter concludes with a few examples of the unconstrained

penalty function approximation problem setup for various applications including

magnetic resonance spectroscopic imaging.
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2.1 Norm, Sparsity, and Compressibility

Definition 2.1.1. A norm, denoted by a symbol ||.||, is defined as a function that maps an

element in a vector space V over a field F to a nonnegative real number with the

following properties [28, 29]:

For all a E F and all x,y G V,

1. ||axI = |al|Ixi|

2. l|x + y|| lix|| + Iy||

3. If ||x| = 0, then x is the zero vector.

4. ||xii > 0

The most widely used norms in the MR community are the p-norm, the

Manhattan norm, and the Euclidean norm. The p-norm is defined as

||x||,= |xil (2-1)

where xi is the ita element of x. The Manhattan norm (also called the 11 norm) of a

vector x is defined as

||xII = lxil (2-2)

where x is the ith element of x. The Euclidean norm (also called the 12 norm) of a vector

x is defined as

IXi2 = |xI2
(2-3)

where xi is the ita element of x. The 1 norm and the 12 norm are special cases of the p-

norm when p is equal to one and two, respectively. Each type of a norm has its own

characteristics, which can be seen using the notion of a unit ball. The unit ball is defined

as the set of all vectors of unit norm. For instance, the unit ball in %2 becomes a diamond

for the 11 norm, whereas it becomes a unit circle for the 12 norm, as shown in Figure 2-1.
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The effects of having such different characteristics will be prominent when various types

of norm are used in the reconstruction process. For instance, when the 1. norm is imposed

on the data x, the reconstructed data 2X that is obtained by solving the regularized

optimization problem in the standard form tends to be sparse.

Definition 2.1.2. A vector x is K-sparse if it can be represented in a basis by at most K

nonzero coefficient. Alternatively, a vector x is K-sparse if its support is of cardinality

less than or equal to K [30].

The sparsity of a signal can be measured by the cardinality, denoted card(.),

which counts the number of nonzero values of a signal. By using the cardinality notation,

a K-sparse signal x must satisfy the following property

card(x) = 1(xi # 0) K (2-4)

where 1(.) is an indicator function, and xi is the ih element of x. Examples of a sparse

signal are an impulse and a summation of a few impulses. A more complicated example

of a sparse signal, which is widely recognized in the MR community, is a piecewise

constant signal in a finite-differences domain.

Most commonly encountered signals are not sparse in any transform basis, so the

notion of the real sparsity is hard to find in practice. Consequently, the notion of

compressibility, which can be interpreted as a relaxation of sparsity, is introduced. A

signal is compressible if it can be represented using only a few dominating coefficients.

Figure 2-2 shows a sparse signal (top) and a compressible signal (bottom). The notion of

sparsity and compressibility is very important because it can be used as a prior

knowledge to help improve the reconstruction accuracy.
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Figure 2-1: Unit balls in the l norm (left) and 12 norm (right). The set of all vectors of unit norm

is a diamond and a unit circle for the 11 and l2 norm, respectively.
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Figure 2-2: A sparse signal x1 [n] has only two nonzero components (top). A compressible signal

x 2 [n] has two dominating coefficients and a bunch of small coefficients (bottom).
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2.2 Least-Squares Problem

The canonical least-squares problem involves solving the system of linear equations

Ax = b, where A is an m x n matrix; x is an n x 1 vector; and b is an m x 1 vector, in

the least-squares sense. If b lies in a column space of A (i.e., b E R(A)) where R(A) is

the range space of A, there either be a unique solution or infinitely many solutions to this

linear system. If b 0 R(A), the solution to such a system does not exist. In this case, it

may be desirable to find an approximate solution by solving the following least-squares

optimization problem

x = argmin ||Ax - b||2 (2-5)

A solution to this optimization problem can be interpreted as an exact solution to the

modified system of linear equations Ax = b where b is a projection of b onto R(A).

When the linear system is underdetermined (i.e., A is afat matrix (m < n)), and

the null space of a matrix A, denoted N(A), is not empty, there exist infinitely many

solutions to the least-squares optimization problem in Equation (2-5). In this case, we

may prefer one solution to other solutions depending on a specific application.

Regularization is one technique that is widely adopted to select the solution with the

specific property among all other solutions.
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2.3 Regularized Reconstruction

Regularization is a common scalarization technique that introduces additional

information so that the condition of the problem is improved. Many regularization

techniques involve incorporating prior knowledge of the data into the reconstruction to

improve the reconstruction accuracy. By applying the duality theory and regularizations,

the following unconstrained penalty function approximation problem is solved instead of

the problem shown in Equation (2-5)

= argmin ||Ax - b|| + Ak #k (X) (2-6)
x k

where A is an m x n matrix; x is an n x 1 vector; b is an m x 1 vector; 4k is the kth

penalty function; and Ak is a nonnegative dual variable (also called a regularization

parameter) corresponding to the kth penalty function. The prior knowledge of the data is

taken into account through the penalty functions that appear in the objective function, as

shown in Equation (2-6).

2.3.1 Effects of Various Penalty Functions on the Solution of the Penalty

Function Approximation Problem

For simplicity of this discussion, let us consider the constrained penalty function

approximation problem of the form

minimize #(x) (2-7)
x

subject to Ax = b

where A is an m x n matrix; x is an n x 1 vector; b is an m x 1 vector; and #5 is a penalty

function that maps an element in a vector space to a real number. For the sake of

discussing the effects of different penalty functions on the solution, we assume that there

are infinitely many solutions to the system of linear equations Ax = b.

The penalty function #P(x) assesses a cost for each component of x. In the penalty

function approximation problem, the total penalty incurred by x is minimized.

Consequently, the characteristics of the chosen penalty function have a high impact on

the solution of the penalty function approximation problem. If P is small for a certain
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range of values, it means we do not care much if elements of x have nonzero values in

this range. In contrast, if # is large for a certain range of values, it means we try to avoid

elements of x from having nonzero values in such a range [29].

As an example in a one-dimensional case, let us consider two commonly used

penalty functions in the MR community: #1 (x) = ||x|| 1 and #5(x) = ||x|I', where x E 91.

On the one hand, #1 assesses a relatively high cost compared to #2 for a small value of

x. On the other hand, #1 assesses a much lower cost than that of #2 for a high value of x,

as shown in Figure 2-3. It is this difference in penalty for a small and large value of x that

shapes the solution of the penalty function approximation problem. By using the 1i norm

as a penalty function, the solution will have a lot more zero elements compared to that of

the 12 norm. In other words, the solution of the 1i regularized problem will be relatively

sparse. In contrast, the solution of the 12 regularized problem will have relatively fewer

large elements due to its relatively high penalty on large values.
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Figure 2-3: The 1i norm penalty function (blue) and the 12 norm penalty function (red). The 11

norm penalty function put a relatively high weight compared to the 12 norm penalty function for a

small value of x, whereas it put a relatively low weight for a large value of x.
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2.3.2 Choices of Penalty Function for Various Applications

The penalty functions are chosen differently depending on specific applications. For

example, in many communication applications, it is desirable to construct the minimum

Euclidean norm solution among all other solutions. In this case, the quadratic penalty

function is used. The optimization problem then becomes

x = argmin ||Ax-b|||+A||x|||. (2-8)
x

The Moore-Penrose pseudoinverse is one of many common techniques used to construct

the solution with minimum energy. On the contrary, in the compressed sensing

community, it is often the case that a signal of interest is sparse or compressible. As a

result, it is tempted to use a cardinality function as a penalty function. This choice of

penalty function leads to the following optimization problem

= argmin ||Ax - b||12+ A card(x). (2-9)
x

Unfortunately, the cardinality function is not a convex function of its input and not

differentiable at the origin due to a jump-discontinuity. In practice, the 1I norm, which is

a relaxation of the cardinality function, is used as the penalty function instead in order to

turn the problem into the convex optimization problem [30, 31]. With this modification, a

sparse or compressible signal is usually reconstructed from a subset of samples by

solving

x = argmin ||Ax - b|2 + AIx|| 1 . (2-10)

In the MR community, the magnetic resonance data is usually not sparse in either

its original domain (i.e., the image domain) or the domain that it is acquired (i.e., the

Fourier domain). However, the magnetic resonance signal is sparse in some other

transform domains. For instance, brain images are much sparser in the Wavelet domain

than those in the image domain as depicted in Figure 2-4. The finite-differences sparsify

angiograms well, as shown in Figure 2-5 [25]. The prior knowledge of transform sparsity

can be incorporated, which leads to the following optimization problem

2 = argmin |IFUx - y||2 + AJ||PxI| 1  (2-11)
X
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where x is the data in image domain; F., is the undersampled Fourier operator; y is the

observed k-space data from the MRI scanner; 'P is a sparsifying transform; and A is a

regularization parameter. When the finite-differences are used as a sparsifying transform,

it is referred to as Total Variation (TV).

2.3.3 Unconstrained Penalty Function Approximation Problem in MRSI

In MRSI, prior knowledge of the data could be exploited as well. A spectrum at each

voxel is highly compressible in the frequency domain. Besides, metabolite maps

extracted from the MRSI data at a specific range of frequencies are compressible in both

the Wavelet domain and the finite-differences. Consequently, the regularized

optimization problem can possibly be formulated as follows

x = argmin ||Fasx - y||' + As||I2DXI1 + aTvTV3 D (X) (2-12)
x

where x(x, y, f) is a data in the image domain; F,, is the undersampled 3D Fourier

transform; y(kx, ky, kf) is the observed k-space data from the MRI scanner; A, and ATV

are regularization parameters; T2D is an operator that applies the 2D Wavelet transform

to the image at each frequency; and TV3D(.) is the total variation operators along three

dimensions. The first terms |IF.,x - y112 ensures that the reconstructed data is consistent

with the observed data. The second term II2DX111 imposes the transform sparsity

constraint. The third term TV3D(x) enforces the smoothness of the data in the image

domain. As and TV can be interpreted as relative costs of each constraint violation.

Specifically, if ATV is relatively high as compared to As, the reconstructed data tends to be

very smooth in (x, y, f).
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Figure 2-4: A brain data in the image domain (left) and in the Wavelet domain (right). The brain

image is much sparser in the Wavelet domain than in the image domain. (Source: Lustig et al.

[25]).
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Figure 2-5: An angiogram of a leg in the image domain (left) and in the finite-differences domain

(right). The finite-differences sparsify angiograms well. (Source: Lustig et al. [25]).
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Chapter 3

Reconstruction of MRSI using

Spectrum Modeling

While conventional magnetic resonance imaging provides structural information such as

tissue boundaries, magnetic resonance spectroscopic imaging (MRSI) provides additional

information on cellular activities at various spatial locations. This additional information

is very useful to detect irregular changes of the metabolite concentration in specific brain

regions, which indicate physiological abnormalities. While MRSI is clinically useful, it is

very time-consuming to acquire the high-resolution MRSI data. In practice, the high

resolution of the MRSI data is sacrificed in order to achieve the shorter acquisition time,

so the resolution of typical MRSI data is very low. In order to estimate the relative

intensities of metabolite signals at each voxel from the low-resolution MRSI data, model-

based reconstruction methods have been proposed [2-4, 26, 32-37].

This chapter presents a two-step, model-based reconstruction method, which leads

to an accurate reconstruction from the undersampled MRSI data. First, this method takes

advantage of a fast water reference scan to estimate non-linear unknowns. Then, a

regularized optimization problem with priors is formulated to reconstruct the MRSI data.

As opposed to the methods proposed in [2, 26], which reconstruct the spectrum at each

voxel separately, we reconstruct the spectra at all voxels simultaneously. This proposed

reconstruction procedure allows us to incorporate the prior knowledge of the sparsity of

metabolite maps in a transform domain into the optimization problem formulation. As a

result, the metabolite maps can be more accurately recovered from the MRSI data.
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Moreover, the acquisition time needed for this method is significantly less than that of the

existing methods because the proposed method allows the undersampling of k-space

measurements without sacrificing the image quality.

In this chapter, we first present a mathematical model for a typical magnetic

resonance spectroscopic imaging spectrum. Then, the proposed reconstruction procedure

is described in detail. Next, the performance of the proposed method is compared to that

of the conventional least-squares method on the experimental data from a healthy human

subject. The root-mean-square error is used as a criterion. Finally, conclusions about the

proposed method are discussed.

3.1 Theory

3.1.1 Model Description

The magnetic resonance spectroscopic imaging spectrum x(t) at each voxel over time

can be expressed as a summation of K metabolite bases

K

x(t) = Y akbk(t)ei(&kt+(k) ,t > 0 (3-1)
k=1

where ak is the amplitude corresponding to the basis for the kth metabolite, bk(t); 0 k is

the frequency of the k th metabolite; #k is the phase of the kth metabolite; and K is the

number of metabolites in the model. There are many choices for the metabolite basis. For

instance, in Reference [2], the ktf metabolite basis is chosen to be e . As a result, the

time signal x(t) is expressed as a summation of K decaying exponentials

K t

x(t) = ake Tej(At+k) t > 0 (3-2)
k=1

Let wo and #PO be a reference frequency and a reference phase, respectively.

Consider the kta metabolite with the corresponding frequency wk. The difference

between wO and Wk can then be computed as follows

AUk = O - (O = yBO - y(1 - u)Bo = yaBo.
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In the presence of the BO inhomogeneity, the difference between two frequencies

becomes

AWk (00 -k

= y(B 0 + AB 0) - y(l - a)(B0 + AB 0 )

= yaBO + yuABO

yaB0 .

Since yoABO « yoBO, the change in the difference in frequencies due to the BO

inhomogeneity is negligible. Thus, each Wk in Equation (3-1) and (3-2) can be replaced

by WO - AOk, even with the BO inhomogeneity. Similarly, #k can be replaced by

0 - APk. With this modification, the time signal becomes

K

x(t) = akbk (t)ei(("o-A*k)t+($0-^Ok)). (3-3)
k=1

The data obtained from the MRI scanner is equal to x(t) + n(t), where n(t) is

approximately the white complex Gaussian noise. Figure 3-1 shows the Fourier transform

of a synthetic metabolite signal in the time domain under the model described by

Equation (3-3) with K = 3. This signal contains three metabolites, which are NAA,

creatine, and choline.

3.1.2 Reconstruction

With the model described above, there are only a few unknowns to be determined. The

underlying signal can easily be recovered in two steps.

First, the water reference data along with priori information is used to determine

OO, Aok, PO , Aqk, and bk(t) in Equation (3-3). We then use these parameters to

construct the matrix B, which contains the bases of the metabolites. Specifically, the kth

column of B is bk(t)ej((oO-AWk)t+(+o-A+k)). In this chapter, we assume that the

lineshape of the metabolites are the same as that of the water reference signal at the same

spatial location. Mathematically, bk(t) = b(t), Vk=1,...,K , where b(t) is the basis

obtained from the water reference signal at the same spatial location.
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Second, the ak's are recovered from the acquired data by solving a regularized

optimization problem. There are multiple ways to set up the problem. The conventional

method formulates it as the least-squares problem

minimize 1a|12 (3-4)
a 2

2subject to ||FBa- y||2 < E

where a is the vector containing ak's; B contains the bases of metabolites in the model; y

is the observed k-space data from the MRI scanner; F is the fully-sampled Fourier

operator; and e is a threshold for the observed data fidelity. This optimization problem

can be solved quickly using the pseudoinverse [2, 26].

Although the conventional method yields fast and accurate reconstructions from

the fully-sampled k-space data, it yields inaccurate reconstructions from the

undersampled k-space data because the acquired data is contaminated by both aliasing

and undersampling artifacts. To mitigate these contaminations, we formulate the

optimization problem differently by incorporating the prior knowledge of the data

structure. The proposed method solves the following unconstrained optimization problem

using a nonlinear conjugate gradient descent algorithm with backtracking line search

[25]:

minimize IIFusBa - y||2 + TvTV(Ba) (3-5)
a2

where a is the vector containing ak's; B contains the bases of metabolites; y is the

observed k-space data from the MRI scanner; Fus is the undersampled Fourier operator;

and TV(.) is the total variation operator. Figure 3-2 shows an example of B that contains

three metabolite bases.

As opposed to the algorithm used in [2, 3, 26], which solves for a at each voxel

separately, we solve for a's at all voxels simultaneously. This approach allows us to

impose the additional prior knowledge via a regularization term. Specifically, we include

the total variation term in the formulation for two main reasons. First, the underlying

spectra are sparse in the finite-differences domain. Second, the metabolite map obtained

from the underlying signals is spatially smooth. By imposing the TV term, we narrow
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down the search space, which leads to better reconstructions. With the proposed method,

we reduce the acquisition time by undersampling the data in k-space, while the

regularization term preserves the high reconstruction quality. Figure 3-3 shows a block

diagram of the proposed method.

For the results shown in this chapter, we forced B and y to be real matrices by

omitting the imaginary parts of these matrices. The reason is that the peaks of the spectra

in the k-pace under this model (i.e., the peaks of FBa and y) become narrower when we

restrict them to reside in the space of real numbers. With narrower peaks, a specific peak

has fewer overlaps with other peaks, so we obtain better peak separations. To see this,

consider a single peak with no delay between the excitation time and the acquisition time

(i.e., the data collection starts exactly at t = 0). Then, using Equation (3-2), the data is

modeled by

( t >

x(t)= aleT el" 1t ,t>0

0 ,t <0

If we take the Fourier transform of x(t), then we obtain
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where X(co) is the Fourier transform of x(t) at different frequencies W; Re{X(O)} is the

real part of X(w); Im{X(o)} is the imaginary part of X(o); |X(W)I is the magnitude of

X(w); u(t) is a unit step function; and 'F{.} is the Fourier transform operator. The real

part of X(w) decays at a rate of -, whereas the imaginary part and the magnitude of

X(w) decay at a rate of-. Thus, the peaks of a signal plot of Re{X(O)} will be narrower

than those of Im{X(o)} and IX(w) |. Figure 3-4 shows the real part, imaginary part, and

magnitude of creatine and choline bases from top to bottom, respectively. Similarly,

Figure 3-5 presents the real part, imaginary part, and magnitude of the summation of

creatine and choline bases. As expected, it is easier to distinguish the creatine and choline

peaks by examining the plot of the real part of the combined signal.
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Figure 3-1: The Fourier transform of a synthetic metabolite signal in the time domain
under the model described by Equation (3-3) with K = 3. This signal contains three
metabolites, which are NAA, creatine, and choline.
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Figure 3-2: An example of B, which contains
choline.
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Figure 3-3: A block diagram of the proposed two-step, model-based reconstruction
method.
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Figure 3-4: The real part, imaginary part, and magnitude of the synthetic
and choline basis (red) from top to bottom, respectively.
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Figure 3-5: The real part, imaginary part, and magnitude of the summation of creatine
and choline bases. The real part of the combined signal establishes the better separation
between the creatine and choline peaks.

46



3.2 Methods

In this section, we assessed the performance of the proposed method using experimental

data from a healthy human subject. The magnetic resonance spectroscopic imaging data

set were fully sampled with a resolution of 1.1 cubic centimeters at 1.5 Tesla using spiral

trajectories and gridding algorithms. The echo time (TE) and repetition time (TR) were

144 and 2000 milliseconds, respectively. The total scan times were 15 minutes and 20

seconds. We used spin-echo spectral-spatial pulses to suppress the water resonance. In

addition, we used inversion recovery with the inversion time (TI) of 170 milliseconds to

suppress the lipid resonance. After that, we manually removed the remaining lipid

resonances from the post-gridded MRSI data set and retrospectively undersampled the

resulting data in MATLAB.

Figure 3-6 shows an example of the undersampling patterns at acceleration factors

of two (R = 2) and six (R = 6) for a specific time point. The k-space data is sampled

more densely in the middle due to its high energy at these locations. For the results

shown in the next section, we used the same undersampling pattern for all time points.

Note that the proposed method also works well when different undersampling patterns

are used at different time points.

We used the proposed method to reconstruct the MRSI spectra from

undersampled k-space measurements with various acceleration factors R ranging from

two to six. The number of metabolites K was chosen to be three to represent NAA,

creatine, and choline. Consequently, we can construct the NAA, creatine, and choline

maps from the reconstructed MRSI spectra. The results were quantitatively compared to

those obtained from the least-squares method with the same undersampling pattern and

acceleration factors. As opposed to the proposed algorithm, the conventional least-

squares method does not impose any prior information on the reconstruction process. In

this experiment, we compared the performance of the proposed method to that of the

conventional method using the root-mean-square error (RMSE) of the reconstructed

metabolite map as a criterion. The RMSE of each method was computed with respect to

the ground truth as follows
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||2 -X||2
RMSE = 100 x

where x is the ground truth, and 2' is the reconstructed metabolite map from each method.

The reconstructed metabolite map from the fully-sampled least-squares reconstruction

(R = 1) was used as the ground truth.
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Undersampling pattem (R = 2)

Undersampling pattern (R = 6)

Figure 3-6: Undersampling patterns at acceleration factors of two (top) and six (bottom)
for a specific time point. The k-space locations obtained are indicated in red. The k-space
data is sampled more densely in the middle due to its high energy at these locations.
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3.3 Results and Discussion

The RMSEs of the reconstructed NAA, creatine, and choline maps obtained from the

conventional LS method and the proposed method at various acceleration factors ranging

from two to six are shown in Figure 3-7, Figure 3-8, and Figure 3-9, respectively. As

shown in Figure 3-7, at R = (2, 3, 4, 5, 6), the proposed method yielded approximately

(1.81, 2.24, 2.63, 3.33, 4.18)% RMSE for the NAA reconstruction compared to (3.73,

5.46, 7.99, 6.85, 8.01)% RMSE obtained from the conventional LS method. By

incorporating the prior knowledge into the optimization problem, the RMSEs of the

reconstructed NAA maps were reduced by approximately two to three times. As shown in

Figure 3-8, at R = (2, 3, 4, 5, 6), the proposed method yielded approximately (2.26, 3.77,

4.32, 4.17, 4.59)% RMSE for the creatine reconstruction compared to (4.86, 6.33, 9.28,

8.27, 9.59)% RMSE obtained from the conventional LS method. The proposed method

reduced the RMSEs of the reconstructed creatine maps by approximately two times. As

shown in Figure 3-9, at R = (2, 3, 4, 5, 6), the proposed method yielded approximately

(2.46, 2.96, 3.41, 4.36, 5.93)% RMSE for the choline reconstruction compared to (4.35,

5.73, 7.34, 6.78, 7.52)% RMSE obtained from the conventional LS method. The

proposed method reduced the RMSEs of the reconstructed choline maps by

approximately 1.3 to 2 times.

For the purpose of visualizations, Figure 3-10, Figure 3-11, Figure 3-12, and

Figure 3-13 focus on the case when R is equal to two and six. Figure 3-10 shows the

reconstructed NAA, creatine, and choline maps from the undersampled MRSI data (R =

2) from left to right with the corresponding RMSE in the upper right hand corner. The

reconstructed map from the fully-sampled LS method (R = 1), proposed method (R = 2),

and conventional LS method (R = 2), were presented from the top to bottom rows.

Figure 3-11 presents a bar plot, which explicitly compares the RMSEs of the

reconstructed metabolite maps obtained from the LS method to those obtained from the

proposed method at an acceleration factor of two. The proposed method reconstructed the

NAA, creatine, and choline maps with corresponding RMSEs of 1.81%, 2.26%, and

2.46%, respectively, whereas the conventional LS method reconstructed the NAA,

creatine, and choline maps with corresponding RMSE of 3.73%, 4.86%, and 4.35%,
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respectively. The proposed method gave approximately two times lower RMSEs,

compared to those obtained from the conventional LS method.

Figure 3-12 shows the spectra from voxels inside the red box that was placed on

top of the water image. The fully-sampled observed spectra, reconstructed spectra

obtained from the conventional LS method at R = 1, and reconstructed spectra obtained

from the proposed method at R = 2 were shown in red, green, and blue, respectively. The

differences between the ground truth and reconstructed spectra from the proposed method

were shown in magenta. Because the background noise and other small metabolites were

not modeled in Equation (3-3), both the conventional LS and proposed methods produce

the solution that did not contain these elements as reflected in the distinction between the

observed spectra (shown in red) and the reconstructed spectra (shown in blue and green).

The distinction is more noticeable in the frequency ranges in which NAA, creatine, and

choline peaks do not reside.

Figure 3-13 shows the reconstructed NAA, creatine, and choline maps from the

undersampled MRSI data (R = 6) from left to right with the corresponding RMSE in the

upper right hand corner. The reconstructed maps from the fully-sampled LS method (R =

1), proposed method (R = 6), and conventional LS method (R = 6), were presented from

the top to bottom rows. The proposed method reconstructed the NAA, creatine, and

choline maps with corresponding RMSEs of 4.18%, 4.59%, and 5.93%, respectively,

whereas the conventional LS method reconstructed the NAA, creatine, and choline maps

with corresponding RMSE of 8.01%, 9.59%, and 7.52%, respectively. The proposed

method gave approximately two times lower RMSEs of the reconstructed NAA and

creatine maps, compared to those obtained from the conventional LS method. The RMSE

of the reconstructed choline map was reduced by approximately 1.3 times using the

proposed method.

As shown in Figure 3-10 and Figure 3-13, the proposed method yielded better

reconstruction quality as indicated by both the lower RMSEs and the more similar spatial

characteristics of the reconstructed metabolite maps to those of the ground truths.

Because the conventional LS method reconstructs the spectrum at each voxel separately,

it imposes no spatial constraints on the reconstructed metabolite maps. In other words, it
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ignores the correlation between adjacent voxels. As a result, the conventional LS method

cannot capture such small details as changes between the adjacent voxels of the

metabolite maps, as shown in Figure 3-13. In contrast, by reconstructing the spectra at all

voxels simultaneously, the proposed method can incorporate the prior knowledge of the

metabolite map into the reconstruction process. Specifically, the proposed method

enforces the prior knowledge through the total variation term. This regularization term

restricts the search space to a set that contains only spatially-smooth solutions. Because

we use the total variation operator as opposed to the 12 smoothing operator, sharp edges

in the underlying metabolite maps are not severely penalized and, hence, are preserved.

This choice of a smoothing operator prevents our algorithm from providing a too-smooth

solution. As shown in Figure 3-13, the spatial details of the reconstructed metabolite

maps obtained from the proposed method are preserved.

In summary, although the data in k-space is undersampled, the proposed

algorithm still yielded the accurate reconstruction because of two main factors. First, we

do not fit the noise and unwanted metabolites in the reconstruction process by excluding

the bases for these components from our model. Second, we impose the additional prior

knowledge via the total variation term by solving the a's at all voxels simultaneously.

Because the prior knowledge helps mitigate the undersampling artifacts, the proposed

method yielded the reconstructions that are more accurate than those using the

conventional method (about two times reduction in RMSE with R ranging from two to

six).
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Figure 3-7: %RMSE of the reconstructed NAA map obtained from the conventional LS

method (blue) and the proposed method (red) at various acceleration factors ranging from

two to six.
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Figure 3-8: %RMSE of the reconstructed creatine map obtained from the conventional
LS method (blue) and the proposed method (red) at various acceleration factors ranging
from two to six.
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Figure 3-9: %RMSE of the reconstructed choline map obtained from the conventional LS
method (blue) and the proposed method (red) at various acceleration factors ranging from
two to six.
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0

0

0

Ct

Figure 3-10: The reconstructed NAA (left column), creatine (middle column), and
choline maps (right column) with the corresponding RMSE in the upper right hand
corner. The reconstructed map from the LS method (R = 1), the proposed method (R = 2),
and the LS method (R = 2) are shown in top, middle, and bottom rows, respectively.
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5

NAA Cr Cho

Figure 3-11: The RMSE comparison of the reconstructed metabolite map obtained from
the LS method and the proposed method at an acceleration factor of two.

Water image from
reference data set

Figure 3-12: The spectra from voxels inside the red box that was placed on top of the
water image. The fully-sampled observed spectra, reconstructed spectra obtained from
the conventional LS method at R = 1, and reconstructed spectra obtained from the
proposed method at R = 2 were shown in red, green, and blue, respectively. The
differences between the ground truth and the spectra from the proposed method were
shown in magenta.
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Figure 3-13: The reconstructed NAA (left column), creatine (middle column), and

choline maps (right column) with the corresponding RMSE in the upper right hand

corner. The reconstructed map from the LS method (R = 1), the proposed method (R = 6),

and the LS method (R = 6) are shown in top, middle, and bottom rows, respectively.
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3.4 Conclusion

By representing a time signal at each voxel as a summation of the individual metabolite

basis and taking advantage of a quick water reference scan, there are only a few linear

unknowns left to be determined. This allows us to undersample the magnetic resonance

spectroscopic imaging data, which mitigates the limitation on long acquisition times. For

the reconstruction process, we exclude the bases for the noise and unwanted metabolites

from our model in order to eliminate these components from the reconstructed MRSI

data. Furthermore, we incorporate the prior knowledge of the structure of the data into the

optimization problem formulation through regularization in order to tackle the

undersampling artifacts. The proposed method improves the reconstruction accuracy

compared to that without regularization.
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Chapter 4

Reconstruction of MRSI using N-

Compartment Model

The combination of a segmented structural image and fully-sampled spectroscopic

imaging data has been used to estimate metabolite values at each voxel. As described in

[3, 22-24], the tissue boundaries (i.e., binary masks) are extracted from the segmented

structural image. These methods assume that the metabolite values within the same tissue

type are equal. However, a real human brain does not have this characteristic. To refine

and improve these methods, this chapter presents an N-compartment-model

reconstruction method with orthogonal polynomial masks. The proposed method allows

the metabolite values within the same tissue type to vary by using more than one

orthogonal polynomial masks instead of the single binary mask per compartment. In

addition, the proposed method imposes the prior knowledge of the sparsity of the

metabolite map in a transform domain. As a result, metabolite maps could be more

accurately recovered from undersampled MRSI data. Because the proposed method

allows the undersampling of k-space measurements, the acquisition time needed is

significantly less than that of the existing methods.

In this chapter, we first present a conventional mathematical model and proposed

mathematical model for the metabolite maps. The relationship and interpretation between

these two models are then explained. Next, the reconstruction procedure is described in

detail. Finally, the performance of the proposed method is compared to that of the

conventional method on two data sets, which consist of a numerical magnetic resonance

spectroscopic imaging phantom and in vivo acquisitions, using the RMSE as a criterion.
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4.1 Theory

4.1.1 Model Description

Each high-resolution metabolite map is expressed as a superposition of N compartments

N

X = mkck (4-1)
k=1

where x is the metabolite map; mk is the mask of the kth compartment; Ck is the scaling

factor of the kth compartment; and N represents a number of compartments in

consideration [3, 22-24]. This model assumes that metabolite values are constant within

the same compartment. Figure 4-1 shows a high-resolution synthetic metabolite map that

is expressed as a superposition of N compartments using Equation (4-1) with N = 9.

However, the assumption that the metabolite values are constant within the same

compartment is too strong as evidenced in real human brains. In fact, the metabolite

values are slowly-varying within the same compartment.

The proposed method relaxes the previously mentioned, strong assumption.

Specifically, the proposed method assumes that the metabolite values within the same

tissue type vary instead of being constant. With this new assumption, the existing model

is extended to accommodate more than one mask per compartment. Consequently, each

high-resolution metabolite map is expressed as

N L

x = I Ym.icJki (4-2)
k=1 1=1

where mk1 is the 1th mask of the kth compartment; CkI is the 1th scaling factor of the ktf

compartment; N is a number of compartments in consideration; and L is a number of

different masks for each compartment. Figure 4-2 shows a high-resolution synthetic

metabolite map under this modified model with N = 9 and L = 3. Here, three masks are

used to represent each compartment.

The proposed model can simply be extended from the old model by generating

L - 1 additional masks for each compartment based on a polynomial expansion.

Specifically, for a specific compartment, each mask corresponds to each term of a
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polynomial. For instance, when the 0 th order polynomial is used (i.e., L = 1), the new

model is simplified to the old model because the 0 th order term of the polynomial is just

the constant term. When the first order polynomial mask is used (i.e., L = 3), we have

M 1 1 = Mi 1 , Mn1 2 = Mi1 0 xvariation|, and m1 3 = m 1 0 IYvariationl where mi is the

mask of the 1 st compartment in the model described by Equation (4-1); ml, is the 1 ta

mask of the 1st compartment in the model described by Equation (4-2); 0 is an element-

wise multiplication operator; and Xvariation and Yvariation are normalized spatial

variation along the x-axis and y-axis, respectively. Figure 4-3 demonstrates the case

when the first order polynomial is used (i.e., L = 3). Two additional masks for each

compartment are generated based on the expansion of the 1storder polynomial. Here,

three masks are used to describe each compartment. The first mask corresponds to the Ota

order term. The second mask captures the first order variation along the x-direction.

Similarly, the third mask captures the first order variation along the y-direction. The

weighted combination of these three masks allows smooth changes of metabolite values

of adjacent voxels within the same compartment. Note that the low polynomial order

leads to the model that allows the metabolite values to change slowly within the same

tissue type, while the high polynomial order allows the metabolite values to change

abruptly within the same tissue type.

By generating the masks based on this type of polynomial, they are not orthogonal

to each other. There exist many ways to transform such masks so that they become

orthogonal to each other. One way to achieve such a task is to apply the Gram-Schmidt

process [38]. However, this method does not preserve the original structure of the masks.

In other words, the resulting masks generated by the Gram-Schmidt process lose their

original structures and, hence, their physical meaning. Alternatively, the new orthogonal

masks could be obtained from the existing masks by finding the nearest orthogonal

matrix as measured by the Frobenius norm. This can be done easily using the singular

value decomposition (SVD) as described in Algorithm 1 [39]. Figure 4-4 shows the

resulting orthogonal masks that were generated by applying Algorithm 1 to all masks of

the 1 st compartment.
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4.1.2 Reconstruction

Two sets of data are collected at the same orientation: the high-resolution structural

images and low-resolution MRSI data. We obtain the tissue boundaries from the high-

resolution structural images using the automatic segmentation programs. The binary

mask mk (i.e., the mask for the kth compartment of the model described by Equation

(4-1)) is then extracted from each compartment of the segmented structural images. After

that, we generate L orthogonal masks m-1's for the ktf compartment from each mk using

the steps described in the previous section. We window each mask mi1 in k-space to

match the resolution of the acquired MRSI data. The resulting low-resolution masks are

vectorized and then stacked into a single matrix Mlw). Finally, the relative intensities of

metabolite signals are estimated by solving an optimization problem. A flow chart

representing the complete procedures is given in Figure 4-5.

There are many ways to set up the optimization problem. The conventional

method is to formulate it as the least-squares solution

minimize IIFM(O)c y112  (4-3)

where M(low) is the matrix that contains the low-resolution masks; c is the vector that

stores estimated metabolite values; y is the observed low-resolution data in k-space; and

F is the fully-sampled Fourier transform. The problem presented in Equation (4-3) can be

easily solved using the pseudo-inverse [3, 22, 24].

In this work, we formulated an optimization problem differently so that we could

simultaneously enforce the prior knowledge about tissue boundaries, slowly-varying

nature of the metabolite values, and sparsity of the metabolite map in a transform domain.

By including these priors in the formulation, the undersampling data in k-space is

possible. To estimate the metabolite values, we solve the following optimization problem

using a nonlinear conjugate gradient descent algorithm with backtracking line search [25]

minimize IIFsM(Low)c - y| + As |kIM(1ow)c11 1  (4-4)

where M(o") is the matrix that contains the low-resolution masks; c is the vector that

stores estimated metabolite values; y is the observed low-resolution data in k-space; F,,

62



is the undersampled Fourier transform; 4 is the sparsifying transform; and As is a
2

regularization parameter. The first terms IFUsM(ow)C - y| ensures that the

reconstructed data is consistent with the observed data. The second term I|IM(OW)cI 11

imposes the transform sparsity constraint. The regularization parameter As can be

interpreted as the relative cost of each constraint violation.

We also set up the following optimization problems

minimize IIFusM(1ow)c - y|I + As |IpM(IOW)c| + ATvTV(M(lOw)c) (4-5)

and

minimize |IFsM(1ow)c-yII + A, IIM(l""I)cl + ATvTV(c) (4-6)

where M(1ow) is the matrix that contains the low-resolution masks; c is the vector that

stores estimated metabolite values; y is the observed low-resolution data in k-space; Fus

is the undersampled Fourier transform; 4 is the sparsifying transform; TV(.) is the total

variation operator; and A, and ATv are regularization parameters. Although these two

methods yield reconstruction results that are comparable to that of the proposed method,

the algorithms are much slower than the proposed method because they compute finite-

differences at every iteration. As a result, the proposed method is preferable.
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x Mi M 2  m 9

Figure 4-1: A high-resolution synthetic metabolite map is expressed as a superposition of
N compartments using Equation (4-1) with N = 9.

Ci1 x +c12 X +c13 X
1 st compartment

x c il +c 13 x

+C 9 1 X +C 9 2 X +C9 3 . 9 th compartment

mi91  92  M93

Figure 4-2: A high-resolution synthetic metabolite map under the model described in
Equation (4-2) with N = 9 and L = 3. Three masks are used to represent each
compartment.
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Figure 4-3: Additional L - 1 masks for each compartment are generated based on the
expansion of the 1storder polynomial. Here, we have three masks (L = 3) for each of the

nine compartments (N = 9). The first mask corresponds to the 0 th order term. The second
mask captures the first order variation along the x-direction. The third mask captures the

first order variation along the y-direction.
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Algorithm 1: The nearest orthogonal bases as measured by the Frobenius norm were
generated from the existing bases in a complex Hilbert space. The orthogonal bases were
obtained by solving the least-squares inner product shaping problem using the singular
value decomposition (SVD).

Algorithm 1 Solving the least-squares inner product shaping problem using the SVD

For each compartment k,

1. Create a matrix Mk by stacking each mask mkl into each column of Mk for

1 = 1, 2, ... , L

2. Decompose Mk using the singular value decomposition (SVD): Mk = UEVH

3. Mk <- UVH

4. Columns of the modified matrix Mk are the resulting orthogonal masks

Mii

Algorithm 1

mI a2 nth

Figure 4-4: The resulting orthogonal masks generated by applying Algorithm 1 to all
masks of the 1st compartment with L = 3. The resulting masks mfi,m 2, and m 3 are
orthogonal to each other. The original mask m, was greatly modified, whereas M12 and

m13 were marginally modified.
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Figure 4-5: A complete flow chart that demonstrates the metabolite map reconstruction

process.
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4.2 Methods

In this section, we assessed the performance of the proposed method using two data sets

that include a numerical magnetic resonance spectroscopic imaging phantom and in vivo

acquisitions. For each experiment, we used the proposed method to reconstruct the

metabolite map from undersampled k-space measurements with various acceleration

factors R. Figure 4-6 shows an example of the undersampling pattern at an acceleration

factor of 6.5 (R = 6.5) for a specific time point. The k-space data is sampled more

densely in the middle due to its high energy at these locations. In this work, we used the

same undersampling pattern for all time points in order to speed up the reconstruction

process. Specifically, by using the same undersampling pattern, we reduce the dimension

of the problem by one, which makes the reconstruction process considerably faster.

The results were quantitatively compared to those obtained from the least-squares

method with the same undersampling pattern and acceleration factors. As opposed to the

proposed algorithm, the least-squares method does not impose any prior information on

the reconstruction process. We compared the performance of the proposed method to that

of the conventional method by using the root-mean-square error (RMSE) of the

reconstructed metabolite map as a criterion.

4.2.1 Numerical Magnetic Resonance Spectroscopic Imaging Phantom

In this experiment, the reconstructions were evaluated on the numerical magnetic

resonance spectroscopic imaging phantom. We generated the numerical MRSI phantom

in two steps: defining the tissue boundaries and generating the spectra. First, we defined

the tissue boundaries of the phantom using the segmented structural image obtained from

a healthy subject. Second, we generated the spectrum at each voxel using

SPINEVOLUTION [40]. We assigned realistic values that were reported in [41, 42] to

each peak in the spectrum (e.g., water, NAA, Cr, and Cho peaks) to make it become more

realistic. The water component was generated with its peak being approximately ten

times higher in amplitude than that of the NAA peak. There is no lipid in any spectrum.

We modeled the brain as a summation of nine compartments (N = 9). The

boundaries of all compartments were obtained from the structural images using
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Freesurfer [43]. The 0 1h order polynomial was used to create the mask for each

compartment (L = 1). The Daubechies Wavelet of length 2 was used as a sparsifying

transform. Noise-free metabolite maps were used as the ground truth. We chose the

noise-free metabolite maps as opposed to the fully-sampled noisy metabolite maps in

order to take into consideration the over-fitting problem. In other words, the

reconstruction that does not fit the noise component is preferable.

The reconstructions were evaluated at acceleration factors of 3, 6, 9, and 12. For

each acceleration factor, the Monte Carlo simulation was performed to propagate

uncertainties in model inputs. Specifically, we reconstructed the metabolite maps and

computed their corresponding RMSEs from 250 Monte Carlo trials with different

realizations of the complex white Gaussian noise with the same standard deviation. The

signal-to-noise ratio with respect to the averaged NAA peak from the spectra resided in

the white matter is equal to ten.

4.2.2 In Vivo Data

Three data sets were obtained separately from a healthy human subject. They consist of

water reference data, magnetic resonance spectroscopic imaging data, and TI -weighted

structural images. The water reference and MRSI data were fully sampled at three Tesla

using the LASER sequence [44]. The echo time (TE) and repetition time (TR) were 30

and 1800 milliseconds, respectively. The total scan times were one minute and eight

minutes for the 1-average water reference and 4-averages MRSI data set, respectively.

The field-of-view (FOV) of 24cmx24cmx8cm at 1 cm3 isotropic was excited. The Ti-

weighted structural volume at 1 mm isotropic resolution was also acquired in the same

orientation in order to obtain the tissue boundaries that were later used as the prior

information in the reconstruction process.

We used three compartments to model the brain (N = 3). The tissue boundaries

were obtained from the Ti-weighted structural images using FSL [45]. The first order

polynomial was used to create masks for each compartment (L = 3). The Daubechies

Wavelet of length 2 was used as a sparsifying transform. The water map and the

metabolite maps consisting of NAA, creatine, and choline were reconstructed at an
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acceleration factor equals to six on the post gridded-data. The reconstructed metabolite

map from the fully-sampled least-squares reconstruction (R = 1) was used as the ground

truth.
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Undersampling pattern (R = 6.5)

Figure 4-6: An undersampling pattern at an acceleration factor of 6.5 (R = 6.5) for a
specific time point. The k-space locations obtained are indicated in red. The k-space data
is sampled more densely in the middle due to its high energy at these locations.
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4.3 Results and Discussions

4.3.1 Numerical Magnetic Resonance Spectroscopic Imaging Phantom

Figure 4-7 presents %RMSE comparisons of the reconstructed NAA map from the least-

squares (LS) algorithm and proposed algorithm at various acceleration factors. The

proposed method yielded 3.85%, 5.16%, 5.52%, and 6.07% mean RMSEs, whereas the

LS method yielded 4.83%, 7.84%, 10.29%, and 15.48% mean RMSEs at R = 3, 6, 9, and

12, respectively. The proposed method yielded the standard deviations of RMSE that

were equaled to 0.65, 0.96, 1.03, and 1.02, whereas the LS method yielded the standard

deviation of RMSE that were equaled 1.10, 1.74, 2.78, and 4.23 at R = 3, 6, 9, and 12,

respectively.

The mean and the standard deviation of %RMSEs of the proposed method are

smaller than those obtained from the LS method at all acceleration factors. Since we

picked L = 1, both methods assumed that the metabolite values are constant within the

same compartment. This assumption matched well with the characteristic of our specially

designed numerical MRSI phantom. As seen in the same figure, the proposed method had

much lower %RMSEs especially at high acceleration factors because it also imposed an

additional prior on the data structure in the transform domain. In particular, it imposed

the sparsity of the metabolite maps in the Wavelet domain. This choice of prior is

appropriate because the metabolite map has only a few dominating coefficients in that

domain, as shown in Figure 4-8. This additional prior knowledge prevented the algorithm

from moving away from the true solution by narrowing down the search space. As a

result, the proposed method not only converges faster, but also becomes more accurate

and robust.

4.3.2 In Vivo Data

Figure 4-9 and Figure 4-10 present the maps in the same arrangement. They show the

fully-sampled map from the data acquired from the scanner without any processing,

reconstructed map from the least-squares (LS) method with R = 1, reconstructed map

from the proposed method with R = 6, and reconstructed map from the LS method with R

= 6, from left to right. Figure 4-9 shows the RMSE with respect to the fully-sampled LS
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reconstruction (second map from the left) in the upper right hand corner of each

reconstructed water map. The proposed method yielded 2.71% RMSE, whereas the LS

method yielded 6.47% at R = 6. Figure 4-10 shows the RMSE with respect to the fully-

sampled LS reconstruction (second map from the left) below each reconstructed

metabolite map. For the NAA case, the proposed method yielded 8.31% RMSE, whereas

the LS method yielded 10.10% at R = 6. For the creatine case, the proposed method

yielded 6.33% RMSE, while the LS method yielded 12.13%. For the choline case, the

proposed method yielded 9.34% RMSE, whereas the LS method yielded 13.91%. For any

reconstruction method, the RMSE computed from the reconstructed water map was about

two to three times lower than those from the reconstructed metabolite maps because the

water signal has a relatively higher SNR compared to those of the metabolite signals.

On the one hand, we chose the Oh order polynomial masks in the numerical

MRSI phantom case. On the other hand, we used the 1st order polynomial to generate the

masks in the in vivo case because we observed that the metabolite values slowly vary

within the same tissue type. Although the same polynomial was used in both the

proposed and conventional LS methods, the proposed method yielded lower RMSEs in

all cases compared to those using the LS method because the proposed method imposed

an additional prior on the sparsity of the maps in the Wavelet domain. With this

additional prior, the number of candidate solutions was significantly reduced leading to a

faster convergence and more accurate reconstruction.
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Figure 4-7: %RMSE comparison of the reconstructed NAA map from the least-squares

(LS) algorithm and proposed algorithm at various acceleration factors (Numerical MRSI
phantom with SNR = 10). The mean and standard deviation of %RMSEs shown in this
figure were computed based on 250 Monte Carlo trials with different realization of the
complex white Gaussian noise with the same variance.
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LS (R = 1) Proposed (R = 6)

I-.
U

Figure 4-9: Water maps with corresponding RMSE. The fully-sampled map without any
processing, the reconstructed map from the LS method with R = 1, reconstructed map

from the proposed method with R = 6, and reconstructed map from the LS method with R
= 6, from left to right.
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Figure 4-10: NAA (top row), creatine (middle row), and choline (bottom row) maps with
corresponding RMSE. The fully-sampled map without any processing, the reconstructed
map from the LS method (R = 1), proposed method (R = 6), and LS method (R = 6) from

left to right.
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4.4 Conclusion

This chapter presents the theory of the N-compartment-model method with the

orthogonal polynomial masks. The proposed method exploits the prior knowledge of the

tissue boundaries obtained from the structural images, slowly-varying nature of

metabolite values, and sparsity of the metabolite maps in a transform domain. With these

priors, the proposed method allows undersampling of k-space measurements, which

results in a reduction in the scan time for the magnetic resonance spectroscopic imaging

study, while it retains the high reconstruction quality. The experimental results show that

the proposed method is superior to the conventional method because of its robustness and

higher reconstruction accuracy.
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