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Abstract

Though modern multicore machines have sufficient RAM and processors to manage

very large in-memory databases, it is not clear what the best strategy for dividing

work among cores is. Should each core handle a data partition, avoiding the overhead

of concurrency control for most transactions (at the cost of increasing it for cross-

partition transactions)? Or should cores access a shared data structure instead? We

investigate this question in the context of a fast in-memory database. We describe a

new transactionally consistent database storage engine called MAFLINGO. Its cache-

centered data structure design provides excellent base key-value store performance,
to which we add a new, cache-friendly serializable protocol and support for running

large, read-only transactions on a recent snapshot. On a key-value workload, the

resulting system introduces negligible performance overhead as compared to a ver-

sion of our system with transactional support stripped out, while achieving linear

scalability versus the number of cores. It also exhibits linear scalability on TPC-C,
a popular transactional benchmark. In addition, we show that a partitioning-based

approach ceases to be beneficial if the database cannot be partitioned such that only a

small fraction of transactions access multiple partitions, making our shared-everything

approach more relevant. Finally, based on a survey of results from the literature,
we argue that our implementation substantially outperforms previous main-memory

databases on TPC-C benchmarks.

Thesis Supervisor: Samuel R. Madden
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

There have been two notable trends in computer architecture over the past several

years: increasing main memory sizes and dramatic increases in processor core count.

A modern high-end server can now have several terabytes of RAM and hundreds of

cores. These trends have dramatically altered the landscape of data management

technology: data sets and computation that used to be spread across tens of disks

and machines can now reside in the memory of a single multicore computer.

Processing this data efficiently requires fundamentally new designs for data man-

agement systems. First, many database workloads, especially those involving online

transaction processing (OLTP) can now fit entirely in main memory. These are the

types of databases that run most websites, banks, and other organizations, contain-

ing a small set of records for each user or customer. Typical workloads involve many

concurrent reads of records and only a few concurrent writes at a time as users buy

products, transfer funds, send emails, or perform other operations.

Second, it would be desirable to get as much parallelism as possible from the

proliferation of available cores, especially on OLTP workloads where high throughput

operations are required. Unfortunately, conventional database designs do not scale

well with the number of cores for a variety of reasons [16, 14], including reliance on

centralized data structures (shared buffer pool, shared lock manager, etc.) that must
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be latched 1 by every operation, and use of memory layouts and index designs that

are optimized for disk-resident data rather than main memory.

To address these issues, several new database designs have been proposed for main-

memory OLTP workloads. The most common design involves some form of data par-

titioning, where each core is responsible for a different subset of the data [33, 26, 31].

Such approaches work well when data partitions cleanly, because each core essen-

tially operates on a separate logical database, resulting in good cache locality and

low levels of contention for memory between cores. However, as core counts grow,

more and more data partitions are needed when using this approach. As partitions

become finer-grained, it becomes increasingly hard to partition the database to en-

sure that each transaction accesses only one partition. The resulting multi-partition

transactions require latching entire partitions for access to the records of other cores,

and have adverse effects on cache locality. Furthermore, many databases schemas are

not trivially partitionable (such as social networks), and state-of-the-art partitioning

techniques are very workload dependent [11].

In this thesis, we present MAFLINGO, a new main-memory serializable database

system designed to scale to many cores without the use of partitioning. MAFLINGO

is focused on OLTP applications that fit into main memory, where the goal is to

execute many concurrent, short transactions as fast as possible. In particular, it is

not designed to handle long running read-write transactions (which could lead to high

abort rates in our system), nor is it designed to handle workloads which are too large

to fit in main memory.

MAFLINGO runs transactions using a variant of optimistic concurrency control

(OCC) [19]. In OCC, a transaction accesses records without checking for conflicts with

other concurrent transactions, tracking read and write sets as it runs. Conflict checks

are made after the transaction has finished running. In particular, OCC guarantees

serializability by aborting a transaction if its read set conflicts with the write sets of

other concurrent transactions.

'The database literature reserves the term "lock" for high-level transaction locks, and uses "latch"
to refer to low-level data structure locks.
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The key advantage of using OCC in a multicore setting, as opposed to more

traditional techniques such as two-phase locking (2PL), is that tracking read and

write-sets does not require any locking. This is especially relevant for multicore

architectures, since the act of obtaining a lock, even a read lock, involves transferring

cache-lines via the hardware coherency protocol, which is inherently a non-scalable

operation [4]. Additionally, OCC has the benefit of minimizing the time when a

transaction holds locks to just the commit phase after the transaction has completely

executed. MAFLINGO makes several contributions, which we outline below.

Multicore friendly OCC. Our implementation does not involve any global crit-

ical sections (which reduce concurrency), and avoids cache contention by not per-

forming any un-necessary writes to memory shared between cores (such as database

records). Our approach employs a form of multi-versioning on records to support

efficient garbage collection of updated and deleted records.

Recent read-only transactions. Multi-versioning allows us to support read-

only transactions that see a slightly stale but consistent version of the database.

These transactions can be run without tracking read sets and will never abort. Read-

only transactions can also be used for efficient check-pointing for recovery without

interfering with concurrent writes.

Fast performance. We evaluate MAFLINGO on two standard transactional

benchmarks, TPC-C and YCSB, showing that (i) it provides absolute transaction

throughput that is substantially higher than several recent main memory databases,

(ii) its OCC implementation has almost zero overhead on key-value workloads like

YCSB, (iii) when compared to a partitioned system that runs one transaction at

a time on each partition, MAFLINGO performs better when as few as 15% multi-

partition transactions are involved, and finally (iv) our optimizations for read-only

transactions allow the system to maintain good performance even with large read-only

transactions which read frequently updated records running.

13



14



Chapter 2

Related work

A number of recent systems have proposed storage abstractions for main-memory and

multicore systems. These can be broadly classified according to whether or not they

provide transactional support.

Many of these systems, including MAFLINGO, draw on a long line of classic and

current distributed and database systems work that shows that creating copies of

objects on writes (generally known as multi-version concurrency control, or MVCC),

can decrease contention for shared objects and allow read-only transactions to proceed

without being blocked by writers [19, 10, 3].

In the classic database literature, there are a few systems that combine OCC

and multi-versioning, including the multiversion serial validation protocol of Carey et

al. [6] and the multiversion parallel validation extensions of Agarwal et al. [1] Both

of these protocols include large critical sections (like the original OCC paper) that

likely make them impractical for modern multicores.

2.1 Non-transactional Systems

The non-transactional system most related to MAFLINGO is Masstree [24], which

shows that it is possible to build an extremely scalable and high throughput durable

main memory B+-tree using techniques such as version numbers instead of read locks,

as well as efficient fine-grained locking algorithms that allow many concurrent updates

15



to different parts of the tree. MAFLINGO'S underlying concurrent B+-tree implementa-

tion is inspired by the design of Masstree. MAFLINGO's main contribution is showing

how to take an existing tree such as Masstree, and make it fully serializable.

Other recent non-transactional systems include BW-Tree [23], a high throughput

MVCC-based tree structure optimized for multicore and flash storage. The authors

suggest it could be used in a transactional setting with conventional locking, but

do not tightly couple it with a transaction processor. This work is complementary

to ours; MAFLINGO could have just as easily used BW-Tree for its concurrent index.

PALM [32] is a similar high-throughput tree structure designed for multicore systems.

It uses a bulk-synchronous processing (BSP)-based batching technique and intra-core

parallelism to provide extremely high throughput, but again does not show how to

integrate this into a high throughput transaction processing system.

These recent tree structures build on many previous efforts designed to minimize

locking bottlenecks in tree-based structures, including OLFIT [7], Bronson et al. [5],

and the classic work of Lehman and Yao on Blink-trees [21].

In MAFLINGO, our goal is not to innovate on concurrent tree structures, but to

show that by coupling a high performance index structure (similar to the design of

Masstree) with an efficient version-based concurrency control scheme, it is possible

to process transactions with little additional overhead or significant limitations to

scalability.

2.2 Transactional Systems

Recently, Larson et al. [20] revisited the performance of locking and OCC-based

MVCC systems versus a traditional single-copy locking system in the context of mul-

ticore main-memory databases. Their OCC implementation exploits MVCC to avoid

installing writes until commit time, and avoids many of the centralized critical sections

present in classic OCC. However, their design lacks many of the multicore-specific

optimizations of MAFLINGO. For example, it (i) has a global critical section when

assigning timestamps, (ii) requires transaction reads to perform non-local memory
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writes to update dependency lists of other transactions, (iii) possibly forces read-

only transactions to abort, and (iv) does not include an efficient garbage collector.

These limitations cause it to perform about 50% worse in simple key-value workloads

than the single-copy locking system even under low levels of contention, whereas

MAFLINGO's OCC-based implementation is within a few percent of a key-value sys-

tem for small key-value workloads (see §6.3).

Several recent transactional systems for multicores have proposed partitioning as

the primary mechanism to achieve scalability. Dora [26] is a locking-based system

that partitions data and locks among cores, eliminating long chains of lock waits on

a centralized lock manager, and increasing cache affinity. Though this does improve

scalability, overall the performance gains are modest (about 20% in most cases) versus

a traditional locking system. Additionally, in some cases, this partitioning can cause

the system to perform worse than a conventional system when operations touch many

partitions.

PLP [27] is follow up work on Dora. In PLP, the database is physically partitioned

among many trees such that only a single thread manages a tree. The partitioning

scheme is flexible, and thus requires maintaining a centralized routing table. Running

a transaction, like in DORA, requires decomposing it into a graph of actions that run

against a single partition; such a design necessitates the use of rendezvous points,

which are additional sources of contention. Finally, the authors only demonstrate a

modest improvement over a conventional 2PL implementation.

H-Store [33] (and its commercial successor VoltDB) employ an extreme form of

partitioning, treating each partition as a separate logical database even when parti-

tions are co-located on the same physical node. Transactions local to a single partition

run without locking at all, and multi-partition transactions are executed via the use

of whole-partition locks. This makes single-partition transactions extremely fast, but,

even more so than Dora, creates scalability problems when running multi-partition

transactions. We compare MAFLINGO to a partitioned approach in §6.5, confirm-

ing the intuition that partitioning schemes can be effective with few multi-partition

transactions but do not scale well in the presence of many such transactions.
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In MAFLINGO, we eliminate the bottleneck of a centralized lock manager by co-

locating locks with each record. VLL [30] also adopts this approach, but is not focused

on optimizing for multicore performance. Shore-MT [16] shows how to take a tradi-

tional disk-based RDBMS and scale on multicore by removing centralized bottlenecks

due to latching. Jung et al. [18] show how to improve the scalability of the lock table

in RDBMS systems such as MySQL and Shore-MT by using a latch free data struc-

ture and careful parallel programming techniques. All these systems are, however,

primarily 2PL systems; as discussed previously, this introduces scalability concerns

on multicore architectures.

Porobic et al. [29] perform a detailed performance analysis of shared-nothing versus

shared-everything OLTP on a single multicore machine, and conclude that shared-

nothing configurations are preferable due to the effects of non-uniform memory ac-

cesses (NUMA). Our design does not preclude the use of NUMA-aware techniques;

indeed our system takes into consideration the topology of the machine when allocat-

ing memory, and carefully sets CPU affinity policies for worker threads.

18



Chapter 3

Architecture

MAFLINGO is a main-memory transactional database storage manager. It exposes

a relational data model, consisting of tables of typed, named records. It provides

a simple API that allows clients to issue requests in the form of stored procedures.

Stored procedures are run as a single transaction, and consist of a sequence of reads

and writes to the database, interspersed with arbitrary application logic. The use of

stored procedures avoids network round trips and the potential for stalls when users

or applications submit individual transaction statements interactively.

Under the covers, each table in MAFLINGO is implemented as a collection of

index trees, including a primary tree sorted on the table key that contains the records

themselves, as well as one or more secondary trees, sorted on other table attributes,

with references to the primary key values in the leaves of the tree. Reads in MAFLINGO

may request a single key value, or a range of values from any index by specifying a

predicate. Writes are to a single key value. Currently MAFLINGo does not provide

a SQL interface; stored procedures are handed-coded as reads and writes to primary

and secondary indexes. Supporting a SQL query interface would be straightforward.

Our index structure is described in §4.1. The basic design of MAFLINGO is shown in

Figure 3-1.

For stored procedures that are read-only, clients may specify that they be run in

the past. Such calls are run on a transactionally consistent but slightly (e.g., one

second) stale version of the database. Because these read-only transactions never

19



Figure 3-1: The architecture of MAFLINGO.

access data that is being concurrently modified by update transactions, they can be

executed more efficiently, and are guaranteed to not be aborted due to conflicts. Read

only transactions are described in §4.7, and evaluated in §6.6.

Although the primary copy of data in MAFLINGO is in main memory, transactions

are made durable via logging to disk. Transactions do not return results to users until

they have been persisted. Persistence is ongoing work and not described in this thesis.

Clients interact with MAFLINGO by issuing requests to execute stored procedures

over the network. When a stored procedure is received, it is dispatched to a database

worker thread. We generally run one worker thread per physical core of the server

machine, and have designed MAFLINGO to scale well on modern multicore machines

with tens of cores. Data in MAFLINGO is not partitioned: each worker can access

the entire database. In non-uniform memory access (NUMA) systems, MAFLINGO

is aware of the topology of the machine and provides mechanisms to allow users

to configure affinity between worker cores and data. A core runs a single stored

procedure at a time, and once a worker accepts a stored procedure, it runs until it

either commits or aborts.

As noted previously, MAFLINGO employs a novel commit protocol-a variant of

optimistic concurrency control-that provides transactional consistency without im-

pairing performance or scalability. We describe the details of this protocol next.
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Chapter 4

Design

This section describes how we execute transactions in MAFLINGO in a multicore-

friendly way. Key aspects of our design are listed below:

Lightweight latching only. We eliminate all transaction locks and rely only on

lightweight latches for concurrency control. Latches are associated with individual

records. Since latches are in line with the data, false conflicts on latches are likely to

be rare. Contrast this, for example, with the single critical section used by traditional

OCC implementations [19].

No shared-memory writes on reads. We take care to eliminate all shared-

memory writes for records read (but not written) by a transaction. The version num-

ber checking necessary for OCC completes without ever latching the relevant records.

Note that MAFLINGO's index data structure also behaves in a similar manner.

No global critical sections. There are no global critical sections in our protocol.

This includes the assignment of transaction identifiers (TIDs), which we perform

locally without coordination.

Efficient validation of range scans. The concurrency control primitives (ver-

sion numbers) of the underlying index tree are used to efficiently check for absent

ranges of records (to avoid the phantom problem). This is in contract to [20] which

re-runs scans at the end of transactions for validation purposes.
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4.1 Data Layout

The representation of a database in MAFLINGO is fairly standard for in-memory

databases. The database's records are stored in a collection of B+ trees (our protocol,

however, is easily adaptable to other index structures such as hash tables). As noted

in §2.1, the design of our B+ trees was motivated by Masstree [24]; in particular we

adopt its trie-like structure and its techniques for safely managing concurrent tree

structure modifications. Each table's primary tree is sorted according to its primary

key. Each node in the tree contains information about a range of keys; for a key in

that range it either points to the record for that key, or to a lower-level node where

the search can be continued (this is Masstree's trie structure).

Records. The in-memory representation of a record in MAFLINGO contains the

following information:

e A transaction ID, whose format is described below.

e A latch. The latch prevents concurrent modifications once a transaction starts

its commit phase.

e A previous version pointer. The pointer is null if there is no previous ver-

sion. The previous version is used to support in the past read-only transactions;

we discuss how this is done in §4.7.

e The record data. When possible, the actual record data is stored in the same

allocation as the record header, avoiding an additional memory read to fetch

values.

We make the somewhat unusual choice to modify record data in place during the

commit phase. This speeds up performance for short writes, mainly by reducing the

memory allocation overhead for record objects, but complicates the process of reading

a consistent version of a record's data. In this section we assume that versions are

read atomically; §5 describes how we achieve this in our implementation.
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Transaction IDs. MAFLINGO transaction IDs (TIDs) are 8-byte integers used to

identify transactions and to detect conflicts, and are stored with every record. Each

database record carries the ID of the transaction that most recently modified that

record. We assign transaction IDs in a decentralized fashion. Each transaction ID

has three parts. From most to least significant, they are:

" An epoch number. The epoch number is used to manage efficient record muta-

tion, database snapshots, and read-only transactions, and is described further

in @4.6 and @4.7. It is incremented once per snapshot interval, which is a system

parameter.

" A counter. This is set as described below, to ensure that a record's TID increases

monotonically.

" A core number. This is the unique ID of the core that executed the transac-

tion. Including the core number ensures that two cores never pick the same

transaction ID.

Every record in the database logically starts with TID zero. A core chooses a

transaction's ID at its commit point. It picks the smallest ID that (1) is in the

current epoch, (2) is larger than all record TIDs observed during its execution, (3) is

larger than its most recent TID, and (4) has its core ID in the low bits. Note that

the TIDs chosen by a core are monotonically increasing.

Our system selects TIDs in a way that reflects the dependency of a transaction:

if TI reads a modification installed for T2, then Ti's TID will be greater than T2's.

However, we do not ensure that TIDs produced by different cores reflect the serial

order; doing so would require global coordination at commit time. We describe later

how serializability is maintained nonetheless.

4.2 Running transactions

We now describe how we run transactions. We first discuss transactions that only

read and update existing keys in a point-wise manner. Inserts, removals, and range
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queries are discussed in §4.3 and §4.5.

As a core runs a transaction, it maintains a read-set that identifies all records that

were read, along with the TID of each record at the time it was first accessed. For

modified records, it maintains a write-set that stores the new state of the record (but

not the previous TID). Records that are both read and modified occur in both the

read-set and the write-set. A record that was only modified-for example, an inserted

record, or a record that was completely overwritten without reference to any previous

value-occurs only in the write-set, which helps us avoid unnecessary conflicts.

Data: read-set R, write-set W
1 for tuple, new-contents in sorted(W) do /* Phase 1 */
2 status <- trylock(tuple)
3 if status = busy then abort()
4

/* serialization point for transactions which commit */
5 fence() /* compiler-only on x86 */

6 for tuple, read-tid in R do /* Phase 2 */
7 if tuple.tid # read-tid or is-locked-by-other(tuple) then
8 1abort ()
9 else

L /* validation of tuple passed

10 commit-tid <- generate-tid(R, W) /* see §4.1 */
11 for tuple, new-contents in W do /* Phase 3 */
12 write(tuple, new-contents, commit-tid)
13 unlock(tuple)

Figure 4-1: Commit protocol

When the transaction has finished running, the core attempts to commit. The

commit protocol works as follows, and is summarized in Figure 4-1:

Phase 1. The core examines all records in the transaction's write-set. Each record

is first locked by acquiring the record's latch (see §4.1). To avoid deadlocks during

this phase, cores latch records in a global order. Any deterministic global order is

fine; MAFLINGO uses the pointer addresses of records. If a transaction cannot obtain

a latch after some number of spins, then it gives up and aborts.

If a transaction only does reads, a memory fence is necessary after Phase 1 to
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ensure serializability (we expand on this below). This fence is not necessarily expen-

sive; for example, on x86 and other total store order (TSO) machines, it can be a

compiler fence that does not actually affect compiled instructions (it just prevents

the compiler from moving code aggressively). If a transaction contains any writes,

the interlocked instructions executed to obtain latches provide the necessary memory

ordering properties. However it is obtained, this memory fence is the serialization

point for transactions that commit.

Phase 2. The core examines all the records in the transaction's read-set (which

may contain some records that were both read and written). If some record has a

different TID than that observed during execution, or if some record is latched by a

different transaction, the transaction releases its latches and aborts.

If the TIDs of all read records are unchanged, then at this point the transaction is

allowed to commit, because we know that all its reads are consistent with each other.

The core assigns the transaction an ID as described above.

Phase 3. During this phase, the core writes the modified records and updates

their TIDs to the transaction ID computed in the previous phase. Latches can be

released as soon as the new record has been written. MAFLINGO must ensure that

the new TID becomes visible before the latch is released, which on the x86 requires

a compiler-only memory fence between assigning the TID and releasing the latch.

4.2.1 Serializability

This protocol is serializable because (1) it latches all written records before validating

the TIDs of read records, (2) it treats latched records as dirty and aborts on encoun-

tering them, and (3) the memory fence between Phase 1 and Phase 2 ensures that

readers will see writes in progress.

Consider two committed transactions ti and t2 whose read- and write-sets overlap.

For these transactions to be serial-equivalent, we must show that either ti observed

all of t2 's writes and t2 observed none of ti's, or vice versa. Non-serializable write

interleavings cannot occur because all latches are acquired before any data is written.

It suffices to limit the analysis to the case where ti reads at least one record that t2
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Core 1 Core 2
z1 :=Read y z2 :Read x
z zi + 1 z 2 :=z2 + 1

Write zi into x Write z2 into y

Figure 4-2: A read-write conflict

writes.

First, suppose that ti observed one of t 2's writes, say a write to record x. This

means that ti's read-set contained TID t2 for x. Values are placed in a read-set before

the commit process begins, so we know that t2 was executing its Phase 3 (which is

where TIDs get written) before ti began its commit process. This shows that t 2

observed none of ti's writes. Now we show that unless ti observed all of t 2 's writes,

it will abort. Assume that ti observed an old TID of some other record, y, written

by t 2. But we know that t2 latched y (in Phase 1) before writing x's new TID (in

Phase 3), and the memory fence between Phase 1 and Phase 2 ensures that the latch

of y is visible to other cores before x's new TID becomes visible to other cores. As

a result, ti's check of y's TID in its Phase 2 will either observe the latch or y's new

TID. In either case ti will abort.

Now, suppose that ti observed none of t2's writes. We show that if t 2 committed

it must have observed all of ti's writes. If ti did not write anything this is trivial.

Otherwise, as above, note that ti latches all of its written values before checking its

read-set. Since ti observed none of t2 's latches or new TIDs, we know that t2 hadn't

started its commit process when ti entered Phase 2. As a result, the memory fence

between t 2's Phase 1 and Phase 2 will ensure that t 2 observes the latches set by ti. El

A short example. Suppose we have a table with two records x and y that both

start out with value zero (and TID zero). Consider the race shown in Figure 4-2. It is

clear that a final state of (x = 1, y = 1) is not a valid serializable outcome. Note that

this is the classic snapshot isolation anomaly. Let us illustrate why such a final state

is impossible in MAFLINGO. Suppose that this final state occurred, meaning core 1

read y,=O = 0 and core 2 read x,=o = 0. For this to happen, both cores must have

passed Phase 1, so x and y are latched by cores 1 and 2, respectively. Consider the
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execution of Phase 2 by core 1 (an identical argument would apply for core 2). Core

1 checks x and sees that x is latched, so it aborts. But then the final state would not

contain x = 1.

4.3 Range queries

Range queries are complicated by the phantom problem [12]. If we scanned a par-

ticular range but only kept track of the records that were present during our scan,

then new records could be added to the range without being detected by the protocol,

violating serializability.

Typical solutions to this problem in databases involve predicate locking [12]. Be-

cause predicate locking is often expensive to implement in practice, another commonly

deployed technique is next-key locking [25]. All these methods involve some form of

locking for reads, and go against MAFLINGO's design philosophy of lock-free reads.

In order to deal with this issue, we take advantage of the underlying B+-tree's

version number on each leaf node. The underlying B+-tree guarantees us that struc-

tural modifications (remove/insert) to a tree node result in a version number change.

A scan on the interval [a, b) therefore works as follows: in addition to recording all

records within the interval in the read-set, we also maintain an additional set, called

the node-set, which tracks the versions of B+-tree nodes that we examined. We add

the tree nodes that cover the entire key-space from [a, b) to the node-set along with

the version number examined during the scan. Phase 2 then also checks that the

version number of all tree nodes in the node-set have not changed. This ensures

there were no structural modifications (i.e., inserts or deletes) to any of the ranges

examined.

4.4 Secondary indexes

MAFLINGO supports secondary indexes with no changes over what has been described

above; we are effectively oblivious to these indexes. To us they appear to be simply
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additional tables. These tables map secondary keys to records that store the primary

keys of records in the table.

When modifications occur that affect the secondary index, the secondary index

must be changed. This happens via extra accesses in the body of the stored procedure

that did the modification. These modifications will cause aborts in the usual way:

if a transaction uses the secondary index, it will abort if the record it accesses has

changed.

4.5 Inserts and deletes

Inserts. Phase 2 as described in §4.2 handles write-write conflicts by requiring

transactions to first lock records. However, a non-existing record means there is no

shared record for transactions to lock.

We deal with this problem by inserting a new record before starting the com-

mit protocol. We add an atomic ins ert-if-absent primitive to the underlying B+

tree. (Such an operation is straightforward to implement in a Masstree-like tree.)

Insert-if-absent(k, v) succeeds and inserts a k -+ v mapping if k does not already

exist in the tree. Otherwise, it fails and returns k's current record without modifying

the tree.

An insert operation on key k then works as follows. First, a new empty (absent)

record v is constructed, and insert-if-absent(k, v) is called. If the call succeeds, v is

added to the write-set as if a regular put occurred on k. If the call fails, v is deleted,

and the existing value v' is added to the write-set. The atomic operation is necessary

to ensure that at any given time, there cannot be more than one record for a key.

The careful reader will have noticed a slight issue with insert operations (which

themselves can trigger structural modifications) and the node-set tracking discussed

in §4.3. Indeed, we need to distinguish between structural modifications caused by

the current transaction (which must not cause aborts) and modifications caused by

other conflicting transactions. This is straightforward to fix: we simply have insert-if-

absent return (node, Void, Vnew) if it makes a modification. We then check the node-set
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for node. If node is not present in node-set, then we do not have to do anything

extra. Otherwise, we check its version. If the version was Vld, we change it to vnew;

otherwise we abort.

An important insert optimization is to latch the new record before inserting it into

the tree. Though this can violate the normal latch order, it is safe to do so because

there is no possible deadlock: the core processing the transaction holds the only

reference to the new record. Furthermore, early latching is desirable: it is inexpensive

(can be done without using interlocked instructions) and reduces the time to acquire

latches during commit.

Deletes. We implement deletes as a two-step process. First, transactions only

logically remove records from the tree, by writing an empty size value for a record (a

tombstone). Thus, from the point of view of transactions, removal is just a regular

write. To actually clean up logically deleted records from the tree, however, we take

advantage of our infrastructure to support read-only transactions by deferring the

task to a background garbage collection. We discuss these details in @4.8.

4.6 Avoiding reference counting

A transaction that deletes, or otherwise replaces, a record cannot immediately free

the record's memory: that record might be in some transaction's read set. Although

reference counting could solve this problem, it would require shared memory writes

for records that were only read, a large expense we aim to avoid. MAFLINGO therefore

uses a form of read-copy-update [13] to garbage collect dead records. RCU is much

more scalable than local reference counting.

In RCU terms, each transaction forms a "read-side critical section." The system

cannot free data until all concurrent read-side critical sections have ended, since those

read-side critical sections might be examining the data.

The epoch numbers embedded in transaction IDs track read-side critical sections.

They allow us to use an epoch-based reclamation scheme [15], an efficient form of
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& Tur. The current epoch used by read/write transactions.

0 Treadonly. The epoch where read-only transactions are running. Is either Tcu, -- 1
or Tcur - 2.

* CurTable[num-cores] contains an entry for each core with the current
read/write epoch being used by that core.

" ReadonlyTable[num-cores] contains an entry for each core with the current
read-only epoch being used by that core.

" Tc. The latest epoch that is no longer needed.

Figure 4-3: State used to support read-only transactions.

RCU reclamation. We explain how we do epoch management in §4.7 and garbage

collection in §4.8.

4.7 Read-only transactions

We support running read-only transactions in the past by retaining additional versions

for records. These versions are used to form a read-only snapshot. This snapshot

provides a consistent state: it records all modifications of transactions up to some

point in the serial order, and contains no modifications from transactions after that

point.

We provide consistent snapshots using the epoch numbers described in §4.1. Trans-

actions either run in the current epoch or the previous epoch. In-the-past transactions

run in an even earlier epoch. A new epoch starts every d seconds, where d is a system

parameter. Our current implementation sets d to 1 second.

Now we describe how we manage our read-only snapshots. The tricky part is

ensuring that the move to the next read-only snapshot is done in a way that ensures

the snapshot provides a consistent state.

Our scheme for changing epochs uses the variables shown in Figure 4-3. Tcur

identifies the epoch used to run read/write (current) transactions, while Treadonly is

the epoch number used by read-only (past) transactions. The CurTable has an entry

for each core; it reflects the epoch that core is using to run read/write transactions.
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The ReadonlyTable also has an entry for each core; it records the epoch that core is

using to run read-only transactions. Finally, Tgc indicates when it is safe to remove

old versions.

One of the cores is responsible for moving the system to the next epoch. It does

this by advancing Te, to start the next read/write epoch. Later it will advance

Treadonly, but it does this only after it knows that all cores are running read-write

transactions in the latest epoch; at this point it is safe to run read-only transactions

in the previous epoch because we know that there will be no more modifications in

that epoch.

Before the start of each transaction, a core c does the following updates to advance

its local epoch state:

CurTable[c] <- max(Tcur, CurTable[c])

ReadonlyTable[c] <- max(Treadonly, ReadonlyTable[c])

A core runs a read/write transaction using the most recent version for each record;

if it observes a larger epoch number than it knows about, then we currently abort

the transaction. Note that it is also possible to switch to the higher epoch and run

the transaction in that epoch (in our experiments, aborts due to this issue are very

infrequent). In Phase 2, if a transaction does a modification to a record whose version

has a smaller epoch number, it creates a new version to hold the new update which

points to the previous version.

A core runs a read-only transaction by accessing versions of records based on its

current read-only epoch number: for each record it reads the version with the largest

epoch number that is less than or equal to this number. When a read-only transaction

reaches its end it is committed without any checking. This is correct by construction,

since the latest versions < Treadoniy of records which are still reachable (i) reflect a

prefix of the serial execution history, (ii) will not be modified by any transactions,

(iii) and will not be garbage collected (see §4.8).
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The core in charge of advancing epochs periodically updates Treadonly as follows:

Treadonly <- min(CurTable[c]) - 1
C

4.8 Garbage collection

This scheme allows read-only epochs to advance, but we also need to garbage collect

old versions. An old version can be collected only after we are sure that no read-only

transactions'need it; this is what the ReadonlyTable is used for. The core in charge

of advancing epochs also reads this table periodically, and updates Tgc in a similar

fashion to the way it updates Treadonly:

Tge <- min(ReadonlyTable[c]) - 1
C

We run a periodic background tree walker that traverses each tree and removes

unneeded versions by breaking the links to them and collecting their storage. An old

version can be removed as soon as its epoch number is < Tqe and there is a later

version that can be used for read-only transactions running in Treadonly.

Physically removing logically deleted records (i.e., records that transactions delete)

that are indeed the latest version, as discussed in §4.5, is also accomplished by this

background tree walker; recall that these versions are tombstones. We proceed by

reading a record's epoch number (without locking), and checking whether its version

is < Treadonly. If so, we lock the node and check again. If the condition still holds we

physically unlink the record from the tree and mark the record as deleted; this way

any concurrent readers and writers that raced with the unlink will know to abort.

Note that the check does not need to be < Tgc (which is overly conservative) because

it does not matter if a read-only transaction either reads a logically removed record

or notices the absence of a record-both are equivalent from its point of view.

Our scheme usually requires at most two versions for each record; records that

are rarely modified usually have just one version. There is a period at the beginning

of an epoch when some records might need three versions, but this period is short.
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However, because we run garbage collection asynchronously, our system does not

enforce this as a hard limit; some chains can grow longer before the walker sweeps

around again. @6.7 shows that this is not a big issue in our experiments.
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Chapter 5

Implementation

This section describes our prototype implementation of MAFLINGO in more detail.

The MAFLINGO storage layer is implemented in ~ 20, 000 lines of C++. In the

remainder of the section, we describe some low level details necessary to ensure cor-

rectness and implementation tricks that we use to achieve fast performance.

TID rollover. The system must ensure that the epoch number is incremented

before the counter portion of a TID rolls over. It can do this by blocking if necessary

(for at most one epoch). The system must also ensure that epoch numbers do not roll

over. If truly necessary (using 32 bits for the epoch with one-second epochs means

rollover happens once every 136 years), the checkpointing/garbage collection phase

could ensure this by artificially advancing the epochs of very old records.

Record modification. For efficiency reasons, MAFLINGO's commit phase modifies

record data in place when possible. This can expose garbage to concurrent readers

instead of meaningful record data. A version validation protocol is used to ensure

readers can detect garbage and either abort their transaction or retry. The version

validation protocol uses an additional word per record called the data version, and

a bit in that word, called the dirty bit. This word also stores additional important

information, such as the latch bit and a bit indicating whether the record is deleted.

To modify record data during Phase 3 of the commit protocol, a writer (while the
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latch is held) (1) sets the dirty bit; (2) performs a memory fence; (3) updates the

record; (4) updates the transaction ID; (5) performs a memory fence; and (6) clears

the dirty bit, releases the latch, and increments the data version in one atomic step.

This write procedure is shown in Figure 5-1.

Data: tuple to write to, new-contents, and tid
/* Assume tuple is already latched

1 tuple.version.dirty +- true
2 fence()
3 tuple.contents +- new-contents
4 tuple.tid +- tid
5 fence()
6 atomic
7 tuple.version.dirty +- false
8 tuple.version.locked t- false

9 tuple.version.counter++

Figure 5-1: Tuple write procedure

To access record data, a reader (1) checks the dirty bit and spins until it is clear;

(2) takes a snapshot of the data version word; (3) performs a memory fence; (4) reads

the transaction ID and data; (5) performs a memory fence; and (6) compares the

record's data version to its snapshot. If the data version word changed, the reader

must retry. This read validation is shown in Figure 5-2.

An alternate protocol might treat the record's latch as its dirty bit and its TID

as its data version. However, the dirty bit and data version have several advantages.

Large read/write transactions hold record latches for much longer than they modify

record data. (A latch is held throughout the commit protocol, but modification

happens record-by-record in Phase 3.) In addition, separating the TID, which is

used during commit, from the data version, which is used simply to validate read

consistency, can reduce memory contention.

As in the commit protocol, the memory fences in the read validation protocol are

compiler-only on x86 and other TSO machines.

If it is not possible to do the update in place (e.g., because there is insufficient space

in the memory block to hold the update), we allocate a new record with sufficient
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Data: tuple to read from
Result: contents at tid

1 retry:

2 version -- tuple.version
3 while version.dirty = true do

4 L version <- tuple.version

5 fenceo

6 contents <- tuple.contents
7 tid +- tuple.tid
8 fenceO

/* =stable is equality ignoring the lock bit
9 if version =stable tuple.version then

/* valid read from tuple of contents at tid

10 else

11 L goto retry

Figure 5-2: Tuple read validation procedure

space, set it to point to the old record, and atomically install the new record to map

to the existing key. Performing this installation requires some care to avoid potential

race conditions (the details of which we omit.)

Avoiding unnecessary memory allocations. We use the standard technique of

maintaining thread-local memory arenas, and reusing memory from the arenas for

per-transaction data structures, such as read/write sets. This reduction in pressure

on the memory allocator had a non-trivial performance benefit in our experiments.

Inconsistent reads in aborting transactions. The protocol as presented does

not force a transaction to abort until after it enters the commit phase, even if it

reads different versions of a value or sees some but not all of another concurrent

transaction's updates. This means stored procedures that will ultimately abort may

see inconsistent values of data before they do so. Other OCC protocols [19] provide

the same semantics, but if needed, we can prevent these situations through addi-

tional checks of versions on reads and by disabling the previously described dirty bit

optimization. We did not employ these additional checks in our experiments.
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Read-your-own-writes. In general, reading a record involves checking the write-

set so a transaction sees its own writes. However, this check is unnecessary if a

transaction never reads a record that it previously wrote. Simple static checks can

detect this easily by checking if, for example, a stored procedure ever reads a table

after updating it. In our experiments in §6, no transactions depended on reading

their own writes, so we ran them with this check disabled.
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Chapter 6

Evaluation

In this section, we evaluate the effectiveness of the techniques in MAFLINGO, answer-

ing the following questions:

" How does the performance of MAFLINGO compare with other state-of-the-art

OLTP database systems (§6.2)?

" What is the overhead of MAFLINGO's read/write set tracking for simple key-

value workloads (§6.3)?

" Do the techniques of MAFLINGO allow the system to scale as more cores become

available (§6.3, §6.4)?

" How do the techniques of MAFLINGO compare to a partitioned data-store, es-

pecially as we vary the level of cross-partition contention (§6.5)?

" How do large read-only transactions affect MAFLINGO'S performance, when

compared to running the in present versus the past (§6.6)?

* How effective is MAFLINGO'S garbage collector at reclaiming record versions

that are no longer needed in the presence of many concurrent modifications

(§6.7)?

We have done an initial evaluation of persistence to confirm that the overheads of

our logging thread and disk writes do not substantially affect performance, but have
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not fully implemented it and do not discuss it further in this evaluation section.

6.1 Experimental Setup

We used two machines to run our benchmarks, described below. We disabled Hyper-

Threading on all CPUs on both machines for predictability of results.

Machine A. This machine has eight 10-core Intel Xeon E7-8870 processors clocked

at 2.4GHz, yielding a total of 80 physical cores. Each core has a private 32KB Li

cache and a private 256KB L2 cache. Ten cores on a single processor share a 30MB

L3 cache. The machine has 256GB of DRAM with 32GB of DRAM attached to each

socket, and runs 64-bit Linux 3.2.

Machine B. This machine has four 8-core Intel Xeon E7-4830 processors clocked

at 2.1GHz, yielding a total of 32 physical cores. Each core has a private 32KB Li

cache and a private 256KB L2 cache. Eight cores on a single processor share a 24MB

L3 cache. The machine has 256GB of DRAM with 64GB of DRAM attached to each

socket, and runs 64-bit Linux 3.2.

Experiments described in §6.3 and §6.4 were run on Machine A, whereas ex-

periments described in §6.5, §6.6, and §6.7 were run on Machine B. In experiments

where we vary thread counts, we increase thread counts one socket at a time for Ma-

chine A (we progress in increments of 10 threads), and half a socket at a time for

Machine B (we progress in increments of 4 threads).

We pay careful attention to memory allocation and thread affinity in our experi-

ments. When possible, we allocate memory on a specific NUMA node and pin worker

threads to that node. For example, in our TPC-C experiments (§6.4, §6.5, and §6.6),

we allocate the records associated with a particular warehouse on a NUMA node,

and pin the worker thread(s) for the warehouse to that NUMA node. Before we run

an experiment, we make sure to pre-fault our memory pools so that the scalability

bottlenecks of Linux's virtual memory system [8] are not an issue in our benchmarks.

Finally, we use 2MB "super-pages" (a feature offered by the x86-64 architecture and

supported in recent Linux kernels) in our memory allocator to reduce TLB pressure.

40



In all graphs, each point reported is the median of three consecutive runs, with

the minimum and maximum values shown as error bars. We ran each experiment for

60 seconds. In our experiments, we follow the direction of [24] and size both internal

nodes and leaf nodes of our B+-tree to be roughly four cache-lines (a cache-line is

64-bytes on our machine), and use software prefetching when reading B+-tree nodes.

In the interest of measuring only the overhead involved in MAFLINGO'S transac-

tions versus other designs, our experiments are not run with any networked clients.

We believe this is still meaningful, as [24] shows that commodity network hardware

is not a bottleneck for high-throughput workloads. In our experiments, each thread

combines a database worker with a workload generator. These threads run within

the same process, and share MAFLINGO trees in the same address space. This is a

different setup than other systems such as H-Store, which do not share trees within

the same address space, even on a single machine. We use jemalloc as our mem-

ory allocator for all allocations minus records and tree nodes, which use the custom

memory allocator described previously. Additionally, for our experiments, we did not

enable logging/persistence and return results immediately. Once again, [24] shows

that logging can be designed to not be a bottleneck in a high-throughput system.

Finally, we set the epoch time of the system to one second.

Even though our machines have 80 and 32 physical cores, respectively, we do not

run experiments using more than 70 and 28 database worker threads, respectively.

This is so we can dedicate a few cores to performing background tasks in parallel,

such as tree traversal and garbage collection (64.8), which is a standard practice

for many database systems. These background tasks are CPU intensive tasks that

start to compete with worker threads for CPU time as we approach one worker per

core. We do not believe this issue would affect scalability for larger core counts.

It would be possible to set aside fewer background threads at the expense of less

aggressive garbage collection; §6.7 shows that our current configuration is aggressive

about collecting unneeded records to keep space overheads low.
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6.2 Comparison to other OLTP systems

In this section we report the per-core throughput of several state-of-the-art OLTP

systems from both industrial and research communities. We use the TPC-C [34]

benchmark as the basis of comparison; see §6.4 for more details on the TPC-C bench-

mark. Here, we do not measure the other systems, but rather summarize the reported

numbers in the literature (all of these numbers were generated on modern multicore

machines).

System Throughput (txns/sec/core) Notes
H-Store [28] 2, 000 Standard mix

Jones et al. [17] 12, 500 Standard mix
Calvin [36] 1, 250 100% new-order

Calvin+ [30] 2, 500 Standard mix
Shore-MT+ [29] 6, 500 Standard mix

Dora [26] ~ 2, 500 100% order-status
MAFLINGO ~ 32, 000 Standard mix (Figure 6-3)

Figure 6-1: Summary of various TPC-C benchmark reports

Figure 6-1 shows a summary of our findings. Note that Jones et al. [17], Calvin [36],

and Calvin+ [30] are all primarily focused on distributed transaction performance, but

we include their reported numbers because they are reasonably competitive.

For each system, we show its best reported number for TPC-C. If a single core

number was available, we reported it (the single core number always performed the

best). Otherwise, to compute per-core throughput, we normalized the transaction

throughput rate by the number of CPU cores (parallel hardware contexts, in the case

of Dora) used in the corresponding benchmark. Since different systems were evaluated

on different hardware and (sometimes) in configurations with overheads from disk and

network I/O, the exact performance differences are not interesting. What is clear,

however, is that MAFLINGO provides competitive, if not substantially higher per-core

throughput than previous main-memory multicore databases.
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6.3 Overhead versus Key-Value

Since MAFLINGO is layered on top of a fast, concurrent key-value store, we wanted to

demonstrate the overhead of MAFLINGO's read/write set tracking versus no tracking

in a key-value store.

For this experiment, we evaluate two systems. The first system, Key-Value, is

simply the concurrent B+-tree underneath MAFLINGO. That is, Key-Value provides

only atomic gets and puts for a single key, and no transactions. The second system

is MAFLINGO. We ran a variant of YCSB [9] workload mix A. YCSB is Yahoo's

popular key-value benchmark. Our variant differs in the following ways: (a) we fix

the read/write ratio to 80/20 (instead of 50/50), (b) we change the write transaction

to a read-modify-write transaction, and (c) we shrink the size of records to 100 bytes

(instead of 1000 bytes) . (a) is to prevent the memory allocator from becoming

the primary bottleneck. (b) is to use an operation that actually generates read-

write conflicts (note that for Key-Value, we implement the read-modify-write as

two separate non-atomic operations). (c) is to prevent memcpy of the record values

from becoming the primary bottleneck (this affects both systems equally). Both

transactions sample keys uniformly from the key-space. We fix the tree size to contain

320M keys, and vary the number of database workers performing transactions against

the tree.

25M i i

20M _~~~ Key-Value

MAFLINGO

15M GlobalTID

10M

5M-

0
1 10 20 30 40 50 60 70

threads

Figure 6-2: YCSB Benchmark
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Figure 6-2 shows the results of running the YCSB benchmark on both systems

(ignore GlobalTID for now). Here, the overhead of MAFLINGO compared to Key-

Value is negligible; Key-Value out-performs MAFLINGO by a maximum of 1.02x

at 10 threads.

6.4 Multi-core scalability of Maflingo

Our next experiment evaluates the scalability of MAFLINGO as we increase the num-

ber of transaction processing cores. We already saw linear scalability on YCSB in

Figure 6-2 from the previous section. We now answer two more questions: (i) what did

we gain from designing a commit protocol with no global coordination, and (ii) how

does our protocol work on a more complex benchmark?

To answer the first question, we take MAFLINGo and add one atomic compare-

and-swap (CAS) instruction on a single shared cache-line in the commit protocol, to

simulate global TID generation. Note that this is exactly the critical section that

the commit protocol from Larson et al. [20] has. We call this protocol GlobalTID.

From Figure 6-2, we see that for low core counts, GlobalTID performs identically

to MAFLINGO, which is expected. However, as soon as we hit 20 cores, we see the

performance of GlobalTID start to plateau, as the atomic CAS becomes a contention

point in the system.

To answer the second question, we use the popular TPC-C benchmark [34], which

models a retail operation. All transactions in TPC-C are structured around a local

warehouse. To run TPC-C on MAFLINGO, we assign each transaction processing

thread a local warehouse to model the client affinity of TPC-C. For this experiment,

we size the database such that the number of warehouses equals the number of pro-

cessing threads, so the database grows as more threads are introduced (we fix the

contention ratio of the workload). We do not partition any of the tables. For TPC-C,

we do not model client "think" time, and we run the standard workload mix in-

volving all five transactions. Note that the standard mix involves cross-warehouse

transactions.
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Figure 6-3: TPC-C Benchmark

Figure 6-3 shows the throughput of running TPC-C as we increase the number

of threads (and thus warehouses) in MAFLINGO. Here, we see linear scale up to 60

threads, with a slight dip between 60 to 70 threads. The per-thread throughput at one

thread is 1.29x the per-thread throughput at 60 threads, and 1.40x the per-thread

throughput at 70 threads.

Note that even with zero-overhead concurrency control, we expect the single ware-

house (one thread) workload to have slightly higher per-thread throughput than the

multi-warehouse workloads. This is because the one thread running the single ware-

house workload gets all 30MB of a shared L3 cache to itself, whereas each thread

running the multi-warehouse workloads must share the 30MB L3 cache between nine

other threads on the same socket. Indeed, the per-thread throughput at 10 threads

drops to 1.07x the per-thread throughput at 60 threads, and 1.15x the per-thread

throughput at 70 threads.

Furthermore, we believe the slight dip does not indicate any inherent bottleneck

in our protocol, but rather is the result of competition over finite CPU resources. The

high throughput rates between 60 to 70 threads result in many old items which must

be processed and reaped by the garbage collector, and also larger indexes which must

be scanned by the background tree walker. Because we parallelize both the garbage

collector and the tree walker, these background threads start to compete for CPU

45



cycles with the worker threads. As noted in §6.1, we could dedicate less threads to

these tasks at the expense of increased space overheads.

6.5 Overhead versus Partitioned-Store

In this section, we describe our evaluation of MAFLINGO versus a statically parti-

tioned data store, which is a common configuration for running OLTP on a single

shared-memory node [33, 26, 31]. TPC-C is typically partitioned around warehouses,

such that each core is responsible for the districts, customers, and stock levels for a

particular warehouse (the read-only items table is usually replicated amongst all par-

titions). This is a natural partitioning, because as mentioned in §6.4, each transaction

in TPC-C is centered around a single local warehouse.

Here we fix the number of workers and vary the contention. This is in contrast

to §6.4, where we fixed contention and varied the number of workers. Our goal is to

show the scalability of our system in two dimensions: the level of parallelism available

(§6.4), and the level of workload contention (this experiment).

The design of Partitioned-Store is motivated by H-Store[33] and is as follows.

We physically partition the data by warehouse, so that each partition has a separate

set of B+-trees for each table. We do this within the same process to avoid the

overhead of message passing/IPC. We then associate a global partition lock with

each partition. Each transaction, before executing, first obtains all partition locks

(in sorted order). Once all locks are obtained, the transaction can proceed as in

a single-threaded data-store, without the need for doing record-level locking (2PL)

or maintaining read/write sets (OCC). We assume that we have perfect knowledge

of the partition locks needed by each transaction, so once the locks are obtained

the transaction is guaranteed to commit and never has to acquire new locks. We

implement these partition locks using fast spinlocks, and take extra precaution to

allocate the memory for the locks on separate cache-lines in order to prevent false

sharing.

Partitioned-Store uses the same B+-trees that Key-Value and MAFLINGO use;
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we left the concurrency control mechanisms in place in the B+-tree. Mao et al. [24]

show that the overhead of uncontended concurrency control is low (partition locks

ensure zero contention within the tree), so we do not believe this adversely affected

the experiments. We do remove the concurrency control for record values (which is

something Key-Value had to do to ensure atomic reads/writes to a single key).

As in our previous experiments on TPC-C, MAFLINGO executes transactions by

associating each thread with a local warehouse, and issuing queries against the shared

B+-trees; we do not physically partition the B+-trees. No special action is needed if

a transaction touches remote warehouses. Note that even if we had physically parti-

tioned the B+-trees, our system would naturally support cross-partition transactions

without any modifications or special per-partition locks as in Partitioned-Store.

We focus on the most frequent transaction in TPC-C, which is the new-order

transaction. Even though the new-order transaction is bound to a local warehouse,

each transaction has some probability (which we vary) of touching non-local ware-

houses via the stock table; our benchmark explores the tradeoffs between MAFLINGO

and Partitioned-Store as we increase the probability of a cross-partition transaction

from zero to over 60 percent.

1.2M

I .0M -~~~ Partitioned-Store -

MAFLINGO
0 .8M

0.6M

O.4M

N 0.2M

0
0.0 10.0 20.0 30.0 40.0 50.0 60.0

% cross-partition

Figure 6-4: TPC-C New Order Benchmark

Figure 6-4 shows the throughput of running all new-order transactions on both

MAFLINGO and Partitioned-Store. In this setup, we fix the number of warehouses
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and the number of threads at 28. The parameter varied is the probability p that a

particular single item is drawn from a remote warehouse. On the x-axis we plot the

probability, as a function of p, that any given transaction will touch at least one remote

warehouse (each new-order transaction includes between 5 to 15 items, inclusive) and

thus require grabbing more than one partition lock in Partitioned-Store.

The curves in Figure 6-4 confirm our intuition about data partitioning; Partitioned-

Store is clearly the optimal solution for perfectly partitionable workloads. The ad-

vantages are two-fold: no concurrency control mechanisms are required, and there is

better cache locality due to the partitioned trees being smaller. Partitioned-Store

out-performs MAFLINGO by 1.43x at p = 0. However, performance suffers as soon as

even a small fraction of cross-partition transactions are introduced. At roughly 15%,

the throughput of Partitioned-Store drops below MAFLINGo and gets worse with

increasing contention, whereas MAFLINGO maintains a steady throughput through-

out the entire experiment. At p = 10, MAFLINGO out-performs Partitioned-Store

by 3.31 x. The results here can be understood as the trade-off between coarse and

fine-grained locking. While MAFLINGO'S OCC protocol initially pays a non-trivial

overhead for tracking record-level changes in low contention regimes, this work pays

off as the contention increases. Note that the OCC overhead in Figure 6-4 is greater

than the OCC overhead in Figure 6-2 because the read/write set of the TPC-C new-

order transaction is much larger than the YCSB transactions.

Discussion. Although these results show that partitioning is not required for per-

formance, our main conclusion is not that partitioning is a bad idea. Clearly, parti-

tioning is required to get good performance in a distributed setting, and our results

show that in a local setting with few cross-partition transactions, partitioning can

beneficial. Hence, one of our future work goals is to try to obtain the benefits of

partitioning without requiring it explicitly, by exploring soft-partitioning approaches

and/or hybrid protocols (see §7.1 for more details).
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6.6 Effectiveness of read-only queries

The next question we answer is how effective MAFLINGO's read-only query mechanism

is in the face of concurrent updates. To evaluate this part of our system, we again

use the TPC-C benchmark, changing the setup as follows. We fix the number of

warehouses to 8, and the number of threads to 16 (each warehouse is assigned to two

threads). We run a transaction mix of 50% new-order, and 50% stock-level, which

is the largest of two read-only queries from TPC-C. On average, stock-level touches

several hundred records in frequently updated tables (by the new-order transaction),

performing a nested-loop join between the order-line table and the stock table.

We measure the throughput of MAFLINGO under this load in two scenarios: one

where we use MAFLINGO's read-only versions to execute the stock-level transaction

(Snapshots, labelled SS) at roughly one second in the past, and one where we execute

stock-level as a regular transaction (No-Snapshots, labelled No-SS) in the present.

In both scenarios, the new-order transaction executes in the same way. Figure 6-5

shows the results of this experiment. The x-axis is the same probability p that we

varied in Figure 6-4, except here we actually plot p on the x-axis (so at p 100, every

item is serviced by a remote warehouse).

200K I I I 100K

80K
150K

- 60K
No-SS (rate) No SS (aborts) 6

SS (rate) SS (aborts) 40K

S50K-0 - --- 20K

0 -- 0
0 20 40 60 80 100

% remote warehouse stock

Figure 6-5: TPC-C Full Benchmark

Figure 6-5 shows that using slightly stale read-only snapshots outperforms exe-

cuting read-only queries in the present by a minimum of 1.18x at p = 20, and a

maximum of 1.34x at p = 60. This is due to the larger number of aborts that oc-
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cur when a large read-only query executes with concurrent modifications (recall that

read-only snapshot queries never abort). Here, the abort rate is shown in the dashed

lines in the figure. As the contention rate increases, we see that the abort rate for

No-Snapshots grows, but stays constant for Snapshots.

6.7 Effectiveness of garbage collector

Finally, in this section we demonstrate that our previous benchmark numbers are

not artificially inflated due to a lack of garbage collection. In all our experiments

we allowed the garbage collector to run. Recall from §4.8 that multiple versions of

records are kept in order to support read-only transactions. For infrequently updated

records, we expect exactly one version; for frequently updated records, we expect

mostly two versions. If we had perfect garbage collection, there would never be more

than three versions for a record.

Extra versions YCSB (§6.3) TPC-C (§6.4)
0 0.641 0.274
1 0.927 0.990
2 0.990 0.991
3 0.999 0.991
4 0.999 0.992

Figure 6-6: Cumulative distribution of the number of versions of records in the bench-
marks from §6.3 and §6.4.

Figure 6-6 shows the cumulative breakdown of the number of extra versions for all

records in the database immediately after running the experiments described in §6.3

and §6.4 on Machine B with 28 threads. For example, ~93% of records in YCSB

had either zero or one extra versions after the experiment from §6.3. This figure shows

that for both experiments, our garbage collector kept the number of extra versions

< 2 (the maximum number of versions ever needed) for over 99% of all records.
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Chapter 7

Conclusions

In this thesis, we presented MAFLINGO, a new OCC-based serializable database stor-

age engine designed to scale to large multicore machines without requiring the use of

partitioning. MAFLINGO's concurrency control protocol is optimized for multicores,

avoiding global critical sections and non-local memory writes for read operations. It

employs a multi-versioning scheme to support efficient epoch-based memory manage-

ment. This versioning scheme allows us to support in-the-past read-only transactions

without tracking read sets and in a way that guarantees they will never abort. Over-

all our results show that MAFLINGO performs well, providing (i) linear scalability on

YCSB and TPC-C, (ii) raw transaction throughput on TPC-C that exceeds that of

other recent prototype databases designed for multicore environments, and (iii) low

overheads relative to a non-transactional system . Together, these results show that

transactional consistency and scalability are possible on modern machines without

the use of partitioning.

7.1 Future Work

Given the encouraging performance of MAFLINGO, we are investigating a number of

areas for future work, designed to further improve its performance and augment its

usability. In this section we expand upon these ideas in more detail.

Hybrid partitioning. We saw in Figure 6-4 that the performance of partitioned
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data stores was better than MAFLINGO for workloads with low cross-partition trans-

actions. Can we design a hybrid commit protocol which executes effectively using

partition locks when the system has low cross-partition contention, and falls back to

MAFLINGO after some threshold, getting the benefits of both protocols? We have

done some preliminary work exploring several algorithms with this flavor.

Hybrid data structures. MAFLINGO's main index data structure is a variant of

a B+-tree, in the interest of supporting range scans. However, typical OLTP workloads

only scan small ranges of the key space at a time, so storing all the keys of a table

in sorted order is most likely un-necessary. Given this, can we design efficient data

structures which trade off large range scans for faster point-wise lookups? A simple

idea would be to logically partition the key space and maintain separate B+-trees per

partition, similar to how Partitioned-Store operates. We are investigating more

sophisticated techniques.

Hybrid locking versus OCC. Another observation to be made for typical OLTP

workloads is that writes are often non-uniformly distributed over the key space. For

example, in TPC-C, it is much more likely for a transaction to update an entry

corresponding to a particular district than an entry corresponding to a particular

customer. For very high contention workloads, it is often the case that the conflicts

are centered around a single record or a few records. These kind of workloads perform

very poorly in OCC, and often result in livelock for transactions as they continually

abort. On the other hand, OCC has superior performance in lower contention regimes.

We are interested in exploring protocols which decide whether to use OCC or locking

on a per-record basis. This way, we could fallback to locking a few very contentious

records and speculate on the remaining records, allowing our system performance to

avoid degenerating into livelock.

Persistence/Recovery. Our current system does not have a fully implemented

persistence layer. While techniques to persist transactions are well understood, the

tricky part is to persist transactions while avoiding global critical sections on the

critical path. Even though a lot of these issues can be solved with a background

persistence worker, there is still the issue of the overhead of communicating data
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(transaction updates) between worker and persistence threads. Our persistence story

is further complicated by the lack of a globally unique transaction identifier. There

are many possible design points in this space; command logging versus data logging

and centralized log versus multiple logs are just some of the designs that need to be

evaluated. We currently have a design which addresses many of these issues, which

we aim to fully evaluate in the future as a separate piece of work.

Distributed Maflingo. Regardless of main memory sizes, at some point it

will become infeasible to run entire workloads on a single database server. Making

MAFLINGO run in a distributed setting while retaining its performance without sacri-

ficing consistency is another interesting direction of future work. Recently, there has

been a lot of work on distributed commit protocols including systems built around

determinism [35, 36] and systems which use distributed consensus protocols to agree

on log record positions [2, 10]. Whether or not distributed MAFLINGO can use any

of these techniques successfully is an open question; for instance, the most obvious

way to make MAFLINGO deterministic is through the use of deterministic thread

scheduling which can introduce significant overhead.

Out of core execution. So far in MAFLINGO we have assumed that the entire

database will fit in main-memory. As the data grows, this is no longer the case,

especially with high transaction throughput rates. While it seems straightforward

to write out parts of the database to secondary storage when running out of main-

memory, getting the details right can be tricky. Recent work [22] has focused on

algorithms for identifying which tuples are considered "cold" based on the workload,

and are thus good candidates for eviction from main-memory. However, to the best of

our knowledge there has not been any extensive study of the various trade-offs when

implementing such a system.

Performance Modeling. While we have done an empirical study of the per-

formance of partitioning versus shared everything designs, we do not have a good

analytical understanding of the trade-offs, especially for a large multicore database.

We are interested in developing analytical models to predict performance of various

main-memory database designs (partitioning versus sharing, OCC versus 2PL, etc.).

53



While a lot of fundamental work in this area has been done in the classic database lit-

erature, the classic models understandably do not take into consideration details such

as contention in the cache coherency layer, non-uniform memory access speeds, and

other details which are critical to database performance on modern multicores. Re-

cent work [4] has shown promising results in modeling these low level hardware details

via queuing theory and Markov models; we hope to extend this work to MAFLINGO.
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