
A Statically Scheduling Compiler for a

Parameterized Numerical Accelerator

by

Andrew Charles Wright

B.S., University of Florida (2011)

ARCHNES
MASSACHUSETTS INS EOF TECHNOLOGY

JUL 08 2013

LIBRARIES

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the recluirernents for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2013

@ Massachusetts Institute of Technology 2013. All rights reserved.

Author ...................... .....................................
Department of Electrical Engineering and Computer Science

May 21, 2013

Certified by..........

Accepted by.

/ Vladimir Stojanovic
Associate Professor

Thesis Supervisor

..... . ..... L'7. . .

I4}lKolodziejski

Chairman, Department Committee on Graduate Theses

// I



2



A Statically Scheduling Compiler for a Parameterized

Numerical Accelerator

by

Andrew Charles Wright

Submitted to the Department of Electrical Engineering and Computer Science

on May 22, 2013, in partial fulfillment of the
requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

Abstract

In this work, I present a statically scheduling compiler for a numerical accelerator
that parallelizes and maps algorithms to instances of a processor template. The

processor template that makes up the numerical accelerator is a collection of floating

point units (FPUs) connected to memories through an interconnect structure. The

task of the compiler is to create schedules for the interconnect structure and the

memories to perform the desired algorithm as fast as possible. The compiler does

this by representing the algorithm as a data flow graph (DFG) and scheduling the

graph using depth-first list scheduling. The compiler then assigns memory addresses

to the intermediate values of the DFG through a graph coloring heuristic to avoid

structural hazards. The final result of the compiler is a set of instructions that can

be loaded onto an instance of the processor template to create the desired numerical

accelerator.
This work also covers how algorithms are inputted into the compiler. One of the

methods of algorithm input uses C++ function templates that express the numerical

algorithm on a template data type. That type can be replaced with the graphMaker

class to create a DFG, or it can be replaced with float, double, or int to check the cor-

rectness and the performance of the algorithm with different precisions. This enables

algorithm designers to create a single version of the algorithm for both simulation

and compilation.
Multiple algorithms were compiled with this custom compiler to show how sched-

ules change with the size of the processor, to show how the distribution of units

within processors can be specialized for algorithms, and to show how algorithms can

be optimized by the compiler to rival hand optimization of algorithms.

Thesis Supervisor: Vladimir Stojanovid
Title: Associate Professor

3



4



Acknowledgments

I would first like to thank my thesis advisor, Vladimir Stojanovid, for his mentorship

and guidance in these first two years at MIT. I am also grateful for his insight and

direction throughout the project, and his availability to discuss the details of the

project.

I would vary much like to thank my partner in this project, Ranko Sredojevid,

for the support through countless hours of meetings. His work on the processor side

made my results from this compiler into something real instead of just stats and plots.

When I first started at MIT, he caught me up to speed on the project in a matter of

weeks, and thanks to him, I was able to contribute to the project early on.

I would also like to thank everyone else that was a part of the Integrated Sys-

tems Group at MIT during the years I was there including Omid Abari, Mike Geor-

gas, Sumit Dutta, Fabian Lim, Amr Suleiman, Chen Sun, Stevan Urosevic, Yan Li,

Zhipeng Li, Jonathan Leu, Ben Moss, Yu-Hsin Chen, and Hossein Fariborzi. I really

enjoyed talking to them in lab, eating lunch with them, and going to ISSCC together.

Also, the tales of tape-outs from the photonics project made me appreciate the ML605

we were using for verification.

I am very grateful of all my friends and housemasters at Ashdown House. Playing

board games with my neighbors and friends provided a much needed distraction at

times. The housemasters Ann, Terry, Katie, and Yuri all supported my friends and

me through our time on the house's executive committee. They were all willing to

hear me talk about my troubles and successes in research and grad school.

Finally, I would like to thank the people in my personal life that provided the most

encouragement and were always telling me that I could make it through the hard

classes and the busy periods in research. Thanks to my girlfriend Leslie Maldonado

for all the support, distractions, and laughs. Thanks to my parents and the rest of

my family for everything they have done for me growing up, in and out of school.

The daily Lucas updates from Bob and Cynthia were always a pleasant surprise when

I was in lab. The visits from my dad when he was on business trips in Boston were

5



always fun. Last but not least, I would like to thank my mom for the extra motivation

to graduate in the spring by buying non-refundable airfare for graduation months in

advance.

6



2 System Overview

2.1 Processor Template . . . . . . . . . . . . . .

2.2 Schedules . . . . . . . . . . . . . . . . . . .

2.3 Data Flow Graph . . . . . . . . . . . . . . .

2.4 Algorithm Performance Limits . . . . . . . .

2.5 Ensuring Fast Performance of Algorithms on

2.6 Sum m ary . . . . . . . . . . . . . . . . . . .

3 Compiler Flow

3.1 Motivation for Compiler . . . . . . . . . . .

3.2 Processor Parameters . . . . . . . . . . . . .

3.3

3.4

3.5

3.6

3.7

3.8

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

Fixed Processors

. . . . . . . . . .

Algorithm . . . . . . . . . . . .

Data Flow Graph . . . . . . . .

3.4.1 Depth Priority.....

Scheduling . . . . . . . . . . . .

Memory Assignment . . . . . .

Instruction Generation.....

Compiler Optimizations . . . .

3.8.1 Collapsing Nodes . . . .

3.8.2 Expanding Super-Nodes

3.8.3 Constant Folding . . . .

7

Contents

1 Introduction 17

19

19

22

23

23

25

26

29

.. . 29

.. . 30

.. . 31

.. . 31

.. . 33

.. . 35

. . . 37

.. . 39

.. . 39

. . . 39

. . . 40

. . . 41



3.8.4 Inverse Optimization . . . . . .

3.8.5 Operation Duplication . . . . .

3.8.6 Compiler Optimization Settings

3.9 Summary . . . . . . . . . . . . . . . .

4 Compiler Input Language

4.1 Text Based Input . . . . . . . . . . . .

4.2 C++ Template Functions . . . . . . .

4.2.1 graphMaker Class . . . . . . . .

4.2.2 Numerical Data Types.....

4.2.3 Helper Class Templates . . . . .

4.3 Front-End Optimizations . . . . . . . .

4.3.1 Constant Folding . . . . . . . .

4.3.2 Constant Checking . . . . . . .

4.3.3 constTracker . . . . . . . . . . .

4.4 Summary . . . . . . . . . . . . . . . .

5 Compiler performance

5.1 Algorithms . . . . . . . .

5.1.1 LU Decomposition

5.1.2 LDLT Decomposition . .

5.1.3 Cholesky Decomposition . . .

5.1.4 Discrete Fourier Transform

5.1.5 Fast Fourier Transform . .

Compiler Driven Algorithm Exploratic

Three Sizes of Processors . . . . . . .

5.3.1 Scheduling . . . . . . . . . . .

5.3.2 Memory Assignment.....

Redistributing Units . . . . . . . . .

Optimizations . . . . . . . . . . . . .

5.6 Summary . .

61

. . . . . . . . . . . . . . . . . . 6 2

. . . . . . . . . . . . . . . . . . 6 2

. . . . . . . . . . . . . . . . . . 6 3

. . . . . . . . . . . . . . . . . . 6 4

. . . . . . . . . . . . . . . . . . 6 5

. . . . . . . . . . . . . . . . . . 6 5

in . . . . . . . . . . . . . . . . 66

. . . . . . . . . . . . . . . . . . 6 7

. . . . . . . . . . . . . . . . . . 6 7

. . . . . . . . . . . . . . . . . . 6 9

. . . . . . . . . . . . . . . . . . 7 3

. . . . . . . . . . . . . . . . . . 7 6

. . . . . . . . . . . . . . . . .. . 7 8

8

44

45

46

50

51

51

52

53

55

55

56

56

57

58

60

5.2

5.3

5.4

5.5



6 Conclusion 81

A Matrix class 83

A .1 M otivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.2 Overview of Matrix Class . . . . . . . . . . . . . . . . . . . . . . . . . 83

B Input Algorithms 87

C graphMaker.hpp 95

9



10



List of Figures

2-1 System design flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2-2 Processor block diagram . . . . . . . . . . . . . . . . . . . . . . . . . 21

2-3 Processor block diagram . . . . . . . . . . . . . . . . . . . . . . . . . 22

2-4 A DFG with a critical path shown in red. . . . . . . . . . . . . . . . . 24

2-5 Results of scheduler improvements on generated schedules . . . . . . 26

2-6 Results of DFG improvements on bounds . . . . . . . . . . . . . . . . 27

3-1 Compiler flow showing the four main stages and the interactions be-

tween the compiler and the processor configuration. . . . . . . . . . . 30

3-2 DFG exam ple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3-3 More general DFG showing explicit memory access . . . . . . . . . . 34

3-4 DFG with collapsed nodes . . . . . . . . . . . . . . . . . . . . . . . . 40

3-5 Super-node expansion: optimal and suboptimal . . . . . . . . . . . . 43

3-6 Super-node representations of x = (2b) + (4ac) for constant folding

optim ization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3-7 Super-node representations of x = (a + b) - (c - (d -a)) for inverse

operation optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3-8 Tree rebalancing for tmp=a+b+c; x=tmp+d; y=tmp+e; without dupli-

cating nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3-9 Tree rebalancing for tmp=a+b+c; x=tmp+d; y=tmp+e; with duplicat-

ing nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3-10 Compiler optimization levels . . . . . . . . . . . . . . . . . . . . . . . 49

5-1 Latency bound results for DFT and FFT . . . . . . . . . . . . . . . . 68

11



5-2 Throughput bound results for DFT and FFT . . . . . . . . . . . . . . 68

5-3 Scheduling results for LDLT decomposition . . . . . . . . . . . . . . 69

5-4 Scheduling results for LU decomposition . . . . . . . . . . . . . . . . 70

5-5 Scheduling results for Cholesky decomposition . . . . . . . . . . . . . 70

5-6 Memory assignment results for LDLT decomposition . . . . . . . . . 71

5-7 Memory assignment results for LU decomposition . . . . . . . . . . . 72

5-8 Memory assignment results for Cholesky decomposition . . . . . . . . 73

5-9 Scheduling results for improved LDLT processors . . . . . . . . . . . 74

5-10 Memory assignment results for improved LDLT processors . . . . . . 75

5-11 Scheduling improvement for the medium LDLT processor . . . . . . . 75

5-12 Optimization improvements for an unoptimized LDLT algorithm . . . 76

5-13 Optimization improvements for a hand optimized LDLT algorithm . 77

5-14 Optimization improvements for LDLT (both hand and compiler opti-

m izations) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

12



List of Tables

2.1 Operational units available for the processor template to use . . . . . 21

4.1 Available operators and functions in simple text file input language . 52

4.2 Functions and operators overloaded for graphMaker to construct the

DFG.......... .................................... 54

4.3 Improvements made by constant folding in graphMaker with only one

constant ..... .......... ... . . . . .. . . . . . .. ... .. .. 57

4.4 Functions available for graphMaker to check constant nodes . . . . . 58

5.1 Processor parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Processor parameters with units redistributed for LDLT . . . . . . . 74

A. 1 Operators defined on matrix class . . . . . . . . . . . . . . . . . . . . 84

A.2 Row, column, and block access operations defined for the matrix class 85

A .3 Special functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

13



14



List of Algorithms

3.1 Operation scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Memory assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Super-node expansion. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1 LU decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 LDLT decomposition without hand optimization . . . . . . . . . . . . 63

5.3 LDLT decomposition with hand optimization . . . . . . . . . . . . . 64

5.4 Cholesky decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.5 F F T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

15



16



Chapter 1

Introduction

There is much effort put into researching ways of accelerating numerical computations

for embedded systems. General purpose processors are high-performance, but they

have high power consumption. Embedded processors are on the other side of the

spectrum with low power, but inferior performance. When both high performance and

low power are system requirements, custom numerical accelerators become attractive

[5, 8, 12, 13, 14].

Custom hardware numerical accelerators are usually hand crafted hardware de-

signs that take a significant amount of design effort. Many custom hardware numerical

accelerators rely on hand-crafted designs that are a result of thorough examination of

the algorithm structure [8, 12, 14]. Others rely on partitioning the algorithm between

an embedded processor and a custom hardware block that accelerates a portion of

the computation. These designs are usually implemented for a specific algorithm, and

any changes to the implemented algorithm require extensive effort to propagate the

changes to the hardware. This reduces the amount of possible design reuse.

Our approach is to pair instances of a processor template with instructions gen-

erated by a statically scheduling compiler to generate numerical accelerators from

algorithms written in a user-friendly form. The processor is templated to allow for

specialization of the processor to the type and size of the algorithm. We have shown

in previous work that the ideal processor configuration for an algorithm changes with

the problem size [15].

17



In this thesis, we will present the statically scheduling compiler that enables nu-

merical accelerator generation in coordination with the processor template. Chapter

2 presents an overview of the entire system including algorithm, compiler, and proces-

sor. This chapter gives context for the compiler and introduces a way to evaluate the

performance of the compiler by comparing the results to theoretical bounds on algo-

rithm execution time. Chapter 3 covers the compilation flow and the algorithms used

within the compiler. Chapter 4 introduces the two input methods for the compiler

and shows how a single algorithm formulation can be used for testing and compilation.

Chapter 5 presents some results from compilation runs and shows how processor size,

processor configuration, and compiler optimization all affect the generated schedules.

18



Chapter 2

System Overview

Our approach to making numerical accelerators involves selecting an algorithm and

hardware in parallel. In order to be able to do this well, the design space for the

algorithm and the design space for the hardware need to be reduced. In this work

we are assuming algorithms can be represented as a set of algebraic expressions and

assignments. The hardware is limited to processors that are generated by a specified

processor template.

Our flow of making numerical accelerators can be seen in Figure 2-1. Algorithm

development starts off independently with some optimizations, but it then meets

hardware design inside the compiler. The compiler generates a schedule for map-

ping the algorithm to the specific processor. If the schedule does not meet system

design constraints, or further optimization is desired, then new processor parameters

can be chosen, and compilation can be run again. This process continues until a

final processor is chosen and the schedule is loaded onto the processor to create an

accelerator.

2.1 Processor Template

The processor template is designed to be able to exploit parallelism in the target

algorithm, but the amount of parallelism is not known until the algorithm has been

chosen, so the specifics of an ideal processor cannot be decided upon until the intended

19



Figure 2-1: System design flow

load is known. The processor is kept generic by extensive parameterization of the

hardware template through modification of the amount and types of units and the

pipeline depth of units. The processor is made up of multiple operational units

connected to an array of memories through muxes. An overview of an example

processor generated by the processor template can be seen in Figure 2-2.

The processor is able to exploit parallelism easily due to the parallel array of

fully pipelined operational units. Due to the memory interconnect structure, these

operational units can all be fed data in the same cycle to obtain full utilization of

these units. Each operational unit has a configurable pipeline depth so they can be

designed for a specific target frequency of the processor.

20



Figure 2-2: Processor block diagram

Currently all of the implemented operational units are floating point units (FPUs),

but due to the parameterized nature of the processor, these units could be replaced

by integer operational units and operate on integers instead. The implemented units

can be seen in Table 2.1 along with the number of inputs for the unit and the range

of pipeline depths [1]. The Pred operational unit has 3 inputs for the predication

mode. One input is used as a boolean value and selects which of the other two inputs

is passed to the output to be written to memory. All other operations in the Pred

unit only use two of the inputs.

Unit Name Inputs Pipeline Depths Operations
AddSub 2 1-11 addition and subtraction

Mul 2 1-6 multiplication
Div 2 3-28 division
Sqrt 1 1-28 square root
Pred 3 0-2 min, max, comparison, predication

Table 2.1: Operational units available for the processor template to use

All of the input, output, and intermediate values used in the processors are stored

in one of the memories in the processor. The memories are dual ported memories

so they are able to read one value and write one value in a given clock cycle. The

number of memories is a configurable parameter in the processor template to allow

the designer to pick the number of memories depending on the number of operational

units in use, the data access patterns, and total amount of memory needed.

Each memory can provide data to each input of each operational unit through

multiple muxes that act as a crossbar. In the other direction, data from each opera-

tional unit can be passed to each memory for writing through more muxes that act as

21



another crossbar. The size of these crossbars depends on the number of operational

units and the number of memories in the processor. As the processor gets larger, the

interconnect delay becomes significant, and in order to sustain high clock frequencies,

the crossbars need to be pipelined. To support variable sized processors at variable

clock frequencies, the crossbars have a configurable pipeline depth in the processor

template.

2.2 Schedules

Each operational unit and each memory has a local controller that drives control

signals for the unit and the select lines for the mux or muxes feeding the unit. These

controllers have their own instruction memory where the schedules for the current

algorithm are stored. A controller for an operational unit can be seen in Figure 2-3

ContrWole

Figure 2-3: Processor block diagram

Instructions in these schedules are performed sequentially without branches or

loops. This eliminates required communication between the operational units, and it

significantly simplifies the control logic and the scheduling problem.

The compiler presented in this work is designed to generate these schedules. The

compiler's job of scheduling an algorithm for a specific processor involves assigning

times and operational units to each elementary operation (add, subtract, multiply,

etc.) in the algorithm. These assignments need to be free of hardware conflicts and

data conflicts. A hardware conflict appears in its simplest form when two operations

22



are assigned the same hardware at the same time. A more complicated hardware con-

flict occurs when two operation schedule assignments involve reading a value from the

same memory. Since the memory only has one read port, only one of the operations

will be able to get a valid value.

Data conflicts occur in a schedule when an operation is scheduled for a time that

is earlier than the times the operands become available in memory. This can happen

when operation A depends on the results of operation B. If operation B is scheduled

to finish on cycle 10, but A is scheduled to start on cycle 5, the result from B will

not be ready yet and operation A will run with invalid data.

2.3 Data Flow Graph

To make the compiler's job of scheduling easier, the algorithms are converted to

an intermediate representation called a data flow graph (DFG) to show hardware re-

quirements and data dependencies between operations. The DFG is a directed acyclic

graph (DAG) with nodes representing elementary operations and data and directed

edges that represent the flow of data between operations. DFGs are commonly used

in high-level synthesis [6], and are very similar to DAGs of basic blocks in standard

compilers [4].

2.4 Algorithm Performance Limits

There are two main performance bounds that limit the performance when running an

algorithm on the processor template: the latency bound and the throughput bound.

These bounds are the result of the combination of the DFG's structure with the

limitations of the processor configuration.

The DFG has two main structural components that contribute to bounds: its size

and its depth. The size is determined by the number of nodes that map to each type

of operational unit. The depth is determined by the length of the longest path of data

dependencies from any source to any sink when accounting for the computation time

23



required for each operation along the way. This longest path is also called the critical

path. When there are multiple longest paths within a DFG, they are all considered

critical paths. Figure 2-4 shows a critical path of a DFG in red.

Figure 2-4: A DFG with a critical path shown in red.

The processor is limited by two structural factors: the number of units of each

type and the latency of the different modules in the processor. If there are only N

processors of a given type, then no more than N operations that need that processor

can be scheduled in a single clock cycle. The latencies within the processor determine

the amount of computation time required to calculate a result from the time the

operands are read in memory.

The latency bound is the result of considering the depth of the DFG and the

processor's latency for each operation. If the processor's latencies are added up for

each node in the critical path of the DFG, then a lower bound for execution time

is obtained since each operation in the critical path needs to wait for the previous

operation to finish before it can start.

The throughput bound is the result of considering the size of the DFG and the

limited number of units of each type in the processor. The simplest way to calculate

a throughput bound is to divide the number of nodes in the DFG by the number of

operational units in the processor. This will produce the minimum number of clock

24



cycles required to issue that many instructions in the given processor, so it will take

at least that long to finish running all the instructions. This bound is valid, but it is

not as tight as it could be since it does not take into account the different types of

nodes in the DFG and the different types of operational units in the processor.

By restricting this bound to consider that nodes can only be executed by certain

operational unit types, an operational unit specific throughput bound can be calcu-

lated. Consider an algorithm that has 100 additions and 100 multiplications. When

this algorithm is run on a processor with two AddSubs, five Muls, and three Divs

the previous calculation of the throughput bound would result in 20 cycles because

there are 200 operations performed on a processor with 10 operational units. When

only considering the 100 additions that have to be done on the two AddSub units,

a different throughput bound can be calculated that is specific to AddSubs. This

AddSub throughput bound is 50 cycles, which is higher than the other calculation of

the throughput bound.

When each operational unit type is considered separately, a more accurate through-

put bound is calculated by taking the maximum of all the operational unit specific

throughput bounds. Throughout this work, the throughput bound is calculated using

the maximum of each operational unit specific throughput bound.

2.5 Ensuring Fast Performance of Algorithms on

Fixed Processors

When considering the execution time of an algorithm on a specific processor instance,

there are two main factors that contribute to the performance: the scheduler's effi-

ciency and the structure of the DFG. The scheduler assigns times for the execution of

each operation in the DFG. An ideal scheduler would assign times that result in the

fastest schedule possible for the DFG. The throughput and latency bounds are ways

to approximate the fastest schedule possible, so an ideal processor would attempt to

get the performance as close to those bounds as possible. Figure 2-5 shows what an

25



improvement in scheduler would look like for an algorithm's execution time. This

corresponds to software optimization in Figure 2-1.

-..... Throughput Bound
---- Latency Bound

Scheduling Results

Problem Size

Figure 2-5: Results of scheduler improvements on generated schedules

When the processor is fixed, only changes in the DFG structure affect the through-

put and latency bounds. If the scheduler is already meeting theoretical bounds, the

only room for improvement is in changing the structure of the DFG so the bounds

for execution time decrease. Figure 2-6 shows improvements in both latency and

throughput. The scheduler's performance is assumed constant for these plots, but

since the bounds are lowered, the scheduler is producing shorter schedules. This

corresponds to algorithm optimization in Figure 2-1.

2.6 Summary

In this chapter we introduced introduced the system of creating numerical accel-

erators consisting of the processor template and the statically scheduling compiler.

The processor template is a collection of FPU cores, memories, and controllers all

connected together with an interconnect structure. The controllers were shown to

introduce the control signals that determine the functionality of the processor. The

compiler introduced in the next section generates code that sets these control signals

at each clock cycle in the processor.

26



Throughput Bounds
-Latency Bounds
Scheduling Results

Original-
DFG .-

- -- -Improved
-.-. - -DFG

Problem Size

Figure 2-6: Results of DFG improvements on bounds

This chapter also included an introduction to the algorithm side of the generated

numerical accelerators. DFGs were introduced to explain the computational model

used for algorithms within the compiler and to introduce the two performance bounds.

The two performance bounds, latency and throughput, set limits to the compiler's

performance, but they also motivate the compiler optimizations introduced in the

next chapter.

27



28



Chapter 3

Compiler Flow

The design flow in Figure 2-1 requires a statically scheduling compiler to produce

the instructions for the controllers in Figure 2-3 and choose the optimal processor

template configuration. The compiler takes two inputs: processor parameters to

describe the target hardware and an algorithm to describe the target software. This

compiler is divided into four parts: graph generation, scheduling, memory assignment,

and code generation. The flow of the compiler can bee seen in Figure 3-1.

3.1 Motivation for Compiler

A compiler is needed in this system to take algorithms and processor parameters from

the user and produce lists of instructions for each unit within the specified processor.

Since the compiler is the bridge between the algorithm and the processor, it is an ideal

place to explore the effects of processor parameters on algorithm execution time. The

compiler needs to be able to look at a DFG and determine quickly how fast it will

run on a given processor so it can look at many processor configurations in a short

amount of time. Also, the compiler needs to be able to output information about the

DFG that could be useful to the designer when choosing processor configurations.

Information like the size of the DFG, the number of each type of operation, and the

length of the critical path is very useful for designers. With this functionality, the

compiler becomes more of a tool than a necessary block in a system.

29



Processor
Algorithm Configuration

Instructions Processor
Configuration

Figure 3-1: Compiler flow showing the four main stages and the interactions between
the compiler and the processor configuration.

3.2 Processor Parameters

The parameters of the target processor need to be specified in order for the compi-

lation results to be compatible with the target processor. The processor parameters

include all of the parameters required to instantiate a processor from the processor

template. These parameters include the number and type of operational units, the

number and size of memories, the latencies of the operational units, and the latencies

of the crossbars.

This information about the processor is used throughout the compilation process.

The graph generation stage uses the latencies from the processor parameters to cal-

culate depths in the graph for the scheduler to use. The scheduler uses the latencies

to ensure cycle by cycle accuracy of the schedule. It also uses the number of units to

make sure all available hardware is being utilized and no additional hardware is being

assumed. The memory assignment module needs to know how many memories to use

for variable location assignment. If the memory assignment cannot fit the variables

into the number of memories specified by the processor parameters, then the memory

30



assignment module modifies the amount of memories in the parameters to make the

design fit, and a warning message is sent to the user of the compiler. At the end of

the compilation process, the processor parameters are used for code generation. Code

generation creates the instruction data that will be loaded into the processor, so it

needs to know all the details about the processor.

The interactions between the processor parameters and the compilation process

are shown in Figure 3-1.

3.3 Algorithm

The algorithm is inputted into the compiler in one of two ways. The algorithm is

either written up in a simple text file with syntax that directly maps to the operations

in the processor, or it is written up using a C++ function template where higher level

functions can be used as long as they are composed of lower level operations that can

be mapped to the processor. The two algorithm input methods are described in more

detail in Chapter 4.

3.4 Data Flow Graph

As the algorithm is inputted into the compiler, a DFG is generated. This DFG

represents the structure of the algorithm through nodes that represent operations

and data storage (hardware usage) and directed edges that represent data flow. The

sources of the DFG represent constants and input variables in the algorithm. The

sinks of the DFG represent results of the algorithm, but not all desired results are

sinks, some are intermediate nodes. An example DFG can be seen in Figure 3-2.

Since the directed edges in the DFGs represent the order in which operations are

done in the algorithm, there are no loops allowed in these DFGs. If there were a loop

in a DFG it would imply that an operation needs to be computed in order to compute

itself, which is not possible. A DFG describing a looping iterative method such as

Newton's method for finding roots of functions would have the subgraph representing

31



Figure 3-2: DFG example

an iteration repeated multiple times and placed in a sequence in the DFG.

Even though there are no loops in DFGs, their structure can still can vary greatly.

The example DFG in Figure 3-2 has many inputs and one output, but an operation

like a complex Fourier transform has 2N inputs and 2N outputs making its top as

wide as its bottom. Operations such as vector-vector addition produce a forest of

many small trees since the individual operations do not depend on each other. The

DFG for computing a power of a number using successive squaring would have one

input and one output, but there would be a chain of multiplies between the two.

During scheduling, the nodes of the DFG are assigned a time to execute and

hardware to execute the node. After all of the nodes in Figure 3-2 are assigned times

to execute, there is still a question of what memory is going to be written to and read

from for each operation because that information is not shown in the graph.

Memory accesses can be added to the DFG to make it more general as shown

in Figure 3-3. This DFG has nodes for floating point operations, nodes for memory

writes, and nodes for memory reads. The memory reads and memory writes are

32



constrained such that they have to be from the same memory block. This is a more

detailed view of what the processor will be doing to compute an algorithm, but it

adds complexity and additional constraints that complicate the scheduling process.

To simplify scheduling, we use DFGs that only show nodes for numerical opera-

tions and do not treat memories as a constrained resource at scheduling time. The

reasons this assumption can be made and the cost of the assumption are discussed in

more depth in section 3.6.

3.4.1 Depth Priority

At this stage, the DFG contains information about all the required operations, but

it needs information about which nodes are more important to schedule if efficient

schedules are going to be generated. A priority for each node can be obtained by

looking at required execution time after each node is scheduled.

At each node in the DFG that is not a sink, there is at least one path from

that node leading to a sink of the graph. Each node along that path will require a

calculation to be performed that depends, either directly or indirectly, on the given

node. Due to the dependencies, these nodes will have to be scheduled after the

initial node has completed execution. These nodes will also have to be scheduled

after each previous node on the path has completed execution as well. This path

gives a lower bound for the amount of time required to finish executing the algorithm

after the initial node has been scheduled for execution. This bound is obtained by

adding up the execution time for the initial node and every node on that path. If

there are multiple paths from the initial node to the sinks, then each path can be

examined to calculate a better lower bound. If the scheduled time is known for the

initial operation, then a lower bound for the completion of the entire algorithm can

be computed by adding the scheduled time to the lower bound.

The lower bound for completion time after scheduling can be used for prioritizing

the scheduling process. If there are multiple nodes that can be scheduled in the same

time slot, scheduling the node with the largest amount of computation required before

completing the algorithm is preferred. Scheduling that node later will increase the

33



Figure 3-3: More general DFG showing explicit memory access

34



lower bound for completion time of the entire algorithm.

The node prioritizer starts at each sink and calculates lower bounds for each

node. After the node prioritizer is done, the node with the highest lower bound for

additional execution time gives the latency bound. This lower bound is tight when

there are sufficiently many FPU units. The path that causes this lower bound on

total execution time is called the critical path.

This priority is very similar to depth in a tree, except the difference in priority

between two nodes depends on computation time, not the number of edges between

them as is the case with depth.

In the example program shown in Figure 3-2, after the operation a + b is finished,

there is still a subtraction, a multiplication, and a division along the path from a + b

to the sink z. The priority for the operation a+b is the time it takes to do an addition,

a subtraction, a multiplication, and a division. The priority for d + f is only the time

required to perform an addition and a division, so a + b has a higher priority than

f +g.

3.5 Scheduling

Scheduling is done using a list scheduling algorithm sequentially in time starting with

the first clock cycle. The compiler looks at all of the operations that depend only on

variables that will be valid in memory at the current clock cycle. It then chooses the

operations with the highest priorities and assigns them to FPUs for the current clock

cycle. The results are then marked to be ready at a time in the future (when the

specified operation is completed and the results are written back). The compiler then

looks at the next clock cycle, and the process continues. Since the priority function

is closely related to depth, this process is very similar to depth first scheduling. The

full scheduling algorithm can be seen in Algorithm 3.1

35



Algorithm 3.1 Operation scheduling

node list L <-[ ]
for all nodes n do

Calculate depth(n)
if node n is a source then

Insert n into L with descending depth
end if

end for
t +- 0
while node list L not empty do

for all operational units u do
schedn - NULL
for all nodes n in L do

if n can be scheduled on unit u and n's operands are ready at time t
then

schedn +- n
Break

end if
end for
if schedn! = NULL then

Schedule node schedn on unit u at time t
Insert dependents of schedn with scheduled operands into L by depth

end if
end for
t <- t +1

end while

36



3.6 Memory Assignment

While scheduling produces the times for each operation to execute, the memory as-

signment in the next step produces the read and write addresses for each operation.

Each node in the DFG needs to be assigned a memory and an address within that

memory so there are no conflicts within the processor. Since the processor memories

have one read port and one write port, this means that the memories can only be

written to by one FPU at a time, and only one variable can be read from a memory

at a time (even though multiple FPUs may be reading the same variable in the same

clock cycle).

To make sure the memory ports are not overused in a single cycle, the compiler

generates a graph showing the dependencies between all of the variables. The graph

has an edge between two variables if they are both read in the same cycle or if they are

both written in the same cycle. If all the variables connected by edges are always in

different memories, then there will never be a resource conflict between instructions.

The task of assigning each node in the graph a different memory such that no two

edges connect nodes with the same memory is the same as finding an M coloring of

the graph where M is the number of memories. Once a valid coloring is found using

a heuristic, the memory assignments are shuffled while satisfying the constraints to

even out the number of variables in each memory.

After the memory assignment, each variable needs to have an address within the

memory assigned to it. If the program does not have too many intermediate results,

unique addresses can be assigned to each variable in a memory. If space needs to be

saved, the variables are tracked in the schedule to see when they become valid, and

how long they remain in memory. The compiler will then share addresses between

variables that do not need to be stored in memory at the same time. The full algorithm

can be seen in Algorithm 3.2.

37



Algorithm 3.2 Memory assignment

nmems <- 0
L is list of all nodes
for all nodes n do

n.deps +- 0
end for
for all pairs of nodes n, m do

if n and m cannot use the
n.deps <- n.deps + 1
m.deps <- n.deps + 1

end if
end for
Sort L by decreasing n.deps
for all nodes n in L do

i <- 1
while mem[i] has memory

i+-i+1
end while
n.memory <- i
nmems +- max(nmems, i)

end for
Sort L by increasing n.deps

for all nodes n in L do
Assign n to the memory w

end for

same memory then

conflict with n do

ith the least nodes assigned to it

38



3.7 Instruction Generation

The last step of the compiler is to take all the scheduling information and memory

assignments and write them into a file that can be loaded into the processor's instruc-

tion memories. The processor has independent controllers for each crossbar and each

memory, so the compiler runs through the schedule figuring out the settings for the

crossbars and the address lines at each clock cycle, and it creates an instruction file

for each unit. This information is all known at compile time because the programs do

not have data dependent branches. Once the compiler has calculated all the control

signals for each controller, there is an instruction file for every unit on the processor

ready to be loaded.

3.8 Compiler Optimizations

The compiler has many optional optimizations built into it. These optimizations are

applied after the DFG has been generated, but before scheduling starts. All of these

optimizations rely on arithmetic laws of real numbers. Floating point arithmetic does

not follow all the arithmetic laws of real numbers because of rounding errors, but just

like floating point representations of real numbers, they are good approximations.

There are various optimization that can be applied to the DFG to either reduce

the critical path or to reduce the number of operations. Both of these changes reduce

the associated bound for algorithm performance, potentially improving the generated

schedule for the DFG.

3.8.1 Collapsing Nodes

When the DFGs are generated from the input algorithm, the graph represents a

specific way of combining inputs to get results, but since some of the operations

used in the processor are commutative and associative, there are many different ways

of representing the combination of inputs to get the same result. To reduce the

dependency on representation, subtrees of commutative and associative operations

39



are collapsed into a single node called a super-node. This action is done during

optimization primarily for rebalancing trees and shortening the critical path, but it

is also useful to have this collapsed representation of commutative and associative

subtrees when performing the other operations.

Super-nodes can be created for subtrees made up of + and - operations, subtrees

of x and , subtrees of min, and subtrees of max. Since - and + are not commutative

or associative, the second operand in each of these cases is treated as if it is the inverse

of the operand so the operations can be treated as + and x. The super-nodes keep

track of each of the inverted inputs so when the node is expanded into individual

operations, the subtree still produces the same result.

a b c d f e

sqrto
x y

Figure 3-4: DFG with collapsed nodes

3.8.2 Expanding Super-Nodes

The scheduling process requires each node in the DFG to be assigned a depth. The

depth is calculated using how long it takes to perform operations that occur along a

path in the dependency graph. If a path in the DFG passes through a super-node, then

it is unknown how many operations are on that path because super-nodes represent

the combination of multiple nodes, and there are multiple ways to arrange them.

Depending on how the super-node is expanded, the super-node can represent few or

many operations along the path. Therefore DFGs with super-nodes cannot have an

accurate depth calculation and cannot be scheduled without expanding super-nodes.

40



When expanding super-nodes, the goal is to expand the nodes in such a way

that the critical path remains as short as possible. If the DFG is a single super-

node of additions, then when expanding that node, the ideal configuration would

be a balanced binary tree of additions because that has the shortest critical path of

configurations.

It is not always ideal to have super-nodes expanded into balanced trees. Sometimes

it is ideal for a super-node to be expanded into an unbalanced tree because one of

the operands depends on many operations, and that path is more critical than the

other paths entering the super-node. Figure 3-5 shows a pair of super-nodes expanded

optimally and expanded into balanced trees.

The algorithm for expanding super-nodes is similar to ASAP scheduling with

infinite resources [6]. The algorithm starts at the sources of the DFG and builds its

way to the sinks. Along the way, when the algorithm gets to a super-node from two

of its operands, a new operand node is created by the combination of the two inputs

and it takes the inputs' place in the super-node. The full algorithm can be seen in

Algorithm 3.3.

3.8.3 Constant Folding

Some nodes in the DFG represent constant values, and these known values can be

used to reduce the number of operations in the DFG through constant folding [4].

If there are nodes in the DFG that depend only on constants, then the node can be

evaluated and replaced with a constant before scheduling. Additionally, if there are

nodes that are being operated on by the identity element of the operation, those can

be simplified too.

This optimization can also be performed on super-nodes to reduce the number of

constants a super-node is dependent on. If two inputs in a super-node are constants,

they can be replaced with the constant equal to the combination of the two constants.

For example, the equation
2b

X = -(3.1)
4ac

41



Algorithm 3.3 Super-node expansion

L - [ ]
for all sources n do

Set depth(n) to 0
Insert n into L

end for
while L is not empty do

Pop node n from front of L

Set depth(n) to be n.latency + max depth(n.operands)

if n is a super-node then
Create node m from two operands of n with min depth

Set depth(m) to be m.latency + max depth(m.operands)

Replace corresponding inputs of n with m

if n has two operands with assigned depth then

Insert n in L by the second lowest operand depth

end if
for all nodes n' in L do

if n' can use m as an operand then
Replace corresponding inputs of n' with m

if n' has two operands with assigned depth then

Insert n' in L by the second lowest operand depth

end if
end if

end for
else

Set depth(n) to be n.latency + max depth(n.operands)

for all dependents m of n do
if m is a super-node then

if m has two operands with assigned depth then
Insert m in L by the second lowest operand depth

end if
else

if m has all operands with assigned depth then

Insert m in L by max operand depth

end if
end if

end for
end if

end while

42



a b c d

f g h

(a) DFG with super-nodes

(c) Suboptimal balanced tree expansion

Figure 3-5: Super-node expansion: optimal and suboptimal

can be expressed as a super node as shown in Figure 3-6a. This super-node has a x 2

and a +4 so the two of the can be replaced with a xO.5 resulting in the super node

shown in Figure 3-6b. This new super-node represents the optimized equation

=.5b

ac
(3.2)

Additionally, some select operations that depend on only one constant can be

optimized as well using algebraic properties of 0 and 1 [4]. Since 0 is the identity

element of addition, the expressions a + 0 and a - 0 can both be reduced to a.

Similarly, since 1 is the identity element for multiplication, the expressions b x 1 and

43

(b) Optimal expansion



(a) Before optimization

(b) After optimization

Figure 3-6: Super-node representations of x = (2b) + (4ac) for constant folding opti-
mization

b+ 1 can be reduced to b. Also, when 0 is multiplied by anything, the result is zero,

so the expressions c x 0 can be reduced to 0.

3.8.4 Inverse Optimization

Another algebraic optimization available in the compiler is inverse operation opti-

mization. Inverse operation optimization is when an operation is able to be simplified

because a value and its inverse appear in the same expression. The optimization is

performed by removing the value and its inverse, and replacing them with the identity

elementary for the operation and performing further constant folding. The simplest

for of this is replacing a - a and a+ (-a) with 0. For multiplication, this optimization

replaces a - (a)-1 and a a with 1.

This optimization can be performed on super-nodes to find less trivial optimiza-

tions. If two inputs in a super-node have the same data but opposite operation,

44



they can be replaced with the identity element for the operation. For example, the

equation

x = (a + b) - (c - (d - a)) (3.3)

can be expressed as a super node as shown in Figure 3-7a. This super-node has a +a

and a -a so the two of them can be removed from the super-node and replaced with

a +0. An obvious optimization allows for the removal of +0 to produce the super

node in Figure 3-7b. This new super-node represents the equation

x = b - c + d. (3.4)

b c d a b c d

++ -+ - I -+

+] +
Xr X

(a) Unoptimized (b) Optimized

Figure 3-7: Super-node representations of x = (a + b) - (c - (d - a)) for inverse
operation optimization

3.8.5 Operation Duplication

The source of the schedule improvements from the previous optimizations are clear

from their actions. Constant folding and inverse operation optimization both reduce

the number of operations in a DFG, potentially lowering the throughput bound. If

those removed operations are on a critical path, then the latency bound could decrease

also.

Even though it is not intuitive, sometimes it is advantageous to increase the num-

ber of operations in order to shorten the critical path and reduce the latency bound.

This is the foundation for the operation duplication optimization; duplicating an

intermediate result so trees can be rebalanced easier to shorten the critical path.

45



Consider the following algorithm:

tmp = a + b + c;

x = tmp + d;

y = tmp + e;

The DFG for this algorithm can be seen in Figure 3-8a. If all subtrees of the DFG

made of associative operations are collapsed into super-nodes, the DFG is the one

shown in Figure 3-8b. This algorithm cannot be collapsed into a single super-node

because x and y both depend on tmp. Therefore, when the super-node is expanded,

the resulting DFG as seen in Figure 3-8c is the same as the initial DFG.

If the super-node for tmp is duplicated into a second node tmp2, then x could

depend on tmp and y could depend on tmp2 like in Figure 3-9a. At this stage,

the DFG can be fully collapsed into two super-nodes, one for x and one for y. These

super-nodes can be expanded more efficiently than than the super-node in Figure 3-8b.

When expanded, the super-nodes in Figure 3-9b become the DFG seen in Figure 3-9c.

The original DFG contains 4 additions, and the critical path is a chain of 3 addi-

tions. The new DFG contains one more addition, but the critical path is shorter by

one addition.

Often times, this optimization method is too aggressive, and it increases the num-

ber of operations by so much that the throughput bound becomes the active bound

for scheduling. In these cases it is best to only do the other optimizations.

3.8.6 Compiler Optimization Settings

The custom compiler implements these settings and applies them depending on the

optimization level which ranges from -00 to -03 similar to GCC [9]. -00 contains no

optimizations, and the DFG is scheduled as-is. Each level above -00 adds optimiza-

tions to the compilation flow between DFG generation and scheduling.

-01 keeps the structure of the DFG, but it performs constant folding and inverse

operation optimizations. Constant folding and inverse operation optimizations are

repeated one after the other until no gains are made in both. This repetition allows

46



(a) Initial DFG

a b c

d e
tmp

x y

(b) DEG with super-nodes

(c) Rebalanced DFG

Figure 3-8: Tree rebalancing for tmp=a+b+c; x=tmp+d; y=tmp+e; without duplicat-

ing nodes

for expressions like

x= ((a (a+O))+3) -b (3.5)

47



(a) DFG with duplicated super-node

e a b c

y x

(b) Fully collapsed DFG

a b d c e

x y

(c) Rebalanced DFG

Figure 3-9: Tree rebalancing for tmp=a+b+c; x=tmp+d; y=tmp+e; with duplicating
nodes

to be optimized. Just one pass of the two optimizations results in

x = (1+ 3) - b. (3.6)

A second pass is needed to fully optimize it to

x = 4 - b. (3.7)

48



-02 changes the structure of the DFG by collapsing it into super-nodes and then

expanding it into balanced trees. While the DFG is collapsed into super-nodes, the

-01 optimizations are run. When the DFG is collapsed, these optimizations are

more effective because the compiler can look across and entire associative subtree for

optimizations.

-01

I.
I,

-02

I
I

-03

I

Figure 3-10: Compiler optimization levels

-03 does the same as -02, except when the compiler is collapsing the graph into

super-nodes, it performs operation duplication to be able to do further collapsing.

Section 3.8.5 shows an example of how this duplication works, and how it can be

beneficial. Since -03 increases the number of nodes in the DFG, it does not always

produce a better schedule, but there are many cases when -03 has gains in scheduling

performance that surpass all other levels of optimization.

The three optimization levels are summarized in Figure 3-10.

49

I I

I I



3.9 Summary

In this chapter we presented the stages of the compiler including an overview of

each optimization included in the compiler. The scheduler was introduced to show

how DFGs are mapped to the target processor configuration. The memory assign-

ment algorithm was covered to show how variables get their memory locations after

scheduling.

Each optimization performed by the compiler was presented to show how the

compiler can modify the DFG to get better scheduling results. The different opti-

mization levels stated in this chapter showed when each optimization is enabled giving

a comparison to standard compiler optimization levels.

The first stage of the compiler, graph generation, was briefly covered. The DFGs

generated during this stage were presented, but the input algorithm format was not

introduced. The next chapter introduces the two algorithm formats and how they

enable efficient algorithm design.

50



Chapter 4

Compiler Input Language

Normal compilers for traditional programming languages take in a combination of

text files and object files to produce a final program. These text files are written in

the programming language's syntax.

Our compiler is targeting numerical algorithms so our compiler input methods

need to be ways of expressing numerical algorithms. We have two ways of expressing

algorithms to our compiler: a text file and a C++ function template.

4.1 Text Based Input

The first input method for the compiler is a plain text file with simple syntax. The file

is parsed into the compiler and generated into a DFG by a lexer and parser generated

by Flex and Bison [3, 7].

The file contains two parts: an optional header and a list of assignments separated

by semicolons. The optional header includes parameters for the target processor.

Any parameters omitted are assumed to be default values provided by the compiler.

Listing 4.1 shows an example header for the medium processor in Table 5.2.

The body of the input file is a list of assignments separated by semicolons. For

each function the processor's operational units can perform, there is a function or an

operator in the language to express it in the text file. A full list of operators and

functions can be seen in Table 4.1. An example for calculating the distance between

51



1 addsubs 6 latency 5;
2 muls 5 latency 3;
a divs 1 latency 15;
1 xbar 1 1

Listing 4.1: Example header for medium processor

Assignment ._=

Binary operators +, -, *, /

Relational operators <, <=, >, >=

Equality operators ==, !=
Conditional function cond(a, b, c)

Arithmetic functions sqrt(a), min(a,b), max(a,b)

Table 4.1: Available operators and functions in simple text file input language

i d-x = A-x - B-x;

2 d-y = A-y - B-y;
: d-z = A-z - B.z;

4 distance = sqrt ( d-x * d-x + d-y * d-y + d-z * dz );

Listing 4.2: Computing distance between two points in 3D space

two points in 3D space in this language is shown in Listing 4.2.

Currently the target processor does not support loops or branches and neither

does this input language, but they could be useful if added to the input language as

a sort of preprocessor. Currently, if you wanted a function to compute the distance

between two points in N dimensional space for N = 2 to 10 would require a separate

file for each N used. With a preprocessor loop, the N could be used as the range for

a loop and different code could be generated depending on N. Adding this behavior

to the language would enable parameterized algorithms, but it would also add a lot of

complexity. We instead decided to leverage the existing power of function templates

in C++ to design more complicated algorithms.

4.2 C++ Template Functions

The other input method uses C++ template functions to input the algorithm to the

compiler. When using this input method, the compiler no longer has the traditional

52



compiler flow. In order to compile a C++ template function called my-algorithm with

the custom compiler, a main function needs to be written in C++. This main function

needs to call my-algorithm with the type graphMaker, and then it needs to call func-

tions in the compiler library. The DFG is generated by the call to my..algorithm, and

the DFG is stored in a static variable in the class graphMaker. When the compiler's

functions are called, it knows to look for the DFG in the class graphMaker.

To perform the compilation, first main needs to be compiled into an executable

and linked with the custom compiler. Once the executable has been generated, it

can be run to compile my..algorithm for the processor template. Listing 4.3 shows

mock-up of a main function used to compile my..algorithm for the processor template.

1 #include "compiler.hpp"
2 #include "my-algorithm.hpp"
3

4 int main() {
5 graphMaker input [10];
6 graphMaker output [10];
7 my-algorithm<graphMaker>( input, output );
6 do-compile ()
9 return 0;

io }

Listing 4.3: Example main function for compiling my-algorithm

The function my-algorithm could have been written specifically for graphMaker,

and the compilation results would still be the same, but by making it a template

function, the same algorithm that was compiled for the processor template can be

tested with numbers on a standard computer. Consider the code in Listing 4.4; by

just changing the data type, the same write-up of the algorithm can be used to test

the algorithm implementation for correctness.

4.2.1 graphMaker Class

The graphMaker class is the class used to generate DFGs from template C++ func-

tions. Each graphMaker object is a container for a DFG node that can be combined

with other graphMaker objects with the specified overloaded operators and functions

53



1 #include "my-algorithm.hpp"

int main() {
float input[10] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0,

10.0};
float output[10];

6 my-algorithm<float>( input, output );
7 for( int i=0; i<10 ; i++) {
S std::cout << "output[" << i << "] = " < output[i] << std::endl;

9 }
10 return 0;
11 }

Listing 4.4: Example main function for testing my-algorithm

to produce a node in the DFG that represents that function. In C++, the opera-

tors +, -, *, and / are normally used on numeric data types to do math associated

with the operator. When running on graphMaker data, the operators +, -, *, and /

are overloaded to add nodes to the DFG to represent those operations and return a

graphMaker object containing the new node. All of the operations in Table 4.2 have

been overloaded to work on graphMaker data to generate nodes of a DFG for each

operation and return a graphMaker object containing the new node.

unary operators +, -
binary operators +, -, *, /
assignment operators =, +=, -=, *=, /=
relational operators lt(a,b),. lteq(a,b), gt(a,b), gteq(a,b)

equality operators eq(a,b), neq(a,b)

conditional function cond(a, b, c)

arithmetic functions sqrt (a), min(a,b), max(a,b)

Table 4.2: Functions and operators overloaded for graphMaker to construct the DFG

Each individual graphMaker object points to a node in the DFG, but the compiler

needs the entire graph to be able to process it. As each node is created, it is also added

to a static member of the graphMaker class that contains the entire DFG. When the

graph is done generating and the compiler is called, the custom compiler looks at

the static member of graphMaker which contains the DFG to get the algorithm to

compile.

54



4.2.2 Numerical Data Types

The same function that generates DFGs for the compiler to process can also be used

to run the algorithm in a C++ program with floating point numbers. By replacing

the template data type with float, double, or any other numerical data type, the

same function that is used to generate DFGs can be used to compute the results of

the target algorithm for provided inputs. This allows for algorithm designers to test

the algorithm with the same code used to implement the algorithm in hardware.

Further algorithm tests can be performed by changing the data types in the al-

gorithm. To get an approximation of the error from running an algorithm in single

precision floating point, run the algorithm twice with the same inputs, once cast

as float and once cast as double, and compare the results. The difference in the

results will be an approximation of the error in the single precision floating point

implementation of the algorithm.

By using custom data types, more aspects of the algorithm can be tested. To

test non-standard floating point representations, a custom data type could be written

as a class in C++ to emulate the custom floating point precision. As long as all of

the operations in Table 4.2 are defined for the custom class, then the C++ template

function can be used to test the performance of the algorithm with a custom floating

point representation.

4.2.3 Helper Class Templates

The previous section shows how different data types can be used as long as they

have definitions for the operations in Table 4.2. In a similar manner, any template

class can be used within functions targeting the template processor as long as that

template class only uses the operations in Table 4.2 on objects of the template data

type.

To easily write linear algebra algorithms for the compiler, we created a matrix

class template matrix<T> that only uses the functions shown in Table 4.2 on its

template type T. Since the matrix class only uses those operations, it can be used in

55



any template C++ function that is targeting the compiler. This matrix class can be

used to efficiently build up larger algorithms with matrix<graphMaker> objects, and

the algorithms can still be tested with matrix<float> objects. If the algorithm was

written correctly, switching out these objects remains as easy as before.

More details on the matrix class template can be found in Appendix A.

4.3 Front-End Optimizations

When the compiler is building a DFG using graphMaker objects, the compiler can

tell if a new graphMaker represents a constant or a variable by how the node is

created. If the node is created through a cast from an int, float, or double, the

the node is constant. If the node is created through assignment from a graphMaker

object, then it is a constant only if the other object is a constant. That leaves nodes

created through functions on graphMaker objects. Without front-end optimizations

enabled, nodes created through functions on graphMaker objects are never constants.

By enabling front-end optimizations, primarily constant folding, these nodes can be

constants.

4.3.1 Constant Folding

The main front-end optimization is constant folding. If a function that creates a

graphMaker object depends only on other graphMaker objects that contain constant

value nodes, then the function can be evaluated for those constant values and the

result of the function will be a graphMaker object that contains a constant value

node equal to the result. There are also some cases where knowing a single input to

a function can be used to optimize the output. These cases utilize special properties

of the arithmetic operations such as identity elements.

One of the cases, optimizing lt (x, 0) into just x, relies on the architectural rep-

resentation of true and false values in the processor. In this architecture, the sign

bit of floating point numbers is used to express boolean values. That makes negative

numbers true and positive numbers false. Therefore lt(x,0) will return a negative

56



Before After
x+0, O+x x

x-0 x
x*0, O*x 0
x*1, 1*x x

0/x 0
x/1 x

it(x,0) x

Table 4.3: Improvements made by constant folding in graphMaker with only one
constant

number if and only if x is negative. If only the boolean value of it x, 0) matters

and not the actual floating point value, then lt (x, 0) can be replaced directly with

x. Table 4.3 shows all the improvements made by constant folding when only one of

the operands is a constant.

4.3.2 Constant Checking

Once constant folding is enabled, there are potentially many compile time constants

that the algorithm designer did not explicitly set. It makes sense to allow the designer

to check for constant values to see if their algorithm could be improved by knowing

constant values.

Need for the ability to check compile-time constants can be seen in Gaussian

elimination. Consider the implementation of Gaussian elimination in Listing 4.5.

This algorithm will not work if A(i , i) ends up being zero because there is a division

by A (i, i). Sometimes A (i, i) depends on many different inputs, but other times,

especially in sparse matrices, these intermediate values may be known to be zero at

compile-time through constant folding. If A(i, i) is known to be zero, then the entire

ith row can be swapped with a lower row, and the process can continue.

If A(i , i) is zero because of compile time constants, then it will always be zero,

and the implementation of Gaussian elimination in Listing 4.5 will never work. This

motivates the need for designers to be able to check for compile-time values so they

can modify the algorithm depending on these values. To enable modifying algorithms

57



template <class T>

matrix<T> row-eschelon ( const matrix<'>& A-in ) {
3 int M = Ain. getm () ; // number of rows

4 matrix<T> A = A -in;
5 for( int i= 0; i <M; i-+ ) {
6 A.row(i) = A.row(i) / A(i ,i);
7 for( int j=i+1;j<M; j++) {
8 A.row(j) A.row(j) - A(j ,i) * A.row(i);

o }
10 }
11 return A;

12 }

Listing 4.5: Templated Gaussian elimination algorithm using the matrix class

Numerical functions isZero (a), isOne (a) I
Boolean functions isTrue (a), isFalse (a)

Table 4.4: Functions available for graphMaker to check constant nodes

based on constants, a few functions were added that take in graphMaker nodes and re-

turn boolean values depending on the compile-time constant of inputted node. These

functions can be seen in Table 4.4. In all of the functions, if a is not a compile time

constant, then the function returns false. Otherwise the function returns true if the

constant value matches what the function is checking for.

Continuing with the Gaussian elimination example, the function isZero can be

used inside the template function to detect zeros known at compile-time. If the

known structure of the input matrix would cause Gaussian elimination to divide by

zero without pivoting, then the algorithm in Listing 4.6 is able to pivot the matrix

at compile-time to avoid that division.

4.3.3 constTracker

By adding the constant checking functions to the C++ template algorithms, we

introduced a function that is not already defined on numeric data types such as

float. Simply defining isZero and the others for float is not an option because

isZero needs to return false if the input is not a compile-time constant, and that

information is not encoded into float objects. To fix this problem, we introduced

58



1 template <class T>

2 matrix<'T> row-echelon( const matrix<T>& Ain ) {
3 i nt M= A-in.get-m();
4 matrix<T> tmp, A = A-in;

S int i, j;
for( i = 0; i <M; i-+ ) {

7 j = i ;

8 while( isZero(A(j , i)) ) {
9 j++;

10 if( j >= M ) throw matrix-singular ()
11 }
12 if( i != j ) {
13 // swap rows i and j since A(i , i) is zero
14 tmp = A.row(i);
15 A.row(i) = A.row(j);
16 A.row(j) = tmp;

17 }
is A.row(i) = A.row(i) / A(i ,i);
1f for( j = i+1; j <M; j++ ) {
20 A.row(j) = A.row(j) - A(j,i) * A.row(i);
21 }
22 }
23 return A;
24 }

Listing 4.6: Templated Gaussian elimination algorithm with compile-time pivoting

the class constTracker<T> as a container for any data type to track if it is a compile

time constant or not. The types constTracker<float> and constTracker<double>

act like float and double for all of the functions in the top part of Table 4.2, but

they contain extra information that tracks if the value could have been known at

compile-time or not.

This tracking is done through a combination of static state variables within the

constTracker<T> class and boolean values stored locally in each object. The static

state variable says if casts from type T to type constTracker<T> should be constants

or non-constants at the current time in the program. The local boolean value tracks

for each value if it is a compile-time constant or not.

When the input data is being populated, casts from T to constTracker<T> should

be treated as non-constants, and only certain elements in the input data should be

treated as constants. Inside the algorithm, when something is cast from T, it should

be treated as a constant because at that point, all non-constant inputs should already

59



be defined.

The results of functions on constTracker<T> are denoted as constants or non-

constants depending on the inputs. For example if both inputs to operator+ are

constants, then the resulting constTracker<T> will also be constant. If one of the

inputs to operator* is a constant zero, then the result will be a constant zero re-

gardless of the other value. constTracker<T> has support for all of the constant

folding optimizations in Table 4.3 and constant checking functions in Table 4.4 so the

results from constTracker<float> will still match the results of the algorithm run

with graphMaker.

4.4 Summary

This chapter introduced the two methods of algorithm input to the compiler: plain

text and C++ template functions. Plain text provides a simple interface to the

compiler. C++ template functions provide a more advanced input method.

As shown in this chapter, C++ template functions can be used to write advanced

algorithms that depend on variable sized inputs. Also the same C++ template func-

tions that generates a DFG can be used with different template data types to run

the algorithm with floating point numbers. The next chapter relies on C++ tem-

plate functions with variable sized inputs to explore the compiler performance across

various problem sizes of different algorithms.

60



Chapter 5

Compiler performance

The performance of a numerical accelerator is measured in terms of latency, power

consumption, and area. The compiler can contribute to the performance in these

areas, but the compiler's performance can also be measured separately from the gen-

erated numerical accelerator's performance. The compiler is designed to efficiently

map algorithms to the hardware by generating schedules that are as short as possible

and memory assignments that require as few memories as possible, so it makes sense

to measure the compiler in those areas.

In this chapter we will introduce a collection of algorithms that have been com-

piled with the custom compiler presented in Chapter 3. First the compiler will be

used to measure some tradeoffs between two algorithms that perform the same func-

tion. Then some of these algorithms will be used to test the compiler's scheduling

and memory assignment. The compiler's list scheduling approach is measured against

theoretical bounds for execution times from the DFGs. The compiler's memory as-

signment algorithm is measured against the minimum number of memories required

for a processor to be able to run at full throughput (one memory for each FPU in-

put). Finally some compiler optimizations will be introduced to the algorithm and

compared to hand optimizations for an algorithm.

61



5.1 Algorithms

Each algorithm in the section was written for the compiler using C++ function tem-

plates. Each algorithm works on variable size inputs, so in many of the tests performed

later in the chapter, the tests are swept across input sizes.

5.1.1 LU Decomposition

LU decomposition is a matrix decomposition algorithm for square matrices A that

produces a lower triangular matrix L and an upper triangular matrix U such that

A - LU. The decomposition is not unique unless some of the diagonals are fixed to

be one. For this section, we are assuming L to be a unit triangular matrix meaning

all the entries along the diagonal are one. The algorithm we tested for computing LU

is shown in Algorithm 5.1

Algorithm 5.1 LU decomposition

L <-I
U <-A
for i= 0 -+ N - 1 do

for j = i + 1 -+ N - 1 do

Ljj +- Uji/Uji
end for
for j = i + 1 -+ N - 1 do

Uji +- 0
end for
for j = i + 1 - N - I do

for k=zi+1->N -do
Ugk = Ugk L, * U*k

end for
end for

end for

There is a variant of LU decomposition called LDU decomposition that forces

L and U to both be unit triangular, but it introduces a diagonal matrix D to the

decomposition. When the input matrix is symmetric for LDU matrix decomposition,

U = LT, so the decomposition can be written LDLT.

62



5.1.2 LDLT Decomposition

LDLT decomposition is a matrix decomposition algorithm for symmetric matrices.

This algorithm decomposes the matrix A into unit lower triangular matrix L and

diagonal matrix D such that A = LDLT. The values of L and D are commonly

written as [16]

Di= A - L2 D (5.1)
k=O

j-1

Lij Aij - I:LikDkkLk) (5.2)
Dj k=OI

Those two formulas can be used to create an algorithm to compute L and D as

shown in Algorithm 5.2. Examining the computations done in the algorithm reveals

an inefficiency: Ljj is computed using a division by Dii, but Ljj is later multiplied

by Dii to calculate other values. These multiplications by Dii undo previous divi-

sions, and they should not be necessary assuming you have enough space to store the

intermediate values obtained when calculating Ljj.

Removing these multiplications by hand optimization results in the algorithm

shown in Algorithm 5.3. Both algorithms were implemented to test compiler opti-

mizations against hand optimizations.

Algorithm 5.2 LDLT decomposition without hand optimization

for i = 0 -> N - 1 do
Dii +- Ai, - ( L 2kDk

forj=i+1-N- 1do
Lj <-- - (Aji - ( _1 LjkDkkLik

end for
end for

63



Algorithm 5.3 LDLT decomposition with hand optimization

for i = 0 -+ N - I do
Dii <- Aii - E'-- LjkPk
for j =i + 1 -+ N - 1 do

P+ Aij- E ' PiLjk > Pig is the product of Lij and Djj

Lij Pi|Djj
end for

end for

5.1.3 Cholesky Decomposition

Cholesky decomposition is a matrix decomposition algorithm for symmetric positive

definite (SPD) matrices. The algorithm decomposes A into LLT where L is a lower

triangular matrix. This algorithm is often used for solving linear systems Ax = b

where the matrix A is SPD. The equations for the matrix L are shown below [11]

i-1

Lij Aii - EL L2 (5.3)
k=0 

i

i--1

Ljj =i Aij - LikLjk (5.4)
k=

The sequential algorithm to calculate the matrix L is shown in Algorithm 5.4.

This algorithm requires four core types from the processor: Addsub, Mul, Div, and

Sqrt.

Algorithm 5.4 Cholesky decomposition

for i =0 - N - 1 do

Lig + Aii - 1:'--_L L

for j i + 1 -+ N - 1 do

Ljj <- Aij - Ek-_ iLik y
end for

end for

64



5.1.4 Discrete Fourier Transform

The Fourier transform is a transformation from continuous signals in the time domain

to continuous signals in the frequency domain. When the input signal is discrete, the

discrete Fourier transform (DFT) can be used instead to produce its discrete frequency

components. The formula for the DFT of a complex N element vector x is shown

below.
N-1

Xk = Sx - e-i 2 ,rkn/N (5.5)
n=O

Each entry in X is the dot product of x with a vector of coefficients, so the

transform can be written as a complex matrix vector multiplication X Wx where

W is

w0 w w ... wo

W0 1 2 . N-1

W = wO w 2  4 ... w 2 (N- 1 ) (5.6)

w0 N-1 2 (N-1) . .. W(N-1)(N-1)

and w is the Nth root of unity given by the formula

w -i27r/N. (5.7)

The DFT is implemented as complex matrix-vector multiplication where the matrix

is constant and the vector is the input.

5.1.5 Fast Fourier Transform

The fast Fourier transform (FFT) is an implementation of the DFT that partitions

the problem into smaller problems and then recombines them using certain properties

of the DFT [10].

The algorithm for implementing FFT is shown in Algorithm 5.5.

65



Algorithm 5.5 FFT

for all i- 0--*N 1 do

Xbr(i) +- x(bitreverse(i))
end for
for all step = 1 - N - 1 do

jump 4- step << 1
delta <- -pi/step

sine <-- sin(delta - 0.5)
multiplier *- -2.0- sine - sine + i sin(delta)

factor -- 1
for all group = 0 - step - I do

for pair = group -> N - 1 with step jump do
match <- pair + step

product <- factor * xb,(match)

Xbr (match) - Xbr (pair) - product

Xbr(pair) = Xbr (pair) + product
end for
factor = multiplier - factor + f actor

end for
end for
return Xbr

5.2 Compiler Driven Algorithm Exploration

The compiler is typically used to generate schedules for processor configurations, but

due to the analysis it does along the way, it can also be used for general algorithm

exploration. By using an arbitrary processor configuration, algorithms can be com-

pared relative to each other to determine the differences in number of operations and

critical path.

Consider the DFT and FFT algorithms presented in the previous section. The

FFT algorithm is named "Fast" because of the reduced execution time on CPUs

versus other DFT implementations. This reduced execution time comes from FFT

requiring fewer operations. Since our processors have parallel units, the number of

operations does not explain execution time by itself; the critical path also needs to

be considered.

By using a simple processor, we can compare the latency bounds, and we can

compare the throughput bounds. Figure 5-1 shows the comparison of the latency

66



bounds for both the DFT and the FFT; Figure 5-2 compares the throughput bounds.

These figures show that the reduction in the number of operations in the FFT comes

at a cost in critical path. If the current combination of problem size and processor

configuration is latency limited, then the DFT will beat FFT, but if the system is

throughput limited, then the FFT will remain faster.

5.3 Three Sizes of Processors

We will begin the exploration of the compiler's performance when scheduling algo-

rithms for processor configurations with three example processors used to represent

different sized processors and the tradeoffs involved in picking the number of oper-

ational units in the processor. The three processors assume fixed latencies for the

different operational units, and as the processors grow, one extra stage of crossbar

latency is added to the processor.

The three processor configurations can be seen in Table 5.1.

Table 5.1: Processor

[Small

parameters

Medium

Number of Units 4 12 20

Addsubs Number 1 3 5
Latency 5 5 5

Muls Number 1 3 5
Latency 3 3 3

. Number 1 3 5
Divs Latency 15 15 15

Number 1 3 5
Sqrts Latency 15 15 15

Crossbar latencies 0 1 2

5.3.1 Scheduling

The following figures show how the compiler performs when scheduling three different

matrix decomposition algorithms for three processors. Figure 5-3 shows the schedul-

ing results for different sized LDLT decompositions. The figure shows that depending

67

Large



4 8 16

Size of Problem

Figure 5-1: Latency bound results for DFT and FFT

1000 -

500 -

0
2 4 8 16

Size of Problem

Figure 5-2: Throughput bound results for DFT and FFT

68

100

80

U)

C-)

60

40

20

0

2000

1500

32

U)
ci~
0

0

32



on the size of the LDLT decomposition being run, the ideal processor of the three

processors changes. The actual scheduling curves are close to the bounds showing

that the compiler is scheduling well.

4000 , , , , ,
actual (small)

latency bound -----
3500 throughput bound .....-

actual (medium)
3000 latency bound -----throughput bound .....-

actual (large)
2500 latency bound -----

throughput bound .....-
2000

1500

1000

500

0 --'-
5 10 15 20 25

Size of Problem

Figure 5-3: Scheduling results for LDLT

30 35 40

decomposition

Figure 5-4 shows the scheduling results for different sized LU decompositions. The

same trends seen in Figure 5-3 also appear here.

Figure 5-5 shows the scheduling results for different sized Cholesky decomposi-

tions.

5.3.2 Memory Assignment

After scheduling, the compiler assigns memories to each intermediate result of the

computation. This assignment does not assume a set number of memories. Instead

it provides the designer information about how many memories it needs. A processor

with N operational unit inputs requires N memories to be able to send a different

value to each input. The memory assignment algorithm is expected to use at least N

memories during assignment, but ideally it would use as few as possible.

69

Cl)a)

0



3000

2500

2000

1500

1000

500

0

4000

3500

3000

2500

2000

1500

1000

500

0

5 10 15 20 25
Size of Problem

Figure 5-4: Scheduling results for LU decomposition

5 10 15 20 25
Size of Problem

30 35 40

Figure 5-5: Scheduling results for Cholesky decomposition

70

CO)
(1)
C.,

Cl,ci~
C.)

0

30



Figure 5-6 shows the results of memory assignment for LDLT decomposition.

The expected minimum number of memories for these processors count the inputs on

AddSubs, Muls, and Divs, but not Sqrt, because the Sqrt units are not used. While

the number of memories required increases with the size of the problem, it does

not increase far beyond the expected minimum number of memories for this target

algorithm.

actual (small) -
expected minimum -------

actual (medium) -
expected minimum -----.

actual (large) -
expected minimum -----

------------------------ - - - - -

L I I I I I I I

30 35 405 10 15 20 25
Size of Problem

Figure 5-6: Memory assignment results for LDLT decomposition

Figure 5-7 shows the results of memory assignment for LU decomposition. Again,

the expected minimum number of memories for these processors does not count the

Sqrt inputs. The medium and large processors do not even meet the expected min-

imum number of memories. There are two reasons a processor does not meet the

minimum number of memories: either there is data reuse between operations that

are scheduled during the same cycle, or not all of the units are used during the

same cycle. For LU decomposition there are fewer divide instructions than add, sub-

tract, and multiply, but these processors have the same number of each type of unit.

Therefore the utilization for the dividers will be lower than the utilization for the

71

50

40

30

20

10

0
E

0



other units, and therefore the dividers do not need as many inputs as the other units

per cycle which reduces the need for more memories.

50 , __-
actual (small) -

expected minimum -----
actual (medium) -

40 . expected minimum -----
actual (large) -

expected minimum -----

CO 30 ------------------ j-----------------------------------------
30
1 -

0
E

S20

10

5 10 15 20 25 30
Size of Problem

Figure 5-7: Memory assignment results for LU decomposition

Figure 5-8 shows the results of memory assignment for Cholesky decomposition.

Unlike the other two examples shown, this example requires a linearly increasing

number of memories as the decomposition gets larger. This suggests that, unless the

size of the decomposition is no more than the number of operational unit inputs, then

the memory assignment algorithm will be inefficient in this case.

This behavior is not always a result of the memory assignment algorithm. Some-

times it is the result of the structure of the DFG and limiting values to only one

memory. For example, the outer product operator xxT has a fully connected memory

dependency graph regardless of schedule since each pair of inputs get multiplied at

some point. A fully connected memory dependency graph requires one memory for

each variable, so the outer product operator always requires N memories where N is

the size of x.

72



60

50 -%.. OAA ..expected minimum -----
actual (large) -

expected minimum -----
40 -

0 30

20 ----------------------

10

5 10 15 20 25 30 35 40
Size of Problem

Figure 5-8: Memory assignment results for Cholesky decomposition

5.4 Redistributing Units

The previous section examined three processors for a variety of applications, but since

the compiler is targeting a parameterized processor template, the processor can be

designed with parameters specifically targeting the desired application. Throughout

this section we will be exploring the optimal distribution of units for each size of

processor for the LDLT algorithm.

The LDLT decomposition algorithm requires additions, subtractions, multiplica-

tions, and divisions, but it does not require any square roots, so the target processor

should not have square root units. The processors in Table 5.1 all have square root

units, so when these processors are optimized for LDLT, those units will be replaced

with units of different types.

With these new processors, the scheduling results are still close to the bounds as

shown in Figure 5-9. Also, the memory assignments are still close to the expected

minimum as seen in Figure 5-10.

73



Table 5.2: Processor parameters with units redistributed for LDLT

Meiu Lag

Number of Units 4 12 20

Addsubs Number 2 6 10
Latency 5 5 5
Number 1 5 9
Latency 3 3 3

. Number 1 1 1
Divs Latency 15 15 15

Number 0 0 0
Sqrts Latency 15 15 15

Crossbar latencies 0 1 2

The improvements from specializing the types of operational units can be seen by

comparing the new schedules with the old schedules for specific processor size. For

example, the gains in the medium sized processor are shown in Figure 5-11.

5 10 15 20 25 30

Size of Problem
35 40 45 50

Figure 5-9: Scheduling results for improved LDLT processors

74

Small

U)

5000

4000

3000

2000

1000

0

Medium Large



60

50

40

30

20

10

0
35 40 45

Figure 5-10: Memory assignment results for improved LDLT processors

5000

4000

3000

2000

1000

0
5 10 15 20 25 30

Size of Problem
35 40 45 50

Figure 5-11: Scheduling improvement for the medium LDLT processor

75

CO

0
E

5 10 15 20 25 30
Size of Problem

actual (small) -
expected minimum -------

actual (medium) -
expected minimum -------

actual (large) -
expected minimum -------

------------------------------------ -------------------------------

-. ......... ...

I

50

COWi



5.5 Optimizations

The compiler optimizations can also be tested for LDLT decomposition. There are

two versions of the LDLT algorithm written for the processor. One is simply a

translation from equations that express each element in terms of other elements in A,

L, and D. This simple version can be seen in Algorithm 5.2.

There is also a hand optimized version that removed number of unneeded opera-

tions. This hand optimized version can be seen in Algorithm 5.3.

Figure 5-12 shows that there are no gains when going from no optimization (-00)

to optimization level -01, but going to optimization level -02 improves the critical

path by about 15%. Optimization level -03 includes some aggressive optimizations

that increase the number of nodes in the DFG. The increased number of nodes results

in a higher throughput bound, but at the same time, the optimizations reduce the

critical path which improves the performance over -02 from N = 2 to N = 15.

Figure 5-13 shows that there are still some gains from using the compiler's opti-

(1)CD~
0.

4000

3500

3000

2500

2000

1500

1000

500

0
5 10 15 20 25 30 35 40 45 50

Size of Problem

Figure 5-12: Optimization improvements for an unoptimized LDLT algorithm

76



mization on top of the existing hand optimizations in the algorithm. Like the other

version of the algorithm, there are no gains from using -01. When -02 is used, the

latency bound drops causing the duration of the schedules to drop with it. -03 pro-

duces more operations and increases the throughput bound like in Figure 5-12, but in

this version of the algorithm, the latency bound does not drop any further than -02.

Therefore for this algorithm, it is worse to use -03 than -02 because the optimizations

-03 enables do not outweigh the penalty of duplication operations to further collapse

nodes.

4000
-00- -
-01 -------

3500 --02.
-03

3000

2500
Ca)

-3 2000

1500

1000

500

0 
L5 10 15 20 25 30 35 40 45 50

Size of Problem

Figure 5-13: Optimization improvements for a hand optimized LDLT algorithm

Figure 5-14 shows results from both algorithms for different levels of optimization

in the same graph. One interesting thing shown in this graph is that for small problem

sizes (N < 15), the unoptimized algorithm compiled with -03 optimizations meets

the performance of the hand optimized algorithm compiled with additional compiler

optimizations. At N = 15, the inefficiency of having the compiler optimize the code

for you catches up, and the performance of the unoptimized algorithm with -03

becomes throughput limited.

77



4000

3500 Hand Optimization + -02 --------
Hand Optimization + -O .--------------

3000 -1~

2500 ,

2000

1500 - .. * ..-

1000 - .- *..

500 .$

0
5 10 15 20 25 30 35 40 45 50

Size of Problem

Figure 5-14: Optimization improvements for LDLT (both hand and compiler opti-

mizations)

5.6 Summary

In this chapter, we showed how the compiler performs in various conditions for a

collection of algorithms. First the compiler was used to perform some high-level al-

gorithm exploration comparing throughput and latency bounds for DFT and FFT

algorithms. Next the compiler was used to map matrix decomposition algorithms

to various processors. To improve the results for LDLT decomposition, the pro-

cessor configurations were modified to have the optimal distribution of unit types.

Finally optimizations were added to a standard LDLT algorithm and a hand opti-

mized algorithm to show how compiler optimizations are able to compete against

hand optimizations.

Throughout this chapter, the scheduling performance stays close to one of the

two performance bounds for execution time. This shows that the list scheduling

algorithm is efficient and is able to approach theoretical bounds for scheduling per-

formance. With the exception of Cholesky decomposition, all of the algorithms in

78



this section support the claim that memory assignment can be done after scheduling

without a large penalty on the number of memories required for operation. These re-

sults combine together to show the effectiveness of the statically scheduling compiler

presented in this thesis.

79



80



Chapter 6

Conclusion

The trade-off between power and performance in general purpose processors and em-

bedded processors makes custom hardware attractive to embedded system designers.

The large design effort and low flexibility of typical custom hardware designs nor-

mally prevent algorithm exploration. A parameterized custom hardware design that

achieves low power and high performance while keeping flexibility is very attractive,

but it is questionable how much design effort would be required to specialize the

design to a given algorithm.

The compiler we presented in this thesis keeps the design effort low for specializing

a processor template to a desired algorithm. The compiler, paired together with the

processor template, generates numerical accelerators from standard C++ function

templates. In a measure to further reduce design effort, the same C++ function that

generates instructions for the hardware can also be used to test the correctness and

accuracy of the algorithm. In addition, comparisons between the theoretical bounds

for execution times and actual scheduling results shows that often times the compiler

generated latency for an algorithm is normally close to the latency or throughput

bound.

Throughout this thesis, results for varying problem sizes and processors shows

that looking at the number of operations in an algorithm, as is the conventional way

of looking at algorithms for CPUs, is not always valid for custom processor template.

CPUs have a low number of FPUs with clock cycle latencies comparable to our

81



processor's latencies [2]. The low number of FPUs cause CPUs to be limited by the

throughput bound therefore making the performance more dependant on the number

of operations. When the number of FPUs is increased, which is often the case for our

processors, the throughput bound decreases and gives way to the latency bound. The

latency bound is not affected by the number of operations; it is only affected by the

critical path of the algorithm. To get the full story of algorithm performance on our

processor template, both aspects of the algorithm's structure, number of operations

and critical path, must both be considered.

The compiler also provides the flexibility required to explore the design space made

up by having configurable hardware running easily modified algorithms. Chapter 5

provides a brief view of how processors can be specialized for an algorithm by fixing the

number of units in a processor, then adjusting the types of units, and then applying

optimizations. The problem gets harder once post-synthesis clock frequencies are

considered in the algorithm's execution time. This compiler, along with its target

processor template, enables research on how well an entire class of algorithms can

be implemented in parameterized hardware, and how to find the optimal algorithm-

hardware pair for a given goal.

82



Appendix A

Matrix class

A.1 Motivation

Writing matrix algorithms using arrays and element-by-element operations is cum-

bersome and inefficient from a designer's point of view. Fundamental operations such

as matrix multiplication requires multiple levels of nested loops to perform. Consider

the implementation of Gaussian elimination shown in Listing A.1. This implementa-

tion uses one dimensional arrays and it requires for loops nested 3 deep. In addition,

this code is hard to read because the fundamental matrix-level operations that are

occuring are split up into smaller components so it can be coded up.

A.2 Overview of Matrix Class

The custom matrix class template can be used to represent matrices of templated

data types. Each operation in the custom library can be performed on any data type

that has the operations in Table 4.2 defined for it. The library is made up of common

operators (Table A.1), elementary matrix row-column operations (Table A.2), and

special functions (Table A.3). There is also a collection of linear algebra routines

written for matrices.

This matrix class allows for programming algorithms in a manner that is closer to

how people think about the algorithms. The Gaussian elimination example introduced

83



template <class T>

void row-echelon (T*

for( int i = 0;
out[i] = in[

I
for

in, int M, int N, T* out) {
i < M*N; i++) {
i];

( int rowl = 0; rowl < M; rowl++ ) {
for( int col = rowl; col < N; col++ ) {

out [N*rowl+col ] out [N*rowl+col] / out [N*rowl+rowl ];

}
for ( int row2 = rowl+1; row2 < M; row2++

for( int col = rowl; col < N; col++ )
out [N*row2+col ] = out [N*row2+col]

out [N*rowl+col ];

) {
{
- out [N*row2+rowll] *

}
}

}

Listing A. 1: Templated gaussian elimination algorithm

unary operators (matrix) +, -

binary operators (matrix-matrix) +, -, *

binary operators (matrix-scalar) *, /

assignment operators (matrix-matrix) =, +=, -=, *=

assignment operators (matrix-scalar) *=, /=

Table A.1: Operators defined on matrix class

above can be programmed using the matrix class and its row operations in a more

intuitive way. The rewritten algorithm can be seen in Listing A.2.

See Appendix B for more examples of this class in action.

template <class T>

matrix<T> row-eschelon( const matrix<T>& Ain ) {
int M= A-in.get-m(); // number of rows

matrix<T> A = A-in;
for( int i = 0; i <M; i++ ) {

A.row(i) = A.row(i) / A(i,i);
for( int j = i+1; j <M; j++ ) {

A.row(j) = A.row(j) - A(j ,i) * A.row(i);

}
}
return A;

i

Listing A.2: Templated Gaussian elimination algorithm using the matrix class

84

:1

b

*1

I I'

II



A.row(i) Returns a matrix containing just
row i of A

A.col(i) Returns a matrix containing just
column i of A

A.block(imin, jmin, imax, jmax) Returns a matrix containing rows
imin to imax and columns jmin to
jmax of A

Note: all of these returned matrices can be used as ivalues in assignments to
update the corresponding elements in A

Table A.2: Row, column, and block access operations defined for the matrix class

ones<fp>(int m, int n) Creates an m x n matrix of ones
zeros<fp>(int m, int n) Creates an m x n matrix of zeros
eye<fp> (int n) Creates an n x n identity matrix
diag(matrix<fp> V) Creates a diagonal matrix from a

vector
simplify(matrix< matrix<fp> > BM) Creates a normal matrix from a

block matrix
simplify(matrix<fp> M) Returns the value of the only entry

in the 1 x 1 matrix M. Throws an
exception if M is not 1 x 1.

matrixcast<fp-out,fp>(matrix<fp> Casts the matrix A to the type ma
A) trix<fp-out> by casting each ele-

ment from f p to f p-out

Table A.3: Special functions

85



86



Appendix B

Input Algorithms

template <class fp>

void lu( const matrix<fp>& A, matrix<fp>& L, matrix<fp>& U ) {

if ( A.get-m() != A. get-n () ) {

throw matrix-not _square ()

}

int N = A.get-m(;

L. set size (N,N)

U = A;

// Begin LU decomposition

for( int n = 0 ; n <N ; n++ ) {

// calculating nth column of L

// above diagonal

for ( int lrow = 0 ; Irow < n ; Irow++ ) {

L(lrow ,n) = 0;

}

// on diagonal

L(n,n) = 1;

// below diagonal

for ( int lrow = n+1 ; Irow < N ; lrow++ ) { // Irow = n+1

L(lrow,n) = U(Irow ,n) / U(n,n);

}
// Working on U

// update below nth row

// add O's in the nth column

87

2

3

4

5s

21

22

23

24



25 for( int urow = n+1 urow <N urow++ ) {
26 U(urow,n) = 0;

27 }

for ( int urow= n+1 urow <N urow++ ) {
29 for ( int ucol = n+1 ; ucol < N ; ucol++ ) {
30 U(urow, ucol) = U(urow, ucol) - L(urow,n)*U(n, ucol);

31 }
32 }

33 }
34 }

35

36 template <class fp>

37 void Idl ( const matrix<fp>& A, matrix<fp>& L, matrix<fp>& D ) {
38 if ( A. get-m() != A. get-n () ) {
39 throw matrix-not..square ()
40 }
41 int N = A. getm()

42 // Initialize L and D

43 L = eye<fp>(N) ;

44 D = zeros<fp>(N,N)

45 for( int i=0; i<N ; i-+) {
41 for( int j=0 ; j<i ; j++) {
47 i f( j =- 0 ) f

48 // sum-over-k = 0

49 L(i ,j) = A(i ,j) / D(0,0)

50 } else {
51 fp sum-over-k = L(i ,0) * D(0 ,0) * L(j ,0)

52 for( int k=1 ;k<j ;k++) {
5a sum-over-k += L(i ,k) * D(k,k) * L(j ,k);

54 }
55 L(i ,j) (A(i , ) - sum-overk) / D(j , j)

56 }

57}

5s if( i 0 ) {
5si // sum-over-k = 0

6o D(i , i) = A(i , i) ;

88



61 } else {

62 fp sum-over-k = L(i ,0) * L(i ,0) * D(0,0)

(3 for( int k=1 ; k< i ; k++) {
64 sum-over-k += L(i ,k) * L(i ,k) * D(k,k);

65 }
66 D(i ,i) = A(ii) - sum-over_k;

67 }

(8 }

69 }

70

71 // Hand optimized idl decomposition

72 template <class fp>

73 void ldl-optimized( const matrix<fp>& A, matrix<fp>& L, matrix<fp>& D )

{

74 if ( A.getm() A. getn() ) {
75 throw matrix-not _square (;

76 }

77 int N = A.get-m ;

78 // Initialize L and D

79 L = eye<fp>(N);

SO D = zeros<fp>(N,N)

i // Intermediate results that are reused to reduce the length of the

critical path

82 matrix<fp> Lij-timesDjj (N,N)

83 Lij-timesDjj = zeros<fp>(N,N);

48 for( int i=O; i<N; i++) {
S5 for( int j=O ; j<i ; j++ ) {
86 if( j ==0 ) {
87 Lij-timesDjj(i , j) = A(i ,j);

L(i ,j) = Lij-timesDjj(i ,j) / D(0,0)

89 } else {
90 fp sum-over-k = Lij-timesDjj (i ,0) * L(j ,0) // L(j ,0)

is calculated earlier than L(i ,0)

91 for( int k =1; k < j ;k-) {
92 sum-over-k += Lij-timesDjj (i ,k) * L(j ,k); // L(j ,k)

is calculated earlier than L(i ,k)

89



93 }

94 Lij-timesDjj (i j ) = A(ij) - sum-overk;

95 L(i ,j) = Lij-timesDjj (i j) / D(j ,j)

96 }

97 }

9s if( i = 0 ) {

99 D(i ,i) = A(i , i)

100 } else {

101 fp sum-over.k = L(i ,0) * Lij-timesDjj (i ,0)

102 for( int k=1 ; k<i ; k++) {

io3 sum-over-k += L(i ,k) * Lij-timesDjj (i ,k)

104 }

195 D(i , i =A(i , i) sum-overk;

106 }

1o7 }

1os }

109

11o template <class fp>

inl void cholesky( const matrix<fp>& A, matrix<fp>& L ) {

12 int i , j, k;

113 fp sum;

lit int N = A. get-n ;

us L = zeros<fp>(N,N);

116 for( i=0 ; i<N; i-+) {

117 for( j =i ; j < N ; j++) {

11S sum - A(i , j);

11n for( k = i-1 ; k >= 0; k- ) {

120 sum -= L(i ,k) * L(j ,k);

121 }
122 i f ( i == j ) {

123 L(i ,i) sqrt (sum);

124 } else {

125 L(j,i) = sum/L(i ,i);

126 }

127 }

128 }

90



129 }

130

131 // This function creates the matrix needed by dft ()
132 template <class fp>

133 matrix< complex<fp> > dft-matrix( int N ) {

134 complex<fp> *w = new complex<fp>[N];

135 matrix< complex<fp> > W(N,N);

136 // Find Nth roots of unity

137 for( int i=O ; i<N; i±+) {

138 complex<double> tmp = polar<double>( 1, -2 * PI * i / (double)N

) / sqrt(N); // division by sqrt(N) makes transform unitary

139 fp fpreal = tmp. real () ;

140 fp fp-imag = tmp. imag();

141 w[i] = complex<fp>( fp-real , fp-imag );

142 }

143 // Fill dft matrix with Nth roots of unity

144 for( intk=O ; k<N; k++) {
145 for( int n = 0 ; n < N ; n- ) {
146 W(k,n) = w[ (k * n) %N ];

147 }

148 }

149 delete {] w;

iso return W;

151 }

152

is: template <class fp>

154 matrix< complex<fp> > dft ( const matrix< complex<fp> >& x ) {

155 // Check Sizes

iso int N = x. getn (;

157 int M = x.get-m()

158 if( M != 1 && N != 1){

159 throw matrix-not _vector ()

11)1 }

161

162 if ( M != 1 ) {

16,3 return dft-matrix<fp>( M ) * x;

91



164 } else {

165 return transpose (dft-matrix<fp>( N ) * transpose(x));

166 }

167 }
168

159 template <class fp>

1o matrix< complex<fp> > fft ( const matrix< complex<fp> >& x ) {

171 // Inspired by Numerical Recipes in C++

172 // Check Sizes

173 int N = x. getn ()

174 int M = x. get-m ;

175 if( M != 1 && N != 1 ) {

176 throw matrix-not _vector ()

177 } else if( M= 1 &&N != 1 ) {

178 return transpose( fft-raw( transpose(x) ) )

179

1so

181 int i , j , logN;

182 matrix< complex<fp> > x-br (M,N); // x bit -reversed

183

184 // N (N dimension of matrix) = 1

1iS // x is a vertical vector with entries x(i ,0)

186 // Make N the dimension of the vector now for simplicity

187 N = M;

189 // Calculate log-2( N )

190 // if N- 1, logN = 0

191 // if N - 2, logN = 1

192 logN = 0;

193 for( i = 1 ; i < N; i = i <<1) {

194 logN++;

191 }
196 // Now (1 << logN) =N

197

198 // Bit Reversal

I W// index = 001011 -> index = 110100

92



200 for( int i= 0 ; i<N; i++)}{

201 // calculate bit reverse of i

202 j = 0;

203 for( int bit-i = 0 ; bit.i < logN ; bit.i++ ) {
204 if( ((1 << bit-i) & i) != 0) {
205 j= (1 << (logN - 1 - biti));

206 }

207 }

208 x-br( i,0) = x( j , 0);

209 }

210

211 // Performing FFT

212 // Does calculations inplace in x-br

213 double pi = 3.14159265358979323846;

214 for( int step=1 ; step<N ; step<<=1 ) {

215 // Known compile time constants

21 int jump = step << 1;

217 double delta = -pi / double(step);

218 double sine sin(delta * .5);

219 complex<double> multiplier (-2.0 * sine * sine , sin (delta));

220 complex<double> factor (1.0, 0.0)

221

222 for( int group = 0 ; group < step ; group-+ ) {
223 for( int pair = group; pair < N ; pair += jump) {
224 int match = pair + step;

226 // factor is a compile time constant

227 // here it is converted to the template data type

228 complex<fp> fp-factor = factor;

229 complex<fp> product = fpfactor * x-br(match,0)

230

231 x-br(match,0) = x-br(pair,0) - product;

232 x-br(pair,0) += product;

23 }
234 factor = multiplier * factor + factor

2315 }

93



236 }

237 return xbr

238 }

appendix/src/examples.hpp

94



Appendix C

graphMaker.hpp

2 * \f ie graphMaker. hpp

3 * \brief This file holds the description of the graphMaker class

4 *

* \author Andy Wright

* \date May 22, 2012

7

8

9 #ifndef GRAPHNMAKERHPP

io #define GRAPHMAKERJPP

11

12 #include "schedNode.hpp"

1:; #include "schedGraph.hpp"

14

15

16 * \brief This class creates a dependencyGraph through overloaded

operations including +,-,*, and /
17 *

18 * An example of creating a dependencyGraph using this class can be

seen below:

19 * \code{.cpp}

20 * graphMaker a,b,c,d,tmpl,tmp2,sum;

21 * tmpl = a * b;

22 * tmp2 = c + d;

95



23 * sum = tmpl + tmp2;

24 * \endcode

25

26 class graphMaker {

27 public:

28 graphMaker (;

29 graphMaker ( double constant);

30 graphMaker(int constant);

31 graphMaker ( s t r in g nodeName-req);

32 graphMaker (const graphMaker& x);

33 graphMaker(;

314

35 graphMaker operator+=(const graphMaker &rhs);

3 graphMaker operator -=(const graphMaker &rhs);

37 graphMaker operator*=(const graphMaker &rhs);

3as graphMaker operator/=(const graphMaker &rhs);

39 graphMaker operator=(const graphMaker rhs);

40

41 void renameNode(string name-req);

42

43 static void newGraph()

44 static schedGraph *graph;

friend graphMaker

friend graphMaker

friend

friend

graphMaker

graphMaker

friend graphMaker

friend

fri end

graphMaker

graphMaker

operator+(const graphMaker &opA,

const graphMaker &opB);

operator -(const graphMaker &opA,

const graphMaker &opB);

operator-(const graphMaker &opB);

operator*(const graphMaker &opA,

const graphMaker &opB);

operator/(const graphMaker &opA,

const graphMaker &opB);

sqrt (const graphMaker &opA);

min( const graphMaker &opA,

const graphMaker &opB);

friend graphMaker max( const graphMaker &opA,

96



graphMaker kopB) ;59

60

61

62

63

64

appendix/src/graphMaker.hpp

97

friend graphMaker cond( const graphMaker kopA,

const graphMaker &opB,

const graphMaker &opC);

friend graphMaker eq( const graphMaker &opA,

const graphMaker &opB);

friend graphMaker neq( const graphMaker &opA,

const graphMaker &opB);

friend graphMaker It ( const graphMaker &opA,

const graphMaker &opB);

friend graphMaker lteq( const graphMaker kopA,

const graphMaker &opB);

friend graphMaker gt( const graphMaker &opA,

const graphMaker &opB);

friend graphMaker gteq( const graphMaker &opA,

const graphMaker &opB);

friend bool isZero( const graphMaker &x );

friend bool isOne( const graphMaker &x )

friend bool isTrue( const graphMaker &x )

friend bool isFalse ( const graphMaker &x );

private :

void ensureValidNode() const;

bool isConstant() const;

float getConstantVal() const;

/// The pointer to the last calcNode this class represented

schedNode *node;

schedGraph *myGraph;

#endif // GRAPILMAKERHPP

86

87

89

90

9 1

c ons t



98



Bibliography

[1] LogiCORE IP Floating-Point Operator v5.0. Xilinx, Inc., 2011.

[2] Intel 64 and IA-32 Architectures Optimization Reference Manual. Intel Corpo-
ration, April 2012.

[3] Lexical Analysis With Flex, for Flex 2.5.37. The Flex Project, 2012.

[4] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers Principles, Tech-
niques, and Tools. Addison-Wesley Publishing Company, 1986.

[5] Koldo Basterretxea and Khaled Benkrid. Embedded high-speed Model Predictive
Controller on a FPGA. 2011 NASA/ESA Conference on Adaptive Hardware and
Systems (AHS), pages 327-335, June 2011.

[6] Philippe Coussy and Adam Morawiec, editors. High-Level Synthesis: From Al-
gorithm to Digital Circuit. Springer, 2008.

[7] Charles Donnelly and Richard Stallman. GNU Bison - The Yacc-compatible
Parser Generator. Free Software Foundation, Boston, MA, USA, 2012.

[8] Yong Dou, Jie Zhou, and Xiaoyang Chen. FPGA accelerating three QR de-
composition algorithms in the unified pipelined framework. Field Programmable
Logic ... , 410073:410-416, 2009.

[9] Richard M. Stallman et al. Using the GNU Compiler Collection. Free Software
Foundation, Boston, MA, USA, 2012.

[10] William H. Press et al. Numerical recipes in C++: the art of scientific computing.
Cambridge University Press, Cambridge, UK, second edition, 2002.

[11] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, second edition,
2002.

[12] Tor A Johansen, Warren Jackson, Robert Schreiber, and Petter To ndel. Hard-
ware Architecture Design for Explicit Model Predictive Control. (5):1924-1929,
2006.

99



[13] Kumud Nepal, Onur Ulusel, R. Iris Bahar, and Sherief Reda. Fast Multi-

Objective Algorithmic Design Co-Exploration for FPGA-based Accelerators.

2012 IEEE 20th International Symposium on Field-Programmable Custom Com-

puting Machines, pages 65-68, April 2012.

[14] Yasser Shoukry, M.W. El-Kharashi, and Sherif Hammad. MPC-On-Chip: An
Embedded GPC Coprocessor for Automotive Active Suspension Systems. Em-

bedded Systems Letters, IEEE, 2(2):31-34, June 2010.

[15] Ranko Sredojevic, Andrew Wright, and Vladimir Stojanovic. Hardware-Software

Codesign for Embedded Numerical Accelerators. 2013 IEEE 21st International

Symposium on Field-Programmable Custom Computing Machines, April 2013.

[16] G. W. Stewart. Matrix Algorithms. Society for Industrial and Applied Mathe-

matics, 1998.

100


