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Abstract

This thesis consists of parallel experimental and theoretical studies of the rovibra-
tional structure and dynamics of the Si state of acetylene, C2H2 . This small molecule
is a prototypical system for the study of cis-trans isomerization, the barrier to which
is moderately low in the Si state, presenting the opportunity to achieve a complete
understanding of the global rovibrational dynamics of an isomerizing system.

Our analysis of the spectra of ungerade vibrational levels in the region 45800-46550
cm-1 extends the complete assignment of trans vibrational levels to 4300 cm-1 above
the Si electronic origin. These exhaustive assignments have enabled the identification
of two new cis vibrational states.

Reduced dimension rovibrational variational calculations have been carried out
to aid in the characterization of spectroscopic signatures and patterns associated
with the isomerization process. Such effects include the decoupling of the vibra-
tional polyads that involve the low-energy bending modes v4 and v6 and the large
cross-anharmonicity of modes v3 and u6, the combination bands of which follow the
isomerization path toward the half-linear transition state. Additionally, we focus on
predictions for the K-staggering observed in both cis and trans levels caused by tun-
neling through the isomerization barrier. The detailed patterns of these staggerings
make possible a direct empirical distinction between different possible isomerization
mechanisms.

We also present an empirical model which analyzes the vibrational level structure
along the isomerization path. This model enables the direct spectroscopic characteri-
zation of the energy of the transition state, the qualitative structure and width of the
isomerization barrier, and the curvature of the nuclear potential surface in directions
orthogonal to the isomerization path. This type of analysis is generalizable to other
systems, potential surfaces of which contain stationary points and thus provides a
powerful new tool for studying transition states via frequency domain spectroscopy.

Thesis Supervisor: Robert W. Field
Title: Haslam and Dewey Professor of Chemistry
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Chapter 1

Introduction

The power of small molecule spectroscopy is the ability to form a complete physi-

cal understanding of a fundamental chemical system. We can only do so, however,

by attempting to solve the ultimate inverse problem. The central entities of inter-

est, potential energy surfaces, dictate all chemical phenomena. Transitions between

their eigenstates determine the observable spectra. Learning about potential surfaces

requires deciphering spectra by finding order that, broadly speaking, reduces mean-

ingless line lists into physical and chemical insight. This task of reverse engineering

contains two chief challenges: (i) determining the energy level structure by assign-

ing spectral lines to transitions between eigenstates with known quantum numbers

and (ii) inferring as much as possible about the potential energy surface from the

structure of the observed energy levels. These two tasks are generally approached by

identifying patterns determined by spectroscopic selection rules and simple models

that describe an approximate zero-order picture. Often, insight arises from finding

where these patterns are broken and characterizing the new order which emerges in

their place. This thesis will explore such new insights concerning high energy, large

amplitude vibrations, in particular that of cis-trans isomerization, in the first excited

singlet state (S1 ) of acetylene.
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1.1 A Brief Spectroscopic History of the Si State

Acetylene, C2H2, is one of the most extensively studied small polyatomic molecules.

The earliest investigations of its UV absorption spectrum were completed a century

ago in 1913 [1, 2]. The A(S 1)-Z(So) transition was revisited in the 1930s by several

workers [3-7], but remained poorly understood and no significant assignments could

be made of the observed bands. Not until the 1950s was a major advance achieved

when Innes [8] and Ingold and King [9] independently demonstrated that the Si

state must be trans bent (C2M symmetry) as opposed to possessing the linear (Doh)

geometry of the electronic ground state, So. This was the first conclusive example of

a qualitative change in equilibrium geometry upon electronic excitation and an early

landmark for what would be a fruitful further fifty years of acetylene spectroscopy. An

extensive series of absorption experiments carried out by Watson and coworkers [10-

12] included detailed rotational analyses of the strongest bands in the A - X system,

namely those involving quanta of v2 (CC stretch) and v3 (trans bend) as well as

hot bands from v'j (trans bend), all which are strongly Franck-Condon active due

to the large geometry change of the A - X transition. Due to the shared center-

of-symmetry of the linear ground state and the trans conformer, these absorption

experiments could only investigate gerade vibrational modes of the trans conformer.

In the 1990s, the Crim group performed IR-UV double resonance (DR) experiments

with laser-induced fluorescence (LIF) detection, making the first measurements of

the ungerade fundamental vibrationals of the trans conformer [13, 14]. Population-

labeled LIF experiments in the Field group [15] resulted in the observation of the v'

fundamental, completing the assignment of all six trans normal mode fundamentals,

a rare accomplishment for an excited electronic state of a polyatomic molecule. These

fundamental frequencies are summarized in Figure 1-1.

The vast majority of spectroscopy on the Si state has focused on the trans con-

former, which has 1A, electronic symmetry and therefore has electric dipole allowed

transitions from the 1E+ ground state. The cis conformer has 1A2 symmetry and is

thus spectroscopically dark; it can only be observed via tunneling into the trans well,

14



v1(ag) 2880.10 cm-

v2 (ag) 1386-90

v 3 (ag) 1047-55

v4 (au) 764.90

v5 (bu) 2857.40

v6 (bu) 768.26

- +

v1(a1) [2789 cm 1]

v2 (a1) [1501]

v3(ai) (740)

v4 (a2) (865)

v5 (b2 ) [2735]

v 6 (b 2 ) (585)

Figure 1-1: Normal modes of trans and cis Si acetylene. All six trans fundamental
frequencies have been experimentally measured (see [16] and references therein). cis
frequencies in square brackets are taken from recent ab initio VPT2 calculations [16].
Those in parentheses are approximate experimental measurements [17, 18].
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thereby picking up some transition dipole. Additional factors, including relatively

broad Franck-Condon access due to the large geometry change, have enabled a com-

plete assignment of the trans vibrational states up to several thousand cm 1 above

the trans origin (Chapter 2 contains new assignments of ungerade vibrational levels

up to 4300 cm- 1 above the trans zero-point).

Currently, the single most problematic factor in assigning the trans vibrational

states is the strong interactions between v4 (torsion) and v6 (cis bend). These near-

degenerate modes interact via a 2:2 Darling-Dennison resonance [19] as well as a-

and b-axis Coriolis coupling. The result is a restructuring of the v4/v 6 combination

bands and overtones into polyads, groups of strongly interacting vibrational levels.

An essential feature of polyads is that interaction matrix elements determinable from

relatively simple low-energy polyads conform to known scaling and selection rules for

higher-lying polyads. Such patterns have made it possible to assign and fit a signifi-

cant portion of the pure bending overtones [14, 20] and stretch-bend [21] combination

levels. Such comprehensive assignments have led to a state where the total abso-

lute number of expected trans vibrational levels in particular regions have all been

identified, but with the apparent problem that some weakly observed bands remain

unaccounted for and without any possibility of being fitted into the trans manifold.

The resolution to this problem was that these "extra" bands belonged to the first

ever identified vibrational states of the cis conformer [17]. Reduced dimension DVR

calculations [22] justify the nominally forbidden appearance of these bands in the

spectra through tunnelling interactions and delocalization into the trans well of the

potential surface.

1.2 Thesis Outline

This thesis picks up where our story drops off. Our general motivation is to under-

stand the consequences of cis-trans isomerization on the spectra of the Si state and

how we can extract the most fundamental and essential features of the isomerization

process by identifying new patterns involved with these large amplitude motions. In

16



Chapter 2, we present high resolution IR-UV double resonance experiments investi-

gating ungerade levels near the energy of the isomerization barrier. Extending the

complete assignment of the trans level structure allows us to identify new vibrational

levels of the cis conformer, as well as to track the evolution of the vibrational level

structure for states along the isomerization path. In Chapter 3, we include reduced

dimension rovibrational variational calculations motivated by the need to understand

and predict the drastic qualitative changes in the rovibrational structure of vibrational

states as they approach the barrier to isomerization. Such states have not only ener-

gies near that of the barrier, but also wavefunctions with considerable amplitude near

the transition state. In Chapter 4, we consider an empirical model that enables direct

extraction of the most critical information about the isomerization potential energy

surface using traditional frequency domain spectroscopic measurements. In Chapter

5, we discuss planned and on-going experimental studies of cis-trans isomerization

and the Si state.
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Chapter 2

IR-UV Double Resonance Spectra

of ungerade Polyads

2.1 Introduction

In this chapter1 , we present analyses of high resolution spectra of the Si state in

the region 45800-46550 cm-'. This study has two main motivations. The first is to

track the evolution of isomerizing states (namely the combination bands 3 "'64) as

their energy approaches that of the isomerization barrier. The second is to establish

assignments for all trans levels in this energy region, so that remaining states can

be assigned to the cis conformer with certainty. The region studied corresponds

to 3600-4300 cm- 1 of internal energy in the Si state (the trans zero-point energy

is at 46197.57 cm- 1 ), and contains 22 strongly interacting vibrational levels, most

of which are members of bending polyads. Darling-Dennison and Fermi resonances,

Coriolis coupling, and local triplet perturbations result in markedly complex spectra.

Comprehensive band-by-band analyses, however, have made possible complete trans

assignments and the identification of two new cis states.

'This chapter is adapted from work previously published in J.H. Baraban, et al., Mol. Phys.,
110, 2707 (2012). Text and figures have been reproduced with permission of the publisher.
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2.2 Experimental details

The excitation schemes used to study the Si state are illustrated in Figure 2-1. Due

to the K' - f" ± t1 rotational selection rule of this c-type electronic transition, two

sets of double resonance experiments must be performed to sample all K' = 0 - 2

states of each vibrational level (note, we will use K and K' interchangably, prefering

the latter when clarity is needed). In the first scheme, individual J rotational states

of v3 (o-, antisymmetric CH stretch) are populated via P and R line pumping. From

this f" = 0 vibrational state, K' = 1 states of ungerade Si levels can be accessed

by UV excitation. In the second scheme, v3' + v4' (flu) is pumped via its Q branch

(populating several J-levels at once), enabling UV excitation to K' = 0 and 2 states.

vi' + 4 can also be used as an alternate intermediate state to v" + v4'. The u4 + v4'

and vi' + v"-pumped spectra analyzed in this chapter have been previously reported

in Refs. [20] and [21]. The experimental details of those spectra can be found in those

references.

ungerade vib. state
K' = 2

S1 ('Au) 1
0

K' - i" = t1
Uv

So('f)

v'/ + v4', f i LIF Detection

IR
v = 0Vau PR' Q

Figure 2-1: Double resonance schemes for Si acetylene. Sampling of K' = 0 -2 states
of ungerade levels requires two sets of double resonance experiments. IR pumping of

v", f" = 0 allows UV excitation to K' = 1 states, whereas IR pumping of v"+v4', f" = 1
allows UV excitation to K' = 0 and 2 states. Resonant excitation is monitored by
LIF detection.

The vi-pumped spectra were newly obtained for the purposes of this analysis.
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An injection-seeded Nd:YAG laser (Spectra-Physics PRO-270) pumped two tunable

dye lasers used for IR and UV generation. The Nd:YAG second harmonic at 532

nm pumped the first dye laser (Lambda Physik FL2002) operating at 790 nm (LDS

798 dye). This output, along with the Nd:YAG fundamental at 1064 nm, pumped

a LiNbO 3 crystal producing IR radiation via difference frequency generation (DFG).

Approximately 1.5 mJ/pulse was achieved in the DFG output. To ensure the reso-

nance of the IR frequency with transitions in the v3' fundamental band [23], a pho-

toacoustic cell with 15 torr of neat acetylene gas at room temperature was monitored

before each IR-UV double resonance experiment. The grating-limited IR spectral

width was approximately 0.10 cm-1 .

The Nd:YAG third harmonic at 355 nm pumped the second dye laser (Lambda

Physik FL3002E) to produce laser radiation over the range 460-470 nm (Coumarin

460 dye). This output was frequency doubled with a #-barium borate crystal. A small

portion of the fundamental was passed through a 30Te2 absorption cell for frequency

calibration. An intracavity etalon in the dye laser reduced the spectral bandwidth to

0.04 cm-1, and after frequency doubling, the UV power was approximately 100-200

,uJ/pulse. The IR and UV beams were recombined with a dichroic mirror before en-

tering the molecular beam chamber. As a single Nd:YAG pump laser generated both

pulses, their relative arrival times at the chamber could be controlled only through

the addition of a delay line in the UV beam path. The length of the delay line was

such that the UV pulse arrived 15 ns after the IR pulse.

The molecular beam chamber contained an unskimmed supersonic jet of neat

acetylene expanded through one of two pulsed valves (Jordan PSV C-21, d = 0.5 mm

or General Valve, Series 9, d = 1.0 mm). The latter achieved superior vibrational

cooling, necessary when single-photon hot-bands obscured overlapping IR-UV double

resonance features in the spectrum. In both cases, the jet was backed by a pressure

of 1 atm and interacted with the IR-UV radiation about 2 cm from the nozzle. The

chamber, pumped by an oil diffusion pump, achieved an ultimate pressure of 7 x 10-'

torr, while under gas load it rose to (0.5 - 2) x 10-5 torr.

A Hamamatsu R375 photomultiplier tube collected the laser-induced fluoresence

21



using f/1.2 collection optics and a UG-11 colored glass filter to block laser scatter.

Additionally, optical baffles consisting of a set of 3.5 mm aperture irises placed 23

cm from the interaction region and a second set of 5.5 mm aperture irises placed

10 cm from the interaction region were installed in the entrance and exit window

arms of the chamber, which significantly reduced laser scatter. The photomultiplier

tube signal was split and one line was fed to the input of a 30 dB voltage amplifier

(Femto DHPV A-200). This was necessary as the fluorescence intensity of levels in the

studied energy region varied over several orders of magnitude. The time-dependent

fluorescence signal was recorded for 2 p-s after the UV pulse arrival time. For each

frequency resolution element, the fluorescence signal was averaged for 20 laser shots.

The integration gate of the time signal could be chosen depending on the fluoresence

lifetime of the final state. Typically, the fluorescence signal over the first 0.4 ps after

the UV laser pulse was integrated. However, for short-lived predissociated states this

integration gate had to be moved earlier in time and included the UV laser pulse

scatter. In this case, the laser scatter and power fluctuations were small enough not

to contribute significantly to the integrated signal noise.

2.3 Results

The 45800-46500 cm- 1 region consists of congested overlapping structure centered on

the very intense 3361 band at 45938 cm- 1 , with sparser structure to higher frequency.

A stick diagram of the congested region is given in Figure 2-2. This regions contains

15 trans vibrational levels including 3151, 33 B 1, 11B 1, 21B 3 , and B 5 , and two cis

levels, including cis 3161 (previously reported in Ref. [17] )2. Partial assignments of

B 5 [17, 20], as well as 3151 [13] and 33 B 1 [24] have been previously reported. The

assignments of the remaining regions of the spectra, including the sparse higher fre-

quency region containing 2151, 32 B 3 , 2132 B 1 and two new cis levels (see Figure 2-3)

have not been previously attempted, understandably so, owing to their very compli-

cated nature. In the remainder of this section, we will first comment on predictions

2Bn refers to the bending polyad containing the n + 1 vibrational levels with n = v4 + v6

22
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Figure 2-2: Stick diagram of K' = 0 - 2 states in the 45800-46240 cm-1 region,
including both u' and v'+ v'-pumped spectra. Assignments are indicated below the
stick diagram, with states which could not be found marked with dotted lines.
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stick diagram, with states which could not be found marked with dotted lines.
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of the observed polyad structure based on lower energy observations and then present

our analyses of each energy region in increasing order. A complete band-by-band ro-

tational analysis of the ungerade states in this region can be found Table 1 of Ref. [18]

and will not be reproduced here. 3

2.3.1 Predictions of the polyad structures

Using constants derived from analyses of lower energy polyads [10, 20, 21, 24], the ro-

tational and vibrational structure of higher energy polyads can be predicted by a ma-

trix treatment of the rotational, Coriolis coupling, and Darling-Dennison resonances.

The matrix elements for such a calculation are described in detail elsewhere [20], and

not included here. Such predictions are essential for making definite assignments of

observed levels.

The predictions for the K = 0 -2 states of the pure bending polyad B 5 were found

to be accurate within 7 cm-1. A Fermi resonance of the type Av 2 = ±1i, AVB F2

prevents more accurate predictions. However, as this interaction generally leads to

small shifts, the observed level'structure is reproduced more or less faithfully, except

in one instance. In this case, the lowest K = 0 a, and b, members of B 5 are pushed

apart 9 cm- 1 more than predicted due to a Fermi resonance with K - 0 states

of 21 B 3 which happen to lie in between the two B5 states (see Figure 2-2). The

structure of 32B 3 , reproduced similarly from constants derived from 32, 32 B 1 , and

32B 2, is accurate to within 10 cm- 1. The poorer accuracy for 32B 3 are probably

an indication that isomerization effects are already manifest in the unraveling of the

polyad structure.

In addition to polyad constants, ab initio calculations [16] of the X1 4 and X16

anharmonicity constants have determined which polyad, 21B 3 or 11B 1, previously

unassigned K states in the 45800 cm-1 region belong to (see Ref. [18] for details).

3 Most of the rotational least-squares fitting and numerical polyad predictions presented in this

chapter were performed by Anthony Merer, a coauthor of this work
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2.3.2 K = 0 - 2 levels in the region 45800-45880 cm--

The 45800-45880 cm-1 region contains the lowest members of the 1'B 1 and 21B3

polyads. A reduced term value plot of this region's rotational levels is given in Fig-

ure 2-4. Several interactions are at play amongst these states. The Darling-Dennison

1 B 1 2 1B 3

- K=2f

45840 -- e

E/cm' K=2
-1.05 J(J+1) 0 Bu

45830 -

- ~~ 0 A -

2
45820 .- --

0 B

45810 - 0 A

- - --- s-------------

45800
0 20 40 60

J(J+ 1)

Figure 2-4: Rotational structure of low-energy members of 1'B' and 21B 3 . Rotational
term values are plotted against J(J + 1). A quantity 1.05J(J + 1) cm- has been
substracted from each energy to calculate the reduced term value. States of e parity
are plotted with open circles and connected with dashed lines. States of f parity
are plotted with filled circles and solid lines. The K assignments are given in two
columns, with 11B 1 on the right and 21B3 on the left.

resonance in 21B3 results in its two lowest K = 0 levels to be nearly degenerate (only

0.2 cm apart). For each polyad, the strong a-axis Coriolis coupling pushes the

lowest K = 1 state below the lowest K = 0 states. Strong b-axis Coriolis interac-

tions are evident in the highest K = 1 and 2 states of 21B3 included in Figure 2-4.

These levels push each other apart more strongly with increasing J as is expected of

b-axis interactions. The K 1 state has such a low effective B rotational constant
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(0.6 cm-1) that its R branch forms a head at only J" = 1 in the double resonance

spectrum via v" (see Figure 2-5). The b-axis Coriolis coupling (with selection rule

45823

45838
K=I

4 3 2 1) 21B3 K=1(II)

T_ 1 111R

K=0 a. 0 Q~J ILE
K4 3 445834 K=0 b.

42530 42535 42540 42545

45839

42550 E / cm

Figure 2-5: Double resonance spectrum of 21B 3 K = 1(11) via v'. The R branch
of this band forms a head at J" =1 due to the exceptionally strong b-axis coupling
with the K = 2 state directly above. Despite the severe congestion of the bands in
this small region, rotational assignments for every line can be made, as indicated in
the bottom of the figure. Five different spectra (from each of J" = 0 - 4 IR pumped
experiments) are overlayed as one. The energy scale is the UV excitation energy.

AK ± t1) is, in general, large enough amongst these states that almost every K

state appears in both u3' and '+ v'l-pumped excitation spectra, indicating that K

is no longer is good quantum number and only retains use as a nominal state label.

With the observation of 11B 1, the first experimentally measured values for the X14

and X16 anharmonicities can be determined. Their values, as determined by least-

squares fits, are -16.67 and -11.62 cm 1 , respectively. These values are necessary

for predicting the locations of higher lying polyads with at least one quantum of

excitation in vi.
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2.3.3 K = 0 - 2 levels in the region 45890-45990 cm-1

The region spanning 45890-45990 cm-1 is dominated by the very intense Franck-

Condon active 3361 level. Anharmonic resonances transfer this intensity to all of the

surrounding states (which include members of B 5, 21B 3 and 11B1) so that all 15

K = 0 - 2 states expected in this region are observed. The level structure in this

region is more or less well behaved except for the immediate vicinity of 3361 K = 1

which contains a complicated many-state interaction trainwreck. The IR-UV double

resonance spectrum of 3361 K = 1 is reproduced in Figure 2-6. P/R pumping of v"

PQ R

J" 5
Q

4
Q

3
QR

2
R

42635 42640 42645 42650 42655 42660
E / cm~

Figure 2-6: IR-UV double resonance spectrum of the 3361 K = 1 state via v". The
spectrum is separated by J" as v3' double resonance spectra are pumped by individual
P and R lines. The J' = 2 line pattern is indicated by tie-lines for its P, Q, and R
lines. The stucture shows the K = 2 perturbing state (see text), as well as smaller
splittings due to triplet perturbations. Lines from the neighboring 3361 K - 0 state
are dashed. The energy scale is that of the UV photon, not total term energy.

enables the congested spectrum to be separated by J". Lines in each of the P, Q,

and R branches are split into several components due to perturbations by a dense

background of triplet states. This is confirmed by observations of extremely long

lifetimes and strong zero-field quantum beats typical of triplet perturbations [24]. A

reduced term value plot of this state and neighboring levels is given in Figure 2-7.
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The solid lines represent observed states. The dashed lines are calculated positions

45950

45945

Ecac / cm'

-1.05 J(J+1) B , K=2 (II)
45940

G. 5
B, K=3 (I)

45935 -

45930 -5K = I ) e

f

45925
0 10 20 30 40 50 60

J(J+1)

Figure 2-7: Rotational structure of states near 45940 cm- 1 . Four different trans states
interact in this region leading to very complicated spectra. Observed positions are
shown with filled circles connected with solid lines. Predictions from polyad constants

(corrected by an offset of 3 cm-1) are shown with open circles connected by dashed
lines. 3361 K = 1 and B 5 K = 2(11) undergo an avoided crossing between J = 3 and
4. Additional interactions couple the states B5 K = 3(I) and K = 1(II).

based on constants from lower energy polyads (an offset of 3 cm-1 has been added

to compensate for inexact extrapolation of the polyad constants). Examination of

the level patterns indicates that there are several interactions present. 3361 K 1

undergoes an avoided crossing with B 5 K = 2(11). This is consistent with the fact that

the observed triplet perturbations switch from affecting the higher of the two states

to the lower of the two states after the avoided crossing (i.e. the triplet interactions

track the zero-order 3361 vibrational character). B5 K = 2(11) interacts via b-axis

Coriolis coupling with B 5 K = 3(I), as well as B5 K = 1(11), as is evident by the

curvature of their reduced term value plots. The network of b-axis coupled states, as

well as the appearance of K = 2 and 3 states in the v3'-pumped spectra demonstrate
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how thorougly mixed the K character of these states is. We also note that the large

1-2 cm-1 splittings of the J > 2 levels of 3361 K = 1 reported in previous work [24, 25]

are not the result of triplet interactions (which are much smaller in this band), but

from the avoided crossing with B5 K = 2(11).

Interactions between other states in this region are less drastic. A Fermi resonance

between the near degenerate 21B 3 K = 2(111) and B 5 K = 1(I) states occurs near

45896 cm-1. This same Fermi resonance is responsible for the interaction between

the K = 0 states of 21B3 and B5 discussed in the previous section.

The 3361 K = 2 state also displays triplet perturbations, but is isolated from

interactions with other singlet vibrational states. At low J, the nominal singlet

lines split into a few well separated components, with typical spacings of around

0.2 cm- 1. With increasing J, the density of perturbing triplet levels increases, and

the components coalesce into a single broad line. In 3361 K = 2, for example, the

J' = 2 level has four distinguishable components. Each parity component has the

same number of lines, but with different splitting patterns. The J' = 3 level has at

least five poorly resolved components, and the J' = 6 components cannot be resolved

and appear as a single line.

2.3.4 K = 0 - 2 levels in the region 46000-45250 cm-1

The 46000-45250 cm-1 region contains the K = 0 - 2 states from 3341 [24] and

3151 [13], as well as eight states from the B 5 polyad. Bands from cis 62 and cis 3161

are also observed. The cis 62 K = 0 and cis 3161 bands have already been reported

in Ref. [17], but cis 62 K = 1 is a new observation. In contrast to 3361, the 3341

vibrational level is less perturbed by triplet states, with extra lines appearing only

at low J' for all three K = 0 - 2 states. 3341 K = 2 lies very close to 3151 K = 1.

The J = 5e level of the latter state is affected by triplet perturbations which split the

line into at least four components over 0.7 cm-'. This is the first example of triplet

perturbations in a level involving v5.

The observation of cis 62 K = 1 is an exciting find because it provides the second

example of K-staggering in isomerizing levels of Si (the first being cis 3161 [17]).
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Because of the different selection rules for cis states, the cis 62 K = 0 state was

observed in one-photon hot band spectra from v' (7r,) at 46114.0 cm- 1 [17]. The

K 1 band, which appears at 46120.3 cm-1, results in an apparent A - 1(B - C)

rotational constant of 6.3 cm- 1. The discrepancy with the expected value of this

quantity, about 13 cm-1, indicates an even-odd K-staggering exists, resultant from

tunneling through the isomerization barrier. Since the K = 2 state of cis 62 has

yet to be observed, we can only report an approximate K-staggering measurement of

-1
-(5 - 7) cm.

Two K = 2 states, one from B 5 and another from 21B 3, are expected at 46059

cm- 1 , but only one very weak band is found. It is provisionally assigned to B5 , since

this polyad generally gives stronger bands than 21B 3 . Of the 43 upper states with

K = 0-2 expected in the 45800-46250 cm 1 region, all but three have been identified.

The derived constants enable the positions of the remaining levels to be predicted to

within a few cm- 1 .

2.3.5 The 32 B 3 and 213 2 B 1 polyads (46250-46550 cm- 1)

The highest energy region of this study, 46250-46550 cm- 1 , contains seven vibrational

levels from the trans manifold and two identified cis levels. A Fermi resonance be-

tween 32B3 and 2132B 1 complicates the structure of these overlapping bands. 2151,

high-lying members of B 5 , cis 32, and cis 4161 complete the rest of the observed

levels. The overview stick diagram of this region has already been given in Figure 2-

3. The large v 3/v 6 cross anharmonicity breaks up the 32B 3 polyad resulting in less

severe Coriolis coupling amongst the zero-order states as compared to other polyads

such as 11B1 and 21B 3. The predicted positions of 32B3 and 2132B 1 from lower

energy polyad constants allowed fairly straightforward assignments for most of this

region. One local region where several states interact strongly is near 46359 cm-

The reduced term value plot of these levels is given in Figure 2-8. The only expected

levels at this energy are the K = 0 and 1 states of the nominal 213261 vibrational

state. These levels are nearly degenerate at the zero-rotation limit. Via coupling to

the nominal 213241 K =1 level 28 cm- 1 above, the f components interact strongly,
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Figure 2-8: Rotational structure of states near 46360 cm-'. The lowest three bands
belong the K = 0 and 1 states of 213261. Strong b-axis Coriolis coupling mixes the
K = 0 state with the f component of the K 1 state. These states interact with
another K 1 state a few cm- 1 higher, which cannot be accounted for by expected
trans levels in this region, indicating that is must belong to the cis conformer. Its
assignment as cis 32 is based on the observed vibrational symmetry and ab initio
predictions of the level position [16]. An additional K = 3 state appears in the
spectrum via interactions with the cis level.
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resulting in a parabola shape typical of Coriolis coupling. The e levels of the K = 1

state are unaffected. The upper K = 1 level near 46361 cm-' cannot be accounted

for by expected levels within the trans manifold. Recent ab initio VPT2 calculations

of the cis vibrational structure [16] offer two candidates that lie close to this energy

with the correct symmetry: cis 21 and cis 32. 3D reduced dimension DVR calcu-

lations [22] predict that cis 32 should interact much more strongly with trans and

therefore have greater intensity than cis 21. Therefore, this state is assigned as cis 32

K = 1. Additional ab initio variational results presented in the next chapter further

support this assignment.

Approximately 50 cm- 1 higher, three more K =1 states are observed at 46408,

46414, and 46416 cm-1. Two of these can be accounted for by predictions of 32B3 and

2132B 1 K=1 states at 46411 and 46418 cm- 1. The predictions are not accurate enough

to determine which state is which other than that the two strongest K = 1 states

can securely be assigned to the trans manifold. The much weaker third K = 1 state

is presumably cis and from the rotational selection rules must have B1 vibrational

symmetry. As B 1 levels must have odd quanta of both v4 (a 2) and v6 (b2 ), the only

logical assignment at this energy is cis 4161.

2.4 Discussion

In this chapter, we have presented a detailed analysis of ungerade vibrational levels

of trans Si acetylene as observed in IR-UV double resonance. The assignments in

this region have established the complete vibrational level structure of this electronic

state up to 4300 cm- 1 of vibrational energy. Having accomplished the comprehensive

assignment of all expected trans states in this region, two additional cis states have

been identified, bringing the total number of secure cis levels to six.

The barrier to isomerization is calculated [22] to lie around 5000 cm- 1 abouve the

trans zero point. We expect that signatures of cis-trans isomerization should already

be present in the observed levels. Indeed, K-staggerings have now been observed in

the two cis levels for which both even and odd-K states have been observed. cis
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3161 was found [17] to have a staggering of +3.9 cm-1, while this work shows that

cis 62 appears to have a stagerring of about -5 cm- 1. K-staggerings in trans states

in this energy region would unfortunately be obscured by the Coriolis and Darling-

Dennison interactions between the bending modes. It may be, however, that the less

accurate predictions of 32B 3 's rovibrational structure is indicative that K-staggerings

are appreciably affecting the level structure. The investigation of the magnitude and

direction of K-staggerings for both cis and trans levels is thus a major motivation

for ab initio rovibrational calcultions, presented in the next chapter.

Only about one bending quantum remains between the levels analyzed in this

chapter and the expected transition state energy. Information gained from the analyis

of 11B1 and 21B 3 has already been useful in the analysis of unpublished one-photon

spectra of gerade states, which contain additional cis levels and members of 3362 and

3462, levels which lie along the isomerization path. In the on-going analysis of these

spectra, additional ab initio calculations will also prove a useful tool in predicting the

patterns of rovibrational structure in barrier-proximal levels.
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Chapter 3

Reduced Dimension Rovibrational

Variational Calculations

3.1 Introduction

All analyses of molecular spectra rely on identifying patterns. In the simplest cases,

we can understand rovibrational spectra by using only the most basic of models: the

rigid rotor and harmonic oscillator. Effective Hamiltonians can model perturbative

interactions between such states, and often reduce immense spectral complexity to

only a handful of physical parameters. Such has been done successfully for much of

the bending polyad structure of trans acetylene. In many cases, empirical polyad

constants determined at low energies can predict higher lying structure to nearly

experimental accuracy due to simple scaling relations of the polyad constants with

rovibrational quantum numbers (see Chapter 2). In Si C2H2 , however, the multi-

well landscape and the presence of a transition state saddle point introduce severe

anharmonicities and tunneling interactions, which challenge the applicability of ef-

fective Hamiltonians. Phenomena such as K-staggering, which is directly caused by

the presence of multiple potential wells, are not easily accounted for in a global fash-

ion with models like effective Hamiltonians that are suited to describe one isolated

equilibrium geometry.

In order to develop an understanding of what new patterns and structures we
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should expect in an isomerizing system with asymmetric wells, how to interpret these

patterns, and what signatures they will leave in spectra, ab initio calculations of Si

acetylene's rovibrational structure are required. Many theoretical contributions have

already been made to understanding the rovibrational structure of the Si state, in-

cluding recent 3D DVR [22] and anharmonic force field [16] calculations which have

been used in the analysis of the ungerade IR-UV double resonance spectra. In this

chapter, we present 4D variational calculations fully including the molecule's total

angular momentum, J. This is the highest dimensionality of ab initio rovibrational

variational calculations of the Si state of which the author is aware. A variational

treatment is desireable because it includes few assumptions, predicts the entire global

rovibrational structure, and can quite flexibly treat the large amplitude motions im-

plicit in the isomerization process. The calculations presented here are still being

refined, but have already proved successful at reproducing much of the bending, tor-

sional, and rotational structure of the Si state and providing insights into the level

structure of both low energy vibrational states and barrier-proximal regions.

3.2 Methodology

3.2.1 Coordinate Systems, Body-Fixed Frame, and Dimen-

sion Reduction

Our calculations make use of a multivalued coordinate system suitable for simulta-

neous treatment of cis and trans conformers. We follow the sequentially bonded

internal coordinate conventions of Ref. [26], which are shown in Figure 3-1. These co-

ordinates are multivalued, i.e. multiple choices of internal coordinates correspond to

the same configuration in the lab frame. For example, the configurations (1, #2, a, X),

(-01, -2, a, x +7r), and (--#1, --#2, O +7r, x) yield identical positions for each atom

in the lab frame. The consequence of such multivaluedness is that we must impose

a requirement that the final (single-valued) rovibronic wavefunctions are symmet-

ric with respect to transformations between these equivalent configurations. These
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Figure 3-1: Sequentially bonded internal coordinate system. #1 and 32, the two CCH
angles, span from -r to 7r and a, the torsional angle, from 0 to 27r. The three Euler

angles, 6, #, and x, relate the (xyz) body-fixed frame to the lab-fixed frame in the

usual way [27]. The body-fixed origin is taken to be at the nuclear center of mass.

The z-axis is parallel to the C-C axis and the y-axis bisects the two CCH planes.
The three bond lengths ri, r 2 , and r3 (not shown) are the C1 -H 1 , C 2-H 2 , and C1 -C 2

distances, respectively.

symmetry constraints are systematically treated using an extended complete nuclear

permutation inversion (CNPI) symmetry group [27, 28]. The extended CNPI group

appropriate for cis-trans isomerizing acetylene is the G (8) group, which is treated in

full detail in Ref. [26]. All subsequent symmetry species will refer to the irreducible

representations of G(8). For the transformation properties of the various coordinates

under operations of G (8) and for the group's character table, the reader should refer

to Tables 9 and 10 of Ref. [26]. The use of G(8 ) is discussed further below in the

context of K-staggering.

In order to reduce the computational demands of a full dimensional rovibrational

calculation, which would have 3N - 3 = 9 degrees of freedom (including the three

rotations), we will make the approximation of rigid CH bond lengths, leaving only

4 internal vibrational degrees of freedom (r3 , /1, /32, and a) and the 3 Euler an-

gles. Freezing the CH bonds is a fairly good approximation as their motions are not

significantly involved in the complicated bending-torsion-rotation dynamics. Addi-

tionally, the symmetric and anti-symmetric CH stretching modes (vi and v5) have

considerably higher frequencies than the remaining modes in either conformer and

are approximately separable. The inclusion of the two bending and single torsional

degrees of freedom is obviously necessary in order to study the level structure of cis-
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trans isomerization (which in principle could occur through either an in-plane bending

pathway or an out-of-plane torsional pathway). We include the CC stretch, r3 , as

well because of its significant contribution to the symmetric bending normal mode,

v3. With these degrees of freedom, the (4+3)D calculation will yield rovibrational

wavefunctions and energies for states involving modes v2, 1/3, v4, and v6 of the the cis

and trans conformers.

3.2.2 Basis Functions

It is computationally most efficient to solve for the complete rovibrational wave-

function, T, as an expansion of direct products of one-dimensional functions of each

internal coordinate and the symmetric top rotational wavefunctions,

qW = )[ @ (rs)) (#1) V)(02)@V)(a)|IJ, k) .

We will first consider the bending-torsion-rotation factor as it involves special treat-

ment due to multivaluedness and divergent matrix elements.

A convenient set of one-dimensional basis functions for the bending angles is the

associated Legendre polynomials with the customary argument of cos(3). In this

form, the Legendre polynomials are typically defined only over # = [0, 7r]. Since our

coordinate system extends # over -r to 7r, we define an extended Legendre polynomial

basis function as

LT±P) NAf P;P(cos #) 0 < 0 < (3r1LO<(#)= -r-(3.1)
tPj"(cos/#) -r < < 0

where

H" = (-1)" ,f +1(3.2)
(e + m)!

such that the basis functions are normalized over -- 7 to 7r with volume element
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I sin 3do:

(L"rn±)2| sin ld# = 1. (3.3)

F and m. are the usual polynomial degree and order. Legendre polynomials with the

same value of m but different values of f are orthogonal; however, functions with

different values of m may be nonorthogonal. We will make use of the following

shorthand notation for the product of two bending functions

(eS~f t) = LEgIS1 LM2(2), (3.4)

where s1 ,2 = + or -. The degree and order of the Legendre polynomials obey f >

m > 0.

The torsional degree of freedom is expanded in a Fourier series. Its basis functions

are

|n, ±) M cos(na), + (3.5)
sin(na), -

where n > 0 and Mn is a suitable constant for normalization over a = [0, 27r].

For the rotational wavefunctions, we choose symmetrized symmetric top wave-

functions

1
Jk,±) AJk± [lJ, k)cs g |J, -k)cs] (3.6)

where AJk± = Z(-1) *(-i)2 (note that for k = 0, the factor 1/v/d becomes 1/2 and

only a + choice exists). The wavefunctions |J, k) CS are signed-k symmetric top wave-

functions following the standard Condon-Shortley phase convention [29]. We take

plus and minus linear combinations (a Wang transformation [30]) for symmetrization.

The non-standard phase factor guarantees purely real matrix elements for rotational

terms in the molecular kinetic energy operator, which will be discussed in more detail
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below.

The G (8) symmetry species of the primitive bending, torsional, and rotational

wavefunctions are summarized in Table 3.1. Symmetrized products of these primitive

basis functions must be taken such that the total rovibronic wavefunction belongs to

one of the single-valued irreducible representations of G (8) (A+, A- I B+, and B )

Following the assumptions in Ref. [26], we take the electronic symmetry of the Si state

to be B-. As this species is single-valued, the bending-torsional-rotational wave-

function must itself be single-valued. The symmetrized bending-torsional-rotational

wavefunctions are given in Table 3.2. The choice of mi and m 2 will be determined

by consideration of divergences in the kinetic energy operator. A discussion of their

derivation will be postponed until further, but we will anticipate the results now and

quote them here:

mi = 0 if k + n = 0, otherwise mi = 1, |k + n|/2 = odd

2, |k + n|/2 = even

r12 =0 if k - n = 0, otherwise m2 = 1, |k - n|/2 = odd

2, |k - n||2 = even

The CC stretch factor is considerably simpler than the bending-torsional-rotational

factor. The r3 coordinate is totally symmetric, so a simple direct product between its

primitive basis and symmetrized bending-torsional-rotational wavefunctions is suf-

ficient to generate a 4D basis. Various stretching bases can used, such as Morse

oscillator or harmonic oscillator wavefunctions. In this implementation, we use a

harmonic oscillator DVR (HO-DVR) basis, which greatly simplifies integrals of the

potential function in the r3 dimension.

The number of basis functions required in each dimension in order to reach con-

vergence varies with the type of coordinate. For the bending functions, Legendre

polynomials with degrees such that f1 + f2 < 30 are sufficient. Similarly, the tor-

sional basis functions, in, ±), can generally be restricted to values of n < 60. The

stretch is more easily saturated, and a ten-point DVR is sufficient. A full (4+3)D

calculation would then require ~ (2J + 1)105-6 basis functions, which begins to push
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Table 3.1: Symmetry species of bending, torsional, and rotational wavefunctions.
The irreducible representations are those of G(8) [26]. The symmetry species of the
rotational wavefunctions can be derived with standard methods [27] or used directly
from Ref. [31]. (') and (") refer to components of E+ degenerate pairs which are sym-
metric and antisymmetric, respectively, with respect to the ab symmetry operation.
(g) and (u) refer to the symmetry of E1 components with respect to bc . (1) and (2)
refer to the symmetry of E components with respect to b. (ab, bc, and b are G(8)
operators written in terms of the group's generators, see [26].)

Basis Function F
(tf+) + (fgl+) B+

(til+) - (t-) A

+ Bj+

{( -f) (if)}E+",+()
|4n, +) A+

4n + 2, +) BE
|4n, ) B qq --+ E

4n+2,-) A-
{4n 1,+), 4n + 1, -)} E ")E 4
{|4n+3+),4n + 3, -)}

|J, 4k, +(-1) J)

|J, 4k + 2, +(-1)J)

|J, 4k, -(-1)i)
|J, 4k + 2, -(-l)i)

{LJ, 4k + 1, +(-I)J), |J, 4k + 1, -(-i)J)}
{|J, 4k + 3, +(-1)J), |J, 4k + 3, -(-i)J)}

A2g

Ag,B,
E(1, E (2

E(1, E (2
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Table 3.2: Symmetrized bending-torsional-rotational product wavefunctions. These symmetrized linear combinations of primi-
tive bending, torsional, and rotational product wavefunctions belong to the single-valued irreducible represenations of G() . The
± in the center of each expression gives A, and A- for + and B' and Bi- for -. See the text for the rules determining the
values of m 1 and m2 . The symbols S* are an abbreviation for ±(-I)J.

Af,/ KN[(El){4n+0,±+)|J,4k+0,S+)+14n+0, -)|J,4k+0,S-)}±(Ef){|4n+0,+)|J,4k+0,S+)-14n+0,-)|J,4k+0,S-)}]

[(ff){14n + 2,+) J, 4k + 0, S+)

[(Elf+){14n + 2, +)|J,4k + 2, S+)

[(fl t2){4n + 0, +)1 J, 4k + 2, S+)

[(E-f4){l4n + 1, +)l J,4k + 1,S-)

[(ElG){14n + 3, +)1 J, 4k + 1, S-)

[(ElE-){| 4n + 1, +)1|J, 4k + 3, S-)

( 1-E {4n + 3, +)| J, 4k + 3, S-)

+ 14n + 2, -)J, 4k + 0, S-)}

Sl4n + 2, -)J, 4k + 2, S-)j}

+ 14n+0, -)|J,4k +2,S-)}

- 14n+1,-)|J,4k+ 1, S+)}

- 14n+3,-)|J,4k+ 1,S+)}

- 4n+1, -)J,4k+3,S+)}
- 14n + 3, -)|J, 4k + 3, S+)}

±(E-2){4n + 2,+)|J, 4k + 0, S+) - 14n + 2, )J, 4k + 0,S )}]

+(E4Ef){|4n + 2,+)|J, 4k + 2, S+) -14n + 2, )J, 4k + 2, S-)}j]

i (E f-){|4n + 0, +)|J, 4k + 2, S+) - 14n + 0, -J, 4k + 2, S-)}]

± ( 4g-){4n + 1, +)|J, 4k + 1, S-) + 14n + 1, -)IJ, 4k + 1, S+)}]
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the limits of easily available fast memory and computation time. To facilitate large

basis set sizes on medium sized computers, a two-step basis set contraction scheme

was used. In the first step a (3+3)D bending-torsion-rotation calculation was per-

formed, excluding the r3 stretch. The lowest eigenfunctions of this calculation are

then used to perform a full (4+3)D calculation by forming a direct product basis of

these bending-torsion-rotation functions and r3 HO-DVR functions. This procedure

reduces the largest required basis set size to only ~ (2J+ 1 )104.

3.2.3 Potential Energy Operator

Calculating the nuclear potential energy operator requires two steps: (i) calculating

a set of grid points of the potential energy surface (PES), V(r 3. 31, #2, a), and (ii)

calculating integrals of this surface with the vibrational basis functions.

Our PES was generated by calculating the electronic and nuclear repulsion energy

of the Si state over a domain of nuclear configurations spanning r3 = [1.30 A : 0.02 A :

1.40 A], #1, /2 = [10' : 200 : 110], and a = [0 : 100 : 900]. The quantum chemistry

was performed at the EOM-CCSDT level of theory using the CFOUR package [32].

Such a high level of theory is necessary to generate accurate energies for non-planar

geometries, where triple excitations become important. This coarsely sampled raw

grid was then interpolated with cubic splines to create a 100 31, #2 spacing and a 5'

a spacing. From this surface, the # domains were extended from 1100 to 1800 with a

linear interpolation to a sufficiently high energy arbitrarily assigned to the 3 = 1800

geometries (when the H atoms fold completely back onto the CC bond). This crude

extrapolation has little effect on the rovibrational energies of the states of interest, as

these high energy regions are completely inaccessible. For the initial (3+3)D bending-

torsion-rotation calculation required for the basis set contraction, the minimum of this

surface along r3 at each (31, /2, a) point was taken as an crudely adiabatically relaxed

approximation. To generate the r3 HO-DVR points for the full (4+3)D calculation,

the r3 dimension at each (31, 32, a) point was fit to a Morse potential curve, which

was evaluated at the r3 HO-DVR grid points. The Morse potential fits were quite

good, with residuals less than 1 cm- 1 in the most accessible regions of the PES.

43



In order to calculate matrix element integrals of this surface, it is most convenient

to represent it as an expansion in terms that are separable in the internal coordinates,

so that only one-dimensional integrals need to be evaluated. Since the r 3 dimension

is being represented by a DVR basis, its integrals are trivial (equaling the value of the

PES at the DVR grid point), which leaves only (#1, /#2, a) integrals to be performed

over the 3D slice at each r3 grid point. To calculate these integrals, each of these 3D

surfaces is expanded with totally symmetric bending-torsion product functions as

V(r3 ; #1, #2, a) = {cfi 2 ,4n(Elf+) cos [4na] + cfa,41+2 2 ) cos [(4n + 2)a]}
1,e 2 ,n

(3.7)

where cfle 2,n = cf 2 e1 ,n by #1 ++ #2 permutation symmetry. This expansion can be fit

to the calculated grid via a linear least-squares procedure. Typically, the Legendre

polynomial orders are chosen to be mi = m2 = 0. The maximum values of f1, t 2 ,

and n are chosen to saturate the degrees of freedom in the fit (for example, if there

are 19 points in each dimension, the fit would be performed with f1 = [0 : 1 : 18],

f2 = [0 : 1 : 18], and n = [0 : 1 : 18]). It is important to note that if these 3D surfaces

contain sharp gradients as a function of the bending or torsional coordinates, then

the least squares fit might introduce detrimental ringing artifacts into the expansion.

However, as the 3D surfaces corresponding to physical r3 slices, they are generally

quite smooth and lead to no such artifacts. This is one major advantage of an r3

DVR basis, other than trivial potential surface integrals along that dimension.

Evaluation of potential surface integrals now requires summing these expansion

coefficients with products of one-dimensional "triple product" integrals of the bending

and torsional basis functions. The torsional integrals can be done trivially and ana-

lytically owing to simple trigonometric product rules. The triple Legendre integrals

in some cases have analytic expressions, but often must be computed numerically. We

generated pre-computed tables of such integrals to sufficient precision using Gauss-

Legendre quadrature with the GNU Scientific Library (GSL) [33].
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3.2.4 Kinetic Energy Operator

The kinetic energy operator (KEO) represents the most algebraically complicated

aspect of rovibrational variational calculations. Its derivation often requires consid-

erable effort in order to generate analytic expressions for the multitude of differential

terms. The choice of internal coordinates, useful for compact descriptions of potential

energy surfaces, complicates the transformation of the KEO from its trivial form in

Cartesian coordinates. Accurate internal coordinate KEOs have been available for

tetratomic molecules for over two decades [34, 35]. One complicating factor is that

a new KEO must be derived for every choice of internal coordinates and body-fixed

frame embedding. Valence bond internal coordinates are a common choice and the

purely vibrational KEO terms in these coordinates are well known [36, 37]. The

choice of body-fixed frames is, however, less standard and for every choice the rovi-

brational and rotational KEO terms must be rederived. Following the methods of

Refs. [38] and [39], we have derived the vibrational, rovibrational, and rotational cou-

pling coefficients necessary for the calculation of an analytic tetratomic KEO for our

specific case of internal coordinates and body-fixed frame embedding. Tables of these

coefficients are included for reference in Appendix A.

When carrying out reduced dimension variational calculations it is common prac-

tice to simply ignore terms in the full dimensional KEO that contain derivatives

with respect to the constrained variables (which for this calculation are the two CH

stretches). It is known, however, that this leads to the incorrect KEO for the con-

strained, reduced dimension problem [40, 41]. Following the methods of Ref. [40], we

have derived the correct internal coordinate KEO suitable for two frozen CH bond

lengths. We reproduce this KEO fully in Appendix A.

Matrix elements of the KEO are simplied by the fact that each term is separable

in the internal coordinates so that, as with the potential energy operator, only one-

dimensional integrals need be calculated. Those of the torsional and rotational degrees

of freedom can be determined analytically with simple trigonometric and symmetric

top algebra. The phase choice for the symmetrized rotational basis functions ensures

45



that their matrix elements are purely real (as opposed to the standard Condon-

Shortley phase convention which results in complex-valued matrix elements). The

bending integrals require more care. As with the triple Legendre integrals, analytic

expressions exist for a subset of the KEO integrals. However, we took the approach

of numerically calculating matrix elements of a handful of key primitive bending

operators and deriving the rest from these based on well known recursion relations

between associated Legendre polynomials and their first and second derivatives.

One subset of the bending KEO operators requires special discussion. Examina-

tion of the KEO will reveal that there exist some terms which may lead to divergent

integrals. For example, one is proportional to csc2 /1(B, iJ/h)2 . The factor of

I sin 131 in the integration volume element is not sufficient to cancel the csc2 #31 diver-

gence. For mi > 0 associated Legendre polynomials, the sin' #1 factor in the basis

function will take care of the remaining divergence, but for mi = 0 basis functions

the integral will diverge unless the (0, - iJ/h)2 factor is itself zero. In fact, every

divergent KEO term is paired with this or a similar torsion-rotation operator (either

(0, ± iJ/h) or (8a ± iJz/h)2 ). This systematic association will form the basis of

the rules cited above by which the appropriate values of mi and m 2 are determined

based on the values of the torsional and rotational quantum numbers n and k. To

be more explicit, let us consider the action of a divergent operator on a symmetrized

bending-torsion-rotational basis function (i.e. those from Table 3.1). We first provide

two useful relations involving the torsional and rotational basis functions:

Jk, ±(-i)") =Fk lJk, -F(-1)') (3.8)
h

Fro n, e = w cn, -F) (3.9)

From these we can derive the action of (a i iJl/h) and (0, i iJz/h)2 on the general
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symmetrized expression:

oa k' |@ btr)

+A( [(n -' k)(E 1 
8
2 ){-stIn, -st) Jk, sk(-1)j) + Sk ln, st) Jk, -sk(-1))}

±(n t' k) (E2f E){-stn, -st) Jk, Sk(-1)) - sk n, st)IJk, -Sk(-l)J)}] (3.10)

( h z1 i) 2 iotr)

-N [(n -F' k)2(IE, Ig{n, st)|IJk, sk (-1)J + stskITn,,-st)|IJk, -sk(--1/l

i(n t' k) 2 (S2f ){|n, st)lJk, sk(-1)) - StSk ln, -st) Jk, -sk(-1)j)}] (3.11)

Inspection of divergent terms in the KEO shows that divergent integrands involving

#1 occur with (8, - iJz/h) or (8, - iJz/h)2 , while divergent integrands involving #2
occur with (0, + iJ/h) or (0a + iJ2/h)2 . Thus, owing to relations 3.10 and 3.11,

every divergent integrand (be it with #1 or /32 operators) with an associated Legendre

polynomial of order in, has a factor of (k + n) or (k + 7n) 2 and every integrand with

an associated Legendre polynomial of order m 2 has a factor of (k - n) or (k - n)2.

Thus, we arrive at the previously quoted rules determining the appropriate values of

mi and M 2 :

i 1 = 0 if k + n = 0, otherwise min = 1 (3.12)

2, |k + n|/2 = even

m2 = 0 if k - n = 0, otherwise m 2 = 1, |k - nj/2 = odd (3.13)

2, |k - n|/ 2 = even

Essentially equivalent rules have been derived previously for similar bending-

torsion-rotation bases [35, 42] (for a mathematical discussion of the choices for nonzero

values of m1i, 2 , see especially Ref. [42]). However, in those treatments, KEO diver-

gences were typically viewed from a purely mathematical perspective.
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There is, in fact, a simple physical picture behind the nature of these divergences.

The astute reader will have noticed that our choice of bending-torsion-rotation basis

functions can be directly related to spherical harmonic basis functions describing the

local bending motions of each CCH bend (the associated Legendre polynomials of the

bending angles form the azimuthal factors, while combinations of the torsional and X

factor of the symmetric top functions form the polar factors). The relation between

mi and (k + n) and that between m 2 and (k - n) can now be seen as representing

the local angular momentum of each CCH bond rotating about the CC bond axis. In

fact the (8, ± iJz/h) operators correspond exactly to local bend angular momentum

operators (see Figure 3-2). Rotation of the entire molecule (quantized by k) generates

k n k n

x a x a

k + n Local angular momentum k - n

Figure 3-2: Local bond angular momentum. Body frame rotation (quantized by k)
and torsional rotation (quantized by n) add constructively and destructively to gen-
erate local bond angular momentum for H1 and H2, respectively, about the molecular
z-axis. The local bond picture provides a physical interpretation of the divergent
KEO terms and the rules determining the values of the associated Legendre polyno-
mial orders.

local bond angular momentum for both CCH bonds in the same direction. Torsional

rotation (quantized by n) generates local angular momentum in opposite directions.

Thus, the total local angular momentum for one CCH bond is k + n and k - n for the

other. Just as in spherical harmonics, the quantum number m is zero when there is

zero angular momentum about the z axis. This is exactly the case for our bending-

torsion-rotation basis functions. Whether k and n add for one bond and subtract for

the other or vice versa is a matter of phase convention implicit in the phases of the

rotational and torsional wavefunctions (which can be determined by the action of 0,
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and iJz/h, see Eq. 3.8).

3.3 Results

3.3.1 Details of the Calculations

Before we examine the global structure and patterns of the calculated rovibrational

levels, we will discuss various technical details including basis set sizes, level conver-

gence, and accuracy benchmarks of each of the fundamental vibrations. The (4+3)D

Hamiltonian is factored into blocks distinguished by their G () symmetry and total

angular momentum J. For each block in the initial bending-torsion-rotation calcu-

lation, we used functions from Table 3.2 with 1 + f2 < 30, n < 63, and k < J

for J = 0, 1, 2. The corresponding total number of bending-torsional-rotation basis

functions for each of these blocks is given in Table 3.3. The absolute convergence

error of the lowest eigenvalues of these basis sets is < 0.1 cm- 1 . Relative energies are

converged to at least another order of magnitude. For the highest states of interest,

lying around 5000 cm- 1 above the trans zero-point energy, the absolute convergence

errors are estimated to be on the order of 1 cm.

Table 3.3: Bending-torsion-rotation basis set sizes. Each entry is the total number of
basis functions for a given G(8) symmetry and J block. These basis sets correspond
to the limits f1 + 2 < 30, n < 63, and k < J

J A+ Ag B+ B 1- Total

0 6796 6090 6330 6540 25756

1 19141 19847 19591 19381 77960

2 32702 31996 32221 32431 129350

233066

As a means of evaluating the quality of our potential surface and the accuracy of

our methods, we compare the observed and calculated fundamental frequencies for
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Table 3.4: Observed and calculated trans and cis fundamental frequencies. All
energies are in cm-1. Three calculated columns are included: the initial 3D bending-
torsion-rotation calculation (left), a full 4D calculation including r3 using the full
dimensional KEO (center), and a full 4D calculation using a correctly constrained
KEO for frozen rcH bond lengths (right).

3D 4D w/
full dim. KEO

4D w/

constr. KEO

trans

v2 (rcc stretch) 1387 [10] - 1443 1387

v3 (trans bend) 1048 [10] 1109 1074 1071

v4 (torsion) 765 [14] 764 762f 749

v6 (cis bend) 768 [14] 770 769f 774

cis

v2 (rcc stretch) 1503* - - 1514

v3 (cis bend) 740 + 10 [17] 783 776 764

v4 (torsion) 865 i 10 [17] 865 861f 844

v6 (trans bend) 585* 618 6 15t 593
* These fundamentals have not been observed. We instead quote

recent VPT2 calculations [16] for comparison.

t These "4D" values for v4 and v6 were calculated on a 3D grid

adiabatized along the r 3 coordinate.
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the trans and cis conformers in Table 3.4. Only the modes spanned in our reduced

dimensional internal coordinate space (V2, v3, v4, and v6 of each conformer) are in-

cluded. Some fundamental frequencies of the cis conformer have yet to be observed.

In these cases, we use calculated fundamentals from recent VPT2/anharmonic force

field calculations [16] to provide some point of comparison. As that type of calcula-

tion is of quite a different nature than a variational approach, agreement would seem

to indicate that the results are a faithful representation of the potential surface.

Examining the trans modes, for which all experimental fundamentals are known,

it is clear that the 3D bending-torsion-rotation calculation is sufficient to describe the

low frequency stretches, but fails to accurately reproduce the trans bending mode.

The residual for this mode is significantly reduced by the addition of the r3 stretch,

which is consistent with normal mode analyses that show a non-negligible contribution

of r 3 to the v3 mode. The CC stretching mode V2 treated with a full dimensional KEO

shows a considerably large residual. This is at first unexpected as v2 is spanned almost

exclusively by r3 and therefore the current dimension reduction should treat this mode

well.

The source of the discrepancy can be traced to the incorrect use of an uncon-

strained, full dimensional KEO. As is often done when using a full dimensional KEO

in a reduced dimension calculation, the only change made to the KEO is to ignore

terms with derivatives with respect to frozen coordinates. We expect the kinetic

energy of the r3 stretch to be determined by the KEO term involving its second

derivative. In our case, this leaves the following term

_h2 02 (3.14)
2p-cc 3r

which indicates that the effective reduced mass of the r3 stretch is equal to pcc,

i.e. the KEO treats the r 3 stretch as occuring between two carbon atom masses, as

opposed to two CH fragments which is intuitively what we would expect. In fact,

replacing the carbor-carbon reduced mass, pcc, with a CH dimer reduced mass,

pCH,CH = (mC - mH)/2 ~ (13/12)icc, should lower the stretch frequency by ~
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12/13. Scaling the calculated full dimensional KEO frequency of 1443 cm-1 by

this ratio yields 1386 cm-1, almost exactly the observed v2 frequency. This suggests

that, indeed, the full dimensional KEO incorrectly treats reduced masses (amongst

other details) when naively applied to reduced dimension systems. The corresponding

second derivative term in the constrained KEO (see Appendix A) equals

S CH os 2 
3 + COS 2 /2) 2 (3.15)

2 p-tcc mc .19T3

According to this expression, the effective r3 stretching mass is geometry dependent.

At linear geometries (31 = 32 = 0), the mass factor is exactly the inverse CH dimer

reduced mass, as expected. When #1= 02= 900, both cosine terms are zero and the

effective mass is that of two carbon atoms. At other geometries, the effective mass is

at some intermediate value.

The calculated fundamental frequencies using the constrained KEO are shown in

the right-most column of Table 3.4. The v2 frequency clearly improves, matching

the observed value to within 1 cm-1. The low frequency bends, v4 and v6, actually

worsen. This is most likely due to the more sparsely sampled 4D PES grid. Ongoing

calculations with improved sampling around the equilibrium geometries are expected

to correct for this issue. It will be seen, however, that these small errors in the

fundamental frequencies have relatively little effect on the calculated structure of

high lying overtones and combination bands of v4 and v6.

3.3.2 Bending Polyads and the Onset of Isomerization

A complete, assigned J = 0 level list of predicted vibrational states from the trans

origin to 5000 cm-1 of internal energy is included in Appendix B. It would be both

tedious and mostly uninformative to compare the calculated structure to the observed

levels state-by-state. We choose to focus mainly on the more complicated (read in-

teresting) global aspects of the rovibrational structure, such as the bending polyads,

and the effects due to the presence of the low barrier cis-trans isomerization path-

way, like the decoupling of v3 and v6 combination levels from bending polyads and
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K-staggerings caused by tunneling interactions. For some effects, we will examine

specific, local representative cases.

An overview diagram of the observed and calculated trans and cis J = 0 level

structure is shown in Figure 3-3. Apart from the slight overestimation of the v3

frequency, the overtones and combination bands involving v2 and V3 are reproduced

quite well. These levels display very little interesting structure and conform to simple

anharmonic oscillator energy level patterns.

The first challenge for ab initio calculations involves the overtones of modes v4

and v6. Errors in the calculated bending fundamental frequencies lead to some sys-

tematic offsets of the higher lying polyads. However, the internal structure of each

polyad is reproduced with impressive accuracy. Figure 3-4 shows the observed and

calculated J = K = 0 - 2 level structure of B4 , the polyad containing the zero-order

{44, 4361, 4262, 4163, 6 } vibrational states. The residuals of the calculated intrapolyad

structures are about the same as experimental fits to effective Hamiltonians which

include interaction parameters for Darling-Dennison resonances and a and b-axis Cori-

olis coupling between modes v4 and v6 . Such empirical fit models are extremely use-

ful in generating observed level patterns via physically meaningful parameters. One

problem is that they often must be applied on a polyad by polyad basis, lacking a

single global model. Our ab initio variational calculations are, in contrast, inherently

global in nature and can also provide complementary physical insight into the polyad

level structures. For example, one well-known result of polyad effective Hamiltonians

in Si acetylene is that the polyad members possess approximate vibrational angular

momentum. Inspection of the variational wavefunctions for the B 4 polyad clearly

complements such an interpretation, as is illustrated in Figure 3-5.

In Chapter 2, it was seen that the polyad model was beginning to break down for

3 "'6 combination bands due to a large v3/v6 cross anharmonicity associated with the

onset of isomerization. Prior reduced dimension DVR vibrational calculations of the

Si state [22] have shown that such levels have increasing delocalization over the cis-

trans isomerization barrier. This thesis, by including the torsional degree of freedom,

extends this result by enabling an examination of the wavefunctions for all members
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Figure 3-3: Observed and calculated Si vibrational levels. J = 0 vibrational energies
are shown for almost all vibrational levels under 5000 cm-1 of internal energy. As-
signed observed levels are shown in blue (left side of each stack). Calculated levels
are in red (right side). An offset of 240 cm- 1 was subtracted from the calculated cis
levels such that the calculated and empirically estimated value of the cis v = 0 origin
(2675 ± 10 cm- 1 [16]) coincide.
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Despite the fact that the J = K = 0 - 2 levels span 400 cm- 1, the calculated
structure has an rms residual of only 4 cm- 1 .
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Figure 3-5: Variational wavefunctions of the B4 polyad (I ||2 is plotted). The cou-
pling between modes v4 and v6 is manifest. The angular nodal patterns (shown with
solid lines) are consistent with the expected vibrational angular momentum gener-
ated in the bending polyads and allow the polyad members to be organized with an
approximate vibrational angular momentum quantum number f ~ 0, 2, 4. Member
states of B4 are labeled in absolute energy order by Roman numerals.
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of 3'B" polyads, among which isomerizing states are especially interesting members.

Figure 3-6 compares the {#1, 32, a} projections of the B4 , 31B4 , and 32B 4 polyads. For

the pure bending polyad, B4 , the coupled vibrational angular momentum structure

is the same as that examined in Figure 3-5. The addition of one or two quanta of

v3 begins to alter the polyad coupling patterns. The lowest member, nominally 3'64,

is decoupled from the remainder of the polyad. This incremental decoupling can be

seen by the loss of vibrational angular momentum structure in the wavefunction and

the onset of delocalization into the cis well, especially for 3264 in the lower left plot

of the figure. From the energy level patterns, this decoupling is associated with the

large cross-anharmonicity of v3 and u6. The predicted size of this cross-anharmonicity

is smaller than experimentally observed (for example, our predicted position for 3161

is above that of 3141); however, the global structure is still well reproduced.

3.3.3 cis Vibrational Manifold

The vibrational assignments of experimentally observed cis states [17, 18] have largely

been guided by ab initio calculations [16, 22] of cis vibrational frequencies. To further

support these assignments and establish them beyond reasonable doubt, we summa-

rize in Table 3.5 the observed and calculated positions of the low energy cis manifold.

Despite residuals of tens of cm- 1 in the variational results, the level structure is suf-

ficiently sparse to confirm the observed vibrational assignments with great certainty.

It should be noted that the variational and VPT2 calculations are very different in

nature. Their general agreement with one another indicates that neither set of re-

sults suffers from any significant errors. As mentioned above, the residuals in the

variational predictions for the cis frequencies are expected to improve if a finer PES

grid spacing is used around the equilibrium configuration. We also note that the

variational predictions for cis 63 and cis 3141 have led to very tentative assignments

of these levels in not yet published spectra. The analysis of these spectra will be the

topic of a future paper.
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Table 3.5: Observed and calculated positions of cis vibrational levels. Observed levels
are reported in this work [18] and Ref. [17]. VPT2 [16] calculations are second-order
vibrational perturbation theory results from a full dimensional anharmonic force field.

cis state Obs. Calc. (this work) Calc. (VPT2)

v=0 0 0 0*

61 593 607t

31 740 764 740*

41 865 834 865f

62 1244 1186 1244f

3161 1305 1273 1294f

32 1477 1509 1476

21 1514 1503

4161 1524 1467 1535f

3141 1579 1572f

6 3 1815

*The cis zero point has not been observed. Its value is taken

to be 44870 cm- 1 based on the VPT2 calculation of the v3

frequency.

tThese values include a manual correction of the v4 and v6

frequencies (see Ref. [16] for details).
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3.3.4 K-Staggering and Tunneling Interactions

For any molecule with low barriers between local equilibrium geometries, tunnel-

ing interactions will have an important qualitative impact on barrier-proximal states

and their level structure. S1 C2H2 is an especially interesting case in that there are

both multiple asymmetric wells (cis and trans conformers) and multiple conceivable

isomerization pathways between these wells (i.e. in-plane bending and out-of-plane

torsion). Though such properties make cis-trans isomerization in acetylene a compli-

cated problem, they will ultimately create patterns that reveal details about cis-trans

interactions and the associated isomerization dynamics.

The energy regions where cis-trans tunneling is important can be divided into

two segments. The lower energy part includes states where the tunneling interaction

energies are smaller than the spacing between localized cis and trans vibrational

levels. The upper energy part includes states near the top of the isomerization barrier

where tunneling effects are no longer perturbative, and interactions between wells

dominate the level structure. In reality, of course, there is a continuous distribution

between these regimes, but this distinction will help frame the discussion of tunneling

patterns.

The simplest tunneling case is a degenerate interaction between localized states

in identical equilibrium wells. Figure 3-7a shows a 2D contour plot of the Si PES

for planar geometries. The axes correspond to the two CCH bond angles #1,2. The

upper right and lower left quadrants contain two equivalent cis wells, while the upper

left and lower right are trans. We consider localized wavefunctions in the two cis

wells, which interact to form symmetrized tunneling components: a symmetric and

antisymmetric linear combination. In Figure 3-7b, we show transformations which

may be applied to such wavefunctions. For the symmetric tunneling component,

moving from configuration (1) to (3) via in-plane bending (2) leaves the value of the

wavefunction unchanged (with no phase change), while the antisymmetric compo-

nent obtains a negative phase change. A 180' rotation about the body-fixed z-axis

returns the molecule to the same space-fixed coordinates as (1), and therefore the
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Figure 3-7: Tunneling in cis vibrational states. (a) 2D in-plane bending potential
with two equivalent cis and trans wells. Degenerate localized wavefunctions in each
equivalent well form symmetric and antisymmetric tunneling linear combinations. (b)
A molecule in the lower left cis well (1) can isomerize via in-plane bending (2) to an
equivalent cis well (3), which can be transformed back to the original orientation via a
1800 rotation about the CC-axis (4). Requiring a single-valued wavefunction entails
that symmetric tunneling components have only even K states and antisymmetric
tunneling components have only odd K states.
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wavefunction must return to its original value. This implies that the phase of the ro-

tational factor of the total wavefunction must undergo no phase change for symmetric

tunneling components and a negative phase change for antisymmetric components.

The phase change of such a rotation about the z-axis is exp(-iwrK) = (-I)'. Thus

symmetric tunneling components can only have rotational factors with even K and

antisymmetric tunneling components can only have rotational factors with odd K.

Tunneling splittings (like those observed in ammonia inversion or methyl rotors) will

only appear as a staggering between the even and odd K levels within a given vibra-

tional state. Other operations that transform the molecule between equivalent wells

(for example, changing the torsional coordinate a a a + 7r) lead to additional and

distinct K-staggering patterns.

The relevant extended complete nuclear permutation inversion (CNPI) group the-

ory for treating isomerization in Si acetylene using the G () symmetry group is fully

treated in Ref. [26]. It can be shown that nearest-neighbor tunneling interactions

should lead to an even/odd K-staggering for in-plane isomerization. If torsional iso-

merization is feasible, then an additional staggering between K = 4n and K = 4n +2

states should occur.

A summary of observed and calculated staggerings is given in Table 3.6. Because

of the small number of observed cis levels and their respective K stacks, few K-

staggering measurements have been reported. For the two experimental data points

Table 3.6: K-staggerings in cis vibrational states. Listed are the observed and
calculated K-staggerings for several cis states. The limited characterization of the
cis conformer leaves us with only two experimental measurements. The calculated
values are taken from a 3D bending-torsion-rotation calculation.

State Obs. Calc.

cis 3161 +3.9 [17] +1.6

cis 62 -5 t 1 [18] -3.0

cis V = 0 +0.03

cis 3162 +42

cis 63 -62
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available, the predictions agree in the direction and approximate magnitude of the

K-staggering. All the reported staggerings are between the even and odd K states, as

no apparent staggering between K = 0 and 2 states has been observed (as mentioned

above, this pattern would result from torsional tunneling). The K-staggering for

the cis origin level is predicted to be quite small and we anticipate that it will not

be (listinguishable from other factors affecting the rotational structure. Only one

bending quantum higher than the levels where staggerings have been observed, the

staggerings are predicted to be an order of magnitude larger. There are two reasons

this occurs. First, the simple degenerate tunneling interactions between vibrational

states belonging to identical wells (i.e. cis-cis or trans-trans) become larger as the

barrier width decreases. Second, resonant interactions between nearby cis and trans

states emerge. These interactions are K-dependent due to the rotational dependence

of the CNPI symmetry. The result is that even K and odd K components of cis and

trans states interact with each other in different ways.

The patterns associated with this latter type of cis-trans staggering are expected

to be less consistent, as the level shifts sensitively depend on the relative positions of

near-resonant cis and trans states. The even and odd components essentially have to

be treated as separate vibrational components (and in light of the above discussion,

they in fact are separate tunneling components). When cis-trans interactions become

important, the K-staggerings should be large enough to be noticeable in the already

distorted rotational structure of trans vibrational states. From a perturbation theory

perspective, cis-cis and trans-trans interactions between identical wells are a first-

order effect, while near-resonant cis-trans interactions are a second-order effect.

As one example, 3462 is predicted to have a K-staggering of about -70 cm- 1.

Figure 3-8 shows the vibrational wavefunctions for the K = 0 and 1 states. Both

rotational components show extensive cis-trans delocalization. However, the K = 0

component interacts with cis 3262, and the K = 1 with cis 3361, leading to a large

staggering between even and odd K states. These staggerings will make analysis of

the near-barrier region extremely difficult, though ab initio predictions such as these

should aid tremendously in sorting out the distorted spectral patterns.
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Figure 3-8: K-dependent cis-trans interactions in 3462. This figure shows the vibra-

tional wavefunctions (ITI|2) of the K = 0 (left) and K = 1 (right) states of 3462 in the

a = 0 plane (i.e. planar geometries). Both demonstrate significant cis-trans delocal-
ization (the trans geometries are in the lower left and upper right quadrants and the

cis geometries are in the upper left and lower right quadrants). The K = 0 compo-
nent interacts with cis 3262, but the K = 1 component interacts with cis 3361. The
K dependence of cis-trans tunneling leads to significant K-staggering for zero-order
states with the same vibrational character.
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3.4 Discussion

In this chapter, we have presented the highest dimension rovibrational variational

calculations of Si acetylene to date. We have reproduced some of the most com-

plicated aspects of this electronic state's rovibrational structure, which include the

v4 /v 6 bending polyads, the effects of cis-trans isomerization on the level structure

of 3 '6' combination bands, and the presence of K-staggering in levels that tunnel

through the barrier to isomerization. One strength of a variational treatment is that

the entire global structure is generated with a single calculation, which allows pat-

terns to be observed over large ranges of internal energy. Our prediction of very large

K-staggerings in barrier-proximal cis and trans levels will be a significant factor in

our experimental analysis and assignment of the last set of levels underneath and

isoenergetic with the barrier to isomerization.

We are continuing to refine these calculations by generating a more densely sam-

pled potential surface in the regions of configuration space containing the largest

vibrational wavefunction amplitude. In addition, we are currently calculating a tran-

sition dipole surface of the Si+-So transition in order to simulate excitation spectra

of Si as well as stimulated emission [43] and dispersed fluorescence [44-46] spectra of

So.

Exclusive attention has been paid in this chapter to the calculated rovibrational

structure below and up to the barrier to isomerization. These calculations, of course,

give predictions for the above-barrier rovibrational structure as well. This predicted

structure, however, has yet to be analyzed. Qualitatively new level patterns will

emerge resulting from unhindered large amplitude internal motions. One possiblity

is the development of approximate vibrational angular momentum along the out-of-

plane (c) axis. Ab initio calculations conducted in parallel with the analysis of high

energy spectra will almost certainly prove necessary to understand the undoubtedly

complicated level structure in those energy regions.
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Chapter 4

Spectroscopic Characterization of

Transition States

In the previous chapters, we have explored the details of cis-trans isomerization in

Si acetylene from both spectroscopic and ab initio perspectives. We have seen that

large-scale changes affect the energy level patterns of isomerizing states. Tunnel-

ing interactions lead to K-staggerings within vibrational levels and eventually K-

dependent cis-trans interactions that can vastly distort the rovibrational structure of

states along the isomerizaton path. These states also experience large anharmonic-

ities and require models that can effectively treat large-amplitude motions and the

presence of stationary points in the potential surface. In order to gain quantitative in-

formation regarding the isomerization process, we rely on spectroscopic patterns that

are dependent on physically meaningful parameters. The failure of effective Hamilto-

nians in modeling the global trans manifold's level structure tells us that a qualitative

change has occured and in doing so implicates the 3 n6 " levels, which are proximal

to the isomerization path. Such complications, however, are an opportunity to rec-

ognize emergent spectrosopic patterns that provide quantitative information about

the isomerization process. In this chapter, we propose a general empirical model that

enables direct spectroscopic characterization of the essential aspects of isomerization:

the energy of transition states and isomerization barriers and the topography and

shape of isomerization paths.
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4.1 Effective Frequency "Dips"

It has been mentioned several times that the 3"6 ' combination levels display an un-

usually large cross-anharmonicity related to the approach to the geometric structure

of the half-linear isomerization transition state. To illustrate this point explicitly, we

reproduce in Figure 4-1 the spectra of the the 3"B 2 polyads, for n - 0 - 3. In a

33B2

3 B'

45650 45700 45750 45800

3 B2

44700) 44750 44800

2 6 2 4 16 1 4 2

43700 43750 E cm 43800

Figure 4-1: v 3 /v 6 anharmonicity in the 3nB 2 polyads (reproduced from Figure 13
of Ref. [21]). The intrapolyad structure of B2 should normally be transplantable to
higher combinations with v3. However, observed polyads show a drastic fallout of the
lowest member (nominally 3 n6 2) associated with the approach to the isomerization
half-linear transition state.

normal case, the B2 polyad structure should be able to be transplanted directly to

higher lying 3"B 2 combination polyads. The observed structure, however, shows a

drastic fallout of the lowest polyad member, which has nominal 3 6 2 character. As

seen in the previous chapter, this nominal character becomes quite dominant when

both 13 and v6 are highly excited and the vibrational state approaches the shape of

the half-linear transition state.

The nature of this fallout can be appreciated by considering semiclassically the
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motion of a body in a potential that contains a stationary point (or transition state)

between two wells. Such a 1D potential is given in Figure 4-2a. This toy potential

(a) (b)

ETS

W±

i soE E

Figure 4-2: Classical frequency "dip" at a potential surface stationary point. (a) A ID

potential of cis-trans isomerization. The isomerization coordinate, qijo, corresponds
to a CCH bending angle. A stationary point on the potential surface occurs at the
half linear transition state. The frequency of periodic motion of a classical body in the
trans well is plotted in (b) as a function of the total energy. At low energies, the body
oscillates with harmonic frequency wo near the bottom of the well. When the body
has total energy equal to the energy of the barrier, its classical frequency goes to zero
because it must have zero kinetic energy when it reaches the transition state stationary
point, thus stopping at that position. The classical frequency evolves smoothly from
the zero-energy harmonic motion to zero-frequency motion at the stationary point,
creating a "dip" in the classical frequency curve at exactly the barrier height. An
identical dependence occurs for motion in the cis minimum.

corresponds to a 1D cut along the Si potential. The isomerization coordinate is the

local CCH bending angle. A stationary point between the trans and cis minima occurs

at the half-linear transition state. We consider the classical periodic trajectories of

a body moving in this potential. Imagine letting a ball roll in the trans well with

a given amount of total energy E and measuring its periodic frequency (as plotted

in Figure 4-2b). At low energies, the ball will move harmonically with frequency wo,

which depends on the curvature of the potential well. As the total energy increases,

anharmonic effects will begin to decrease the frequency. When the ball's total energy

is equal to that of the stationary point it will have zero kinetic energy when it reaches

the transition state and stop at the top of the barrier. The classical frequency is thus

zero at the energy of the barrier. The continuous classical frequency curve w(E),
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which begins at w(O) = wo, will smoothly dip to w(E,) = 0. When the total energy

increases above the energy of the barrier, the frequency will rise again. The shape of

the rise depends on shape of the outer walls of the potential.

A result of semiclassical quantization is that classical frequencies correspond to

quantized level spacings, i.e. w(E) ~ AE(E), where AE(E) is the effective frequency

or energy spacing between consecutive energy levels at average energy E. As with

classical motion, the effective frequency will dip at the energy of the stationary point.

Due to finite sampling of a discretely quantized system, the dip cannot reach zero,

but will tend to zero.

Such an effect is historically well-known in triatomic spectroscopic literature.

Quasi-linear triatomics are bent molecules with a low barrier to linearity, where

a saddle point occurs along the bending coordinate. Experimental spectra and

model potentials of highly excited bent triatomics were analyzed nearly fifty years

by Dixon [47], who showed that an effective frequency dip occurs at the energy of the

barrier to linearity (see Figures 3 and 5 of Ref. [47]). However, it appears that the

connection between the quantized effective frequency dip and classical motion with

zero kinetic energy at the stationary point was not recognized. Such ideas have since

not been widely applied to larger systems, if at all, perhaps due to the difficulty in

generating comprehensive assignments of vibrationally excited regions. Si acetylene,

where the trans vibrational manifold is completely assigned nearly to the predicted

transition state energy, is an opportune test case for generalizing the effective fre-

quency dip.

4.2 Fitting the Effective Frequency Curve

In Figure 4-3, we plot effective frequency dips for the quantized version of the ab initio

ID potential from Figure 4-2a as well as the experimental progression 3"6 2 (where

both the effective v3 and v6 frequencies are plotted). The experimental effective v3 and

v6 frequency curves lie above and below the ab initio ID curve, which is consistent

with the ID isomerization coordinate being a direct combination of the v3 and v6
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Figure 4-3: Effective frequency dips in isomerizing trans acetylene. The blue dashed
line corresponds to a 1D CCH bending isomerization potential (as shown in Fig-
ure 4-2a). The solid curves are the effective v3 and v6 frequencies from experimental

measurements of the 3 6 2 progression. The model fit function, discussed in the text,
directly predicts values for the height of the isomerization barrier Et,.

normal modes. In order to determine the energy of the isomerization transition state

from the experimental measurements, the effective frequency curves must be fit to

an empirical model. We propose the following dependence of effective frequency with

vibrational energy

/ E 1/rn

AE(E) = Weff (E) = wo (1 - , (4.1)
Ets

where wo is the zero-energy harmonic frequency, Et, is the energy of the isomerization

barrier, and m. is a shape parameter. This expression is first and foremost an empirical

model; however, it is motivated by having the correct physical limits. weff (E = 0)

evaluates to wo, the harmonic frequency, while weff(E = Et,) = 0, in correspondence

with the classical frequency dependence. These limits are unchanged by the value of

the shape parameter m, which determines how steeply the effective frequency dips

from wo to zero. One desirable feature of the effective frequency dip expression is how

simply and directly it depends on physical quantities of interest, like the equilibrium
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harmonic frequency and the transition state energy. In fact, the m parameter encodes

qualitative information about the isomerization path as well. In Figure 4-4a, we give

the effective frequency dip curves for various values of m. Using standard RKR-type

spectral inversion methods, we can invert the effective frequency curve to generate an

equivalent ID potential, shown in Figure 4-4b. The spectral inversion only generates

the potential up to the energy of the barrier and only from the side of the barrier for

which the effective frequency curve is taken.

(eff(Cm')

700 moo
3025

10

350 - EO "4

El. m = 2

01 E(em-1)
0 2500 5000

E(cm- 1 ) m = oo (Harmonic)

5000 -10 4 m = 2 (Morse)

-0.3 0. 0.3 0.6 x(A)

Figure 4-4: m dependence of the effective frequency dip. In (a) we give the model
expression for the effective frequency dip with m = 2, 4, 10, 25, oo. The values of wO
and Et, are 700 and 5000 cm-1 respectively. The 1D potentials which would generate
such effective frequency curves are given in (b). These effective ID potentials are
generated by RKR-type spectral inversion. We use an effective mass of 12 amu to
generate potentials at a reasonable physical scale.

For each curve in Figure 4-4, the harmonic frequency and transition state energy

are taken to be 700 cm-1 and 5000cm-1, respectively. There are two interesting

limiting cases for the dip expression and resulting 1D isomerization potentials. In

the case m -+ oc, the effective frequency curve remains flat and constant at the
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harmonic frequency. The potential for this curve is a harmonic parabola. In the

other extreme, when m = 2, the effective frequency curve can be inverted analytically

to the well known Morse potential with a dissociation energy equal to the value of

Et. Intermediate values of m produce effective frequency curves and potentials that

occur between these two extremes. Larger values of m produce a sharper decrease

in the effective frequency. In the corresponding potential, this results in a steeper

slope as the potential energy surface rises from the equilibrium well to the transition

state barrier. By determining the value of m, experimental effective frequency fits

of vibrational progressions along an isomerizing coordinate (or combination thereof)

can provide direct qualitative information about the topography of the potential

surface along the isomerization path. Comparing the fitted values of it from the 3 "6 2

data in Figure 4-3 (11.5 ± 3.5 and 6.3 ± 0.2 for the v3 and v6 effective frequency

curves, respectively) to the inverted ID potentials shows that the fits are at least

physically reasonable, and probably indicates that the effective isomerization path is

of an intermediate steepness with a moderately wide barrier. More refined treatments

will require estimations of the effective mass of motion along the isomerization path.

As the existence of an effective frequency dip is intrinsically associated with

approaching a transition state/stationary point on a PES, its observation (or lack

thereof) is evidence for or against a possible isomerization pathway. In Figure 4-5, we

compare the effective frequency curves for three progressions: 3', 3' 4 2, and 3 n 6 2. The

dip in the 3 n 6 2 levels contrasts greatly with the curves for 3n and 3 n 4 2, which show no

dip whatsoever. This indicates that these levels do not approach a stationary point

on the potential surface. The lack of a dip for the progression involving quanta of v4,

in particular, is further evidence that a torsional pathway does not contribute to cis-

trans isomerization at these energies in Si acetylene. This is consistent with the other

pieces of experimental and ab initio evidence presented in the two previous chapters,

which also indicate that there is no active torsional isomerization mechanism at the

energies so far sampled experimentally.

An effective frequency analysis also enables characterization of transition state

vibrations. In Figure 4-6, we show an example that considers two vibrational pro-
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Figure 4-5: Spectator modes of cis-trans isomerization in Si acetylene. The effective
v3 frequencies for the 3", 3 "4 2, and 3n6 2 progressions are shown. As seen above, 3n6 2

levels display a strong dip as they approach the isomerization transition state. The 3"
and 342 progressions exhibit no dip. In particular, this suggests that there is not an
accessible torsional transition state and that cis-trans isomerization occurs (at these
energies) exclusively through an in-plane path.

gressions on a general potential surface with a well and transition state atop a barrier.

The first progression consists of excited levels involving only the isomerizing mode,

and the second contains the same levels including one additional quantum of a mode

orthogonal to the isomerization path. The effective frequency dips for these two

progressions are plotted on the right of the figure. The additional energy of the or-

thogonal mode shifts its effective frequency curve to the right. The magnitude of this

shift, however, is not uniform. At low energy, the curve is shifted by the harmonic

frequency of the orthogonal mode wo. The location of the dip is shifted by the fre-

quency of the orthogonal mode at the isomerization transition state wt, which may

differ from the low energy value. The change in orthogonal mode frequencies provides

information on the relative curvature of the PES at the vicinity of the transition state.

"Narrow" and "wide" isomerization channels correspond to increased and decreased

orthogonal curvature, respectively. The current data set for Si acetylene is not quite

complete enough to perform such an analysis. Vibrational levels up to and above the
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Figure 4-6: Characterization of transition state vibrations. On the left is a partial
potential surface showing the approach to a transition state at the PES's stationary
point. Vibrational levels with pure excitations in the isomerizing mode are given in
blue. Their effective frequency dip is shown in the plot on the right. We compare
this progression to one that has one additional quantum of excitation in a mode
orthogonal to isomerization path (red). The horizontal displacement of the effective
frequency curves for the two progressions gives information about the orthogonal
mode's frequency at the equilibrium geometry (wo) and at the transition state (otS).
In this example, the curvature of the PES decreases in the orthogonal direction at
the transition state, so that wt, < wo for the orthogonal mode.

barrier will need to be measured and assigned. We discuss on-going experiments re-

garding these energy regions in the next chapter. In addition, we continue to consider

what additional effects a mixed-mode isomerization coordinate (for example, in-plane

cis-trans isomerization in Si acetylene requires combinations of both v3 and v6 ) has

on the frequency dip patterns.

4.3 Discussion

We have proposed an empirical model to analyze the effective frequency patterns of

isomerization active modes. This model provides information on the most relevant

characteristics of an isomerizaton process: the heights of transition states and energy

barriers, the qualitative shape and steepness of the isomerization path, and the rela-

tive curvature in orthogonal directions along the isomerization path. The preliminary

analysis performed thus far on acetylene yields an observed transition state energy
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of approximately 4500-5000 cm 1, consistent with ab initio calculations [16, 22]. We

anticipate being able to make more refined estimates when more complete vibrational

data sets for the Si state are measured.

The frequency dip phenomenon is expected to be quite general. The models devel-

oped in this chapter are applicable not only to conformational changes, like cis-trans

isomerization, but also to studies of reaction dynamics or any system which contains

stationary points on its potential surface. Frequency domain spectroscopic charac-

terization of the potential surface entails vastly more accurate experimental measure-

ments than achievable by studies of kinetic rates, and the quantities extracted from

an effective frequency model can be used directly as input to transition state theory

calculations. Open questions remain, however. What is the expected structure of

above-barrier vibrational levels? This will certainly be complicated and qualitatively

different from the level structure that evolves up to the transition state energy. What

does the above-barrier structure tell us about the barrier itself? Additionally, how can

such empirical models, which require identification and measurement of vibrational

states along an isomerization path, be applied to larger molecular systems where com-

plete vibrational analyses are intractable? Spectroscopic techniques that are sensitive

to large amplitude motions may be the answer (see for example recent work on HCN

-+ HNC isomerization [48]). Lastly, how do we account for the higher dimensionality

of multi-mode problems where more than one vibrational mode contributes to the

isomerization path (as in Si acetylene)? Resolving these questions provides many

interesting challenges and opportunities for further ab initio and experimental study.
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Chapter 5

On-going and Future Work

5.1 IR-UV Double Resonance Spectra via Hot-Band

Pumping

The spectroscopic double resonance schemes used in Chapter 2 are designed to access

Si vibrational states with K = 0, 1, 2 (see Figure 2-1). It would be desirable, however,

to access states with K > 2 in order to make more complete measurements of K-

staggerings in tunneling vibrational states. In-plane bending isomerization causes

a simple even/odd K-staggering pattern, but torsional tunneling would lead to a

further staggering between K = 4n and K = 4n + 2, levels. Though all current

spectroscopic and ab initio evidence indicates that torsional tunneling does not occur,

a measurement of the associated K-staggering would be the most direct and concrete

experimental proof. As explained previously, K-staggerings are simplest to observe

in cis vibrational states because their rotational structure is unperturbed by Coriolis

coupling. Unfortunately, the experimental K coverage of observed cis states is scarce.

Only for one level, cis 3161, have all three K = 0 - 2 states been observed. The only

other level where at least both one even K and one odd K state have been observed

is cis 62, for which the positions of the K = 0 and K = 1 state have provided an

approximate measurement of the K-staggering (see Table 3.6). One experimental goal

is to augment the K = 0 - 2 coverage of already identified cis levels, so as to learn
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more about the vibrational character dependence of the K-staggerings. However,

measurements of only K = 0 - 2 states are insufficient to characterize torsional

staggerings, which require measurements of at least K 0 - 4. The c-type A - i

transition carries a rotational selection rule of K' - f" = 1 (which is slightly broken

by axis switching, but these effects are small). Therefore, access to K = 3 and 4

states requires UV excitation from initial levels in the X state that have f" = 2

and 3. One quantum of vibrational angular momentum can be prepared with an

IR photon via a perpendicular transition, which leaves at least one or two units of

vibrational angular momentum required in the JR transition's initial state. Current

IR pumping schemes for double resonance spectroscopy of acetylene have used IR

transitions beginning from the vibrationless ground state, which has f" = 0. One

of the strongest perpendicular bands is v" + v". The same transition occuring from

vibrationally excited initial states can generate higher values of f". We propose to use

IR hotbands such as v"+21"(f" =2) <- v"(E" = 1), v"+v"+v"(E" = 2) <- V"(f" = 1),

and v3' + 3v''(E" = 3) <-- 2v"(E" 2) to generate the required vibrational angular

momentum to excite K = 3 and 4 states of S1. The fact that there are both g and

7rU degenerate bending modes in the ground state allows us to access all vibrational

symmetries of the Si state via hot-band pumping.

The main experimental difficulty of performing hot-band pumped IR-UV double

resonance is having sufficient population in vibrationally excited initial states that

have one or two quanta of excitation in the low energy degenerate bending modes

v'' (trans bend, rg) and v' (cis bend, -r). Each quantum corresponds to approx-

imately 1000 K of vibrational energy. In a supersonic molecular beam, where the

vibrational temperature is mildly colder than room temperature, the population in

the excited bending states is expected to be low. A heated supersonic molecular beam

would provide simulataneous vibrational excitation, while maintaining a cold rota-

tional temperature (which significantly decongests the excitation spectra). A crude

harmonic oscillator vibrational partition function using the observed fundamental

frequencies of the So vibrational modes [49] can provide some reasonable expecta-

tions for the population enhancement from thermal excitation. Such a calculation
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shows that one and two bending quanta levels achieve maximum population at 1100

K and 1600 K with population enhancement factors (compared to room tempera-

ture) of 2.5 and 5, respectively. These temperatures can be achieved by fitting a

supersonic molecular beam valve with a SiC pyrolysis tube, which enables vibrational

heating without compromising the rotational cooling in the molecular beam. Prelim-

inary proof of principle experiments with such an apparatus confirm the predicted

vibrational population enhancement factors and optimal heating temperatures. Early

planned experiments include using these hot-band pumping schemes to measure ad-

ditional K states of already identified cis levels, in particular cis 3161 and cis 62,

for which the approximate positions of the higher-K states can be predicted from

the known data. These spectra will provide the most direct experimental data yet

acquired characterizing the extent of torsional tunneling in Si acetylene.

5.2 H-Atom Action Spectroscopy to Detect Pre-

dissociated States of S1

Over the last several decades, acetylene has also been the subject of a number of pho-

tolysis studies investigating predissocation of the Si state to H+CCH fragments (see

for example, Refs. [50-52] and references therein). A precise experimental measure-

ment of the C-H bond dissociation energy places the threshold for photodissociation

at 46074 i 8 cm-1 [50]. As the transition state to cis-trans isomerization lies at

approximately 47200 cm- 1 , many states of interest to future studies of the near and

above-barrier isomerization dynamics will be affected by predissociation. For such

studies this poses a major spectroscopic detection problem. Fast photofragmentation

results in excited state fluorescence lifetimes of at most only a few nanoseconds. As

a result, fluoresence quantum efficiency is drastically reduced, making it increasingly

difficult to observe LIF detected excitation spectra above 46000 cm-'. To circumvent

this problem, we have constructed an H-atom action spectroscopy apparatus which

replaces LIF detection with H-atom detection. The H-atoms are first generated via
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photodissociation by the scanned UV excitation pulse. They are subsequently ionized

via 2+1 REMPI at 243 nm. The resulting protons are accelerated and focused by ion

optics [53] onto a multi-channel array which records a TOF ion signal. The integrated

TOF signal generates the UV excitation spectrum.

The construction and testing of this apparatus has recently been completed and is

beginning to provide wide-range excitation spectra at significantly higher resolution

(approximately 5- 10 times higher) than similar previous studies [52, 54]. In addition

to extending our coverage of the Si vibrational manifold, these high resolution studies

are expected to provide new insights into the predissociation mechanism and the

nonadiabatic triplet interactions associated with it [51, 55].
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Appendix A

Internal Coordinate Kinetic

Energy Operator

This appendix contains the KEO coupling matrices E (Table A.1), F (Table A.2),

and p (Table A.3) as defined in Ref. [38]. They are appropriate for the internal

coordinate system and body-fixed frame embedding convention defined in Figure 3-

1. These matrices can be used directly to form a full dimensional non-constrained

internal coordinate KEO from the following expression [38]:

h2-
T 2 ~ [z2Jia + (~ZJ + +2f}d-

T= 2
2F08, ( +a)±{(80"a)+ pf} (a)+

A?'3 iJ) (iJ) 1 5 1
p h ) h ) 2 8 2

(8 ii)yy - (BiEi3)fj - EZ Gij - F (A.1)2 2

where i and j sum over the vibrational internal coordinates and a and # (not to be

confused with the angles a and #1,2) sum over the body-fixed axes x, y, and z. A few
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definitions are required to use this expression. First, is the matrix determinant

E = (A.2)
FpA

For our coordinate system and body-fixed frame, y = (r2r2r isin 3 sin#2) -2. f is

the arbitrary internal coordinate normalization volume element. This can be any

convenient expression. For this KEO, we choose f = sin #1 sin #2 (so that integrals

are taken as f f Idq). ji and fi are the logarithmic derivatives of and f with respect

to internal coordinate i. Gij and Fi are the logarithmic second derivatives of j and

f.
Following the methods of Ref. [40], these matrices may be used to calculate the

effective coupling matrices for reduced dimension constrained KEOs. The complete

rovibrational KEO of such a reduction for acetylene with two frozen CH bonds is

included in Table A.4.

In the subsequent tables the following definitions are also assumed:

1 2

ICC mC
1 1 1

ICH mC mH
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Table A.1: E matrix for C2H2 internal coordinate KEO. As the matrix is symmetric, only the diagonal and upper triangle are
given.

T 2 01 02

3 cos# 1 COS #2 sin 31 sin 32 0
ACC MC MC mcri mCr2

r1 1 sin,3 1 cos 2a sin 3 1_ sin 2a sin31 cot /32
ICH mCr3 mCr3 2mCr3

1 cos 2a sin 32 sin/#2 sin 2a cot 3 1 sin 32
ACH MCr3 mCr3 2mcT3

1 1 2 cos/31 Cos 31 + cos,32 sin 2a e sc3 + cos 31 cot /32  cot 2/31 2 CH1+ CC3 + mCrlr3 cos2c 1ICCr mCrlr3 mCr2r3 2 kCr2T3 mCrlr3 +ICCr 3

1 1 2 cos,32 sin 2a csc #1 cos #2 cot #1  cot #1
H2 2 2 m2+ + 2

_____ACHr 2  I-tCCr3  mcr2r3 2 mCrlr3 MCr2r3 p-CCr 3

CZ aac

Ca _ 1
2MCCj 3

cos 2a cot /3i cot 02 cos 2a csc 31 cot #2 cos 2a cot 31 csc 32 + cot 31 csc #1 + cot #2 csc 32

2MtCCr2 2mcrlr3 2mCr2r3 2mcrlr3 2mCr2r3

+1 + csc2 /32 1
ACHTS ) 4 ICCr3

00

+ 12
IICHT2

+csc2 #31 1
4 MICCT3



Table A.2: F matrix for C2H2 internal coordinate KEO.

r2 01il 02

z o sin a sin 31 sin a sin,32 sin a sin a cosi01 sin a+ sin a cos32 pra
mCr3 mCr3 pCCr3 mCrlr3 1CCr 3  mCr2r3

y 0 -cosa _cosasin2 _Cosa2 _ cosacos /31 COS a2 cosacos 2 Jya
MCT3 mCT3 pCCr mCrr3 McCr3 mCr2r3

z 0 -sin _ sin_i cot__2 sin 2a cot /31 sin 02 sin2a cot2 + COs /31 Cot 2 + CSC 32 sin2a cot#1 + Cos32 cot 21 + csc1 Fza
I 2mCr3 I 2mCr3 2 M-CCT3 mCr173 mCr23 2 MC3 mC2T mC1T

=xa _ cos a
2

]pyae _ sin a
2

cot #+ cot #2 _ csc #1 s CS#2
ACCT3  1CCr 3  mCrr3  mCr2r3

cot #1 cot/#2 csc #1 csc #2(1cr 3 1Cr 3 mCr1r3 mCr2r3

pza _ cot #1 csc + cot#2 csc#2 _ csc
2,31 1 + 1 + CSC 2 32 1

2mcrr3 2mCr2r3 4 M Acc r3 ACHTr )140CCr 3

+ CH

00



Table A.3: p matrix for C2H2 internal coordinate KEO. As with E, this matrix is

symmetric and only the diagonal and upper triangle are given.

z

1 cos 2a cot 1 cot /32 cos 2a csc /31 cot /32

2p±cr3 
2
Mtccr3  2mcrlr3

cos 2a cot 1 Csc 32 + cot #13 csc #1 + cot /32 csc #1
2mCr2r3 2mor1r3 2mCr2r3

esc2/ 1 1 e\sc
2 /32 (1 1

4 p2cT3 + cH \2 c 1 -H + 2~\I1~r3 IC~r / 1CC r 3 ACHr2
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Table A.4: Constrained rovibrational KEO for frozen rCH bonds. Multiply by -h 2 /2.
The anti-Hermitian operator Dr is defined as Dr - !Or - --. Each row in the table
is an individual separable term. The "Coeff." column gives the coefficient for each
term, followed by the primitive operators for each internal coordinate or component
of the body-fixed angular momentum. A blank entry indicates identity.

#2

2m2 r

2 1 Cos / 1moni r3

2 1 COS 02mcr2 r3

_m 2 CO 2 os2
3

+H -1 coos,232
4m r 3  CO

2CH Dr 3

MCC r

2 Cos 1

MCr1 9r

2 C2H
mcr2 COS 202
3  

Sini2D cos2 2C
-m 0  r3

3
IIICH Dr 3 s 0

1 1 cot 010a3,

1 cot 193
ILcHr1

2 1 Cos /31 cot 01 (9,3
mon, r3

2 1 sin 01 a,3
monj r3

2m2+ r2 sin 20, 1a3,
2 1 a1 sn3 o~

mCr2 r3 isi0 o2c

/
1
0H 12

2C Cot J 1 a,31  sin 2 02 sin 2 2c
____ .2 r2

Cot #2002

Cot 20#32

COS /2 Cot 0 2 a#2

Sin / 2ea#2

sin 20 2 a#2
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Coeff. 1 a i

4 1
ACC

1 2I-CHr2

2
MC r2

2

mc 

1
r 3

1
r3

1
r3

1
r3



sin #13

sin 2/1

si 2 3

cos #1 cot #1

cot #1

csc#1

cot #13
sin /13

cot #13
sill 2/3,

cot /31

a/32

cot 0 28,32

cot #2

cos #2 cot #2

cot #2

csc /32

cot /2

sin #2

Cot /32

sin 2/32

6 1 
2

6 Mcc r3

-PCH a2  Co2,c02 r3~
- a2  Cos 2 /32

7 12
IcHr

1 11

p r 3  
3

2 1 cos #1 a2
m r3 03

CH sin2
mC r 3  s 2  31

CH sin2 2 cos 2 2a
____ r3

8 2 92
C H r2 02

1 1 a2

Icc r2 32

2 1 COS 2 a2
mCr2 r3 /3 2

CH 1sin
2 # 2

MC r3

AC H 1~ sin 2  a2  cos2 2a
m C/r2

1 12
2pcc r2r3

1 1 .CSC/3 cot/3 2  Cos 2caa
2 mccl r3

1 1 cot #1  Csc #2  cos 2a0
___ 2mcr2 r3 c

sin #189/3 1
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5

2
mc ri

2m2
c

J'CH

1
2
mcri

1
2 mcr2

2mcr1

2
mcr2

2mcri

2mcr2

suLcH

3#c

4mc

1
r3

1
r3
1

1
r3

r3

r3

13

r3

r3

1

r3

1

r1

cos 2a

cos 2a

sin 2 2av

sin 2aOa

sin 2aa,

sin 2a(9,

sin 2aa

sin 2aa,

sin 2aa,

sin 2aO,

10 2
mc ri 893

M



LYIL
M2m0

Dr3

Dr3

sin 2/31#,31

84, 1 sin 2#2 cos 2a

11 , sin #2a32MCr2 'r

I!:+ Dr 3  sin 2#32D2m C

j2 Dr3  sin 2#1 8#2 cos 2a

12 - Ic Dr3 sin 2#1 cot #2 sin 2a9,a
2m2 ot 0

- D, 3  cot #1 sin 2#2 sin 2aa

13 2 1882  cos 2a
ACC~ r 3

cos #1 891  02 cos 2a
mcrl r3

2 1 Cs2Bycos/# 2a# 2  cos 2amcr2 r3 a3 O 20

2
ILCH 1 O2 01a1

2a
- 2 2 2 cOS 2 a

14C -I BS ot2 s 2aa
'- cos 18co 2 sin2a2

14- 14 es1# sin 2oaa

2 sn #8, Cot #2 0s2a02
____ r3

14 5 C a, c ot 2  sin 2a&a

-co #1/31 coS # 2  sin 2a001C 1L.231a3

-cr esc3 #1c/ 2  sin 2a&Q

M2 1c o Cot 2  sin 2aoa

I'CH 1 cot 2
2 # cot 231,31 s 2 sin 4a0a

- 115 2 cots i/32 sin 2ai /

11 s cnt 21  CO 032 sin 2aiz/
D cot#1  sin 22 sin 2aiz/

- S sin /1ct203 sin 4aozo

m Dr2 o sin 232 sn J/

C 3

18 _"{ sin2C3t cot/3 2  sina 0,/
2m 0

16 CH- Dr i 0 i ~~
cot/H sin 2 2 sin a iJx/h

19 2
AICC

1
8, 3 sin a iJx/h
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2
mcr

PH

- 2H

1

r 3

1

cos #318 0

sin2 0

001 sin 2 /32

sin a

sin a

cos 2a sin a

iJxl/h

iJx/h

i A/h

20 2 1 cos a iJy/h
MCC T3

2 r1

2 1 cos#31l, cosa iJ/h
2
PCH 121 n#8sini 2 23181 Cosa iJy/h

jjjjCo 1 sin 2 /32 Cos2a Cosa iJ/h

21 Lt 84tLcot/# 2  sin 2a i
+C T T3a31 cCHs #1 Cot 2 sin 2a iJ /hMC r3

C 8 , se /32  sin 2a iJ /h

222 a3 1  Cot 2  sin2a iJ /h

MCC r3

22 2 1-cs20 sijna iJ /h

1cc

MC2 T3 23 2 3 CS 2  sin a iJ,/h

- co #28 SC02 csi a( i J / h

mcr2 r3

22C 22# Cs a Jy A
+2C H 202 CS2 O d

24 - cot #1sin 2 #328# 2  sin2aiz/
CC T3

S# sin a2a iJzh

mcr2 r3C1 82s 2i /

2
'CH 1 2J ,-w 2 r sin2 /32aO2  csaiJ/

+pCH 1 sin 2 31 &2Cos 2asna zi / h

mc r3 2

23 c2 1 Cot a3 sinla
ACC sin /3 i9/2

1 1

21C sn20 aot32 Csnca iJy/h

mc4 1-- cot/3i sn/3 200l 2  sin 2a IJ/
rc 3

1 1 o 0s/ 1  a12sin 2a iJz/h

___ mcrl r3

1

1
mc ri

1
mC r2

1
-3
1r 2

T3

1

r3

1
r3

cot /1

csc

cot #2

csc /32

cos a19,

cos a"a

cos a(,

cos aa

iJl/h

iJ /h

iJx/h

i Jx/h
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25



sin2 #3,

cot #13

cot #2

sin2 #2

sin a sin 2auO

sin a sin 2a8c,

iJx/h

iJ /h

26 cot3 1  sin aa, iJy/h

1 1 cot# 2  sin aO, iJy/h

1 1 csc#01 sina, iJy/h
monl r3

1 1 Csc#3 2  sina89, iJy/h
mCr2 r3

- C- 1 sin2 1 cot #2  cos a sin 2a~a iJy/h

- CH cot 21 sin2 #2 cos a sin 2a9 iJ/h

27 o1 1 sin a iJx/h
2pcc r 3

1 1 cos #1 cot #1  sin a iJ/h
mCT1 r3

1 1 cot #2  sin a iJ,/h
2/,tic r 3

1 1 cos #2 cot #2  sin a iJA/h
mCr2 r3

1 1 ese #1 sin a iJx/h
2
mCr r3

1 1 CsC #2  sin a iJ/h
2mCr2 r3

1 1 sin #1 sin a iJx/h
mCrl .T3

3 C2 r sin 2#1 sin a iJ/h

-2C- 2 sin 2 #1 cot #2  sin a cos2 a iJ/h

1 1 sin032  sin a iJ/h
mCr2 r3

_3C+ I sin 22 sin a i Jx/h
2mC r 3

-CH I cot# 1  sin2 2 sin a cos 2 a iJx/h
m2 a3.

cot #1

cos #1 cot /1

cot #2

cos #2 cot #2

csc #1

sin /31

sin 2#1

sin 2 1

csc #2

cot #2

cos a

cos a

cos a

cos a

cos a

cos a

cos a

cos a

cos a sin2 a

i Jy/iJv/ h

iJv/ h
iJ/h

iJ/h

iJ/h
ily/h

i Jy/h

iJ, /h
iJv/h

90

M2

C
2-T

1
r 2
T 3

1

28 1

2pCC

1
mc ri

1
2pcc

1
mc r

1
2mT rl

1

2mC 
1

monl

3pCH
2m

mCtICH
M2

1

1r3

1
r 3

1r3

1
r3

1
r3

1
r3

1

1r
3

T3



cot #13

cos #1 cot #13

cot #1
csc#1

cot #13
sin #1
cot #1

sin 2/31

cot /31

sin#2

sin 2/2

sin 2 /2

cot #2

cos #2 cot #2

cot #2

csc #32

cot #2

sin# 2

Cot /2

sin 232

cos a

cos a

cos a sin2 a

sin 2a

sin 2a

sin 2a

sin 2a

sin 2a

sin2a

sin 2a

sin 2a

30 - //Jcc r 3

sin2H#1 sin2 ' /2Asi sin2 sin a JX / h2

31 - J 7
PCH 1 sin2 #2 cs2 a J / h2

32 jx J /h2

31 1 2 X2cc r 3

-2Sill /31 ec2cos 2 a J2 /12

3 CH 1 sin2#1 isn 2/a J ]/h2-7 y

n 1 2 2 j

4 7- - ecn /32  cos a [J /h 2

- csc/#2  cosa J, / +2

sin 21ct# o i2a [2 z+g

2
m-cri r3

cot #1  Csn3 2  cos 2a Jz /hJ2
____ 2mcr r3

1 ~ si /3C1 Co 2Cs2a [jzJ2/ h2

- MCHr 1 r

1 1 cot #1  cos a [JJz]+/h 2
2

cc co2r r3

1 1

PCH 1 *2 *2

2m2 sin /30o/ 2  cssin a [J ,Jy±/h 2

1'C 1 si2 [32*

34-- - Cot/3 cossi a xJz+1±h2

CSC' co23 cos a [ jzJ +±h2

1C 1~ Sn01Cot/3 2  Cos a n2a [x z+
____ ,cc r
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29

1
ncr2
Trc 2

3CH

PACH

2mcrl

2mc r2

2m rl

1
2MCr2

2mc r

2mcr2
3

ALCH

3CH

4IILC2

1
r3

1
r3

1

1
r3

13

r3

13

r3

13

r3

1
r2

iJY/h

iJ,/h

iJz/h

iJz/h

iJz/h

iJz/h

i Jz/h

iJz/h

iJz/h
i J~h



35 1 1 se #1 sin a [Jy, J]+/h 2

2mncrl r3

1 1 CsC #2  sin a [Jy, Jz)+/h 2

2mcr2 r3
22

P-g sin 2/#1  cot/#2  sin acos2 a [Jy, Jz]+/h 2
Mc r3

-C 1 cot #1  sin 2 #2 sin a cos 2 a [Jy, Jz]+/h 2

mc r3

1 11 sin a [Jy Jz]+/h2
2ptcc r 3

1 2 cot#2  sin a [Jy, Jz]+/h2

36 -r cot 2 11 sin 2 #2 sin 4a (a - _)

Ae sin2 2 sin 4a (pa - A)
4m2 r 3

- C sin 2 #1 cot 2 02 sin 4a (pa + Lz)
4m2 r32

- -H 1 sin2 #, cSc 2 #2 sin 4a (Ba + ifz)
4m2 r3

c o t(1s c #_a J z ) 2

2mcri r3 cot 3i cSc/3i
1 1 2 ,-.)

csc2  (81- ( L

Ssc
2 /3( -)2

4pCHrl

-- g cot2  1si2 022/2 sin22a (a )2

4mc r 3

1_ cot /2 cSc 2 h
2mCr2 r3

1 ~c 2(aa 2
4p-cc r32cc0

2 cSc2 2ha 2
4

pCHr 2

-ckL sin 2/1  cot2 0 2  sin2 2a (ac + )2
4m

2 r
2
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Appendix B

Calculated J=O Level List

Table B. 1: Calculated J = 0 level list. Assignments for all vibrational states up
to 5000 cm- 1 above the trans zero point are included. States are organized by their

G4() symmetry. trans states are labeled by quantum numbers only. cis states are
prefixed explicitly by "cis". Local interactions which mix zero-order states of the same
symmetry are indicated by superscript letters prefixed to the vibrational assignment.
For correlations of G(8) symmetry species to those of the C2, and C2h point groups,
which describe the cis and trans equilibrium geometries, see Ref. [26].

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0

31

21

B 2 (42 )

B 2 (62 )

32

2131

31 B
2

31 B
2

22

2142

cis 0

2162

B 4

B 4

0.000

1070.776

1386.935

1496.216

1573.437

2150.114

2459.348

2545.400

2600.272

2749.267

2849.488

2913.603

2942.205

3000.878

3070.299

4161

314161

214161

B 4

B 4

324161

21314161

31 B
4

31 B
4

224161

acis 4161

a21B 4

B6

21 B 4

334161

1546.190

2624.276

2907.211

3046.354

3197.974

3625.150

3967.769

4027.964

4197.186

4242.738

4380.575

4382.426

4495.158

4535.566

4605.019

61

3161

2161

B 3

B 3

3261

213161

316 3

31 B 3

cis61

2261

21 B3

21 B 3

B 5

"B 5

774.087

1871.176

2155.751

2286.898

2373.155

2880.419

3233.536

3283.891

3397.171

3506.727

3512.657

3638.571

3721.625

3761.452

3844.902

41

3141

2141

B 3

B 3

3241

213141

31 B
3

31 B 3

2241

21 B 3

21 B 3

cis 41

B 5

B 5

748.972

1813.488

2113.802

2253.305

2370.655

2875.804

3179.374

3290.462

3390.403

3453.282

3591.764

3716.241

3747.777

3752.188

3849.977
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B 4

33

a2132

"3262

3242

cis 31

2231

213142

b31B
4

b2 13 16 2

31 B
4

2 3

cis 62

2242

31 B
4

34

2262

21B 4

21 B 4

cis 32

cis2 1

B6

c3362

c2lB
4

B6

2133

cis 42

3342

B6

cis 3162

d2 23 2

B6

d32 B 4

d 2 1 32 B 2

d213 2 B 2

32 B4

3182.692

3219.905

3526.528

3557.865

3631.286

3677.482

3822.057

3903.132

3949.312

3986.884

4064.047

4087.331

4099.394

4178.966

4196.799

4238.469

4286.130

4330.680

4405.469

4422.134

4427.577

4460.850

4500.656

4523.688

4562.393

4604.597

4631.747

4641.684

4675.332

4739.798

4876.914

4888.964

4899.278

4941.710

4985.308

5048.903

B6

B6

32B4

21324161

cis 314161

32B 4

b2 23 14 16 1

b2131B 4

b31B 6

2131B4

234161

344161

d31B 6

dcis 4163

22 B4

cis 324161

21 B 6

22 B4

cis 214161

31 B

4679.541

4888.737

4947.392

4994.302

5078.797

5188.374

5289.706

5361.199

5403.682

5524.929

5555.472

5561.245

5604.622

5647.290

5692.860

5765.880

5812.286

5848.320

5849.811

5870.068

5900.103

5943.805

5967.844

6008.429

6116.252

6146.192

6191.554

6198.328

6238.396

6284.169

6346.790

6365.483

6395.413

6419.677

6513.885

6521.398

a3361

B 5

bcis 3161

b3 26 3

213261

32B3

223161

e31 B5

C213163

cis 63

2131 B3

d3 46 1

d 31B 5

2361

cis 3261

22B3

cis 2161

31 B
5

22B 3

3882.260

4032.311

4186.718

4223.249

4272.160

4395.006

4576.649

4615.540

4662.041

4729.097

4736.278

4806.953

4824.154

4845.775

4914.631

4965.660

5001.845

5019.101

5049.488

5079.659

5103.546

5190.127

5207.753

5258.506

5281.146

5303.949

5347.931

5358.627

5392.043

5512.369

5552.030

5575.132

5591.149

5641.904

5696.065

5721.317

3341

B 5

213241

32B3

32B3

cis 3141

223141

2131 B 3

31 B
5

2131 B 3

2341

31B 5

22B3

3441

cis 4162

31 B
5

3914.903

4041.770

4234.222

4289.494

4404.902

4492.842

4519.321

4632.681

4709.051

4740.926

4769.802

4851.845

4905.418

4933.373

5007.470

5023.834

5038.916

5070.587

5161.822

5195.072

5222.683

5234.761

5253.869

5278.967

5340.651

5371.979

5393.805

5506.149

5528.228

5560.690

5569.917

5645.486

5733.545

5741.453

5755.534

5826.315
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