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ABSTRACT

Cofactors are highly prevalent in biological systems and have evolved to take on
many functions in enzyme catalysis. Two cofactors, flavin adenine dinucleotide
(FAD) and [4Fe-4S] clusters, were originally determined to aid in electron
transfer and redox chemistry. However, additional activities for these cofactors
continue to be discovered. The study of FAD in the context of rebeccamycin and
staurosporine biosynthesis has yielded another role for this cofactor in the
enzyme StaC. A homolog of this enzyme, RebC, uses its FAD cofactor in the
oxidation of 7-carboxy-K252c. StaC also uses 7-carboxy-K252 as a substrate, but
its reaction does not result in a redox transformation. Biochemical and X-ray
crystallographic methods were employed to determine that, indeed, the role of
FAD in the StaC system is not to catalyze redox chemistry. Instead, FAD
sterically drives an initial decarboxylation event. Subtle differences in the active
sites of RebC and StaC promote this redox neutral decarboxylation, by activating
water for a final protonation step.

In another system, the characterization of the S-adenosyl-L-methionine (AdoMet)
radical superfamily showed the versatility of these cofactors. In this superfamily,
which includes over 40,000 unique sequences, [4Fe-4S] clusters are responsible
for the initiation of radical chemistry. A recently described subclass of this
superfamily, the dehydrogenases, require additional [4Fe-4S] cluster for activity.
This requirement led to the hypothesis that these enzymes are catalyzing redox
chemistry by directly ligating substrates to auxiliary (Aux) clusters. X-ray
structures of 2-deoxy-scyllo-inosamine dehydrogenase (BtrN), required for the
biosynthesis of 2-deoxystreptamine, and an anaerobic sulfatase maturating
enzyme, anSMEcpe, which installs a required formylglycine posttranslational
modification, refute this hypothesis. In these structures, substrate binding is
distal from each enzymes' Aux clusters. However, the Aux cluster binding
architecture shared between BtrN, anSMEcpe, and another AdoMet radical
enzyme, MoaA, involved in molybdenum cofactor biosynthesis, suggests that the
structural features will be a staple in the AdoMet radical superfamily, common
to - 30% of the AdoMet radical reactions.

Thesis Supervisor. Catherine L. Drennan

Title: Professor of Chemistry and Biology
Howard Hughes Medical Investigator and Professor
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Chapter 1.

Introduction to the Flavin and Iron Sulfur Cluster Cofactors

I.I SUMMARY

Proteins are the workhorses of the cell and have evolved to carry out a variety of roles,
including cellular signaling, gene regulation, and structural and catalytic functions. Catalytic
proteins, called enzymes, are the cell's craftsmen, generating new molecules from a wide set
of starting materials, allowing the cell to live. In the saying, "Life can be defined as one large
set of coordinated chemical reactions," enzymes are the chemists. As in any laboratory, these
chemists often need assistance to perform their duties. This dissertation will focus on two
such cases. Chapter 2 will examine a step in the rebeccamycin and staurosporine biosynthetic
pathways in which the activity of two enzymes is dependent on the molecule flavin adenine
dinucleotide. The subjects of Chapters 3 and 4, two S-adenosyl-L-methionine radical
dehydrogenase enzymes, require multiple iron sulfur clusters to function.

I.II INTRODUCTION

Most enzymes are able do chemistry using only their amino acid building blocks, which

in certain conformations lower the activation energy of a chemical reaction. Some reactions,

however, require additional components, i.e. cofactors, which are used when chemistry requires

extra catalytic prowess, such as: a stronger nucleophile like thiamine pyrophosphate (vitamin

B1) and cyanocobalamin (vitamin B12); functional group carriers like biotin (vitamin H) and

coenzyme A (a derivative of vitamin B5); or electron transfer agents. The latter are required for

reduction/ oxidation (redox) chemistry. Flavins, comprised of a common isoalloxazine tricyclic

ring, and inorganic iron sulfur clusters are two cofactors whose traditional roles involve the

transfer of electrons required for a variety of cellular processes. For example, they are

prominently displayed in Complexes I, II, and III of the electron transport chain, where the

funneling of electrons to different redox centers is coupled to the generation of a potential

gradient. This gradient powers the mechanical turbine of the cell, ATP synthase, where it is

converted to the chemical energy on which life relies (1). Flavins and iron sulfur clusters are

thus central to a cell's ability to function. Disruption in their production or uptake causes

multiple diseases in humans including Friedreich's ataxia and sideroblastic anemia for iron

sulfur clusters (2) and trimethylaminuria and cardiovascular disease for flavins (3).

Cofactors can take many forms. The basic unit of flavin is vitamin B2, or riboflavin,

comprised of an isoalloxazine ring with a ribityl moiety attached at the N10 position. To assist
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in their utilization, the flavin is tailored into two derivatives: flavin mononucleotide (FMN,

riboflavin-5'-phosphate) and flavin adenine dinucleotide (FAD, riboflavin-5'-adenosine

diphosphate, Figure 1.1). Iron sulfur clusters exhibit even wider structural variations, from [2Fe-

2S] clusters to [8Fe-8S] clusters, and can also be part of larger metallocomplexes, such as the [Ni-

3Fe-4S] C-cluster of carbon monoxide dehydrogenase and the exquisite [Mo-7Fe-9S-C-

homocitrate] cluster of nitrogenase (4-6). The most common cluster, however, is the [4Fe-4S]

cluster. This cluster adopts a cubane structure, where each of the four iron atoms is

tetracoordinate and ligated by three bridging sulfides from the cluster and a cysteine from a

protein scaffold (Figure I.1). FAD and [4Fe-4S] clusters are traditionally used for one electron

(FAD/ [4Fe-4S] cluster) or two electron (FAD) transfers. In these roles, FAD can cycle between

reduced, semiquinone, and oxidized states, while [4Fe-4S] clusters traditionally fluctuate

between [4Fe-4S]" and [4Fe-4S] 2 states (Figure I.1). In this thesis, we use X-ray crystallography

as our primary tool to study these two redox active cofactors in two nontraditional systems,

summarized in the following sections.

I.III Catalytic mechanism of the FAD dependent hydroxylase, RebC

While the role of FAD in electron transfer has been known since the early twentieth

century, new roles for the cofactor are continually being found. The discovery that the cofactor

could be used in halogenation has only been known for a little over a decade (7). This reaction is

similar to another activity of flavoenzymes, hydroxylation. Both types of reactions are initiated

by the reduction of molecular oxygen by FAD, resulting in the formation of a hydroperoxy

species. This reactant turns the usually nucleophilic hydroxyl functional group into an

electrophilic one, allowing the hydroxylation of electron rich substrates such as aromatics

(Figure 1.2). This hydroperoxy species can also react with a halide, similarly altering the

nuceophilicity of halides, allowing for halogenation of electron rich substrates. This

nucleophilic/electrophilic role reversal is central to the tailoring of traditionally incompatible

substrates.

Katherine Ryan and Leah Blasiak, former graduate students in the Drennan group,

along with members of the Walsh laboratory, were instrumental in the elucidation of the

mechanisms of enzymes in the reb and sta pathways. These pathways are responsible for the

biosynthesis of the natural products rebeccamycin and staurosporine. In the reb pathway, two

FAD dependent enzymes, RebC and RebH, employ FAD for different purposes, one for the

hydroxylation of chromopyrrolic acid (CPA) and the other for the chlorination of tryptophan,

12



respectively (8, 9). Both of these enzymes were structurally characterized in the Drennan group

(10, 11). The sta pathway does not involve a chlorination reaction, but it contains an enzyme

very similar to the CPA-modifying enzyme in the reb pathway, RebC. The mechanism of this

enzyme, StaC, has been a subject of debate in the recent years because it does not catalyze an

oxidation, and thus the role of FAD in this enzyme was enigmatic (12, 13). To understand the

function of FAD in this enzyme, we decided to pursue mutation-driven biochemical

investigations of both RebC and StaC. In addition, we solved structures of a 'StaC-like' enzyme,

leading us to discover yet another role for FAD. These studies (14) are outlined in Chapter 2.

I.IV The [4Fe-4S] cluster dependent AdoMet radical enzymes

In addition to electron transfer, [4Fe-4S] clusters can assist enzymatic catalysis by

binding substrates. This function is seen in hydrolases (including aconitase and fumarase) and

in the S-adenosyl-L-methionine (AdoMet, SAM) radical enzymes (4, 15). In its usual role,

AdoMet is used as a methylating agent, resulting in methylated substrate and S-

adenosylhomocysteine. When bound to a [4Fe-4S] cluster, however, an inner sphere electron

transfer event triggers the homolysis of a carbon - sulfur bond in AdoMet, generating

methionine and a 5'-deoxyadenosyl radical (5'-dA-) (Figure 1.3). This radical species is a potent

oxidant that is able to abstract hydrogens from unactivated positions, generating substrate

radicals. After hydrogen abstraction, the substrate radical can go down multiple paths, inducing

a wide variety of transformations (16). In these systems, the AdoMet is either reformed in the

reaction and used catalytically, or consumed stoichiometrically (Figure 1.3).

The basis for identifying AdoMet radical enzymes from sequence databases has been a

three cysteine motif, CX3CX2C, responsible for coordinating the three non-AdoMet iron ligation

sites of the [4Fe-4S] cluster (17). This sequence searching led to the identification of nearly

50,000 unique AdoMet radical enzymes, as assigned by the Structure Function Linkage

Database (http:/ /sfld.rbvi.ucsf.edu). Between reaction classes, these enzymes have little to no

sequence similarity outside the three cysteine motif (17). Combined with the high modularity of

these enzymes due to their widely varied reactions and substrates, this lack of similarity has

made sequence based functional predictions of the AdoMet radical enzymes difficult.

Surprisingly, however, these enzymes have very similar three dimensional structures (18, 19).

The first structural characterizations of AdoMet radical enzymes came just two years

after the superfamily was initially described (17). The structures of BioB and HemN, two

enzymes with just 9% sequence identity, overlaid surprisingly well, with a root-mean-square
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deviation (RMSD) of 3.6 A (20, 21). This structural alignment shows that both enzymes contain a

partial beta barrel at their core, reminiscent of a triose-phosphate isomerase (TIM) (P /a), barrel.

These partial TIM barrels, or (P / )6 structures, overlay even better, with an RMSD of 2.6 A for

BioB and HemN (Figure 1.4). Their [4Fe-4S] cofactors and bound AdoMet molecules are also

nearly superimposable, with the three cysteines in the enzymes' CX3CX2C motifs residing in a

loop between 11 and al in both enzymes. Here, AdoMet is bound to the available, 'unique',

iron site of the [4Fe-4S] cluster via the amino and carboxyl groups of the AdoMet methionine

moiety, matching available spectroscopic evidence for the coordination unique iron position

(15, 22, 23).

Since the structural characterizations of BioB and HemN reported a decade ago, fourteen

additional X-ray structures of AdoMet radical enzymes have been released by the Protein

DataBank. Of these, twelve have AdoMet radical folds nearly identical to those found in BioB

and HemN. This conservation led to the description of many AdoMet binding and structural

motifs that have roots in the original structures of BioB and HemN (18, 19, 24). Two additions to

the structural characterized AdoMet radical enzymes, anSMEcpe and BtrN, are presented in

Chapters 3 and 4 of this dissertation. This work provides a further description of these motifs.

In addition, these two structures, along with the previously characterized MoaA enzyme,

contain auxiliary [4Fe-4S] cluster binding domain substructures which could be present in up to

30% of AdoMet radical enzymes. As discussed throughout this thesis, these auxiliary clusters

seem to serve the traditional [4Fe-4S] cluster function, providing a conduit for the transfer of

electrons. Chapter 5 includes a discussion of future directions and predictions for this

interesting subfamily and deviations to the AdoMet radical fold motif presented by BtrN and

another enzyme, QueE.

I.V CONCLUSION

Interestingly, the catalytic functions of FAD and [4Fe-4S] clusters combine the traditional

use of the cofactors (electron transfer) with new roles (generation of hydroperoxy species and

AdoMet homolysis). These ubiquitous cofactors continue to surprise biochemists. The struggle

to find and characterize exceptions to fundamental theories in each field continues to drive

these studies, and in all cases, touches upon our ever expanding understanding of Nature's

ingenuity and complexity.

14



Figure 1.1. Physiologic redox states of the cofactors (A) FAD and (B) [4Fe-4S] cluster.
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Figure 1.2. Activation of molecular oxygen for the hydroxylation of nucleophilic positions.
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Figure 1.3. Generation and use of 5'-dAe. (A) AdoMet binds to the unique iron site of a [4Fe-
4S]2* cluster. Upon reduction of the cluster to 1+ state and electron transfer, AdoMet is

homolytically cleaved, forming methionine and a 5'-deoxyadenosyl radical (5'-dA-). AdoMet
can either be used (B) catalytically or (C) stoichiometrically.
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Figure I.4. The AdoMet radical folds of BioB and HemN. The architecture of (A) BioB (PDB ID
1R30) and (B) HemN (PDB ID 1OLT) with helices in red, beta sheets in yellow and loops in
green; AdoMet and [4Fe-4S] cluster in sticks; AdoMet in grey carbons. (C) An alignment of the
BioB and HemN ( /a)6 partial TIM barrel folds (residues 41-223 and 53-241, respectively);
RMSD 2.6 A.

A. B.

C.
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II.I SUMMARY

The indolocarbazole biosynthetic enzymes StaC, InkE, RebC, and AtmC mediate the degree
of oxidation of chromopyrrolic acid on route to the natural products staurosporine, K252a,
rebeccamycin, and AT2433-A1, respectively. Here we show that StaC and InkE, which
mediate a net 4-electron oxidation, bind FAD with a micromolar Kd, whereas RebC and
AtmC, which mediate a net 8-electron oxidation, bind FAD with a nanomolar Kd, while
displaying the same FAD redox properties. We further create RebC-10x, a RebC protein with
ten StaC-like amino acid substitutions outside of previously characterized FAD binding
motifs and the complementary StaC-10x. We find that these mutations mediate both FAD
affinity and product specificity, with RebC-10x displaying higher StaC activity than StaC
itself. X-ray structures of this StaC catalyst identify the substrate of StaC as 7-carboxy-K252c
and suggest a unique mechanism for this FAD-dependent enzyme.
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II.II INTRODUCTION

Indolocarbazoles, a subset of the L-tryptophan derived bisindole class of alkaloid natural

products, include a variety of molecules of pharmaceutical interest (1). Isolated from

Streptomyces and other soil- and marine-dwelling actinomycete bacteria (2, 3), staurosporine

(Figure IL1.A) has no assigned native function but has proven to be a potent protein kinase

inhibitor (4) with an analog (7-hydroxy-staurosporine, also known as UCN-01) previously in

clinical trials as an anti-cancer agent (5-7). Rebeccamycin (Figure II.1.A), isolated from

Lechevalieria aerocolonigenes, shares a very similar aglycone scaffold with staurosporine and an

analog of this compound, becatecarin, is also in clinical trails afforded by its antitumor activity

(8, 9). However, unlike staurosporine, rebeccamycin analogs inhibit DNA replication by

stabilizing DNA-topoisomerase I complexes (10), showing the therapeutic diversity of

indolocarbazole compounds. To exploit the full medicinal potential of indolocarbazoles and to

generate a more diverse array of pharmaceutically active compounds, a better understanding of

their biosynthetic pathways and the key branch points is desirable.

The biosynthetic pathways of staurosporine, rebeccamycin, and other indolocarbazoles

involve the oxidation and subsequent coupling of two tryptophan molecules to generate

chromopyrrolic acid (CPA) (Figure II.1.B). At this step, the pathways diverge to generate the

diverse aglycone scaffolds characteristic of indolocarbazoles. In the staurosporine pathway,

CPA is converted to K252c in a net 4-electron oxidation, and then further tailored, whereas CPA

is converted to arcyriaflavin A via a net 8-electron oxidation in the rebeccamycin biosynthetic

pathway (Figure II.1). Both oxidations involve two enzymes, the first of which, StaP or RebP,

are cytochrome P450 enzymes that catalyze aryl-aryl coupling reactions to generate a reactive

intermediate and can be used interchangeably between the two pathways (11). The second

enzyme of each pathway, StaC or RebC, is thought to intercept this intermediate and enable its

conversion to the corresponding aglycone (12). For StaC, the reaction yields an asymmetric

molecule with a carbonyl group at the C-5 position and a fully reduced C-7 carbon (numbering

in Figure II.1.A), while the product of RebC is a symmetric molecule, with carbonyl groups at

both the C-5 and C-7 positions. Without either StaC or RebC in the reaction mix, a variety of

products are generated with varying oxidation states at the C-7 position; however, if either

enzyme is included, a single product is observed (12).

StaC and RebC share 65% sequence identity and both enzymes contain three motifs

typical of flavin hydroxylase proteins (Figure 11.2) (12-14). Surprisingly though, only RebC co-

purifies with FAD in E. coli recombinant expression systems. Nonetheless, StaC is capable of

converting FAD to FADH 2 using NAD(P)H (12). Two protein homologues of RebC and StaC,
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InkE and AtmC (Figure 11.2), are involved in separate indolocarbazole biosynthetic pathways.

Both contain the same three motifs and the enzymes share 56% sequence identity with one

another. InkE is involved in the biosynthesis of K252a (Figure II.1.A) (15), a molecule that has a

carbonyl group at the C-5 position but a fully reduced C-7 carbon. The aglycone of K252a is

likely generated through a largely similar pathway as the staurosporine aglycone, with InkE

(like StaC) finalizing a net 4-electron oxidation of CPA (Figure II.1.B). By contrast, AtmC is

involved in the biosynthesis of AT2433-A1 (Figure II.1.A) (16), a molecule that has carbonyl

groups at the both the C-5 and C-7 positions. The aglycone of AT2433-A1 is likely generated

through a highly similar pathway as the rebeccamycin aglycone, with AtmC (like RebC)

mediating a net 8-electron oxidation of CPA (Figure II.1.B).

Here we investigate the role of FAD and the enzyme mechanism of RebC- and StaC-like

biosynthetic enzymes. Using isothermal titration calorimetry (ITC) to determine FAD

dissociation constants for StaC, RebC, InkE, and AtmC, we find a correlation between FAD

affinity and the reaction catalyzed, with tighter FAD affinity linked with RebC/AtmC-like

activity and weaker with StaC/InkE-like activity. To investigate whether mutations that alter

FAD affinity also alter the type of reaction catalyzed, we use the structure of RebC (13) in

combination with comparative sequence analysis of the enzyme family (RebC, StaC, AtmC, and

InkE) to generate a RebC protein with ten amino acid substitutions, called RebC-10x, and the

complementary StaC-10x protein (Table II.1). Excitingly, we find that RebC-10x shows a

decrease in FAD affinity (although not to StaC levels) and exhibits strong StaC-like activity,

while StaC-10x shows an increase in FAD affinity (although not up to RebC levels) and is a

weak RebC-like catalyst. To probe the molecular basis for these enzyme activity conversions,

FAD redox potentials are measured and the structure of RebC-10x is determined in native,

substrate-bound and product-bound states. These data, along with recent site-directed

mutagenesis studies of singly and doubly mutated RebC and StaC proteins (17, 18), suggest the

structural basis for the differential catalytic activities of these proteins.

II.III RESULTS

The FAD binding affinity correlates with the reaction catalyzed for wild-type enzymes

StaC, RebC, AtmC, and InkE were purified recombinantly without addition of

exogenous riboflavin to the media. As reported earlier, StaC purifies without bound FAD,

whereas RebC purifies with bound FAD (12). Using a new cell line for protein expression

(Rosetta'M (DE3) 2 pLysS cells from Novagen), we were able to increase the amount of FAD co-
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purified with RebC to ~68%, from ~33% reported previously, when RebC was purified from

BL21(DE3) cells (12). Furthermore, we find that AtmC, which catalyzes a RebC-like reaction,

purifies with bound FAD, while InkE, which catalyzes a reaction similar to StaC, purifies

without bound FAD.

To determine the FAD dissociation constants for these four proteins, we generated the

deflavinated (apo) forms and performed isothermal titration calorimetry experiments (ITC). The

removal of the FAD cofactor was unnecessary in the case of StaC and InkE, as each of these

proteins purifies without bound FAD. For RebC and AtmC, deflavination was accomplished by

washing the protein bound to the metal affinity column with a buffer containing 2 M KBr and 2

M urea (19). We find that the dissociation constants (Kd's) of StaC, RebC, InkE, and AtmC for

FAD are 15 ± 2 pM, 20 ± 12 nM, 59 ± 48 pM, and 73 ± 28 nM, respectively (Table II.2 and Figures

1.3.A-F). While RebC and AtmC, both of which facilitate a net 8-electron oxidation of CPA (12,

16), have FAD K's in the low nanomolar range, StaC and InkE, both of which facilitate a net 4-

electron oxidation of CPA (12, 15), have FAD Kd's in the micromolar range (Table 11.2). These

data suggest that, among this group of enzymes, there is a correlation between, on one hand,

tight (nanomolar) binding of FAD and mediation of a net 8-electron oxidation of CPA and, on

the other hand, substantially weaker (micromolar) binding of FAD and mediation of a net 4-

electron oxidation of CPA.

StaC-1Ox and RebC-1Ox have similar, intermediate affinities for FAD

Because of the close sequence similarity of RebC, StaC, AtmC, and InkE, and because the

structure of RebC is available (13), the identity of residues likely to mediate the differences in

enzymatic activity and FAD affinity between the two groups of enzymes could be readily

predicted (Figure 11.2). With few exceptions, sequence alignment reveals key residues that have

one identity in both RebC and AtmC and another identity in both StaC and InkE (Figure 11.2).

Using the RebC crystal structure to filter out residues distant from the expected FAD-binding

and active sites, ten RebC residues and ten StaC residues were chosen for complementary

mutation to the amino acid found in the homologous enzyme, resulting in our RebC-10x and

StaC-10x constructs (Table II.1).

To assess their FAD binding affinity, these new constructs were expressed and purified

for ITC experiments. Like RebC and AtmC, both RebC-1Ox and StaC-10x co-purify with FAD.

RebC-10x was deflavinated in the same manner as RebC and AtmC, and its Kd for FAD was

determined to be 600 ± 55 nM (Figure II.3.E, Table 11.2). Unlike RebC-10x, however, it was not
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possible to produce apo-StaC-10x (See Methods). Therefore as isolated StaC-10x, which co-

purifies with 33% FAD occupancy, was used in ITC experiments to yield an approximate Kd of

FAD for StaC-10x of 560 ± 120 nM (Figure II.3.F, Table 11.2). To understand the relationship of

this value to the true Kd, we determined the Kd of FAD for as-purified RebC without removal of

FAD (RebC co-purifies with ~68% FAD in our expression system). The Kd of RebC for FAD

determined in this manner is 31 nM, a value within the range of values determined using fully

deflavinated protein (20 ± 12 nM). Therefore, although the Kd calculated for StaC-10x for FAD is

imprecise, we assume that the value is on the order of magnitude of the true Kd value. Thus, by

targeting ten amino acids that may be involved in binding FAD, we have altered both StaC's

and RebC's affinity for FAD, suggesting successful identification of residues important for

modulating FAD affinity.

RebC-1Ox and StaC-1Ox have almost identical redox potentials to RebC

To determine whether the amino acid replacements had an effect on the FAD midpoint

potential, reduction potentials of RebC-10x and StaC-10x were determined and compared to the

previously reported reduction potential of RebC, -179 mV (13). Using the xanthine/xanthine

oxidase reduction assay (20, 21), the reduction potential of FAD-bound RebC-10x was found to

be -178 mV ± 5 (Figure II.4.A), identical within experimental error to that of FAD-bound RebC.

Interestingly, the reduction potential of the StaC-10x FAD is also the same - 178 ±2 mV (Figure

II.4.B). These results show that the mutant proteins have adopted or retained a flavin cofactor

redox environment similar to that found in RebC.

The 10x mutant proteins have altered activities

Activity assays using a previously described method (12) were performed to investigate

the chemical reactivities of both 10x variants. Because the substrate(s) of StaC and RebC have

never been isolated, this assay uses the upstream enzyme StaP and its known substrate CPA

together with an electron source provided by spinach ferredoxin, flavodoxin NADP* reductase,

and NADPH to generate the reactive intermediate that is the putative substrate(s) for RebC and

StaC. The reaction products are then separated and analyzed via HPLC. In the presence of StaP

alone, the reaction yields multiple products, oxidized to different degrees, including K252c (a 4-

electron oxidation product), 7-hydroxy-K252c (a 6-electron oxidation and the major product),

and arcyriaflavin A (an 8-electron oxidation product). The addition of either RebC or StaC to the
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assay directs the reaction to a single major product, arcyriaflavin A for RebC and K252c for StaC

(12).

Interestingly, when RebC-10x is added to the assay, no production of the RebC product

arcyriaflavin A is observed. Instead, RebC-10x addition results in production of the StaC

product K252c, with a rate that is ~3-fold faster than the rate of the StaC-catalyzed reaction

(based on authentic samples and standard curves) (Table 11.3 and Figure 11.5). StaC-10x behaves

like RebC to the extent that it produces arcyriaflavin A as its major product and has lost nearly

all of its activity for the normal StaC product K252c. However, it is not a strong RebC catalyst,

generating arcyriaflavin A at rates that are -8-fold lower than that of wild-type RebC (Table 11.3

and Figure 11.5).

Structures of RebC-10x display the key characteristics of a flavin hydroxylase and explain the molecular

basis for decreased FAD affinity

Crystal structures spanning three different states of the RebC-10x reaction (native,

substrate-, and product-bound) have been determined in an effort to provide a molecular

explanation for the decrease in FAD affinity and gain in StaC-like function. A single crystal

structure of K252c-soaked RebC-10x with two molecules in the asymmetric unit has afforded a

view of both native and product-bound RebC-10x states at 2.33 A resolution, while soaking a.

RebC-10x crystal with StaP substrate CPA (see below) has provided a substrate-bound structure

at 2.76 A resolution (see Table 11.4 for data collection and refinement statistics). Structures were

solved by rigid body refinement against the wild-type RebC structure, with mutations

confirmed by F0 -Fc difference density. As expected, RebC-10x adopts the general fold of flavin-

dependent hydroxylases (22) with FAD-, substrate-binding and thioredoxin-like domains

(Figure II.6.A). The root mean squared deviation (RMSD) of mainchain atoms between RebC-

10x and RebC structures are less than 1 A, indicating no major conformational changes occur as

a result of the ten mutations (Figure II.6.A). In addition, the mutations do not appear to cause

local instability, as B-factors of the mutated sites and their surroundings are very similar when

compared to the structure of wild type RebC (Figure 11.7). Other RebC features retained in

RebC-10x, such as the 'mobile flavin' and the 'melting helix,' are revealed by the structures

generated through the soaking of RebC-1Ox with StaC product, K252c. The 'out' position of the

mobile flavin is observed in the molecule in the asymmetric unit that contains no bound K252c.

This FAD orientation is associated with NADPH reduction due to the afforded solvent

accessibility (Figure II.6.B) (13, 23, 24). The 'in' position or 'catalytic orientation' of the mobile
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flavin is found in the molecule that has density for K252c. Comparison of these two structures

also shows that like RebC, residues 354-363 (termed the 'melting helix') are disordered when

the active site is empty and become ordered when the active site is full (Figure 11.6). This

'melting helix' region is believed to be the entry point for substrate (13).

Differences between RebC and RebC-10x are also observed. As expected, multiple

protein-FAD interactions are lost when the RebC-10x structure is compared to RebC. These

include the loss of van der Waals interactions between Q37 and T38 and the FAD adenosine

moiety when these residues are replaced by A37 and G38, resulting in a more solvent accessible

cofactor (Figure II.8.A); a hydrogen bond loss from E36 to the FAD ribose when E36 is replaced

with shorter D36 (Figure II.8.A); a salt-bridge loss from R46 to the FAD a-phosphate when R46

is replaced with shorter K46 (Figure II.8.D); and another hydrogen bond loss from R239 of RebC

to FAD 04 in the 'out' position, when R239 is replaced with N239 in RebC-1Ox (Figure II.8.E).

CPA-soaked RebC-10x structure reveals putative StaC substrate

A structure of RebC-10x bound to its putative substrate was obtained by incubating

RebC-10x crystals with StaP substrate, CPA, for one week. Previously, the putative substrate for

RebC was 'trapped' by allowing CPA to spontaneously degrade in the presence of RebC

crystals. The crystallized RebC protein selectively bound and stabilized its substrate (7-carboxy-

K252c) in its active site, allowing visualization (13). Using this same approach with the StaC

catalyst RebC-10x, indolocarbazole density was discovered in the active site of RebC-10x

(Figure 11.9). Since the identity of the StaC (and thus RebC-10x) substrate is not known, a

number of indolocarbazoles were modeled into the electron density, including aryl-aryl coupled

CPA, arcyriaflavin A, K252c, and the enol tautomer of 7-carboxy-K252c, the molecule identified

in the previous RebC CPA soak (Figure 1.B). Refinement of these molecules results in significant

positive and negative difference density peaks (Figure II.9.A-D), indicating that they do not

accurately describe the electron density. However, when the S-keto tautomer of 7-carboxy-

K252c is modeled, little or no residual F0-Fc difference density appears (Figure II.9.E) and the

refined structure is the best fit to omit density maps (Figure II.9.G-H). Thus, our data support

the presence of the S-keto tautomer of 7-carboxy-K252c in the RebC-10x active site, and suggest

that this molecule is likely the substrate for StaC.

Interestingly, while RebC binds 7-carboxy-K252c with its carboxyl group pointed

toward R230 and its carbonyl in a more hydrophobic pocket (Figure II.10.A), RebC-10x binds

the S-keto tautomer of 7-carboxy-K252c in two orientations that differ by 1800 (Figure II.10.B-C).
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One molecule in the asymmetric unit, molecule A, binds substrate in the same orientation as

RebC (Figure II.10.B), while in molecule B, the substrate sits in an alternate orientation, with the

carbonyl pointing toward R230 and the carboxyl group near the hydrophobic pocket (Figure

II.10.C). Notably, FAD is missing in these structures. During the week-long CPA soak used to

generate this crystal structure, FAD, which binds more weakly to RebC-10x than RebC,

dissociates, and a loop containing residues 45 - 48 shifts to occupy its site, repositioning P45

such that it now interacts with W276 (Figure II.10.A-C). The absence of FAD yields a larger

active site, which can accommodate both orientations of the 7-carboxy-K252c. Modeling FAD in

the 'in' conformation into the active site predicts a tight fit with substrate in either orientation,

suggesting that FAD may be in an 'out' conformation prior to decarboxylation or that FAD

moving 'in' might prompt decarboxylation. Importantly, regardless of FAD position, both 7-

carboxy-K252c molecules are bound to RebC-10x in the S-keto tautomer form, while the enol

tautomer of 7-carboxy-K252c was found in RebC. With active sites of StaC-catalyst RebC-10x so

similar in sequence to RebC, it is interesting to consider the molecular basis for this preferential

binding.

RebC and RebC-10x active site comparisons

Although mutations were designed to alter the affinity of FAD for the enzyme and most

reside in the FAD binding pocket, some residues (like G48S, T241V, F216V, R239N) are also near

the substrate binding site and are likely to influence both substrate binding and reactivity

(Figure II.8.C-F). While the loss of FAD causes a repositioning of the FAD binding loop

(residues 39-46), most of the protein backbone in the substrate-binding site of RebC-10x is

identical to that of RebC, allowing direct comparison of substrate-bound RebC10x to substrate-

bound RebC. A key difference between the two is the removal of salt bridge and hydrogen

bonding interactions between R239 and the C-7 carboxyl group and NH-6 position of the RebC

planar substrate (Figure II.10.D). In RebC-10x, N239 is incapable of interacting with either the

bound RebC-10x keto substrate, or the overlaid enol tautomer from the RebC structure (Figure

II.10.D).

Another difference between the two active sites is the positioning of another arginine,

R230. The residue, present in both RebC and RebC-10x, sits lower in the RebC-10x active site,

apparently due to the combination of the G48S and F216V mutations (Figure II.10.D). In

particular, the substitution of S for G48 sterically blocks the RebC R230 position and V for F216

creates room for this residue to move down. This 'lower' position of R230 in RebC-10x disrupts
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the favorable interaction observed in RebC between the guanidinium group of R230 and the 7-

carboxyl of substrate in the enol tautomeric form. In RebC, the distance (2.6 A) as well as the

geometry of the interaction should serve to stabilize this orientation of the 7-carboxyl group and

thus stabilize the enol form of the substrate (Figure II.10.D). In contrast, the position of R230

observed in RebC-10x has suboptimal geometry to maintain this interaction, and we observe

instead, a new position of the 7-carboxyl moiety and a keto tautomeric form of substrate. This

altered orientation of R230 in RebC-10x no longer interacts with substrate, but rather appears to

be involved in creation of a new water binding site not observed in RebC. When water is

modeled into observed positive F0-Fc electron difference density adjacent to R230, the difference

electron density disappears and the B-factor for this new water in molecules A and B, 65.0 and

58.6 A2, are consistent with the average B-factors for protein atoms (62.7 A2) and 7-carboxy-

K252c atoms (66.1 A2), indicating that water is a good fit for this density. Following refinement,

the water is located 3.1 and 3.4 A from C-7 position of the RebC-10x substrate in chains A and B,

respectively (Figure II.9.A and II.10.E), a position that suggests a catalytic role (see discussion).

This water binding site is conserved in both the native and K252c bound RebC-10x molecules.

Overall, the active sites of RebC and RebC-10x are similar; the bound products and substrates

can be superimposed. However, small changes in side chain positions results in different

tautomers of substrate and changes to bound water positions.

II.IV DISCUSSION

While the substrates for RebC and StaC can convert to the respective products

spontaneously, the presence of these enzymes directs the reactivity toward a single product. In

this sense, RebC and StaC are babysitting enzymes, ensuring that the appropriate reaction goes

forward, but just as importantly, preventing unwanted reactions. With such high sequence

similarly between RebC and StaC, understanding how these enzymes catalyze their differential

reactions has been a point of considerable interest in the natural product field.

For RebC, biochemical and structural analysis helped elucidate the nature of the RebC

substrate as 7-carboxy-K252c (13), indicating that conversion to product requires both a

decarboxylation and oxidation at C-7. With structural analysis firmly placing RebC in the FAD

monooxygenase class of enzymes, it has been proposed that RebC catalyzes both the

decarboxylation and oxidation of substrate using FAD-dependent hydroxylase activity (13, 25).

In contrast StaC, which purifies in a deflavinated state, does not require oxidation activity,

raising the question of whether StaC requires FAD for activity. In this work, we find a clear
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correlation between FAD-binding affinities and the reaction catalyzed, with tighter (nanomolar)

binding associated with enzymes that mediate a net 8-electron oxidation of CPA and

substantially weaker (micromolar) binding associated with the mediation of a net 4-electron

oxidation of CPA. This trend holds for both the wild-type and mutant proteins. However, we

find that RebC-10x, which binds its FAD more tightly than StaC by three orders of magnitude,

is actually a better StaC catalyst than StaC itself, indicating that truly weak binding of FAD is

not required for StaC-like chemistry. In contrast, StaC-10x, which binds FAD more weakly than

RebC by 30-fold, is a poor RebC catalyst. Collectively, these data imply that both StaC and RebC

are FAD-dependent enzymes in which the tight binding of FAD is more important to the

facilitation of RebC-like chemistry. Further support for the identification of StaC as an FAD-

dependent enzyme comes from Onaka and co-workers, who showed that StaC activity is

substantially diminished when regions of the GXGXXG FAD binding motif are mutated (17).

With FAD independence ruled out as the source of StaC's disparate reactivity, we

further considered if variations in substrate use and/or FAD-based mechanisms could be the

cause. While it is difficult to envision a FAD monooxygenase mechanism that could convert 7-

carboxy-K252c to K252c, Onaka and co-workers argued that such a mechanism could be

invoked for converting a substrate such as 5-deoxo-7-carboxy-K252c to form K252c (17). To

investigate the nature of the StaC substrate, we employed the same crystallographic trick that

was successful for RebC (13): screening CPA degradation products using enzyme crystals to

determine which molecule selectively binds. Interestingly, we again find 7-carboxy-K252c in the

active site, implying RebC and StaC do indeed share a common substrate. The fact that 7-

carboxy-K252c is found in the structures of both RebC and the StaC-like catalyst RebC-10x is

consistent with the interchangeable use of the preceding enzymes (StaP and RebP).

Given that the substrates for RebC and StaC appear to be the same, the source of

differential products must lie with the use of a disparate FAD-based mechanism, achieved by

the manner in which each enzyme binds its substrate and the amino acid environment near the

active site. Due to the high homology between these enzymes, small variations must be all that

are required for this shift in mechanism. Here our structures of substrate-bound forms of RebC

and the StaC-like catalyst RebC-10x are most informative. While our data show a common

substrate, each enzyme active site is designed to bind a different tautomer of that substrate. A

nonplanar keto tautomer of 7-carboxy-K252c is bound to the StaC-like catalyst while RebC

binds the planar enol tautomer. Notably, there is a key difference in the chemical reactivity of

these two tautomers: in the keto tautomer, the sp3 hybridized C-7 carbon can accept electrons

from the spontaneous decarboxylation of 7-carboxy-K252c (Figure II.11.A). In the enol form,
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however, spontaneous decarboxylation is not possible due to the sp2 hybridized C-7 carbon

(Figure II.11.B). Thus, RebC binds 7-carboxy-K252c such that decarboxylation would require a

change in C-7 hybridization, likely achieved through hydroxylation of C-7 in a FAD-dependent

monooxygenase reaction (13, 25) (Figure II.11.C), while the StaC-like catalyst binds 7-carboxy-

K252c primed for decarboxylation without the need for hydroxylation (Figure II.11.A). Support

for an FAD-dependent monooxygenase mechanism for RebC includes the observation that its

'mobile' flavin adopts an 'in' position in the presence of substrate or when the FAD is reduced,

such that the substrate C-7 position is perfectly positioned near the C4a of the isoalloxazine ring

for attack on C4a-hydroperoxy-FAD, a common flavin-dependent monooxygenase intermediate

(13, 26).

While there is an obvious role for FAD in the RebC mechanistic proposal, its role in a

StaC-like catalyst is less clear. As described above, our data and that of the Onaka laboratory

support StaC as a FAD-dependent enzyme (17), and while our redox measurements show that

FAD potentials are virtually unchanged among RebC and StaC-like catalysts in the absence of

substrate, our structural data do not buttress the idea that StaC is a monooxygenase. Instead,

our data suggest that FAD could contribute to the catalysis of decarboxylation through a steric

and/or electrostatic mechanism. In an overlay of the substrate-bound structures of RebC and

RebC-10x, the carboxyl group of substrate in RebC-10x clashes with the FAD isoalloxazine

moiety (Figure II.12.B-C), indicating that FAD binding and/or movement of the cofactor from

the 'out' to the 'in' position could play a steric role in driving decarboxylation. Alternatively, or

in addition, reduced FAD swinging 'in' to the active site could serve to facilitate

decarboxylation through an electrostatic mechanism. Structural data presented here show that

like RebC, the RebC-10x FAD does transition from 'out' to 'in' positions. In particular, we

observe FAD 'out' in the native RebC-10x structure and find FAD 'in' with the product K252c

bound. In contrast to RebC, where the FAD is 'in', positioned near substrate following the

week-long CPA soak (13), here we find that FAD dissociates from RebC-10x crystals during the

same time period. While in agreement with a weaker FAD binding affinity for RebC-10x, FAD

dissociation during the soaking experiment is also consistent with the notion of an unfavorably

crowded active site following substrate binding.

These two different mechanistic hypotheses for RebC and StaC-like catalysts are also in

alignment with the observed FAD binding affinities. For RebC, tight binding of FAD is likely

important for the intricate control of the FAD cofactor required for substrate hydroxylation,

whereas for StaC-like catalysts, precise control over FAD positioning would not be required in a

steric or electrostatic mechanism. Although tighter binding of FAD from micromolar to high
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nanomolar appears to make for a better StaC catalyst, in vivo, weaker binding of the cofactor

could allow for a single FAD to service multiple StaC enzymes. In its babysitter role, StaC

protects the 7-carboxy-K252c from unwanted side-reactions while waiting for FAD to bind.

While organisms containing the rebeccamycin pathway could also benefit from shared use of

FAD by multiple RebC enzymes, in this case, weaker FAD affinity might impair catalysis to too

great an extent. Here we find that weakening FAD affinity from low to high nanomolar leads to

a poor RebC catalyst.

While the binding of different tautomers of 7-carboxy-K252c by RebC and StaC-like

catalysts can explain how two highly homologous FAD-dependent enzymes can use different

mechanisms to yield their observed varied products, it is also interesting to consider the

number of amino acid changes that are required for this differential binding of substrate. Based

on structural analysis, two arginines (R239 and R230) in RebC are responsible for interacting

with the 7-carboxyl moiety of 7-carboxy-K252c and appear key to maintaining it in an enol

form, requiring RebC-like chemistry for product formation (see Figure II.10.D and Results). In

StaC-like enzymes, the equivalent of R239 is asparagine and R230 adopts an altered position

due to G48S and F216V substitutions. As we were preparing this manuscript, two groups

reported that conversion of RebC activity to StaC-like activity can be achieved via two

simultaneous mutations, F216V and R239N (17, 18), with individual mutations of these residues

leading to unchanged and dead enzyme, respectively (17). These mutational data highlight the

importance of the residue at position 239 and show that the availability of the 'lower' (StaC-like)

conformation of R230, afforded by the F216V mutation alone, is not enough to convert a RebC

to a StaC. The authors also tried the complementary mutations in StaC and found that this

construct, StaC-V221F-N244R, is not an active RebC catalyst (17). Consistent with this result,

our structural data suggest the StaC R230 equivalent, R235, cannot adopt its "RebC-like"

orientation unless S48 is converted to G (see Figure II.10.D).

Collectively, these data provide insight into the key amino acid interactions in the

RebC/StaC active sites that afford the product specificity. For RebC activity, R239 and an

'upper' position of R230.appear to help stabilize an enol form of 7-carboxy-K252c, requiring the

tightly bound FAD to perform monooxygenase activity for product formation. In StaC, the

absence of arginine at position 239 and a 'lower' position of R230, appear to yield the

preferential binding of the keto form of 7-carboxy-K252c. Chemical logic predicts that this keto

tautomer would not require FAD monooxygenase activity for conversion, perhaps using the

'mobile flavin' as steric or electrostatic driving force for decarboxylation instead. Of course after

decarboxylation, protonation of the C-7 carbon is required to form the StaC product, K252c
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(Figure II.11.A). Here we find that the 'lower' position of R230 creates an ordered water site that

is not present in RebC (Figure II.10.E). This water is in position to act as a general acid to

protonate C-7, yielding the StaC product. Interestingly, this water molecule is present

regardless of the observed substrate orientation. As such, both orientations of 7-carboxy-K252c

shown in Figure II.10.B-C seem to be catalytically viable. In contrast, only one orientation of

substrate is found in the RebC structures and only that orientation has C-7 positioned correctly

for hydroxylation.

II.V MATERIALS AND METHODS

Generation of expression vectors for wild-type proteins

RebC was cloned into pET28a (Novagen) as previously described (12). StaC was

amplified via PCR from Streptomyces longisporoflavus genomic DNA using primers 5'-

ggagagCATATGACGCATTCCGGTGAGCGGAC-3' and 5'-

gtcAAGCTTTCAGCCCCGCGGCTCACGGGGCG-3' (Integrated DNA Technologies), where

italicized text indicates an overhang and bold text indicates a restriction digest site. The PCR

reaction mixture contained 1.25 U of Pfu Turbo DNA polymerase (Stratagene), 1x cloned Pfu

buffer (Stratagene, 20 mM Tris-HCl pH 8.8, 2 mM MgSO 4, 10 mM KC1, 10 mM (NH4 )2SO 4 , 0.1%

Triton X-100, 100 pg/mL bovine serum albumin), 5% DMSO, 250 pM dNTPs (an equimolar

mixture dATP, dCTP, dGTP, and dTTP), 1 iL of purified genomic DNA, and 0.5 mM of each

primer. The 100 pL reaction mixtures were subjected to the following PCR cycle: 94 *C (3 min);

30 cycles of 94 0C (1 min), 52, 56, 60 or 63 *C (1 min), and 72 *C (2.5 min); 72 *C (10 min).

Annealing temperatures of 56, 60 and 63*C all gave successful PCR products, so these were all

combined. The PCR fragment was gel purified using the QlAquick Gel Extraction Kit (Qiagen)

and digested at 37*C with NdeI and HindIII (New England Biolabs) in NEBuffer 2 (New England

Biolabs, 10 mM Tris-HCl, 50 mM NaCl, 10 mM MgCl2, 1 mM dithiothreitol, pH 7.9). Purified

pET28a (Novagen) was identically digested with NdeI and HindIII (New England Biolabs). Both

digested PCR product and pET28a were again gel purified. The staC insert was ligated into the

cut pET28a vector using T4 DNA Ligase (New England Biolabs, 2000 U) in 1x T4 DNA Ligase

buffer (New England Biolabs, 50 mM Tris-HC, pH 7.5, 10 mM MgCl 2, 10 mM dithiothreitol, 1

mM ATP), with incubation at 16 *C for 12 h. Ligation reactions were used to transform TOP10

chemically competent E. coli cells, which were then plated onto LB-agar-kanamycin plates.

Resulting colonies were amplified in LB-kanamycin, and the plasmid purified (QIAprep Spin
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Miniprep Kit) then analyzed by restriction enzyme digestion (NdeI/ BglI) for presence of the

insert. The sequence integrity was confirmed by DNA sequencing (Molecular Biology Core

Facility, Dana-Farber Cancer Institute, Boston).

InkE was amplified via PCR from Nonomuraea longicatena (15) genomic DNA using

primers 5'-ggagagCATATGACTCGCAGCGAAGAGACCGAC-3' and 5'-

ccgAAGCTTTCACCCCGCCCCTCGCACGAGATC-3' (Integrated DNA Technologies), where

italicized text indicates an overhang and bold text indicates a restriction digest site. The PCR

reaction mixture contained 1.25 U of Pfu Turbo DNA polymerase (Stratagene), 1x cloned Pfu

buffer (Stratagene, 20 mM Tris-HCl pH 8.8, 2 mM MgSO 4, 10 mM KCl, 10 mM (NH 4)2SO 4 , 0.1%

Triton X-100, 100 pg/mL bovine serum albumin), 5% DMSO, 250 pM dNTPs (an equimolar

mixture dATP, dCTP, dGTP, and dTTP), 0.25 pL of purified genomic DNA, and 0.5 mM of each

primer. The 50 p.L reaction mixtures were subjected to the following PCR cycle: 98 *C (3 min); 30

cycles of 98 *C (1 min), 52, 59, 66 or 72 *C (1 min), and 72 *C (2.5 min); 72 *C (10 min). All

annealing temperatures (52, 59, 66 and 72 *C) gave successful PCR products, so were all

combined. The PCR fragment was gel purified using the QIAquick Gel Extraction Kit (Qiagen)

and digested at 37*C with NdeI and HindIII (New England Biolabs) in NEBuffer 2 (New England

Biolabs, 10 mM Tris-HCl, 50 mM NaCl, 10 mM MgCl 2, 1 mM dithiothreitol, pH 7.9). Purified

pET28a (Novagen) was identically digested with NdeI and HindIII (New England Biolabs). Both

digested PCR product and pET28a were again gel purified; the inkE fragment was then

concentrated five-fold by lyophilization and re-suspended in water. The inkE insert was ligated

into the cut pET28a vector using Quick Ligase (New England Biolabs, 2000 U) in 1x Quick

Ligase buffer (New England Biolabs, 66 mM Tris-HCL, pH 7.6, 10 mM MgCl 2, 1 mM

dithiothreitol, 1 mM ATP, 7.5% polyethylene glycol (PEG 6000)), with incubation at 25 *C for 3

h. Ligation reactions were used to transform TOP10 chemically competent E. coli cells, which

were then plated onto LB-agar-kanamycin plates. Resulting colonies were amplified in LB-

kanamycin, and the plasmid purified (QIAprep Spin Miniprep Kit) then analyzed by restriction

enzyme digestion (NdeI/HindIII) for presence of the insert. The sequence integrity was

confirmed by DNA sequencing (Molecular Biology Core Facility, Dana-Farber Cancer Institute,

Boston).

AtmC was amplified from Actinomadura melliaura (16) genomic DNA (a kind gift of Carl

Balibar) via PCR. A reaction mixture with 2.5 U of Pfu Turbo DNA Polymerase (Stratagene), 1x

cloned Pfu buffer (Stratagene, 20 mM Tris-HCl pH 8.8, 2 mM MgSO 4, 10 mM KCl, 10 mM

(NH4 )2 SO4, 0.1% Triton X-100, 100 pg/mL bovine serum albumin), 5% DMSO, 300 p.M dNTPs

37



(an equimolar mixture dATP, dCTP, dGTP, and dTTP), 1 [tL of purified genomic DNA, and 125

ng of each primer (5'-caagttaCATATGACCACGGCTTACGAGACCGA-3' and 5'-

caagttaGAATTCCCATGAAGACCAGCCAGTTCTCCA-3', purchased from Integrated DNA

Technologies) in a 50 pL reaction mixture was subjected to the following PCR cycle: 95*C (2

min); 30 cycles of 95*C (30 sec), 57*C (30 sec), and 72*C (3 min); and 72*C (10 min). The PCR

fragment was gel purified using the QlAquick Gel Extraction Kit (Qiagen) and digested with

NdeI and EcoRI (New England Biolabs) at 37*C in NEBuffer EcoRI (New England Biolabs, 50

mM NaCl, 100 mM Tris-HCl, 10 mM MgCl 2, 0.025% Triton X-100, pH 7.5). Purified pET28a

(Novagen) was identically digested with NdeI and EcoRI (New England Biolabs). Both digested

PCR product and pET28a were again gel purified. Various ratios of insert to vector were ligated

in a 10 pL reaction volume using 1x T4 DNA ligase buffer (New England Biolabs, 50 mM Tris-

HCl pH 7.5, 10 mM MgCl2, 10 mM dithiothreitol, 1 mM ATP, 25 ptg/mL bovine serum albumin)

and 400 U of T4 DNA ligase (New England Biolabs), with incubation at room temperature for

50 min. Ligation reactions were transformed into chemically competent DH5a cells and plated

onto LB-agar-kanamycin plates. Resulting colonies were amplified in LB with 30 mg/L

kanamycin, and the plasmid was purified (QlAprep Spin Miniprep Kit) and assayed via

restriction digestion for incorporation of the insert. The integrity of the sequence was assayed

with sequencing reactions spanning the length of the insert. Sequencing was carried out at the

MIT Biopolymers Laboratory.

Generation of the StaC-1Ox expression vector

Twenty-eight overlapping primers encoding the N-terminal portion of the StaC protein

with ten amino acid substitutions were designed using DNAWorks 2.4

(http://mcli.ncifcrf.gov/dnaworks/dnaworks2.html) and synthesized by Integrated DNA

Technologies. Primers were designed with each codon for a modified amino acid in a non-

overlapping portion of a primer, such that each primer encoding a modified amino acid could

be singularly 'swapped' with a primer encoding the wild-type amino acid (Figure 11.13). This

primer design scheme enables facile production of modified StaC proteins with fewer

unwanted mutations.

Primer Number Sequence'
1 5'-ggagagCATATGACCCACTCTGGCGAACGTACGGATGTT-3'
2 5'-TACCGACTGGACCACCACCAACGATTAAAACATCCGTACGTTCGC-3'
3 5'-GGTGGTCCAGTCGGTATGGCACTGGCGTTAGACTTACGCTACCGC-3'
4 5'-GACAACTAAACAATCAATGCCGCGGTAGCGTAAGTCTAACGCCAG-3'
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5 5'-TGATTGTTTAGTTGTCGAACAGACGGATGGCACGGTCCGTCATCC-3'
6 5'-ATAGAACGCGGACCAATGGTGCCAACACGTGGATGACGGACCGTG-3'
7 5'-ATTGGTCCGCGTTCTATGGAGCTGTTCCGCCGTTGGGGTGCAGCA-3'
8 5'-CCGCTGGCCAACCGGCGTTACGGATTGCGTCTGCTGCACCCCAAC-3'
9 5'-GGTTGGCCAGCGGATCACCCATTAGATATTGCGTGGGTGACCAAG-3'
10 5'-ACGATAACGATAGATCTCATGACCGCCGACCTTGGTCACCCACGC-3'
11 5'-TCATGAGATCTATCGTTATCGTCGCGGTACGGCAGCGAATCGTCC-3'
12 5'-TGGTCTGGTTCCGGGGTGTGGACAAACGCTGGACGATTCGCTGCC-3'
13 5'-CCCGGAACCAGACCAAATCTGTCCGCAACACTGGTTAAACCCAGT-3'
14 5'-CTGGGTGCACGCCCACCGCCTCAATCAGCACTGGGTTTAACCAGT-3'
15 5'-GTGGGCGTGCACCCAGACGGCCCACTGTTATTATCTACGACCGTT-3'
16 5'-TCGTCGGTTTGGACGACGCCGTCAACGGTCGTAGATAATAACAGT-3'
17 5'-CGTCCAAACCGACGACCATGTCGAGGCGACGCTGACCGATCACGC-3'
18 5'-CGGGCACGCACGGTGCCGGTGGTACCGGTGGCGTGATCGGTCAGC-3'
19 5'-CGTGCGTGCCCGCTTTCTGGTTGCCTGCGACGGCGCAAGCTCTCC-3'
20 5'-TGGGGCTTCAATACCACAGGCACGACGAACCGGAGAGCTTGCGCC-3'
21 5'-GTGGTATTGAAGCCCCAGCACGCCATCGCACGCAGGTCTTCCGTA-3'
22 5'-TTTTAACTCCGGGGCACGGAATAAGATATTACGGAAGACCTGCGT-3'
23 5'-GTGCCCCGGAGTTAAAAGATCGCCTGGGTGAACGTGCGGCGCTG -3'
24 5'-AGCGTAACGTGCTGCTTAACATTAAGAAATGAAACAGCGCCGCAC-3'
25 5'-GCAGCACGTTACGCTTTCCATTACGCGCATTAAATGGTAGCGATT-3'
26 5'-ATCATCTGCACCAACCGTCAGACGGTATAAATCGCTACCATTTAA-3'
27 5'-GTTGGTGCAGATGATGATACGGGTGCCCGTCCGGATGCATTAGCA-3'
28 5'-cgtcctTGATCAGTGCTAATGCATCCGGACGG-3'
Bold text within oligonucleotide sequences indicates restriction digest sites, italicized text indicates

modified overhangs, and underlined text indicates modified codons. Note that even numbered primers
are reverse primers.

To generate the StaC-10x expression vector, a first PCR was carried out using 1x cloned Pfu

buffer (Stratagene, 20 mM Tris-HC pH 8.8, 2 mM MgSO 4, 10 mM KCl, 10 mM (NH4)2SO 4, 0.1%

Triton X-100, 100 pg/mL bovine serum albumin), 2.5 U of Pfu Turbo (Stratagene), 250 pM of

dNTPs (an equimolar mixture of dATP, dCTP, dGTP, and dTTP), and 12.5 nM of each of the 28

primers, with a temperature cycle of 94*C (2 min); 45 cycles of 94'C (30 s), 58*C (30 s), and 72*C

(1 min); and 72*C (2 min). A second PCR was then carried out using 1x cloned Pfu buffer, 2.5 U

of Pfu Turbo, 250 pM dNTPs, 300 nM of each primer 1 and 28, and 1 pL of the first PCR, in a

total volume of 50 ptL using an identical temperature cycle. The product of the second PCR was

gel purified using a QIAquick Gel Extraction Kit (Qiagen). Gel purified DNA from the second

PCR was then incubated with 20 U of NdeI (New England Biolabs) in NEBuffer 3 (New England

Biolabs, 50 mM Tris-HCl, 10 mM MgC 2, 100 mM NaCl, 1 mM DTT, pH 7.9) at 370C for 2 h;

then, after addition of 15 U of BclI (New England Biolabs), the reaction was incubated at 50*C

for 2 h.
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Separately, pET28a-StaC (12) was transformed into dam-/dcm- E. coli competent cells

(New England Biolabs) and purified using a minprep kit (Qiagen). Purified plasmid was

incubated with 20 U of HindIII (New England Biolabs) in NEBuffer 2 (New England Biolabs, 10

mM Tris-HCl, 10 mM MgC12, 50 mM NaCl, 1mM DTT, pH 7.9) at 37'C for 2 h; then, after

adjustment of the buffer to 50 mM Tris-HCl and 100 mM NaCl and addition of 15 U of BclI,

incubated at 50'C for 2 h. Additionally, purified plasmid was separately incubated with 20 U of

NdeI and 20 U of HindIII in NEBuffer 2 (New England Biolabs) at 37*C for 2 h, followed by heat

inactivation of the restriction enzymes at 65'C for 20 min. 2.5 U of calf alkaline phosphatase

(New England Biolabs) was then added to this final reaction mixture, which was incubated at

37'C for 2 h.

Appropriate fragments from the restriction digests were gel purified. Ligation reactions

were set up with 20 ng of the purified NdeI/HindIII digest reaction, 8 ng of the purified

HindIII/BclI reaction, 8 ng of the purified NdeI/BclI digest reaction, 1x T4 DNA ligase buffer

(New England Biolabs, 50 mM Tris-HCl pH 7.5, 10 mM MgC12, 10 mM dithiothreitol, 1 mM

ATP, 25 tig/mL bovine serum albumin), and 200 U of T4 DNA ligase (New England Biolabs)

and incubated at 16*C for 24 h. Ligation reactions were transformed into DH5a cells and plated

on LB-agar-kanamycin plates. Plasmid was purified from overnight cultures of single colonies,

analyzed for the presence of the PCR insert via a diagnostic PCR reaction, and sequenced at the

MIT Biopolymers Laboratory using three different primers to gather data from the entire length

of StaC-10x gene.

Generation of the RebC-1Ox expression vector

Forty-one overlapping primers encoding the N-terminal portion of the RebC protein

with ten amino acid substitutions were designed using DNAWorks 2.4

(http://mcl1.ncifcrf.gov/dnaworks/dnaworks2.html) and synthesized by Integrated DNA

Technologies.

Primer Number Sequence'
1 5'-ggagagCATATGAATGCCCC-3'
2 5'-CCAGGATCAGGACATCGGTTTCAATTGGGGCATTCATATGCTCTC-3'
3 5'-CGATGTCCTGATCCTGGGTGGCGGTCCAGTTGGTATGGCCTTAGC-3'
4 5'-CCCACCTGGCGATGGGCCAGGTCCAGGGCTAAGGCCATACCAACT-3'
5 5'-CATCGCCAGGTGGGTCACTTAGTCGTTGATGCGGGCGACGGCACC-3'
6 5'-TGGACCGATCGTAGAAACTTTTGGGTGCGTGATGGTGCCGTCGCC-3'
7 5'-GTTTCTACGATCGGTCCACGTAGCATGGAATTATTCCGTCGTTGG-3'
8 5'-GCCGTGCGAATCTGTTTTGCGACACCCCAACGACGGAATAATTCC-3'
9 5'-ACAGATTCGCACGGCGGGTTGGCCGGGTGACCACCCGTTAGACGC-3'
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10 5'-TCATGGCCACCGACACGCGTCACCCATGCTGCGTCTAACGGGTGG-3'
11 5'-TGTCGGTGGCCATGAAGTTTACCGCATTCCATTAGGTACCGCGGA-3'
12 5'-CCGGGGTGTGTTCCGGCGTTGCACGCGTATCCGCGGTACCTAATG-3'
13 5'-GGAACACACCCCGGAACCAGATGCGATCTGTCCAGCGCATTGGTT-3'
14 5'-TCGCCCACTGCCTCCGCCAGCAGCGGGGCTAACCAATGCGCTGGA-3'
15 5'-AGGCAGTGGGCGAGCGTTTACGTACGCGCTCTCGCTTAGACTCTT-3'
16 5'-CGCGCACGTGGTCGTCACGCTGTTCGAAAGAGTCTAAGCGAGAGC-3'
17 5'-GACCACGTGCGCGCCACGATTACGGATCTGCGTACGGGTGCAACC-3'
18 5'-GGCAACCAGGTAGCGCGCGTGAACTGCACGGGTTGCACCCGTACG-3'
19 5'-CGCTACCTGGTTGCCTGTGACGGCGCGTCTTCTCCGACCCGCAAG-3'
20 5'-GATGACGTGGTGGGGCGTCAATACCTAACGCCTTGCGGGTCGGAG-3'
21 5'-CCCCACCACGTCATCGCACGCAGGTCTTTCGTAATATTCTGTTCC-3'
22 5'-AAGCTGCGTAACTCCGGTGCACGGAACAGAATATTACGAAAGACC-3'
23 5'-CGGAGTTACGCAGCTTACTGGGCGAACGTGCGGCACTGGTGTTCT-3'
24 5'-GAAAACGTAAAGAAGAGCTCAGCATTAAGAAGAACACCAGTGCCG-3'
25 5'-TGAGCTCTTCTTTACGTTTTCCGTTACGCTCTCTGGATGGCCGTG-3'
26 5'-CGTCCACGCCCACAACTAAGTTGTATAAACCACGGCCATCCAGAG-3'
27 5'-GTGGGCGTGGACGATGCCTCTAAGTCTACCATGGACAGCTTTGAA-3'
28 5'-TCGAACGCCACTGCGCGACGAACTAATTCAAAGCTGTCCATGGTA-3'
29 5'-GCAGTGGCGTTCGATACGGAGATTGAAGTGTTATCTGATTCTGAA-3'
30 5'-ACGCGGTGCGTTAAGTGCCATTCAGAATCAGATAACACTTCAATC-3'
31 5'-CTTAACGCACCGCGTCGCGGATTCTTTCTCTGCGGGCCGTGTTTT-3'
32 5'-GCTTAAGGTATGTGCTGCATCGCCCGTCAGGAAAACACGGCCCGC-3'
33 5'-GCAGCACATACCTTAAGCCCAAGCGGTGGTTTCGGCATGAACACG-3'
34 5'-AACCCAGGTCGGCTGCAGAGCCAATGCCCGTGTTCATGCCGAAAC-3'
35 5'-AGCCGACCTGGGTTGGAAGTTAGCAGCGACGCTGCGCGGCTGGGC-3'
36 5'-TTCCTCCTCGTAGGTCGCTAATAAGCCCGGACCGGCCCAGCCGCG-3'
37 5'-CGACCTACGAGGAGGAACGTCGTCCGGTGGCGATTACCAGCCTGG-3'
38 5'-CGTACGGCGCAGGTTAACATTCGCCTCCTCCAGGCTGGTAATCGC-3'
39 5'-CCTGCGCCGTACGATGGATCGTGAGTTACCACCGGGTCTGCACGA-3'
40 5'-CCAAGAGGATCCCTCGCCGCGTGGGCCATCATCGTGCAGACCCGG-3'
41 5'-ccaagaGGATCCCTCGCC-3'

'Bold text within oligonucleotide sequences indicates restriction digest sites, italicized text indicates
modified overhangs, and underlined text indicates modified codons. Note that even numbered primers
are reverse primers.

A first PCR was carried out using 1x cloned Pfu buffer (Stratagene, 20 mM Tris-HCl pH 8.8, 2

mM MgSO 4, 10 mM KCl, 10 mM (NH4)2SO 4, 0.1% Triton X-100, 100 pg/mL bovine serum

albumin), 2.5 U of Pfu Turbo (Stratagene), 250 pM of dNTPs (an equimolar mixture of dATP,

dCTP, dGTP, and dTTP), and 12.5 nM of each of the 41 primers, with a temperature cycle of

94*C (2 min); 45 cycles of 94*C (30 s), 58*C (30 s), and 72*C (2 min); and 72*C (10 min). A second

PCR was then carried out using 1x cloned Pfu buffer, 2.5 U of Pfu Turbo, 250 pM dNTPs, 7.5 sM

of each primer 1 and 41, and 1 pL of the first PCR, in a total volume of 50 pL using an identical

temperature cycle. The product of the second PCR was gel purified using a QIAquick Gel

Extraction Kit (Qiagen). Gel purified DNA from the second PCR was then incubated with 20 U

of NdeI (New England Biolabs) and 20 U of BamHI (New England Biolabs) in NEBuffer 3 (New

England Biolabs, 50 mM Tris-HCl, 10 mM MgCl 2, 100 mM NaCl, 1 mM DTT, pH 7.9) and 0.1

mg/mL bovine serum albumin (New England Biolabs) at 370 C overnight. Restriction digest
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reactions were then heat inactivated at 65*C for 20 min. Similarly, pET28a-RebC was incubated

with 20 U of NdeI (New England Biolabs) and 20 U of BamHI (New England Biolabs) in

NEBuffer 3 (New England Biolabs, 50 mM Tris-HCl, 10 mM MgCl2, 100 mM NaCl, 1 mM DTT,

pH 7.9) and 0.1 mg/mL bovine serum albumin (New England Biolabs) at 37*C overnight.

Restriction digest reactions were then heat inactivated at 65*C for 20 min and then cooled on ice.

5 U of Antarctic Phosphatase (New England Biolabs) and 1x Antarctic Phosphatase Reaction

Buffer (New England Biolabs, 50 mM Bis-Tris-Propane-HC, 1 mM MgCl2, 0.1 mM ZnCl2, pH

6.0) were then added to this final reaction mixture, which was incubated at 37*C for 1.5 h.

Phosphatase reactions were then heat inactivated at 65*C for 20 min.

Appropriate fragments from the restriction digests were gel purified. Ligation reactions

with 20 ng of the purified NdeI / BamHI pET28a-RebC digest reaction and 27 ng of the

NdeI/BamHI cut fragment encoding the N-terminus of RebC-10x were set up in 1x T4 DNA

ligase buffer (New England Biolabs, 50 mM Tris-HC1 pH 7.5, 10 mM MgCl2, 10 mM

dithiothreitol, 1 mM ATP, 25 pg/mL bovine serum albumin), and 200 U of T4 DNA ligase (New

England Biolabs) and incubated at 16'C for 16 h. Ligation reactions were transformed into

DH5a cells and plated on LB-agar-kanamycin plates. Plasmid was purified from overnight

cultures of single colonies, analyzed for the presence of the PCR insert via a diagnostic PCR

reaction, and sequenced at the MIT Biopolymers Laboratory using two primers to gather data

from the entire length of Reb-10x gene. We observed from this sequence that our design of the

fragment encoding the N-terminal fragment of RebC-10x inadvertently introduced a frame shift

mutation. Therefore we used QuickChange (Stratagene) to introduce the missing cytosine,

generating the final RebC-10x construct. Plasmid was again sequenced at the MIT Biopolymers

Laboratory.

Protein purification

All protein expression vectors were transformed into chemically competent RosettaTM 2

(DE3) pLysS cells (Novagen). Single colonies were used to inoculate LB media containing 30

mg/L kanamycin and 34 mg/L chloramphenicol. Cultures were grown at 37'C to an OD6W of

-0.45, at which point the temperature was lowered to 21*C. At an ODo of ~0.65, cultures were

induced with 0.1 mM isopropyl-p-D-thiogalactopyranoside (IPTG) and grown for -20 hours at

250 rpm. Cells were pelleted by centrifugation, suspended in 300 mM NaCl, 25 mM Tris-HCl, 5

mM imidazole, pH 8.0, sonicated, and centrifuged at 25,000 rpm to pellet insoluble material.

The supernatant was incubated with nickel (II) loaded chelating sepharose fast flow (GE
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Biosciences) for 40 min at 4C. Unbound material was removed, and then the column was

washed with 25 column volumes of 300 mM NaCl, 25 mM Tris-HC1, 20 mM imidazole, pH 8.0

and then, for AtmC and RebC, washed with 2 M KBr, 2 M urea, 300 mM NaCl, 25 mM Tris-HCl,

20 mM imidazole, pH 8.0 to remove bound flavin, and then re-washed with 300 mM NaCl, 25

mM Tris-HCl, 20 mM imidazole, pH 8.0. Protein was eluted with 300 mM NaCl, 25 mM Tris-

HCl, 200 mM imidazole, pH 8.0. Eluted protein was loaded onto a Superdex-200 column pre-

equilibrated with 150 mM NaCl, 25 mM HEPES, 10% glycerol, pH 7.5, and 3 mL fractions were

collected. Fractions containing purified protein were pooled and used directly in isothermal

titration calorimetry experiments. Protein concentration was assayed using absorbance in the

linear range at A28, using theoretical extinction coefficients calculated for each protein by

ProtParam (27). For StaC-10x and RebC-10x, protein concentration was calculated instead using

the BioRad Protein Assay (BioRad) calibrated using BSA (New England Biolabs) as a standard.

Kd for FAD of StaC, RebC, InkE, AtmC, StaC-10x, and RebC-10x measured by isothermal titration

calorimetry (ITC)

All experiments were carried out using a MicroCal Isothermal Titration Calorimeter in

the MIT Biophysical Instrumentation Laboratory. FAD was removed from RebC, AtmC, and

RebC-10x as described above. Apo-protein from gel filtration was diluted in gel filtration buffer

to the desired concentration. FAD could not be removed from StaC-10x in the same manner.

After passing a buffer containing 2M urea and 2M KBr over a metal affinity column with bound

StaC-10x to remove FAD, protein could not be eluted from the column using any tested elution

buffer. Presumably, the protein aggregated or cross-linked to the column after the loss of FAD,

requiring us to use StaC-10x with partial FAD occupancy in this experiments. The use of non-

apo StaC-10x complicated the ITC analysis, since a fundamental assumption of Origin Software

is that the ligand concentration in the cell is zero prior to the first injection of ligand. This

limitation prompted a control experiment with RebC as described in text. The ITC experiments

were repeated in at least triplicate, except for the StaC-10x experiment, which was done twice

(Figure 11.6). Equilibrium constants of binding (Kb's) were determined using the Origin Software

and were converted to equilibrium constants of dissociation (Kd'S). The single binding site

model was used in determining Kb's.
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Measurement of the redox potential of StaC-1Ox and RebC-1Ox

The midpoint potential of purified StaC-10x and RebC-10x were determined using a

xanthine oxidase reduction method developed by Massey (20). Experiments were carried out at

25'C under anaerobic conditions in a glovebox using a S. II. Photonics 400 series

spectrophotometer, housed in an MBraun Labmaster glove box. The cell solution was buffered

by 25 mM HEPES (pH 7.0), and contained 10% glycerol, 150 mM NaCl, 1 yM benzyl viologen, 1

pM methyl viologen, 250 pM xanthine, 15 yM StaC-10x, and 50 pM 1-hydroxyphenazine (1-

OHP) as a reference dye (-172 mV). Addition of a catalytic amount of xanthine oxidase (Sigma

Aldrich) initiated the reaction, and full spectra were collected every 5 minutes until completion.

The reduction of the StaC-10x flavin and 1-hydroxyphenazine were monitored at 480 nm and

370 nm, respectively. For this technique, unlike ITC, the level of flavin incorporation is thought

to be irrelevant, as only the flavin cofactor itself is observed spectroscopically. Hence, barring

interference of apo protein with the dye molecule (which is extremely unlikely), the presence of

apo protein is not thought to influence the redox potential determined.

Activity assays of StaC, RebC, and StaC-lOx

All enzyme assays were carried out as described earlier (12) in the presence of 75 mM

HEPES pH 7.5, 1 mg/mL BSA, 5 mM NADPH, 20 pM ferredoxin, and 1 pM flavodoxin NADP*

reductase. All assays were carried out in triplicate, except RebC, which was run once.

Crystallization and Structure Determinations

RebC-10x protein was purified as described above. After size exclusion, the protein

sample was concentrated to 25 mg/mL (as determined by using the BioRad Protein Assay)

using an Amicon Ultra 30K Centrifugal Filter Device in protein buffer (150 mM NaCl, 25 mM

HEPES, 10% glycerol, pH 7.5), and flash frozen in liquid nitrogen for storage at -80'C. Crystals

of RebC-10x were grown using the hanging-drop diffusion method at room temperature, by

incubating 1 pL of protein sample (diluted to 20 mg/mL with protein buffer) with 1 pL of

precipitant solution, 100 mM NH 4F and 20% PEG 3350 over a 0.5 mL well of precipitant

solution. After 3-4 days, rod clusters would appear; these were used to generate microseeds

using the Seed Bead kit (Hampton). The seed solution was diluted 100-fold in a 50% protein

buffer, 50% precipitant solution and used to serially streak seed 3 drops of 1 pL of 4-6 mg/mL

RebC-10x (diluted in protein buffer) and 1 pL of 50 mM NH4F and 10% PEG 3350 which had
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been pre-equilibrated for three hours. Single crystals appear after 1-2 days. Solutions of CPA

and K252c for use in soaking experiments were synthesized as described (12) (Tocris

Bioscience), and prepared at 50 and 10 mM in DMSO, respectively. The native/K252c structure

was generated from crystals that were soaked in a solution of 25 mM NH4F, 75 mM NaCl, 1 mM

K252c, 12.5 mM HEPES (pH 7.5), 5% PEG 3350, and 5% glycerol for three hours at room

temperature prior to cryocooling by washing the crystals through a soaking solution with 20%

glycerol before submerging in liquid nitrogen. CPA soaked crystals were prepared by

incubating single crystals in an identical soaking drop, but substituting K252c for 5 mM CPA.

These crystals were incubated at room temperature for one week, then washed in

cyroprotectant and cryocooled as described above.

Diffraction data to 2.15 and 2.37 A resolution for K252c and CPA soaks, respectively,

were collected at Beamline 24-IDE at the Advanced Photon Source (Argonne, IL), and processed

with HKL2000 (28) to 2.33 and 2.76 A resolution, respectively, trimming the resolution such that

the I/s(I) is above 2.0 in the highest resolution bins (Table II.4). Both structures were phased

using a previously solved RebC - CPA soaked structure (PDB ID 2ROG) stripped of water

molecules and ligands as a model for rigid body refinement. Topology and parameter files for

FAD, K252c, and S-keto-7-carboxy-K252c were adapted from those used previously (13).

Iterative rounds of model building and refinement were done using the programs COOT (29),

CNS (30, 31), and PHENIX (32). Non-crystallographic symmetry restraints were not used in

either structure due to inherit differences of the molecules in the asymmetric unit. No sigma

cutoff was included in the refinement and both structures were verified using composite omit

electron density maps. The final R factors (work/free/all reflections) of 21.4/26.1/21.6 and

20.6/25.5/21.0 for K252c-soaked and CPA-soaked structures, respectively, are within the

typically ranges for structures at or above 2.3 A resolutions (33). In both structures, the 20-

residue N-terminal tags containing the His6 affinity sites are disordered. In addition, the RebC-

10x K252c soaked structure is missing residues 1-3 and 247-252 in molecule A (K252c-bound

structure) and residues 1-2, 353-364, 418-422 in molecule B (native structure) due to disorder.

Water molecules were included at positions where +3.5a F,-F, peaks were present. Water

molecules in the RebC-10x CPA soaked structure were included only where positive F,-Fe

difference density was present and water binding sites were previously established by higher

resolution structures. In this structure, residues 1, 40-41, 248-251, and 418-425 in molecule A and

residues 1, 38-40, 247-252, and 418-425 in molecule B are not included in the model. See Table

11.4 for refinement statistics.
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Table I1.1. Residues interchanged to generate the RebC-10x and StaC-10x constructs
(see Figure 11.2 for a complete sequence alignment).

StaC

Ala38

Gly 39

Alall8

Lys4 7

Ser4 9

yaI221
Ser 2 36

Asn2"

Function
FAD binding (adenine)
FAD binding (adenine)
FAD binding (adenine)
FAD binding (phosphate)
FAD binding (isoalloxazine)
FAD binding (isoalloxazine)
Substrate binding pocket
Substrate binding pocket
FAD (isoalloxazine) &
substrate binding

ThL 4i Val" Substrate binding pocket

Table 11.2. Dissociation constants for FAD of StaC- and RebC-like proteins, as
determined by isothermal titration calorimetry (curves shown in Figure 11.3).

# of ITC
Protein experiments Dissociation Constant for

FAD
StaC 3 15,000 ± 2,000 nM
InkE 4 59,000 ± 48,000 nM
RebC 5 20 ±12nM
AtmC 5 73 ± 28 nM
RebC-10x 3 600 ± 55 nM
StaC-10x-FAD' 2 560 ± 120 nM
'The FAD bound to StaC-10x could not be removed from the protein (see text).

Table 11.3. Relative
Figure 11.5).

rates of arcyriaflavin A and K252c production (traces shown in

Rate of arcyriaflavin A Rate of K252c
Proteins assayed production production

(relative to StaP alone) (relative to StaP alone)
StaP|StaC 1.1 ±0.3 7 ±1
StaP RebC 14 1.0
StaP RebC-1Ox 0.79 ± 0.07 20 2
StaP I StaC-1Ox 1.7 ± 0.4 1.3 0.2

47

RebC
Glu"
Gln 37

Thr38

Gln"7

Arg4 6

Gly 48

Phe2 16

Ala 231

Arg239



Table II.4. Data collection and refinement statistics.

RebC-10x K252c soak
(K252c and native
structures)

RebC-10X CPA soak
(7-carboxy-K252c
structure)

Data Collection

Wavelength (A)
Space Group

Cell Dimensions

a, b, c (A); p (0)
Resolution (A)'
Rsym (%)

<I> / 0(<I>)'
Completeness (%)l

Redundancy'

Total reflections

Refinement

Resolution (A)
Reflections

Rwork / Rfree
No. of non-hydrogen atoms

Protein

FAD / Indolocarbazole

Water

Average B-factors (A2)
Protein

FAD / Indolocarbazole

Water

Rms deviations

0.97910

P21

0.97918

P21

64.3, 78.6, 125.7; 99.90
50 - 2.33 (2.42 - 2.33)

8.2 (52.0)
19.7 (3.6)

99.4 (98.5)

5.2 (4.9)

256,655

41.4 - 2.33

51,610
0.214 / 0.261

7,872

106 / 24
304

38.1
40.2/ 31.1
35.3

63.2, 77.7, 123.1; 98.8'
50 - 2.76 (2.86 - 2.76)

5.4 (48.9)
19.6 (2.2)
94.9 (97.4)

3.5 (3.5)

101,523

50-2.76

28,820
0.206 / 0.255

7,812
- / 54
62

61.7

- / 69.8
52.3

Bond lengths (A) 0.006 0.009
Bond angles (0) 1.0 1.6
Ramachandran statistics

Most favored region (%) 88.5 85.7
Additionally allowed (%) 10.9 14.0
Generously allowed (%) 0.5 0
Disallowed (no. of residues) 1 2
'Highest resolution shell is shown in parentheses.
'R-factor = E( I Fcl, I -k I Fcac I) /I I FOb, I and R-free is the R value for a test set of reflections consisting of 5%
of the diffraction data not used in refinement. The same test set of reflections used in the refinement of all
structures.
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Figure II.1. Indolocarbazole natural products and reaction schemes. (A) Chemical structures of
rebeccamycin, AT2433-A1, staurosporine, and K252a with standard numbering. (B) Reaction
scheme for StaP/StaC mediated production of K252c from CPA, and reaction scheme for
StaP /RebC mediated production of arcyriaflavin A from CPA.
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Figure 11.2. ClustalW sequence alignment between the highly homologous enzymes AtmC,
RebC, StaC, and InkE. High conservation is seen across all four proteins (percent identity
between RebC and StaC, RebC and AtmC, StaC and InkE, and AtmC and InkE are 65, 64, 62,
and 56, respectively). A star (*) represents residues conserved across all four proteins, and
double dots or single dots represent similar (not identical) residues across all four proteins,
according to the conventions of ClustalW. A black "x" above the alignment denotes residues
involved in conserved FAD binding motifs common to flavin-dependent hydroxylases (12-14).
To identify amino acids that may be responsible for the functional differences seen between the
two pairs of enzymes (AtmC and RebC; StaC and InkE), the crystal structure of RebC in
complex with FAD and 7-carboxy-K252c (PDB ID 2ROG) was analyzed. Residues where any
atom is within 4 A of FAD are highlighted in pink, residues where any atom is within 4 A of
putative substrate 7-carboxy-K252c are highlighted in turquoise, and residues where any atom
is within 4 A of both FAD and 7-carboxy-K252c are highlighted in yellow. Boxes indicate amino
acids where the aligned residues are identical between StaC and InkE but distinct from the
identical residues of RebC and AtmC. Note that some of these residues are not within 4 A of
either FAD or 7-carboxy-K252c. Green arrows point to mutation sites for the generation of
RebC-10x and StaC-10x. RebC numbering for these residues are shown above the alignment.
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xxxxxx i
AtmC -MTTAYETDVLVEin4JALVLDLKYRGVGCQ inGSVSH IGPRSMELFR 59
RebC -MNAPIETDVL I34ALAL DLAHRQVGHLV ,TITHF IGPRSMELFR 59
StaC MTHSGERTDVLI IAAI DLRYRGIDCLV GTVRH IGPRSMELFR 60
InkE -MTRSEETDVL IinLAL LDLTHRGVRHI tGVVRH VGPRSMEHFR 59

AtmC RWGIADRIRAAGWPGDHSLDTAWVTQVGGHEIHRLRVGT RP YTPEPEQVC ~&w 119
RebC RWGVAKQIRTAGWPGDHPLDAAWVTRVGGHEVYRIPLGT #RA HTPEPDAIC jQw 119
StaC RWGAADAIRNAGWPADHPLDIAWVTKVGGHEIYRYRRGT IRP HTPEPDQICF AW 120
InkE RWGVAGRVRDAGWPPGHPLDIAWVTRVGEYEIHRFERGT dAP HTPEPDQVC 4JL 119

xx
AtmC LAFILLEEARTHPGGVVRTRDGFTQHDDHVEATVTDLAEGRELRIRARYMVAAS 179
RebC LAF-ILAEAVGER--- LRTR SFEQRDDHVRATITDLRTGATRAVHARYLVAAS 175
StaC LNEV.L IEAVGVHPDGPLLLSDGVVQTDDHVEATLTDHATGTTGTVRARFLVAIAS 180
InkE LN~xJLAGAVGRP ---- LRYL InHFEQDAGCVRATIS--SNGEESVVWARYLVA S 173

AtmC SPVRKACGIPSSARYDVMTII LFRAPELRARLGQR --- EAYUMLSNQLRUJE 236
RebC SPTRKALGIDAPPRHRTQV3ILFRAPELRSLLGER -- A4 iMLSSSLRUO aE 232
StaC SPVRRACGIEAPARHRTQI4ILFRAPELKDRLGER- -- -AWIMLSSTLRU~I 237
InkE SVVRKALGIDSPARHEAQVUa FRAPGLPARLAERGHRSA1YIMHSWS4L 233

AtmC DGRSL ILSGTDA--DARDIMrMALAFETPVEILSDAVWHLTHRVAE ~RQDRIF 291
RebC DGRGL t~IGVDDASKSTMDSFEIRRAVAFDTEIEVLSDSEWHLTHRVAD SAGRVF 292
StaC NGSDL j4UGADDDTGARPDALAIIKDALALDTPVELLGDSAWRLTHRVAD YIRAGRIF 297
InkE DGRGL IDGRSDQ ---- GALEIIRSAIAFDVPVELVADGLWHLTHRVADIRAGRVF 289

xx
AtmC LL AATLS4 TGICAAADLGWKLAAELDGWAGRGLLDTYEEERRPVAVESLE 351
StaC LTIATL nTGIG AADLGWKLAATLWAGRHLLTYSERRPAESLN 357
RebC LT TLSTGIGS DAADLGWKLAATLWGPGLLTYEERRPATSLE 352
InkE LAATLSS TGIGDAADLGWKLAAAVAGWAGDGLLGTYETERRPVAIAGLD 349

AtmC EANLNIRRTMGRPVPPELHLDTPAGAEARARMARQLALSDVARDAGIHFGFTYRSSL 411
RebC EANVNRRTMDRELPPGLHDDGPRGERIRAAVAEKLERSGARRUAPGIHFGHTYRSSI 412
StaC EAHDNURRTMKREVPPEIHLDGPEGERARAVMARRLENSGRinAIQIHFGLRYRSSA 417
InkE AAEANURTVDRDLPAELAASTEKGARLRAEMAERLVNSGAREUDAPRVHFGFHYRSPI 409

AtmC IV-,EQAPVDPRK ---- WQ~TPGAR ;AWLSPGASTLDLFGRGFTLLTFAEGAVGL 467
RebC VCPE-TEVATGG ---- WRISA GARPAWLTPTTSTLDLFGRGFVLLSFGT ---- T 463
StaC IV DVVQQDDR PY#AWDTSLLGGVLFD-- 472
InkE VVGP --- AEQGP--- RWRE4IDPGCRA&JAWVRPGVSTLDLFGDGFTLLRFAD ---- S 459

AtmC EGVAGLERAFAERGVPLTTVRCDDRAVADLYEHPFVLVRPDGHVAWRAEAPPDDPGALAD 527
RebC DGVEAVTRAFADRHVPLETVTCHAPE IHAIJYERAHVLVRPDGHVAWRGDHLPAELGGLVD 523
StaC DGLPAIERAFAERGVPLTVHQGHDTE IAKLYARSFVLVRPDGHVAWRGDDLPGDPTALVD 532
InkE PALSAFVTAFTERGVPFRSVLVGDPDTAALYGHRFVLVRPDGHVAWRGDDLEAPALAD 519

AtmC LVRGGRR ------- 534
RebC KVRGAA -------- 529
StaC TVRGEAAPREPRG 545
InkE LVRGAG -------- 525
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Figure 11.3. Isothermal titration calorimetry data for FAD binding to StaC and homologues.
ITC trace for (A). StaC; (B). RebC; (C). InkE; (D). AtmC; (E). RebC-10x; and (F). StaC-10x. Protein
concentrations are: 29.6 IM (RebC), 30 pM (AtmC), 166 pM (StaC), 132 pM (InkE), 30 pM (StaC-
10x), and 44 gM (RebC-10x). FAD was dissolved in the identical gel filtration buffer, and its
concentration was calculated using A45 0 using 4 50 =11,300 cm 1 M-1. FAD concentrations used in
ITC experiments are: 300 pM (RebC experiment), 300 pM (AtmC experiment), 405 pM (StaC
experiment), 1.05 mM (InkE experiment), 300 pM (StaC-10x experiment) and 300 pM (RebC-10x
experiment). ITC experiments were carried out with protein in the cell and FAD in the syringe
with the following parameters: 30 injections (one of 0.5 gL, 29 of 10 pL; with a duration time of 1
sec for the first injection and 20 sec for the remaining 29 injections), 240 sec spacing, 2 sec filter,
25'C, reference power of 15 pCal/sec, initial delay of 60 sec, stirring speed of 310, feedback set
at high, ITC equilibrium set at fast and auto. For the InkE experiment, all conditions for ITC
were identical, except that 60 injections were used (one of 0.5 pL, 59 of 5 pL; with a duration
time of 1 sec for the first injection and 10 sec for the remaining 59 injections).
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Figure II.4. Reduction potential of RebC-10x and StaC-10x. The redox potentials of (A). RebC-
10x and (B). StaC-10x were determined using the xanthine/xanthine oxidase method (20). Inset:
Plot of log([ox]/[red]) for 1-OHP vs log([ox]/[red]) for each enzyme, used to calculate the
midpoint potential by comparing to 1-OHP (-172 mV).
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Figure 11.5. Activity assay HPLC chromatograms. (A). 315 nm chromatogram. (B). 289 nm
chromatogram. The retention time for arcyriaflavin A is 28.5 minutes. The arcyriaflavin peak in
the RebC assay trace has been truncated. The retention time for K252c is 23.5 minutes. Peaks
appearing at these times from experimental samples were integrated at the appropriate
wavelength. Because reactions are linear at 30 min, integrated peak areas were converted to
turnover rates using previously described methods (12). All enzyme assays were also carried
out as described previously in the presence of 75 mM HEPES pH 7.5, 1 mg/mL BSA, 5 mM
NADPH, 20 gM ferredoxin, and 1 pM flavodoxin NADP* reductase (34). RebC, StaC, StaC-10x,
or RebC-10x were added at 5 pM. All reactions were initiated with the addition of 1 pM StaP
and incubated at room temperature for 30 min. Reactions were then quenched with two
volumes of methanol and incubated on ice for at least five minutes prior to the removal of
precipitated protein by centrifugation. Reactions were assayed using an Agilent 1200 Series
reverse-phase HPLC with an Agilent Eclipse C18 analytical column (150 x 4.6 mm). Two buffers
(A is 0.2% trifluoroacetic acid in distilled, filtered water, and B is 0.2% trifluoroacetic acid in
acetonitrile) were used in the following program of linear gradients at a 1 mL /min flow rate: 10
to 60% B over 30 min, 60 to 100% B over 0.5 min, 100% B for 2 min, 100 to 10% B over 0.5 min,
and 10% B for 7 min.

A. B.

RebC

RebC

RebC-10x A Sta-l~xRebC-10x

StaC-10x 
StaC-1Ox

StaC StaC

StaP only 
StaP only

SL23 24 25 26 27 28 29
23 24 25 26 27 28 29 Minutes

Minutes

55



Figure 11.6. Overall structure of RebC-10x aligned with wild type RebC. (A) RebC (lighter
colors) and RebC-10x (darker colors) are aligned, showing the FAD binding domain (red),
substrate binding domain (blue), thioredoxin-like domain (green), and FAD (grey sticks). RMSD
of mainchain atoms is 0.46 A. See Fig. S5 for comparison of (B) RebC-10x shows retention of the
'mobile flavin', where flavin binds in the 'out' position of native RebC-1Ox (cyan) and in the 'in'
position when product is bound (slate), and the 'melting helix', where residues 354-363 (black)
become disordered in absence of a bound indolocarbazole ligand (melting helix termini are
marked with black circles in (A)). Arg230 is labeled to help relate this view of the active site
with those shown in Fig. 3 and S6.

A. I.B. VJ
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Figure 11.7. B-factor analysis of RebC and RebC-10x in area of the ten mutations. (A). RebC
(Native structure, PDB ID 2ROC) colored as a heat map from red (high b-factor) to blue (low b-
factor). FAD is shown as grey sticks. (B). RebC-10x heat map based on "native structure",
colored as above. (C). The locations of ten mutations in RebC-10x are colored red.

A. B. C.
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Figure 11.8. Residues chosen from the RebC structures in the design of (i) StaC-10x and RebC-
10x and (ii) subsequent RebC-1Ox residue positioning. Carbon coloring is as follows: native
RebC backbone (yellow) and FAD (green), native RebC-10x backbone (cyan) and FAD
(magenta), substrate-bound RebC (orange), and substrate-bound RebC-10x (gray). Glycines are
shown in purple. (A). A stretch of three residues from RebC - Glu36, Gln 3 7, and Thr3 1 - were
installed in StaC-10x, replacing the StaC residues Asp 3 7, Ala3 , and Gly 39 . These residues may
modulate binding of the adenosine portion of FAD. These residues are shown in the substrate-
free structure of (i) RebC and (ii) RebC-10x, with their orientation unchanged in the structure
with bound 7-carboxy-K252c. (B). (i) Gln 17 in RebC interacts with a phosphate on the FAD via a
water molecule. This residue was installed in StaC-1Ox, replacing Ala118, which was installed in
(ii) RebC-10x. Shown are Gln1 7 and Ala 17 in the substrate-free structure of RebC and RebC-10x.
The water binding site is preserved in RebC-10x. The orientation of both waters and residues
are unchanged in the structures with bound 7-carboxy-K252c. (C). (i) Arg4 6 in RebC binds on the
si face of the FAD in the substrate-free structure. Two residues away is Gly4" (shown in purple).
(ii) The corresponding residues in StaC are Lys 7 and Ser49 , and were installed in RebC-10x at
positions 46 and 48. Also shown is Trp 276, which is unchanged in StaC, but is shown because it
stacks on the re face of the FAD. (D). As in (C), but in the structures of RebC and RebC-10x are
now bound with two different bound tautomers of 7-carboxy-K252c; the (i) enol and (ii) keto.
(ii) Two different orientations of 7-carboxy-K252c were found in RebC-10x, one in each
monomer; they are overlayed, one in magenta (molecule B) and one in thin grey lines (molecule
A). (i) In RebC, Arg 46 now hydrogen bonds with a phosphate on the FAD. (ii) Flavin is not
present in the RebC-10x substrate bound model and the loop containing Lys4 has shifted
downward. (E). (i) Residues Phe2 16, Ala 23 1, Arg239, and Thr24 1 in RebC line the active site pocket,
however, only Arg239 directly interacts with FAD, via a hydrogen bond with a carbonyl oxygen
on the isoalloxazine ring. These residues were installed in StaC-10x, replacing Va 221, Ser 236,
Asn 24

4 , and Va 246, respectively. (ii) In RebC-10x, these StaC residues result in a more open
binding pocket. Shown are the orientations of the (i) RebC and (ii) RebC-10x residues in the
substrate-free structures. (F). As in (E), but in the structures of (i) RebC and (ii) RebC-10x with
their respective bound tautomers of 7-carboxy-K252c. (i) Arg23 9 now hydrogen bonds with the
bound molecule in RebC; (ii) Asn 23 9 is too far to hydrogen bond to the molecule in RebC-10x.
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Figure 11.9. Identification and orientation of bound indolocarbazoles in CPA-soaked RebC-
10x. Difference electron density after refinement of the following molecules in the RebC-10x
active site: (A). Arcyriaflavin A; (B). K252c; (C). Aryl-aryl coupled chromopyrrolic acid; (D).
Enol tautomer of 7-carboxy-K252c; and (E). Keto tautomer of 7-carboxy-K252c. F0-Fe difference
electron density is contoured at +3.0y (green) and -3.0a (red), respectively. To show the
relationship between this view and others, the box inlay shows the position of Arg230, a residue
labeled in (G) and (H) below as well as in Figures 11.6 and I1.10. (G). One orientation of the
bound keto tautomer of 7-carboxy-K252c with the carboxyl moiety pointed away from Arg230
is found in molecule B. (H). Another orientation of the bound keto tautomer of 7-carboxy-K252c
with the carboxyl moiety pointed toward Arg230 is found in molecule A. Shown in pink mesh is
a 2F,-Fe composite omit map contoured to 1.0a.
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Figure II.10. RebC and RebC-1Ox substrate binding pocket. (A) RebC substrate binding pocket
(PDB ID 2ROG) with protein backbone shown in orange and cofactor, FAD, and substrate, enol
7-carboxy-K252c, carbons in green and in stick representation. The sidechains, Arg230, Pro45,
and Trp276 (representing a hydrophobic region of the binding pocket) are also shown in stick
representation. (B) The S-keto form of 7-carboxy-K252c as found in molecule A of the RebC-10x
CPA soaked crystal. Protein carbons are colored grey and substrate shown in stick
representation and carbons colored magenta. The carboxyl group of substrate is proximal to
Arg230, as in RebC. (C) The alternate orientation of substrate, as found in molecule B of the
RebC-10x CPA soaked crystal. The carboxyl group of substrate is proximal to Trp276; coloring
as in (B). (D) A stereo representation of an overlay of the RebC and RebC-10x (molecule A)
active sites, shown from above. Substrate and protein colors the same as (A) - (C); RebC
sidechains are labeled in parentheses. (E) A water molecule (red sphere) present in RebC-10x
structure is located 2.6, 3.1 and 3.1 A from two nitrogens of Arg230 and the C-7 position of 7-
carboxy-K252c, respectively. In all stick representations, oxygen is shown in red and nitrogen in
blue (see Figure S8A for the water binding site in the alternative orientation of substrate).

(Fle
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Figure II.11. Mechanistic implications of substrate tautomerization. (A) A mechanistic scheme
for the decarboxylation of S-keto 7-carboxy-K252c in a StaC-like enzyme, where the reaction is
initiated by decarboxylation. (B) Hybridization of the C-7 carbon in the enol tautomer of 7-
carboxy-K252c makes decarboxylation as the first step in the mechanism unlikely. (C) A
mechanistic scheme for RebC in which oxidation precedes decarboxylation at the C-7 position.
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Figure 11.12. Interactions of S-keto 7-carboxy-K252c with water and modeled flavin. (A).
Water binding site for alternative orientation of substrate from that shown in Figure II.10E. The
water is 2.9 and 3.4 A from the Arg230 Nc position and the C-7 position of 7-carboxy-K252c,
respectively. (B). Steric clash between FAD modeled in the "in" position and one orientation of
bound S-keto 7-carboxy-K252c from the RebC-10x CPA soak structure. Colors: RebC-10x
ribbons in grey, S-keto 7-carboxy-K252c carbons in magenta, RebC substrate-bound structure
(PDB ID 2ROG) ribbons in orange, FAD and enol 7-carboxy-K252c carbons in green. (C). Steric
clash between FAD modeled in the "in" position and the other orientation of bound S-keto 7-
carboxy-K252c from the RebC-10x CPA soak. Colors as in (B).
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Figure 11.13. Construction of the staC-1Ox gene. (A). Primer-based construction of the N-
terminus of StaC-10x. Encoded amino acids are listed below the DNA sequence, with altered
amino acids and their corresponding codons highlighted in yellow. DNA sequences in bold
represent restriction digestion sites, and DNA sequences in italics represent overhangs. (B). PCR
gives rise to a fragment encoding ten modified amino acids. Top: partial scheme of PCR-based
assembly, with green arrows indicating altered codons (also in green). Bottom: Result of total
PCR-based assembly is a fragment with 10 altered codons (shown as green lines). (C). A three-
part ligation incorporates the fragment into the pET28a-StaC vector, replacing the region
encoding the N-terminus of the StaC protein. Restriction digest sites are indicated.

A.

1 --- > 3 --- >
ggagagCATATGACCCACTCTGGCGAACGTACGGATGTT ggtggtccagtcggtatg

CGCTTGCATGCCTACAAAATTAGCAACCACCACCAGGTCAGCCAT
<--- 2

M T H S G E R T D V L I V G G G P V G M

5 --- >
gcactggcgttagacttacgctaccgc TGATTGTTTAGTTGTCGAACAGACGGAT

gaccgcaatctgaatgcgatggcgccgtaactaacaaatcaacag
<--- 4

A L A L D L R Y R G I D C L V V E Q T D

7 --- >
GGCACGGTCCGTCATCC attggtccgcgttctatggagctgttccgc
GTGCCAGGCAGTAGGTGCACAACCGTGGTAACCAGGCGCAAGATA

<--- 6
G T V R H P R V G T I G P R S M E L F R

9 --- >
cgttggggtgcagca GGTTGGCCAGCGGATCACCCATTAGAT
caaccccacgtcgtctgcgttaggcattgcggccaaccggtcgcc

<--- 8
R W G A A D A I R N A G W P A D H P L D

11 --- >
ATTGCGTGGGTGACCAAG tcatgagatctatcgttatcgtcgcggtacggca

CGCACCCACTGGTTCCAGCCGCCAGTACTCTAGATAGCAATAGCA ccgt
<--- 10

I A W V T K V G G H E I Y R Y R R G T A
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13 --- >
gcgaatcgtcc CCCGGAACCAGACCAAATCTGTCCGCAACACTGG
cgcttagcaggtcgcaaacaggtgtggggccttggtctggt TGACC

<--- 12
A N R P A F V H T P E P D Q I C P Q H W

15 --- >
TTAAACCCAGT gtgggcgtgcacccagacggcccactgttattatct
AATTTGGGTCACGACTAACTCCGCCACCCGCACGTGGGTC tgacaataataga

<--- 14
L N P V L I E A V G V H P D G P L L L S

17 --- >
acgaccgtt CGTCCAAACCGACGACCATGTCGAGGCGACGCTGACCGATCAC
tgctggcaactgccgcagcaggtttggctgct CGACTGGCTAGTG

<--- 16

T T V D G V V Q T D D H V E A T L T D H

19 --- >
GC cgtgcgtgcccgctttctggttgcctgcgacggcgcaagc
CGGTGGCCATGGTGGCCGTGGCACGCACGGGC ccgcgttcg

<--- 18
A T G T T G T V R A R F L V A C D G A S

21 --- >
tctcc GTGGTATTGAAGCCCCAGCACGCCATCGCACGCAGGTCTTC
agaggccaagcagcacggacaccataacttcggggt TGCGTCCAGAAG

<--- 20

S P V R R A C G I E A P A R H R T Q V F

23 --- >
CGTA gtgccccggagttaaaagatcgcctgggtgaacgtgcggcgctg
GCATTATAGAATAAGGCACGGGGCCTCAATTTT cacgccgcgac

<--- 22

R N I L F R A P E L K D R L G E R A A L

25 --- >
GCAGCACGTTACGCTTTCCATTACGCGCATTAAATGGTAGC

aaagtaaagaattacaattcgtcgtgcaatgcga AATTTACCATCG
<--- 24

F H F L M L S S T L R F P L R A L N G S
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27 --- >
GATT gttggtgcagatgatgatacgggtgcccgtccggatgcatta
CTAAATATGGCAGACTGCCAACCACGTCTACTA ggcaggcctacgtaat

<--- 26
D L Y R L T V G A D D D T G A R P D A L

gca
cgtgACTAGTtcctgc

< --- 28
A

B.

? ?

IPCR

C.
BcII Bci B

NdOkHindINd&e1P4#-Nh

Bci
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III.I SUMMARY

Arylsulfatases require a maturating enzyme to perform a co- or posttranslational
modification to form a catalytically-essential formylglycine (FGly) residue. In organisms that
live aerobically, molecular oxygen is used enzymatically to oxidize cysteine to FGly. Under
anaerobic conditions, S-adenosylmethionine (AdoMet, SAM) radical chemistry is employed.
Here we present the first structures of an anaerobic sulfatase maturating enzyme (anSME),
both with and without peptidyl-substrates, at 1.6-1.8 A resolution. We find that anSMEs
differ from their aerobic counterparts in using backbone-based hydrogen-bonding patterns
to interact with their peptidyl-substrates, leading to decreased sequence specificity. These
anSME structures from Clostridium perfringens are also the first of an AdoMet radical
enzyme that performs dehydrogenase chemistry. Together with accompanying mutagenesis
data, a mechanistic proposal is put forth for how AdoMet radical chemistry is co-opted to
perform a dehydrogenation reaction. In the oxidation of cysteine or serine to FGly by
anSME, we identify D277 and an auxiliary [4Fe-4S] cluster as the likely acceptor of the final
proton and electron, respectively. D277 and both auxiliary clusters are housed in a cysteine-
rich C-terminal domain, termed SPASM domain, that contains homology to -1400 other
unique AdoMet radical enzymes proposed to use [4Fe-4S] clusters to ligate peptidyl-
substrates for subsequent modification. In contrast to this proposal, we find that neither
auxiliary cluster in anSME binds substrate and both are fully ligated by cysteine residues.
Instead, our structural data suggest that the placement of these auxiliary clusters creates a
conduit for electrons to travel from the buried substrate to the protein surface.
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III.I INDRODUCTION

Posttranslational modification expands the chemical repertoire of enzymes, in some

cases by generating modified amino acids that are well suited to perform specific reactions.

Arylsulfatases, for example, require the co- or posttranslational formation of a catalytically

essential formylglycine (FGly) moiety in order to perform their hydrolysis function, removing

sulfate groups from a wide array of substrates (e.g. sulfated polysaccharides, sulfolipids and

steroid sulfates) (1-3). In humans, lack of sulfatase activity can lead to disease (4), while in

bacteria, inhibition impairs colonizing the mucosal layer of the host's gut (5). The maturation of

these sulfatases involves two classes of enzymes, one that requires molecular oxygen and

another that can function in its absence. Formylglycine generating enzymes (FGEs), found in

eukaryotes or aerobically-living prokaryotes, generate FGly by oxidizing a cysteine residue on

the target sulfatase using molecular oxygen (6, 7), whereas anaerobic sulfatase maturating

enzymes (anSMEs) generate FGly from either cysteine or serine residues on their target

sulfatases using S-adenosyl-L-methionine (AdoMet) radical chemistry (8-11). In addition to their

importance for sulfatase chemistry, FGEs have commercial applications for generating site-

specific 'aldehyde tags' to use in protein-labeling technology (12). While FGEs have been

characterized in terms of structure and mechanism (6, 7), far less is known about their anaerobic

cousins, the anSMEs. Here we provide the first structural insights into these unusual AdoMet

radical enzymes.

The AdoMet radical enzyme family catalyzes a diverse array of radical based reactions,

including sulfur insertions, complex chemical transformations and rearrangements, DNA and

RNA modifications, and, in the case of anSMEs, dehydrogenation (13) (Figure III.1). Members of

this family have historically been identified by a CX3CXDC motif (where D is an aromatic

residue), which ligates three of the four irons of a [4Fe-4S] cluster (14, 15), leaving the fourth

iron free to bind AdoMet (16). Radical chemistry is initiated by the injection of an electron via

the [4Fe-4S] cluster into AdoMet, resulting in the homolytic cleavage of the molecule into

methionine and a 5'-deoxyadenosyl radical (5'dA-, Figure III.1). This radical species

subsequently abstracts a hydrogen atom from substrate, resulting in 5'-deoxyadenosine (5'dA)

and a substrate radical. Differentiation among the family members is a result of the action of

this substrate radical. In anSMEs, the removal of a proton and an electron from the radical

intermediate completes catalysis (10, 17) (Figure I11.1).

The AdoMet radical dehydrogenase subfamily includes anSMEs and the carbohydrate

natural product biosynthetic enzyme BtrN (18, 19). Interestingly, both enzymes harbor

additional [4Fe-4S] clusters that are necessary for turnover (20). In the case of BtrN, one
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auxiliary cluster has been identified (21), while anSMEs have two (10, 17). For anSME, the

sequence surrounding these two clusters, including a previously identified 7-cysteine motif

(CX 91 5GX4C-gap-CX2CXCX3C-gap-C) (17), places it in a ~1400-membered AdoMet radical

subfamily that was recently described by Haft and Basu through bioinformatic analysis and

thought to function in the modification of ribosomally translated peptides (22). This subfamily

has been designated TIGR04085 and named SPASM for its biochemically characterized

founding members AlbA, PqqE, anSMEs, and MtfC, which are involved in subtilosin A,

pyrroloquinoline quinone, anaerobic sulfatase, and mycofactocin maturation respectively (22,

23). While the function of these auxiliary clusters is unknown, the 7-cysteine motif prompted

speculation that members of the SPASM subfamily, including anSMEs, use an available ligation

site on one of the [4Fe-4S] clusters for substrate binding (10). Direct binding of substrate to an

auxiliary [4Fe-4S] cluster has been observed in the molybdenum cofactor biosynthetic enzyme

MoaA, another AdoMet radical enzyme (24, 25). Other possible functions specific to anSMEs

include the second oxidation of substrate or substrate deprotonation (Figure 111.1).

In this work, we report structures of anSMEcpe, a biochemically characterized anaerobic

sulfatase maturating enzyme from Clostridium perfringens, which can oxidize either serines or

cysteines into FGly sidechains (26, 27). We have solved the structure of a His6 tagged protein

construct with AdoMet bound and three structures of an untagged protein construct in the

presence of AdoMet; one substrate free and two others with different peptide substrates bound.

The overall structure and substrate binding characteristics of anSMEcpe differ significantly

from the aerobic FGE system, which clarifies the difference in promiscuity between the two

enzyme families. Surprisingly, the structures show full cysteine ligation of both auxiliary

clusters, which has important implications for the anSMEcpe mechanism, as well as for SPASM

family members as a whole.

III.III RESULTS

Iron anomalous signal from a dataset collected at a home Cu-Ks source was used to solve

an initial structure of His6 tagged anSMEcpe ('His6, AdoMet-bound' structure; Table III.1). Due

to occupancy of the His6 tag in the substrate binding site, additional structures of native,

untagged anSMEcpe were solved with and without two substrate peptides ('AdoMet-bound',

'Kp18Cys, AdoMet', and 'Cp18Cys, AdoMet' structures; Table III.1). All structures of anSMEcpe

contain three [4Fe-4S] clusters including the AdoMet cluster housed in the N-terminal AdoMet

radical domain and two auxiliary clusters located in the C-terminal SPASM domain. The two
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domains are connected by the a6a helix and the protein terminates with a6' helix (Figure III.2.A-

C).

Structural features of the anSMEcpe AdoMet radical domain

The N-terminal domain of anSMEcpe is a parallel (P/a)6 partial TIM barrel, spanning

residues 3-234 (Figure III.2.A and III.2.C, magenta). This fold is common to nearly all other

structurally characterized members of the AdoMet radical superfamily (28, 29). We will refer to

this partial barrel as the AdoMet domain. Here, the AdoMet radical sequence motif (CX3CX<DC)

is found in a loop following the P1 strand. C15, C19, and C22 each ligate an iron atom in one of

the [4Fe-4S] clusters, referred to here as the AdoMet cluster. The fourth, so-called 'unique iron,'

is ligated by the amine nitrogen and carboxyl oxygen from the methionine moiety of AdoMet,

as expected (16). All structures contain clear density for AdoMet bound in the active site (Figure

III.3.A), with the exception of a substrate bound (Cp18Cys) cocrystal structure where the shape

and position of density for AdoMet in chain B is minimal and inconsistent with other models.

Four previously described AdoMet binding motifs are conserved in anSMEcpe,

including the 'GGE' motif, the ribose motif, the 'GXIXGXXE' motif, and the P6 motif (Figures

III.3.C and III.4) (28, 29). In addition, the backbone of Y21 (the hydrophobic residue in the

AdoMet radical CX3CX<DC motif) hydrogen bonds with the N6 position of adenine and R143,

just following a4a, stabilizes the ribosyl and carboxyl moieties of AdoMet. An arginine

following a4a makes a similar interaction in the AdoMet radical proteins HemN and HydE (30,

31). On the backside of the AdoMet domain, a patch of conservation can be found following the

P2 strand (Figure III.3.B). This site is the proposed binding location of the physiological

reductant, commonly flavodoxin (30, 32).

The SPASM domain and auxiliary cluster binding

The a6a helix links the AdoMet domain to the C-terminal SPASM domain (Figure

III.2.A-C, green), the latter containing both auxiliary clusters. According to the designation by

TIGRO4085, the SPASM domain initiates at C261, not C255 (the first Fe ligating cysteine in

anSMEcpe). However, both cysteines are conserved in anSMEs and it is common for SPASM

domain-containing proteins to have a proximal upstream cysteine (22). In the anSMEcpe

structures, C255 and C261 ligate the first auxiliary cluster, Auxiliary Cluster I (Aux I), before the
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backbone folds into a beta hairpin (V266-Y274). Residues of this hairpin exhibit high

conservation to other members of the SPASM family (Figure III.2.D). Immediately following the

hairpin, C276 provides the third ligand to Aux I. A variable alpha helical region follows,

providing a barrier between this cluster and solvent. Aux I lies 16.9 A from the AdoMet cluster

(measured from the closest atom in each cluster).

The second portion of the SPASM domain contains the CX2CX5CX3C part of the 7-

cysteine motif. The first three cysteines (C317, C320, and C326) provide three ligands to the

second auxiliary cluster, Auxiliary Cluster II (Aux II), while the protein backbone forms small

helical interactions that surround the cluster. The fourth cysteine of the motif, C330, crosses

back to provide the final ligation site to Aux I (Figure III.2.D). Very high sequence conservation

is found in the linear CXXXC region bridging the two clusters, where the last two residues

before the final cysteine of the motif are glycines (G328 and G329 in anSMEcpe, Figure III.2.D).

Aux II lies 12.9 A away from Aux I and 26.7 A away from the AdoMet cluster (Figure III.2.B). A

series of loops follows CX2CX5CX3C before C348 (the final of the seven cysteines) occupies the

final ligation site of Aux II, ending the SPASM domain and initiating the a6' helix. This helix lies

adjacent to the a6 helix and completes the barrel. The C-terminus of the protein lies at the end of

this helix (Figure III.2.C).

Structural homology to MoaA

While the AdoMet domain of anSMEcpe is very similar to other members of the AdoMet

radical family, the C-terminal SPASM domain is structurally similar (RMSD 6.3 A) to only one

other AdoMet radical protein, MoaA (33). Like anSMEcpe, MoaA ligates a C-terminal auxiliary

cluster that overlays well with anSMEcpe's Aux I (Figure 111.5). Following two cysteine ligands

to its auxiliary cluster, MoaA has a beta hairpin that shares high sequence homology with

anSMEcpe and other SPASM domain containing proteins, including G273 (G271 in anSMEcpe)

in the n+3 position of the hairpin turn and Y276 (Y274 in anSMEcpe), a residue that contributes

to a hydrophobic pocket adjacent to the hairpin. MoaA then has a third cysteine ligand and

terminates after a helical region. It lacks both the CX2CX5CX3C motif and the second auxiliary

cluster that are common in SPASM family members. With only these three protein ligands to its

auxiliary cluster, MoaA uses the available coordination site to bind substrate (24, 25). In

anSMEcpe, the final cysteine of the CX2CX5CX3 C motif is the fourth ligand to this cluster (Figure

III.5.E-F).
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Binding specificity for substrate peptides

A cavity underneath the barrel is the only access to the active site from the exterior of the

protein. In all structures of anSMEcpe solved using the His6-anSMEcpe construct, multiple

histidines of the C-terminal tag could be modeled into residual electron density. These residues

appear to block access to the active site. However, when native protein was used for

cocrystallization with AdoMet and peptide substrates, peptide density reaching into the active

site was present. Two substrate bound structures were solved using peptides designed to mimic

a C. perfringens (Cp18Cys) and a Klebsiella pneumoniae (Kpl8Cys) sulfatase protein (see Figure

III.6.A for sequences). Each structure contains density for 9-11 residues of the 18mers (Figure

III.7.A). These peptide residues stretch from the exterior of the protein to the active site, both

entering and exiting via the cavity at the bottom of the barrel (Figure III.8.A-B). Buried surface

area of the protein - peptide interaction for the four bound peptides to anSMEcpe (two per

asymmetric unit) is 786 ± 38 A2, corresponding to 60.7 ± 1.7 % of the total surface area of the

modeled portion of the peptides (34). This binding mode differs from the aerobic sulfatase

maturating enzymes, FGEs, which use the same CXPXR motif for substrate recognition. In the

aerobic system, the sulfatase maturase adopts a very different fold that lacks the internal cavity

found in anSMEcpe. Instead, peptide binding and catalysis occurs on a surface exposed region

of the enzyme (Figure III.8.C) (7). Further, in the aerobic system, only 4 of the 12 hydrogen

bonds between FGE and its substrate use the substrate backbone (PDB ID 2AIJ). The majority of

interactions are made between peptide sidechains and the maturase, explaining the high

sequence specificity in this system (7).

Other than the arginine residue of the CX(A/P)XR motif (Figure III.9.A-B), this

sidechain-based sequence specificity is not seen in anSMEs. First, anSMEcpe is able to

accommodate considerable substrate sequence variation on either side of the target cysteine

(Figure III.9.C-D), allowing the two peptides (Cp18Cys and Kp18Cys) to bind in an almost

identical orientation (Figure III.5.A). In both cases, backbone hydrogen bonds to anSMEcpe are

the primary means of stabilization (Figure III.7.C). Only two positions, 4 and 10, of the peptides

differ, resulting in two additional hydrogen bonds at the 4 position of Kp18Cys (Figures 111.6-7).

The remaining 17 hydrogen bonding interactions are conserved between the two substrates. Of

these, 12 are formed between peptide backbone and anSMEcpe and 5 are formed between

anSMEcpe and a single peptidyl sidechain, R11 of the conserved CX(A/P)XR sulfatase motif.

The extensive binding pocket created for this arginine, made up of F188, E159, and L118, uses n

stacking, electrostatics/hydrogen bonding, and van der Waals interactions, respectively (Figure

77



III.9.A). These interactions appear to be the anchor for the peptide and are conserved among the

other biochemically characterized anSMEs (Figure 111.4).

Identification of catalytic residues

Aided by two prolines, the substrate peptide makes a tight turn in the active site,

allowing the target cysteine to protrude into the deepest part of the barrel, just below AdoMet.

The cysteinyl Cp is located 4.1 A from the 5' carbon of AdoMet (Figure III.10.A). This distance is

in agreement with previously reported distances between the 5' position of AdoMet and the

substrate hydrogen abstraction site (3.8-4.1 A) (28). The orientation of the cysteine directs the Cp

pro-S hydrogen toward the AdoMet 5' position, matching biochemical evidence for the

enzyme's stereoselectivity (26).

During catalysis, a general base is needed for deprotonation of the cysteine sidechain to

allow the formation of the thioaldehyde (Figure II.1). Analysis of the peptide-binding pocket

revealed the presence of two residues with titratable sidechains within 5 A of the substrate

cysteinyl sulfur position, D277 and Y24 (Figure III.10.A). Y24 is two residues downstream of the

AdoMet radical domain's CX3CX<DC motif, while D277 is in the SPASM domain and adjacent to

C276, an Auxiliary Cluster I ligand. To identify the catalytic residue, two mutants were

generated and assayed for activity, anSMEcpe D277N and Y24F. Compared to wild type, the

Y24F mutant retains 11.7% FGly production activity, while the D277N mutant only retains 0.8%

activity. Along with this decreased activity, an uncoupling of the production of FGly and 5'dA

is observed for the D277N mutant (Figure III.10.B). The proximity to the substrate sulfur and a

large decrease in activity imply a catalytic role for the D277 sidechain.

Sidechain movements upon substrate binding

Proximal to the catalytic residue D277 are the positions of two glutamine residues that

are the only two residues to undergo rearrangement when substrates bind (Figure III.11). When

AdoMet is bound, but no peptide is present (AdoMet structure), the sidechain of Q98 points

into the middle of the barrel (Position 1 in Figure III.11). In this orientation, Q98 would clash

with multiple sites on the peptide backbone. In chain B of the Cp18Cys peptide structure (where

AdoMet is disordered), Q98 points towards the AdoMet cluster (position 2) where it would

form unfavorable close contacts between its amide and the Ca, CO, and Cy carbons of an
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ordered AdoMet methioninyl moiety. In both chains of the Kp18Cys structure, Q98 is bent

behind AdoMet, hydrogen bonding with the cofactor's carboxyl group (Position 3 in Figure

111.11). In this position of Q98, the binding of both AdoMet and peptide are favored.

Similar to Q98, Q64 has distinct orientations depending on the composition of the active

site. First, when no peptide is bound, this sidechain also points toward the center of the barrel,

clashing with the sidechain position of peptide residue 8 in an overlaid structure (darker color

in Figure II1.11). The geometry of the sidechain in this position is routinely flagged as

'generously allowed' in Ramachandran analysis. In chain B of the Cp18Cys structure

(disordered AdoMet), Q64 interacts with both K9 and D277, the putative catalytic residue.

However, in this structure only one hydrogen bond is formed with D277, and as a result, D277

is found with partial occupancy in two orientations (lighter colors in Figure III.11). Also in this

structure, the cysteine sidechain of substrate is pointed away from AdoMet, in a noncatalytic

orientation where the pro-R hydrogen of the cysteine Cp is proximal to the AdoMet binding site.

In the Kp18Cys structure, where all substrates are present, Q64 makes two hydrogen bonds

with D277. Here, only one orientation of D277 (the 'catalytic' orientation) is observed and the

substrate cysteine is also in the catalytic orientation, with the pro-S hydrogen of the cysteinyl Cs

closest to the 5' position of AdoMet (Figure III.11.A-B). Thus the binding of AdoMet and

peptide appear to re-orient both Q98 and Q64, which in turn, stabilize AdoMet, D277, and the

target Cys in catalytic conformations.

Electron transfer pathway

After hydrogen abstraction and thiol deprotonation, formation of the thioaldehyde

drives oxidation of the Cs, requiring an electron acceptor to complete catalysis. Cp lies 8.6 and

8.9 A from Aux I and the AdoMet cluster, respectively, indicating both clusters are within

suitable distance to be electron transfer partners (35). If an electron transfer event results in the

reduction of Aux I, removing the electron from the system would likely require transfer from

Aux I to Aux II, as peptide binding provides a barrier between Aux I and solvent (Figure 111.12).

Aux I lies near the bottom opening of the anSMEcpe barrel. When no peptide is present, the

cluster is 9.7 A from bulk solvent, with the inside of the protein barrel as the closest protein -

bulk solvent interface (Figure III.12.A). In this conformation, the cluster has a similar residue

depth to both the AdoMet cluster (9.5 A) and Aux 11 (8.3 A). However, when substrate is present

this avenue to solvent is cut off, and the shortest path to bulk solvent is below the barrel, 11.0 A
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away (Figure III.12.B). Peptide binding does not affect the residue depth of either the AdoMet

cluster or Aux II.

III.IV DISCUSSION

Here we present the first structures of an anaerobic sulfatase maturating enzyme,

anSMEcpe, which allows us to compare how nature evolved anaerobic as well as aerobic

solutions for the same enzyme function. While both enzyme classes are designed to bind their

target sulfatase, in one case, binding must involve sequestering a Cys/Ser to afford radical

based chemistry, while in the other, the target Cys must be accessible to interact with molecular

oxygen (6-8, 17). We find that the aerobic FGEs and anSMEs use different protein folds, with the

N-terminal domain of anSMEs sharing a classic AdoMet radical partial barrel fold (28, 29),

consistent with the chemistry being performed. While the active site of FGE is on the surface of

that enzyme, where it is readily accessible to molecular oxygen, the active site of anSME is

buried in a cleft created between the C-terminal SPASM domain and the N-terminal AdoMet

radical domain. To fit into this cavity, the target peptide adopts a relatively tight turn, perhaps

explaining the preference for Ala or Pro in position of the conserved (S/C)X(A/P)XR motif. In

contrast, peptides bound to FGE have no apparent conformational restraints (Figure 111.8) (7).

FGEs and anSMEs also vary in their substrate selectivity. Compared to FGEs, anSMEs

are able to act on a larger variety of peptide substrates. For example, anSMEcpe itself can bind

and catalyze FGly formation on a C. perfringens substrate analog as well as a K. pneumoniae

substrate analog (26). Another anSME from Bacteroides thetaiotaomicron is responsible for

activating up to 28 sulfatases under anaerobic conditions (5). From structural comparisons, we

can now explain this substrate specificity variation between these enzyme classes. While the

aerobic system uses a mainly sidechain - maturase hydrogen bonding network for substrate

stabilization, the anSME system uses a primarily backbone - maturase hydrogen bonding

network, with only the Arg of the (C /S)X(A /P)XR motif involved in sidechain-based hydrogen

bonding. This reliance by SMEs on primarily peptide backbone-based hydrogen bonding

interactions is in agreement with the much higher degree of promiscuity that exists in the

anSME system in relation to the FGE system. Interestingly, pyruvate formate lyase activating

enzyme (PFL-AE), the only other structurally characterized AdoMet radical enzyme involved in

protein modification, also uses primarily peptide backbone - activase interactions (32). As more

structures become available, it will be interesting to see if this binding mode will be common to

AdoMet radical enzymes that act on protein substrates.
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These structures of an anSME also provide insight into the catalytic mechanism of this

enzyme class. For catalysis, at least five steps are required (Figure III.1). For the first step of

5'dA* generation, the high degree of similarity between the structure of the anSME AdoMet

radical domain and structures of other AdoMet radical enzymes suggests that all components

necessary for radical generation are found in this N-terminal domain, implying that anSMEs

share a common initiation mechanism with the rest of the AdoMet radical superfamily.

In terms of substrate radical generation, these structures show the CP of the target Cys

4.1 A from the AdoMet 5'C, in agreement with all other structures of AdoMet radical enzymes

that have substrates bound (Figure III.10). Very little movement within anSMEcpe is required

for substrate to bind in this catalytic position. Only two glutamines, which are well conserved in

anSMEs (Figure III.4 blue), have a distinct orientation in the presence or absence of either

AdoMet or peptide substrate. These residues aid both the stabilization of AdoMet and in the

positioning of D277 (Figure III.11).

In contrast to radical generation, substrate deprotonation is only required by a small

number of AdoMet radical enzymes. Before this work, it was not clear in anSME whether

auxiliary cluster(s), enzyme residue(s), or both are involved in this reaction step. Here, the

structures of anSME with peptides bound show that the substrate does not directly ligate either

auxiliary cluster as previously suggested (10), and that both auxiliary clusters are far from the

target Cys (8.6 A and 20.8 A), making it highly unlikely these clusters are involved in this

deprotonation and /or inner-sphere electron transfer. Instead, the structure reveals two residues

with titratable sidechains that are close to the target Cys (Y24 from the AdoMet radical domain

and D277 from the SPASM domain), and mutagenesis studies are consistent with D277 as the

catalytic base (Figure 111.13). It is interesting that the SPASM domain, and not the AdoMet

radical domain, contributes this key catalytic residue that differentiates anSME's chemistry

from that of other AdoMet radical enzymes, as this finding is consistent with previous

structural studies that also showed the importance of residues outside of the partial barrel

radical fold to the diversification of AdoMet radical chemistry (28, 29).

The next step, substrate oxidation, is again only required by certain subfamilies of

AdoMet radical enzymes such as the dehydrogenases studied here, and others, like the heme

biosynthetic enzyme HemN (30). While the Aux I and AdoMet clusters are nearly equidistant

and within acceptable electron transfer distances (8.6 and 8.9 A) from the substrate Cp (Figure

111.8), we propose that Aux I is the immediate electron acceptor for this oxidation (Figure 111.13).

With few exceptions (36, 37), reduction of the AdoMet cluster during catalysis has only been
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proposed in systems that, unlike anSMEcpe, use AdoMet catalytically. Assuming that Aux I is

the electron acceptor, for a subsequent turnover, it would need to be reoxidized. Here we

further propose that Aux II, 12.9 A away, performs this function (Figure 111.13). Other options

for the reoxidation of Aux I are more problematic: the AdoMet cluster is too far from Aux I for

direct electron transfer (16.9 A) and the closest protein surface to which an external electron

acceptor could bind appears blocked by bound substrate (Figure 111.12). Thus, Aux II is the most

viable candidate.

We can further consider if electrons are re-cycled in this reaction, i.e. an electron used to

homolytically cleave AdoMet in one cycle is derived from a previous cycle's substrate

oxidation. By monitoring the level of flavodoxin semiquinone depletion during anSMEcpe

catalysis, Grove et al. have recently established that an electron can indeed be re-cycled in this

fashion (26). While Aux II is also too far from the AdoMet cluster for direct electron transfer, an

external electron acceptor, like flavodoxin, could accept an electron from Aux II and redeposit it

into the AdoMet cluster. Electrochemical characterization of all three clusters would provide

validation that i) Aux I is the substrate radical electron acceptor during catalysis and ii) that

electron transfer between Aux I and Aux II is possible. In the meantime, the structures

described here reveal distances that support a role for these clusters in substrate oxidation by

electron transfer, and refute other possible functions, including a role in substrate binding and

deprotonation, as discussed above.

In addition to the mechanistic insight provided by these structures, visualization of the

C-terminal domain of anSMEcpe clarifies the function of the recently described SPASM domain.

Accession TIGRO4085 designates 281 sequences as SPASM subfamily members; however, when

these sequences are input in the Enzyme Function Initiative's recent AdoMet radical

superfamily clustering effort (http:/ /enzymefunction.org/resources/workshops), these 281

sequences are found in 153 different nodes containing 1,392 unique sequences (Figure 111.14).

While this is the first structure of a SPASM domain-containing enzyme, we find that the first

part of the domain, containing two of the seven cysteines of the 7-Cys motif, has been visualized

before in the structure of the AdoMet radical protein MoaA. In particular, anSMEcpe shares

with MoaA a conserved beta hairpin that extends the AdoMet radical beta sheet and contains

cysteines on either end of the turn (Figure 111.2). In both cases, these two cysteines ligate an

auxiliary [4Fe-4S] cluster along with a third upstream cysteine (C255 in anSMEcpe) (Figure

111.5). This beta hairpin also has high sequence homology to non-SPASM AdoMet radical

dehydrogenase BtrN. Like MoaA, BtrN contains an auxiliary [4Fe-4S] cluster and, while BtrN

has not been structurally characterized, the MoaA auxiliary cluster superimposes very well with
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Aux I in anSMEcpe (Figure 111.5). Thus, this beta hairpin motif that is flanked by cysteines

appears to be associated with binding an auxiliary [4Fe-4S] cluster in more than just SPASM-

domain containing proteins. Since this hairpin is a subdomain of SPASM, we will refer to it as a

twitch subdomain.

Following the twitch subdomain, MoaA completes two helices and terminates, while

anSMEcpe continues the SPASM domain with one helix leading to the next set of four cysteines

arranged in a CX2CX5CX3C motif. Interestingly, while all four cysteines of this motif bind to an

auxiliary cluster, they do not ligate the same cluster. The first three cysteines ligate Aux II, while

the final cysteine ligates Aux I. Therefore Aux I is coordinated by one upstream cysteine, two

twitch subdomain cysteines, and one cysteine from the SPASM domain's CX2CX5CX3C motif.

MoaA shares this cluster coordination except for the last Cys; this Fe site is available for

substrate binding (Figure III.5.C,F). In anSME, the bridging sequence between the final two

cysteines of CX2CX5CX3C is Lys-Gly-Gly. This 'XGG' sequence is highly conserved in

TIGR04085 and could function to ensure a viable electron transfer pathway environment

between the two auxiliary clusters. The final Cys of the 7-Cys motif coordinates Aux II.

Cysteine ligation of the auxiliary clusters was accurately predicted by TIGR04085, which

establishes seven cysteine ligands for the two auxiliary clusters. However, an upstream

cysteine, C255 in anSMEcpe, is also involved in cluster binding, resulting in the unexpected full

protein ligation of both clusters. This result refutes the idea that all SPASM domains have an

available ligation site for substrate binding and indicates that at least anSMEs do not use an

auxiliary cluster for this purpose. An analysis of TIGR04085 reveals that 37% of SPASM domain

proteins have a cysteine that is both upstream of the SPASM domain and downstream of the

AdoMet radical domain, indicating that full ligation of the auxiliary cluster may be common

among members of the SPASM subfamily. Without the role of substrate ligation, these SPASM

family members may use these clusters to facilitate electron flow in or out of the active site

during turnover, insinuating that their mechanisms involve some kind of redox chemistry.

In the case of SPASM family members lacking an upstream cysteine, the anSMEcpe

structure indicates how substrates might coordinate Aux I. In the absence of a cysteine

equivalent to C255, an available iron coordination site would be exposed to this substrate

binding region (Figure III.5.C). Importantly, due to the distance between the ligation site and

the AdoMet binding site, the auxiliary cluster binding and hydrogen abstraction locations must

be distal (in anSMEcpe, C255 is 12 A from the substrate hydrogen abstraction site). In the case of

MoaA, where substrate does directly ligate cluster, the ligation site (the N1 position of the

guanine base) is on the opposite end of the GTP substrate than the hydrogen abstraction site
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(the 3' hydrogen atom of the ribose; Figure III.5.C, grey) (24, 25, 38). A similar mode of binding

would be required for any SPASM members that use cluster ligation for substrate binding. As

substrates in the SPASM family are predicted to be peptides, this would entail cluster ligation

-3 residues up or downstream of the hydrogen abstraction site.

In summary, the anSMEcpe system provides a great example of the modularity of the

AdoMet radical superfamily. The anSMEcpe AdoMet domain has very similar structural folds

and cofactor binding motifs to the rest of the superfamily. However, the end reaction catalyzed

is unique from all other structurally characterized AdoMet radical proteins. While the AdoMet

domain must provide all residues necessary for radical generation, it is the addition of the

SPASM domain, which includes both auxiliary clusters and the catalytic residue, that steers

catalysis following 5'dA- generation. Interestingly, aside from the anSMEs, the only other

biochemically characterized AdoMet radical dehydrogenase, BtrN, only contains one additional

[4Fe-4S] cluster. Upon structural characterization, it will be interesting to compare this enzyme

to anSMEcpe and the full SPASM domain architecture.

III.V MATERIALS AND METHODS

Cloning of the cpe0635 gene from Clostridium perfringens

The gene corresponding to anSMEcpe (cpe0635) from C. perfringens was cloned into

pET26b as previously described (26) to afford a protein with a C-terminal hexahistidine tag. To

generate a plasmid that produces the native form of anSMEcpe, the above gene was amplified

with PCR in combination with a forward primer containing an NdeI restriction site (underlined)

(5'-CGC-GCC-CGC-ATA-TGC-CAC-CAT-TAA-GTT-TGC-TTA-TTA-AGC-3') and a reverse

primer containing a XhoI restriction site (underlined) (5'-CCA-CTC-GAG-TTA-TTT-AAT-ATT-

GTT-GGC-AAC-ATT-TAT-TAA-CC-3'). The reverse primer also contains the natural stop

codon of the cpe0635 gene (bold). The PCR product was digested with the appropriate enzymes

in parallel with pET26b. The native cpe0635 gene was ligated into pET26b and confirmed by

DNA sequencing.

Construction of D277N and Y24F variants of anSMEcpe

anSMEcpe variants D277N and Y24F were constructed using the Stratagene

QuikChange II site-directed mutagenesis kit with the following primers: D277N forward primer
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(5'-GGG-AGT-GTT-TAT-CCT-TGT-AAT-TTT-TAT-GTT-TTA-GAT-AAA-TGG -3'); D277N

reverse primer (5'-CCA-TTT-ATC-TAA-AAC-ATA-AAA-ATT-ACA-AGG-ATA-AAC-ACT-

CCC-3'); Y24F forward primer (5'-GCA-CTT-ATT-GTT-TTT-TTC-ATT-CTT-TAA-GTG-3'); Y24F

reverse primer (5'-CAC-TTA-AAG-AAT-GAA-AAA-AAC-AAT-AAG-TGC-3'). All mutations

were confirmed by DNA sequencing at the Pennsylvania State University Nucleic Acid Facility.

Expression and purification of the variant constructs were done as described previously (26).

Expression and Purification of Native anSMEcpe

Over production of the anSMEcpe native construct was carried out as previously

described for the C-terminal hexahistidine tag anSMEcpe protein (26). Purification of native

anSMEcpe typically began with - 40 g of cell paste that was resuspended in 200 mL of lysis

buffer (50mM HEPES pH 7.5, 300mM KCl, 5% glycerol, 10mM DTT) containing 1 mM PMSF,

lysozyme at a final concentration of 1 mg mL 1 and DNase I at a final concentration of 1 pg mL.

After being stirred at room temperature for - 30 min, the suspension was placed in an ice bath

and cooled to - 0 *C. After 10 min, the lysis solution was subjected to six-45 s bursts of sonic

disruption at 30% output with intermittent pausing for 8 min to maintain a temp less than 8 *C.

The lysate was then sealed in centrifugation bottles before being removed from the glove box

and centrifuged for 30 min at 50,000 x g at 4 *C. After centrifugation, the bottles were brought

back into the glove box. The supernatant (~210 mL) from the lysis was placed in a 250 mL

bottle on ice with medium stirring to maintain the temperature at ~ 0 *C. A 40% ammonium

sulfate precipitation was performed by adding 48.6 g of (NH 4)2SO 4 slowly to the stirring

solution over 30 min. After addition, the suspension was stirred for an additional 50 min before

being placed in the original centrifugation bottles, sealed, and spun at 50,000 x g for 30 min.

The supernatant (~ 235 mL) was then poured into another 250 mL bottle, and again cooled to ~

0 *C on an ice bath. An additional 30 g of (NH 4)2SO 4 was added to bring the concentration to

60%. After addition, the suspension was again stirred on ice for 30 min before being placed in

clean centrifugation tubes, sealed, and spun at 5,000 x g for 30 min. The supernatant from the

60% cut was discarded. The pellets were stored overnight in an LN 2 Dewar. After storage, the

pellets were resuspended in 20 mL of 25 mM Tris-HCl, pH 7.5. The protein was centrifuged,

and then concentrated to ~ 10 mL with an Amicon stirred cell equipped with a 10 kDa MWCO

membrane.

The protein was subsequently fractioned over a 16/26 Sephacryl S-200 column

equilibrated in 50mM Tris-HCl pH 7.5, 500 mM NaCl, 5 % Glycerol, 5 mM DTT. Fractions from
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approximately 55 mL to 75 mL were combined, concentrated with an Amicon Centricon with a

10 kDa MWCO membrane, and finally diluted with 25 mM Tris-HCl to bring the NaCl

concentration to - 100 mM. The protein was then passed over a HiPrep Q FF 16/10 column

equilibrated in 50mM Tris-HCl pH 7.5, 100mM NaCl, 5 mM DTT. The anSMEcpe that eluted in

the void volume was combined and reconstituted as previously described (26). The protein was

then concentrated, buffer exchanged with a PD-10 column equilibrated in 50mM HEPES pH 7.5,

500 mM KCl, 10% Glycerol, 5 mM DTT, and fractioned again over a 16/26 Sephercryl S-200

column as above. Fractions corresponding to anSMEcpe were pooled and concentrated. Final

yield of protein was approximately - 1 mg / g of cell paste.

Crystallization

To obtain crystals of the His6 anSMEcpe construct (Table Sl), a solution containing 10

mg/mL His6 tagged protein, 10 mM HEPES pH 7.5, 1 mM AdoMet (New England BioLabs),

and 0.5 mM Cp18Cys was incubated overnight at room temperature in an anaerobic

environment (95% Ar, 5% H2, COY Laboratory Products, Inc.). Using the hanging-drop vapor

diffusion method at room temperature, 2 ptL of this protein solution were mixed with 2 sL
precipitant (6-11% PEG 2000 and 100 mM MES, pH 6.0) and 0.4 pL of 7.0 mM LysoFos Choline

12 (Hampton Research) over a reservoir of 0.5 M LiCl. Rod shaped crystals would appear after

three days and grow to dimensions of 80 x 80 x 200-400 gm. Crystals were cryo-cooled by direct

submersion in liquid nitrogen.

Crystals of the native protein were grown from a solution containing 10 mg/mL

untagged protein, 10 mM HEPES pH 7.5, 1 mM AdoMet (New England BioLabs), and either no

peptide, 0.5 mM Cp18Cys, or 0.5 mM Kp18Cys, then incubated overnight at room temperature

in an anaerobic environment (Table Sl). Crystal drops were set up with 1 pL of this protein

solution and 1 pL precipitant (24-34% PEG 4000, 0-300 mM ammonium acetate, and 100 mM

sodium acetate, pH 4.5). These crystals would grow out of precipitate in 1-2 weeks. Crystals

were harvested and washed with a cryoprotectant solution containing all appropriate salt

concentrations supplemented with 15% glycerol, then submerged in liquid nitrogen. With both

His6 tagged and native protein constructs, crystals were only obtained in the presence of

AdoMet.
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Data Collection and Structure Determination

Using an in-house Cu-Ka rotating anode source (Rigaku) with an imaging plate (RAXIS

IV, Rigaku), a dataset of a His6 crystal was collected at 100 K using sequential 1* oscillations. At

this wavelength, phenix.xtriage estimated iron anomalous signal to extend to 2.6-3.0 A. The

AutoSol Wizard (39) was used to phase the dataset. Twenty-four of twenty-four iron sites

(corresponding to the three [4Fe-4S] clusters of the two monomers in the asymmetric unit) were

found with a figure of merit 0.422 (to 2.57 A resolution). The experimental maps were density

modified (solvent flattened and 2-fold non-crystallographic symmetry averaged) by RESOLVE

and used to build an initial model of anSMEcpe using the structure of MoaA (PDB ID 1TV8) as

a guide (33).

After 369 residues and most sidechains were built using the density modified

experimental maps, the high resolution His6 structure of anSMEcpe was solved by isomorphous

replacement. Subsequent structures of native anSMEcpe complexes (AdoMet-bound, Kp18Cys-

AdoMet, and Cp18Cys-AdoMet) were also solved by isomorphous replacement using the His6

structure as an initial model. These datasets were collected on beamlines 24-ID-E and 24-ID-C of

the Advanced Photon Source and on X-29 of the National Synchrotron Light Source. All

diffraction data were integrated and scaled using the HKL2000 suite (40). COOT (41) and

Phenix (42) were used for iterative rounds of model building and structure refinement,

respectively, using no sigma cutoff or NCS restraints. Composite omit maps were used to verify

the final model. See Table III.1 for full data processing, refinement, and validation statistics.

In all crystal forms, anSMEcpe crystallized as a monomer with very little interaction

between the two molecules in the asymmetric unit or crystal lattice. The His, AdoMet bound

structure is missing residues 1, 31-32, and 370 in chain A and 1, 28-32, and 370 in chain B of

anSMEcpe's 370 residues due to disorder. This structure also contains residues 8-22

(VDKLAAALEHHHHHH) of the C-terminal His6 tag in chain A and one well ordered histidine

in chain B. The AdoMet-bound (untagged, no peptide) structure is missing residues 1-2 and 29-

32 in chain A and residues 1-2 and 370 in chain B. The Kp18Cys, AdoMet structure is missing

residues 1 in chain A and B and 27-32 and 370 in chain B. Also missing are residues 1-2 and 14-

18 of the Kp18Cys 18mer in chain A and residues 1-2 and 13-18 of the peptide in chain B. The

Cp18Cys, AdoMet structure is missing residues 1 and 26-33 in chain A and B and residue 34

and 370 in chain B. Also missing are residues 1-2 and 13-18 in both chains the Cp18Cys 18mer.

Chain B of this anSMEcpe structure is the only monomer in which AdoMet is not modeled into

the visible in the electron density; however, the peptide density in this chain is superior. In

addition, only two monomers (chain B of the AdoMet-bound and chain A of the Kp18Cys,
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AdoMet structures) contain residues 29-32, a disordered loop immediately following the

AdoMet binding cluster motif. All models are fully constituted with three [4Fe-4S] clusters.

Activity determination of anSMEcpe

Activity assays with Kp18Cys peptide were carried out as described (26). Activity

determinations of Y24F and D277N variants of anSMEcpe were similarly carried out with the

following modifications: in a final volume of 150 pL either 5 pM Y24F anSMEcpe or 100 pM

D277N anSMEcpe enzymes were mixed with 50 mM HEPES, pH 7.5, 150 mM KCl, 1 mM

AdoMet, 2 mM sodium dithionite, and 500 pM Kp18Cys. At appropriate times, aliquots were

removed, quenched, and analyzed as previously described (26).
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Table III.1. Data processing and refinement statistics.

Fe-SAD 1  His6, AdoMet- AdoMet-bound Kpl8Cys, AdoMet CplCys, AdoMet
(His6 construct) bound

Beamline In-house 24-IDC, APS 24-IDE, APS X29, NSLS 24-IDC, APS
Data Processing
Wavelength (A) 1.5418 0.9794 0.9792 1.0750 0.9792
Space Group P21  P21  P21  P21  P21
Cell Dimensions
a, b, c (A) 44.8, 91.9, 90.4 46.6, 92.6, 92.3 44.4, 92.4, 94.1 44.4, 92.1, 91.1 44.0,91.9,91.0 91.1
p (0) 91.2 94.0 93.0 91.2

Resolution (A)2 50.0-2.57 50-1.62 50.0-1.62 50.0-1.83 50.0 - 1.79 (1.85 -
(2.66 - 2.57) (1.68 - 1.62) (1.68 - 1.62) (1.90 - 1.83) 1.79)

Rsym (%) 2  6.6 (19.3) 6.1 (57.2) 8.2 (56.0) 11.8 (54.1) 8.3 (37.0)
<I/a(I)>2 19.3 (5.3) 22.6 (2.5) 16.1 (2.1) 17.2 (2.9) 17.0 (2.6)
Completeness (%)2 97.3 (90.3) 98.9 (98.2) 99.8 (98.3) 99.5 (96.4) 98.9 (90.2)
Redundancy 2  3.9 (3.2) 4.4 (4.2) 3.3 (4.0) 5.9 (5.1) 4.0 (3.5)
Total reflections 162,095 426,267 387,684 380,063 274,984
Refinement
Resolution (A) 37-1.62 41.5-1.62 41.1-1.83 41.0-1.78
Reflections 97919 95988 64439 68160
Rwork / Rfree3  18.2 / 19.5 17.2 / 19.9 17.2 / 20.5 18.0 / 21.5
Atoms
No. of non-hydrogen atoms 6793 7060 6764 6595
Protein 6096 6010 6008 5895
[4Fe4S] / AdoMet /peptide 48/ 54/- 48/54/- 48/54/ 139 48/27/ 138
Solvent 595 948 515 487
Average B-factors (A2)
Protein 34.5 16.9 25.0 26.2
[4Fe4S] / AdoMet / peptide 28.2 / 28.3 / - 11.7 / 10.4 / - 19.9 / 21.4 / 36.7 23.1 / 25.3 / 34.6
Solvent 42.3 26.9 31.0 31.6
RMS deviations
Bond lengths (A) 0.011 0.013 0.013 0.012
Bond angles (0) 1.40 1.38 1.46 1.35

Ramachandran statistics 4  93.5%, 6.0%, 0.4%, 93.3%, 6.3%, 0.4%, 92.4%, 7.3%, 0.3%, 94.0%, 5.7%, 0.3%,
0 residues 0 residues 0 residues 0 residues

'Data were scaled anomalously.
2Highest resolution shell is shown in parentheses.
3R-factor = IF, I -k I Fca )I I FOb, I and R-free is the R value for a test set of reflections consisting of 5% of the diffraction data not used in refinement.
'Values reported correspond to the number of residues in the most favored, additionally allowed, generously allowed, and disallowed regions, respectively



Figure III.1. anSME reaction. (1) Electron donation to the AdoMet radical cluster initiates

homolysis of AdoMet and 5'dA* formation in the presence of bound substrate; (2) substrate

radical generation; (3) deprotonation of the substrate Cys sidechain; (4) substrate oxidation; and

(5) hydrolysis of the thioaldehyde intermediate yields the formylglycine moiety of the activated

sulfatase.

[4Fe-4S]+' Q Q
AdoMet Met + 5'dA. 5'dAH H

[4Fe-4S]+2  SH

OB: BH

H © H Electron

o S acceptor

FGly H2S H 20
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Figure 111.2. Structure of anSMEcpe. (A) The AdoMet domain (magenta) contains the AdoMet
cluster and the ( / a)6 partial TIM barrel. The SPASM domain (green) comprises most of the C-
terminal segment and houses the remaining two [4Fe-4S] clusters. Two helices, a6a and a6', are
not part of either domain and are colored light blue. (B) Positions and distances between the
three [4Fe-4S] clusters (stick representation with Fe in orange and S in yellow). (C) Topology of
anSMEcpe. A - AdoMet cluster; I - Auxiliary Cluster I; II - Auxiliary Cluster II. (D) The SPASM
domain, colored by the level of sequence homology between anSMEcpe and the other 280
members of TIGR04085. Conservation scores were calculated by the ConSurf server (43). Iron
ligating cysteines are shown as spheres and labeled by their designation in (C). Auxiliary
Clusters I and II are shown in stick representation and labeled.

A. B. C.

129ACluster

Auxiliary

Cluster II
II

D.
To a6' AdoMet domain U SPASM domain

[4Fe-4S] cluster - CX2CX5 CX 3C motif

G271 Fe ligating cysteine

ux I - C255 -C261 -C276 -C317
328 - C320 -C326 -C330 -C348

Conserved Average Variable
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Figure III.3. Conserved elements of AdoMet radical structure. (A) 2F,-F, composite omit
density contoured to 1.0 a around AdoMet and the AdoMet cluster. (B) The backside of the

(P / a)6 barrel, where a conserved patch of residues is found just following P2, a site suggested to
have a role in electron donor binding (28, 29). (C) AdoMet binding pocket, including the GGE
motif (G65, G66, and E67), in which backbone and sidechain oxygen atoms hydrogen bond with
the methionine amine group, the ribose motif (S122 and D124), in which polar residues

following the P4 strand hydrogen bond with the ribose hydroxyl groups, the 'GXIXGXXE' motif
(residues 163-170), where a hydrophobic residue (V165) interacts with the adenine ring of
AdoMet and a polar residue in a5 (T170; not shown) stabilizes strand p5 via a backbone
hydrogen bond (to the amine of T167 in anSMEcpe; not shown), and the p6 motif, stabilizing
and providing backbone hydrogen bonds to the adenine moiety (I192-L195) (28, 29). See Figure
III.4.

IB.o
7W
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Figure III.4. Alignment of the three biochemically characterized anSMEs. The displayed
sequences are for anSMEs from C. perfringens (anSMEcpe), K. pneumoniae (AtsB), and B.
thetaiotaomicron (anSMEbt). Highlighted regions in the alignment include the AdoMet cluster
binding motif (magenta), Aux I cysteine ligands (yellow), Aux II cysteine ligands (green),
CX2CX5 CX3C motif (cyan), glutamines involved in substrate binding and orientation (see Figure
III.11) and the proposed catalytic residue D277 (blue), and the Arg binding motif (red, see
Figure 111.9). Conserved AdoMet binding motifs (28, 29) are in grey and labeled.

--11--
anSMEcpe --------------------- MPPLSLLIKPASS L YHSLSDNRNVKSYGIMR
AtsB MLNIAALRQQQIPLAAEPRSPVPFHILMKPIGP L YPQD-----ETPVNKMD
anSMEbt ----------- MKATTYAPFAKPLYVMVKPVG L YLEKANLYKENPKHVMS

* :: * . ** * *** .. *

'CX3CXDC' motif
~~a1~ ------- ---- 2-- ~ ~2 ------ --- 33-

anSMEcpe DEVLESMVKRVLNE-ANG--HCSFAFGEPTLAGLEFFEKLMELQRKHNYKNLKIYNSL
AtsB DARLEQFIRRYIAAQPAGAREINFVWIGGEPLLAGLSFYKKALALQARYAPDGVTISNSL
anSMEbt DELLEKFIDEYINSQTMP--QVLFT* GETLMRPLSFYKKAMELQKKYA-RGRTIDNCI

* **.:: . :. * :* * : * * : * : .* *.:

GGE motif
--- ~ ~a3~~~~- -- 04- ~~0a4a~~ ~~~~~~a4~~~~~-

anSMEcpe NGTLIDESWAKFLSENKF GLSMDGPKEIHNLNRKDCCGLDTFSKVERAAELFKKYK
AtsB NGTLINDAWCRLFREHGF IGLGLEGNEALQDYHRPDKRGRSTWSAALRGIDLLHQHQ
anSMEbt INGTLLTDEWCEFFRENNIGVSIDGPQEFHDEYRKNKMGKPSFVKVMQGINLLKKHG

** * : *.: * . *::: *.: * : *:: * : * : . : : :

ribose binding motif
--- 05-- ------ a5 -------- -- 6--

anSMEcpe ILCVVTSNTARHVNKVYKYFKEKDF QFINCLDPLYEE--------------KG
AtsB LVVVHNEMAAHAAAIYVRLVSLGA QFQPLMSEGAA----------------L
anSMEbt VVNDFNAEYPLDFYNFFKEIDC QFAPIVERIVSHQDGRHLASLAEGKEGA

GXIXGXXE motif $6 structural motif
~~~~-- ~~~~~ 6 ~~~~~ ~~------------~

anSMEcpe KYNYSLKPKDYTKFLKNLFDFWYEDFLNGNRVSIRYFDGLLETILLGKSSSCGMNGTCTC
AtsB REGYQLSADNWGRFMVGIWRQWRKRCDRGRVFVI-NIEQAWAQYFTHTSGSCVHSARCGS
anSMEbt LADFSVSPEQWGNFLCTIFDEWVKEDVG--KFFIQIFDSTLANWMGEQPGVCTMAKHCGH

: : .: .* :: * : . * ::. . * *

-- hairpin-- ~~~~~~~~~~~~~~~~~~
anSMEcpe QFVVESDGSVYPCUFYVLDKWRLGNIQDMTMKELFETNKNHEFIKLSFK-VHEE
AtsB NLVMESDGQLYAcUHLINTEHRLGRLDEQTLAAAVDASVQLPFGQQ--KSLRRE
anSMEbt AGVMEFNGDVYSCUHFVFPEYKLGNIYSQTLVEMMHSERQHNFGTMKYQSLPT

*:* :* .:* ** . : :**. . *: . . : * : : :*: *

anSMEcpe RRCRDSK-EDSALELNYY SYKEFFEYAFPRLINVANNIK-----------
AtsB PAHLN------AAGNNR GYYRFFSDILAPLRPFSRDLNGLKAWRAAFVG
anSMEbt PKNRFSRTADGEPGLNY GYYQYFQHVAPYMDFMKKELMNQQAPANIMKA

*:* * * * .* .:*. : . .::

anSMEcpe ----------
AtsB TAHTA-----
anSMEbt LKDGSLKIEY

94



Figure 111.5. Structural similarity of anSMEcpe and MoaA. (A) anSMEcpe (colored as in Figure
111.2) overlays with MoaA (PDB ID 2FB3, grey) (25) with an RMSD of 6.9 A. (B) Both proteins
contain the (P /a), partial TIM barrel common to AdoMet radical proteins. (C) The anSMEcpe p-
strands are shown in ribbons and Aux I cluster protein ligands shown in sticks (colored as in
Figure 111.2). AdoMet in black sticks and Kpl8Cys peptide in black ribbon, with the target
cysteine and anchoring arginine in sticks. The distance from C255 to the hydrogen abstraction
site (12.0 A) is indicated by a dashed line. MoaA clusters and the auxiliary cluster protein
ligands are shown in grey sticks. Also in grey sticks is the MoaA substrate, GTP, which is
directly ligated to its auxiliary cluster. (D) The SPASM domain of anSMEcpe and the C-
terminus of MoaA. MoaA contains one cluster in additional to its AdoMet cluster, which
overlays well with Aux I in anSMEcpe. Other structural elements superimpose well, including
the P1'/ 2' hairpin and the a2' helix. The topologies of (E) anSMEcpe and (F) MoaA are shown
in the regions of the auxiliary clusters. In the diagram, Aux I and II are labeled "I" and "II" and
the CX2CX5CX3C motif is in red. Iron ligated cysteines are shown as orange circles. In (F), a
yellow circle represents GTP.

A. B. C.clse

AdoMet

Aux I

' GTP

5
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D. substrate

Aux I

Aux II

E. /\F.
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Figure III.6. Peptide substrate sequences and interaction distances with anSMEcpe. (A)
Comparison of sequences used in crystallography and activity assays (Cp18Cys and Kp18Cys)
with sulfatase enzyme sequences from C. perfringens (CpArylSulf) and K. pneumoniae (AtsA). (B)
Hydrogen bonding interactions are listed and differ between the two structures in the 4 and 12
positions as indicated.

Cpl8Cys

CpArylSulf

Kp18Cys

AtsA

Ac-YTAVPSCIPSRASILTGM

(46-62) ... YTAVPSCIASRASILTGM...

Ac-YYTSPMCAPARSMLLTGN

(66-83) ... YYTSPMSAPARSMLLTGN...

1 5 10 15

B.

Peptide H-bond atom anSMEcpe H-bond Distance
atom

4 - backbone NH Ser253 - backbone CO 2.9 - 3.0 A

4 - Kp18Cys only; Ser Oy Ser253 - backbone CO 3.5 - 3.6 A
4 - Kpl8Cys only; Ser Oy Arg238 - NH2(a) 2.3 - 2.5 A
4 - backbone CO Cys255 - backbone NH 2.8 - 3.0 A
4 - backbone CO Arg238 - NH2(a) 2.8 - 2.9 A
5 - backbone CO Arg238 - NH2(a) 2.8 - 3.5 A
5 - backbone CO Arg238 - NH2(b) 3.3 A
6 - backbone CO Arg238 - NH2(b) 3.2 - 3.5 A
7 (Cys) - backbone CO Gln64 - NH2  3.2 - 3.6 A
8 - backbone CO Arg238 - NH2(b) 3.0 - 3.4 A
8 - backbone CO Gln190 - NH2  2.9 - 3.0 A
10 - backbone NH Gln190 - CO 2.9 - 3.0 A
10 - backbone CO Asn161 - NH2  2.7 - 2.8 A
11(Arg) - N, Asn161 - CO 2.7 - 2.8 A
11(Arg) - NH2(a) Asn161 - CO 3.1 - 3.2 A
11(Arg) - NH2(a) Phe190 - backbone CO 2.8 - 3.1 A
11(Arg) - NH2(a) Glu159 - COO 3.4 - 3.5 A
11(Arg) - NH2(b) Glu159 - COO 2.7 - 2.8 A
12 - Kpl8Cys only; Ser Oy Glu245 - COO 3.0 A
13 - backbone NH Glu245 - COO 3.4 A

* Intrapeptide H-bond: 6-CO - 8-NH; 3.3 - 3.4 A
* Does not include multiple water-meditated interactions
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Figure 111.7. anSMEcpe and peptide substrate interactions. (A) Kp18Cys peptide and Auxiliary
Cluster I simulated annealing 2F-Fe composite omit density, contoured at 1.0 a. (B) The
Cp18Cys and Kp18Cys bound structures overlaid. (C) Kp18Cys hydrogen bonding network.
Only the 4 and 12 positions differ in hydrogen bonding network due to a serine in Kp18Cys and
a valine in Cp18Cys in position 4 and a serine in Kp18Cys and an alanine in Cp18Cys in
position 12 (see Figure 111.6). Coloring similar to Figure 111.2.
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Figure 111.8. Substrate peptide binding. (A) Cp18Cys (black) and Kp18Cys (grey) enter and exit
the active site of anSMEcpe via the underside of the barrel. The Cp carbon is 8.6 and 8.9 A from
Aux I and the AdoMet cluster, respectively. AdoMet and auxiliary clusters are shown in sticks
with carbons in grey, oxygens in red, nitrogens in blue, sulfurs in yellow, and irons in orange.
anSMEcpe P strands and SPASM domain are shown in ribbons and colored as in Figure 111.2. (B)
Substrate peptides bound to anSMEcpe and (C) bound to FGE (PDB 2AIJ, blue) (7) were
overlaid by the five residues encompassing the conserved sulfatase motif in each system and
are shown in the same orientation.

A. AdoMet B.
Cluster

Cys
AdoMet

18.9A
Aux IC

C.
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Figure 111.9. Comparison of peptidyl-substrate sequence specificity in anSME and FGE. The
arginine in the conserved CX(P/A)XR motif in (A) anSMEcpe and (B) FGE (PDB ID 2AIJ) (7).
Both systems use a phenylalanine group for n stacking and an acidic residue for salt bridge
interactions. See Figure 111.4 for the sequence alignment of the anSME arginine binding site.
Colored as in Figure 111.8. (C) At position 6 of the bound-peptide substrates Cp18Cys and
Kp18Cys in anSMEcpe, a large solvated internal enzyme cavity is able to accommodate either
the sidechain of Ala (Cp18Cys, black) or of Met (Kp18Cys, grey). (D) At position 8 of the bound-
peptide in anSMEcpe, a cavity is created by the presence of an Ala on P2 (A62, in sticks). Here,
18 (Cp18Cys, black) packs well against A62, whereas when A8 (Kp18Cys, grey) is
accommodated, a space is left between the two Ala sidechains. In the native K. pneumoniae
anSME, AtsB, A62 is replaced by valine, which would remove this gap between enzyme and the
Kp18Cys target peptide.

A. B.

C. D.
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Figure III.10. anSME active site. (A) The active site of anSMEcpe. Sticks are displayed for
AdoMet, target cysteine, and residues within 5 A of the substrate cysteine Sy. Distances as
follows; AdoMet 5'C - cysteine CO, 4.1 A; Y24 - Sy, 4.7 A; D277 - Sy, 4.6 A; Q64 - Sy, 3.3 A. (B)
FGly and 5'dA production for the Y24F and D277N mutants. Displayed product formation is
per gmol enzyme. *Wild-type data from (26).
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Figure 111.11 Mobile Gins in the anSMEcpe structures. (A) The Kpl8Cys active site, Position 3
as described in the Results, in lighter and darker colors are the Cp18Cys structure (Position 2)
and the AdoMet structure (Position 1), respectively. Multiple conformations of D277 are
observed in the AdoMet and Cp18Cys structures. Kp18Cys H-bonding network is in black
dashes and substrate deprotonation distance is in red dashes. (B) Mobile Glns in the Kp18Cys
structure (Position 3 as the Results) shown with 2F-F, electron density, contoured at 1.0 a.
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Figure 111.12. Changes in residue distance to bulk solvent following peptide binding.
anSMEcpe is colored by depth from bulk solvent in the (A) peptide free and (B) Kp18Cys bound
(peptide in thick ribbon) structures. The C-terminal domain and interior P sheet of the AdoMet
domain are shown in ribbon representation, with AdoMet and [4Fe4S] clusters in sticks. PDBs
generated by the DEPTH server (44).

A. AdoMet cluster
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Figure 111.13. Proposed mechanism of anSMEcpe. The initiation of turnover in anSMEcpe is
the reductive homolysis of AdoMet into 5'dAe and methionine (Figure III.1) and the
deprotonation of the sidechain by the putative base D277. The orientation of substrate implies
that the Cp pro-S hydrogen is then abstracted, resulting in the activated radical thiolate. Upon
collapse of the thiolate to the thiolaldehyde, the unpaired electron is passed to Aux I, where it
can transfer to Aux II for subsequent reduction of a terminal electron acceptor. The
thiolaldehyde is hydrolyzed to the active FGly moiety.

HH

SH

H

H20 H2S5'dA- 5'dAH

H

0

FGly

0-

D277

[Aux Ired [Aux II]O

[Aux Ilred [Aux II'red

[e- acceptorj0  [AdoMet 0 x

[e acceptorred [AdoMetlred

103



Figure 1I.14. The AdoMet radical superfamily. A modification of the Enzyme Function
Initiative's Radical SAM Superfamily Workshop materials
(http://enzymefunction.org/ resources/ workshops). The entire superfamily (nodes are
enzymes with 40% sequence identity) is shown using a threshold cut-off of an E-Value of 1 x
10'2. Figure generated using Cytoscape (45).

41

A

A

0

* SPASM Domain Proteins (TIGR04085); Reactions Unknown
o Dehydrogenases
o Complex Rearrangement
o Reactions Unknown
* B12-like Rearrangement
* Glycyl Radical Activating enzymes
* Metallocofactor Assembly
o Methylation Reactions (B 12 Dependent)
* Methylation Reactions (non-B 12)
* Sulfur Insertion

A Experimental Evidence

SPredicted

Notable Protein Nodes

1. Cys-type anSMEs (anSMEcpe)
2. Ser-type anSMEs (AtsB)
3. MtfC
4. KwcM
5. MoaA
6. BtrN
7. AlbA
8. PqqE

Structure Available

This work

104

4
04D

Awk

-.59h,



III.VII REFERENCES

1. Schmidt B, Selmer T, Ingendoh A, & von Figura K (1995) A novel amino acid
modification in sulfatases that is defective in multiple sulfatase deficiency. Cell 82(2):271-
278.

2. Ghosh D (2007) Human sulfatases: a structural perspective to catalysis. Cell Mol Life Sci
64(15):2013-2022.

3. Bojarova P & Williams SJ (2008) Sulfotransferases, sulfatases and formylglycine-
generating enzymes: a sulfation fascination. Curr Opin Chem Biol 12(5):573-581.

4. Dierks T, et al. (2003) Multiple sulfatase deficiency is caused by mutations in the gene
encoding the human C-alpha-formylglycine generating enzyme. Cell 113(4):435-444.

5. Benjdia A, Martens EC, Gordon JI, & Berteau 0 (2011) Sulfatases and a radical AdoMet
enzyme are key for mucosal glycan foraging and fitness of a prominent human gut
Bacteroides. J Biol Chem 286(29):25973-25982.

6. Dierks T, et al. (2005) Molecular basis for multiple sulfatase deficiency and mechanism
for formylglycine generation of the human formylglycine-generating enzyme. Cell
121(4):541-552.

7. Roeser D, et al. (2006) A general binding mechanism for all human sulfatases by the
formylglycine-generating enzyme. Proc Natl Acad Sci USA 103(1):81-86.

8. Fang Q, Peng J, & Dierks T (2004) Post-translational formylglycine modification of
bacterial sulfatases by the radical S-adenosylmethionine protein AtsB. J Biol Chem
279(15):14570-14578.

9. Benjdia A, et al. (2007) Anaerobic sulfatase-maturating enzymes: radical SAM enzymes
able to catalyze in vitro sulfatase post-translational modification. J Am Chem Soc
129(12):3462-3463.

10. Grove TL, Lee KH, St Clair J, Krebs C, & Booker SJ (2008) In vitro characterization of
AtsB, a radical SAM formylglycine-generating enzyme that contains three [4Fe-4S]
clusters. Biochemistry 47(28):7523-7538.

11. Berteau 0, Guillot A, Benjdia A, & Rabot S (2006) A new type of bacterial sulfatase
reveals a novel maturation pathway in prokaryotes. J Biol Chem 281(32):22464-22470.

12. Rabuka D, Rush JS, deHart GW, Wu P, & Bertozzi CR (2012) Site-specific chemical
protein conjugation using genetically encoded aldehyde tags. Nature Protocols 7(6):1052-
1067.

13. Frey PA, Hegeman AD, & Ruzicka FJ (2008) The Radical SAM Superfamily. Crit Rev
Biochem Mol Biol 43(1):63-88.

14. Sofia HJ, Chen G, Hetzler BG, Reyes-Spindola JF, & Miller NE (2001) Radical SAM, a
novel protein superfamily linking unresolved steps in familiar biosynthetic pathways
with radical mechanisms: functional characterization using new analysis and
information visualization methods. Nucleic Acids Res 29(5):1097-1106.

15. Hiscox MJ, Driesener RC, & Roach PL (2012) Enzyme catalyzed formation of radicals
from S-adenosylmethionine and inhibition of enzyme activity by the cleavage products.
Biochim Biophys Acta 1824(11):1165-1177.

16. Walsby CJ, Ortillo D, Broderick WE, Broderick JB, & Hoffman BM (2002) An anchoring
role for FeS clusters: chelation of the amino acid moiety of S-adenosylmethionine to the
unique iron site of the [4Fe-4S] cluster of pyruvate formate-lyase activating enzyme. J
Am Chem Soc 124(38):11270-11271.

105



17. Benjdia A, et al. (2010) Anaerobic sulfatase-maturating enzyme - a mechanistic link with
glycyl radical-activating enzymes? FEBS J 277(8):1906-1920.

18. Yokoyama K, Ohmori D, Kudo F, & Eguchi T (2008) Mechanistic study on the reaction of
a radical SAM dehydrogenase BtrN by electron paramagnetic resonance spectroscopy.
Biochemistry 47(34):8950-8960.

19. Yokoyama K, Numakura M, Kudo F, Ohmori D, & Eguchi T (2007) Characterization and
mechanistic study of a radical SAM dehydrogenase in the biosynthesis of butirosin. j Am
Chem Soc 129(49):15147-15155.

20. Lanz ND & Booker SJ (2012) Identification and function of auxiliary iron-sulfur clusters
in radical SAM enzymes. Biochim Biophys Acta 1824(11):1196-1212.

21. Grove TL, Ahlum JH, Sharma P, Krebs C, & Booker SJ (2010) A consensus mechanism
for Radical SAM-dependent dehydrogenation? BtrN contains two [4Fe-4S] clusters.
Biochemistry 49(18):3783-3785.

22. Haft DH & Basu MK (2011) Biological systems discovery in silico: Radical S-
adenosylmethionine protein families and their target peptides for posttranslational
modification. J Bacteriol 193(11):2745-2755.

23. Haft DH (2011) Bioinformatic evidence for a widely distributed, ribosomally produced
electron carrier precursor, its maturation proteins, and its nicotinoprotein redox
partners. BMC Genomics 12:21.

24. Lees NS, et al. (2009) ENDOR spectroscopy shows that guanine N1 binds to [4Fe-4S]
cluster II of the S-adenosylmethionine-dependent enzyme MoaA: Mechanistic
implications. J Am Chem Soc 131(26):9184-9185.

25. Hanzelmann P & Schindelin H (2006) Binding of 5'-GTP to the C-terminal FeS cluster of
the radical S-adenosylmethionine enzyme MoaA provides insights into its mechanism.
Proc Natl Acad Sci USA 103(18):6829-6834.

26. Grove TL, et al. (2013) Further characterization of Cys-type and Ser-type anaerobic
sulfatase maturating enzymes suggests a commonality in the mechanism of catalysis.
Biochemistry 52(17):2874-2887.

27. Benjdia A, et al. (2008) Anaerobic sulfatase-maturating enzymes, first dual substrate
radical S-adenosylmethionine enzymes. J Biol Chem 283(26):17815-17826.

28. Vey JL & Drennan CL (2011) Structural insights into radical generation by the radical
SAM superfamily. Chem Rev 111(4):2487-2506.

29. Dowling DP, Vey JL, Croft AK, & Drennan CL (2012) Structural diversity in the AdoMet
radical enzyme superfamily. Biochim Biophys Acta 1824(11):1178-1195.

30. Layer G, Moser J, Heinz DW, Jahn D, & Schubert WD (2003) Crystal structure of
coproporphyrinogen III oxidase reveals cofactor geometry of Radical SAM enzymes.
EMBO J 22(23):6214-6224.

31. Nicolet Y, Amara P, Mouesca JM, & Fontecilla-Camps JC (2009) Unexpected electron
transfer mechanism upon AdoMet cleavage in radical SAM proteins. Proc Natl Acad Sci
USA 106(35):14867-14871.

32. Vey JL, et al. (2008) Structural basis for glycyl radical formation by pyruvate formate-
lyase activating enzyme. Proc Natl Acad Sci USA 105(42):16137-16141.

33. Hanzelmann P & Schindelin H (2004) Crystal structure of the S-adenosylmethionine-
dependent enzyme MoaA and its implications for molybdenum cofactor deficiency in
humans. Proc Natl Acad Sci USA 101(35):12870-12875.

106



34. Krissinel E & Henrick K (2007) Inference of macromolecular assemblies from crystalline
state. J Mol Biol 372(3):774-797.

35. Moser CC, Anderson JL, & Dutton PL (2010) Guidelines for tunneling in enzymes.
Biochim Biophys Acta 1797(9):1573-1586.

36. Grove TL, et al. (2011) A radically different mechanism for S-adenosylmethionine-
dependent methyltransferases. Science 332(6029):604-607.

37. Szu PH, Ruszczycky MW, Choi SH, Yan F, & Liu HW (2009) Characterization and
mechanistic studies of Desll: A radical S-adenosyl-L-methionine enzyme involved in the
biosynthesis of TDP-D-Desosamine. J Am Chem Soc 131(39):14030-14042.

38. Mehta AP, et al. (2013) Catalysis of a new ribose carbon-insertion reaction by the
molybdenum cofactor biosynthetic enzyme MoaA. Biochemistry 52(7):1134-1136.

39. McCoy AJ, et al. (2007) Phaser crystallographic software. J Appl Crystallogr 40:658-674.

40. Otwinowski Z & Minor W (1997) Processing of X-ray diffraction data collected in
oscillation mode. Method Enzymol 276:307-326.

41. Emsley P & Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta
Crystallogr D 60:2126-2132.

42. Adams PD, et al. (2010) PHENIX: a comprehensive Python-based system for
macromolecular structure solution. Acta Crystallogr D 66:213-221.

43. Ashkenazy H, Erez E, Martz E, Pupko T, & Ben-Tal N (2010) ConSurf 2010: calculating
evolutionary conservation in sequence and structure of proteins and nucleic acids.
Nucleic Acids Research 38:W529-W533.

44. Tan KP, Varadarajan R, & Madhusudhan MS (2011) DEPTH: a web server to compute
depth and predict small-molecule binding cavities in proteins. Nucleic Acids Research
39:W242-W248.

45. Smoot ME, Ono K, Ruscheinski J, Wang PL, & Ideker T (2011) Cytoscape 2.8: new
features for data integration and network visualization. Bioinformatics 27(3):431-432.

107



108



Chapter 4.

Structural Analysis of BtrN, a Radical DOIA Dehydrogenase, Uncovers an
Abundant AdoMet Radical Auxiliary [4Fe-4S] Cluster Binding Domain

A version of this chapter will be submitted for publication.

Authors:
Peter J. Goldman, Tyler L. Grove, Squire J. Booker,' and Catherine L. Drennan 3

'Department of Chemistry, 2Department of Biology, and the 3Howard Hughes Medical Institute,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 USA
4Department of Chemistry and 5Department of Biochemistry and Molecular Biology, The Pennsylvania
State University, University Park, PA 16802 USA

109



IV.I SUMMARY

BtrN, a 2-deoxy-scyllo-inosamine (DOIA) dehydrogenase, is a member of a recently
described subclass of the S-adenosyl-L-methionine (AdoMet) radical superfamily of
enzymes, the AdoMet radical dehydrogenases. Unlike traditionally NAD-dependent DOIA
dehydrogenases in other 2-deoxystreptamine (DOS) biosynthetic pathways, the organism
Bacillus circulans uses a molecule of AdoMet and two [4Fe-4S1 clusters to catalyze this step.
One cluster is for the reductive homolysis of AdoMet, common to all members of the
AdoMet radical superfamily, while the function of the other cluster was unknown. Here, we
use structural methods to show that contrary to the current hypothesis, BtrN does not use its
second, auxiliary [4Fe-4S] cluster to bind substrate, suggesting it instead plays a role in the
oxidation of a substrate intermediate. We find that the protein is responsible for binding
DOIA and contributing the putative base in the reaction, R152. In addition, residues at the C-
terminus of the protein bind substrate and seal the active site from solvent. The finding that
DOIA does not directly ligate the auxiliary cluster in BtrN agrees with recent studies on
another AdoMet radical dehydrogenase, the anaerobic sulfatase maturating enzyme
(anSME). The auxiliary cluster binding domains of BtrN and anSME are very similar, despite
differences in [4Fe-4S] content (anSME contains three [4Fe-4S1 clusters). The structural
homology between BtrN, anSME, and another AdoMet radical enzyme, MoaA, involved in
molybdenum cofactor biosynthesis, suggests that their shared auxiliary cluster binding
architecture will be a staple in the AdoMet radical superfamily, common to - 30% of the
AdoMet radical reactions.
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IV.II INTRODUCTION

Due to mounting antibiotic resistance, the discovery and/or modification of antibiotic

compounds to fight bacterial infection is a vital task of our time (1). Understanding antibiotic

biosynthesis is an important first step in being able to engineer a new wave of therapeutic

molecules. Aminoglycosides are a class of antibiotics that inhibit protein synthesis by

interacting with the 30S subunit of the bacterial ribosome and have had considerable success in

the clinical setting (2). Most FDA approved aminoglycosides, including neomycin, gentamicin,

and kanamycin, share a common glucose-6-phosphate derived 2-deoxystreptamine (DOS)

structural core (blue in Figure IV.1) (3). While the majority of aminoglycoside-producing

bacteria employ similar reaction sequences to biosynthesize this DOS core, including the

penultimate two-electron oxidation of 2-deoxy-scyllo-inosamine (DOIA) to amino-dideoxy-

scyllo-inosose (amino-DOI) (Figure IV.1), identification of the enzymes responsible has not

always been straightforward. For example, the btrE gene product in the butirosin B producing

Bacillus circulans was proposed to be an NAD-dependent enzyme responsible for the generation

of amino-DOI, as in other aminoglycoside pathways (4). This hypothesis proved incorrect upon

further sequence and biochemical analysis (5, 6). Instead, unlike other DOS pathways,

Yokoyama et al. found that production of amino-DOI required another enzyme, BtrN, an S-

adenosyl-L-methionine (AdoMet, SAM) radical dehydrogenase (5). Here we report structures of

catalytic and noncatalytic forms of BtrN, providing a structural basis for the unique reaction it

performs.

The AdoMet radical enzyme family catalyzes a diverse array of radical based reactions,

including sulfur insertions, complex chemical transformations and rearrangements, DNA and

RNA modifications, and, in the case of BtrN, dehydrogenation (7). In addition to DesII, a

deaminase involved in the biosynthesis of TDP-D-desosamine, BtrN is the second characterized

AdoMet radical carbohydrate-tailoring enzyme. BtrN is also one of two members of the

dehydrogenase subfamily of AdoMet radical enzymes that has been characterized

biochemically. The other is the anaerobic sulfatase maturating enzyme (anSME) family, which

perform a two electron oxidation of a serine or cysteine to generate a formyl glycine residue on

a sulfatase protein substrate (Figure IV.1) (8, 9). BtrN and the anSMEs are thought to use

identical reaction mechanisms (10). BtrN, DesII, and anSME, like other AdoMet radical family

members, require a [4Fe-4S] cluster, a molecule of AdoMet, and a reducing equivalent to initiate

turnover (5). This required [4Fe-4S] cluster is ligated by three cysteines of a CX3CX2C motif (11,

12), leaving the fourth iron available to bind AdoMet (13). Electron transfer from the [4Fe-4S]

cluster to AdoMet causes homolysis of a carbon-sulfur bond in AdoMet, forming methionine
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and a 5'-deoxyadenosyl radical (5'dA-). This radical species subsequently abstracts a hydrogen

atom from substrate, resulting in 5'-deoxyadenosine (5'dAH) and a substrate radical. While

similarities are observed in how AdoMet radical enzymes bind the cluster and AdoMet, leading

to a description of an 'AdoMet radical core', structures vary in substrate binding regions which

serves to differentiate between the chemistry performed.

Further biochemical analysis of BtrN showed that it is the hydrogen from the C3

position of DOIA that is transferred to 5'dA- during catalysis (Figure IV.1) (5), resulting in

5'dAH and a radical intermediate localized at the C3 position (14). Following this hydrogen

abstraction, deprotonation and one electron oxidation of substrate yield amino-DOI product.

Thus catalysis requires both a proton and an electron acceptor. Interestingly, both BtrN and

anSMEs house [4Fe-4S] clusters in addition to the one required for AdoMet homolysis (10).

BtrN binds one additional cluster (15), while the anSMEs bind two (9, 16), suggesting that at

least one auxiliary (Aux) cluster is required for AdoMet radical dehydrogenase chemistry (15).

Direct ligation of substrate to an Aux cluster became an attractive hypothesis for the role of

these clusters, as it would aid in both deprotonation and oxidation of the substrate intermediate

(9, 15). However, the recently determined structure of anSME from Clostridium perfringens

(anSMEcpe) solved with peptide substrate bound showed that these Aux clusters are fully

ligated by cysteine residues from the protein and do not play a role in substrate binding (17).

In addition to this mechanistic insight, the anSMEcpe structure provided the first

characterization of the SPASM domain. The SPASM proteins are an AdoMet radical enzyme

subfamily thought to use two Aux clusters in the maturation of ribosomally translated peptides

(18). The subclass is named for its biochemically characterized founding members, AlbA (19),

PqqE (20), anSMEs (9, 16), and MtfC (21), involved in subtilosin A, pyrroloquinoline quinone,

anaerobic sulfatase, and mycofacticin maturation, respectively. Based on work done by Benjdia,

et al. (16), the SPASM subfamily was defined by Haft and Basu as 281 AdoMet radical enzymes

with a C-terminal 'CX 91 5GX4C-gap-CX2CXCX3C-gap-C' motif (18). Structural features of

the first half of the SPASM domain are very similar to those seen earlier in the Aux cluster

binding domain of the AdoMet radical enzyme MoaA, which catalyzes a dramatic

rearrangement of GTP (22-24). These conserved features include a beta hairpin surrounded by

iron ligating cysteine positions and followed by a helical region. Due to its partial-SPASM

makeup, this substructure was named a 'twitch' domain. As BtrN contains these sequence

elements (CX9 15GX4CXn), it was hypothesized to contain its Aux cluster in a twitch domain

similar to MoaA (17). Interestingly, the Aux cluster in MoaA has an available iron ligation site

which, unlike in anSMEcpe, is used to bind substrate (25, 26).
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In this manuscript, we use structural methods to address the uncertainty in the role of

the Aux cluster in BtrN and to expand our understanding of the AdoMet radical dehydrogenase

subfamily. To this end, we have solved crystal structures of BtrN in two forms, a noncatalytic,

OPEN, conformation, which does not support substrate binding, and a catalytic, CLOSED,

form, in which both DOIA and AdoMet are bound. Using these structures, we conclusively

address the hypothesis of direct substrate ligation to the Aux cluster in BtrN, which, as in

anSMEcpe, is inaccurate. The [4Fe-4S] cluster architecture and substrate binding patterns in

BtrN show surprising similarities to the anSMEcpe system. In addition, we find that the

AdoMet radical fold of BtrN lacks 25% of the secondary structure thought to be strictly

necessary for AdoMet radical chemistry. Despite its unique, abridged AdoMet radical fold,

BtrN utilizes all previously described AdoMet binding interactions, ensuring a relatively

conserved primary coordination sphere for the cofactor.

IV.III RESULTS

Anomalous signal from a SeMet derivatized C-terminally His6 tagged BtrN dataset

collected at the selenium edge was used to phase an initial structure of the enzyme (Table IV.1).

This structure, solved to 2.02 A resolution, represents an OPEN conformation of BtrN as the C-

terminal region is extended from the protein core, leaving the active site highly solvent exposed

(Figure IV.2). In this OPEN conformation, residues in the a4 helix (121-134), a loop following the

AdoMet cluster binding loop (28-32), and a linker region (146-161) connecting the N-terminal

AdoMet domain to the C-terminal auxiliary cluster domain are disordered and not included in

the model. In addition, electron density for BtrN substrates AdoMet and DOIA, which were

included in the crystallization conditions, is not observed in this OPEN structure. To obtain a

CLOSED structure of BtrN, a native (non-SeMet) N-terminally His6 tagged construct was used.

A structure of this construct, in which the entire BtrN fold was apparent, was solved to 1.56 A

resolution. In this model, a CLOSED conformation of the protein is observed, with the C-

terminus capping the enzyme's active site. This CLOSED structure includes the disordered

regions not present in the OPEN structure and clear electron density for both BtrN substrates.

Both the OPEN and CLOSED structures are constituted with two [4Fe-4S] clusters and in each

case, the Aux cluster is fully protein ligated. The overall fold of BtrN includes a partial AdoMet

radical fold (residues 1-150), an auxiliary cluster binding motif (residues 169-235), and two loop

regions - a linker joining the AdoMet and auxiliary cluster domains (residues 151-168) and the

C-terminal cap (residues 236-250) (Figure IV.3).
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BtrN has an abridged AdoMet radical fold

The typical AdoMet radical fold consists of a conserved p6/a 6 partial TIM barrel fold

with a [4Fe-4S] cluster at the top of the barrel in a loop following p1 (27, 28). BtrN initiates in the

same manner with C16, C20, and C23 providing three ligands to its AdoMet radical cluster. The

full p6/a6 is not conserved in BtrN, which instead has a p5/a 4 structure before ending the

AdoMet radical domain (Figure IV.3). Despite this difference in fold, interactions provided by

all four AdoMet binding motifs common to AdoMet radical proteins, including the 'GGE' motif,

the ribose motif, the 'GXIXGXXE' motif, and the p6 motif (28), are for the most part conserved in

BtrN (Figure IV.4). In addition, the fold contains a basic residue, H117, that interacts with the

carboxyl group of AdoMet, as seen in HemN, HydE, PylB, and anSMEcpe (17, 29-31), and a

hydrogen bond to N6 of the adenine from the carbonyl of Y22, the hydrophobic residue of the

[4Fe-4S] cluster binding CX3CXCDC motif, common to nearly all AdoMet radical members

(Figure IV.5) (28). The Y22 interaction is disrupted in the OPEN structure, as the conformation

of W21 is altered due to crystal packing, distorting the AdoMet cluster binding loop and

possibly contributing to the inability of the OPEN structure to bind AdoMet (Figure IV.2).

While BtrN contains all AdoMet binding motifs, the 'GXIXGXXE' and p6 motifs are

altered because of the abridged nature of the enzyme's AdoMet radical fold. The 'GXIXGXXE'

motif provides a hydrophobic contact at the end of J5 to the adenine ring of AdoMet and is

stabilized by a backbone interaction with a polar residue in a5. BtrN has no a5 and its p5 strand

terminates before reaching the adenine moiety (Figure IV.6). Following the 65 strand in BtrN,

however, a loop containing L147 provides a similar hydrophobic interaction to the adenine as

found in the 'GXIXGXXE' motif of other AdoMet radical enzymes (27, 28). Instead of being

stabilized by a polar residue from a5, this L147 position is stabilized by a helical turn that

immediately follows 05 (Figure IV.5). The 06 motif in most AdoMet radical enzymes involves

peptide backbone positions at the end of P6 to hydrogen bond with the adenine N1 and N6

positions. BtrN does not have a p6 strand; instead, the backbone amide nitrogen and carbonyl

groups of S150, the last residue in the protein's abridged AdoMet radical fold, hydrogen bonds

to the adenine (2.9 and 3.1 A from the N1 and N6 positions, respectively), much like traditional

p6 motif residues (Figure IV.6). All of these interactions make the AdoMet primary coordination

sphere in BtrN very similar to those seen previously, thus one loop following $5 in BtrN

replaces two helices and a strand usually found in the AdoMet radical fold.
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Following this modified 'P6 motif' in BtrN, R152 makes an interaction with AdoMet that

is unique to previously characterized AdoMet radical enzymes (Figure IV.5). The residue is in a

linker region (disordered in the OPEN structure) of the protein that joins the AdoMet radical

domain and C-terminal domain. The guanidinium group of R152 stacks with the adenine base

and interacts with the ring oxygen of the cofactor's ribose moiety. An arginine residue in the P6
motif of another AdoMet radical enzyme, spore photoproduct lyase, also contacts AdoMet, but

it does not stack with the adenine or hydrogen bond to the ribose. Instead, it interacts with

phosphate groups of substrate. R152 in BtrN also seems to play a role in substrate binding

(discussed below). Following this site, a loop region (in which residues 161-164 cannot be

resolved in the electron density) joins the AdoMet domain to the auxiliary cluster domain.

The C-terminal auxiliary cluster domain

The auxiliary cluster domain initiates with C169, the first auxiliary (Aux) cluster ligand.

A p-hairpin follows before the second Aux cluster ligand position, C188, and an a-helical region

(Figure IV.3). These secondary structural elements and ligand positions have very high

structural similarity to the SPASM domain from anSMEcpe (17); residues C169 - E223 of BtrN

align to residues C261 - F311 of anSMEcpe with an RMSD of 1.1 A. The two proteins are very

different after the a-helical region. BtrN terminates in a series of loops which contain the final

two ligands to its Aux cluster (C232 and C235), while anSMEcpe continues, binding an

additional [4Fe-4S] cluster (Figure IV.7). While this region does not align as well to MoaA

(MoaA residues C264-1311; RMSD 4.4 A) the iron ligating cysteine positions and secondary

structural elements are conserved (Figure IV.7). Additionally, all three proteins share a

conserved glycine residue in the p-hairpin motif between two auxiliary cluster ligands, in a CX&

12GX4 C motif (Figure IV.4). The effect of these instances of structural homology is that the

AdoMet and Aux duster positions in all three proteins are nearly identical; AdoMet cluster to

Aux cluster distances in the three proteins are 15.9, 16.9, and 16.5 A for BtrN, anSMEcpe, and

MoaA, respectively.

DOIA binding

While we were unable to solve a crystal structure with DOIA bound using an C-

terminally His6 tagged BtrN construct, the substrate was readily apparent in the electron
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density from N-terminally His6 tagged BtrN crystals (Figure IV.8.C). DOIA binds in a

hydrophilic pocket between the AdoMet and Aux clusters. The aminoglycoside is in a low

energy chair conformation, with all five functional groups in equatorial positions. This

conformation is stabilized by numerous hydrogen bonds to amino acid positions spanning the

BtrN sequence, from E9 to V249 (Figures IV.8.A and IV.4). The final interaction is made between

the amine position of DOIA and the amide nitrogen and carbonyl of the V249 peptide backbone,

one residue from the C-terminus of the protein. The C-terminus, which itself provides a water-

mediated hydrogen bond to DOIA (Figure IV.8.A), forms a loop that caps the underside of the

BtrN active site. This capping function suggests that DOIA binds after AdoMet, consistent with

previous substrate inhibition studies (5). While the C-terminally His6 tagged BtrN is active (15),

we believe that the tag impedes these capping interactions, thereby preventing the formation of

a CLOSED conformation complex stable enough for structural characterization.

The C3 position of DOIA (the hydrogen abstraction site) is 3.7 A away from the 5'

carbon of AdoMet (Figure IV.8.A), consistent with prior structural characterizations of AdoMet

radical enzymes (3.8-4.1 A) (28). Following hydrogen abstraction, oxidation of the C3 and

deprotonation of the C3-OH are required to complete turnover. Two titratable residues are

present within 5 A of C3-OH; H60 and R152 (Figure IV.8.A). H60 forms a hydrogen bond with

the C4-OH, but does not interact with the C3-OH. R152 makes two 3.1 A hydrogen bonds to the

C3-OH position via both ii nitrogens. R152 and a water (hydrogen bonding to another water

and the F61 backbone carbonyl) are the only moieties making contact with this position of

substrate. Possible electron transfer partners to facilitate oxidation of the C3 radical

intermediate are both the AdoMet and Aux clusters. These clusters are 8.6 and 9.6 A away,

respectively, from the C3 position.

Sequence and structural homology to anSMEcpe

Although the active sites of BtrN and anSMEcpe show little sequence conservation

(Figure IV.4), some residues important for substrate binding are found in similar positions in

three dimensional space, with R152, a possible proton acceptor in BtrN, being the only major

exception (see above). Based on mutagenesis studies, D277 was identified as a putative base in

anSMEcpe (17). This residue is located on a loop in its auxiliary cluster domain next to F278, a

residue that stacks against the Aux cluster (Figure IV.8.D). In BtrN, F188 aligns very well with

D277 and stacks against its Aux cluster, which is in a slightly different position than in

anSMEcpe. One residue downstream, E189 in BtrN overlays with F278 in anSMEcpe, and while
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it does not interact with substrate, E189 forms a 2.7 A hydrogen bond with R152. Thus, the

residue may be indirectly involved in deprotonation of substrate. In anSMEcpe, two residues,

Q64 and Q98 have different orientations in the presence and absence of substrates and are

proposed play a role in substrate binding and orienting the putative base, D277 (17). In BtrN,

the identities of these residues are H60 and Y90, which hydrogen bond to the C4 and C6

hydroxyl groups of substrate, respectively (Figure IV.8.D). These positions overlay very well in

the OPEN and CLOSED BtrN structures, suggesting their orientation does not change upon

binding substrate.

Y24 was another candidate for the general base in anSMEcpe based on its position in the

structure. This residue resides in the AdoMet cluster binding loop proximal to the CX2CX3C

motif. While mutational studies revealed that this residue most likely does not aide in the

deprotonation of intermediate (17), we find a tyrosine residue in a similar position in BtrN. This

tyrosine, Y62, is located on a loop following the $2 strand. Whereas Y24 in anSMEcpe interacts

with the adenine base of AdoMet, in BtrN R152 wedges between AdoMet and Y62, separating it

from both AdoMet and the substrate binding site (Y62 is 6.3 and 5.1 A from AdoMet and DOIA,

respectively, while in anSMEcpe, Y24 is 3.9 and 3.7 A from AdoMet and substrate; Figure

IV.8.D). E9 is another residue in BtrN that is much different in anSMEcpe (L7). The glutamate

makes multiple hydrogen bonding interactions with the C4 and C5 hydroxyl groups of DOIA

(both 2.7 A) (Figure IV.8.D), while in anSMEcpe L7 provides a hydrophobic contact with a

proline residue of the substrate peptide. All residues discussed in this section are marked by red

stars in Figure IV.4. Interactions provided to DOIA by the C-terminal cap are also not conserved

in anSMEcpe, where the sites of these interactions are substituted for the anSMEcpe peptide

substrate itself.

IV.IV DISCUSSION

With structural information for BtrN (this work) and anSMEcpe (17), we have completed

the structural characterization of the currently identified members of the AdoMet radical

dehydrogenase subfamily. Using AdoMet radical chemistry, these enzymes catalyze nearly

identical two electron oxidations (Figure IV.1) and exhibit different variants of the AdoMet

radical fold. One, the partial TIM barrel fold found in anSMEcpe and common to nearly all

AdoMet radical enzymes (27, 28), provides a highly conserved primary coordination sphere

around AdoMet. In BtrN, however, this fold lacks 25% of the expected 06/a 6 architecture

secondary structure, adopting an even more abridged, p5/a 4 partial barrel. This interesting
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deviation contrasts with the striking level of structural similarity between the auxiliary cluster

folds of BtrN and anSMEcpe. The two enzymes share an RMSD of 1.1 A in this region even

though BtrN binds one auxiliary (Aux) [4Fe-4S] cluster proximal to its active site, while

anSMEcpe binds two, one near the active site and another near the protein surface (Figure IV.7).

Despite this difference in FeS cluster content, the two proteins were hypothesized to use an

active site auxiliary cluster for direct substrate ligation to catalyze similar reactions (9, 15, 18).

We have previously indicated that this hypothesis is incorrect in the case of anSMEcpe (17), and

we similarly show in this work that the BtrN Aux cluster is fully protein ligated in the presence

and absence of substrate. Substrate is largely stabilized by interactions provided by three of the

five C-terminal residues, potentially explaining the difficulty in crystallizing a substrate bound

structure of a BtrN construct containing a C-terminal His6 tag.

Direct ligation of the BtrN substrate, DOIA, to its Aux cluster was proposed to aide in

deprotonating the DOIA C3 hydroxyl group and oxidizing the substrate radical intermediate

(15). Without direct ligation to an auxiliary cluster to activate the hydroxyl group,

deprotonation before AdoMet mediated hydrogen abstraction is unlikely due to the -16 unit

pKa of the C3-OH. Formation of the a-hydroxyalkyl radical by hydrogen abstraction at the C3

position will activate the hydroxyl functional group by decreasing its pKa by ~5 units (32). For

subsequent deprotonation, we find only one titratable residue, R152, within 4 A of the C3-OH

group of DOIA. This residue makes contacts, 3.1 A away, using both il nitrogens of the

guanidinium group (Figure IV.8.A). While arginine sidechains have high pKas (-12.5) that are

usually unsuitable for accepting protons during catalysis, nearby carboxyl side chains have

been known to adjust arginine pKas for general base function (33). In BtrN, E189 forms a

hydrogen bond / salt bridge with R152 (Figure IV.8.A), possibly activating it in this manner.

Taken together, these results are consistent with R152 accepting a proton from the -C3-OH

intermediate during catalysis.

After or concentered with deprotonation, collapse of the *C3-O- radical to the C3=O

product necessitates loss of an electron, most likely to one of BtrN's [4Fe-4S] clusters (5, 14, 15,

34). The AdoMet and Aux clusters are 8.6 and 9.6 A, respectively, away from the C3 position of

DOIA, making them both within range for a suitable electron transfer partner (35). A similar

situation exists in anSMEcpe, where an oxidation event is required from a cysteinyl Cs

positioned nearly equidistant from its AdoMet and Aux clusters (8.9 and 8.6 A, respectively)

(17). Like in anSMEcpe, we suggest that the role of the Aux cluster in BtrN is to accept an

electron from substrate during turnover. In anSMEcpe, the reduced active site Aux cluster is

positioned to reduce a second Aux cluster at the protein surface for transfer to a terminal
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electron acceptor. This pathway appears to be required in anSMEcpe because the large peptidyl

substrate in the reaction buries the anSMEcpe active site Aux cluster, necessitating transfer to a

more solvent exposed cluster before transfer to a partner protein (17). The small molecule

substrate of BtrN, in contrast, does not change the solvent accessibility of the Aux cluster,

removing the need for a second Aux cluster. To reoxidize the Aux cluster in BtrN, electron

transfer to the AdoMet cluster has been proposed, which would ready this cluster for the next

round of catalysis (15). At 15.9 A, however, the two clusters are too far apart for unmediated

electron transfer, suggesting that, like in anSMEcpe, electron transfer between the Aux and

AdoMet clusters does not occur (17). We therefore propose that following turnover in BtrN, a

partner protein reoxidizes the reduced Aux cluster directly, without an internal electron

transfer event.

Another carbohydrate modifying AdoMet radical protein, DesIl, also has interesting

redox requirements. In considering it's native deaminase activity (Figure IV.1), the removal of

an amine group from TDP-4-amino-4,6-dideoxy-D-glucose is coupled to the oxidation of an

alcohol to a ketone. While this overall reaction is net redox neutral, it requires the reduction of a

substrate radical intermediate following hydrogen abstraction (36). Interestingly, DesII can also

catalyze a dehydrogenase reaction when given the unnatural substrate, TDP-D-quinovose. This

reaction, like BtrN, requires the oxidation of the substrate radical intermediate, which was found

by kinetic isotope effects to occur either following or concerted with deprotonation (34) (Figure

IV.1). In both cases, the AdoMet cluster is hypothesized to be the electron transfer partner as

DesII does not have any auxiliary clusters (37, 38). How DeslI accomplishes the same chemistry

as BtrN (and anSMEcpe) in the absence of an auxiliary cluster could be explained by the DesII

AdoMet cluster's innate ability to react with substrate. Supplying an unnatural substrate with a

poor leaving group presumably prolongs the lifetime of the potent -C3-O-species (E*'< -1.6 V),

reversing the flow of electrons relative to the native reaction (32). In the BtrN and anSMEcpe

reactions, nature has made available an auxiliary cluster, which, in BtrN cannot be reduced by

titanium citrate (E' - -480 mV), implying the cluster has a low redox potential that is tuned to

match that of the substrate radical intermediate (15). These hypotheses await further

electrochemical characterization of the clusters.

Two mechanisms have been hypothesized for the DesII elimination of the amine moiety

in the native reaction. One proposal is that the C4-NH 3 group is eliminated in a Elcb-type

mechanism, creating a enol radical species that, upon collapse of the ketone, can protonate and

reduce to the product (39). This mechanism relies on the ability of the enzyme to active the

leaving group, forming a C4-NH 3' species. The second hypothesis, reminiscent of B12 dependent
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radical mechanisms, suggests that the amine group migrates to a -C3 intermediate, forming a

carbanolamine radical species that readily deaminates forming a ketone (39). This mechanism

also requires protonation/reduction and relies on a high degree of overlap between the radical

and C4-NH 3 orbitals for efficient migration (40). When given the unnatural TDP-D-quinovose

substrate, EPR studies have indicated little orbital overlap between these two positions (37). It is

unknown, however, what configuration substrate assumes in the native DesII reaction and the

environment surrounding the C4 functional group.

In contrast, the structure of BtrN shows that the enzyme is well designed to avoid an

elimination reaction by either mechanism. First, an Elcb-type mechanism is disfavored, as the

C4-OH group is not activated for elimination. The functional group is involved in two tight (2.7

A) hydrogen bonds with the E9 sidechain, which itself is being activated as a hydrogen bond

acceptor through interactions with a nearby arginine (R56, Figure IV.8.A). Second, elimination

via a migration-assisted mechanism is not feasible as DOIA binds in an equatorial chair

conformation with little overlap between the hydrogen abstraction site and the C4-OH bonding

orbital (Figure IV.9.A). The substrate is held in this conformation by multiple hydrogen bonds

and van der Waals interactions. Modeling a partial boat DOIA conformation to increase orbital

overlap distorts the active site hydrogen bonding network and introduces steric clashes with

Y90 and F188, two residues positioned above and below the DOIA cyclohexane ring (Figure

IV.9.B). Thus, BtrN disfavors a DesII-like elimination, given either mechanism. The existence of

the Aux cluster in BtrN, which we suggest drives oxidation of the radical intermediate, further

distinguishes it from DesII.

The Aux cluster binding domains of BtrN, anSMEcpe, and MoaA place them in a large

subfamily within the AdoMet radical superfamily. AnSMEcpe is a member of the recently

described SPASM subfamily (17, 18), whose members contain two [4Fe-4S] clusters in a C-

terminal 7-cysteine motif. BtrN only binds one cluster using a cysteine motif similar to the first

half of the SPASM motif, which we have termed a twitch domain. We now conclude that this

twitch domain comprises the p1'/ P2' hairpin and the a2' helix (Figure IV.10). In addition to

BtrN, MoaA (23) contains a twitch domain with the same C-terminal secondary structural

elements as BtrN and anSMEcpe (Figures IV.10 and IV.7). Mapping these three proteins onto a

representative diagram of the AdoMet radical superfamily (Figures IV.11 and IV.12), suggests

that this twitch/SPASM domain will be a common feature to ~ 30% of uncharacterized AdoMet

radical enzymes. While it is difficult to predict Aux FeS cluster content in these family members,

all currently characterized members of this twitch/SPASM cluster contain at least one Aux

cluster (8, 9, 15, 17, 19-21, 41).
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Contained in this subfamily is the recently described thioether formation class of

AdoMet radical enzymes, represented by AlbA (19) and SkfB (41) (Figure IV.11). SkfB has a C-

terminal motif with five cysteines, which we suggest forms a twitch domain much like that of

BtrN (Figure IV.10). AlbA, a founding member of the SPASM subfamily, contains seven

cysteines in its C-terminal domain, in an arrangement much like anSMEcpe (Figure IV.10).

Upon removal of the AdoMet cluster, AlbA still has [4Fe-4S] cluster EPR signal, which was

attributed to one auxiliary cluster (19). Based on sequence analysis, we suggest, that AlbA binds

two auxiliary [4Fe-4S] clusters in a SPASM arrangement similar to that of anSMEs. Like BtrN

and anSMEs, AlbA and SkfB catalyze very similar reactions, namely, the linkage of a peptidyl

cysteine thiol to the Ca position of an up or downstream residue on the same peptide substrate.

We propose that this system will be another example of a SPASM containing protein (AlbA)

and a twitch domain containing protein (SkfB) catalyzing similar chemistry on different

substrates.

The positioning of enzymes in the SAPSM /twitch sequence cluster is consistent with our

auxiliary cluster architecture designations. The SPASM proteins (anSMEs and green nodes in

Figure IV.11) are localized on one end of the cluster, while the twitch proteins, BtrN and MoaA,

are located in smaller subclusters. AlbA and SkfB, however, map nearly on top of each other,

right where we believe the junction exists between SPASM and twitch containing nodes.

Functionally, whether the direct ligation feature of MoaA is conserved in SkfB, AlbA, or any

other SPASM/twitch subclass member is an interesting issue and awaits further biochemical

and structural studies. Regardless, the structures of BtrN provide the third example of a highly

conserved Aux cluster binding architecture, suggesting that it will be present in the thioether

bond forming enzymes and across this abundant and interesting SPASM/twitch AdoMet

radical subclass.

IV.V MATERIALS AND METHODS

Protein purification and production of DOIA were performed as described (15).

Crystallization

To crystallize C-terminally His6 tagged SeMet derivitized BtrN, a protein solution

(containing 48 mg /mL C-terminally His6 tagged BtrN, 10 mM HEPES pH 7.5, 150 mM KCl, 10%

glycerol, and 5 mM DTT) was diluted in water to a final concentration of 20 mg/mL protein.

AdoMet, generated enzymatically as previously described (42), was added to the solution to a
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final concentration of 1 mM. This mixture was allowed to incubate for 16-24 hours at room

temperature in an anaerobic environment (95% Ar, 5% H 2, COY Laboratory Products, Inc.).

Following incubation, crystal drops using the sitting-drop diffusion technique were set up by

combining 1 jiL of the above protein solution with 1iL of a precipitant solution containing 13-18

% Jeffamine ED-2001 pH 7.0 (Hampton Research) and 100 mM imidazole pH 7.0. Rod-shaped

crystals would grow in 3-7 days with dimensions of approximately 20 x 20 x 100 pm. Crystals

were looped and transferred into a drop of Paratone-N (Hampton Research). This

cryoprotectant was effective at shrinking the unit cell by dehydrating the crystal, leading to a

more ordered lattice. After vigorous rinsing to fully exchange the mother liquor, the crystals

were looped and cryocooled by direct submersion into liquid nitrogen.

To crystallize N-terminally His6 tagged native BtrN, a protein solution (containing 138

mg/mL N-terminally His6 tagged BtrN, 10 mM HEPES pH 7.5, 150 mM KCl, 10% glycerol, and

5 mM DTT) was diluted in water to a final concentration of either 15 or 20 mg/mL. AdoMet and

DIOA (from where?) were added to a final concentration of 5 mM. This solution was incubated

at room temperature for 4-8 hours and then used to set up hang-drop diffusion method drops

with 1 pL of the above protein solution and 1pL of a precipitant solution containing 30 mM

citric acid / 70 mM Bis-TRIS propane pH 7.6 and 25-31% PEG 4000 (Hampton Research).

Crystals would appear overnight and grow to dimensions of 50 x 50 x 300 pm in 3-7 days. For

cryocooling, crystals were looped and washed through a drop of precipitant solution containing

5 mM AdoMet, 5 mM DOIA, and 20% glycerol, then submerged in liquid nitrogen.

Both the N-terminal and C-terminal His6 tags could not be cleaved due to the lack of a

protease site in the constructs. Crystallization of native enzyme (without an affinity tag) was

attempted, but unsuccessful presumably due to heterogeneity.

Data Collection and Structure Determination

An initial dataset of C-terminally His6 tagged SeMet BtrN (Se-SAD, Table IV.1) was

collected at 100 K using inverse beam (10 oscillations, 300 wedges) at the selenium peak (0.9792

A) to 2.50 A resolution. As anomalous signal was present to better than 3 A (phenix.xtriage), the

AutoSol Wizard (43) was used to the full resolution of the dataset. Eleven heavy atom sites were

found with a 0.48 figure of merit to 2.50 A resolution. With one molecule in the asymmetric unit,

these sites correspond to the 10 methionine positions in BtrN and to a peak from the BtrN

auxiliary [4Fe-4S] cluster. Experimental maps were solvent flattened using RESOLVE, yielding
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interpretable electron density. Both [4Fe-4S] clusters and all residues (including sidechains)

except for 1-3, 25-35, 116-166, and 234-250 were built into the experimental density. Using

isomorhous replacement, this model was used to phase a higher resolution dataset (to 2.02 A)
collected on another SeMet BtrN crystal (Hi-res SeMet, Table IV.1). Using these data, the model

was completed, however electron density for residues 28-32, 121-134, 146-161, 250 and the 19-

residue C-terminal His6 tag remained negligible. This structure was refined using 6 TLS groups

and no sigma cutoff.

A dataset of N-terminally His6 tagged native BtrN (AdoMet/DOIA, Table IV.1) was

collected at 100 K using sequential 0.50 oscillations to 1.56 A resolution. These data were phased

using molecular replacement with the Hi-res SeMet model (Phaser Z-score of 21.7 using a 4 A

resolution cutoff) (43). Electron density for missing regions of the Hi-res SeMet model is

apparent using these data, including both AdoMet and DOIA substrates and the full protein

chain (except for residues 161-164). The N-terminal His6 tag was completely disordered. Data

for all structures were collected on either beamline 24-IDE or 24-IDC at the Advanced Photon

Source (Argonne, Ii) and processed in HKL2000 (44). All models were refined and built in

PHENIX (45) and COOT (46), respectively. Composite omit maps were used to verify the final

models. See Table IV.1 for full data processing, refinement, and validation statistics.
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Table IV.1. Data processing and refinement statistics for BtrN.

Se-SAD SeMet Hi-res SeMet AdoMet/DOIA
(C-term His) 1  (C-term His6 )' (N-term His6 )

Beamline 24-IDE 24-IDC 24-IDC
Data Processing
Wavelength (A) 0.9792 0.9795 0.9795
Space Group C2 C2 P212121
Cell Dimensions
a, b, c (A) 99.6, 42.1,50.9 99.4, 42.1, 50.9 44.6, 55.2, 116.9

p (0) 104.9 105.4 90.0

2 50.0 - 2.50 50-2.02 100 - 1.56
Resolution (A) (2.59 - 2.50) (2.09 - 2.02) (1.62 - 1.56)
Rsym(%) 2  12.4 (37.9) 8.7 (42.9) 11.6 (46.4)
<I/a(I)>2 21.5 (4.8) 20.6 (3.0) 10.7 (2.0)
Completeness (%)2 99.9 (99.1) 97.1 (74.0) 95.7 (76.0)
Redundancy 2  7.6 (5.3) 5.6 (4.2) 3.9 (2.6)
Total reflections 105,617 143,572 158,698
Refinement
Resolution (A) 38.5 - 2.02 58.4 - 1.56
Reflections 13,349 41,942
Rwork / Rfree3  16.5 / 21.6 16.3 / 18.6
No. of non-hydrogen
atoms
Protein 1,699 1,949
[4Fe4S] / AdoMet / DOIA 16/-/- 16/27/ 11
Solvent 74 281
Average B-factors (A2)
Protein 37.4 19.8
[4Fe4S] / AdoMet / DOIA 28.2 / - / - 15.9 / 16.4 / 14.5
Solvent 43.8 22.5
RMS deviations
Bond lengths (A) 0.015 0.007
Bond angles (0) 1.51 1.19

Ramachandran statistics 4  86.5%, 13.5%, 0%, 90.0%, 9.6%, 0%,
0 residues 1 residue

'Data were scaled anomalously
2Highest resolution shell is shown in parentheses
3R-factor = I( I -k|Fcac )/I I Fobs I and R-free is the R value for a test set of reflections consisting of 5% of the
diffraction data not used in refinement.
4Values reported correspond to the number of residues in the most favored, additionally allowed, generously
allowed, and disallowed regions, respectively.
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Figure IV.1. Butirosin B biosynthesis and AdoMet radical dehydrogenase activity in BtrN,
anSMEs, and DesII; and the native DeslI deaminase activity.
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Figure IV.2. OPEN and CLOSED conformations of BtrN. OPEN (tan) and CLOSED (grey)
conformations of BtrN (RMSD 0.4 A). AdoMet and DOIA (shown in sticks) are bound to the
CLOSED conformation. Both models contain two [4Fe-4S] clusters. (A) Slight changes in the
positioning of the AdoMet cluster binding loop are due to the large difference in orientation of
W21. Additionally, a linker region which bridges the AdoMet and Aux cluster domains (see text
for domain definitions) and provides contacts to the adenine of AdoMet, is disordered in the
OPEN structure (after the linker region, three residues are disordered in the CLOSED
structure). (B) While the P4 and $5 strands are superimposable in the two structures, a4 is
disordered in the OPEN structure and not included in the model. (C) The C-terminal cap in the
OPEN structure leaves the DOIA binding site exposed, while in the CLOSED conformation, this
region makes many contacts to the substrate (see Figure IV.8). The arrow indicates the position
of the V249 Ca in the OPEN and CLOSED structures (residue 250 is only modeled in the
CLOSED structure).
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Figure IV.3. The BtrN fold. (A) BtrN includes an AdoMet domain (residues 1-150; magenta), an
auxiliary cluster domain (residues 169-235; green), and linker regions (residues 151-168 and 236-
250; light blue). (B) The BtrN substrate, DOIA (grey), binds between the two clusters. (C)
Topology of BtrN.
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Figure IV.4. Structure based sequence alignment of BtrN and anSMEcpe. Secondary structure
assignments are colored green for p strands and yellow for a helices. The AdoMet fold (residue

1-150 in BtrN and 1-234 in anSMEcpe) and the 'twitch' domains, including P1', P2', and a2'
(residues 169-235 in BtrN and 255-311 in anSMEcpe) align well. The RMSD histogram (blue)
denotes Ca distances between aligned residues and ranges from 0.05 A (thinnest bar) to 3.9 A
(thickest bar); overall RMSD of 185 aligned residues is 2.02 A. Strands, helices, and AdoMet
radical motifs are labeled beneath the alignment. Residues that contact AdoMet are in bold and
red stars denote substrate binding residues discussed in the Results section. Black arrows
indicate Aux cluster Fe ligating cysteines (grey arrows indicate cysteines ligating anSMEcpe's
second auxiliary cluster). Alignment generated by Chimera (47).
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Figure IV.5. AdoMet binding motifs in BtrN. Shown in stereo, BtrN (colored as in Figure IV.3,
rotated 900 counterclockwise from Figure IV.8) binds AdoMet (grey sticks) using conserved
AdoMet radical structural elements, including: coordination of the amine and carboxyl groups
of AdoMet by the unique iron in the AdoMet [4Fe-4S] cluster (ligated by C16, C20, and C23);
hydrogen bonding of the backbone of an aromatic residue in the CX3CX2C motif to the adenine
(Y22 in BtrN); the 'GGE' motif (Y62, G63, and E64), in which backbone oxygen atoms hydrogen
bond with the methionyl amine group of AdoMet; and the ribose motif (T115 and H117), in
which polar residues at the end of the 04 strand hydrogen bond with the ribose hydroxyl
groups. In some cases, p4 residues, such as H117, will also hydrogen bond to the carboxyl group
of AdoMet (see text). The 'GXIXGXXE' motif (L147, stabilized by a turn that includes H114),
which provides hydrophobic contacts to the adenine ring, and the 'p6 motif' (S150), which
provides backbone hydrogen bonds to the adenine moiety are abridged in BtrN. (see Figure
IV.8) (27, 28).

H144 S150
Y22 
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Figure IV.6. The abridged BtrN AdoMet radical fold. BtrN (colored as in Figure IV.3) lacks the
a5 and a6 helices and the p6 strand found in all structurally characterized AdoMet radical
proteins (represented by anSMEcpe in tan) (17). The 'GXIXGXXE' motif provides a
hydrophobic contact to the AdoMet adenine and stabilization to the loop after p5 (V165, T167
and T170 in anSMEcpe). This hydrophobic contact is conserved in BtrN (L147) and stabilized by
an upstream residue (H144, see Figure IV.5). Contacts provided by the backbone atoms of
residues in the P6 motif of AdoMet radical enzymes (L195 in anSMEcpe) are conserved in BtrN
(S150; Ca's in spheres), but are found in a loop following the $5 strand. R152 (Ca in light blue
sphere) is unique to BtrN (see Figures IV.5 and IV.8).
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Figure IV.7. Variation of the AdoMet and Auxiliary cluster fold in BtrN, compared to
anSMEcpe and MoaA. Auxiliary cluster domains in BtrN (green) compared to (A) anSMEcpe
(tan), and (B) MoaA (grey). Black spheres denote iron ligating cysteine positions. The p1', p2',
and a2' secondary structure elements are conserved in the three proteins (see Figure IV.10).

A.
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Figure IV.8. Substrate binding in the AdoMet radical dehydrogenases. (A) Residues
contacting DOIA (grey) in BtrN (colored as in Figure IV.3). Red dashes indicate the separation
of the 5' position of AdoMet and the DOIA hydrogen abstraction site, C3. (B) 2F,-F, composite
omit electron density countered at 1.0 o for AdoMet and the AdoMet cluster and (C) substrate.
(D) An overlay of the BtrN (colored as in A) and anSMEcpe (tan) active sites. AnSMEcpe
sidechains are in parentheses. The 5' position of AdoMet and hydrogen abstraction positions of
the two substrates, DOIA and substrate peptide, are in spheres.
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Figure IV.9. Possibility of alternative DOIA conformations in BtrN. (A) DOIA as found in the
BtrN active site (colored as in Figure IV.8, C3, C4, and C5 positions labeled). Hydrogen bonds
between the E9 and the C3-OH and C4-OH of BtrN (both 2.7 A) are shown in black dashes. The
C3-hydrogen is modeled in sticks (white) and the distance between it and the 5' carbon of
AdoMet is indicated by red dashes. (B) DOIA with a partial boat pucker is modeled into the
DOIA active site. The C3 positions of both DOIA molecules are equivalent. Hydrogen bonding
to E9 is no longer observed and clashing interactions between F188 and the C5-OH, and
between Y90 and the C4-OH positions are now present.
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Figure IV.10. Auxiliary cluster sequence motifs. (A) Topologies of the Auxiliary cluster
domains in BtrN, MoaA, and anSMEcpe (iron ligating cysteines in orange; MoaA substrate in
yellow). (B) C-terminal domains in five auxiliary FeS cluster containing AdoMet radical
proteins. Orange circles represent characterized (BtrN, MoaA, anSMEcpe) or possible (Alba,
SkfB) iron ligating cysteine positions. In green are structural elements found in BtrN, MoaA,
and anSMEcpe. In red are conserved elements of the SPASM and twitch domains (17).
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Figure IV.11. The AdoMet radical twitch/SPASM cluster. (A) The SPASM/ twitch cluster with
twitch members (BtrN, MoaA, SkfB) and SPASM members (anSMEs, AlbA) labeled. (B) The
entire superfamily (nodes are enzymes with 40% sequence identity) using a threshold cut-off of
an E-Value of 1 x 102. Figure generated using Cytoscape (48). A more detailed figure of the
superfamily can be found in Figure IV.12.
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Figure IV.12. The AdoMet radical superfamily. A modification of the Enzyme Function
Initiative's Radical SAM Superfamily Workshop materials
(http://enzymefunction.org/resources/workshops). The entire superfamily (nodes are
enzymes with 40% sequence identity) is shown using a threshold cut-off of an E-Value of 1 x 10-
2. Figure generated using Cytoscape (48).
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Chapter 5.

Lessons from Recent Structures of AdoMet Radical Enzymes

V.I SUMMARY

In our investigations of AdoMet radical dehydrogenases, we have come across two
very important features of the AdoMet radical fold. One is the SPASM/twitch architecture
for binding auxiliary iron sulfur clusters in AdoMet radical enzymes. The prevalence of
these enzymes, which are distinct from other auxiliary cluster containing AdoMet radical
enzymes, suggests that the feature will be widely represented in the discovery of more and
more AdoMet radical enzymes in secondary metabolism. This architecture and its use in
predicting AdoMet radical mechanisms are discussed in the first section of this chapter.

Secondly, the enzyme BtrN presents a large deviation in the traditional (p/a) partial
TIM barrel fold thought to be conserved in the AdoMet radical enzymes. Another enzyme
recently characterized in the Drennan group, QueE, represents another departure from the
core fold. The abridged nature of the AdoMet radical fold in these enzymes helps us
understand how AdoMet radical enzymes that seem to be too short to support the (p/a)6fold
can support AdoMet radical chemistry. These results and predictions are discussed in the
second section of this chapter.

V.I Auxiliary clusters in AdoMet radical proteins

With the addition of the dehydrogenases, a significant number of auxiliary cluster

containing AdoMet radical enzymes have been structurally characterized. These auxiliary

clusters carry out a variety of functions (Figure V.1) (1). In a sulfur insertion reaction, BioB

(containing an auxiliary [2Fe-2S] cluster) sacrificially donates a sulfur atom from its auxiliary

cluster to substrate in the formation of biotin (2-4). Similarly, LipA contains an auxiliary [4Fe-

4S] cluster, providing two sulfur atoms to form its vitamin product, lipoic acid, also in a

sacrificial manner (5-7). Methylthioltransferases, as their name suggests, transfer a methylthiol

group to macromolecular substrates including the S12 ribosomal protein (catalyzed by RimO)

and tRNA-A37 (catalyzed by MiaB) (8, 9). Recently it has been shown that these enzymes do not

use a sacrificial mechanism, instead they use their auxiliary [4Fe-4S] cluster to directly ligate a

yet uncharacterized sulfur containing substrate for transfer to their macromolecular cosubstrate

(10). Other auxiliary cluster containing AdoMet radical enzymes include glycyl radical

activating enzymes (Hpd-AE, Gdh-AE, and BssD) and hydrogenase cofactor maturating

enzymes (HydE and HydG) (1). Our understanding of this latter set of enzymes lacks either the

structural or mechanistic information for a detailed analysis of auxiliary cluster function.

Another subclass, which we have termed the SPASM/ twitch subclass, harbors Aux clusters in
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very similar structural folds while catalyzing many different reactions. This subclass is the main

focus of Chapters 3 and 4.

Contained in this subclass are the SPASM proteins, encompassing an AdoMet radical

subclass that is thought to modify ribosomally translated peptides. Characterization of SPASM

containing operons could thus lead to the identification of novel natural products (11). The

subclass is named for its biochemically characterized founding members, AlbA (12, 13), PqqE

(14), the anaerobic sulfatase maturating enzymes (anSMEs) (15, 16), and MtfC (17), involved in

subtilosin A, PQQ cofactor, anaerobic sulfatase, and mycofacticin maturation, respectively.

Based on work done by Benjdia et al. (16), the SPASM subfamily was defined by Haft and Basu

(11) as 281 AdoMet radical enzymes with a C-terminal CX915GX4C-gap-CX2CXCX3C-gap-

C motif and assigned the accession TIGR04085. Because of this sequence conservation, the

subfamily clusters together in representative diagrams of the AdoMet radical superfamily

(Figure V.2). Members of this subfamily are thought to use their 7-cysteine motif to bind two

auxiliary (Aux) [4Fe-4S] clusters, one fully protein ligated and one with an open coordination

site (11). Based on the redox chemistry performed by the biochemically characterized SPASM

members, this open coordination site is hypothesized to ligate substrate to aide in transfer of

electrons to or from peptide substrate intermediates.

As discussed in Chapter 3 (18), we have shown that direct ligation is not a function of

the Aux clusters in the SPASM protein anSMEcpe. AnSMEs contain a conserved cysteine

upstream of the SPASM domains that provide an additional ligand to the active site Aux [4Fe-

4S] cluster, resulting in both Aux clusters having full protein ligation (both in the presence and

absence of substrate). This result, however, does not preclude other SPASM members from a

direct ligation function, especially as AlbA and others do not contain an eighth cysteine in their

C-terminal Aux cluster domains. It will be very interesting to discover whether these enzymes i)

do indeed have an open Fe coordination site for substrate ligation, ii) if they use another amino

acid for ligation, as in BioB, which has an arginine ligand (19), or iii) if they use a cysteine that is

distal in primary sequence from its SPASM motif to provide the last Aux cluster ligand.

In our structural characterization of the 7-cystiene motif in anSMEcpe, a few surprising

results emerged. First, the active site Aux cluster (Aux I) is ligated by three cysteines

surrounding a beta hairpin motif. This beta hairpin extends the N-terminal end of the AdoMet

radical partial TIM barrel (see Chapter 1). Follow these ligation sites and a helical region that

seals Aux I from solvent, the CX2CX5CX3C provides three cysteine ligands to the second Aux

cluster (Aux II). Interestingly, the fourth cysteine of the CX2CX5CX3C motif crosses back over the

domain to provide the final Aux I ligand. After this site, the final cysteine of the SPASM domain
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ligates Aux II. Because of the sequence homology of the SPASM domain members (see Chapter

3), we believe that this intricate cluster binding architecture will be a conserved feature of

SPASM members. Also, the first iron ligating cysteine in anSMEs, the 'non-SPASM' cysteine, is

a ligand to Aux I, the active site Aux cluster. If future members of the SPASM subclass do

indeed use an Aux cluster for substrate ligation, the anSMEcpe architecture is consistent with

this ligation site being proximal to the active site.

We have also characterized the structure of BtrN (Chapter 4). While this enzyme

catalyzes the same chemistry as anSMEcpe (Figure V.1) (20, 21), it harbors only one Aux cluster

and so, is not a member of the SPASM subclass (22). Sequence clustering reflects this difference

and places BtrN on the outskirts of a large cluster comprised of BtrN, MoaA (see below), and

the SPASM proteins. This sequence cluster is separate from the other Aux cluster containing

AdoMet radical enzymes outlined above. We find that structural elements surrounding active

site Aux clusters in the anSMEcpe and BtrN structures overlay very well (RMSD 1.1 A). These

structurally similar elements include the beta-hairpin that sits between cysteine ligand sites and

the alpha helical region, which precedes the CX2CX5CX3C motif in anSMEcpe. Generally,

sequence conservation is limited in this region, except for the beta hairpin motif itself, where a

conserved glycine sits in the i+3 position of the turn. This Gly residue is related to [4Fe-4S]

ligating cysteines by a CX9 _15GX4C motif that is strictly conserved in the SPASM subfamily (see

Figure 111.2).

MoaA, another structurally characterized AdoMet radical enzyme, also contains this

beta turn around an Aux cluster. This protein has some sequence homology to anSMEcpe and

BtrN and like BtrN, MoaA only contains one Aux cluster. It houses this cluster using the same

beta-hairpin and alpha helical region as in BtrN and anSMEcpe, but does not have any iron

ligating cysteines after the domain (23). As MoaA and BtrN share the half-SPASM motifs out

lined above, we have classified their Aux cluster binding domains as 'twitch' domains. MoaA is

also part of the sequence cluster containing BtrN and anSMEcpe, so we have designated this

large sequence cluster, the SPASM/twitch cluster (Figure V.2). Interestingly, MoaA has only

three protein ligating cysteines, using the unique iron position on its Aux cluster to ligate

substrate (24), giving precedence to the SPASM/twitch enzymes using Aux clusters for direct

substrate ligation. MoaA also catalyzes a redox reaction (25, 26).
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Predictive Value of SPASM/twitch architecture

We now have a set of three AdoMet radical enzyme structures with Aux clusters bound

in SPASM/twitch domains. We also have a tool in the Clustal mapping of the AdoMet radical

superfamily, which correlates well with our structural data. While the sequence mapping

contains a broad set of enzymes, we have structural data from three edges of the SPASM/ twitch

cluster (Figure V.2). Because of this sequence disparity, we believe our set of SPASM/ twitch

enzymes will be among the most diverse in the cluster. Despite this, however, the Aux cluster

domains of the three enzymes show a high degree of structural conservation (Chapter 4),

leading us to believe the Aux cluster folds of BtrN, anSMEcpe, and MoaA will be a feature of a

majority of SPASM/twitch proteins. Of the ~ 3,500 AdoMet radical superfamily nodes, which

contain unique sequences with 40% sequence identity, the SPASM / twitch cluster accounts for

1,063. Hence, we believe that the SPASM/twitch enzymes will comprise a large segment of the

AdoMet radical diversity. Consistent with this hypothesis, all characterized SPASM/ twitch

enzymes are involved in secondary metabolism. We have only begun scratching the surface of

this interesting subclass.

One area of recent focus in this family is the thioether bond formation family. AlbA (12)

and SkfB (27), members of this family, catalyze identical linkages of a cysteine to an up or

downstream Ca position in the maturation of the subtilosin A and sporulation killing factor,

two natural products generated from ribosomally translated peptide scaffolds (Figure V.1).

Following hydrogen abstraction from the Ca position, formation of a covalent bond with this

cysteine necessitates a one electron oxidation and deprotonation of the sulfur position. The

parallels in this system to the dehydrogenases (deprotonation and one electron oxidation) again

made direct ligation an attractive hypothesis (12, 27). AlbA contains seven cysteines in a SPASM

motif (and is a founding member of the SPASM subfamily). SkfB, however, only contains five

cysteines in its C-terminal domain. An alignment with the structurally characterized members

of the SPASM/twitch subclass suggests that SkfB will contain a twitch domain like that of

MoaA and BtrN (Figure IV.10). These analyses suggest that, like the AdoMet radical

dehydrogenases, the thioether bond forming enzymes will use both the SPASM and twitch

architectures to catalyze identical reactions.

Using the structures of BtrN, anSMEcpe, and MoaA, we are in a position to comment on

this hypothesis from a structural perspective. Because of the conserved nature of AdoMet

cluster - Aux cluster distances, we can expect the distance between the two clusters to be - 16 A
in both AlbA and SkfB. Using these three examples of SPASM/twitch domains we can further

estimate the distance from hydrogen abstraction site to Aux cluster to be ~ 9.4 A (an average of
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9.6, 8.6, and 10.1 A in BtrN, anSMEcpe, and MoaA, respectively) (Figure V.3). In AlbA and SkfB,

after subtracting for a typical S-Fe bond distance, we are left with - 7 A for the distance from the

Ca hydrogen abstraction site to the directly ligated cysteinyl sulfur position. In MoaA, where a

molecule of GTP is both the hydrogen abstraction site (2' hydroxyl) (25) and the Aux cluster

ligation site (N1 of guanosine base) (28), this separation is both intramolecular and distal (8.1 A,
Figure V.3) (24). Manipulation of this arrangement to bring the hydrogen abstraction site

directly between the 5' position of AdoMet and the Aux cluster, only decreases this distance by

- 1 A (Figure V.3). Without an unprecedented conformational change accompanying AdoMet

radical activity, it would seem that a cysteine ligand directly bound to an Aux cluster would be

too far from a Ca hydrogen abstraction site to participate in chemistry. If further studies find

that AlbA, SkfB, or any other SPASM/twitch family protein do indeed use a direct ligation

model, we hypothesize that this function will only be an anchoring one; any directly bound

ligand seems to be structurally prohibited from participating in chemistry initiated at the

AdoMet cluster.

We can contrast these predictions with auxiliary cluster containing AdoMet radical

enzymes in different families where auxiliary clusters are proven to be involved in chemistry.

For example, in the sulfur insertion enzyme BioB, a dethiobiotin radical intermediate acquires a

sulfur atom from the bridging position of its auxiliary [2Fe-2S] cluster (29), which is ligated by

three cysteines residing in the middle of p2, p3, and p5 strands and an arginine that sits outside

of the AdoMet radical fold (19). The distance between this hydrogen abstraction site and the

Aux cluster in this system is 4.6 A, - 5 A closer than in the SPASM/twitch architecture (Figure

V.3). The structure of RimO, a methylthioltransferase (MTT), was also recently solved. Along

with presenting the structure of RimO, the authors determined that the sulfur source in MTTs is

not the Aux cluster. The sulfur donor remains undetermined, but is suggested to bind at an

available coordination site on the 3-cysteine ligated Aux cluster, as hypothesized for the

thioether bond forming enzymes (10, 12, 27). In RimO, however, the FeS clusters are 8.4 A apart,

which is even closer than in BioB (12.0 A) and nearly twice as close as in the SPASM/twitch

architecture (the RimO structure does not contain AdoMet or cosubstrate) (Figure V.3). The

structures of BioB and RimO display AdoMet and Aux clusters positions that agree with studies

suggesting that these Aux clusters play a direct role in chemistry. The distances between the

two clusters are much smaller than distances observed in the SPASM/twitch fold, consistent

with the idea that while some AdoMet radical enzymes employ auxiliary clusters in catalysis,

cluster separation in the SPASM/twitch architecture appears too great for this function.
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V.111 Abridged AdoMet folds

With few exceptions, the core partial TIM barrel architecture of AdoMet radical fold is

consistent among the structurally characterized AdoMet radical enzymes (see Chapter 1) (30,

31). Structural motifs for AdoMet cluster and AdoMet binding are consistent throughout the

family and allow us to expect certain features of the AdoMet radical when solving new

structures. Interestingly, these motifs have very little sequence similarity between family

members, as they rely primarily on peptide backbone amides. The exception to this backbone

based interaction pattern has traditionally been in the CX3CX2C motif itself, a commonality

among AdoMet radical enzymes that led to the initial identification of the superfamily (32).

What we thought we knew about AdoMet radical folds has been put to the test recently,

especially in the characterization of BtrN (Chapter 4) and 7-carboxy-7-deazaguanine synthase,

QueE, from Burkholderia multivorands (Daniel Dowling, unpublished). These two enzymes have

provided two distinct exceptions to the AdoMet radical fold, both of them involving abridged

AdoMet radical domains that are able to initiate AdoMet radical chemistry in the same manner

as their more traditional AdoMet radical cousins. Additionally, QueE has expanded our

understanding of the very nature of the AdoMet radical CX3 CX2 C sequence motif itself,

presenting the possibility that the AdoMet radical superfamily is much larger than previously

thought.

The (p/a)6 partial TIM barrel fold thought to be conserved in AdoMet radical proteins,

uses 215 ± 12 residues to complete the fold (from the first residue of P1 to the last residue of a6)

(Figure V.4). Some AdoMet radical proteins contain this partial barrel within the context of a

full (P / a)8 TIM barrel, while the majority use additional structural elements or substrate binding

partners to seal the interior of the partial barrel from solvent. Prior to this work, however, all

characterized AdoMet radical protein structures had at least six p strands and six a helices. Now

we see that BtrN, as discussed in Chapter 4, lacks 25% of this partial TIM barrel architecture by

completing its AdoMet radical domain in a p5/a 4 partial TIM barrel, omitting the last two

helices and a strand from a traditional AdoMet radical fold (Figure V.5.). QueE uses a different

tactic. In this enzyme, all six strands of the barrel are conserved, however, instead of using

antiparallel helices to connect each strand, helices 3-5 are substituted by loops, requiring far

fewer residues to continue the parallel beta sheet core (Figure V.5.). The results of these

alterations are that BtrN and QueE complete their AdoMet radical folds in 152 and 162 residues,

respectively, compared to the typical 215 ± 12 (Figure V.4).
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These abridged AdoMet radical folds preserve a very similar primary coordination

sphere around AdoMet by conserving the four AdoMet binding motifs described previously,

including the 'GGE' motif, the ribose motif, the 'GXIXGXXE' motif, and the p6 motif (see

Chapters 3 and 4 for detailed descriptions of these motifs). Because none of these motifs are

found in helical regions of the partial barrel, the fact that QueE lacks 3 helices of the AdoMet

radical fold does not prevent the enzyme from using all four motifs. In BtrN, a small turn after

p5 is able to provide very similar 'GXIXGXXE' and P6 motif contacts using many fewer residues

than required by the traditional AdoMet radical fold (see Chapter 3).

The lack of sequence similarity of the structurally characterized AdoMet radical

enzymes makes it difficult to predict other enzymes that will have an abridged AdoMet radical

domain. DesII could have an abridged AdoMet radical domain because of its sequence

similarity to BtrN (see Chapter 4). In addition, the class III ribonucleotide reductases (RNRs) are

also expected to have an abridged fold due the drastically smaller sizes of these enzymes

compared to other AdoMet radical enzymes. E. coli class III RNR, NrdG, is 156 residues

(compared to 250 and 210 for BtrN and QueE, respectively) and was hypothesized to have an

(p/a)4 half-TIM barrel due it this drastically abridged nature (33). With the structures of BtrN

and QueE, our knowledge of the AdoMet radical family has since expanded. With these two

structures as reference models in the I-TASSER server (34), we have generated two NrdG

models (Figure V.5). Both models contain a p1' strand N-terminal to the AdoMet radical fold,

due to the similarity of NrdG to QueE and another AdoMet radical enzyme with a similar

extension, pyruvate formate lyase activating enzyme (PFL-AE) (35). As the CX3CX2C motif

starts with C26 in NrdG, there is sequence space for this N-terminal extension. Both NrdG

models contain cysteines in a loop following 11, in a conformation that supports binding a [4Fe-

4S] cluster. In addition, both NrdG models adopt traits from BtrN and QueE. First, like BtrN,

the AdoMet radical fold of NrdG terminates after the fifth AdoMet radical beta strand (not

including the $1' strand, colored in grey in Figure V.5).

Additionally, like QueE, the NrdG models are missing helical regions. Instead of a BtrN-

like P5 / a4 fold, the NrdG model has a p5 / a3 structure with the a4 helix substituted by a loop. The

AdoMet cluster and AdoMet cofactors fit very well into the NrdG model. Further, the 'GGE'

motif (GGD in NrdG, Figure V.5.D, green spheres) and the ribose motif (T105, Figure V.5.D,

yellow spheres) can be assigned based on their sequence and positioning in the model. The p5
extension, which we can predict will contain both the 'GXIXGXXE' and p6 motif AdoMet

interactions (as in BtrN), will require adopting a different fold in a true NrdG structure as their

predicted positions (in both BtrN and QueE derived structures) don't to complete the AdoMet
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binding pocket. It will be interesting to see if the architecture of the loop following P5 in BtrN is

conserved in other abridged AdoMet radical proteins. Even with a restructuring of P5, however,

the active site of the NrdG model is highly solvent exposed. This result is expected, as the

function of the enzyme is the activation of the catalytic subunit of RNR. Binding to this partner

protein is thought to seal the active site from solvent, as in the case of PFL-AE binding to its

partner protein, pyruvate formate lyase (35).

The structures of QueE and BtrN have expanded the possibilities of AdoMet radical core

folds. By being able to complete their AdoMet radical folds in about 60 residues less than other

members, BtrN and QueE have provided examples of how enzymes that are smaller than the

traditional 215 residue minimum can support AdoMet binding. QueE from B. multivorands is

also unique in its AdoMet cluster binding motif. Instead of binding this cluster in the traditional

CX3CX2C motif, one of the few unifying sequence motifs in the family, QueE binds its AdoMet

cluster in a CX14CX2C (Figure V.4). This insertion between the first two iron ligating cysteines

forms a small helix above the AdoMet binding loop, which leaves the core of the AdoMet fold

intact (Figure V.5). QueE from Bascillus subtilus (36) does not contain this insertion (Figure V.4),

suggesting that the helix is not involved in the QueE mechanism. While the function of the helix

is still undetermined, its existence raises the possibility of large numbers of AdoMet radical

enzymes that have not yet been identified because their AdoMet cluster binding sequences

deviate from the expected CX3CX2C motif.

V.IV CONCLUSION

The enzymes anSMEcpe and BtrN use their [4Fe-4S] cofactors both to bind a substrate

(AdoMet) and to facilitate electron transfer. While we have disproved the hypothesis of direct

substrate ligation to an Aux cluster in the dehydrogenases, we already have an example in

MoaA of a SPASM/twitch enzyme that has this feature. Because of the diversity in the

SPASM/twitch cluster, we believe there is a high likelihood that another protein in this

sequence cluster uses an available coordination site on an Aux cluster for direct ligation to

substrate. However, as in MoaA, we do not believe this feature will participate in chemistry, as

was hypothesized for the dehydrogenases and remains hypothesized for the thioether bond

forming enzymes. This conclusion is mainly due to the large difference in AdoMet - Aux cluster

distances in the SPASM/twitch architecture compared to systems proven to use their Aux

clusters in catalysis.
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Recently, we have also seen exceptions to the AdoMet radical partial TIM barrel core

fold. It seems that these exceptions will be present not only in AdoMet radical enzymes whose

sequences are too short to include all facets of the AdoMet radical fold, but larger enzymes,

such as BtrN and QueE, in which predicting these abridged features becomes much more

difficult. As more structures of AdoMet radical enzymes become available, the SPASM/ twitch

Aux cluster architecture and modifications on the core TIM barrel fold hypotheses will be put to

the test. Either way, the rate at which these structures are becoming available will make the

upcoming years a fascinating time in the AdoMet radical structure field.
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Figure V.1. AdoMet radical enzyme reactions requiring auxiliary cluster(s).
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Figure V.2. Sequence space diagram showing the relationship of Aux cluster containing
AdoMet radical enzymes in the superfamily. Sequence mapping of the auxiliary cluster
contain enzymes discussed in this chapter and Figure 1, generated using an E = 10- E-value
cutoff in Clustal (37). SPASM enzymes that are not biochemically characterized are in green. For
more complete representations of the superfamily, see Figures 111.14 and IV.12.
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Figure V.3. Auxiliary cluster positions in SPASM/twitch enzymes. Hydrogen abstraction
position to Aux cluster distances in (A) BtrN (9.6 A), (B) anSMEcpe (8.6 A), and (C) MoaA (10.1
A) are indicated by black dashes. (D) Model of AlbA active site where the distance from
hydrogen abstraction site (Ca carbon of a glycine residue) to an Aux cluster bound cysteine
residue is indicated by red dashes (6 A in the model). In the non SPASM/twitch enzymes (E)
BioB and (F) RimO the two FeS clusters are much closer (AdoMet is modeled into the RimO
structure, which lacks both AdoMet and substrate). AdoMet to Aux clusters distances in BtrN,
anSMEcpe, MoaA, BioB, and RimO are 15.8, 16.8, 16.3, 12.0, and 8.4 A, respectively.
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Figure V.4. Structure based sequence alignment of AdoMet radical folds. Strands in yellow,
helices in cyan, AdoMet binding cluster cysteines in red, residues interacting with AdoMet in
green, residues interacting with substrate in blue, residues interacting with both AdoMet and
substrate in brown, residues interacting with an additional cofactor (i.e. an FeS cluster) in pink.
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Figure V.5. Abridged AdoMet radical folds of QueE, BtrN and NrdG. (A) The QueE AdoMet
radical fold is shown in rainbow from N-terminus (blue) to C-terminus (red). N-terminal beta
strand and C-terminal helical region extensions are in grey. AdoMet and the AdoMet cluster are
shown in sticks. (B) BtrN, colored similarly to (A). NrdG models generated using (C) BtrN and
(D) QueE as reference models. In (D), AdoMet and the AdoMet cluster are modeled into the
predicted structure, which has AdoMet cluster ligating cysteines and the 'GGE' (green spheres)
and ribose (yellow sphere) AdoMet binding motifs in positions consistent with other AdoMet
radical enzymes. The 'GXIXGXXE' and P6 motifs will most likely be housed in the P5 extension,
as in BtrN (see Figure IV.6). These motifs could not be assigned from the predicted structure.
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