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ABSTRACT

In Chapter 1, we seek to understand the relation between liquidity and market imper-
fections from two dimensions: 1) Across liquidity measures, we compare the influence
of imperfections on two commonly used measures, Kyle's lambda and price reversal; 2)
Across imperfections, we study the interaction between two sources of market imper-
fection, information asymmetry and participation cost. We show that the two liquidity
measures may be affected in opposite directions by the same imperfection, or may not
capture liquidity changes at all; imperfection interactions can cause the market to appear
"less illiquid" than single-imperfection benchmarks. Our model also suggests that imper-
fections and liquidity shocks may influence expected returns in opposite directions, which
complicates the liquidity-asset price cross-sectional relation.

In Chapter 2, joint with Andrew Lo, we perform an empirical comparison of systemic
risk measures. In a recent survey paper, Bisias et al. (2012) provide a summary of 31
proposed measures for systemic risk in the financial system. In this paper we examine a
subset of these measures to determine their time series properties before, during, and after
the Financial Crisis of 2007-2009. By comparing their empirical properties over time, we
hope to identify which measures were most informative for navigating through the 1998
and the 2007-2009 crises. By constructing rolling-window estimates of these measures
using only prior data, we control for the most blatant forms of look-ahead bias to assess
the value of these measures as "early-warning signals". Finally, we explore the possibility
of combining these measures to produce even more informative indicators of systemic risk.
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In Chapter 3, joint with Andrew Lo and Silvia Sgherri, we construct two global systemic
risk indicators as well as a panel of regional indicators, using monthly hedge fund data.
Results show that our geographic-focus global indicator provided contemporaneous char-
acterization of financial distress; the hedge fund style-category global indicator generated
early-warnings for the 2007 quant crisis and the 2011 European debt crisis, and typically
led the geographic-focus indicator by 1~2 months. In addition, we use Granger causality
network to visualize the interconnectedness of regional risks and track the transmission
of crisis over time.

Thesis Supervisor: Andrew Lo
Title: Charles E. and Susan T. Harris Group Professor

Thesis Supervisor: Jiang Wang
Title: Mizuho Financial Group Professor
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Chapter 1

Liquidity, Asymmetric Information,
and Endogenous Participation Costs

1.1 Introduction

1.1.1 Background and Preview

The presence of financial imperfections often hinders market participants' willingness

or ability to trade, which reduces the amount of liquidity available in the market.

For example, when there's information asymmetry with respect to the fundamen-

tals of a risky security, the buyer of the security may attribute the selling pressure

to unfavorable private information that his counter-party may have, and therefore

requires additional compensation for bearing the risk; on the other hand, the seller

may also be reluctant to enter the market due to concerns that the orders may reveal

his motive and private information to the market, and causes unfavorable movements

in prices. Additional trade-offs for market participants may include: participation

itself is costly; the difficulty to quickly locate a counter-party may force traders give

price concessions; and so on. The impact of each imperfection on liquidity has been

studied extensively in a large and growing literature. However, as pointed out by

Vayanos and Wang (2009), existing models of market imperfection mostly focus on

one specific type of imperfection, because the modeling assumptions of one imper-

fection often rules out the impact of another. For example, the prevalence of noise

traders and risk-neutral market makers in asymmetric information models eliminates

risk-sharing motives that are central in other trading-cost models. In reality, multi-

ple imperfections are likely to be at work simultaneously, and empirical evidence also
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suggests that modeling each imperfection separately may not be sufficient. For exam-

ple, Spiegel (2008) argues that cross-market liquidity patterns cannot be explained

by a single sources of market imperfection. These questions calls for a modeling

approach that incorporates multiple imperfections under a fixed set of assumptions.

A closely related issue is how to define "liquidity", which can not be observed

directly but rather needs to be proxied by other market measures. This question is

central in the empirical study of the cross-sectional relation between liquidity and

asset prices. A positive return-illiquidity relationship was proposed by Amihud and

Mendelson (1986) and since then has been examined in a number of empirical studies.

Illiquidity measures employed in these studies at least include: (1)A as proposed by

Kyle (1985), which measures the price sensitivity to signed order flow, employed in

for example Amihud and Mendelson (1986), and Brenna and Subrahmanyam (1996).

(2) Price reversal -y, as proposed by Pastor and Stambaugh (2003), which is minus

the auto-covariance of prices. (3) Bid-ask spread, for example in Roll (1994). These

measures capture different aspects of illiquidity, and raises the question of whether

the choice of illiquidity measure will affect the cross-sectional relation between illiq-

uidity and expected returns.

To address these questions, we start by developing a unifying model that nests

two types of imperfections, asymmetric information and participation cost, and in-

vestigate the behavior of two illiquidity measures measures, A and -y. Following

Vayanos and Wang (2009), we construct a three-period rational expectations equi-

librium model. All agents are risk-averse and born identical in Period 0. They are

endowed with a fixed share of of stocks which pays off at the end of their life-span.

Between Period 0 and 1, nature split agents into two types who faces different endow-

ment, information, and trading costs. Liquidity demanders will receive a non-traded

endowment correlated with the stock's payoff. They also have the opportunity to

purchase private information on the stock's payoff and trade their assets in Period 1

by paying a fixed cost. The fraction y of traders who decides to participate will be

determined endogenously. Liquidity suppliers do not receive the non-traded endow-

ment and will not be able to purchase private information either; they can, however,

trade costlessly at all time. We study the relation between market illiquidity and

market imperfections from two dimensions: across illiquidity, and across imperfec-

tions. In addition, since in this model endogenous trading needs are generated not

only by imperfections but also by the non-traded risks, we also study the impact of

liquidity shocks on illiquidity measures, and compare the two underlying causes of

14



liquidity trades.

Tables 1.1 and 1.2 summarize the impact of each imperfection and liquidity shock

on trader's participation rate, illiquidity measures, and expected return. Results in

(cyan) color are new. In Table 1.1 we study the two degenerated models where one

type of imperfection is set to zero. This allows us to compare our result to those

from existing literature. In Table 1.2 we study the general model that incorporates

both imperfections.

From the tabulated results we can at least make the following observations.

Firstly, imperfections do not always increase illiquidity measure, and the relation

between illiquidity and imperfection can even be non-monotonic. For example, illiq-

uidity A does not capture the increasing participation cost when it is the only im-

perfection in the market, price reversal -y does not change monotonically with infor-

mation asymmetry a . Secondly, the two illiquidity measures can be influenced in

opposite directions by the same imperfection, or by liquidity shock. In particular, in

the general model where the participation rate p is interior, both imperfections as

well as liquidity shock induces opposite movements in A and y. Thirdly, imperfec-

tions do not always increase expected return, and the correlation between illiquidity

measures and expected return is not always positive.

p A Return

O2 - +,p1 +,p=1 +,pi=

+-1,p<1 ±,p<1 +,p A IL

y A 7 Return

- O,p=1 O,pL=1 O,p=1
0,p<1 -,p.<1 -,pL<1

(a) Degenerated model with only asymmetric in-(b) Degenerated model with only participation
formation. cost.

Table 1.1: Impact of imperfections and liquidity shock in degenerated mod-
els. The general dual-imperfection model is collapsed into two benchmark cases
where one type of imperfection is set to zero. A is price sensitivity to signed order
flow, -y is minus auto-covariance of prices, "return" is the ex-ante expected return of
the stock between Periods 0 and 2. Results in (cyan) color are new.
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p A 7 Return

o - +,p=1 ±,p=l +,py=1

+,p<1 -,p<1 +,p<1

- +,pL=1 0,[p=1 0,p=1

p 2 -
cTi + - ++

Table 1.2: Impact of imperfections and liquidity shock in the general dual-
imperfection model. The general model incorporates both types of imperfections.
A is price sensitivity to signed order flow, 7 is minus auto-covariance of prices, "return"
is the ex-ante expected return of the stock between Periods 0 and 2. Results in (cyan)
color are new.

1.1.2 Previous Literature

First of all, our model is an extension of Vayanos and Wang (2009), which estab-

lishes a unified framework for studying a wide range of market imperfections without

making differed sets of assumptions that are specific to each imperfection. In the

literature, models of asymmetric information usually assume noise traders or deep-

pocketed risk-neutral market makers, whereas models on trading costs often assume

risk aversion and generate trading needs through risk-sharing motives. The Vayanos

and Wang framework allows us to compare the effects across imperfections, holding

constant other assumptions such as trading motives, and risk attitudes.

In this exercise, we extend their set-up by nesting asymmetric information and

participation cost into a dual-imperfection model, with the following differences: (1)

the endogenous participation decisions are made only by liquidity demanders and

not liquidity suppliers; (2) The correlation between stock payoff and the non-traded

endowment is non-perfect; (3) Informed traders receive incomplete, but perfect infor-

mation on the stock's payoff. (4) We solve the model under more general parametric

values which allows for corner solutions in the participation equilibrium. As will be

described in Section 5, a degenerated version of our model coincides with the asym-

metric information benchmark in Vayanos and Wang (2009) and is also consistent

with their results, our result for participation cost is new and can be explained by

the asymmetric liquidity responses from the buy side and sell side; our result for the

dual imperfection model is new.

Our set-up is also closely related to the classic model in Grossman and Stiglitz
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(1980) because we have the same information structure where agents endogenously

choose to become informed or uninformed through the purchase of private signals,

and the uninformed agents infer the private signal through observing the price and

the participation decisions of other agents. The difference is that Grossman and

Stiglitz (1980) models non-informational trading through exogenous shocks to the

asset supply, while we model it through an endowment received by the informed. In

addition, we also study the equilibrium asset price before the participation equilib-

rium in order to study the ex-ante effects of market imperfections.

A key intuition in our model is that costly participation may deter informed

agents from participating and consequently revealing private information. In this

regard, our model is related to Cao, Coval, and Hirshleifer (2002) where sidelined

investors facing set-up cost chooses to delay trading, which triggers the blockage

of information transfer and the market price does not fully reflect all the informa-

tion available. Instead, trading endogenously generates the gradual incorporation of

existing information as well as higher participation of sidelined investors. By com-

parison, we do not focus on the dynamic interaction between the participation cost

and information asymmetry. Rather, we only analyze the impact of partial revelation

on (static) illiquidity measures.

Finally, most liquidity models in the literature focus on the endogenous supply

of liquidity and its price impact, whereas in this exercise we mainly study the en-

dogenous demand of liquidity. Our perspective and solution concept is thus similar

to Allen and Gale (1994), and Huang and Wang (2009). In Huang and Wang (2009),
the aggregate order imbalances arise because costly participation generates the non-

synchronization between liquidity demanders and suppliers; while in this exercise,

we assume an aggregate liquidity shock and derive trading needs as a consequence

of hedging demand.

1.2 The Model

We develop an inter-temporal generalization of Grossman and Stiglitz (1980) and in-

corporate two market imperfections, information asymmetry and participation cost.

We describe the economy and information structure in Section 2. Section 3 solves

the REE of the model by backward induction in the general model, as well as in

two benchmark cases where one type of imperfection is removed from the general

set-up. In Section 4 we construct two illiquidity measures. Section 5 analyzes the
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comparative statistics and compare the intuition in the dual-imperfection model to

individual single-imperfection benchmarks. Section 6 concludes.

1.2.1 Security Market

The model has three periods: t = 0, 1,2. A stock is traded in a competitive asset

market. It yields a risky dividend D = v + n at time t = 2, where v is the stock's

fundamental value, and n is the idiosyncratic noise. v and n are normally distributed

and mutually independent. v has a mean of ) and volatility of ov; n has a mean of

zero and volatility of o--,. Let St denote the ex-dividend stock price at time t.

In addition, there is a short-term risk-free bond, which yields zero interest rate.

1.2.2 Agents

At t = 0, a set of agents are born who live for three periods until t = 2. Agents are

born identical and endowed with # of the stock which they can invest in the stock

and the bond. They sell all their assets for consumption at time t = 2. Agents have

CARA utility:

- exp (-aC 2 ) (1-1)

where C2 is consumption in Period 2, and a is the coefficient of absolute risk aversion.

Agents are split into two types who will face different endowment and trading

costs. The first type of agents are "traders" who receives a non-traded payoff E at

the end of his life-span, given by

E = Zn (1.2)

where Z is a normal random variable with a mean of zero and a volatility of o-z. Z

is independent with v and n. The non-traded payoff is therefore correlated with the

stock's payoff through the idiosyncratic noise. The rest of the agents are "market

makers" who do not receive or observe the non-trade payoff. The population weight

of the traders and the market makers are ir and 1 - -r respectively.

Given the correlation between the non-traded payoff and the stock payoff, traders

want to adjust their stock positions in order to hedge against the non-traded payoff

and share risk with others. Traders can decide whether or not to participate in the

stock market at a cost. The population of traders who participate is pir, where p

will be determined endogenously. Market makers are present at all times to provide

liquidity for others. We will refer to participating traders as "liquidity demanders",
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and market makers as "liquidity suppliers".

1.2.3 Imperfections

Asymmetric Information

We assume some agents can observe a private signal s on the stock's payoff D before

trading in Period 1. Traders can purchase the private signal by paying a fixed cost,

whereas market makers will not be able to do so. For simplicity, the signal is

s = v (1.3)

which coincides with the stock's fundamental payoff. v can be thought of as the

trader's best estimate of the stock's payoff, after processing all publicly or privately

available information. In a more generally setting, a trader would wish to optimally

allocate his capital among research expense, processing cost, and trading capital; the

signal quality improves when there is more input into research. Given the limited

scope of this exercise, we will not delve into this direction but only model a fixed

signal quality. A trader can be equally informed as anyone else who puts in the same

effort.

Participation Cost

All agents can trade in the market at no cost at the beginning and the end of their

life-span. In Period 1, market makers can trade costlessly, whereas traders need to

pay a fixed cost r, to enter the market. For example, r may include the "buy-in"

expense to obtain exchange membership, as well as the opportunity cost of human

capital allocated to trading. For reasons explained below, the participation cost is

assume to be the bundled with the information acquisition cost. The participation

decision is made ex-ante before private signals are revealed.

In this model we bundle the purchasing cost of acquiring private information, and

the entry cost to participate in trading into a single fixed cost r. paid by all liquidity

demanders who decide to trade. In other words, liquidity demanders are allowed to

participate only if they pay an entry cost; and as long as they participate, they will

make the effort to process all available information and obtain the private signal v.

All costs incurred are included in r.

19



1.2.4 Time-Line

We now describe the timing of events shown in Figure 1.1. In Period 0, agents are

born with 6 shares of stock as endowment. All agents are free to trade costlessly,
and the market equilibrium determines the price So.

In Period! ,nature splits agents into traders and market makers; agents learn4

their types.

In Period ,1 traders receive an offer of purchasing the private signal s = v on2'

the stock's payoff and enter the market at cost r,. Those who choose to enter the

market and observe the signal will then trade among themselves as well as with

market makers; those who turn down this offer will leave the market. In equilibrium,
a fraction y of traders chooses to enter.

In Period , the private signal v is revealed to all participating traders; the

liquidity shock Z is revealed to all traders, including those who stay out of the

market.

In Period 1, participating traders and market makers submit orders, and complete

the exchanges.

In Period 2, traders receive the non-traded payoff; agents sell all their assets for

no additional cost, and consume their wealth.

Z
S =V ed

ed (v+n) + Zn - K

z
e (v+n) + Zn

_____ ____ ____ ____ ____ ____ ____ O (v+n)

o 1/4 1/2 3/4 1 2 t

Figure 1.1: The Time Line of the Economy.
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1.2.5 Discussions and Simplifications

Letting the set of participating liquidity demanders coincide with the set of informed
agents is a modeling choice to avoid signal free-riding. As will be shown in Section 3,
the equilibrium price in Period 1 is affine in the signal v and liquidity shock Z, which
will be revealed to all liquidity demanders. Assume, instead, we allow a liquidity
demander to participate without purchasing the private signal, then he would be
able to perfect infer the private signal v from the price.

Additionally, in a more general setting, we would separate the information ac-
quisition decision from the entry decision, and replace i' with a combination of the
acquisition cost of private information CA and the entry cost of participation CB. This

set-up would incur at least the following complications: Firstly, after nature split
agents into traders and market makers, each of the entry and acquisition decisions
will further split the agents into two sub-types. All together this set up creates too
many subgroups for the problem to be analytically tractable. Secondly, the timing

sequence of the two decisions may bring up the question of whether the participation
decision should be modeled as ex-ante before observing the private information, or
ex-post. We will not delve into this direction given the limited scope of the current
exercise. In the rest of the paper we will continue to refer to r, as "participation cost".

Before proceeding further, it should be pointed out that since all agents have

CARA utility in which the agent's risk attitude does not depend on wealth level,
there will be no income effect in our model. This might seem puzzling at first
glance because liquidity, by definition, should be a measure of the total amount of
capital available (i.e. aggregate wealth) in the economy. Therefore, the channel for

illiquidity to affect market behavior should naturally be through the income effect.
In our model, since all agents are initially endowed with the per-capita share of the
risky and risk-free assets, the total amount of capital is equivalently captured by the
total number of agents participating in trading. Under information asymmetry and
costly participation, the market is less liquid because a smaller number of agents are
pulling out their capital for trading. In other words, limited participation is just
income effect in disguise.

1.3 Equilibrium

In this section, we solve for the economy's competitive equilibrium by backward
induction. First, solve for the market equilibrium at t = 1, given agents' participation

21



decisions, the realization of the private signal and the liquidity shock. Second, solve

for the participation equilibrium at t = ., given the market equilibrium and agent's

initial stock holdings. Third, solve for the market equilibrium at time t = 0 and

obtain the full equilibrium of the economy.

We will start with the equilibrium in the general model with both asymmetric

information and participation cost, and then examine the two degenerated cases with

one type of imperfection each.

1.3.1 Market Equilibrium at t = 1

At Period 1, there are pr traders and 1 - 7r market makers present in the market.

Trader's participation rate p is the equilibrium outcome of their participation de-

cisions made ex-ante at t = .. The participating traders submit orders based on

their knowledge of the private signal v and the liquidity shock Z, both learned at

t = . The price therefore reveals some of the trader's information to the uninformed

market makers, who cannot observe either v or Z directly. Following Vayanos and

Wang (2009), we conjecture a price function affine in the private signal v and the

liquidity shock Z, i.e.

S1 (Ip,v, Z) = a + b (v -,b - cZ) (1.4)

for three constants (a, b, c) . Using the knowledge of the price function, agents are now

able to learn about the signals by observing the price S 1 , and formulate demands

that maximizes their expected utilities. We will then confirm this price function

indeed clear the market.

A liquidity demander chooses to hold 0' shares of the stock, given the private sig-

nal v and the liquidity shock Z; the price S1 do not convey no additional information.

Consumption in Period 2 is

C2' (01; y, v, Z) = W1++601 (v + n - S1) + Zn (1.5)

i.e. wealth in Period 1, plus capital gains from the stock and the non-traded

payoff. His expected expected utility in Period 1 is

EU_(1 (; v, Z) = En [- exp (-aC2)] (1.6)
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which can be written as

- exp -a W1 + -(-Si) - aof (Z+ Oi) (1.7)

A liquidity supplier observes the price S1 and updates his belief on the distribution

of the private signal v. Let ( v - 'ii - cZ, his posterior beliefs are

E [v IS1] =V +3 (1.8)

.2 [vlS 1] = #c2 (1.9)

where 
2
#e = ""(1.10)

of2 + C20,2

He chooses holding 0' of the stock based on the posterior beliefs. Consumption in

Period 2 and expected utility in Period 1 are

C' = W 1 + 01 (v+n-S1 ) (1.11)

EUt"_i (0'; p, v, Z) = E, [- exp (-aC)] (1.12)

The optimal demand functions follows directly from solving the maximization

problems, summarized in the following proposition:

Proposition 3.1 Agents' demand functions for the stock in Period 1 are

0_ V i - Z (1.13)
ao-,

98 E[vS 1]-S, (1.14)
a [o-2 [v|S1] + on2]

In equilibrium, all agents enter Period 1 with # shares of stock holdings. The price

(1.4) clears the market if the aggregate demand equals the supply for all realizations

of (v, Z):

pr9d + (1 -- r) 0" = (17r + 1 - 7r) (1.15)

This determines the affine price coefficients in (1.4), solved in the Appendix and

summarized as below:

Proposition 3.2 Given the participation equilibrium outcome p in Period !2'
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the equilibrium market price in Period 1 in is given by

S (p, v, Z) = a + b (v - f - cZ) (1.16)

where

a=i-ir± as - 1- (1.17)
02+ Or2+T,2[VSiI

b - p1 r - (o2 + 0.2 [vlS1]) + (1 - r) . #3Uon (1.18)
~ pwr (o + .2[vlS,]) + (1 - 7r) o,

c = aou (1.19)

1.3.2 Participation Equilibrium In Period 12

Given the market equilibrium in Period 1, we now determine the equilibrium par-

ticipation rate y of liquidity demanders. In Period j, all agents hold 00 shares of

the stock obtained from trading in Period 0, before discovering their types. Those

assigned to be traders in Period . decides whether or not to participate in the market

in Period 1, before any private information is revealed.

A marginal liquidity demander takes as given the participation decision of others,
and anticipates the market price to be Si (p, v, Z) in Period 1. If he chooses to pay

the fixed cost r., he will be able to observe both the private signal v and the liquidity

shock Z, then hedge against the non-traded risk through trading in Period 1. If

instead he chooses to forgo the cost r,, he will only observe the liquidity shock Z

and will not be able to adjust his position 00. The participation decision is made

by comparing the expected utilities from the two outcomes, where the expectation

is taken over all realizations of the private signal v and the liquidity shock Z. Let

EUd (0o; pL) and EU"P (0o; p) denote his interim utility at Period I if he chooses to2

participate or not to participate, respectively. We have

EUd (0o; A) = E,z max En [- exp (-aCfd) Iv, Z] (1.20)

EU"P (Oo; p) = Ev,z {E. [- exp (-aC2P) v, Z]} (1.21)

Next we compute the two interim expected utilities. The liquidity demander who
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chooses to participate pays the cost r and his wealth in Period 1 is

W1 = Wo + 0o (Si - SO) - r (1.22)

He anticipates the market equilibrium to be as described in the previous subsection

3.1 and submits the demand function (1.13) in Period 1. His terminal payoff will be

C2d = W1 + Od (v + n - S1) + Zn (1.23)

The liquidity demander who chooses not to participate hold on to his position Oo

until the end of his life span. Consumption in Period 2 will be

C2P = Wo + Go (v + n - So) + Zn (1.24)

In equilibrium, agents choose to hold 0 o = 9 shares of the stock after trading in

Period 0. The optimal decision for trader i is to participate if and only if

_ EUd (;p

EUnP(9;,p) 1

The expectation in (1.20) and (1.21) can be obtained using (1.13) and (1.3.1), cal-

culated in the Appendix. The results are summarized in the following proposition:

Proposition 3.3 In equilibrium, the interim expected utility for a marginal liq-

uidity demander who chooses to participate is

EUd (; tL) exp (-aFd (#; p)) exp (a) (1.25)

where

- C- ) e (o,, + C2o07 - aco,'oiZ) 1 - b) 2
Fd(9;p)= #a+ ( )[b+ (-a)

2c 2 Gd c

(1.26)

Gd = 1 + a (1 - b)2 [ 2 + c2 o2] -aco4 - a 2 (1 - b)2 o20 (1.27)
c

The interim expected utility for a marginal liquidity demander who chooses not

to participate is
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EU" [ exp pc)FnP (# ) (1.28)

where

F" (9; p) = Oii - -ao!b2 - (1.29)FnP AV-2 a 2 QnP (.9

Q"p= 1 -a 1o (1.30)

The overall equilibrium requires that liquidity demanders are indifferent at the

margin, -y (#; p) = 1. and only some participate (0 < p < 1). In addition, the

price Si (pi; v, Z) becomes more informative when the participation rate pu is higher,

which reduces the utility gain from participating and acquiring private information,

i.e. increases -y (#; p). If the trading gains from participation is sufficiently high so

that -y (#; 1) < 1, then the marginal liquidity demanders chooses to participate even

though the presence of a large number of traders has attenuated the profitability of

doing so, and in equilibrium all traders chooses to participate. On the other hand, if

the utility gain from trading is not enough to offset the loss from participation cost

even when no other liquidity demander choose to participate -y (#; 0) > 1, then the

marginal liquidity will choose to forgo the entry cost and in equilibrium no liquidity

demander participates.

Proposition 3.4 The participation equilibrium is give as follows:

1) If -(Y; p*) = 1 for some 0 < p* < 1, and S1 is given by (1.3.1) as in the

market equilibrium in Period 1, then ( p*, S1 (IL*)) is the overall equilibrium;

2) If (6; 1) < 1, then (1, S1 (1)) is an overall equilibrium where all liquidity

demanders participate;

3) If 7 (6; 0) > 1, then (0,S 1 (0)) is an overall equilibrium where no liquidity

demander participate.

1.3.3 Market Equilibrium at t = 0

In Period 0, all agents are identical and enter the market without the knowledge of

whether he will become a trader or a market maker. He chooses to hold 0 o shares of

the stock so as to maximize the unconditional expected utility

EUo (Go) = rEUL (90) + (1 - ir) EU (o; p-*) (1.31)

where EUL (0o) and EU" (Go) are the interim expected utilities in Period j of2
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being a trader and market maker respectively, after his type has been revealed in

Period .

If he discovers himself to be a trader in Period -, then he will make the optimal

participation decision as described in the previous subsection 3.2,

EUL (0) = max {EUd (Go; p*) , EU"P (Go; p*)} (1.32)

He has wealth

W1 = WO + 0 0 (S1 - So) (1.33)

If instead he discovers himself to be a market maker, then he will observe the price

Si and formulate optimal demand as described in subsection 3.1 in Period 1. The

expectation in Period j is taken over all realizations of the private signal, and liquidity

shock:

EU" (Go; p*) = -E,,z [exp (- aC2) IS1] (1.34)

which can be obtained by substituting G from (1.14), Si from Eq. (1.4), and W

from (1.33), The expected utility depends on the liquidity shock Z since Z affects

the price S1.

The expected utilities are calculated in the Appendix. The results are summarized

in the following proposition:

Proposition 3.5 The interim utility in Period 1 for an agent with initial holding
0 o is:

If he becomes a trader and decides to participate:

exp (-ad (0o; p)) exp (as)
EUd (9o; exp (-cF (1.35)

where

( - (U - )2 a 2o + C20.2 - aco2,

F(Go; p)={(Oo) So +oa + z Z ob+ I ( - a)
2c 2 Qd (c

(1.36)

Od 1±+ (1 - b)2 [2+2o2] -coj -a 2 (1 - b)2 o i (1.37)
C
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If he becomes a trader and decides not to participate:

EU"_ (o; exp (caF"P (0o; p)) (1.38)

where

F"P (90; A) = 0So0 ±o(ii-S) -00o o; + 1a- a202(1.39)

Qnp a 2  ncr (1.40)

If he becomes a market maker:

exp -a [A-9 -a B

EU" (0o; p) = (1.41)
1+ aCio

where
S(Bs) 2o0,

F2 A 1 ± B (1.42)1 2 1 + aoU2C19

QS = 1 + ao2C' (1.43)

As= So + go (a - So) + ±a ) (1.44)
2c (1 + apc3co)

B"=b (b - a) (b -#) (1.45)
c (1 + aoecoj2)

C ( 1 + c) (1.46)
c (1 + ao co,)

The equilibrium price in Period 0 needs to clear the market, so that the aggre-

gate demand 0o coincides with aggregate supply 9. The maximization problem is

calculated in the Appendix.

Proposition 3.6 The equilibrium price in Period 0 So is given by:

0 = aEUc 0; p) (1.47)
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1.3.4 Degenerated Models

In this subsection we consider the two degenerated cases nested in the general model

where only one type of imperfection is present. Firstly, when r, = 0, there is no

participation cost in Period 1, and the degenerated model only incorporates infor-

mation asymmetry. This simplification will not change the structure of the general

set-up and the solutions. Secondly, when o-, = 0, there is no information asymmetry

concerning the stock's fundamental payoff, and the degenerated model only incorpo-

rates participation cost. Liquidity demanders only participate to hedge against the

non-traded risk, but there's no incentive to trade on information advantage. The

degenerated model can be solve by either setting o-, = 0 in the general solution, or

solved directly as summarized follows.

Proposition 3.7 In the absence of information asymmetry, agents' demand func-

tions for the stock in Period 1 are

= -Z (1.48)
a

03 = (1.49)
aon

Taking as given the participation rate y as the participation equilibrium outcome

in Period }, market price in Period 1 is again determined by the market clearing

condition.

pyro+ (1 - 7r) 0' = [ ±7r + 1 - r] (1.50)

Substituting the optimal demands in (1.48) (1.49) into the market clearing condition,
we obtain the following:

Proposition 3.8 In the absence of information asymmetry, and given the par-

ticipation equilibrium outcome p in Period 1, the equilibrium market price in Period2'

1 in is given by

Si= -ao (# + AZ) (1.51)

where

A = pr (1.52)
[7 + 1 - 7r

The interim utilities are also simplified once information asymmetry is removed:
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Proposition 3.9 In the absence of information asymmetry, the interim utility

at t = { for an agent with initial holding 0o is:

If he becomes a trader and decides to participate:

EUd (60; p) = (1.53)

Fd (60; A) = { (- 00) So + Ooa +
2c } c 2a cU

2 Q 100b± ( - b) (a)] 2

(1.54)

(1.55)

If he becomes a trader and decides not to participate:

(1.56)

where

F"P (60; p) = #So + o (V
12 2

s o) - -.aO01 -~
2 a2 2 9 2

(n Z

Q =1- a2 o

If he becomes a market maker:

exp{

EU" (0o; p) =
-a As_ a BI-

(1.59)
1I+ aCS0o

where

FS = A-
a (B8")2 (c2U )

2 1 +a (c2 o)UC

= 1 + a (c 2 4) C"

As = #So +0 o(a - So) + -a2
1 2c

Bs = [Oo - (ca b
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where

d=1 a (1-b) 2 c2 -ac2I+ a I -bz acz

(1.57)

(1.58)

(1.60)

(1.61)

(1.62)

(1.63)

exp (-aFa (;p)) exp (an)

EU"P (0; p) =-exp (-aF"P (0; p))



C b 2
(1.64)

c

Finally, the equilibrium price in Period 0 So is determined so that agent's optimal

demand 0o coincides with per-capita supply 9.

Proposition 3.10 In the absence of information asymmetry, the price in Period

0 is

2- 7rM
SO = V- auo - + AdA# (1.65)

where

A = r (1.66)
[p7r + 1 - 7

_ a o -, -a 2 0 r,.21 .6 7n nz
Ad = 1 - a 2 o 2U (2A- A2 ) (1.67)

M =exp (an) exp ('cAd #2) 1 + CeJZA(1.68)

/ s1i- av20%o (2A - A 2 )

1.4 Illiquidity Measures

Following Vayanos and Wang (2009), in this section we construct the two common

used measures: Kyle's Lambda and Price Reversal. The impact of liquidity trades

on these two measures will be discussed in the next Section for the two degenerated

models, as well as the general model with dual imperfections.

1.4.1 Kyle's Lambda

Kyle's Lambda is the regression coefficient of the price change between Periods 0

and 1 on the signed volume of participating liquidity demanders in Period 1. When

the market is more illiquid, prices are more sensitive to trading volume, therefore A

is larger.

Cov (31 - So, p _ (6 ))A =O(j-SA7 (1.69)
Var [p.r (9d - )]

Eq.(1.4) implies that the price change between Periods 0 and 1 is

S1 - So = a + b(v - V - cZ) - So (1.70)

Eq. (1.13) implies that the signed volume of liquidity demanders is
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p1r (Od - 6) = prV Si - Z - # (1.71)

Substitute the price change and volume into the definition of A, we obtain the fol-

lowing:

Proposition 4.1 In the general model with both types of imperfections, illiquidity

as measured by Kyle's Lambda is given by

A c b
dual = -b (1.72)

p7 1 - b

where the affine coefficients are given as in (1.18)(1.19), and the participation equi-

librium outcome p is given as in Proposition 3.4 .

1.4.2 Price Reversal

Price reversal is defined as the negative auto-covariance of price changes. When mar-

kets are more illiquid, liquidity trades cause larger deviations of the stock price from

its fundamental value, hence the prices dynamics exhibit higher auto-correlation, y
is higher:

y= -cov (S2 - Si, Si - SO) (1.73)

Substituting the price S1 from Eq. (1.4), we obtain the following:

Proposition 4.2 In the general model, under dual imperfections, illiquidity as

measured by price reversal is given by

ydual = b (b - 1) o + b2c2 o (1.74)

where the affine coefficients are as given in (1.18)(1.19).

1.4.3 Illiquidity in Degenerated Models

As seen in the previous section, setting r = 0 does not simplify the structure of the

model and the illiquidity measures will take the same form as in the general model.

When ov = 0, the illiquidity measures can be simplified by Proposition 3.8:

p17r (O - ) =pr[-(1-A) Z] (1.75)

Si - SO = v - ao" (+ Z(1.76)
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S2 - S1 = n + aon(U+AZ)

Substituting the above into (1.69) (1.73), we obtain the following:

Proposition 4.3 When information asymmetry is absent in the general model

and participation cost is the only market imperfection in Period 1, illiquidity and

price reversal are given by

a-2
Arc - " (1.78)

-7

= (aoU) 2 A22 (1.79)

Note that Apc only depend risk-aversion, population of market makers, and the vari-

ance of idiosyncratic shock; Arc does not vary with participating cost or the variance

of liquidity shock.

1.5 Illiquidity and Imperfections

In this section we investigate how illiquidity and asset prices are affected by each of

the two imperfections incorporated in the general model, as well as by the variance

of the liquidity shock. Our findings suggest the following: First, the same type of

imperfection may influence the two commonly used illiquidity measures in opposite

directions, or in certain cases may not be able to influence the illiquidity measure;

Second, when both imperfections are present, the market may be measured "less

illiquid" compared to two benchmark scenarios when only one of the imperfections

are incorporated. Third, the two types of imperfections can influence expected return

in opposite directions.

The comparative statistics are obtained by numerical simulations, due to ana-

lytical intractability. We simulate the model around the baseline parameter values:

o = .3; o2 = 1; o, = .1; gr = 0.4; V = 1.5; 9=1; r = 0.015, and then vary

the degree of each imperfection and liquidity shock (os) in the neighborhood of the

baseline values; the results are included at the end of this report. Simulations with

other baseline parameter values are qualitatively the same.
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1.5.1 Illiquidity in Degenerated Models

In this subsection we briefly examine the two degenerated models where only one

type of imperfection is present; in the next subsection we will use the results here to

explain the interaction between the two imperfections. This part of the analysis is

closely related to the single-imperfection benchmarks in Vayanos and Wang (2009);

our analysis here considers more general parameter values which allows for both

corner and interior solutions in the participation equilibrium. Comparative statistics

are carried out by setting one imperfection to zero (o72 or ), and varying the degree

of the other imperfection and the liquidity shock (o2).

1.5.1.1 Asymmetric Information

We start with the restricted case where r, = 0 and all liquidity demanders choose to

participate, p = 1. The results are shown in Figure 1.2a and Figure 1.2b, summarized

the following Propositions:

Proposition 5.1 When asymmetric information is the only source of imper-

fection and all liquidity demanders chooses to participate, an increase in variance

of private information o raises illiquidity A, price reversal -y, as well as the price

discount in Period 0.

This set-up coincides with the full-information benchmark in Vayanos and Wang

(2009) and our results are also consistent. As of2 increases, there's more uncertainty

regarding the stock's fundamentals, and, the information asymmetry between liquid-

ity demanders and suppliers also becomes more severe. Liquidity suppliers cannot

distinguish whether the selling pressures are due to risk-sharing motives, or due to

unfavorable realization of the stock's fundamentals which they have no private infor-

mation about. Hence they are less willing to supply liquidity and demand a higher

price drop for doing so. These two effects both reduces mark Illiquidity, which raises

A and -y to increase unambiguously.

On the other hand, the Hirshleifer effect implies that risk-sharing is best under

no-information (ov2 = oo) and worst under full-information (oa = 0). The increase in

of therefore improves risk-sharing and decreases the price discount as o increases.

However, this effect is dominated by the uncertainty and learning effects, and the

price discount still increases with ov.

We also find that the liquidity demander's participation rate decreases with o ,

for the following reasons. From the perspective of liquidity suppliers, fluctuations in
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liquidity shock Z is regarded as "noise" for them to infer the private signal v from

movements in the realization of S1. When o, is sufficiently high, the fluctuations in Z

becomes negligible and liquidity suppliers can infer v much more accurately. There-

fore, the value of acquiring the private signal is weakened, and liquidity demanders

facing diminished trading gain will choose not to participate, the participation rate

p will continue to fall. The interior solutions of 0 < pL < 1 are not displayed in Fig.
1.2a, because in the absence of participation cost, it would require a large deviation

from the baseline parameter values to reach interior p; this will be seen more clearly

in the next subsection, where the introduction of participation cost will allow us to

reach interior p with lower oU, and the intuitions are the same.

Proposition 5.2 When asymmetric information is the only source of imperfec-

tion and all liquidity demanders chooses to participate, an increase in the variance

of liquidity shock a' lowers illiquidity A, raises price reversal y, and raises the price

discount in Period 0.

A larger variance oz of the liquidity shock provides higher incentive for traders

to hedge against non-traded risks. Higher aggregate demand for liquidity increases

both price reversal y and the price discount in So. However, higher o,2 makes it more

difficult for liquidity suppliers to infer the private signal v from movements in S1.

Therefore, on a per-trade basis, prices are less sensitive to volume, A decreases.

Observation A and y are influenced in opposite directions by o.

1.5.1.2 Participation Cost

In the other single-imperfection benchmark which incorporates only participation

cost, the comparative statistics are shown in Figure 1.3a and Figure 1.3b, summarized

in the Propositions below:

Proposition 5.3 When participation cost is the only source of imperfection, an

increase in participation cost r, lowers the participation rate pt, keeps illiquidity A

unchanged, lowers price reversal y, and lowers the price discount in Period 0.

Observation Price discount is influenced in opposite directions by asymmetric

information and participation cost.

When , is sufficiently low, all traders prefer to participate because private infor-

mation is very cheap to obtain, and the utility gain from trading on private infor-

mation as well as hedging non-traded risks overwhelms the participation cost. As

, continue to increase, some traders will decide to leave the market. Competition

becomes less intense among those who choose to stay, seizing a larger share of the
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trading gain. The participation rate y continues to decrease until the marginal trader

is indifferent between participating or not. Finally, when r. is sufficiently high, no

trader participates (L = 0).

As the participation rate y decreases, the market becomes "less illiquid" in the

sense that it there's less demand of liquidity. This effect is captured by price reversal

y and price discount in So, both of which decrease with rz. As aggregate demand

for liquidity is smaller, suppliers requires a lower discount, and overall there is less

transitory movement in the stock price. This effect differs from the participation-

cost-only benchmark in Vayanos and Wang (2009), where the liquidity suppliers are

making the participation choice. In their set-up, higher participation cost discourages

liquidity suppliers from participating, which makes the market more illiquid, and the

price discount increases with r,.

Illiquidity A remains constant because the decrease in volume offsets the decrease

in price movement. Liquidity suppliers are aware that for each additional unit of

trade, liquidity demanders are compensated for paying an additional unit of par-

ticipation cost. Liquidity suppliers' learning ability is not affected by variations in

participation, hence the price sensitivity per trade is unchanged.

Proposition 5.4 When participation cost is the only source of imperfection, an

increase in the variance of liquidity shock oz raises the participation rate p, keeps

illiquidity A unchanged, raises price reversal -y, and raises the price discount in Period

0.

For interior values of p, there are two channels for o 2 to influence market illiq-

uidity: Firstly keeping the participation rate y constant, an increase in o,2 causes

more transitory movements in the prices; also, a larger oi provides more incentive for

liquidity demanders to hedge against non-traded risks, which raises the participation

rate p and increases the demand for liquidity. Both effects contribute to increase

price reversal y and the price discount in So. Once y reaches unity, the second chan-

nel is no longer in effect, and -y increases with o,2 at a lower rate. However, due

to the increase in trading volume, illiquidity A remains constant, prices are equally

sensitive per trade for all values of p and u.

Here the impact of liquidity shock again differs from the participation-cost-only

benchmark in Vayanos and Wang (2009), because liquidity suppliers and demanders

react asymmetrically to liquidity shocks. When liquidity suppliers are making partic-

ipation decisions, the demand side is fixed, an increase in o4 implies that providing

liquidity is more profitable. The rise in liquidity supply causes a drop in price dis-
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count. In contrast, if liquidity demanders are making participation decisions, since

the decisions are made ex-ante before the realization of Z, the increase in o im-

plies liquidity demanders are more willing to pay the participation cost up front

because there's higher need to hedge against large liquidity shocks. Faced with a

fixed liquidity supply, the price discount raises to compensate

Observation A does not capture the changes in illiquidity due to increased par-

ticipation cost, or increased variance of liquidity shock; 'y should be a better measure

of illiquidity in this case.

1.5.2 Illiquidity in the General Dual-Imperfection Model

In this section we investigate how illiquidity and asset prices are affected by each of

the two imperfections incorporated in the general model, as well as by the variance

of the liquidity shock. Numerical simulations are shown in Figures 1.4a, 1.4b, and

1.5a; the results are summarized in the following Propositions:

Proposition 5.5 An increase in the variance u, of information asymmetry

lowers the participation rate y among traders, raises illiquidity A, and lowers the

price So in Period 0.

When all traders are participating, o raises price reversal -y; when only a fraction

of traders are participating, o lowers price reversal y.

In the general model, liquidity demanders who pay the fixed cost and participate

in trading have two folds of incentive to do so: Firstly, trading allows liquidity deman-

ders to hedge against the non-traded payoff and share risk with liquidity suppliers;

Secondly, liquidity demanders who can observe the private signal v and liquidity

shock Z are better informed than suppliers who observe none of them, so liquidity

demanders may well take advantage of their superior knowledge through trading.

of lowers the participation rate p for the same reason as in the degenerated model

with only asymmetric information, shown in Figure 1.4a. Two major differences

should be noted between 1.2a and 1.4a: Firstly, for the same range of or2, we end

up with interior solutions of p; Secondly, the relation between -y and of is no longer

monotonic.

For each value of o,, when r $ 0 liquidity demander are more reluctant to partic-

ipate because they require a higher trading gain to cover the loss from participating

cost, y decreases. The thinner volume contributes to raise price sensitivity, illiquid

A grows even faster in Figure 1.4a than in Figure 1.2a, and A eventually converges to

infinity as y converges to zero. Also because volume is low, the overall price impact
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measured is smaller and causes price reversal -y to decrease with oU.

Observation When participation rate t is interior, A and -y move in opposite

directions as information asymmetry increases between informed liquidity demanders

and non-informed liquidity suppliers.

Observation Price reversal -y can be lower under dual imperfections (oU f 0,

# 0) than under only participation cost (o2 = 0, r, 5 0); illiquidity A is unambigu-

ously higher under dual imperfections. A should be a better measure of illiquidity in

this case.

Now we examine the effect of participation cost r., holding information asymme-

try of constant, of 5 0. The comparative statistics are presented in Figure 1.4b,

summarized in the following Proposition:

Proposition 5.6 An increase in the participation cost r, lowers the participation

rate p among traders, raises illiquidity A, lowers price reversal -y, and lowers the

price discount in Period 0.

Participation cost n lowers y for the same reason as in the degenerated model

with only participation cost. Compare the effect of r, in Figure 1.4b to Figure 1.3b,

the comparative statics on p, -y and So are qualitatively the same, while the presence

of information asymmetry further lowers participation rate y , raises price reversal

7, and raises price discount for each value of n. Again we observe that price rever-

sal -y and price discounts are lower when liquidity demanders face a higher cost to

participate.

The major difference is that, in Figure 1.3b where participation cost is the only

imperfection in the market, the increase in r, will not change A, i.e. each additional

unit of demand will not make the market more or less illiquid because the change in

demand only reflects the the change in the cost of doing so. In the general model,

however, liquidity suppliers are well aware that the their counter-parties are trading

not only to share risks, but also to benefit from private information. When K in-

creases, market makers are aware that those who remain in the market are confident

that their trading gain are sufficient to compensate the ever-increasing cost of doing

so. Therefore, prices becomes more sensitive to each additional unit of trade, r. in-

creases A.

Observation Price reversal -y can be lower under dual imperfections (of f 0,

r, # 0 ) than under only asymmetric information information (o 5 0, , = 0);

38



illiquidity A is unambiguously higher under dual imperfections. A should be a better

measure of illiquidity in this case.

The second half of this observation can shown analytically as follows:

By Proposition 3.2,

b _ pr (o + #ec2a,2) + (1 - 7r)#eoUfb _7 ( (1.80)
1 - b (1 -# (1 - 7r on

Hence, by Proposition 4.1, illiquidity A in the dual imperfection model is

cb(on + #ec2a,2) + 1-7rola
C b _ _ _ __ _ _ _A - - c -

pL7r 1 - b (1 - 7 1-g) on
2

where #& = " . An increase in o2 raises #& and lowers p when it is interior,

hence o raises A unambiguously. An increase in r, keeps #3 unchanged and lowers p
when it is interior, hence r, raises A when y is interior. Therefore it is impossible to

achieve Adua, < min {Aasym, Ac, A is always higher under dual imperfections than

under only one type of imperfection.

The effect of liquidity shock in the general model is a synthesis of its effects in

the two single-imperfection benchmarks.

Proposition 5.7 An increase in the variance of liquidity shock o- raises the

participation rate Y among traders, lowers illiquidity A, raises price reversal -Y, and

lowers the price So in Period 0.

o raises y for the same reason as in the two degenerated models, and the higher
demand for liquidity makes the market more illiquid. Comparing Figures 1.2b, 1.3b
to 1.5a, the presence of asymmetric information causes illiquidity A to decrease with

o-' in the general model; asymmetric information and participation cost both cause

y to increase with o-i , and price discount to increase with o-z in the general model.

Our findings suggest that while A, -y and expected return are all valid proxies of
illiquidity, they do not always yield consistent conclusions. The discrepancy amongst
the three proxies arises because they capture different aspects of market movements

and information. The price movements captured by A has two parts: the permanent

component, which arises from uncertainty in the the fundamentals; and the transitory

component, which arises because agents are risk-averse and requires a price-drop in
Period 1 for bearing the liquidity risk . A also uses the volume information which
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is available only after the realization of the liquidity shock and the private signal.

-y only captures the the transitory component, and also uses the price S1 which is

realized after the liquidity shock and the private signal. Price discount in Period 0

encompasses the ex-ante effect of all imperfections.

We have shown that market under two imperfections can appear "less illiquid"

than single-imperfection benchmarks, when illiquidity is measured by price rever-

sal -y. The transitory price movement is attenuated by the interaction between two

imperfections for the following reasons: (1) The adverse-selection effect. Liquidity

suppliers are well aware that their counter-parties have superior information, hence

demand a higher discount for bearing liquidity risk; this in turn undermines liquid-

ity demander's willingness to participate, because they face a higher cost for merely

sharing risks even if the realization of v is favorable. (2) The volume effect. Par-

ticipation cost reduces the population of liquidity demanders in the market, which

weakens liquidity supplier's ability of inferring the private signal from price, lowers

the profit of supplying liquidity and causes less transitory movements in price.

On the other hand, the above observation does not hold for A because the per-

manent component in price movements is not affected by the adverse-selection and

volume effects. This, however, does not suggest that A dominates -y as the "better"

illiquidity measure. In particular, when participation cost is the only imperfection,

A does not capture the liquidity change due to higher participation cost n, or higher

liquidity shock o.
One can separate the permanent component into Apem which is the regression

coefficient of the price change between Periods 0 and Period 2 on signed volume,

and separate the residual into Atrans = A - Aperm. However, calculation shows

Atrans = - is a constant, therefore the transitory component in A do not have

the same behavior as -y. As for the price discount, since both the adverse-selection

and volume effect depend on the heterogeneity among agents after the realization of

imperfections. Therefore, they do not show up ex-ante in Period 0 and not captured

by the expected return between Period 0 and Period 2.

Finally, our results suggest that the correlation between illiquidity measures and

expected return may not be unambiguously positive. As shown in Table 1.2, as the

underlying cause of illiquidity changes from asymmetric information to participation

cost to liquidity shock, neither measure co-moves with expected return consistently.

Moreover, when the participation rate p is interior, liquidity shock oi influences ,

A, and -y all in opposite directions, which weakens the identification power of cross-
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sectional tests. One possible solution is to sort securities on the basis of information

asymmetry, participation cost, and idiosyncratic risks respectively, then restrict the

illiquidity-return test to the three subsets of assets where only one source of cross-

sectional variation dominates.

1.6 Conclusion

We developed a rational expectation equilibrium model that incorporates two types

of imperfections: (1) Asymmetric Information, (2) Participation Cost, and studied

the impact of imperfection on two illiquidity measures: (1) Kyle's A, (2) Price rever-

sal y. We find that while both measures are valid proxies for illiquidity, they often

gives opposite conclusions on the direction of change in illiquidity. In the general

model where both imperfections are present, the market may be measured "less illiq-

uid" by y compared to two benchmark scenarios when only one of the imperfections

are incorporated. However, this does not imply A dominates -y as a better illiquidity

measure. Under several scenarios, we have shown that A is not capable of capturing

the liquidity change when participation cost or liquidity shock rises. Moreover, im-

perfection do not always raise expected return, and the correlation between illiquidity

and expected return is not unambiguously positive.

One possible extension of this exercise to separate the information acquisition

cost from the participation cost, and examine their individual impacts. This would

require imposing more structures on the receiving and revelation of private signals,
in order to avoid generating too much dispersion in agents. Another direction is to

extend this model into multiple periods or infinite horizon, and allow asymmetrically

informed agents who faces fixed participation cost to choose trading horizon opti-

mally. These dynamic models may allow us to highlight the interaction between the

two imperfections more clearly.
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Appendix

Proof of Proposition 3.1

Liquidity demanders' optimal demand in Eq. (1.13) follows by maximizing the

term inside the exponential in Eq. (1.7).

Liquidity suppliers choose 0' to maximize the expectation in (1.12), which can

be written as

= Ev,n[-exp{-a[W1+±Oj (v+n-S1)]}IS1]

= Ev,[-exp{-a[W1 +O(E[vlS1] -Si +v-E[vlS1] +r)]}fS1 ]

- exp {a W1 + O (E [vlS 1] - Si) - 1 (01)2 (72 + o.2 [V|S1])

Eq. (1.14) follows from maximizing the exponential term over Of.

Proposition 3.2

Substituting E [vlS1] and o.2 [vISI from Eqs.

market clearing condition Eq. (1.4) as

(1.8) and (1.9), we can write the

-w7r) - a) + (#3 - b) =
a [(-2 [v|S1] + oiy]

[pVlr + 1 - 0r]#

(1.81)

Eq. (1.81) can be viewed as an affine equation in the variables ( , Z). Set coeffi-

cient of Z to zero:
C

c -1 = 0
aoit

Set coefficient of ( to zero and substitute c = aon

(1.82)

I (1-b)
\ao'n)

+ (1- r) ( a 5 ( 2 [vlS ]))

b p7r - (o,' + 0.2 [v IS1]) + (1 - 7r) -#eo a
p7r (onl + o.2 [VlIS1]) + (1 - 7r) on2
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a) + (1 - b)
2oi

(C
+ 2

(ao-n

= 0

(1.83)

EUt'_1 (0'; y, S1)

-1) ZI +(1I



Set constant term to equal RHS of Eq. (1.81):

1 -a±

ao + (1 ) V a= [/.7r +±1-r
ae (o'n + o.2 [vlS1])

_V 1 -7r
o7 0202[I~

a =
p[r±1 - 7r

6 -r a+ - 1-7r

n + On2+02[Vls1]

Proof of Proposition 3.3

Proposition 3.3 follows from setting 0o = # in Proposition 3.5, shown below.

Proof of Proposition 3.5

* Liquidity Demanders who participates

Assume the participating liquidity demander chooses 00 at Period 0 and choose to

participate. He will rebalance his portfolio to hold 0' shares of the stock at Period

1, where the optimal 9i is given in Eq. (1.13). Liquidity demander's interim utility

in Period 1 has been calculated in Proposition 3.1 as

EU_1 (0;6,v,Z) = E(-caClv,Z)=-exp (-aXd)

where

Xd(00; #,V, Z) = W1 + 0d(V - S1) - O (+ Z)2
1 ~ 2 1

W1= 6So+0 0 (S 1 -S 0 )

To calculate liquidity demander's interim utility at Period 1, first note that O1 =
- Z, and the affine price coefficient c = ao,2, Xd (G0; , v, Z) can be re-written

as

X (00; #,v, Z) = ( - 0) So +0 0 S 1 +C (Gd) 2 - Z2
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Next we use Lemma A.1 in Vayanos and Wang (2009) to calculate the expectation

EUd = Ev,z [- exp (-aX )]

Change of variables: Let

XEE1

E d [ 2 o - 2 1

-c zL-co oJ

Then the participant's optimal demand can be re-written as -d (1-b) +(V>-a) and

S1 = a + b .Hence

X (0; 6, v, Z) = Al± {Bi}'z±+ z' (Cr) x

where

A1 (00 -;,v, Z) =

B1 (O0;O,v,Z)

Therefore

{ ob+q

00) So +oa +

(IM b(V>-a)

0

[(1-b)2-

I +aCZd = I1

Ed (I ± aC Ed))

a (B) (I± aCI E ] (-

(1-b)2 (o 2

ac, (o±~~

det (I + aC d)

3) = a (bi )2 (d

a(1 - b)2 -
1- aco2

z

[U2 + c2c2 _ Cuu2 2

r + aCfd )

det (I ± aCE) (bu)2 (o2 ± c2oz - acoc2
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Therefore

EUd (0; 6, v, Z) = exp (a r) exp (caFd (00; 6, V, Z))

det (I + aCEd)

where

= Al-a (B) Ed (I +aCdd BF d((0;9 , V, Z)

F d (00 ;, V, Z ) = (6 - 00) So +00a +
2c

In equilibrium,

_

= (a - So) -

a (o7 + c2 u%- aco2a

2 det (I + aC'd)

(±v + c2 ,2 _ aco2Z)
det (I + aCEd)

2) [b+ 1b)

~A± ( 1- b\

* Non-participants

If the liquidity demander does not participate, he will hold on to 00 shares of the

stock until the end of his life-span.

C2p = (6 - Oo) So+Oo (v +n) + Zn (1.85)

Using the Law of Iterated Expectations, the non-participant's interim utility at

t = is
EU"P (0o; 6) = Ez [Ev, [- exp (-aC2P) IjZ]

The conditional expectation over (V, n) can be calculated as

Evn [- exp (-a C2P) IZ] = - exp (-aXn4)
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a (Uo + c20, -2raecov) [OL

2 det (I + aCE) I

1 - b)\1cbf - a)]

(' -a)]

- a)]

F d (6 6, ;NV, Z )

aF d (6; 6, v, Z )

a00

= #a + (6-2



where

2 0

The unconditional expectation becomes

EU"P (Go; 5) = - exp (-a S[So + 0o (V - So)] - ao2 002
2 1)

Ez [exp ( a20% (Oo + Z)2)

Hence

EU" (Oo;;) = -exp (-aFnP (0o; 5))
1 - a 2 O -z2

F"P (0o; ) = [#So +o (V - So)] -I ao02
1 a 2

21- a~a2 17oZ

In equilibrium,

F "n (#; ) = # 1 - ao. 2

- So - auo-6
1-a2o0 2  2 0

nUlZ

o Liquidity Suppliers

Agent holds 0 o shares of stock after trading in Period 0. If he becomes to a market

maker in Period , he will rebalance the portfolio to hold 0- shares of the stock at

Period 1 as described in Eq. (1.14). Interim Utility at Period 1 has been calculated

in Proposition 3.2:

EUt_1 (Go; 6, Si) = Ev,n [- exp (-aC)|S1] = - exp (-aX1)

where

= So +o(S 1 - So) + 0'(E [vS 1 ] - S1)
1 (0,)2 a (o0 ± .2[vlS1])
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- a (Go

where

(1.86)

(1.87)

- ~1 - a Onou%

aF"P (6; 6)
00 =

(1.88)

(1.89)

X1 (0o; 6, S1)



To calculate the interim utility in Period 1, note that Si = a + b(, E [vlS] = i +

og, Os = 2 , and the affine price coefficient c = ao-. Hence Xf (Go;#, Si)
can be re-written as

1 (E [vjSJ -S) 2

= SO +00 (Si - So)+ 2a o (+ 2 [v S])

1 [('iv - a) + (#3 - b) ]2
= OSo +Oo (a+b - SO)±+2a- 2+ , VS]2 aloi~o2[v|S1])

= A"+B"{+ ICWl
1 2

2;--awhere
A" (

A1 (o; , 1) = USo + 0o (a - So) 2a [u2 [VlSi] + on]

Bs (Go; 6, Si) = Gb+ -
C" ( ;a [(o 2 [vlS1 1 o.h

(03 - b) 2

Cis 00 61 ) = aj (U2 + O2 [VlIS,])

(1.90)

(1.91)

(1.92)

o2 [vlSi] = #ec 2 C4 = (1 -

Again using Lemma A.1 in Vayanos and Wang (2009), the expected utility is

EU8 (0o; 0, S1)

where

Fs (Go; , S1) =

exp (-aFs)

1T+ a Cf72i

A (B ) 2
As 1a ~ j

In equilibrium,

As (0; #, Si) = a+b

B1" (#; 6, Si) =b+

C"s (#; 6, S1) = .U

(- a)2

2a [o 2 [VlSi] + or]

(u - a) (#3 - b)

a [or2 [v S1] + orn]

(03 - [)2

(U.2 + cr2 [V IS,])
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(1.93)

(1.94)

(1.95)

(1.96)

(1.97)

X1 (0o; 6, Si)



FS (6;S0 f B 6; 6, S1) = 2  (1.98)21+aor~j~
F (; 6, S) B (#;2 ao, 1)

___= (a - SO) aoj - b - (1.99)
00 1+ ao(a -j

Proof of Proposition 3.7

Eqs. (1.48) (1.49) follows similarly from Proposition 3.1, and setting or =

o2 [v|S1] = 0.

Proof of Proposition 3.8

Substitute participating agents' optimal demand functions Eqs. (1.48) (1.49) into

the market clearing condition Eq. (1.50), and divide both sides by (p7r + 1 - 7r), we

have

A~vS1'\IlA) V_ -0
ao7- Z) + (1 - u) =

Si = - 2 (+ AZ)

Proof of Proposition 3.9

Proposition 3.9 follows directly by setting or2 = 0 in Proposition 3.6.

Proof of Proposition 4.1

Substitute participating demander's optimal demand from Eq. (1.13) into the

definition of A in Eq. (1.69), and rewrite v = V + cZ +, S = a + b(, c = ar , we

find

d- a 1 - b
I~ c
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A cov (a + bk So, p fr ( + 1-C()
(p_,r)2 var [ a + 1-C ]

pr - b )(1-b) 2

(pXr)2 (.)2 2

c b

piir 1 - b

Proof of Proposition 4.2

Substituting the prices S2 = v + n and S1 from Eq. (1.4), we find

= -cov [S2 - S1,S 1 - So]

= -cov[v +n-a-b(v- -cZ),a+b(v-fi-cZ)-So]

= b(b -1)o +b 2c2 7

Proof of Proposition 4.3

In the degenerated model with o- = 0, substitute agents' optimal demands and
equilibrium market price Si from Proposition 3.7 and 3.8, we find

Illiquidity:

A CoV (S 1 - So, pur (0' -

Var [ p-x (01 - b
Cov (i - a (#+AZ) , pVr (-1) (1 - A) Z)

Var [-tr (1 - A) Z
au,2 A

por 1 - A
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Price reversal:

= -cov (S2 - Si, Si - So)

= co n - + Z) - S)

=[(ao"2 A2,1

51



Figure 1.2: Illiquidity in Degenerated Model I: oa, 4 0, rs = 0
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Figure 1.3: Illiquidity in Degenerated Model II: a, = 0, r # 0

(a) Effect of Participation Cost
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Figure 1.4: Effect of Imperfections in the General Model

(a) Effect of Information Asymmetry
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(b) Effect of Participation Cost
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Figure 1.5: Effect of Liquidity Shock in the General Model

(a) Effect of Liquidity Shock
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Chapter 2

An Empirical Comparison of

Systemic Risk Measures

2.1 Introduction

The 2007~2009 financial crisis has highlighted the critical importance of measuring

and monitoring global systemic risk. In recent years, this topic has received over-

whelming interest from both academia and regulators. In the United States, the

Dodd Frank Wall Street Reform and Consumer Protection Act has established a new

role for the Federal Reserve Board as a systemic risk regulator. In the international

community, institutions such as the Group of 20 (G-20) and the International Mon-

etary Fund have also called for multilateral collaborative efforts in financial reform

for systemic risk regulation. In order to restore global economic stability after the

worst recession since World War II and take stock of the lessons learned during the

crisis, it is important to develop analytic tools that help policy makers to understand

what exactly went wrong from various angles. In the academic community, numer-

ous research has been conducted to build new models and econometric techniques

for measuring systemic risk, as described by the Office of Financial Research's re-

cent survey (Bisias, Flood, Lo, and Valavanis (2012)). In this paper, we follow up

and conduct an empirical comparison among these measures, in an effort to explore

which of these new academic research could add the most value for providing policy

guidance.

From an operational perspective, the current literature on systemic risk can be

broadly divided into two categories: one is to develop system-level measures in the

time-series, which asks the question whether we can find early-warning indicators
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that anticipate systemic events, or capture the building-up of systemic risk con-

temporaneously; the other is to examine in the cross-section whether an individual

firm should be designated as a Systemically Important Financial Institution (SIFI)

that poses a threat to financial stability. Our focus in this paper is the former.

If we could travel backward in time and equip ourselves with the kind of systemic

risk measurement technologies available now, could it ever be possible to be alerted

against the impending crisis, and get out of harm's way? Moreover, when some of

these measures are warning against impending danger while the rest remains quiet

and peaceful, which one(s) should one listen to and what decision should be made?

These are the type of questions that we seek to answer here.

Currently there's no consensus on how to define systemic risk, much less how to

quantify it. For our purposes, we adopt the working definition that a "systemic event"

is any set of circumstances that threatens the confidence in or the stability of the

financial system, hence systemic risk is the risk of such an event. This definition may

seem too vague and generic to be of practical value, but yields some surprisingly novel

distinctions when applied to specific contexts. For example, under this definition,

the 2006 collapse of the $9 billion hedge fund Amaranth Advisers was not systemic,

but the 1998 collapse of the $5 billion hedge fund Long Term Capital Management

(LTCM) was, because the latter event affected a much broader swath of financial

markets and threatened the viability of several important financial institutions, unlike

the former. And the failure of a few regional banks is not systemic, but the failure

of a single highly interconnected money market fund can be. Of course, this is just

one of several possible definitions of systemic risk.

Using this working definition, we conduct formal empirical comparisons of var-

ious measures through which we can determine which ones are most effective for

detecting threats to financial stability. We start by reconstructing several systemic-

risk measures surveyed in Bisias, Flood, Lo, and Valavanis (2012) and extending

them to the most recent period. Currently we have included the following measures:

Mahalonobis Distance, which measures the statistical unusualness of a set of asset

returns given their historical distribution pattern; Absorption ratio, which estimates

the number and importance of common factors driving the returns of financial insti-

tutions, and associated periodic spikes in their correlations; GDP Stress Test, which

measures the maximum drop in national GDP growth during a crisis period; Granger

Causality, which is a statistical measure of interconnectedness among hedge funds,

banks, broker/dealers, and insurance companies based on network analysis applied
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to the monthly returns of these financial institutions; CoVaR, which estimates the

Value-at-Risk of the entire financial system conditional on the stress of a particular

financial institution; Marginal Expected Shortfall, which estimates extreme losses

and "tail risk" during broad market declines; Measures of illiquidity risk, concentra-

tion, and the probability of market dislocation in the hedge fund industry, such as

return auto-correlation, return-smoothing, and regime-switching.

In order to move forward, we need to provide an objective function for ranking

the effectiveness of various measures. Again, currently there is no consensus of what

objective function should be used. This issue seems particularly difficult in the cross-

section: What policy conclusion should be drawn, when the SIFI ranking generated

by one measure does not agree with another? And how can we interpret the SIFI

ranking variation over time? Along the time-series dimension which this paper is

focused on, we propose to evaluate systemic risk measures in two respects: as useful

contemporaneous indicators of financial distress, and as early warning indicators of

impending shocks. Using a list of systemic events proposed by the International Mon-

etary Fund, we estimate the ability of each measure to successfully detect such events

and compare the success rate with the potential for "false positives" during non-event

periods, which yields an estimate of the indicator's "signal-to-noise" ratio. Along the

same lines, we also compare the performance of each measure in contemporaneous

and forecasting Logit regressions to rank them in terms of statistical significance,
goodness of fit, and persistence. Rankings measures by past performance helps us

identify a subset of candidate measures that could have been the most informative

for navigating through the 1998 and the 2007~2009 crises.

While each of these existing measures offers its unique insight to capture potential

threats to financial stability, the sheer size and multiplicity of the current framework

has also prohibited it from being an intuitive ready-to-use policy tool. Another

important goal is to explore whether we could actually benefit from the capacity to

assess systemic risk from a multitude of angles, in an effort to develop a new compos-

ite measure that improves the performance over the set of individual measures. We

contribute to the literature by establishing the framework for conducting a system-

atic comparison among existing models, as well as constructing a composite measure

that extracts information from individual measures. Furthermore, no paper that we

are aware of has connected the systemic risk models to a closely-related strand of

research which focuses on developing quantitative measures of financial conditions.

Similar to the mission of this paper, the financial condition index literature is
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also aimed at finding macro and financial indicators that could potentially warn of

an impending episode of financial distress. We compare the asset class coverage

between the two strands of literature, and identify additional factors that are empir-

ically good measures of financial distress, but have not been fully studied or modeled

by the systemic risk literature. The candidate set of well-performing systemic risk

measures are then combined with the selected external factors in order to improve

the composite measure performance. Moreover, there are existing econometric tech-

niques in the FCI literature that can be well imported into systemic risk research,

which allows for the comparison and aggregation of individual indicators available

at different frequencies and start at different points in time. See, for example, Stock

and Watson (2000), Rosenberg (2009), Hakkio and Keeton (2009), Rose and Spiegel

(2011), and so on.

The gist of our nested statistical model can be summarized in Figure 2.1. We

start by constructing and standardizing individual measures as surveyed in Bisias,

Flood, Valavanis, and Lo (2012), then select a subset of candidate measures based

on an objective function that evaluates the measures' past performances in picking

up or forecasting a given set of systemic events. The candidate measures are then

combined with a panel of external factors to construct a composite measure, which

will again be evaluated by its contemporaneous and forecasting performance for the

same set of systemic events. The details of our approach will be elaborated in the

methodology part of later sections.

We find that CoVaR, MES, and Granger causality networks measures are good

contemporaneous indicators of systemic risk, whereas hedge-fund regime-switching

measures are the only category of leading indicators available so far. In fact, we are

able to develop a composite hedge-fund-only measure that generated early warnings

in both 1998 and 2007, before the onset of market dislocations. Traditionally, finan-

cial stability analysis mainly focuses on macroeconomic and banking data; our results

demonstrate that policy makers can greatly benefit from examining alternative asset

classes such as hedge funds.

The rest of the paper proceeds as follows: Section 2 briefly reviews the set of

measures that we have included in this study, data requirements, and other related

literature; Section 3 describes the empirical comparison methodology on the set

of existing measures; Section 4 constructs a composite measure from the existing

measures and external factors, and discusses what the composite tells us about the

current state of systemic risk; Section 5 concludes.
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Figure 2.1: Modular Graph for the Nested Statistical Approach.

3. Augment information set:
Add external macro / financial
time series

2.2 Existing Measures and Literature Review

In this section we review the literature on the set of existing measures that have been
implemented in this paper, as well as related strands of literature on quantifying
financial conditions, and econometric techniques for constructing aggregate indices.
To begin with, we are faced with two major challenges: Firstly, the 31 different
measures in Bisias et al (2012) use 31 different kinds of data, many of which are
proprietary and not available to us; Secondly, several papers only describe their data
without providing sufficient details on the actual inputs needed for replication. In
those cases, we do our best to get similar data.

We focus on nine categories of measures that we were able to obtain the data most
easily: the Mahalanobis distance, the absorption ratio, GDP stress test, Granger-
causality networks, CoVaR, marginal expected shortfall, hedge fund illiquidity prox-
ied by return auto-correlation, hedge-fund return-smoothing models, and hedge-fund
regime-switching models. The methodologies for constructing these measures are
briefly summarized as below. This selection of measures does not reflect any opin-
ion, we picked those categories only because they were the easiest for us to implement.
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These nine categories span into a total of twenty seven time series after taking into

account similar measures constructed from different hedge-fund investment styles.

We construct these measures and extend to the most current period possible (up to

December 2011); for the rest, we compiled a list of data inputs and sources. We be-

lieve this effort could contribute to the systemic risk research community in general.

2.2.1 Review of Existing Measures

1. Granger Causality Network

This measure was developed in Billio, Getmansky, Lo, and Pelizzon (2012).

The authors study the return inter-connectedness across hedge funds, banks,

brokers, and insurance companies, which provides indirect information about

the build-up of systemic risk among the four sectors. For a given 36-month

window, they select the 25 largest firms from each sector as determined by

average market capitalization or AUM. Pair-wise Granger causality test is con-

ducted between institutions: X is said to "Granger-cause" Y if past values of

X contain information that helps predict Y above and beyond the information

contained in past values of Y alone:

m ?m

Xt = E ajXtj + E bjYi-j +Et (2.1)
j=1 j=1

A directional network of these 100 institutions is hence constructed for the

period of interest. To investigate the dynamic propagation of systemic risk,

they calculate the Dynamic Causality Index (DCIt):

DCIt =_ number of causal relationships (2.2)
total possible number of causal relationships

An increase in the Dynamic Causality Index (DCI) indicates a higher level of

system interconnection. Data are obtained from CRSP and the Lipper/TASS

databases.

2. Mahalanobis Distance

This measure was developed in Kritzman and Li (2010). The authors define

"financial turbulence" by the Mahalanobis distance, which measures the sta-

tistical unusualness of a set of asset returns given their historical patterns of
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behavior:

dt = (yt - m)' E-' (yt - m) (2.3)

where

dt = turbulence at time t

yt = (n x 1) vector of asset returns

m = (n x 1) sample average vector of asset returns

E = (n x n) sample covariance matrix of asset returns

In principle, this methodology can be applied to any cross-section of asset

returns at any frequency, as long as balanced-panel data is available. Following

Kritzman and Li (2010), we implement this measure on a monthly frequency on

the five series asset returns: MSCI US stock index, MSCI non-US stock index,

US Bonds, real estate, and commodities. The original paper did not specify the

data source for the last three, therefore based on data availability we choose

to use the Bloomberg/EFFAS US Government Bond Index, the Dow Jones-

UBS Commodity Index, and the Case-Shiller Seasonally-Adjusted Home Price

Index. The path of financial turbulence is generated by running the metric in

(2.3) over time.

3. Absorption Ratio

This measure was developed in Kritzman, Li, Page, and Rigobon (2010), which

measure the extent to which various markets are tightly coupled. The intuition

for this measure is that when sources of risks are unified, any shock to the

market is more likely to propagate quickly and broadly across sectors, which

implies a higher level of systemic risk. The authors use principal analysis and

define the "absorption ratio" as the fraction of total various of asset returns

explained by a fixed number of eigen vectors:

AR -= (2.4)
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where

n = number of eigen vectors used in calculating AR

o = variance of eigen vector i

o2 = variance of asset j

Again, in principle, this measure can be implemented on any set of balanced-

panel return data, at any frequency. We follow the descriptions in Kritzman,
Li, Page, and Rigobon (2010) to apply (2.4) on daily returns for the 51 countries

of the MSCI US index, and use 500-day rolling window to estimate the sample

covariance matrix. In order for this measure to be comparable with the rest, we

re-sample at the monthly frequency by taking the time-series maximum over

that period.

4. GDP Stress Test

There are numerous way to conduct stress tests; here we implement the model

developed in Alfaro and Drehmann (2009). Domestic macroeconomic condi-

tions typically weaken ahead of crises, and once the stress emerges output drops

substantially. The authors propose a simple AR model of GDP growth

yt = PlYt-1 + P2Yt-2 + - - - + et (2.5)

where yt denotes the real GDP growth rate at time t; the Bayesian Information

Criterion is used to determine the appropriate number of lags for each country.

Countries are shocked by the worst negative forecast error in (2.5) during its

most recent crisis. We use quarterly real GDP data from Bloomberg to conduct

the stress test in (2.5); the countries in our sample include: Argentina, Aus-

tralia, Belgium, Brazil, Canada, Denmark, Finland, France, Germany, Greece,
Iceland, Indonesia, Ireland, Italy, Japan, Korea, Malaysia, Mexico, Nether-

lands, New Zealand, Norway, the Philippines, Singapore, South Africa, Spain,
Sweden, Switzerland, Thailand, Turkey, United Kingdom, United States. The

aggregate systemic risk measure is constructed by taking the cross-sectional

sum over all countries.
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5. Co-VaR

This measure was developed in Adrian and Brunnermeier (2010). The authors

propose to measure systemic risk by the Value-at-Risk of the entire financial

system conditional on the distress of a particular financial institution i:

Pr (X1**' < CoVaR*I|X = VaR) = q (2.6)

where X' and X'Ye are the growth rates of market-valued total financial

assets for institution i and the financial system, respectively. To capture the

time variation in the joint distribution of X' and Xsyserm, they run the following

quantile regression on a vector of lagged state variables Mt-1:

X = a + _1 + eL (2.7)

Xyst = a*system i ± *systelXi + sstemip-1 + eystem i (2.8)

The set of state variables Mt includes the VIX, the liquidity spread between

three-month repo and three-month treasury, weekly change of three-month

treasury, weekly change of three-month ten-year yield spread, weekly change

of the BAA/ten-year treasury credit spread, weekly equity market return and

weekly real estate sector excess return. The time-varying CoVaRt and VaRt

are then generated from the regression predicted values:

VaR'(q) = d + 'Mt (2.9)

CoVaR (q) = 6"Y I*" + * aR (q) + "s***** M_ 1  (2.10)

6. Marginal Expected Shortfall

This measures was developed in Acharya, Pedersen, Philippon, and Richardson

(2010). A firm's marginal expected shortfall (MES) is the loss of the equity

market value of financial firms during days in the prior year when the stock mar-

ket losses were in its 5% worst-case periods. They focus on 102 financial firms

with at least 5 billion USD in market capitalization which includes depositories,

broker-dealers, insurance agents, non-depository institutions, real estate, and

so on. The original measure was developed to evaluate the marginal impact of a

single stock on the market, which yields a cross-sectional ranking. In order for

this measure to be comparable with the rest, we calculate the cross-sectional
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sum and standard deviation of the individual marginal expected shortfalls over

the entire 102 firms; intuitively, higher dispersion among losses at different

firms implies a higher level of systemic risk.

7. Hedge fund return smoothing

This measure was developed in Getmansky, Lo, and Makarov (2004), and ex-

amined hedge fund return profile at the individual fund level. In their model,
hedge funds report smooth returns R? instead of their true returns:

-= 0oR+01R_1+---0kRt-,0 E [0,1],j =0,...,k

1 = 00 +01+---+Ok

Smoothed returns have the same observed mean as the true returns but lower

variance and higher serial correlation. This effect is quantified by

k

= 0? E [0, 1] (2.11)
k=O

Funds that engage in more return smoothing have more spread-out O's, which

implies lower . For any individual fund returns, the O's can be either estimated

by maximum-likelihood or a linear factor model. Data is taken from Lipper

TASS.

8. Hedge fund illiquidity proxied by return auto-correlation.

This measure was developed in Getmansky, Lo, and Makarov (2004) and Chan,
Getmansky, Haas, and Lo (2006), which examined hedge fund risk-return pro-

files at the aggregate-industry level. The authors propose to use rolling first-

order auto-correlation to proxy for hedge-fund illiquidity exposure, and de-

fine an overall measure of systemic risk in the hedge fund sector as the cross-

sectional weighted average. Let pt,j denote hedge fund i's first-order auto corre-

lation in month t using a window of past returns (the authors use 36 months),
the aggregate measure of illiquidity p* is given by

Nt

P E Witpti (2.12)
i=1

where Ne denotes the number of hedge funds in the sample at time t . The
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weight wit of hedge fund i is given by

AUiMtit -= AUMt (2.13)
1jt A U Mj,

where AUMjt are the assets under management for fund j at time t. Data is

from Lipper TASS.

9. Hedge fund regime-switching model.

This measure was also developed by Chan, Getmansky, Haas, and Lo (2006).

The authors hypothesize that hedge fund returns can be modeled as a switching

between two states of the world: a normal regime and a distressed regime, each

with its own mean and variance. Denote by Rt the return of a hedge fund index

in period t and assume the following specification:

Rt = it - R1t + (1 - It) - R 2 t, Rit - K (Ui, o ) (2.14)

where

1 with probability p11 if it- = 1

1 with probability P21 if It-i = 0

0 with probability p12 if h-i = 1

0 with probability P22 if It-i = 0

The model in (2.14) is applied to the CSFB/Tremont hedge fund return in-

dexes. Maximum-likelihood estimation allows us to determine the parameters

in each state, as well as the probability of transition between the two states.

Data is available on a monthly basis from January 1994 and includes the fol-

lowing investment styles: convertible arbitrage, dedicated short bias, emerging

markets, equity market neutral, event-driven distressed, event-driven multi-

strategy, event-driven risk arbitrage, fixed-income arbitrage, global macro,
long/short equity, managed futures, and multi-strategy. For each hedge fund

investment style, a systemic risk measure is derived as the probability of being

in the low-mean-return state.
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2.2.2 Review of Other Related Literature

This paper is related to several strands of literature that seek to quantify financial

conditions, and we contribute to the literature by establishing a linkage between

the systemic risk literature and the financial conditions literature. Many papers

have used a weighted average of a panel of macro and financial series to construct

financial distress measures. Typically the input series is standardized by numbers

of sample standard deviations from the sample mean, and high levels of the stan-

dardized index serves as warning signs of financial distress. For example, Rosenberg

(2009) developed the Bloomberg US Financial Conditions Index (BFCIUS) which

uses yield spreads and indices from US money markets, equity markets, bond mar-

kets. It assigns equal weight on each sector and within each sector equal weights on

individual components. Compared to existing systemic risk measures, the BFCIUS

covers asset classes not yet examined by the systemic risk literature, in particu-

lar credit spreads (corporate bond spread, muni spread, agency spread) and asset

bubbles (NASDAQ/S&P 500 ratio, S&P Home builders / S&P 500 ratio). While

Rosenberg (2009) is a useful first stab at creating an early warning system to pre-

dict economic fall outs, we also seek to make further improvements. For example,
the weights on individual series should reflect their relative importance in construct-

ing an aggregate measure, therefore equal weights may not be sufficiently justified.

Moreover, the BFCIUS standardize their input series by sample mean and sample

variance, which introduces an look-ahead bias into the process.

Many authors construct an aggregate financial conditions index by extracting

the first principal component their input series. By construction, this extracts the

common driver of the panel of financial series, and the factor loadings also reflect

the systemic importance of each indicator. A prominent example is the Chicago Fed

National Activity Index (CFNAI) which capture a single latent factor extracted from

85 variables describing US economic activity. For instance, Hakkio and Keeton (2009)

estimate their Kansas City Fed Financial Stress Index (KCFSI) from a sample of US

financial indicators on the health of the banking system, debt, equity, and money

markets.

Further alterations of the standard PCA is called for when data varies in fre-

quency and availability. In the FCI literature, many macro series are available with

a long history but low quarterly frequency, whereas financial data are often avail-

able at a higher frequency but only becomes available at much later times, partly

due to the emergence of new instruments in equity and credit derivatives, as well
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as new markets such as hedge funds. Stock and Watson (2000, 2002) shows that

this issue can be resolved by generalizing the standard PCA to an iterative esti-

mation strategy. With a balanced panel, PCA reduces to ordinary least squares

(OLS) estimation; for unbalance panel, in each iteration missing values are replaced

by their expectation conditional on the observed data, and estimates of factor and

loadings are updated until the sum of squared errors converges. Bai and Ng (2004)

show that this estimation is consistent for dynamic factor models as the size of the

cross-section grows. This strategy has been used in recent research such as Hatz-

ius, Hooper, Mishkin, Schoenholtz, and Watson (2010), where the authors are able

to construct an aggregate index over a broad range of interest rates, asset prices,
quantitative and survey-based series of data dating back to the 1970s. Brave and

Butters (2010) further extend this iterative strategy by incorporating the temporal

aggregation and accumulation algorithms in Harvey (1989) and Aruoba (2009). The

authors constructed a weekly index of financial conditions by building upon an un-

balanced panel of more than 100 individual series which spans over money markets,

debt/equity markets, and the banking system, and are drawn with mixed frequencies

ranging from weekly to quarterly.

This paper is also related to Lo, Sgherri, and Zhou (2012), which uses monthly

hedge-fund regime-switching probabilities to construct contemporaneous and early-

warning systemic risk indicators. The differences can be outlined as follows: Firstly,
as described in the introduction section of this paper, one major obstacle in com-

paring systemic risk models is that there's no consensus on what objective function

people should use to evaluate and compare different measures. In this current paper,
we take an event-based approach and quantify systemic risk as the probability of

discrete systemic events; in contrast, Lo, Sgherri, and Zhou (2012) models high/low

systemic risk regime as continuous blocks of time. Secondly, the majority of sys-

temic risk literature has predominantly focused on applying US data, including this

paper; Lo, Sgherri, and Zhou (2012) takes on an international perspective and aims

at comparing systemic risk stress level among different geographic regions.
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2.3 Comparison of Individual Measures

2.3.1 Methodology

Our main approach in this paper has been illustrated in the introduction section

Figure 2.1, and here we describe with more detail our motivation for taking this

approach. Currently there is no consensus on what framework should be used when

comparing different systemic risk measures. We approach this problem by dividing

into the following modules:

In Module 0, we construct and standardize each systemic risk measure as a

monthly time-series up to December 2011. Most standardization in the literature

uses z-scores calculated from sample mean and sample standard deviation; here we

standardize the individual series into z-scores using rolling mean and rolling standard

deviation:

X- = - (2.15)
&~it

where

= systemic risk measure i on month t

= 'Z=i(s)1 1

&it = [ i (,S) - Aitl2

s=1

This is to avoid the look-ahead bias as much as possible, so the resulting measures

are actually implementable in the sense that if you implement them in the 2008 you

actually see those results in 2008.
After constructing and standardize the measures, in Module I we first need to

choose one particular objective function and bring the collection of measures under

one unifying framework. The objective function chosen in this paper is event-based:

we evaluate how well each measure can identify a given set of "systemic events".

As shown in Table 2.1, we start by identifying - just by judgment - the set of

systemic events in the 2007~2009 crisis and 1997~1998 crisis respectively, in order to

examine which existing measures are able to pick up these events contemporaneously,
and whether any of them are able to serve as an early warning signals. For the most

recent crisis, we follow the IMF GFSR and include the following events: the Quant
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meltdown in August 2007, Bear Stearns failure in March 2008, Lehman failure in

September 2008, Global Central Bank Intervention in October 2008, and the Greek

debt crisis April 2010. For the earlier 1997~1998 crisis, we chose to include the Thai

Baht devaluation in July 1997, Russian Debt crisis in August 1998, LTCM debacle

in September 1998, as well as the Japanese Yen appreciation in October 1998.
We also construct a control group of bad market events that caused tension

in certain market sectors but weren't systemic, just to see whether or not we are

getting false positives. The following events are included in our control group: the

Tech bubble burst in March 2000; terrorist attack in September 2001; equity retreat

in July 2002; oil price spikes in April 2004 and June 2008; US credit downgrade in

Aug 2011.

One issue that comes up is whether there is some subjectivity in the choice of

events, and people may have different views on which events should be included. Ul-
timately, this subjectivity is unavoidable, since there are so few events compared to

the diversity of significant facets within each event. Moreover, by taking a modular

view on this approach, the inclusion / exclusion of events can be seen as parameters

of one module of the system; the other modules are selection of measures, and ag-

gregation of measures. The overall framework is set up as a combination of all parts,
and we can certainly fine-tune each module. Alternatively we could use distribution

parameters of the output composite measure to define a quantitative threshold, and

define systemic events as those who caused the measure to exceed this threshold.

However, this also raises circularity in which systemic events are first used as bench-

marks for selecting measures, then the composite measure is used to define systemic

events. After all, our motivation is just is to set up a framework for people to start

thinking about how to compare and contrast them. In order for the framework to be

self-consistent, we only require that the composite measure able to capture what it's

designed to capture in the first place, i.e. the set of systemic events that we started

with.

Furthermore, in Table 2.2 we compare the objective functions that have been

adopted in related literature. Authors either choose to focus on a subjectively-

selected set of events, or choose a macro variable (e.g. GDP growth rate) as a proxy

for financial conditions. In particular, our approach is most similar to Carlson,
Lewis, and Nelson (2012), which also evaluate systemic risk measures by calibrating

their performances for identifying daily events of policy interventions out of systemic

risk concerns, and the events they select also spans the two major crisis that we
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Table 2.1: List of Systemic Events and Control Group of Non-Systemic Events

Events
Thai Baht devaluation Jul 1997
Russian debt crisis Aug 1998
LTCM debacle Sep 1998
Yen appreciation Oct 1998
Quant meltdown Aug 2007
Bear Stearns failure Mar 2008
Lehman and TARP failure Sep 2008
Global central bank intervention Oct 2008
Greek debt crisis Apr 2010
(event selection follows IMF GFSR)

Non-Events
Tech bubble burning Up Mar 2000
Terrorist attack Sep 2001
DJIA sank to lowest level in nearly 4 years; Jul 2002

NASDAQ and SP500 at lowest levels since 97
Oil price hit a 3.5 year high Apr 2004
Crude oil price tops $100 a barrel Jun 2008
S&P downgrades US credit rating Aug 2011
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aim to cover. For the 1998 crisis, Carlson, Lewis, and Nelson (2012) select the

9/23/1998 LTCM bailout as the benchmark event; here we choose to also include

several market events that preceded, and probably precipated, the last straw that

broke the camel's back. Oet, Eiben, et al (2011) uses volatility regime benchmark

to identify 50 systemic risk event weeks from 1991 to 2010; here we choose not

to subjectively identify systemic events with another subjectively-selected measure,

especially out of concerns for the volatility paradox (that leverage builds up and

systemic risk rises during low-volatility periods, not high-volatility periods).

Besides, one may want to adopt an event-free approach, such as to test for pair-

wise Granger causality across existing measures, and rank individual measures by

the number of other measures that can be Granger-caused by itself; or to estimate

pair-wise correlations and predictive relations, and rank individual measures by the

number of other measures that are significantly correlated with itself, or can be

predicted by itself. Such analysis might also allow us to track the building up and

propagation of systemic risk across different sectors. Regardless of which criterion is

applied, the objective is to select a subset of systemic risk measures that have better

performance than the rest of the group. In fact, such event-free approaches does

not directly address the central issue of systemic risk research - even if we found

one measure capable of predicting some other measures, or have the highest cross-

correlation with other measures, it doesn't necessarily imply policy makers will find it

more useful to monitor systemic events; this may well be capturing "sector-rotation"

between asset classes unrelated to the building up of systemic fragility.

Module II is to apply the supplied objective function as a preliminary filter to

select a subset of candidate measures. The questions we want to ask are: Do measures

pick up those systemic events? Secondly, do those measures generate false positives

during the control groups that are bad market events that are not deemed to be

systemic? And whether or not these measures can actually forecast these events; in

other words, do these measures serve as early warning signs? More formally, we use

the following criteria as an initial filtering of systemic risk measures:

One is the "signal-to-noise ratio": we compute the average of this measure during

these systemic events that we are targeting, and then compute the average during

all the other periods (not just during the control group, but during all other periods

that were not systemic), and then calculate the ratio of the event average and the
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Table 2.2: Comparison of Methodology: Objective Function (Module I)

Index Objective Function

Board policy interventions (Fed, FDIC, TYeasury)
Carlson, Lewis, and Nelson (2012) out of systemic risk concerns -> 36 daily events

(9/23/1998; 2007~2010 intervention events)
Chicago Fed list of 50+ weeks of financial crisis or
Brave and Butters (2011) market disruptions (incl. Enron, Y2K)
Cleveland Fed Use volatility regime benchmark
Oet, Eiben, et al (2011) 50 systemic risk event weeks (1991Q1: 2010Q4)
Kansas Fed GDP growth rate
Hakkio and Keeton (2009)
St Louis Fed N/A (calculate principal component)
Kliesen and Smith (2010)

Bank of Canada historical crisis periods
Illing and Liu (2006)
Hatzius, Hooper, Mishkin, GDP growth rate
Schoenholtz, and Watson (2010)

non-event average. In other words, SNR is defined as

Xie = 1 X e
#ev tEevents

T - #events xit
tgevents

SNRi = Xie|Xin

(2.16)

(2.17)

(2.18)

where Xit is the original measure normalized by its rolling mean and rolling

standard deviation. Another possible definition of SNR is to compute the ratio

of event-months versus the non-event control group. However, this definition is

sensitive to the selection of control-group, and therefore more subjective compare to

the approach in (2.18).

The other approach we undertake is to use Logit regression and examine whether

these measures are significant during the systemic event months. We use the two

following specifications:
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1. Contemporaneous regression

Zt = G (a + #3,oXi,t + i, 1Xj,t_1 + #i, 2 Xit- 2 + --- + Eit) (2.19)

2. One-step ahead forecast regression

Zt = G (a + #3,1Xj,_ 1 ± #31,2 Xt_2 + --- + E it) (2.20)

The independent variable for the logit regression is an indicator variable for systemic

events: 1 for months during which there has been in systemic event, 0 otherwise.

The dependent variables are the the individual systemic risk measures with its lags.

In the baseline case, we use a uni-variate regression with no lags; similar analysis are

conducted with higher numbers of lags. We rank measures by whether or not they

can get an explanatory power in the logit regression, i.e. the significance of #6 ,o in

the contemporaneous regression (2.19) or #i,1 in the one-step ahead forecast (2.20).

Along the same lines, we also compare the goodness-of-fit and examine how much

of the variation in the systemic event indicator can be explained by variations in the

individual measures. Measures are ranked by R 2 from the Logit regressions.

Our current approach in Module II is to filter out measures with negative signal-

to-noise ratios, or non-significant coefficients in the Logit regressions. An alternative

approach could be assigning relative weights to the individuals measures based on

their past performance: the worse-performing measures are assigned lower weights

than the better-performing ones.

Another characteristic we examine is persistence, in which we compute the first-

order auto correlation of these measures. Although it is interesting to compare auto-

correlation among different categories of measures, a more persistent measure doesn't

necessarily imply it is a better measure since the cause for high auto-correlation may

not be related to the building up of financial distress. Therefore we will not use

auto correlation as a benchmark to filter out measures, but nonetheless report the

rankings.

Module III is to augment the information set by incorporating additional data

series that are currently not yet examined in the systemic risk literature, but are

empirically useful measures of financial distress. Details on external factors will be

provided in Section 2.4.1. Going forward as new theory models are established, these

external factors would eventually become new systemic risk measures and migrate
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into Module 0.
Finally, Module IV combines the candidate systemic risk measures with the ex-

ternal factors, and aggregate them into a composite measure. In this paper, we

choose to adopt unbalanced-panel principal component analysis, which allows for

the fact that the individual measures and external factors start at different points in

time, and that the factor loadings on the individual measures are derived from their

commonality instead of assigning subjective weights. In principle, the aggregation al-

gorithm can be as simple as a "majority rule", or much more sophisticated approaches

such as machine learning and other various filtering techniques. Regardless, all these

alternatives can be refinements of Module IV, but the overall framework remains

unchanged.

2.3.2 Results

The summary statistics for all measures are reported in 2.7. In Table 2.8 we rank the

measures by their signal-to-noise ratio. Our results suggest that the following five

measures have the highest signal-to-noise ratio as defined in (2.18), in other words

they give the highest stress level readings during the event-months relative to all other

months: the marginal expected shortfall standard deviation comes first, followed by

Granger causality network for financial firms, the CoVaR, and two regime-switching

measures based on event-driven-distressed and multi-strategy hedge funds, respec-

tively.
Among different hedge-fund regime-switching measures, managed futures and

equity-market-neutral have the lowest signal-to-noise ratio. The Absorption ratio

and GDP stress test both fall into the lower end of rankings. We also observe that

some measures have registered negative signal-to-noise ratios, all of which are based

on return-smoothing. As a first-step filter, we would exclude those low SNR measures

in constructing the composite index.

In Table 2.9 we report the baseline contemporaneous Logit regression results,
in other words this is the univariate regression of systemic event indicator on the

current period systemic risk measure with no further lags. We also performed the

same regression with additional lags, and the rankings turned out to be similar.

As shown in Table 2.9, using the Logit regression we get a different ordering but

consistent results as the SNR analysis. By ranking measures by the significance

(not magnitude) of Logit regression coefficient in (2.19), we see that CoVaR and

marginal expected shortfall cross-sectional standard deviation again have very good
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performance, followed by marginal expected shortfall cross-sectional sum; hedge-fund
regime-switching measures comes next, with the categories being multi-strategy and
event-driven multi-strategy. Three of the top five performers in contemporaneous
logit regression are the same as SNR.

Moving towards the lower end, the absorption ratio and GDP stress test have a
close-to-zero coefficient and also insignificant; we observe again that some measures
provide the wrong direction in the logit regression (2.19), with return-smoothing

equity-market-neutral at the bottom, similar to the SNR results. These measures
will be excluded from the composite measure.

In Table 2.10 we report the one-step-ahead Logit regression rankings in the base-

line univariate case. Again measures are ranked by the significance of the regres-
sion coefficient #1 in (2.20), not necessarily by its magnitude. This time, multi-
strategy-based hedge fund regime-switching measure comes at the top, followed by
marginal-expected-shortfall cross-sectional standard deviation, event-driven hedge-
fund regime-switching measure; global-macro has newly emerged in the top five.
Compared with Table 2.9, our results suggest that hedge-fund regime-switching mea-
sures are better predictors than contemporaneous indicators.

In terms of explanatory power, in Table 2.11 we report the R-squares for the
contemporaneous (Panel a) and one-step-ahead logit regressions (Panel b), both
in the baseline univariate case. Using standard methods of constructing these R
squares, in the contemporaneous regression we are looking at 32% at the top of
the panel. In other words, we can actually get reasonable explanatory power using
CoVaR, marginal expected shortfall, regime switching for hedge funds, followed by
the Granger causality measures for market sector interconnectedness.

With the one-step ahead, we are again getting slightly different rank orderings
but the same five measures at the top. Now the highest R-square for the one-step
ahead is 15%, which is approximately half of the contemporaneous case but still

reasonable starting point for predictive analysis.

In Table 2.12 we rank the measures by their first-order auto-correlation. As can be
seen from the results, auto-correlations are in general quite high in these integrated
series; not surprisingly, hedge funds have the highest serial correlation, and the top
five are all hedge-fund regime-switching measures with the investment styles being
multi-strategy, long-short equity, all-styles, emerging-markets, and global macro. In-

tuitively, hedge funds have monthly mark-to-market requirements, therefore they
are the first in line to sense any changes in financial and credit conditions. Signs
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of distress usually show up in hedge fund returns - particularly the illiquid ones -

before other markets are hit. GDP stress test comes next, which implies that this

measure does not provide a salient contrast between event-months versus the rest

of the period, but past levels of stress test provides quite a good estimate for the

period ahead. The same can be said for the absorption ratio. Finally, the marginal

expected return cross-sectional sum and standard deviation are among the lowest in

terms of serial-correlation, although both are top performers in the SNR and Logit

regressions. This is consistent with our previous discussion that serial correlation

rankings may not be the appropriate criterion for selecting measures.

Overall, our results indicate that marginal expected shortfall, CoVaR, Granger

causality networks, and hedge fund regime-switching measures are among the most

informative for policy makers to navigate through previous crises. Furthermore,

hedge-fund regime-switching measure is a better leading measure than contempora-

neous, whereas Granger Causality network and CoVaR are better contemporaneous

measures than leading.

The predictive power of hedge fund regime-switching measures can be understood

by the examining the dynamics of how financial distress is propagated across asset

classes. Hedge funds borrow from the banks and are highly leveraged. Therefore,

they are usually the first in line to sense changes in credit and financial conditions.

Many recent literature has emphasized the role of serial deleveraging as a crucial

mechanism in causing financial crisis (see, for example, Brunnermeier, Nagel, and

Pedersen (2008)). Essentially, Once there is a shock to the system, prices continue

to drop until someone is forced to liquidate in order to meet margin calls. Hedge

fund liquidation starts from the most liquid markets and this act further weakens the

market by drying up liquidity. When too many people are trying to flee too quickly,

the rest also become caught up. Eventually, when nobody can liquidate anymore,

people move on to liquidate in the next market, and the downward spiral starts. In

our view, signs of distress shows up when we start to see liquidation across the board

from hedge funds in all asset classes.

Granger causality network examines the interconnections between hedge funds,

banks, brokers, and insurance companies. Risk spill-over from hedge funds to other

sectors is slower than within hedge funds, therefore counting the number of inter-

sector causality links is much more likely to a contemporaneous measure than a

leading measure.

CoVaR identifies the tail-risk of the entire financial system by individual institu-
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tions. Conceptually, this measure can be used to anticipate systemic risk because it

does not rely on contemporaneous price movements. However, the key variable in the

CoVaR definition (2.6) is the growth rate of the firm's asset value, which is computed

through quarter data of firm's leverage, book equity value, and shares-outstanding.

This information lag in data inputs could reduce the output measure's predictive

performance. Marginal expected shortfall is conceptually similar to CoVaR and also

focuses on the left-tail of the return distribution; by taking the cross-sectional sum,

we are measuring the "size" of the left-tail, whereas by taking the cross-sectional

standard deviation, we are measuring the "fatness" of the left tail. Yet by construc-

tion MES only uses information from equity returns and not quarterly balance-sheet

information, and it turns out to have better forecasting power as reported in Table

2.10.

Our entire analysis include three categories measures that are constructed ex-

clusively from hedge fund returns and AUM's: regime-switching, return-smoothing,

and illiquidity proxied by return-autocorrelation. With the same information set,

regime-switching models outperformed the other two categories as indicators of sys-

temic risk. At this point it should also be of interest to examine across different

hedge-fund investment styles, and we will follow the investment style definitions

from Credit Suisse / Tremont Hedge Fund Index.

To start with, event driven funds "seek to profit from potential mispricing of

securities related to a specific corporate or market event. Such events can include:

mergers, bankruptcies, financial or operational stress, restructurings, asset sales, ...,

as well as other types of corporate events." In particular, as a sub-category, event-

driven distressed funds "typically invest across the capital structure of companies

subject to financial or operational distress or bankruptcy proceedings. Such securities

often trade at discounts to intrinsic value due to difficulties in assessing their proper

value, lack of research coverage, or an inability of traditional investors to continue

holding them." Considering the five event months for the 2007~2009 crisis, two are

directly linked to major corporate bankruptcies (Lehman and Bear Stearns) where

as the others also lead to significant equity downturns. Consistent with intuitions,

event-driven funds are quite useful as systemic risk indicators.

Another set of regime-switching indicator comes from global macro funds, which

"typically focus on identifying extreme price valuations and leverage is often applied

on the anticipated price movements in equity, currency, interest rate and commodity

markets. Managers typically employ a top-down global approach to concentrate on
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Figure 2.2: Stylized example of Equity Market Neutral: Equity pairs trading AT&T

vs Verizon, the spread is not indicative of macro or systemic distress.
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forecasting how political trends and global macroeconomic events affect the valuation

of financial instruments." As can be observed from Table 2.8, 2.9 and Table 2.10,

the regimes of global macro fund returns turn out to be'a better leading indicator

than a contemporaneous indicator, and are in general quite consistent with global

economic trends.

In contrast, equity market neutral funds ended up as the least indicative of sys-

temic risk. Here we should note that our objective is not to rank the profitability or

risk-return characteristics across various investment categories, but rather whether

those return regimes are consistent with systematic risk evolution. Equity market

neutral funds "typically take both long and short positions in stocks while seeking to

reduce exposure to the systematic risk of the market ... exploit investment opportu-

nities unique to a specific group of stocks, while maintaining a neutral exposure to

broad groups of stocks defined for example by sector, industry, market capitalization,

country, or region." As a stylized example, AT&T (T) and Verizon (VZ) are a pair

of technology stocks with similar products and clientele. As shown in Figure 2.2,

their price movements are usually in line with one another. When there is a short-

term divergence between the two, an equity-market-neutral investor would take on

relative-value positions with the expectation that the spread would eventually con-

verge, and the timing would be driven mostly by company-specific events rather than

systemic events. Therefore, it is unsurprising that the regime probabilities of equity

market neutral funds are not particularly informative for identifying systemic risk.
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In the current set of results, hedge fund illiquidity proxied by auto-correlation

didn't appear as particularly informative, which is somewhat surprising considering

that fire-sale liquidation and deleveraging were the central drivers of the 2007 crisis

(Khandani and Lo (2011)). However, the liquidity measure implemented in this com-

parison study is calculated using 36-month rolling window, in other words by 2007

this measure is capturing the average first-order auto-correlation from 2005~2007.

To capture the sudden liquidity changes during those highly tumultuous episodes,

we should be conducting a microscopic study with higher frequency data and over a

narrower window; this, for now, is beyond the original scope of the empirical compar-

ison project. Furthermore, Zhou (2010) also demonstrate under the joint influence

of multiple frictions and liquidity shocks, autocovariance (which can be measured

with daily returns) and Kyle's lambda (which can be measured with transaction-

level data) may indicate opposite changes in liquidity levels. Therefore, the choice

of liquidity measure could also have affected the comparison outcome.

Finally, in the above rankings, GDP stress test does not seem to have very good

performance either in the contemporaneous or leading measure. This may be due

to the fact that aggregating over static, one-country-at-a-time stress-tests is only a

starting point for the time being; however, a dynamic view of stress-testing would

be more appropriate. Across sectors, when there's a shock to banks, the ripple effect

immediately reaches the hedge funds, causing the repo market to seize up and banks

are forced to take the next action; across countries, many authors have documented

that (see, for example, Pepinski, T. (2012) ) the US subprime crisis has led to a

global repatriation of portfolio capital in which international investors rebalanced

their portfolio away from the US and back to home countries in which their fund

were domiciled. Our reported results should not be interpreted as GDP stress tests

are not useful channels for systemic risk management.

2.4 Construction of A Composite Measure

2.4.1 Methodology

Our next goal is to construct an aggregate systemic risk measure from the individual

measures. To begin with, we compare our approach to other papers in related liter-

ature as shown in Table 2.3 and examine what they have included as the input data

series. The common approach is to select 10~20 financial series from different asset
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Table 2.3: Comparison of Methodology: Input Data Series (Module II)

Index Objective Function
Board 12 series of liquidity, credit, and uncertainties
Carlson, Lewis, and Nelson (2012) standardized by long-run mean and stdev
Chicago Fed 100 financial indicators: money markets (28)
Brave and Butters (2011) debt/equity (27), banking system (45)
Cleveland Fed 11 series of bank loans, FX credit, equity, debt
Oet, Eiben, et al (2011) transformed into CDF
Kansas Fed 18 series of interest rates, yield spreads,
Hakkio and Keeton (2009) bond volatility index, equity volatility index
St Louis Fed 11 series of credit spreads, equity/bond
Kliesen and Smith (2010) correlation, VIX, price/return dispersion
Bank of Canada rolling beta for banking industry, liquidity
Illing and Liu (2006) and credit spread, equity vol, exchg rate vol
Hatzius, Hooper, Mishkin, 45 series of interest rates, asset prices; quantity
Schoenholtz, and Watson (2010) variables (e.g. CP, ABS issuance); surveys.

classes (risk-free rates, credit, equity, volatility, and so on), while some others choose

to be as broad as possible (for example, Brave and Butters (2011)), which raises

the questions of whether more is necessarily better. Given the above considerations,
we also seek to incorporate information from various asset classes but will limit our

exposure to the better-performing candidate measures as described in the previous

section.

Next comes the question of which asset classes we can cover in our aggregate

index. What we look for is to enrich the information set in our composite index

by incorporating other financial and macroeconomic time series that have been fre-

quently used as measures of financial distress, but not yet examined in the systemic

risk literature. In Table 2.4 we compare the asset class coverage and methodology in

the systemic risk literature versus the financial conditions literature.

The systemic risk literature has the unique advantage of using hedge-fund data

and network analysis to develop measures that have not been studied in the financial

conditions literature. Additionally, several systemic risk models are based on nonlin-

ear correlation measures that focuses on tail risk (e.g., the CoVaR and the Co-Risk),
whereas financial condition indexes typically use simple linear correlations among

different asset classes. On the other hand, the financial condition literature covers a
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Table 2.4: Comparison of Asset Class Coverage in the Literature: Systemic Risk and
Financial Condition Index (FCI).

Systemic Risk FCI
Hedge Fund Measures available
Network Analysis Measures available
Housing Market Measures available available
Quantity Variables, Sentiment Surveys available
Macroeconomic Series some coverage well-developed
Correlation Measures non-linear linear
Exchange Rate examined in this paper
Comparison and Aggregation of Measures examined in this paper available

broader range of macroeconomic series such money supply, quantity variables (e.g.
MBS, CMBS, ABCP issuance), forward looking sentiment measures (e.g. option
and swaption volatility expectations), and surveys (e.g. credit availability, the assets

and liabilities of commercial and "shadow" banks). The most eminent examples are
perhaps the LIBOR-OIS spread and the TED spread, both of which have a proven
record of picking up episodes of high systemic risk, but as far as we know the sys-
temic risk literature has not yet established theories to explain them. To start with,
we include both the LIBOR-OIS spread and the TED spread into the set of external
factors that will be combined with the subset of well-performing candidate measures.

Moreover, practitioners have commented that the increasing proportion of bank's
profits generated by carry trades may be an indicator of impending systemic risk.
While it is difficult to directly conduct empirical tests on that front, we do find
that exchange rates can contain important information about financial distress. As
shown in Fig. 2.3, we compare the risk reversals for two currency pairs, AUD/USD
and USD/JPY with the LIBOR/OIS spread and TED spread, all after rolling stan-

dardization. For any currency pair, the risk reversal is the difference between the

implied volatility of an OTM European call and and an OTM European put with

equal moneyness. When the exchange rate distribution is negatively skewed under
the risk-neutral measure, investors are willing to pay more to insure against currency
depreciation, and the risk reversal becomes negative. Using data from Bloomberg,
we find that the two currency pairs plotted in Fig. 2.3 are picking up very similar
periods of financial distress as the LOIS and TED; in fact, both risk reversals shows
the most acute warning signs for the August 2007 quant crisis, which is the onset for
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Figure 2.3: Time Series Plot of External Factors: LIBOR/OIS Spread, TED Spread,

and Risk Reversals
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the turbulence in the following two years. So far the only drawback for using risk

reversals is that they become available only at later times - the two series in Figure

2.3 are available on Bloomberg since 2003. Given their performance in capturing

financial distress, we also include the risk reversal series as external factors.

In terms of aggregation framework, the financial conditions literature commonly

uses two approaches for constructing aggregate indicators from a collection of indi-

vidual series (Table 2.5): One approach is a simple weighted average, which begs the

question of how to decide the weights on individual series. We choose not to do adopt

this approach, because firstly, by optimizing performance of the aggregate indicator

we risk over-fitting the model; secondly, the weights should reflect the relative im-

portance of the individual measures, which we deem as a model output rather than

a model input. The second approach is to calculate the first principal component

from the individual measures. The easiest way to construct a composite index is to

extract the first few principal components from the panel of systemic risk measures

and external factors. One obvious drawback of this approach is that the individual

series start at different points in time. While measures such as the GDP stress test

can span a sample period of several decades, several other measures uses corporate

and sovereign credit default swap data that become available only at much later
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Table 2.5: Comparison of Methodology: Aggregation Framework (Module IV)

Index Aggregation Framework

Board Logistic regression on level, vol, and corr
Carlson, Lewis, and Nelson (2012) -> probability of distress

Chicago Fed missing value Kalman filter, the Harvey
Brave and Butters (2011) accumulator and the EM algorithm
Cleveland Fed weighted by total dollar flows into each sector
Oet, Eiben, et al(2011) of bank loans, FX credit, equity, and debt
Kansas Fed first principal component
Hakkio and Keeton (2009)
St Louis Fed first principal component
Kliesen and Smith (2010)
Bank of Canada first principal component
Illing and Liu (2006)
Hatzius, Hooper, Mishkin, unbalanced-panel principal component
Schoenholtz, and Watson (2010) (Stock and Watson (2000))

times.

We follow the recent FCI literature and use unbalanced-panel principal compo-

nent analysis (see, for example Bai and Ng (2008), Stock and Watson (2006), Stock

and Watson (2000), and Hatzius et al (2010)), which generalizes the standard PCA

through an iterative OLS strategy that improves upon initial guesses of factors and

loadings over many rounds. Below we outline this iterative approach:

Suppose {XitJ is an unbalanced panel of individual systemic risk measures (de-

meaned), i = 1,... , N where N is the total number of indicators included in the

model. The goal is to decompose Xt into factor loadings and estimate the common

factor Ft and the loadings Ai:

Xt ,= A'F + uit (2.21)

where F is a k x 1 vector, Ai is the i-th row of A. The factors and loadings are chosen

by minimizing the objective function

N T

V (FA) = (Xi - A'i)F2)
i=1 t=1

(2.22)
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When the panel is balanced, the solution to the least squares problem in (2.22)

reduces to simply calculating the principal components of Xit, i.e. the eigen-vectors

of the sample covariance matrix. With unbalanced panel where some observations

on Xit are missing, the quadratic minimization needs to be modified. The objective

function (2.22) is accommodated by summing over non-missing observations. During

iteration j, the elements of the estimated balanced panel are constructed as

Xit if Xit is observed
) = (2.23)

I$'t otherwise

The estimate of Ft is then updated by computing the eigen vectors corresponding to

the largest k eigenvalues of

1 Z ki (2.24)

where ki = (ka, 7 ,- , Xr). The estimate of A is updated by the OLS regres-

sion of X onto this updated estimate of F.

2.4.2 Results

In Figure2.6 we provide the time-series plot of the composite measure with the com-

plete set of systemic events and control group highlighted. Table 2.6 compares the

type I vs type II error for the original and the composite measure. As described in

the previous section, we form the composite index by choosing the best-performing

individual measures and combing them with a set of external factors; each measure

is said to detect a systemic event if its 95% quantile is exceeded.

As reported in the top panel of Table 2.6, the original measures are quite good

at detecting systemic events. Out of twenty seven measures in total, four of them

can detect Bear Stearns failure, seven can detect Lehman failure, and sixteen are

able to capture Global Central Bank Intervention. The composite has improved

power especially for the Quant crisis, and also gave correct warning signals for the

Bear Stearns failure, the Lehman and TARP failure, as well as the Global Central

Bank Intervention, but missed the European debt crisis. Another benefit of using

the composite measures is that we don't have any false positives, whereas there are

a number of false positives using the individual measures. The tradeoff seems to

be that we get less power in certain circumstances, but the size tends to be more

accurate.
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Table 2.6: Compare Type I and Type II Errors of the

Measures

Original and Composite

(a) Number of measures generating correct warning

Events Original Composite

Quant Meltdown Aug 2007 1 TRUE
Bear Stearns failure Mar 2008 4 TRUE

Lehman and TARP failure Sep 2008 7 TRUE
Global central bank intervention Oct 2008 16 TRUE

Greek debt crisis Apr 2010 1 FALSE

(b) Number of measures generating false positives

Non-Events Original Composite
Tech Bubble Burning Up Mar 2000 4 FALSE
Terrorist Attack Sep 2001 0 FALSE
DJIA sank to lowest level in nearly four years; Jul 2002 4 FALSE
NASDAQ and SP500 at lowest levels since 97
International oil price hit a 3.5 year high Apr 2004 1 FALSE
Crude oil price tops $100 a barrel Jun 2008 5 FALSE
S&P downgrades US credit rating Aug 2011 2 FALSE
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Figure 2.4: Composite Measure Signal-To-Noise Ratio with Varying Number of Orig-

inal Measures Included.
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Next we vary the number of original measures that are included in constructing

the composite measure, and examine whether including more original measures can

generate higher signal-to-noise ratio. In fact, it doesn't. As shown in Figure 2.4, the

composite signal-to-noise ratio is the highest when we include only the most predic-

tive or the most explanatory individual measures; as we add more measures in, the

signal-to-noise ratio actually decreases with the number of measures included, unless

the number of measures are close enough to including everything, where the result-

ing signal-to-noise ratio become comparable to the very best. The same observation

holds true for different event windows (i.e. calculating SNR with only the current

month, including ±1 month, and including i2 months).

The composite measure's performance in Logit regression is reported in Table

2.13. Compared to Table 2.9 and 2.10 , the composite measure outperforms the

individual measure both in the contemporaneous Logit regression and the one-step-

ahead Logit regression. In all contemporaneous regression with different lags, the

probability of systemic event indeed increases with the composite measure, and the

composite measure has positive and quite significant idenitification power. In the

baseline case of uni-variate regression, the composite measure has x2 = 19 which

improves upon the top individual measure performance x 2 = 9 as shown in Table

88



2.9. For the one-step-ahead forecast, again the composite measure has positive and

significant predictive power for all logit regressions with different lags. In the baseline

case of uni-variate regression, the composite measure has x 2 = 11 which improves

upon the best individual measure performance x 2 = 6 as shown in Table 2.10.

Finally, following the discussion in Section 2.3.2, hedge fund regime-switching

measures are the only category whose forecasting performance is better than con-

temporaneous. To reinforce this idea, in Lo, Sgherri, and Zhou (2013) we construct

another composite measure by aggregating over hedge funds only. There we show

that the hedge-fund-only composite measure transitioned into high-risk regime dur-

ing June~July 2007, immediately before the actual meltdown on 8/9/2007; on the

recovery side, during January~February 2009, it transitioned back into the low-risk

regime, immediately before the Dow Jones Industrial Average reached its bottom on

3/6/2009. This indicator also gave correct warnings for the European debt crisis and

the mid-90's Latin American and Asian crises without generating any false positives.

This set of results further supports our discussion in Section 2.3.2 that hedge fund

measures are crucial leading indicators of systemic risk. By 2012, the hedge fund

industry has more than $2 trillion assets under management, which is comparable

to the entire Italian GDP, or two thirds of Germany, seven times Greece, and ten

times Ireland (see Fig. 2.5). Given their size and leading performance, it becomes

evident that hedge fund measures can provide important insights unavailable from

conventional asset classes. Furthermore, from a supervisory perspective, the best

time to implement policy tools would be when the leading indicator is picking up

early signs of financial distress but the contemporaneous has not yet. Ultimately, the

classification of a collection of measures can provide additional timing information

that cannot be made available from a single leading or contemporaneous measure.

2.4.3 Where Do We Stand Today?

Regarding the current state of systemic risk level, we turn to Figure 2.6 and exam-

ine what the composite measure tells us at the end of the sample period, namely

December 2011. As shown in the graph, the composite measure reached its highest

stress level in September 2008 and has quickly retreated to low stress level since the

second half of 2009. By the end of 2011, the composite measure shows a low level of

stress (zscore below 0).

Now that we have already arrived at the second half of 2012, with the benefit of

hindsight we can compare the measure's indication versus the world's actual events.
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Figure 2.5: Compare the Size of The Hedge Fund Industry with Country GDP's ($
trillion)
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Within the US, the Federal Reserve has made considerable use of forward communi-

cation tools for providing policy stimulus (Bernanke (2012)), and the series of FOMC

statements published in 2011 have frequently stated that economic conditions would

warrant the federal funds rates to remain exceptionally low for an extended period,
at least through mid-2013. Furthermore, in August 2011 the Fed has also intro-

duced the maturity extension program (MEP) to purchase $400 billion of long-term

Treasuries and sell an equivalent amount of shorter-term Treasuries over the period

ending in June 2012. Forward guidance from the Federal Reserve reduces long-term

interest rate by reducing future short-end expectations, therefore leading to more

accommodative financial conditions.

Globally, however, the world economy was still suffering from clouds of uncertain-

ties from the European countries. International investors were constantly concerned

about the possibility of a disorderly Greece exit, the risks of individual bank fail-

ures, sovereign defaults, soaring yields in the core and peripheral euro-zone countries

alike, as well as evaporating liquidity across the board. However, at this stage, most

systemic risk models in the literature have been predominantly focused on the US,

and therefore, so do our composite measure which is constructed from an ensemble

of these individual measures and other US-benchmarked external factors. While this

US-focused composite measure is not showing up much signs of distress by the end
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of 2011, it also reminds us that it is important to develop region-specific indicators

for systemically-important regions of the world, such as the Euro-zone.

2.5 Conclusion

To conclude, in this paper we develop a framework which allows people to start com-

paring individual systemic risk measures, and aggregating them into one composite

measure. Among the measures currently constructed, we find that CoVaR, marginal

expected shortfall, Granger causality networks, and hedge-fund regime-switching

measures are the most informative for identifying systemic events. In particular,

hedge-fund-based measures are the best leading indicators that we have found so far,

which consistently generated early warnings for the 1998 and the 2007~2009 finan-

cial crises. We also construct a composite measure that outperforms the individual

measures and has increased power of detecting systemic events. Credit spreads and

currency risk reversals turn out to be empirically useful indicators of systemic risk,

although the current literature has not yet studied the economic mechanisms of their

impact.

In future research, we would like to incorporate more macroeconomic time series

collected at different frequencies, and ultimately create a centralized platform where

these measures can be computed on a regular basis. That would enable us to compare

and get feedback from the public as to which ones of these measures are more useful,

and provide policy guidance on a real-time basis.
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Appendix

Table 2.7: Summary Statistics of Individual Systemic Risk Measures

Name Mean Std Min Max

Granger Causality
Mahalanobis Distance

Absorption Ratio
GDP Stress Test

CoVaR
MES sum
MES std
Smoothing: Convertible Arbitrage
Smoothing: Equity Short Bias
Smoothing: Emerging Markets

Smoothing: Event Driven

Smoothing: Long/Short Equity
Smoothing: All Styles

Hedge Fund Auto-Correlation

Regime: All Styles
Regime: Convertible Arbitrage

Regime: Emerging Markets

Regime: Equity Market Neutral
Regime: Event Driven

Regime: Event Driven Distressed
Regime: Event Driven Multi-strategy

Regime: Event Driven Risk Arbitrage
Regime: Fixed Income Arbitrage
Regime: Global Macro

Regime: Long/Short Equity

Regime: Managed Futures
Regime: Multi-strategy

0.33
0.22
0.44
0.66
0.44
0.98
0.19
0.90
0.48
0.10
-0.60
-0.15
0.36
1.27
0.18
0.45
0.17
0.02
0.18
0.09
0.16
0.32
0.12
0.20
0.19
0.90
0.16

1.37
1.24
1.42
1.55
1.55
1.00
1.18
1.83
1.76
1.15
1.08
1.44
1.21
0.67
0.31
0.42
0.31
0.13
0.33
0.24
0.29
0.30
0.28
0.37
0.32
0.13
0.31

-1.82
-1.26
-2.14
-0.85
-1.46
-1.05
-1.40
-1.02
-2.92
-1.63
-4.24
-2.28
-1.61
-0.03
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.03
0.00
0.00
0.00
0.50
0.00

4.72
6.86
3.56
5.85
8.80
4.66
6.97
7.70
7.92
2.79
2.56
3.28
4.51
2.34
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
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Table 2.8: Measures Ranked by Signal-To-Noise Ratio

Name Signal-To-Noise Ratio

1 MES std 30.35
2 Granger Causality 8.86
3 CoVaR 8.20
4 Regime: Event Driven Distressed 4.60
5 Regime: Multi-strategy 4.24
6 Regime: Event Driven Multi-strategy 3.96
7 Regime: Event Driven 3.60
8 Regime: Global Macro 3.32
9 Smoothing: Dedicated Short Bias 2.98
10 Regime: All Styles 2.77
11 MES sum 2.66
12 Regime: Long/Short Equity 2.62
13 Regime: Emerging Markets 2.34
14 Smoothing: Event Driven 1.85
15 Regime: Fixed Income Arbitrage 1.78
16 Absorption Ratio 1.76
17 Regime: Event Driven Risk Arbitrage 1.59
18 Regime: Convertible Arbitrage 1.57
19 Smoothing: Long/Short Equity 1.42
20 GDP Stress Test 1.08
21 Regime: Managed Futures 1.06
22 Hedge Fund Auto-Correlation 0.76
23 Mahalanobis Distance 0.28
24 Regime: Equity Market Neutral 0.09
25 Smoothing: Convertible Arbitrage -0.29
26 Smoothing: All Styles -1.31
27 Smoothing: Emerging Markets -8.01
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Table 2.9: Measures Ranked by Contemporaneous Logit-Regression

Name Wald x2  p-value

1 CoVaR 0.7341 9.18 0.00
2 MES std 0.7900 9.06 0.00
3 MES sum 1.1554 8.15 0.00
4 Regime: Multi-strategy 3.1069 7.43 0.01
5 Regime: Event Driven Multi-strategy 2.8793 6.71 0.01
6 Granger Causality 0.7196 6.29 0.01
7 Regime: Event Driven 2.6823 6.07 0.01
8 Regime: Event Driven Distressed 2.4613 5.27 0.02
9 Regime: Global Macro 2.1667 4.64 0.03
10 Regime: All Styles 2.2058 3.96 0.05
11 Regime: Long/Short Equity 1.9526 3.31 0.07
12 Regime: Emerging Markets 1.5317 1.99 0.16

13 Regime: Event Driven Risk Arbitrage 1.6590 1.63 0.20
14 Regime: Convertible Arbitrage 1.4375 1.53 0.22
15 Smoothing: Dedicated Short Bias 0.2286 1.22 0.27
16 Regime: Managed Futures 4.9353 0.85 0.36
17 Regime: Fixed Income Arbitrage 0.9416 0.54 0.46
18 Absorption Ratio 0.1583 0.25 0.62
19 GDP Stress Test 0.0209 0.01 0.94
20 Smoothing: Emerging Markets -2.0475 4.62 0.03
21 Smoothing: All Styles -0.8540 2.55 0.11
22 Smoothing: Convertible Arbitrage -2.0058 1.80 0.18
23 Smoothing: Event Driven -0.4485 1.04 0.31
24 Hedge Fund Auto-Correlation -0.7540 0.97 0.32
25 Mahalanobis Distance -0.1232 0.09 0.77
26 Regime: Equity Market Neutral -6.2035 0.03 0.87
27 Smoothing: Long/Short Equity -0.0300 0.01 0.93
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Table 2.10: Measures Ranked by One-Step-Ahead Logit-Regression

Name #1 Wald x 2  p-value

1 Regime: Multi-strategy 2.6913 5.99 0.01
2 MES std 0.4840 5.22 0.02
3 Regime: Event Driven 2.1550 4.15 0.04
4 MES sum 0.7430 3.90 0.05
5 Regime: Global Macro 1.9330 3.83 0.05
6 Regime: Event Driven Multi-strategy 1.9594 3.14 0.08
7 Regime: All 1.7709 2.49 0.11
8 Regime: Event Driven Distressed 1.7118 2.12 0.15
9 Regime: Long/Short Equity 1.4992 1.87 0.17
10 Granger Causality 0.3640 1.42 0.23
11 CoVaR 0.2393 1.30 0.25
12 Regime: Managed Futures 6.8044 1.15 0.28
13 Regime: Event Driven Risk Arbitrage 1.2135 0.84 0.36
14 Regime: Convertible Arbitrage 0.8891 0.66 0.42
15 Regime: Emerging Markets 0.9166 0.60 0.44
16 Smoothing: Emerging Markets -2.6761 5.14 0.02
17 Smoothing: All Styles -1.7367 4.74 0.03
18 Smoothing: Event Driven -0.7105 2.57 0.11
19 Smoothing: Convertible Arbitrage -2.0180 1.81 0.18
20 Hedge Fund Auto-Correlation -1.0026 1.49 0.22
21 Absorption Ratio -0.3184 0.80 0.37
22 Smoothing: Long/Short Equity -0.2747 0.60 0.44
23 Regime: Equity Market Neutral -270.4621 0.11 0.74
24 Regime: Fixed Income Arbitrage -0.3092 0.03 0.86
25 Mahalanobis Distance -0.0586 0.02 0.88
26 GDP Stress Test -0.0112 0.00 0.97
27 Smoothing: Dedicated Short Bias -0.0089 0.00 0.97
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Table 2.11: Measures Ranked by R 2

(a) Contemporaneous Regression

Measure R- Measure R 2

1 CoVaR 31.98 15 Smoothing: Ded Sh BS 2.84
2 MES std 30.03 16 Regime: Managed Futures 3.12
3 MES sum 23.10 17 Regime: Fixed Income Arbitrage 1.25

4 Regime: Multi-strategy 20.00 18 Absorption Ratio 0.67
5 Regime: Event Driven Multi-strategy 16.82 19 GDP Stress Test 0.01
6 Granger Causality 15.35 20 Smoothing: Emg Mkts 2.99
7 Regime: Event Driven 15.92 21 Smoothing: All Styles 8.72

8 Regime: Event Driven Distressed 11.13 22 Smoothing: Cnvrt Arb 4.51
9 Regime: Global Macro 12.37 23 Smoothing: Evnt Drvn 2.83
10 Regime: All Styles 9.53 24 Hedge Fund Auto-Corr 2.80
11 Regime: Long/Short Equity 7.98 25 Mahalanobis Distance 0.25
12 Regime: Emerging Markets 4.59 26 Regime: Equity Market Neutral 0.62
13 Regime: Event Drvn Risk Arb 4.10 27 Smoothing: Ln/Sh Eq 0.02

14 Regime: Cony Arb 4.51

(b) One-Step Ahead Regression

Measure R Measure R2

1 Regime: Multi-strategy 15.06 15 Regime: Emerging Markets 1.41

2 MES std 11.01 16 Smoothing: Emg Mkts 2.96
3 Regime: Event Driven 10.14 17 Smoothing: All Styles 2.23
4 MES sum 9.63 18 Smoothing: Event Drvn 6.96
5 Regime: Global Macro 9.85 19 Smoothing: Cnvrt Arb 1.82
6 Regime: Event Driven Multi-strategy 7.23 20 Hedge-Fund Auto-Corr 4.74

7 Regime: All Styles 5.85 21 Absorption Ratio 2.34

8 Regime: Event Driven Distressed 4.47 22 Smoothing: Ln/Sh Eq 1.77

9 Regime: Long/Short Equity 1.77 23 Regime: Equity Market Neutral 2.32
10 Granger Causality 3.35 24 Regime: Fixed Income Arbitrage 0.08
11 Regime: Managed Futures 4.83 25 Mahalanobis Distance 0.06
12 CoVaR 2.85 26 GDP Stress Test 0.00
13 Regime: Event Driven Risk Arbitrage 2.11 27 Smoothing: Ded Sh BS 0.00
14 Regime: Convertible Arbitrage 1.82 1
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Table 2.12: Measures Ranked by Persistence

Measure Pi std

1 Regime: Multi-strategy 0.98 0.03
2 Regime: Long/Short Equity 0.97 0.02
3 Regime: All Styles 0.97 0.02
4 Regime: Emerging Markets 0.96 0.02
5 Regime: Global Macro 0.96 0.02
6 GDP Stress Test 0.96 0.02
7 Absorption Ratio 0.96 0.02
8 Smoothing: Emerging Markets 0.94 0.03
9 Hedge Fund Auto-Correlation 0.94 0.03
10 Regime: Event Driven 0.91 0.04
11 Smoothing: Dedicated Short Bias 0.89 0.04
12 Smoothing: Long/Short Equity 0.89 0.04
13 Regime: Event Driven Distressed 0.88 0.05
14 Smoothing: Event Driven 0.87 0.04
15 Regime: Convertible Arbitrage 0.85 0.05
16 Regime: Event Driven Multi-strategy 0.85 0.05
17 Granger Causality 0.84 0.05
18 Smoothing: All Styles 0.81 0.05
19 Regime: Event Driven Risk Arbitrage 0.80 0.05
20 Regime: Fixed Income Arbitrage 0.79 0.05
21 Smoothing: Convertible Arbitrage 0.74 0.06
22 CoVaR 0.73 0.06
23 Regime: Managed Futures 0.59 0.07
24 Mahalanobis Distance 0.59 0.07
25 MES sum 0.50 0.07
26 MES std 0.36 0.08
27 Regime: Equity Market Neutral -0.03 0.09
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Table 2.13: Composite Measure Performance

(a) Contemporaneous Logit Regression

Number of Lags #0 x2 p - value
0 0.42 (0.10) 19.07 0.000
1 0.67 (0.19) 11.90 0.001
2 0.69 (0.21) 10.46 0.001
3 0.81 (0.25) 10.69 0.001
4 0.81 (0.25) 10.88 0.001
5 0.82 (0.25) 10.87 0.001
6 0.81 (0.25) 10.18 0.001

(b) One-Step-Ahead Logit Regression

Number of Lags #1 X2 p - value

1 0.21 (0.06) 11.18 0.001
2 0.20 (0.09) 5.67 0.017
3 0.21 (0.09) 5.76 0.016
4 0.20 (0.09) 5.69 0.017
5 0.20 (0.09) 5.57 0.018
6 0.20 (0.09) 5.60 0.018
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Figure 2.6: Composite Measure Time-Series Plot
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Chapter 3

Monitoring Systemic Risk in

Financial Markets

3.1 Introduction

The International Monetary Fund's three fundamental missions are surveillance,
lending, and technical assistance. The key process known as "surveillance" involves

regular monitoring of member countries' financial and economic policies, as well as

identifying economic and financial weaknesses at the country (annual Article IV con-

sultations with individual member countries), regional (policy examinations under

currency unions) , and global (executive board reviews of global economic trends

and developments) levels. In the 2011 Triennial Surveillance Review (TSR) state-

ment, Managing Director Madame Christine Lagarde emphasized that "Given the

potential and speed with which developments in the financial sector can ignite and

propagate crises, ensuring effective financial sector surveillance is in the interest of

the entire membership. We all agree that financial stability analysis should be better

integrated into surveillance; the issue is how to go about this systematically?"

In this project we apply recent analytical tools developed in the systemic risk

literature in an effort to assist with the Fund's ongoing policy work for monitoring

systemic risk in financial markets, especially on the multilateral surveillance front. So

far the academic literature has focused on developing systemic risk measures for vari-

ous market sectors, and empirical studies have been conducted predominantly on US

data. Our project takes a different approach by exploring the geographic dimension

and constructing region-specific risk indicators. This perspective naturally aligns

with the International Monetary Fund's role of providing policy recommendations to
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member countries.

In the past, policy regulators including the International Monetary Fund have

mostly focused on "core data", that is, macroeconomic, international trade, and bank-

ing statistics. Traditionally, bank runs and the shortage of credit have been viewed

as the classical channels of systemic risk transmission. Yet given the growing size

of the hedge fund industry as well as their potential impact on financial institutions

and markets in general, it seems that we need to shift focus outside the realm of

traditional core data, and explore alternative asset classes to see if they can provide

additional insights for multilateral surveillance.

The analytical framework here is based upon regimes of hedge fund returns and

two characteristics of hedge fund investment: geographic focus and investment style.

We use the entire Lipper/TASS hedge fund database including both live funds and

graveyard funds, up to December of 2011. Along the regional dimension, we first cre-

ate a regional hedge fund return index, which is the individual returns weighted by

assets-under-management for all funds that have geographic focus in this region; the

return index is then fit into a two-state Markov regime-switching model. The region's

systemic risk is measured as the probability of being in the "high-risk" state, and

then we estimate the common factor behind all regional risk indicators to construct

the global geographic-focus systemic risk indicator. Similarly, along the hedge-fund

investment style dimension, we first construct style-specific return indexes and esti-

mate the regime probability of the high-risk state per style; then construct the global

investment-style systemic risk indicator. Furthermore, we examine the performance

of the two global indicators over the course of major financial crises from the mid-

90's up to the 2011 European debt crisis. We find that the investment-style global

indicator consistently leads the geographic-focus global indicator for about one to

two months. Finally, we track regional risk spillovers by constructing the Granger

causality network of individual indicators.

The rest of the paper proceeds as follows. Section 2 briefly reviews two strands

of closely related literature, one on systemic risk measurement and regulation in

the hedge fund sector, the other on the application of network analysis in systemic

risk models; Section 3 describes the data and econometric models in this project;

Section 4 reports the empirical results, describes the two panels of individual indica-

tors along the geographic-focus dimension and investment-style dimension, compares

the lead-lag performance of the two global indicators, as well as demonstrates the

interconnectedness between regional indicators; Section 5 further discusses policy
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implications and data requirements from this project; Section 6 concludes.

3.2 Literature Review

In this section we review two strands of literature that are closely related to the

context of this paper, one on systemic risk in the hedge fund sector, the other on

applying network analysis models to systemic risk analytics'.

3.2.1 Hedge Fund and Systemic Risk

Firstly, this current paper is related to Lo and Zhou (2012) where the authors conduct

an empirical comparison on a collection of systemic risk measures. Their paper

include 27 measures spanned over 9 categories including Granger causality network,

Mahalanobis distance, absorption ratio, GDP stress test, Co-VaR, marginal expected

shortfall, hedge-fund return smoothing, hedge fund illiquidity proxied by return auto-

correlation, and hedge fund regime-switching model. Empirical results indicate that

Granger causality networks and hedge fund regime-switching measures are among

the top performers. A natural follow-up question is how to aggregate information

from the well-performing measures. While Lo and Zhou (2012) uses a statistical

approach and construct the composite measure by estimating the common factor for

the subset of well-performing measures, in this paper we take a different perspective

by nesting multiple models.

The hedge-fund regime-switching measure was developed in Chan, Getmansky,

Haas, and Lo (2006), and originally applied to the CSFB/Tremont hedge fund return

indexes on different investment style categories. Here we extend Chan, Getmansky,

Haas, and Lo (2006) by clustering across the second dimension of geographic focus;

also, we construct style-level AUM-weighted indexes by manually aggregating over

all funds in the Lipper/TASS database, which allows for a much broader coverage of

fund-level information. With the CSFB/Tremont indexes, the component funds first

need to meet certainly eligibility criterion such as "no investment lock-up period",

and "accepting new investments and redemptions" which potentially excludes many

major players; secondly, for each representative strategy, the index composition is

subject to a minimum (where available) of 10 funds and a maximum of 25 funds.

'This section is partially based on the literature summary of networks and systemic risk that
the author has written for the Macro Financial Modeling (MFM) group.
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The Granger-causality measure was proposed in Billio, Getmansky, Lo, and Peliz-

zon (2012) where the authors develop multiple measures of systemic risk based on

interconnections among the market returns of four types of institutions including

hedge funds, banks, brokers, and insurance companies. The authors conduct pair-

wise Granger causality tests both among the four sector indexes and among the 100

largest institutions within the four sectors. Empirical results shows that just prior

to crisis periods, all four sectors have become highly interrelated and less liquid, in-

creasing the level of systemic risk in the finance and insurance industries; banks seem

to have more significant impact on the other sectors than vice versa, and this asym-

metry became highly significant just before the 2007~2009 financial crisis. In this

current project we generalize the Granger causality approach from inter-institutional

network to inter-regional regional network, which allows us to identify systemically

important regions over time and also track the spillover of systemic risks.

The policy discussion of examining hedge-fund systemic regulation has already

started before the recent financial crisis. For example, Kambhu, Schuermann, and

Stiroh (2007) have stressed the importance for policy makers to extend their atten-

tion beyond the classic channels of systemic distress such as bank runs and credit

shortages, and shift their focus more towards hedge funds. The authors point out

that the unique features of hedge funds such as high leverage, opacity to outsiders,

and convex compensation structure may generate intrinsic difficulties that exacer-

bate various market failures including agency problems, externalities, and moral

hazard. The current practice of counterparty credit risk management (CCRM) has

gone through many improvements, such as enhanced risk management techniques

by counterparties, improved supervision, more effective disclosure and transparency,

strengthened financial infrastructures, and more efficient hedging and risk distribu-

tion techniques. By examining the recent enhancements, the authors conclude that

CCRM is still the appropriate starting point for limiting the potential for hedge

funds to generate systemic disruptions.

3.2.2 Network Analysis and Systemic Risk

The modern process of financial innovation has resulted in financial products and

financial institutions that are increasingly complex and interconnected. Since the

recent financial crisis, academic and policy researchers have established high priority

for understanding the relationship between network structure and systemic risk. As

a result, a new and growing literature have been developed on applying network
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analysis models to the study of systemic risk, including theoretical, quantitative and

simulation studies.

While in this paper our focus is on statistical network of regional risks, going

forward each of the literature outlined below points to an interesting new direction

for extending the current work. For example, physical linkages and statistical linkages

may provide complementary insights: during episodes of financial distress, entities

may become more interconnected in the return space, but less interconnected in the

position space as institutions collectively suspend trading activities with a commonly

regarded high-risk counterparty. After all, the work of safeguarding our financial

system will depend on the efforts to understand systemic risk, and these research

works are critical for empowering policy makers to make the right decisions.

Gai, Haldane, and Kapadia (2010) focus on the collapse of the interbank market

and explore how complexity and concentration of financial linkages can give rise to

systemic liquidity crises. Firstly, the authors set up a stylized network model of

interbank claims to study the effect of funding liquidity shocks, and demonstrate

analytically how the tipping points depend on the level of liquid asset holdings, the

amount of interbank activity, as well as the size of haircuts on banks' assets. Sec-

ondly, they conduct numerical simulations to illustrate how greater complexity and

concentration in the financial network may amplify the banking system's fragility,

under six experimental settings: 1) A stylized systemic liquidity crisis where a ran-

dom adverse haircut shock is applied to a single bank in an un-concentrated network;

2) Adding aggregate haircut shocks; 3) Systemic liquidity crises in a concentrated

network; 4) the impact of targeted shocks in concentrated and less concentrated

networks; 5) The impact of greater complexity; 6) Cyclicality in haircuts and the

likelihood of systemic liquidity crises. Lastly, they demonstrate that the financial

system could be made more resilient by policy measures, including tougher liquidity

requirements, systemic liquidity requirements, haircut-dependent liquidity require-

ments, and greater network transparency.

Cont, Moussa, and Santos (2012) compare the role of balance sheet size versus

network structure in the systemic importance of institutions by introducing and im-

plementing the Contagion Index. This indicator is defined as the expected loss to

a network triggered by the default of an institution under a macroeconomic stress

scenario. Using the Contagion Index, the authors analyze a dataset of 2400 financial

institutions chartered by the Brazilian Central Bank, which includes mutual expo-

sures and capital levels reported at six quarters between 2007 and 2008. They find
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that the Brazilian interbank network is highly heterogeneous in terms of counterparty

distribution and exposure sizes; systemic risk is concentrated only on a small subset

of financial institutions; network structure does matter in assessing systemic impor-

tance, using balance sheet size alone is insufficient; the compound effect of correlated

market shocks and contagion can increase the proportion of contagious exposure in

the network. Their policy recommendations are: 1) targeting the most contagious

institutions is more effective in reducing systemic risk than increasing capital ratios

uniformly across all institutions; and 2) capital requirements should not simply fo-

cus on the aggregate size of the balance sheet but depend on their concentration /
distribution across counterparties: a minimal capital-to-exposure ratio can be more

effective way of controlling contagious exposures.

Cohen-Cole, Kirilenko, and Patacchini (2012) propose a novel measure of systemic

risk which is able to capture the precise cascade of behavior in agents. Following

the social interactions literature, the authors measure systemic risk as the average

impact of a shock that causes strategic reactions among interconnected market par-

ticipants. This new measure captures two important features: 1) It is derived using

all the direct and indirect connections in the entire network; 2) It suggests that

large impacts can occur in the absence of defaults, with the flash crash of May 6,
2010 being a key example. The authors provide an application of this approach to a

dataset from the Chicago Mercantile Exchange Dow futures market, which consists of

1,163,274 transactions between approximately 7335 trading accounts, and estimate

the proposed systemic risk measure from transaction networks. They illustrate how

correlated trading strategies can lead to correlated returns and how systemic risk is

propagated through the network. Lastly, the authors point out that in order to as-

sess financial stability policies, bankers needs to establish a clearly-defined objective

function and a structural view of the economy. In parallel to the monetary policy

literature, the current systemic risk literature only offers some descriptive insights

without a systematic approach to evaluate policy. The authors call for welfare analy-

sis that are specific to the actual network structure and reflect the incentives present

in the market.

Yellen (2013) discusses the difficult task before policy makers and regulators with

systemic risk responsibilities (such as the Federal Reserve) to balance the benefits

of interconnectedness (growth and stability, risk sharing) while managing the po-

tentially harmful side effects (amplify market frictions, information asymmetries,

or other externalities). In response to the financial crisis, governments around the
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global are adopting a multifaceted and coordinated reform agenda, such as the Basel

Committee initiatives. Standardized OTC derivatives are now required to be cleared

through central counterparties which can yield important advantages over a fully

bilateral market structure. Some of the most significant policy tradeoffs arise in

regulating the less standard OTC contracts which will continue on a bilateral basis.

The proposed framework now requires collecting not only the variation margin but

also the initial margin. However, higher initial margin requirements will make it

more costly for market participants to use derivatives to hedge risk, which results in

liquidity costs.

3.3 Methodology

3.3.1 Econometric Model

First of all, for each region of geographic focus, we construct a regional return index

Rt which is the AUM-weighted returns of all hedge funds with geographic focus in

this particular region. The index return time series is then fed into a two-state

Markov Switching model:

Rt = Iit R1 e + (1 - It) - R 2 t, Rit - NA (iPi, az) (3.1)

where
1 with probability pu if It_1 = 1

1 with probability P21 if It-i = 0

0 with probability P12 if It-i = 1

0 with probability P22 if It-i = 0

Regional systemic risk is measured as the probability of the distressed regime. To

serve the purpose of multilateral surveillance, it would be useful to extract the com-

mon driver of regional risks and construct a global indicator. Here the standard

principal component analysis is insufficient, because data for each geographic region

start at different times. To address this issue, we use unbalanced-panel principal

component analysis that estimates the common factor through an iterative process.

Along the same lines, we also cluster hedge funds by their investment style and

extract the common driver across all styles.

The first principal components are again fit into a two-state Markov regime-
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switching model, and global systemic risk is measured by the probability of the high-

risk state. Subsequently, the two global indicators are referred to as the "geographic-

focus indicator" and the "hedge-fund style-category indicator".

To study the inter-regional risk spill-overs, we construct the Granger causality

network among the set of regional indicators:

m m

Xt = 13 ajXt-j + ( bjY-_ + ct (3.2)
j=1 j=1

where Y is the systemic risk time series of the "cause" region, and Xt is the

systemic risk time series of the "effect" region. Region Y is said to Granger-cause

the systemic risk of region Xt if the inclusion of Y improves the predictability of Xt

in (3.2) (see, for example, Hamilton (1994) ). This methodology follows from Bilio,
Getmansky, Lo, and Pelizzon (2012); the difference is that the network linkages

constructed here are uni-directional in order to demonstrate whether a particular

region is the cause or the effect node in the Granger-causality relation.

3.3.2 Data Description

Our hedge fund data is taken from the Lipper/TASS hedge fund database, which

includes monthly returns, asset-under-management, investment style, geographic fo-

cus, and other fund-level characteristics. The sample periods starts from early 1990s

and ends on Dec 2011; in order to avoid the survivor-ship bias, we include both the

live funds and the graveyard funds.

In Lipper TASS, AUM's are reported in the following currencies: Australian Dol-

lar (AUD), Brazilian Real (BRL) Canadian Dollar (CAD), Swiss Franc (CHF), Chi-

nese Yuan (CNY), Czech Koruna (CZK), Deutsche Mark (DEM), Denmark Krone

(DKK), Euro(EUR), French Franc (FRF), United Kingdom Pound(GBP), Hong

Kong Dollar (HKD), Israel Shekel (ILS), Japanese Yen (JPY), Malaysia Ringgit

(MYR), Dutch Guilders (NLG), Norway Krone (NOK), New Zealand Dollar (NZD),
Poland Zloty (PLN), Swedish Krona (SEK), Singapore Dollar (SGD), US Dollar

(USD), South African Rand (ZAR). The foreign-currency-denominated AUM is then

converted into dollar AUM, using the average monthly exchange rate from CRSP.

We exclude the observations where asset-under-management is missing since our

following analysis will be constructed upon AUM-weighted index returns.

The summary statistics for monthly exchange rates are reported in Table Ta-
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ble 3.1. Among the sample observations, asset-under-management is most com-

monly denominated in the US Dollar, Euro, Brazilian Real, British Pound, and the

Swiss Franc. The sample includes three Euro legacy currencies, including the Dutch

Guilder (NLG), the French Franc (FRF), and the Deutsche Mark (DEM). After nor-

malizing with the mean level, the most volatile currency is the Brazilian Real (BRL)

and the least volatile currency is the Israel Shekel (ILS).

Fund-level returns will be clustered across two dimensions: geographic focus,
and investment styles. Our sample include the following regions of geographic fo-

cus: United States, United Kingdom, Japan, India, Russia, Asia Pacific, Asia Pa-

cific Excluding Japan, Eastern Europe, Western Europe, Western Europe Excluding

UK, North America, North America Excluding US, and Latin America. And the

investment-style categories in our sample are: Fund of Funds, Managed Futures,
Event Driven, Long Short Equity Hedge, Emerging Markets, Global Macro, Multi

Strategy, Convertible Arbitrage, Equity Market Neutral, Dedicated Short Bias, Fixed

Income Arbitrage, and Options Strategy.

3.4 Empirical Results

In this section we report the performance of the two global risk indicators that have

been created, which provide contemporaneous and early-warning characterizations

of the 2007 US quant crisis, the 2011 European debt crisis, as well as the mid-90's

Latin American and Asian financial crises.

3.4.1 Two Global Indicators

In Table 3.2 and Table 3.3 we report the summary statistics for the two sets of index

returns that were constructed from clustering fund-level returns along the geographic

focus dimension and the investment style dimension, respectively. Indeed, there is

quite considerable heterogeneity: across geographic regions, the average monthly re-

turn ranges from 0.71% for Japan to 1.86% for UK, the volatility ranges from 1.49%

for Western Europe to 9.83% for UK, and the regions with the largest skewness (US,

UK, Russia) also report the largest kurtosis; across investment styles, the average

monthly return ranges from 0.27% for dedicated short bias to 1.88% for long/short

equity, and the styles with the largest skewness (Fund of Funds, Fixed Income Arbi-

trage, and Convertible Arbitrage) also report the largest kurtosis. Besides, all regions
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and all investment styles report positive first-order auto-correlation except dedicated

short bias.

After feeding into the Markov regime switching model (3.1), the individual sys-

temic risk indicators are summarized in Table 3.4 and Table 3.5. Heterogeneity

across geographic regions is significant. For example, in Figure 3.1 we compare the

time-series plots as a quick snap-shot of regional risk variations, the 1998 sovereign

default caused more stress for Russia than the 2007 subprime crisis (Fig.3.1). Across

different investment styles, Emerging Markets has lowest mean of 9.48% and op-

tions strategy has the highest mean of 45.06%, volatility has much less variation

with global macro reporting the lowest volatility of 15.38% and convertible arbitrage

reporting the highest volatility of 33.53%.

To construct the global geographic focus (investment style) indicator, we compute

the unbalanced-panel first principal component of the cross-section of all regional (in-

vestment styles) indicators, as shown in the top panel of Figure 3.2. The two principal

components are again fed in to the two-state Markov regime switching model (3.1)

and the resulting time series of stress state probabilities are shown in the bottom

panel of Figure 3.2. As illustrated in the graph, the global hedge fund investment

style indicator (blue dashed line) leads the global geographic focus indicator (black

solid line) during all episodes of high systemic stress.

To better compare the contemporaneous and early-warning performance of the

global indicators, we show the heat map for four episodes of major financial crisis

(Figure 3.3).

In August 2007, a number of quantitative long/short equity hedge funds suffered

unprecedented losses, and the LIBOR-OIS spread crept up three-folds in one day

from 13.4 bps to 39.95 bps on August 9th, 2007. This episode, commonly known as

the "quant crisis", marked the start of serial global deteriorations in the two years

that followed. Our geographic-focus global indicator indeed entered into high-risk

state by in August 2007; more importantly, the hedge fund style-category indicator

is able to generate warning signals as early as June 2007 with 2-month lead. In the

latter half of 2008, market participants started to ponder whether the sub-prime crisis

was nearing the end. Both our global indicators showed that the financial markets

were exiting from the high-risk state during January ~ February 2009, with the

hedge-fund style-category indicator showing a steeper decrease in risk levels. Both

indicators switched to low-risk state from March 2009 to early 2011. Indeed, the

Dow reached its low of 6626.94 on March 6th, 2009 and has been rebounding since
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then (Figure 3.5), while the real economy recovery started in mid-2009, as dated by

the NBER and market commentaries.

For the first half of 2011, the hedge-fund style-category indicator again led the

geographic-focus indicator in picking up rising levels of systemic risk, and the prob-

ability of high-risk state increased in Apr and May of 2011. Within the next two

months, Greek, Portugal, and Ireland were downgraded, and the Berlusconi govern-

ment started to adopt an austerity package for Italy. The geographic-focus global

indicator showed that the risk level continued to intensify from May 2011 to August

2011 when the US was downgraded, and we have remained in the high-risk state

until December 2011, which is the end of our sample period.

Regarding the mid-1990's crises: During 1993~1994, Turkey and Latin America

were hit by economic downturns and currency speculative attacks. Again the hedge-

fund style-category indicator led the geographic-focus global indicator by about one

month both at the entry-side and the exit-side. Figure 3.6 shows that the Mexican

peso / USD exchange rate plunged by 40% from 0.2886 to 0.1754 in the week of

December 19th ~27th, 1994, and then remained relatively stable for the months

after; our hedge-fund style-category indicator recovered in January February 1995,
whereas the geographic-focus indicator returned to low-risk state in March~April

1995.
During 1997~1999, the geographic indicator reported a wider window of high-risk

state, compared to the hedge-fund indicator. In retrospect, the 1997~1999 period

spanned over multiple crises. The geographic-focus indicator entered into high-risk-

state as early as Jul 1997, when the Thai Baht and Malaysian Ringgit went under

speculative attacks; in the following months, financial stress intensified (for example,
it spilled over and triggered the Korean Kwon crisis in November 1997) but the

Thai-crisis still remained as a localized event within a group of southeastern Asian

countries. In contrast, the Russian sovereign default in Aug 1998 accentuated losses

at major US hedge funds such as LTCM and eventually led to Fed bailout. Our

hedge-fund style-category indicator started to show signs of distress in Apr~May

1998, in anticipation of the impending downward spirals that hit LTCM as well as

the rest of the market. On the exit-side, the hedge-fund style-category indicator

retreated to low-risk state in November 1998, two months after the September 1998

Fed bailout, leading the geographic-focus global indicator by 1~2 months.
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3.4.2 Interconnectedness of Regional Risks

In this subsection we use network analysis to visualize regional interconnections and
track the spill-over of systemic risks over time. To start with, we test for pair-
wise Granger causality relations between regional systemic risk indicators. On the
network graph, two regions are linked if there is a significant Granger causality
relation between their systemic risk indicators, whereas the direction of causality is
shown by placing the cause region on the left, and the effect region on the right.
Moreover, generalizing from the concept of SIFI (systemically important financial
institution), we can also identify systemically important regions that are major hubs
of cause or effect links on the Granger causality network.

The two panels in Figure 3.7 compares the Granger causality networks over the
1996~1998 period versus the 1997~1999 period. In the earlier period, Asia Pacific was
causing most of the stress for the rest of the world. In particular, Japan's economy
suffered from immediate spillovers because 40% of its export went to Asia - the
network graph shows that Japan's systemic risk was indeed Granger-caused by Asia
Pacific (data hadn't yet become available for Asia Pacific Excluding Japan during
this period). A year later, the linkages looked much different: after its sovereign
default, Russia had emerged as an important cause of financial distress for many
other regions; Japan's role in causing other regional risks also intensified; as the
crisis deepened, the total number of linkages had increased, indicating that regional
risks had become much more intertwined and calling for closer monitoring from the
international community.

Ten years later, over the two year period of 2006~2008 that includes the US
subprime meltdown, we report the updated Granger causality network in Figure 3.8.
One would have expected the US to emerge as a "systemically important region" and
stand out as the main cause country of systemic risks for other parts of the world.
However, what we observe from the data is that the regions have become so highly
interconnected to the extent that it appears almost impossible to identify any single
region as the sole source of global distress. Given the speed of risk spillovers in today's
market, ideally we would conduct the same set of analysis on higher frequency data
and over a narrower window (for example, daily returns or daily transactions over
the course of July~August 2007).

Finally, in the post-Lehman period, systemic risk in the US began to gradually
alleviate while the European debt crisis were just starting to unfold. As can be
observed from Figure 3.9, Western Europe emerged as a main cause region of systemic
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risk. Moreover, while the 2007~2009 crisis started in the advanced economies, its

impact on emerging economies was also deep and profound. The impact on Russia

has been accentuated by its structural vulnerabilities: dependence on the oil and gas

sector, a narrow industrial gas and limited small and medium-size enterprise sector

(World Bank (2008), World Bank (2009)). In late 2008, driven by the sharp decline

of demand from advanced economies, the price of crude oil plummeted by 77% from

peak $145 / barrel to trough $33 / barrel, the Ruble lost more than 36% in value from

$0.0432 to $0.0275, and the MICEX (Moscow Interbank Exchange) equity index shed

more than 73% from peak 1956 points to trough 513 points (Figure 3.10). Indeed,
the systemic importance of Russia was evident in Figure 3.9 both on the cause side

and on the effect side.

3.5 Policy Implication

Eight years after the LTCM debacle and one year prior to the US subprime crisis,

hedge fund systemic risk has already drawn attention from financial stability regu-

lators. On May 16, 2006, Chairman Bernanke gave the "Hedge Funds and Systemic

Risk" speech at the Federal Reserve Bank of Atlanta:

'The collapse of Long-Term Capital Management in 1998 precipitated

the first in-depth assessment by policy makers of the potential systemic

risks posed by the burgeoning hedge fund industry.

"The debate about hedge funds and the broader effects of their activities

on financial markets ... has now resumed with vigor - spurred, no doubt,

by the creation of many new funds, large reported inflows to funds, and

a broadening investor base.

"Concerns about hedge fund opacity and possible liquidity risk have moti-

vated a range of proposals for regulatory authorities to create and main-

tain a database of hedge fund positions ... a system in which hedge

funds submit position information to an authority that aggregates that

information and reveals it to the market."

From the implementation perspective, collecting hedge fund position information

on a regular basis can be quite difficult. Moreover, it also raises other concerns

such as data confidentiality and how the authority plans to use this information.

In comparison, the data requirement for the two global indicators in this paper are
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fairly high-level: we have only used monthly returns and descriptive characteristics

such as geographic focus and investment style; yet we still observe a fairly consistent

lead-lag relation between the contemporaneous and leading indicators, and do not

generate any false positive or false negatives.

Along the same lines, after the 2007~2009 crisis the Office of Financial Research

has been established with key responsibilities including conducting research on sys-

temic risk measures, as well as identifying actionable data items that serves this

mission. Again, the empirical results in this paper shows that we can develop quite

useful systemic risk measures from a non-intrusive data collection process.

In the same speech, the Chairman also pointed out that:

"[The President's Working Group on Financial Markets] focused on the

potential for leverage to create systemic risk in financial markets.

"The concern arises because, all else being equal, highly leveraged in-

vestors are more vulnerable to market shocks. If leveraged investors de-

fault while holding positions that are large relative to the markets in

which they have invested, the forced liquidation of those positions, pos-

sibly at fire-sale prices, could cause heavy losses to counterparties.

"These direct losses are of concern, of course, particularly if they lead to

further defaults or threaten systemically important institutions; but in

addition, market participants that were not creditors or counterparties

of the defaulting firm might be affected indirectly through asset price

adjustments, liquidity strains, and increased market uncertainty."

Although this view was addressed toward the LTCM event, the critical role of lever-

age was also evident in the 1929 Great depression (Yellen (2013)) as well as the

2007~2009 crisis. Many policy analysts have called for strengthened capital require-

ments, extension of those requirements to investment banks, using short-term debt

funding to replace long-term illiquid funding, as well as pro-cyclical capital require-

ments (Bullard, Neely, and Wheelock (2009)).

3.6 Conclusion

In this project we look into empirical methodologies to measure regional system risk

and integrate into multilateral surveillance toolkit. Results show that data from
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alternative asset classes such as hedge funds can be quite helpful for IMF's surveil-

lance mission. More specifically, we develop three categories of products: Firstly, we

provide a cross-section of regional risk indicators, which provides a snapshot of risk

distribution. Secondly, we develop two global risk indicators, one is the based on

geographic region clusters, which turns out to be a contemporaneous indicator, the

other is based on investment style clusters, which turns out to be a leading indicator.

Thirdly, we visualize the spill-over of risks by network analysis, and demonstrate the

time-variation of interconnectedness.

Going forward, network analysis is likely to be a promising channel for new sys-

temic risk models. This type of research would be very helpful for financial stability

analysts to identify "systemically important regions". By construction, the type

of network used in this project can be generalized to accommodate other types of

analysis at higher resolutions. One possible extension is to study the physical link

network, which has decreasing degrees of interconnectedness during financial crises.

To identify the source of structural fragilities, it would be interesting to compare

the networks constructed among the same set of entities but over different types of

linkages.
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Appendix

Table 3.1: Summary Statistics of Monthly Exchange Rates

Currency No. Obs. Start Date End Date min max mean stdev e skewness
AUD 4972 Nov-1992 Dec-2011 0.486 1.364 0.834 0.200 0.240 0.665
BRL 26750 Sep-2001 Dec-2011 0.267 2000 48.67 237.97 4.890 6.370
CAD 5295 Jan-1992 Dec-2011 0.624 1.061 0.814 0.105 0.129 0.290
CHF 11821 Mar-1992 Dec-2011 0.350 1.273 0.672 0.174 0.259 0.401
CNY 85 Jan-2008 Dec-2011 0.115 0.629 0.210 0.132 0.627 1.621
CZK 41 Sep-2009 Dec-2011 0.024 0.066 0.040 0.010 0.263 0.590
DEM 348 Sep-1992 Jan-1999 0.299 0.807 0.539 0.106 0.196 -0.090
DKK 416 Mar-1998 Dec-2011 0.113 0.212 0.161 0.026 0.160 -0.191
EUR 84214 Jan-1999 Dec-2011 0.845 1.579 1.206 0.198 0.164 -0.253
FRF 539 Jan-1991 Jun-1999 0.098 0.245 0.165 0.029 0.173 0.161
GBP 19807 Jan-1990 Dec-2011 1.079 2.437 1.709 0.242 0.141 0.753
HKD 196 Feb-2004 Dec-2011 0.123 0.204 0.134 0.016 0.121 3.146
ILS 12 Jun-2008 Jun-2009 0.204 0.309 0.245 0.024 0.097 0.453
JPY 6119 May-1994 Dec-2011 0.003 0.013 0.007 0.002 0.336 -0.069

MYR 58 Jun-2008 Dec-2011 0.230 0.471 0.356 0.067 0.188 -0.246
NLG 33 Jun-1995 Sep-1998 0.265 0.652 0.466 0.084 0.180 -0.105
NOK 882 Nov-2003 Dec-2011 0.104 0.211 0.155 0.025 0.159 0.191
NZD 101 Sep-2004 Dec-2011 0.394 1.349 0.686 0.186 0.271 1.064
PLN 183 Jun-2008 Oct-2011 0.215 0.569 0.324 0.073 0.224 0.751
SEK 4577 Apr-1995 Dec-2011 0.092 0.257 0.155 0.040 0.257 0.935
SGD 170 May-2007 Dec-2011 0.530 0.831 0.636 0.068 0.106 0.700
USD 480968 Dec-1975 Dec-2011 1.000 1.000 1.000 0.000 0.000 -
ZAR 230 Apr-2003 Dec-2011 0.084 1.341 0.359 0.306 0.851 1.692
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Table 3.2: Summary Statistics of Hedge Fund Returns Clustered by Regions of Ge-
ographic Focus

Geographic focus min max mean median stdev sTden

AsiaPacific -6.435 7.735 0.967 1.073 1.718 1.776
AsiaPacificExcludingJapan -12.984 11.832 0.760 0.911 2.655 3.493
Africa -10.888 12.927 0.984 1.152 2.125 2.160
EasternEurope -12.684 14.406 1.019 1.118 2.324 2.281
Global -13.493 19.033 1.409 0.863 3.672 2.605
India -14.247 16.660 0.800 0.844 3.639 4.548
Japan -6.153 8.149 0.711 0.865 1.707 2.400
LatinAmerica -13.170 13.629 1.113 1.136 2.374 2.133
NorthAmerica -8.285 9.090 1.072 1.158 1.549 1.445
NorthAmericaExcludingUSA -11.261 15.524 0.881 0.633 2.968 3.369
Other -25.185 11.306 1.050 1.017 2.955 2.816
Russia -27.417 50.521 1.686 1.242 7.863 4.664
UK -37.070 72.050 1.863 0.825 9.828 5.275
uS -9.024 29.840 1.712 1.180 3.524 2.058
WesternEurope -5.674 9.082 1.039 1.037 1.490 1.434
WesternEuropeExcludingUK -9.492 14.000 0.937 0.824 2.545 2.717

Geographic focus skewness kurtosis pi P2 P3
AsiaPacific -0.521 2.861 0.206 0.184 0.056
AsiaPacificExcludingJapan -0.328 5.276 0.137 0.063 0.064
Africa -0.481 5.584 0.262 0.187 0.067
EasternEurope -0.426 7.012 0.286 0.165 0.039
Global 0.610 2.999 0.321 0.150 0.061
India 0.224 3.763 0.280 0.134 0.000
Japan -0.155 4.018 0.270 0.185 0.073
LatinAmerica -0.210 7.363 0.341 0.208 0.051
NorthAmerica -0.791 7.725 0.339 0.191 0.203
NorthAmericaExcludingUSA 0.705 5.393 0.309 0.110 0.038
Other -2.157 20.864 0.275 0.151 0.124
Russia 1.714 10.677 0.095 0.210 0.065
UK 1.528 10.426 0.335 0.276 0.243
US 2.954 15.589 0.411 0.060 -0.058
WesternEurope -0.063 5.453 0.176 0.193 -0.037
WesternEuropeExcludingUK 0.771 7.299 0.231 0.227 0.082

121



Table 3.3: Summary Statistics of Hedge Fund Returns Clustered by Investment Style

PrimaryCategory min max mean median stdev 'tdev

Convertible Arbitrage -12.086 10.900 0.773 0.919 1.919 2.481
Dedicated Short Bias -13.173 23.374 0.268 -0.198 4.893 18.286
Emerging Markets -18.795 19.412 1.444 1.691 4.446 3.079
Equity Market Neutral -7.163 5.947 0.707 0.674 1.419 2.006
Event Driven -6.880 5.108 1.097 1.189 1.318 1.201
Fixed Income Arbitrage -7.779 4.871 0.625 0.725 1.377 2.205
Fund of Funds -17.680 51.708 1.341 0.698 5.364 4.000
Global Macro -21.250 21.500 1.393 0.999 4.175 2.996
Long/Short Equity Hedge -12.813 20.178 1.883 1.454 4.271 2.268
Managed Futures -15.529 19.432 1.432 0.817 4.426 3.090
Multi-Strategy -10.860 15.892 1.179 1.011 3.176 2.694
Options Strategy -5.189 8.095 0.497 0.311 1.660 3.337
Other -4.909 4.157 0.617 0.652 1.049 1.700

PrimaryCategory skewness kurtosis pi P2 P3
Convertible Arbitrage -1.658 15.354 0.280 0.110 0.096
Dedicated Short Bias 0.550 1.098 -0.027 -0.104 0.027
Emerging Markets -0.025 2.500 0.427 0.223 0.188
Equity Market Neutral -0.317 6.186 0.223 0.142 0.048
Event Driven -1.415 6.160 0.319 0.090 0.007
Fixed Income Arbitrage -2.105 10.135 0.077 0.005 0.032
Fund of Funds 4.370 31.666 0.261 0.133 0.021
Global Macro 0.456 6.693 0.505 0.246 0.121
Long/Short Equity Hedge 1.141 4.467 0.145 0.047 0.190
Managed Futures 0.728 2.226 0.139 -0.093 -0.010
Multi-Strategy 0.829 4.712 0.491 0.320 0.251
Options Strategy 0.490 3.845 0.331 0.175 0.081
Other -1.382 7.477 0.221 0.172 0.014
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Table 3.4: Summary Statistics of Regime Switching Probabilities Clustered by Re-
gions of Geographic Focus

Geographic Focus mean stdev min max
Africa 0.3836 0.2873 0.0426 0.9995
AsiaPacific 0.4929 0.4495 0.0008 1.0000
AsiaPacificExcludingJapan 0.3208 0.3064 0.0102 0.9996
EasternEurope 0.3687 0.4202 0.0019 1.0000
Global 0.3267 0.2945 0.0319 1.0000
India 0.2914 0.2775 0.0217 1.0000
Japan 0.2239 0.2734 0.0052 1.0000
LatinAmerica 0.0868 0.1866 0.0186 1.0000
NorthAmerica 0.3513 0.3758 0.0195 1.0000
NorthAmericaExcludingUSA 0.2511 0.3096 0.0162 0.9999
Other 0.2911 0.2898 0.0391 1.0000
Russia 0.2714 0.2425 0.0644 0.9990
WesternEurope 0.2579 0.3823 0.0023 1.0000
WesternEUropeExcludingUK 0.3207 0.2560 0.1054 1.0000
UK 0.2663 0.2627 0.0237 1.0000
uS 0.3113 0.2655 0.0575 0.9991

Geographic Focus skewness 25% quantile 50% quantile 75% quantile
Africa 0.5843 0.1309 0.2852 0.6274
AsiaPacific -0.0330 0.0064 0.6062 0.9752
AsiaPacificExcludingJapan 0.9347 0.0672 0.1991 0.4761
EasternEurope 0.6176 0.0121 0.1068 0.9574
Global 0.9370 0.0919 0.1935 0.5398
India 1.1569 0.0736 0.1822 0.4557
Japan 1.4960 0.0274 0.1005 0.3142
LatinAmerica 3.8514 0.0204 0.0267 0.0446
NorthAmerica 0.7528 0.0369 0.1377 0.6761
NorthAmericaExcludingUSA 1.3418 0.0432 0.0863 0.3339
Other 1.2607 0.0799 0.1544 0.3688
Russia 1.6730 0.1065 0.1723 0.3353
WesternEurope 1.1831 0.0055 0.0198 0.3800
WesternEUropeExcludingUK 1.2655 0.1314 0.1998 0.4435
UK 1.3616 0.0760 0.1591 0.3587
uS 1.1764 0.1105 0.2010 0.4624
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Table 3.5: Summary Statistics of Regime Switching Probabilities Clustered by In-
vestment Style

Primary Category mean stdev min max

Fund of Funds 0.2309 0.1910 0.0682 0.9991
Managed Futures 0.2153 0.3321 0.0012 1.0000
Event Driven 0.2022 0.3287 0.0034 1.0000
Long Short Equity Hedge 0.1931 0.2917 0.0086 1.0000
Emerging Markets 0.0948 0.2111 0.0025 1.0000
Global Macro 0.1608 0.1538 0.0631 0.9945
Multi Strategy 0.2575 0.2668 0.0467 0.9999
Convertible Arbitrage 0.2816 0.3353 0.0028 1.0000
Equity Market Neutral 0.1971 0.2925 0.0020 1.0000
Dedicated Short Bias 0.2250 0.2346 0.0303 1.0000
Other 0.1371 0.2435 0.0014 1.0000
Fixed Income Arbitrage 0.1913 0.2825 0.0034 1.0000
Options Strategy 0.4506 0.2810 0.0071 0.9987

Primary Category skewness 25% quantile 50% quantile 75% quantile
Fund of Funds 1.9870 0.1072 0.1471 0.2891
Managed Futures 1.3512 0.0032 0.0298 0.2235
Event Driven 1.5454 0.0074 0.0182 0.2901
Long Short Equity Hedge 1.6700 0.0145 0.0359 0.2370
Emerging Markets 3.0645 0.0056 0.0127 0.0579
Global Macro 3.0487 0.0812 0.0993 0.1717
Multi Strategy 1.7374 0.0866 0.1469 0.2939
Convertible Arbitrage 1.1092 0.0360 0.1025 0.4246
Equity Market Neutral 1.6496 0.0113 0.0451 0.2724
Dedicated Short Bias 1.7140 0.0640 0.1221 0.2731
Other 2.3812 0.0124 0.0298 0.1147
Fixed Income Arbitrage 1.9303 0.0233 0.0776 0.1725
Options Strategy 0.2525 0.1998 0.4142 0.6812
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Figure 3.1: Regional Systemic Risk Indicators
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Figure 3.2: Construction of the Global Systemic Risk Indicators
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Figure 3.3: Heat-map of the Two Global Systemic Risk Indicators. "Geo" refers to the
geographic-focus indicator; "HF" refers to the hedge-fund style-category indicator.
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Figure 3.4: Time Series Plot of the Libor-OIS Spread at the Beginning of the 2007
US Quant Crisis.
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Figure 3.5: Time Series Plot of the Dow Jones Industrial
The Dow reached its bottom on March 6th, 2009.
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Figure 3.6: Time Series Plot of the Mexican Peso / US Dollar Exchange Rate From
September 1994 to September 1995. The peso plunged by over 40% over one week
in December 1994.
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Figure 3.7: Granger Causality Network of Regional Risks

(a) Interconnections across regional risk indicators: 07/1996~06/1998
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Figure 3.8: Regional Risk Interconnectedness: 07/2006~06/2008
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Figure 3.9: Regional Risk Interconnectedness: 12/2008~11/2010
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Figure 3.10: Key Financial Indicators during the 2008~2009 Russian Recession

(a) In late 2008, crude oil tumbled by 77% from peak $145/barrel to
trough $33/barrel (Bloomberg WTI generic first crude oil price).

(b) In late 2008, the Ruble lost more than 36% in value from $0.0432
to $0.0275 (Bloomberg RUBUSD cross rate).

(c) In late 2008, the MICEX (Moscow Interbank Exchange) equity
index shed more than 63% from peak 1956 points to trough 513 points.
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