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The history of computation owes a major debt

to the traditional crafts, and the worlds of design

and computation have been interlinked since the

development of mechanical computing systems

during the 19 th century. As computing systems

became digital, the connections between craft

and computation have become more abstract,

though they are still there.

The regime between the analogue world of craft,

and more generally design practice, and the digi-

tal world of computation, here referred to as the

"di-alogue" world has barely been explored.
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Abstract
By challenging our notions of both craft and com-

putation, how can excursions into the di alogue

world help us to re-define or re-conceive of our

traditional understanding of craft and of compu-

tation? In this thesis, I examine the shared his-

tory of traditional craft and computation as well

as cover several examples of how these worlds

have been combined. Additionally, I argue that

by capitalizing on the procedural backbone of a

particular craft, one can create unique "logics"

that blur the perceived line between craft and

computation.
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Introduction
"'Jacques,' returned Defarge, drawing him-
self up, 'if madame my wife understood to
keep the register in her memory alone, she
would not lose a word of it - not a sylla-
ble of it. Knitted in her own stitches and
her own symbols, it will always be as plain
to her as the sun. Confide in Madame De-
farge. It would be easier for the weakest
poltroon that lives to erase himself from ex-
istence than to erase one letter of his name
or crimes from the knitted registrar of Ma-
dame Defarge."'

from "A Tale of Two Cities" Charles Dickens

In the following pages I hope to describe a search

for a "dialogue" craft, a medium that transcends

both notions of the "digital" or the "analogue," a

craft that exists, simultaneously, in both worlds,

and in doing so, helps us to re-see and re-ex-

amine our conceptions and mis-conceptions of

these, seemingly, diametric paradigms.

With the development of such a media, a di_

alogue media, I hope to engender discussion

both into the roles that traditional craft can play

in academia and the possibilities for computation

by expanding its purview beyond the world of

"ones" and "zeros."

In retrospect, I realize that this quest, the search

for a dialogue craft, has, in some way, been part

of my life since I was a small child. While this may

seem dramatic, or even silly, I contend that, just

as anyone else, my past has profoundly affected

my present, and will continue to influence my fu-

ture. In this way, I can see from the perch I hold

now, that this search has appeared, in one way or

another, since my youth, no matter how ignorant

my position might have been at the time.
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Beginnings upon a page.

Growing up, I always loved puzzles, both of the

jig-saw verity, as well as the logic type. Rainy days

(and not-so-rainy-days) had me fitting as many

puzzles together as I could and, then, lining them

up to build a "gallery" of my work. And, when he

would come home, my father and I would build

massive towers with his childhood set of blocks.

Rectangular prisms would become columns or

streets sections, that would help to map out the

city that we were charged to build. Other times,

these blocks would be strewn out over the floor,

and then I would meticulously sort and catego-

rize each one - all the squares on this corner of

the rug, all the cylinders on that conner.

As I grew older my love of physical puzzles be-

came a love for logical ones. The puzzle boxes

that filled my shelves had to make way for games

that pitted one player's logical wit against that

of another. Tangrams*, Blockus*, RummyCube*,

and Othello® took the place of puzzles of gar-

den-scapes and ocean scenes. These games

challenged one to fit pieces and tiles together in

complex ways, following rules and strategy; each

manipulation causing ripples of effects through-

out the entire game.

The closet's shelves were not the only ones to be-

come squished for space at this time. My books

had to fight for space with the pads and work-

books filled with sudokus and other logic puzzles.

Here, symbols were the manipulables, replacing

the physical tiles with a representation, with an

abstraction. So instead of disks to lay on an Oth-

ello board, I took numbers and fit them into a grid

895

896

Figure o: Decorative knotwork from Clifford W. Ashley's
The Ashley Book of Knots, originally published in 19 4 4 A
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I suppose this penchant for solving puzzles and

putting things together naturally coincided and

influenced my interest in craft, an interest that

still makes up a substantial part of my person-

ality today. Although they may not initially lend

themselves to this conclusion, crafts have much

to do with puzzles and building, and more gener-

ally, with the realm of combinatorics. Tradition-

al crafts, such as knitting, embroidery, weaving,

basketry, et cetera, are all puzzles or building sets

of some sort.

Each craft uses simple elements, combined by

simple means, to give birth to brilliantly com-

plex products. For instance, knot-work - really

a form of plaiting, or weaving - boils down to

rope or fiber, very simple materials. Knot-work

transcends the realm of simple shoe-lace-tying

and becomes a craft through the purposeful ma-

nipulation of said rope. In this way, simple twine

can transform into beautiful braids or intricate

Gordian knots.

And so, it was this process of taking raw materi-

al, the elements, and combining them into a fin-

ished product that attracted me to many of the

various crafts, that I have learned over the years.

As a very small child, I took classes in weaving

through the local, public-recreation department.

in high-school I concerned myself with met-

al-work. I connected thousands of metal links

while making chain maille, and I ground down

the edges of glass shards to make them tessellate

in the stained glass that I would soldered togeth-

er. Later, I learned how to spin my own yarn form

wool, silk, and other fibers. Yet, the craft that has

Here I refer to "crafts" in a more general sense.

had the most profound effect on my life, until

now, has been that of knitting.

While in eighth grade, in a search for an activity

to do during recess, I began knitting. From that

point, knitting became more than just a time-fill-

er during recess, it became a passion, a passion

that I still have today. Of course I enjoyed the

calming aspects of knitting, so too, I enjoyed the

social and, even material, outcomes of it, but

what I found that really held my interest was un-

covering its "code."

Knitting has a fairly long history and, throughout

the several hundred years that it has been part

of the Western craft tradition, many techniques

have developed around the simple premises at

the core of the craft: the looping of yarn. Suffice

it to say, knitting becomes a chaining together of

the fundamental stitches - "knit" stitches and

"purl" stitches - along with many of the tech-

niques that have been developed. Through this

process of combination, knitters are able to pro-

duce a myriad of forms with endless variations of

each.

So, while researching the developmental history

of the craft, I enjoyed experimenting with new

patterns of stitches and stitch-manipulations. I

was never satisfied simply following directions or

"a pattern" like many of my fellow knitters; I had

to figure out why socks were constructed in one

way, mittens, another, and hats, a third. I have,

at times, spent more times knitting tests and

drawing diagrams of stitches then I have actually

knitting the sock, or whatever object, I wished to

complete.

13



Years later, solidly settled in at MIT, I was part of a

discussion seminar on shape grammars. One day,

Professor George Stiny (MIT 67) stated, off-hand-

edly, and I paraphrase, "The choice of ones and

zeros, for computing, was completely arbitrary."

At the time, this remark gave me pause. Was

this one of Professor Stiny's toying generaliza-

tions meant to churn up discussion? Or, was it

the truth? Regardless of its validity - which

is, incidentally, true - I realized that this little

statement tapped into some of my long-held

inclinations toward puzzles, combinatorics, and,

fundamentally, the process of disassembly and

KNI7INC 41

For th Children.-Twelve loops east on in wool or
cotton, and a few rows knitted with the dun edqe.

.etho--1. (a) Show two strips of knitting, one
with a chain edge and one with an irregular edge, and
elicit which is the neater oT the two; (h) explain that
strips with a chain edge can be more neatly and regularly
sewn together to form such articles as bath - towels,

Fio. 13.

dusters, caps, cufi, bed-quilts, cushion-covers, kettle-

holders, etc.
2. (a) Write dein edge on the slate; and (b) tell

children this edge is so called, because it looks like the

links of a chain.
3. Draw an illustration on the slate of the piece of

knitting given to the children (Fig. 13).

Figure 1: A page from A Text-Book of Needlework, Knitting,

and Cutting-Out, published 189 3.t

re-assembly in the pursuit of knowledge. This

question lead to its natural decedents: what if

"ones and zeros" are not the best way? What oth-

er ways can (or could) we compute, solve prob-

lems, and construct? And, even if we are "stuck"

computing with our "ones and zeros" how might

the process of challenging this paradigm help us

re-see our current state?

In my attempt to answer or, better, address these

questions, I have begun to call back onto my his-

torical love and knowledge of craft by re-exam-

ining their foundations as well as going back to

the fundamentals of our current computational

methods.

I have realized that many traditional crafts can

be described as computational enterprises; crafts

such as knitting, crochet, embroidery, and weav-

ing all instruct practitioners to combine many

discrete "units" (whether physically discrete or

conceptually discrete) to combine and form, as

a whole, a separate object. For example, rows

and columns of individual stitches form knitted

fabric, each of which is individually manipulated

by the knitter. Weaving has several layers of this

"atomization" effect. First, and most superficial-

ly, woven cloth is the aggregation of inter-twined

threads. But, at a deeper level, each of these

threads have a specific path over and under the

others which may be considered as a series of

discrete operations which navigate each thread

through its route.

This atomization of craft is very similarto the way

that we, as humans, have chosen to compute, and

more importantly, compute digitally. Our seem-

14
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Figure 2: Symbols used in charted knitting designs.t

ingly complex digital universe is only amalgama-

tion of two values ('one' and 'zero') and a handful

of operations which can be applied to these val-

ues (AND, OR, NOT, XOR, NAND, et cetera.).

While is may seem inconceivable that the com-

plexity that we see in the architecture, design,

manufacturing, and entertainment industries

could derive from anything this simple, we only

have to look at the pinnacles of examples of craft,

'analogue' or physical processes, to locate similar

displays of bewildering intricacy within knitting

or embroidery; all of which were made through a

series of small, simple gestures.

Truth Logt

No. Table In Words PWR Polish McCulloch Alphabet

I FFF Contradition Contmadictim 0 X o
2 FFFT Not-A and Not-B - A - ~ B X . P
3 F T ^ Not-A^ndD - AD - X# b
4 FTPF Aand Not-B A .- D L J( q
5 TFFF AundB A.D- K d
6 TTFP A A I *(
7 TFPT B B .

S 1TFT! A cquivtdculB AmB E
9 P1F A or ekefa AAB J 0

10 FTFF Not-B - B G a
11 FFT1 Not-A ~ A F ::I
12 FT Not-A or Not-B A/B D h
13 TFrT i A. then B A =)B C
14 TTFT fD th=n A B =A B -

15 TTTF A or B AVB A
16 TTI Tatlogy Tautology V

Figure 3: Traditional logic symbols use in formal logic.t

in the following pages I will track the conjoined

development of out current computation system

with that of traditional craft and explore and re-

view ways in which people have either exploited,

explored, or hacked the world between those of

computation (digital) and of craft (analogue).

This hacking, when done in a particular way in

which one side does not dominate and which

plays to the strengths of each system, breaches

the world of the DiAlogue.

In addition to this, I will also examine several

unconventional computational techniques that

achoo the conventions that run our computers

and other computing systems now. By looking

at examples from the world of computer science

that question and re-examine the fundamentals

of the theory of computation, I extract some

themes that offer solutions, or at the very lest,

hint at solutions, to the problem of combining

craft (and design) and computation in a "seam-

less" way.

With all this information, I will propose an exam-

ple system of logic which exists in conjunction

with the world of cross-stitch, a traditional craft

technique. By utilizing the logic and rules that

already exist within the medium,' I am able to

demonstrate many traditional logical functions

within a semi-traditional execution of cross-

stitch, thus combining the digital and analogue

(or computation and craft) worlds in a novel way

yet to be demonstrated.

1 Here "medium" refers to both the constraints and consider-
ations afforded by the physical limitations and abilities of the
system as well as those that come from tradition and conven-
tion within the craft.
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The histories of craft and digital computation

are, surprisingly, intertwined. What is more, the

later is, ultimately, in debt to the former.

This shared history finds its origins in revolu-

tionary France where a booming silk industry

untilized highly complicated looms, called draw-

looms, that were capable of weaving complicated

patterns and designs within the luscious fabric by

allowing one of the operators to specify unique

arrangements of the threads., Yet, as Essinger

states in his book, Jacquard's Web,

"The real problem with the draw-loom was
that is was not a machine at all. Instead, it
was really only a device for facilitating the
manual weaving of patterns or images into

1 Essinger, James. Jacquard's Web: How a hand loom led to the
birth of the information age. Oxford: Oxford University Press,
2004. Print. 17.

Historical Background

fabric."2

in order to address this problem, which result-

ed in slow production rates, several inventors

attempted to automate, or semi-automate, the

process. The first attempts at mechanical auto-

mation happened in the 1720s. Basile Bouchon,

in 1725, built a loom that configured strings based

on holes punched in a roll of paper (see Figure 4).3

In 1728, an inventor with a last name of Falcon,

experimented with looms semi-automated by

punched cards; these experiments did not bare

much fruit.4

The first inventor to make a significant contri-

bution to the automation of the draw-loom was

2 ibid.

3 Held, Shirley E.. Weaving: A Handbook of the FiberArts. 2nd ed..
New York: Holt, Rinehart and Winston, 1978. Print. 97.

4 Essinger, 36.
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Figure 4: Bouchon's paper-tape guided loom.t

Jacques de Vaucanson. De Vaucanson, in 1745,

invented a loom that replaced Falcon's punched

cards with a metal drum, similar to those in a mu-

sic box.' Essinger explains, though, that

"...the metal cylinders were expensive and
difficult to make. Moreover, by their very
nature they could only be used for making
images that involved regularly repeated de-
signs."2

It was not until sixty years passed that someone

addressed these problems; that person was Jo-

seph Marie Jacquard.

In 1804, Jacquard finished designing a loom that

was commissioned by the French government to

address the defects in the de Vaucanson design.3

Jacquard's loom went back to Falcon's idea of us-

ing punched cards; but where Falcon failed, Jac-

1 ibid., 17-18.
2 ibid.

3 Essinger, 37. Held, 97.

1~7

Figure 5: Jacquard's loom.t

quard excelled.

Jacquard's loom (see Figures 5 & 6), which has ap-

propriated the apt name of "the Jacquard loom,"

was able to fully automate the process of manip-

ulating threads on a loom to allow for any image

to be woven. Additionally, in the way he set up

the interface between the loom and the punched

cards, the cards automatically loaded themselves

into the contraption. 4 At the time of its invention,

"it was unquestionably the most complex mech-

anism in the world."5

About thirty years after its invention, the Jac-

quard loom departed from its singular life as a

tool of craft and became an inspiration forthe en-

tire digital, computational age. Charles Babbage,

who is considered by many as the grandfather of

the digital age, invented, at least theoretically,

4 Essinger, 37.
5 ibid..
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Figure 6: A Jacquard loom in use.t

what has been considered "a massive Victorian

computer, made out of cogwheels.", While it is

wildly known that Babbage's Difference Engine

(See Figure 7) and Analytical Engine (see Figure 8),

or, at the very least, the theory behind and de-

signs of them, greatly, and directly influenced fu-

ture advances in computing, what is less known,

and important for our purposes here, is the direct

connection between Babbage and Jacquard.

In 1836, when designing his Analytical Engine, a

programmable, calculating machine, Babbage

notes in his notebooks "'Suggested Jacquard's

loom as a substitute for the drums."' in his dis-

cussion of input devices.2 Babbage would later,

1 ibid., 84.
2 ibid., 85.

in 1864, make particular reference to Jacquard

and the weaving process in his autobiography,

Passagesfrom the the Life of a Philosopher.3 Thus,

we can see a direct line beetween the traditional

craft of weaving to what many concider to be the

first "computer," with that word used in a very

similar way to our contemporary notions of the

word.

After Babbage, the progression to our current

sate of computing rapidly progresses. The his-

tories of IBM, code-breaking, and the theoretical

founders of the computing age are widely rease-

arched and writen about. It is not the purview

of this thesis to explore those areas, but I would

heavily recommend reading both the history as

3 ibid..
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Figure 7: Babbage's Difference Engine.t

well as the seminal papers that defined the com-

puting era. Much of the theoretical structure of

computing, such as cellular automata, though it

can focus of abstract concepts, also touch upon

visual creations and would be useful to design-

ers. Many of the works in the Bibliography at the

end of this work, fit into this class of reading and

would be very useful to those interested.

20



Figure 8: Babbage's plan for the Analytical Engine.t
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PART I
PRINTING WITH CRAFT
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Up until this point the majority of research done

into the shared world of craft and computation

has taken a form that I describe as "printing with

craft." In the following section I will define this

concept as well as explore several examples of

work that "print with craft," while looking to/into

the DiAlogue world.

When someone "prints with craft", they proj-

ect digital concepts or ideas onto and with the

medium of a craft; the craft's own logic have

no real or significant effect on the functionality

of the object other than to provide novelty. Be-

cause of this work derived in this way is not truly

"di alogue" in the strict sense - a convoluted

interplay between the digital and the analogue

is missing - though it would be unfair to state

that projects of this sort cannot suggest or posses

Concept and Examples

certain characteristics of true di-alogue systems.

In this way, looking at them, and understanding

how they work physically and conceptually as

well as how they interface with craft and com-

putation can offer insights into the barely seen

world of the dialogue.

Work in the realm of "printing with craft" is not

overly scarce, in fact, there seems to be quite a

bit of interest in it. I would suggest that this in-

terest is derived from the conspicuous nature in

which computation is projected through a craft

medium. This shifting perspective makes both

of these common systems apparent, which is in

contrast with their ubiquitous nature. LEDs are

everywhere, so, too, are knit sweaters; but hold

onto your hats if LEDs are knitted into your new

pullover!
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Figure 10: Kasikov in production.t

Figure 9: The LilyPad Arduino.t

LilyPad Arduino

One of the most famous examples of this mode is

found within the exploration of "soft circuits," or

textiles the incorporate electronic components.

Leah Beuchley of the MIT Media Lab's High Low

Tech Lab has become an expert on the incorpo-

ration of electronic components into fabrics, pa-

per, and other "crafting" media. As part of her

research she has developed the LilyPad platform

(see Figure 9), a version of the popular Arduino

that is designed to interface with conductive

threads rather than the traditional wire.

Yet, like the tongue-in-cheek example above, the

LilyPad, and other examples of Beuchley's work,

only "project" or "print" circuits onto, or through,

the textiles and other media that she uses. And,

in these cases, the media, the craft, can only offer

a novel application or interpretation of tradition-

al electronics. The nature of the construction of

a running stitch that might hold a shirt togeth-

er but also act as a conductive wire, really com-

pletes its two tasks separately, there is little dis-

cussion between the two systems (the analogue

stitching and the digital connectivity).

CMKY Embroidery

Evielin Kasikov presents another novel incorpora-

tion of craft with the digital technology of offset

printing. Kasikov, a graphic designer, "prints" her

designs with embroidery floss rather than ink, in

a process she has dubbed "CMKY Embroidery"(-

See Figures 1o & 11). Her designs are quite cap-

tivating as it makes both the printing technolo-

gy as well as the embroidery conspicuous, thus

prompting discussion.

Unfortunately, this discussion really only re-

frames current notions by offering new ways

to make physical our digital data, and in a way

that, in essence, only copies current print para-

digms. Additionally, in order to do this, she must

set aside much of the tradition behind counted

cross-stitch. As can be seen in Figure 11, none of

the stitches comply with the standard grid typi-

cally associated with cross stitch. The form of the

embroidery floss upon the paper that she uses

(See Figure io), is enough to make the connection

for her audience, after this point she does what

26
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Figure 11: An "e" in CMKY embroidery.t

she wishes with the rule "intrinsic"' to cross-

stitch and then focuses on the "digital" aspects

of her piece.

Computational Justification in Weaving

There are several examples of people using com-

putation and mathematics in conjunction with

the craft of weaving. They have, as a whole, used

these areas of study, in what can be best de-

scribed, as compositional, or design, justification.

Jer Thorp, an Adjunct Professor at New Your Uni-

versity, has created a website with a Processing

script which runs continuously that "weaves" an

infinitely long piece of fabric (see Figure 12). His

"Infinite Weft" takes directions, pattern-wise,

from rules based on Stephen Wolfram's cellular

1 In the sense that tradition, history, and convention can embed

something with intrinsic features.

automata.

Another notable character: Ada Deitz, a weaver in

the mid-2oth century, used algebraic expressions

to guide her decisions of how to set up her loom

and how to proceed with the weaving.2

Again, in a very similar way to that of the CMKY

Embroidery, nether Thorp nor Deitz directly ad-

dress the logic of weaving itself: the fact that

weaving is a physical, constructive system with

both physical , as well as historical, "rules" and

constraints. This is not to even mention fabricat-

ablity.

Finally, Ralph E. Griswold, a former professor of

computer science, followed a similar path to Ms.

Deitz. After his retirement, he immersed himself

2 Dietz, Ada K.. Algebraic Expressions in Handwoven Textiles. Ed.
Robert Kirkpatrick. Louisville, KY: Little Loomhouse, 1949.
Web PDF. 23 Nov, 2012.
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Figure 12: "Infinite Weft."t

in the world of weaving and chose to look at it

through his own eyes, which were trained as a

computer scientist. In his collected works, Math-

ematical and Computational Topics in Weaving,

he analyses weaving patterns mathematically

and describes ways to produce them using com-

putational inspiration.

It is telling, though that, in the preface to
the book, he states, "I realize that by not be-
ing an actual weaver, I am missing a great
deal and that there are gaps in my knowl-
edge and understanding.",

So, in actuality, most of Griswold's analysis deals

with the graphical and notional aspects of weav-

ing, which, to his own admission, leaves much to

be desired. This is because weaving, like every

other craft, is so process-based, that leaving out

the act of producing with the craft throws away

a majority of the essence of the media.

As a computer scientist/mathematician, Gris-

wold is a perfect segue to the next subsection

which address those who have turned "print-

ing with craft" on its head: those who have ad-

1 Griswold, Prof. Ralph E. Mathematical and computational Top-
ics in Weaving. Self-published, 2006. Web PDF. 23 Nov, 2012.

xii.

Figure 13: One of Griswold's designs in standard weaving
notation.t

dressed mathematical questions with the help

and inspiration of craft, rather than craft being

inspired by computation.

Computation Inspired By Craft

There is a small collection of works that address

mathematical and computer science question us-

ing craft procedures and work as an inspiration

or as an analogy. A fairly comprehensive listing

of the non-weaving related published, scholarly

articles can be found within Making Mathematics

with Needlework?

Other articles addressing craft can be found

within the purview of computational geometry,

which can look at threads and embroidery floss,

as physical realizations of abstract graph-theory

2 Belcastro, sarah-Marie & carolyn Yackel, eds.. Making Mathe-
matics with needlework: Ten Papers and Ten Projects. Natick,
MA: A K Peters, Ltd., 2008. Print.
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Figure 14: Pattern sampler.t

29



problems.1 2

For example, in Making Mathematics with Nee-

dlework3 one of the contributers, Mary D. Shep-

herd, looks to displaying the various types of

symmetric within a cross-stitch sampler (see

Figure 14) in her article "Symmetry Patterns in

Cross-Stitch." This paper does review the differ-

ence between "theoretical" patterns for a cross-

stitch design that, on paper and conceptually

are different, and "real" produced designs which

might, when looking at the finished products su-

perficially, simplify the set of possible answers to

some design space. The address of this aspect

starts to bring this project more in line with true

dialogue concepts.

1 Arkin, Esther M., et al. "The Embroidery Problem." Proceedings
of the 20th Canadian Conference on Computational Geometry
(CCCG20o8). Monteal, Qu6bec, August 135-138, 2008. Print

2 Biedl, Therese, et al.. "Cross-stitching Using Little Thread." Pro-
ceedings of the 17th Canadian Conference on Computational
Geometry (CCCG'o5). 199-202. (2005). Print.

3 Belcastro.
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With the inspiration of the owrk already seen,

as well as a drive to see a project that more-fully

integrates the digital world of computation with

the analogue world of traditional craft, I have

completed several exercices with cross-stich to

explore some of the areas discussed.

Cross-stitch is a type of embroidery which "con-

sists of two slanting stitches, one over the other

and crossing in the center.", These two slanting

stitches which are connected via thread running

along the back of the fabric, usually in horizontal

or verticle dirtections (i.e. not "slanting) to form

one entire stitch. These entire stitches are linked

with many more using non-slanting stitches run-

ning along the back of the fabric, as well. Half-

cross-stitch is very similar, but instead of two

1 de Dilmont, Th.. The complete Encyclopedia of Needlework.

Philadelphia: Running Press, 1974. Print. 88.

Printing With Cross-Stitch

slanting stitches, it utalizes only one to for one

entire stitch.

Cross-stitch also has many "digital" aspects. First,

and foremost, it employs a small number of "al-

lowable" stitches. Second, hundreds, if not thou-

sands, of these stitches aggregate to form com-

plex, global patterns. Also, the visual output of

hal-cross-stich, where individual stitches either

move from a "higher" point to a "lower" point, or

vise versa, make it very translatable to an inter-

pretation of traditional, binary output.

In the following section, I will outline the ecercses

that I have undertaken to explore new ways to

"print with cross-stich," or project digital/compu-

tational concepts through this craft.
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Code o: Fabric() translating "dialogue" to a cross-stitch'
representation of the 8-bit encoding of the text.

I have written a small Python script I have called

Fabric() which is able to take several types of

inputs, and output several representations, de-

pending on a chosen "mode," of those inputs in

the context of half-cross-stitch.

One of my favorite modes of operation involves

inputting a text phrase, such as "di_alogue," and

receiving, form the code a series of lines of char-

acters that map to the bit-representation of that

text. The character representation that it out-

puts takes the form of a slashes that represent

types of stitches which map to the bit data ("o"

or "i"). A forward-slash (/) maps to a "1" and rep-

resents an embroidered stitch that goes from the

lower, left-hand corner of a cell (within the great-

er cross-stitch grid) to the upper, right-hand cor-

ner. A back-slash (\) maps to a "o" and represents

an embroidered stitch that goes from the upper,

left-hand corner of a cell, to the lower, right-hand

corner.

Figure 15: The output of Fabrico from [Code 1] stitched into
card-stock with cotton embroidery floss.t

I have then actually embroidered several of these

"patterns" onto card-stock (see Figure 15). It is in-

teresting to compare the computer output (See

Code o) and the embroidered "output" as they

are identical representationally, but very differ-

ent visually. Additionally, both are very different

form the 1/o representation.' And, of course, the

test string can be much longer than 9 characters

(see Code 1). (For the full code of Fabrico, see

Code 2.)

Showing logic

I have also experimented with representing sim-

ple binary logic in the language of embroidery

(see Figure 16). In these exercises, I have pairs of

stitches (two consecutive stitches) representing

1 For comparison, the i/o output of the word "di alogue" is:

>>> 01100100
>>> 11001000
>>> 10010001
>>> 00100011
> 01000110

>>> 10001101
>>> 00011010
>>> 00110100
>>> 01101001

>>> inputstring= 'dialogue'
>>> F= Fabric(logic mode= 'binarywrite',

input= inputstring)
>>> F.weaveFabric()

>>\/\\

>>/\/\

>>/\\\

>>\/\/

>>\\\/

>>/\/\

>>\\//

>>\/\\

>>\//\
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>>> input..string= 'The Massachusetts
Institute of Technology'

>>> F= Fabric(logic.mode= 'binaryywrite',
input= inputstring)

>>> F.weaveFabric()

>>> \/\\\//\
>/\\//

>\\/\\

>>\/\\

>>\//\

>///\\

>>//\\

>\/\\/

> /\\/

//\//

/\/\\

\\\/\

\//\/\

/\\\\

\\\\/

\\\\\\

\\\/\

\\\\/

>\/\//

/\///

\///\\

/\/\\

> \//\\\/

Figure 16: Simple binary logic using AND and OR operators
represented using embroidery floss.t

(1, o, 1, o [error in embroidery resulted in a "1]).

This technique of inputing stitches as arguments

in a funtion, inputing other stitches are the func-

tion itself, and then stiching out the value will be

unpacked later on.

Rule 30

Another exercise that I embraked on was looking

at the very famous and well-know cellular au-

tomata, Rule 30 (see Figure 17). I represented its

binary-colored cells in vaerious ways using crpss-

stitch as well as half-cross-stitch (see Figuers 18,

19, & 20).

While the interpretation in traditional crss-stich

resembles the standard represention o f Rule 30

(see Figure 18), the interpretations of the system

into half-cross-stitch start to reveil com intestinf

Code 1: Fabrico translating "The Massachusetts Institute of
Technology" to a cross-stitch representation of the 8-bit
encoding of the text.

either a "True" or "False" ("i" or "o") value or an

"AND" or "OR" operator. The first two lines are

the a series (in Figure 16) of "inputs" ((1, o,1, o)(1, 1,

o, o)) The third line is a string of operators (AND,

AND, OR, OR) to act on the two values above it.

The final line are the "outputs" of the operations Figure 16: "Rule 3o."t
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features and have an identity of their own. In

Figure 19, sections of Rule 30 are stitched where

(clock-wise from left) "upwards stitches" relate

to black squares (really "ones" (1)) and the non-

stitch to white squares (really "zeros" (o)); "down-

ward stitches now relate to "ones;" and "upward

stitches" relate to "ones," "downward stitches,"

to "zeors."

In all these examples, though, the computational

concept of cellular automata is being communi-

cated through the visual aspects of cross-stitch

aloone, rather than trhough some interpretation

of the under-laying logic of the craft.

1
2
3
4
5
6
7
8
9
10

11
12
13

14

15

16
17

Code 2: Fabrico.

dialogue weave: 0.1
Sunday, 1 December, 2012

Henry George Skupniewicz
( M| HIT Dept. of Arch.
||) Design and Comp. Group

hskup@mit.edu I henryskup.com

import binascii
class Fabric(object):

"""
Stitch Modes ('stitch-mode'):
'cross-stitch': uses Xs (X) (mapped to 1/True) and blank-

spaces ( )(mapped to 0/False)

'diagonal-binary': uses forward slash (/) (mapped to 1/
True) and backslash (\)(mapped to 0/False)

'diagonal-trinary': uses forward slash (/) (mapped to 1/
True), backslash (\)(mapped to -1/False), and blank-spaces

(mapped to 0/Unknown)

def __init__(self, row length= 10, fabriclength= 10,
stitch-mode= 'diagonal-binary', logicmode= 'binarywrite',

input= None):
self.n= rowlength
self.m= fabrictength
self.mode= stitchmode, logic_mode, input)
self.pattern= None
self.setFabric()

def netFabric(self):
inputstring= self.mode(2)
self.pattern" self.formatToBinary(inputstring)

def formatToBinary(self, inputstring):
binarystring= bin(int(binascii.hexlify(input_string),

16))
binarystring= binarystring. replace('b', ')

return binarystring

def weaveFabric(self, file-name" 'cross.txt'):
"""Goes through data and displays weave in file.""'
f= open(filename, 'w')
if self.modell) == 'binarywrite':

stitches= self.weaveBinary()
elif self.mode[1] == 'cross_automata':

stitches= self.weaveCA()
f.flush()
f.write(str(stitches))
f.close()

def weaveBinary(self):
stitches= "
for i in range(len(self.pattern)/8):

row= self.patternli: (i + 8))
rowstring= '
for stitch in row:

if int(stitch) == 1:
rowstring += '/'

else:
row-string += '\\'

stitches += row-string + '\n'
return stitches

def weaveCA(self):
return None

class Row(object):
def __init__(self):

pass

class Stitch(object):
def __init__(self. intstate" True):

self.state= intstate
def getState(self):

return self.state
Figure 19: Various interpretations of "rule 30" in half-cross-

stitch.t

Figure 18: "Rule 30" in traditional cross-stitch.t
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Figure 20: Same rule, different effects.t
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PART II
A DiALOGUE LOGIC
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Concepts , et al.

Up until this point, I have examined examples

and exercises that do not exhibit true di-alogue

nature. In this section, I will look at true di-alogue

practices, as well as, in the midst of this, look at

some interesting concepts in computer science

that relate to the combination of the digital and

the physical/analogue worlds.

To reiterate from before: DiAlogue practices,

processes, et al., exhibit a completely intertwined

combination of digital concepts and practices

with analogue materials, crafts, and/or process-

es. In di alogue systems, the intrinsic logic of the

analogue, be it from its geometry, materiality,

of the conventions related to it, become active

members in computational practice, yet they do

so without kneeling to conventional computa-

tional norms; instead, a new logic, a Di Alogue

Logic is formed anew.

This concept is, albeit, nebulous; it is meant to

be. In order to keep it open and to request fu-

ture work and additions to the documentation of

this "world," I have tried to define "dialogue" in

a loose way with the backing of examples of such

processes, as well as processes that are similar,

yet not quite "there" (see the previous section,

"Printing with Craft").

Logic Matter

One of the only examples that I have been able to

find which really engages a traditional craft, that

of building, with digital logic, to create some-

thing unique and different from its constituent

digital and analogue parts, is the masters thesis

work of Skylar Tibbits, of the Massachusetts In-
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Figure 21: Logic Matter.t

stitute of Technology (MIT), For his thesis, Log-

ic Matter: Digital logic as heuristics for physical

self-guided-assembly, Tibbits creates a building

system in which the geometry, an, thus, an in-

trinsic, physical logic, allow for the "builder" to

perform "computations" with the material itself.'

This material acts as a NAND (or a Negating AND

gate) and can take inputs and give outputs (with

user participation as well as interpretation).

Tibbits's blocks are not the standard, box forms

that we are used to. Instead they are simple

polyhedron, whose faces relate to either a TRUE

or FALSE input or a TRUE or FALSE output. Ad-

ditionally, the individual building blocks contain

1 Tibbits, Skylar. Logic Matter: Digital logic as heuristics for phys-
ical self-guided-assembly. MA thesis. Massachusetts Insti_

tute of Technology, 2010. Print.

holes which become filled (or not) depending

on inputs from other blocks. The state of these

holes then dictate how the building, or computa-

tion, can proceed bu blocking access points to the

already-built block structure.

On one level this is just a change in the notation

of standard, symbolic-based logic. Rather than

symbolic operators, such as "AND" or ",", Tibbits

uses geometric (ie. three dimensional) symbols,

so in a way he is "printing" using a new media,

new representation. Yet, Tibbits skirts purely

printing "old notion" of logic by relying on the ge-

ometry to define the logic itself. His Logic Mat-

ter's unique form informs the way in which the

logic works, so, in a way, it has its own, intrinsic

logic. This project presents one of the closest
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[,]= 1

Figure 22: NAND gate: [o, o]=l.t

manifestations of a DiAlogue Craft as has been

created.

Conservative Logic

From further study beyond the superficial out-

lines provided by Tibbits, it is clear that if a di_

alogue craft, as well as a corresponding dialogue

logic, it will need to rely on previous, though ab-

stract, research in the field of computer science.

As stated previously, the seminal paper which

laid down the foundations for the computing age

are of particular interest.

One sub-field which I have come across concerns

computing systems which turn away form the

orthodox, boolean logic which runs our comput-

ing systems today. The areas of "reversible" or

"conservative logic" as lined out by Edward Fred-

kin and Tommaso Toffoli in their seminal paper,

"Conservative Logic" are of extreme interest as

[1,11] = ©
Figure 23: NAND gate: [1, 1]=o.t

they offer computing solutions specifically meant

for the physical world.

Essentially, conservative logic is a logic system

similar to the classic Boolean (o/1) logic system

that reigns over computation today. Conserva-

tive logic, however, conserves bits of information

(generally the Y in computational notation) so

as to "reflect in ins axioms certain fundamen-

tal principles of physics." 2 So, while in a current

AND gate, the inputs [1, o] would output a [o]

(True AND False is False), using a conservative

gate, such as the Fredkin Gate, the inputs [o, 1, 0]

would output [o, o, 1] (see Figure 24).3 While the

two functions look different, they are performing

the same function via the use of "garbage" vari-

1 Fredkin, Edward & Tommaso Toffoli. Conservative Logic. Inter-
national Journal of Theoretical Physics (vol.21, Nos. 3/4, 1982).

Print. 219 - 253.
2 ibid., 219.

3 ibid., 227.
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ables (see Figure 25).'

Overall, the orthodox and conservative logic sys-

tems do not seem all that different, yet, "the cen-

tral result of conservative logic is that it is ideally

possible to build sequential circuits with zero pow-

er dispersion," a fact that is not true of our current

computing paradigm. 2

This fact, that such conservative logic systems,

such as that proposed by the Fredkin Gate, con-

serve energy/material/information suggests that

they have a unique ability to "talk" with craft as

traditional craft often has "rules" concerning the

1 ibid., 230.
- ihiri r7
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0 1
1 0
1 0
i 1
1 1

Figure 24: The

(c) @Y)

Figure 26: Billiard Ball logic gates.t
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Figure 25: Use of "constants" and "garbage" in conserva-
tive logic.t

adding or subtracting of material. For example,

in embroidery, the crafter only uses one thread

at one time.

To show the veracity of their concept, Fredkin

and Toffoli created a theoretical catalogue of

"Billiard Ball Logic Gates."3 This system, assuming

a frictionless world, was able to "compute" using

collision based gates. Balls (with no elastic prop-

erties), representing bits of information, could

collide with walls or each other to give outputs to

various functions.

One pair of researchers that have heavily contrib-

uted to the field of conservative logic are Tsuto-

2 ihil -:o
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Figure 27: 3-input, 3-output cascade functions.t
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mu Sasao and Kozo Kinoshita (see Bibliography

for a list of works). Sasao and Kinoshita were

able to show conservative logic's universality (in

the computational sense),' as well as to address

several configuration questions. 2 3
.
4 In one paper,

Sasao and Kinoshita produced wonderful, woven

paths to show the unique number of cascade

functions using conservative logic gates (see Fig-

ure 27).5

1 Sasao, Tsutomu & Kozo Kinoshita. "Conservative Logic Ele-
ments and Their Universality." IEEE Transactions on Comput-
ers. Vol. c-28, No. 9, 682-685. (1979). Print.

2 ----. "Cascade Realization of 3-Input 3-Output Conservative
Logic Circuits." IEEE Transactions on Computers. Vol. c-27, No.

3, 214-221. (1978). Print.

3 ----. "On the Number of Fanout-Free Functions and Unate Cas-
cade Functions." IEEE Transactions on Computers. Vol. c-27, No.
1, 66-72. (1979). Print

4 ----.. "Realization of Minimum Circuits with Two-Input Conser-
vative Logic Elements." IEEE Transactions on Computers. Vol.
c-27, No. 8,749-752. (1978). Print

5 - "Cascade Realization of 3-Input 3-Output Conservative
Logic Circuits." IEEE Transactions on Computers. Vol. c-27, No.

3, 214-221. (1978). Print.
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Wanting to try my hand at developing my own

truly DiAlogue interpretation of cross-stitch/

half-cross-stitch, I proceeded with various exper-

iments with embroidery floss until I produced a

heuristic algorithm which both respects cross-

stitch convention while being able to preform

logical operations.

Before this could begin, I had to understand the

constituent parts that make up the cross-stitch-

ing system.

A Critical Look at Cross-Stitch

The basics of cross-stitch and half-cross-stitch

were quickly covered in Section: Printing with

Cross-Stitch.

On further examination, cross-stitch can be

A DiAlogue Cross-Stitch

cleaved into two different processes: threading

which lays embroidery floss on the "front" of the

fabric/work and in a diagonal relation to the grid

defined by said fabric/base material, and thread-

ing which lays the floss on the "back" and along

the major axis directions defined by the fabric/

base material (see Figure 28). While the "front-

work," or the diagonal stitches, form the desired

pattern or image that will be viewed after the

work is done, the "back-work", or the horizontal

or vertical stitches, form the backbone of th pro-

cess which correctly positions the front-work on

the fabric/base material (hereafter referred to as

"the Medium").

It should be noted that in the process of

cross-stitching a front-work stitch is always fol-

lowed by a back-work stitch, and a back-work
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Figure 28: Cross-stitch/half-cross-stitch.t

stitch is always followed by a front-work stitch.

This is to maintain the stability of the pattern and

properly affix it to the medium. This will be re-

ferred to as the Front-Back-Front-Back Rule.

If we consider the act of "reading" and consuming

a work of cross-stitch, it is the front-work which

we interact with, thus it would make sense to, in

the translation of cross-stitch into a DiAlogue

craft, make the front-work relate to inputs and

outputs to logic functions. As logic gates ac-

tually do the manipulation of the variables, it is

quite clear that in such a dialogue craft that the

back-work, which manipulates the location of the

floss, should act, in some way to the logic gate

used in the manipulation of the cross-stitched in-

puts/outputs.

In a simple two-input, one-output logic function,

there exists four entities: two arguments (inputs),

one operand (gate) which acts upon these argu-

ments, and one value (output). Because of the

Front-Back-Front-Back Rule, if we wish to chain

the fewest number stitches together to realize a

logic gate, the complete logical computation will

take five stitches. The first, third, and fifth will

be front stitches and will relate to the two input

stitches and one output stitch, respectively. This

leaves two back-work stitches, which, in the sche-

ma described above, need to relate to the oper-

and of the function, such as the AND, OR, NOT,

NAND, logical functions.

If we look at these first five stitches, what are the

possible ways that they can be applied to the me-

dium? The front-work stitches can travel in all of

the diagonal directions (4: Up-and to the Right,

Up-and-to-the-Left, Down-and-to-the-Right,

Down-and-to-the-Left) from their initial point,

and the back-work stitches can travel in all ordi-

nal/axial directions (4: Up, Down, Left, Right).

Form here, we can imagine what such a compu-

tation will look like. By inputing four stitches:

input one (front-work), operand part-one (back-

work), input two (front-work), operand part-two

(back-work), the system puts "the stitcher" in

position to make the last front-work stitch. This

stitch could be chosen based on a heuristic, that

is determined or attached to the particular oper-

and pair, that would determine which of the four

options to choose. This way this last stitch would

be deterministic based on the choice of individual

inputs as well as the choice of operand-stitch-pair

(the operand as a whole). Because the value of

the last stitch is in relation to the operand and

the input stitches, the heuristic used to deter-

mine the value must relate to these stitches as

well. Since the positioning of all the subsequent

stitches relate to the first stitch, this heuristic

must relate to the first stitch. From practice, it

makes sense to craft this heuristic around motion

(in the value stitch) toward or away from a hor-

izontal and/or vertical imaginary line projecting

from the center of the first, input stitch.

50



u/u uld u/I u/r d/u did d1 dir I/u I/d I/i 1ir r/u r/d r/i rir

/ / ,r f F

F' "I ~
/ / / IF

P I: 'A IN. A4 A_\ x~ PN -\/

V7 (1~ 17 Z,' &V /Z /Z

C '( C ' K - " 1 Z ) NA 1

k~ '~ , P1 -~ ~

P1 P1 P1- ~ ~

.41 4,*' ~

/ - 'F7

p ~ } ~ / V'\ Z\ 1K' /" N X

NA '~ '~ ~ l N N C\

NP,' ' ~ '' N ~

~I4 N N '~
( ,) )

F F'

1'

v 1% 'N, N/, N1 N1 .1

W A A' W' ~

Figure 29: All possible combinations and permutations of first five "gestures" in half-cross-stitch.t

In total there will be:

>>> 4 x 4 x 4 x 4 x 4 = 1024

number of possible combinations of these five

stitches. (16 possible input pairs, 16 possible op-

erand pairs, and 4 possible value stitches.)

Figure 29 displays all of the possible stitch combi-

nations though the fourth stitch in the sequence

(with the four value stitches displayed in grey, at

the end). For these calculations, I used the fol-

lowing notation system:

>>> P and Q represent the two input
stitches.

>>> P and Q can be T or T' or F or F', these
relate to stitches that lay floss down by
"moving" Up-and-to-the-Right or Up-and-
to-the-Left or Down-and-to-the-Right or
Down-and-to-the-Left, respectively.

P' 1

QF' F,
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Q I
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Figure 30: Combinations and permutations that follow convention.t

>>> The back-work stitch pairs are
represented as [stitch-2-of5]/[stitch-4-
of-five]

>>> The back-work stitches proceed u or d
or I or r, these relate to up or down
or left or right,- respectively. So, an
operand pair in which the first stitch
"moves" down, and the second "moves" the
floss to the right would be 'd/r.'

Obviously, all of these combinations would not

be allowed in traditional cross stitch, thus, by re-

moving any motion to the left of the work (cross-

stitch usually moves from the left to the right),

we are left with 36 "legitimate" input/output

and operand combinations: nine "operand pairs"

with different notation, and four different in-

put/output pairs. And, since the last stitch will

move either Up-and-to the-Right (as in previous

sections, this will be a TRUE Stitch) or Down-and-

to-the-Right (as in previous sections, this will be

a FALSE Stitch), the heuristic only has to concern

the imaginary horizontal line that projects from

the mid-point of the first, input stitch. Thus, the

last stitch, the value stitch, would be guided by

the input stitches as well as the operand pair and

it's attached heuristic to go either "towards the

line" or "away form the line."

Through analysis, each of these operand pairs,

when used with the four different input/output

pair will relate to either a logic function or will be

"equivalent to" another of the operand pairs.

In oder from left to right along the choices of op-

erand pair and heuristic ("toward" or "away") in

Figure 30, the following conclusions can be made.

No matter the input, a particular operand pair

and a particular heuristic will relate to the follow-

ing logic function or truth value or unique argu-

ment (argument one is 'P,' argument two is 'O'):

>>> u/u - away: always equals TRUE
>>> u/u - towards: always equals FALSE

P=T
Q=T

P=F

Q=F
0=F

52



0

O0

O0

0.@
Op

0.

C.

000O

*.

000

0
0
0
0
0
0
0

O0

~00
000
000

0 0
000

0
0

0
0

00O

0000
000

00000O

Figure 31: The NAND Stitch heuristic algorithm.t

>u/d - away: Q
>u/d - towards: NOT 0
u/r -away: P OR Q
>u/r - towards: P NOR 0

>>> d/u - away: equivalent to u/d - away
>>> d/u - towards: equivalent to u/d -

towards
>>> d/d - away: always equals FALSE
>>> d/d - towards: always equals TRUE
>>> d/r - away: P AND Q

>> d/r - towards: P NAND Q
>>> r/u - away: equivalent to u/r - away
>>> r/u - towards: equivalent to u/r -

towards
>>> r/d - away: equivalent to d/r - away
>>> r/d - towards: equivalent to d/r -

to aasiv l n / -a a
>>> r/r - twa: equivalent to u/d -aa

towards

From here-on-out, I will mostly be considering

the operand pair and heuristic: d/r - towards, this

performs an NAND function upon the chosen in-

NAND Gate Stitch

The NAND Stitch relates to the NAND Gate/Logic

function, which is a universal logic functions, that

means that it can be combined with of the NAND

Gates to make any other type of logic function.

Figure 31 describes the stitching of the NAND

Stitch with an input pair of: TRUE, TRUE.

>>> (a) A starting point is chosen in the
medium (the needle will start in the
back and come through the hole baked by
the magenta 'x' to initiate the stitch).

>>> (b) A TRUE Stitch is made (needle now in
back of the medium).

>>> (c) The first part of the operand pair (a
down stitch) is made.

>>> (d) The second TRUE Stitch is 'entered.'
>>> (e) The second part of the operand

pair (a right stitch) is made. The
needle is now in front of the medium
and the stitcher now must decide where
to proceed to make the last stitch,
the value stitch. Since the imaginary
horizontal line that projects from the
mid-point of the first stitch is below
where the floss is now exiting the
medium, the next stitch will proceed
towards the line by 'moving' Down-and-
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Figure 32: The NAND Stitch with all possible (and conven-
tional) inputs.t

Figure 33: The NAND Stitch with all possible (and conven-
tional) inputs in actuality.t

to-the right.
>>> (f) The result (a FALSE Stitch) is made

in accordance with the logic in step (e).

Figure 32 draws out the resulting computation

when all input pair choices are used; Figure 33,

depicts the actual half-cross-stitched result.

By chaining together many of these operations,

a stitcher can make patterned stitched chains.

To do this, they only need to use the value stitch

of the last computation as the input of the next;

this process is identical to that which Tibbits

used., Figure 34 shows a chain computed using

the input string (TRUE == 1, FALSE == o): i11...

And in Figure 35, a random chain is created using

1 Tibbits, 67.

Figure 34: An NAND Stitch computation started with an
input pair: TRUE, FALSE, and continued with TRUE Stitch-
es.t

a string of random truth values. This sudo-ran-

dom string is:

>>> 01000011000101100110.

Figures 35, 36, 37, and 38, are all NAND Stitch

chains where the firs two input pairs are one of

the four unique input pairs (TRUE, TRUE; TRUE,

FALSE; FALSE, TRUE; FALSE, FALSE). The chain is

continued by taking the value stitch of the last

pair and computing the NAND function with a

stitch of the opposite value.

Figure 40 and Figure 41, go back and examine the

various equivalences that occur between the op-

erand pairs (along with their heuristics). Though

they start off looking different at the beginning

of each chain's computation, they end up reach-

ing the same pattern in the end. This behavior is

very similar to the local chaos, but long-distance

order of cellular automata. Please see the cap-

tions for more detail.
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Figure 34: NAND Stitch chain with random string of inputs.t

4 1

Figure 35. An NAND Stitch computation started with an in-
put pair: TRUE, TRUE, and continued with the opposite of
whatever the last value stitch was.t

Figure 37: An NAND Stitch computation started with an in-
put pair: FLASE, FALSE, and continued with the opposite
of whatever the last value stitch was.t

Figure 36: An NAND Stitch computation started with an Figure 38: An NAND Stitch computation started with an in-
input pair: TRUE, FALSE, and continued with the opposite put pair: FALSE, TRUE, and continued with the opposite
of whatever the last value stitch was.t of whatever the last value stitch was.t

55



Figure 40: The two variations of the NANDIAND Stitch pre-
dicted by Figure 31. Each depicts a chain of TRUE val-
ues. From the top, each chain relates to: d/r - towards
(NAND); r/d - towards (NAND); d/r - away (AND); r/d -
away (AND) .t

Figure 41: The two variations of the OR/NOR Stitches pre-
dicted by Figure 31. Each depicts a chain of TRUE values.
From the top left and moving counter-clockwise, each
chain relates to: u/r - towards (OR); r/u - towards (OR);
u/r - away (NOR); r/u - away (NOR) .t
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