
A Multi-Vehicle Testbed and Interface Framework

for the Development and Verification of Separated

Spacecraft Control Algorithms

by

Mark Ole Hilstad

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2002

@ Massachusetts Institute of Technology 2002. All rights reserved.

A u th or ..
Department of Aeronautics and Astronautics

24 May, 2002

Certified by
David W. Miller

Associate Professor
Thesis Supervisor

A ccepted by
Wallace E. Vander Velde

Chairman, Department Committee on Graduate Students

MASSACHUSETTS WSTITUTE
OF TECHNOLOGY

- AERO

AUG 13 2002

LIBRARIES

2

A Multi-Vehicle Testbed and Interface Framework for the

Development and Verification of Separated Spacecraft

Control Algorithms

by

Mark Ole Hilstad

Submitted to the Department of Aeronautics and Astronautics
on 24 May, 2002, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

To reduce mission cost and improve spacecraft performance, the National Aeronautics

and Space Administration and the United States military are considering the use

of distributed spacecraft architectures in several future missions. Precise relative

control of separated spacecraft position and attitude is an enabling technology for

many science and defense applications that require distributed measurements, such

as long-baseline interferometric arrays. The SPHERES testbed provides a low-risk,
representative dynamic environment for the interactive development and verification

of formation flight control and autonomy algorithms. The testbed is described, and

properties relevant to control formulation such as thruster placement geometry and

actuation non-linearity are discussed. A hybrid state determination methodology

utilizing a memoryless attitude update and a Kalman filter for position and velocity

is presented. State updates are performed based on range measurements to each

vehicle from known positions on the periphery of the test volume. A high-level,
modular control interface facilitates rapid test development and the efficient reuse of

old code, while maintaining freedom in the design of new algorithms. A simulation

created to facilitate the development of new maneuvers, tests, and control algorithms

is described.

Thesis Supervisor: David W. Miller
Title: Associate Professor

3

4

Acknowledgments

This work is dedicated to my parents, Gordon and Mary Hilstad. Their love, care,

and guidance have been of central importance to everything I've ever accomplished.

The SPHERES project began in a three-semester capstone design course, as part of

the MIT Department of Aeronautics and Astronautics Conceive, Design, Implement,

Operate (CDIO) educational initiative. The project is the result of dedicated effort

by students, faculty, and staff of MIT, and staff of Payload Systems, Inc:

" MIT undergraduates: Stephanie Chen, Allen Chen, Julie Wertz, Stuart Jackson,

Shannon Cheng, Fernando Perez, David Carpenter, Jason Szuminski, George

Berkowski, Chad Brodel, Sarah Carlson, Bradley Pitts, and Daniel Feller.

" MIT graduates: Alvar Saenz-Otero, Allen Chen, Alice Liu, Simon Nolet, and

Mitch Ingham.

" MIT faculty and staff: Prof. David W. Miller, Paul Bauer, Dr. Ray Sedwick,

Dr. Edmund Kong, Dr. Jeffrey Hoffman, Prof. Jonathan How, Sharon Leah

Brown, and Margaret Edwards.

* PSI staff: Steve Sell, Stephanie Chen, Dr. Javier deLuis, and Edison Guerra.

I would also like to express my appreciation to

" My advisor, Prof. David W. Miller, for granting me the opportunity to study

at MIT and for trusting me with an important role in a flight project.

" My family and friends, both at MIT and far away, for their encouragement and

support over the years.

" Russell Carpenter and the NASA Goddard Space Flight Center for sponsoring

KC-135 flight tests.

" God, for creating this wonderous universe and giving us the drive and capability

to explore.

5

6

Contents

Nomenclature 14

Mathematical Notation 15

1 Introduction 17

1.1 M otivation . 17

1.2 Background . 18

1.3 Research Objectives. 20

1.4 O utline . 21

2 SPHERES Testbed 23

2.1 Testbed Overview . 23

2.1.1 Sphere subsystems . 23

2.2 Thruster Pulse Modulation . 25

2.3 Thruster Geometry . 30

2.3.1 Thruster placement and mixing matrix - prototype 31

2.3.2 Thruster placement and mixing matrix - flight 35

2.3.3 Body-axis actuation efficiency 39

3 State Determination 41

3.1 O verview . 41

3.2 PADS hardware . 41

3.2.1 PADS local element . 42

3.2.2 PADS global element . 42

7

3.3 Attitude Determination .

3.3.1 Problem formulation

3.3.2 Direction measurements

3.3.3 Davenport's q-Method

3.4 Position and Velocity Determination

3.4.1 Continuous-discrete extended Kalman filter equations .

3.4.2 State propagation .

3.4.3 State updates .

3.5 PADS algorithm path .

3.5.1 Future improvements to PADS

. . . . 45

. . . . 45

. . . . 47

. . . . 53

. . . . 54

. . . . 54

55

59

63

65

4 Control Interface Design and Implementation 67

4.1 Flight Software Overview . 67

4.1.1 Global variable organization 68

4.2 Interfaces Overview . 70

4.2.1 Standard interface . 70

4.2.2 Direct interface . 71

4.2.3 Custom interface . 71

4.2.4 ISS operational requirements 73

4.3 Standard Control Interface Modules 73

4.3.1 Module robustness and the universal module rule 77

4.3.2 SCI module type 1: command 77

4.3.3 SCI module type 2: control 80

4.3.4 SCI module type 3: mixer . 81

4.3.5 SCI module type 4: terminator 82

4.3.6 SCI module type 5: maneuver flow control 85

4.3.7 SCI multi-type modules . 88

4.3.8 Maneuver list file . 88

4.3.9 Custom header: gsp.h . 89

4.3.10 Custom source: gsp.c . 90

8

4.4 Standard Control Interface Examples 91

4.4.1 SCI example 1: single sphere waypoint sequence 91

4.4.2 SCI example 2: comparing control gain performance during

two-sphere circular formation rotation 95

4.5 Controller Housekeeping . 101

4.6 Control Interfaces Summary . 102

5 Guest Scientist Program 105

5.1 Guest Scientist Program Overview 105

5.2 SPHERES GSP Simulation . 106

5.2.1 Simulation files . 107

5.2.2 System requirements and design trade-offs 107

5.2.3 Work in progress . 108

5.2.4 Simulation server . 109

5.2.5 Control panel . 109

5.2.6 Sphere executables . 113

5.2.7 Data reduction . 115

5.3 GFLOPS SPHERES Simulation . 115

5.4 Laboratory Testbed . 115

5.5 International Space Station . 116

6 Conclusions and Recommendations 117

6.1 Thesis Summary . 117

6.2 Conclusions . 118

6.3 Future Work . 119

A Quaternions 121

A.1 Properties of the attitude quaternion 121

A.2 Quaternion composition . 124

A.3 The error quaternion . 126

A.4 Quaternion propagation using body rates 127

9

B Guest Scientist Program Reference 129

B.1 Defined Quantities . 129

B.2 Global Variables . 129

B.2.1 Control data structure: ctrl 131

B.2.2 PADS data structure: pads 132

B.2.3 System data structure: sys 135

B.2.4 Propulsion data structure: prop 136

B.3 SCI module source code . 137

B.3.1 SCI command modules . 137

B.3.2 SCI controller modules . 139

B.3.3 SCI terminator modules . 139

B.3.4 SCI flow control modules . 144

B.3.5 SCI multi-type modules . 150

B.3.6 Control housekeeping algorithm 151

7T Sphere Paper Cutout Model 157

10

List of Figures

1-1 Thesis road map . 22

2-1 CAD model of flight sphere design. 24

2-2 Typical SPHERES on-off thruster force profile 26

2-3 Example bang-bang phase-plane trajectory 27

2-4 Example bang-off-bang phase-plane trajectory 28

2-5 Pulse modulation curves . 31

2-6 Thruster placement geometry - prototype 32

2-7 Thruster placement geometry - flight 36

3-1 PADS global element diagram . 43

3-2 PADS global element timing sequence 44

3-3 Quantities used in attitude determination 48

3-4 Incoming ultrasonic wavefront and the sensor plane 49

3-5 Quantities used in position determination 60

3-6 State estimation implementation . 64

4-1 Flight software organization . 69

4-2 Sphere system block diagram, with control interfaces 72

4-3 Standard control interface representative module sequence 75

4-4 Source code directory organization 76

4-5 Controller housekeeping block diagram 103

5-1 Accessibility and fidelity of GSP development environments 105

5-2 Guest Scientist Program process . 106

11

5-3 GSP simulation project files . 108

5-4 GSP simulation server block diagram 110

5-5 GSP simulation graphical user interface 111

5-6 GSP simulation control panel block diagram 113

5-7 GSP simulation sphere block diagram 114

12

List of Tables

2.1 Thruster placement geometry (prototype sphere) 32

2.2 Thruster combinations for body-axis actuation (prototype sphere) . . 33

2.3 Thruster placement geometry (flight sphere) 36

2.4 Thruster combinations for body-axis actuation (flight sphere) 37

3.1 Quantities used in attitude determination 47

4.1 Subsystem global variable data structures 68

B. 1 Defined state vector indices . 130

B.2 Defined control array indices . 130

B.3 Contents of the global data structure ctrl 131

B.4 Contents of the global data structure pads 133

B.5 Contents of the global data structure sys 135

B.6 Contents of the global data structure prop 136

13

Nomenclature

DARPA Defense Advanced Research Projects Agency

DSP Digital signal processor

GFLOPS Generalized FLight Operations Processing Simulator

GPS Global Positioning System

GSP Guest Scientist Program

IR Infrared

ISS International Space Station

MIT Massachusetts Institute of Technology

NASA National Aeronautics and Space Administration

PADS Position and attitude determination subsystem

PD Proportional-derivative

PWM Pulse-width modulation

SCI Standard control interface

SPHERES Synchronized Position Hold, Engage, Reorient Experimental Satellites

SSL Space Systems Laboratory

STL Sphere-to-laptop (radio communications channel)

STS Sphere-to-sphere (radio communications channel)

US Ultrasonic

USAF United States Air Force

14

Mathematical Notation

" Scalar variables are represented in an italic typeface (e.g. x).

" Vector variables are represented in bold italic (e.g. x).

" Matrices and tensors of second and higher order are represented as capital let-

ters, and are not italicized (e.g. A).

" Units, such as km (kilometers) and s (seconds), are not italicized.

* Representations of the attitude quaternion appear bold, but not italicized, to

distinguish them from standard vectors. A tilde is used to distinguish the hyper-

imaginary representation of the quaternion q from the real representation q.

" The symbol = is used to signify "is identically equal to," or "is defined as."

* The over-hat, ^, signifies that a quantity is an estimate.

15

16

Chapter 1

Introduction

1.1 Motivation

To reduce mission cost and improve spacecraft performance, the National Aeronautics

and Space Administration (NASA) and the United States military are considering the

use of distributed spacecraft architectures in several future missions. Precise relative

control of separated spacecraft position and attitude is an enabling technology for

many science and defense applications that require distributed measurements, such

as the long-baseline interferometric array proposed for the Terrestrial Planet Finder

mission [2]. The Defense Advanced Research Projects Agency (DARPA) Orbital

Express program will develop a fleet of satellites with the capability to dock with and

re-supply or upgrade aging or damaged satellites. Routine autonomous formation

flight is essential for the success of these missions.

The SPHERES testbed is intended to mitigate the risk associated with attempting

autonomous separated spacecraft control, by providing a risk-tolerant medium for the

development and maturation of formation flight and docking algorithms. The testbed

is manifested for launch to the International Space Station (ISS) on service flight

12A.1, nominally scheduled for May, 2003. Results from this research are applicable

to separated spacecraft telescopes, in-situ distributed space science, and autonomous

docking.

17

1.2 Background

Relative control of separated spacecraft is termed formation flight, and may be dis-

tinguished from the concept of a satellite constellation. The difference lies in ac-

tive control of the relative states of the formation flying spacecraft. As defined by

NASA's Goddard Space Flight Center [11], a constellation is comprised of "two or

more spacecraft in similar orbits with no active control by either [spacecraft] to main-

tain a relative position." Station-keeping and orbit maintenance are performed based

on geocentric states, so groups of Global Positioning System (GPS) satellites or com-

munication satellites are considered constellations. In contrast, "formation flight

involves the use of an active control scheme to maintain the relative positions of the

spacecraft."

A further distinction may be made between formation-keeping and formation-

changing, both subsets of formation flight. Formation-keeping refers to the main-

tenance of a specified relative state between spacecraft in the presence of distur-

bances or undesired dynamic effects, while formation-changing involves the execution

of a planned modification of the desired relative state, possibly leading to significant

changes in the relative spacecraft dynamics. Rendezvous and docking maneuvers are

another subset of formation flight, in which the distance between two or more separate

vehicles is reduced until the vehicles make physical contact.

Formation flight experiments have been performed in limited degrees of freedom

in ground laboratories, and several university groups are in the process of develop-

ing formation flying satellite missions. Examples of such missions are ION-F and

ORION/Emerald.

* The University of Washington Dawgstar nanosatellite will perform formation

flight maneuvers with nanosatellites built by Utah State University and Virginia

Tech. The three satellites are collectively named the Ionospheric Observation

Nanosatellite Formation (ION-F). The primary ION-F formation flight objec-

tives are to demonstrate inter-satellite communications, autonomous formation

keeping, and autonomous formation maneuvering [24].

18

The Dawgstar has eight micro-pulsed plasma thrusters (piPPTs), arranged to

provide direct control in five degrees of freedom and indirect control in the

remaining degree of freedom. The Virginia Tech HokieSat uses four pPPTs and

the Utah State University USUSat uses differential drag to maintain relative

position. The ION-F satellites will demonstrate leader-follower, same ground

track, and formation-keeping maneuvers with separation distances ranging from

three to 20 km [24].

o The primary goal of the Stanford University/Santa Clara University Emerald

mission is to promote robust distributed space systems. Part of this goal is

to "demonstrate and validate space-based formation flying" through "a thor-

ough investigation of cluster management and control issues on-orbit using a

simple satellite formation that can autonomously perform relative navigation

as well as research into operational issues such as high-level mission specifica-

tion and anomaly management [23]." The Emerald hardware consists of two

15 kg nanosatellites, to be launched from the Space Shuttle in 2003. Position

determination is achieved using GPS, and formation flight maneuvers will be

performed using actively-controlled drag panels [231.

In addition, collaborative maneuvers are planned with the Stanford Univer-

sity/MIT ORION mission. "The Emerald satellites will provide a surrogate con-

stellation for ORION's formation maneuvers. Together, the three satellites will

demonstrate the capabilities of a multi-satellite fleet [23]." The ORION/Em-

erald team will demonstrate an in-track follower formation, with a separation

distance between 100 and 300m. Relative tolerance as small as 2m will be

attempted [10].

Micro-gravity dynamics cannot be reproduced in a ground laboratory, and physi-

cal and logistical constraints limit the interaction between investigators on the ground

and actual satellites in orbit. Both the ground and orbital environments have fun-

damental limitations that impede the cost-effective development and verification of

separated spacecraft control algorithms. The SPHERES testbed is designed to op-

19

erate inside the International Space Station, where the benefits of the controlled

laboratory environment are added to those of the representative micro-gravity envi-

ronment [20]. The SPHERES testbed therefore presents a unique opportunity for

researchers to interactively test formation flight, rendezvous, and docking algorithms

in a low-risk, representative dynamic environment.

1.3 Research Objectives

The primary objectives of the research described herein are summarized below.

" Formulate models to describe the SPHERES vehicle components, for use in

control system design.

" Develop and implement a state estimator for real-time determination of the

position, velocity, attitude, and angular rate of the SPHERES vehicles.

" Develop a simple, flexible interface to the SPHERES vehicle onboard hardware

and software, to facilitate the use of the testbed by guest scientists who don't

have immediate access to the flight hardware. This interface should:

- allow freedom in algorithm design;

- be simple to learn and use;

- facilitate rapid recognition of test contents;

- increase productivity by ensuring code reusability;

- satisfy ISS operational and safety requirements;

- incorporate built-in support for important tasks; and

- hide low-level background tasks.

" Create a simulation to be used for the development of new SPHERES algorithms

and maneuvers. This simulation should:

- use actual SPHERES flight code, except in the case of functions that di-

rectly access hardware;

20

- simulate three-vehicle dynamics in 0-g and 1-g environments;

- simulate radio frequency communications; and

- provide feedback to be used for determination of algorithm performance.

1.4 Outline

This thesis focuses primarily on four subjects.

" Chapter 2 briefly describes the SPHERES testbed, and discusses the physical

properties of the testbed that affect control law formulation, such as thruster

geometry and non-linearity.

* Chapter 3 describes the approach used to determine the position, velocity, at-

titude, and angular rate of each sphere with respect to the testbed reference

frame. The algorithms currently in use are described, and suggestions are made

for future improvements.

" Chapter 4 describes a powerful high-level, modular interface that can be used

to rapidly create maneuvers and tests. Examples are used to clarify the presen-

tation.

" Chapter 5 briefly describes a simulation that will be delivered to guest scientists,

for use in the development of SPHERES control algorithms.

The relationship between the thesis chapters is depicted in Figure 1-1, in the form

of a control system block diagram. Chapters 2 and 4 may be thought of as produc-

ing the desired trajectory signal and the feedback gain, and Chapter 3 contributes

the system dynamics and sensor feedback. The simulation described in Chapter 5

encompasses the entire system.

21

Chapter 5:
Simulation

Figure 1-1: Thesis road map, showing the relationship between the thesis chapters in

the form of a closed-loop control block diagram.

22

Chapter 2

SPHERES Testbed

2.1 Testbed Overview

The SPHERES (Synchronized Position Hold, Engage, Reorient Experimental Satel-

lites) testbed provides a fault-tolerant development and verification environment for

high-risk formation flying, rendezvous, docking, and autonomy algorithms. The

testbed consists of three self-contained free-flyer vehicles ("spheres"), a laptop control

station, and five small beacons that are used for position and attitude determination.

The testbed is designed to test algorithms that may be used in future space missions;

consequently, each individual sphere is self-contained and designed to mimic the func-

tionality of a true satellite [21]. A CAD model of an individual flight sphere with key

external features identified is shown in Figure 2-1.

2.1.1 Sphere subsystems

The elements of the sphere hardware and software are organized by function into

subsystems [4, 20, 18]. The propulsion, communications, control, and position and

attitude determination subsystems are directly relevant to the ability of the spheres

to perform coordinated maneuvers.

The propulsion subsystem hardware consists of twelve cold-gas thrusters, a tank

containing liquid CO 2 propellant, and the regulator, piping, manifolds, and valves

23

Thrusters
Ultrasonic

C02 tank
receivers

Adjustable
Pressure regulator
gauge

Battery
compartment

Figure 2-1: CAD model of flight sphere with important external features identified.
The sphere shell measures approximately 21 cm in diameter, and the vehicle wet mass
is approximately 3.6 kg [18].

required to connect the tank to the thrusters. The propulsion hardware is serviced by

flight software running in a dedicated high-frequency timed interrupt process. The

SPHERES propulsion system is described and characterized in detail by Chen [5].

The communications subsystem consists of two independent radio frequency chan-

nels. The sphere-to-sphere (STS) channel is used for communication between the

spheres, enabling cooperative and coordinated maneuvers. The sphere-to-laptop

(STL) channel is used to send command and telemetry data between the spheres

and the laptop control station. The design and implementation of the SPHERES

communications subsystem is described in detail by Saenz-Otero [21].

The SPHERES position and attitude determination system (PADS) provides real-

time position, velocity, attitude, and angular rate information to each sphere. Inertial

measurements are used to propagate the state estimate, and range measurements are

used to update the state estimate with respect to the laboratory reference frame. The

PADS hardware and software are detailed in Chapter 3.

The control subsystem is serviced by flight software running in a dedicated timed-

interrupt process. The control subsystem produces thruster on-time commands based

on a specified maneuver profile, a control law, and the thruster geometry and actua-

tion properties. A high-level, modular interface to the control subsystem is presented

in Chapter 4. The effects of thruster non-linearity are discussed in Section 2.2, and

24

the thruster geometry is discussed in Section 2.3.

2.2 Thruster Pulse Modulation

Most widely-used modern control design methodologies assume linear dynamics and

linear, continuous, unbounded actuation. Linear, continuous momentum-transfer ac-

tuators such as reaction wheels are widely used for control of spacecraft attitude, but

there are no effective linear, continuous mass-transfer actuators available for man-

agement of spacecraft position. Nonlinear, discontinuous actuators such as on-off

thrusters are therefore necessary both for translation control, and for periodic desat-

uration of reaction wheels. The spheres rely on on-off thrusters for management of

both position and attitude.

The on-off thrusters used on the spheres exhibit nonlinear, discontinuous, bounded

behavior. Each thruster consists of a solenoid valve and a nozzle. When a thruster

is commanded on, a voltage spike and hold circuit activates and holds open the

solenoid valve. The thruster output force increases rapidly (< 1 ms rise time) from

zero to the steady-state thrust following a delay, r ~ 5 ms, due to solenoid actuation

dynamics [5]. The force returns to zero when the thruster is commanded off and the

solenoid valve closes. A typical time-history force profile for a SPHERES cold-gas

thruster is shown in Figure 2-2. Neglecting opening and closing transients, the control

authority of an on-off thruster may be considered zero when closed, and equal to the

nominal thrust when open. The twelve thrusters are arranged in six back-to-back

pairs, allowing for both positive and negative actuation. The thruster geometry is

detailed in Section 2.3.

The response of a system to unmodulated on-off actuation may be seen through

the following two examples. Using on-off thrusters with a zero deadband leads to

bang-bang control, in which any deviation from the nominal state is counteracted

with the full available control authority. Delays in the system and the finite size

of the thruster impulse bit result in over-actuation, and the system oscillates in the

phase plane about the switching line. Bang-bang control results in a 100% duty cycle

25

0.1

0.08 Thruster voltage -
spike initiated

0.06 -

0.04 - -

0.02 _Thruster produces
nominal thrust

0.V - -200 Hz filtered thrust
Raw thrust data

I I II I i I

-10 0 10 20 30 40 50 60

Time [ms]

Figure 2-2: The force profile during the opening transient of a typical SPHERES
cold-gas thruster. High-magnitude oscillation appears in the raw force data because
of natural frequencies in the test stand at approximately 30, 90, and 150 Hz. A bi-
directional zero-phase filter at 200 Hz was used to produce the dark line. A feed
pressure of 32.25 psig was used for this test, resulting in a steady-state thruster force
of 0.097 N. The maximum feed pressure of 55 psig results in a steady-state thruster
force of approximately 1.7 N [5].

26

0.05
magnification State trajectory

0.1 window Switching line

0 0

S-0.1

E E
-0.2 -0.05

-0.3

-0.4 -0.1

-0.5

-0.2 0 0.2 0.4 -0.05 0 0.05 0.1
x [m] x [m]

c) Thruster time history

01
-1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time [s]

Figure 2-3: Bang-bang switching (zero deadband). a) Zero deadband leads to rapid
oscillation in the phase plane about the switching line. b) Magnified view of oscilla-
tion. c) Thruster time history shows 100% duty cycle for a thruster pair.

in each thruster pair (i.e. six thrusters are open at any given time). This chattering

behavior may be shown for a double integrator plant with proportional-derivative

feedback control and bang-bang actuators using the equation of motion

mz(t) = u(t)

= -sign((w z(t - -r0) + w.x(t - To)) (2.1)

with damping ratio (= v'/2, natural frequency w, = 2 rad/s, mass m = 1 kg, and

feedback time delay T0 = 25 ms. Initial conditions are xO = 0.5 m, ziO = 0 m/s. The

chattering behavior of this system is shown in Figure 2-3

With a non-zero deadband, two switching lines border a negatively-sloped band in

the phase plane in which actuation ceases and the spacecraft trajectory is determined

by the unforced equations of motion. This behavior, termed bang-off-bang control,

27

a) Phase plane trajectory b) Magnified view of trajectory

a) Phase plane trajectory

gmanification
0.05

b) Magnified view of trajectory

. - -- State trajectory
0.1 . window - Switching lines

0 0

'.-0.1

E E
-0.2 -0.05 -

-0.3.

-0.4 -0.1

-0.5

-0.2 0 0.2 0.4 -0.05 0 0.05 0.1
x [m] x [m]

c) Thruster time history

-1
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [s]

Figure 2-4: Bang-off-bang switching (non-zero deadband). a) State dynamics alter-
nate between forced and unforced equations of motion. b) Magnified view of switching
line behavior shows forced motion and free drift. c) Thruster time history shows about
22% duty cycle over the simulation time.

can be demonstrated with the equation of motion

.. -sign((own(t - ro) + w2x(t - To)) , |(wn±(t - o) - Wx(t - To)I > 0.1
mx, (t) =nn

0 , otherwise

(2.2)

The behavior of this system is shown in the phase-plane diagram of Figure 2-4.

With a non-zero deadband, oscillation in the phase plane results in a duty cycle of less

than one, and the duty cycle decreases with increasing deadband in most disturbance

environments.

Bang-bang and bang-off-bang actuation are neither linear nor continuous, and

the control authority in each case is equal to and therefore bounded by the force

of the open thruster. Several methods of overcoming the problem of thruster non-

linearity are used in practice, such as pulse width modulation (PWM), pulse frequency

modulation, pulse width pulse frequency modulation, and derived rate modulation [7].

28

These four methods are based on the assumption that nonlinearity and discontinuity

occurring on small time scales may be averaged out, leading to effectively linear,

continuous actuation over longer time scales. In pulse width modulation, the pulse

frequency is held constant, and pulses of varying width (temporal duration) begin at

fixed time intervals. The amplitude of the input to the modulator determines the

width of each pulse. In pulse frequency modulation, the pulse width is constant,

and the amplitude of the input determines the pulse frequency. Pulse width pulse

frequency and derived rate modulation incorporate elements of both pulse width and

pulse frequency modulation [7]. The fixed-frequency nature of pulse width modulation

makes it a natural choice for use with a clocked digital control computer such as that

used in the SPHERES vehicles, so therefore only pulse width modulation is given

further consideration here.

Pulse modulation schemes may be tailored to meet particular performance require-

ments related to deadband and propellant expenditure. The SPHERES thruster pulse

width modulation scheme is designed to approximate the action of a linear actuator

over the linear range of the time integral of the thrust profile. The lower end of this

range corresponds to the minimum useful impulse bit, and the upper end corresponds

to the impulse of a thruster held open over the modulation period. Given the steady

state thruster force po and thruster on-time ui of thruster i, the modulation period p,

and the solenoid actuation delay time r, a piecewise linear relationship between the

resultant force fi and the on-time ui may be written as

fi = i wi " p~ ,r < us< p (2.3)
0 0 UiP

0 , 0<ui,<r

This relationship holds with constant non-zero delay time T only when the thruster

is turned off at some point during each modulation period. If the thruster is kept

open throughout the period, the value of r over the next modulation period will be

zero for that thruster, as no actuation delay is incurred when the solenoid valve is

29

already open. Equation 2.3 may be solved for the on-time ui to produce a mapping

from commanded force to thruster on-time in the presence of actuation delay.

p ,fi ;> i p T

Ui = p+ , 0 < fi < W p (2.4)
0i , p

The pulse modulation relationships of Equations 2.3 and 2.4 result in bang-bang

actuation. In order to reduce the modulation factor, a deadband term may be spec-

ified on either the commanded thruster force fi or on the on-time ui. Specifying a

force deadband fo, the pulse modulation relationship may be written as

p , f;> Wi (r

+ , fo < f. < i p T (2.5)

0 , < fo

The appropriate on-time ui for each thruster i may be determined from Equa-

tion 2.5 from the commanded thruster force fi and the actual steady-state force pi

of that thruster. The pulse modulation curves of Equations 2.4 and 2.5 are depicted

graphically in Figure 2-5. Note that the maximum equivalent force over a modula-

tion period is reduced from that of the steady-state thrust Wi by a factor of P when

the solenoid delay T is greater than zero (i.e. when the thruster is not already open)

during a given modulation period.

2.3 Thruster Geometry

Two versions exist of the sphere vehicle hardware. The prototype sphere, designed by

a class of MIT undergraduate students, has been tested extensively in the laboratory

and on NASA's KC-135 micro-gravity aircraft. The flight hardware sphere design

differs from the prototype design in several ways that affect state estimation and

control law formulation. The principle geometric changes involve the design of the

30

c) with delay and deadband

u, [ms] u, [ms] u, [ms]

p -------------- P P --------

0 0 A, N 0 0 I, 0 fo (P ; N

Vi
Vi

p p

Figure 2-5: Pulse modulation curves, mapping commanded thruster force to equiva-

lent on-time. a) Assuming thruster opens without delay. b) Accounting for solenoid

delay time r. c) With delay time r and force deadband fo.

load-bearing structure, the shape and construction of the outer shell, the placement

of the cold-gas thrusters, and the number of ultrasonic receivers on each face.

2.3.1 Thruster placement and mixing matrix - prototype

The prototype sphere thruster configuration was designed with back-to-back mounted

thruster pairs to simplify routing of internal wiring and tubing. The thruster pairs

are mounted on sloped panels rather than on the six sides that are aligned with the

body axes, due to placement constraints imposed by the propulsion and ultrasonic

ranging systems. Figure 2-6 shows the prototype thruster geometry, and Table 2.1

lists thruster positions and resultant force and torque directions.

Given the prototype sphere thruster force and torque direction properties in Ta-

ble 2.1, it is possible to determine the combination of thrusters required to produce

force along or torque about any body axis. Table 2.2 lists the thrusters required to

produce pure body-axis actuation, assuming that all thrusters produce equal magni-

tude force and that all moment arms are equal.

Since a single thruster can produce force in only one direction, two axially aligned,

opposing thrusters are required to enable positive and negative force along a given

axis. In the prototype sphere geometry, each set of opposing thrusters constitutes one

31

a) no delay, no deadband b) with delay, no deadband

Thruster, indicating
exhaust direction

Figure 2-6: Prototype sphere thruster geometry. This geometry allows for pure body-
axis force with only two thrusters, but six thrusters are required to produce pure
body-axis torque.

Table 2.1: Prototype sphere thruster geometry. Thruster positions are given in units
of centimeters, and force and torque directions are unitless.

Thr # Thruster Resultant force Resultant torque
position [cm] direction direction

X y z X y z X y z
1 1.9 -8.0 -8.0 -1 0 0 0 0.707 -0.707
2 -1.9 -8.0 -8.0 1 0 0 0 -0.707 0.707
3 -8.0 -1.9 -8.0 0 1 0 0.707 0 -0.707
4 -8.0 1.9 -8.0 0 -1 0 -0.707 0 0.707
5 8.0 -8.0 1.9 0 0 -1 0.707 0.707 0
6 8.0 -8.0 -1.9 0 0 1 -0.707 -0.707 0
7 8.0 1.9 8.0 0 -1 0 0.707 0 -0.707
8 8.0 -1.9 8.0 0 1 0 -0.707 0 0.707
9 -8.0 8.0 1.9 0 0 -1 -0.707 -0.707 0

10 -8.0 8.0 -1.9 0 0 1 0.707 0.707 0
11 1.9 8.0 8.0 -1 0 0 0 -0.707 0.707
12 -1.9 8.0 8.0 1 0 0 0 0.707 -0.707

32

Table 2.2: Prototype sphere thruster combinations to produce pure body-axis force

and pure body-axis torque. To produce pure body-axis force or torque about a

particular axis, fire the thrusters in the corresponding column.

Thr # Body-axis force Body-axis torque

+x -x +y -y +z -z +x -x +y -y +z -z
1 x x X

2 x x x x
3 x x x x
4 x x x x
5 x x x x
6 x x x x
7 x x x x
8 x x x x

9 x x x x
10 x x x x

11 x x x x
12 x x x x

of the back-to-back mounted thruster pairs. For simplicity in the following derivation,

it is desirable to treat each thruster pair as a single unit, capable of positive and

negative actuation. Given the force magnitude fi(p) of an odd-numbered thruster i in

the prototype geometry, the resultant force of the thruster pair i, i +1 is the difference

between the positive forces fi(p) and fi+1(p). The resultant forces for the six thruster

pairs are

fl,2(p)

f3,4(p)

f5,6(p)

f7,8(p)

f9,10(p)

fl1,12(p)

fh(p) - f2(p)

f3(p) - f4(p)

f5(p) - f6(p)

f7(p) - f8(p)

f9(p) - flo(p)

f11(p) - f12(p)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

A positive value for fj,i+1(p) therefore corresponds to thruster i, and a nega-

tive value corresponds to thruster i + 1. Based on the definitions of Equations 2.6

33

through 2.11, it is possible to construct a matrix M- 1 that maps thruster pair forces
(p)

into body-frame force and torque commands for the prototype geometry. Given force

and torque commands f = [f, fy f,]T and m =[m my mz]T, respectively,

and assuming that all thrusters have equal moment arm r,

fy

r

r

(P)

fl,2(p)

f3,4(p)

f5,6(p)

f 7,8(p)

f9,10(p)

f11,12(p)

(2.12)

where M- 1 is defined using Table 2-6 as
(p)

(p)

-1 0 0

0 1 0

0 0 -1

0 1 1

1 0 1

-1 -1 0

0

-1

0

1

0

-1

0

0

-1

-1

-1

0

-1

0

0

0

-1

1

(2.13)

This matrix M-1 may be inverted to find M(,), the mapping matrix from force

and torque commands to thruster pair forces in the prototype sphere geometry.

M(P) -

0

0

0

0

-1
2

0

1
2

0

-i
2

0

0

0

0

1

0

2

0

1

4

4

1
4

-1

4

-1

4

1
4

1
4

1

4

1

4

(2.14)

Force and torque commands may be transformed to thruster pair forces as

34

fl,2(p) fX

f3,4(p) fy

= M(,) (2.15)
f7,8(p)

f9,10(p) r

f11,12(p)

With the thruster pair forces fi,j+1(p) known, the individual thruster commands

fi(p) and fi+1(p) may be determined. Because the SPHERES thrusters are on-off

actuators, a pulse modulation scheme such as that described in Section 2.2 must be

applied to determine the relationship between commanded force and on-time for each

thruster.

2.3.2 Thruster placement and mixing matrix - flight

The thruster placement geometry of the ISS flight hardware differs from that of the

sphere prototype. The flight thruster geometry can produce pure body-axis force or

torque using only two thrusters, while production of pure body-axis torque in the

prototype geometry requires six thrusters. The flight sphere thruster configuration

is shown in Figure 2-7, and the corresponding thruster force and torque direction

properties are given in Table 2.3.

Using Table 2.3, it is possible to determine the combination of thrusters required

to produce force along or torque about any body axis. Table 2.4 lists the thrusters

required to produce pure body-axis actuation, assuming that all thrusters produce

equal magnitude force and that all moment arms are equal.

As can be seen from Figure 2-7 and Table 2.3, the flight geometry opposing

35

Figure 2-7: Flight sphere thruster geometry. This geometry allows for pure body-axis
force or torque using only two thrusters.

Table 2.3: Flight sphere thruster geometry. Thruster positions are given in units of
centimeters, and force and torque directions are unitless.

Thr # Thruster Resultant force Resultant torque
position [cm] direction direction

x y z x y z X y z

1 -5.2 0.0 9.7 1 0 0 0 1 0
2 -5.2 0.0 -9.7 1 0 0 0 -1 0
3 9.7 -5.2 0.0 0 1 0 0 0 1
4 -9.7 -5.2 0.0 0 1 0 0 0 -1
5 0.0 9.7 -5.2 0 0 1 1 0 0
6 0.0 -9.7 -5.2 0 0 1 -1 0 0
7 5.2 0.0 9.7 -1 0 0 0 -1 0
8 5.2 0.0 -9.7 -1 0 0 0 1 0
9 9.7 5.2 0.0 0 -1 0 0 0 -1
10 -9.7 5.2 0.0 0 -1 0 0 0 1
11 0.0 9.7 5.2 0 0 -1 -1 0 0
12 0.0 -9.7 5.2 0 0 -1 1 0 0

36

Table 2.4: Flight sphere thruster combinations to produce pure body-axis force and
pure body-axis torque. To produce pure body-axis force or torque about a particular
axis, fire the thrusters in the corresponding column.

Thr # Body-axis force Body-axis torque
+X -x +y -y +z -z +x -x +y -y +z -z

1 x x
2 x x
3 x x
4 x x
5 x x
6 x x
7 x x
8 x x

9 x x
10 x x
11 x x
12 x x

thruster pair resultant forces are

fl,7(f)

f2,8(/)

f3,9(f)

f4,10(f)

f5,11(/)

f6,12(f)

f(f) - f7(f)

f2(f) - f8(f)

f3(f) - f9(f)

S f4(f) - f10(f)

f5(f) - fi1(f)

f6(f) - f12(f)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

Using the definitions of Equations 2.16 through 2.21, and assuming that all thrust-

ers have moment arm r, the matrix M-1WI that maps thruster pair forces into body-

37

frame force and torque commands for the flight geometry is

Jr

fy

Jr

r

M-1

fi,7(f)

f2,8(f)

f3,9(f)

f4,10(f)

f5,11(f)

f6,12(f)

where M-1 is defined using Table 2.3 as

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0

0 0 0

1 -1 0

0

0

0

1

1

1

-1

0 0

0 0 1 -1 0 0

The mapping matrix M(f) from force and torque commands to thruster pair forces

in the flight sphere geometry is therefore

M(f)
0

0

0

0

0 0

0

1
2

0

0

0

0

0

1

2

0 2 0

0 -j 0
2

0 0

0 0

1 0

- 0

i
2

0

0

(2.24)

Force and torque commands may be transformed to thruster pair forces as

38

(2.22)

(2.23)

f1,7(f)

f2,8(f)

f3,9(f)

f4,10(f)

f5,11(f)

f6,12(f)

With the thruster pair forces fii±6(f) known,

may be determined.

A

fy

(2.25)

r

MY

r

the individual thruster commands

2.3.3 Body-axis actuation efficiency

It is expected that the majority of maneuvers will involve primarily body-axis rota-

tions, and the flight geometry is significantly more propellant-efficient than the proto-

type geometry for this type of maneuver. For example, it is apparent from Table 2.2

that body z-axis torque is produced in the prototype geometry by simultaneously

firing the six thrusters numbered 2, 4, 5, 8, 10, and 11. Given the prototype geom-

etry thruster moment arm r, = 8.0cm, and assuming the thruster force magnitude

V = 0.15 N, the resultant torque is

= rp

= cprp[

0

=0

1.7

K

0

0

0

2I2I
N cm

.4=)2
2

0

2 I
.. [2

2

0 I

+ [=L2
2

0

2
I[2

2

0
I[0

2

2 I)
(2.26)

From Table 2.4 it can be seen that only two thrusters, numbers 3 and 10, must

39

be simultaneously fired to produce body z-axis torque in the flight geometry. Given

the flight geometry thruster moment arm r= 9.7 cm, the resultant torque is

0 0

mz(f) = 0ry 0 + 0

0

= 0 N cm (2.27)

2.9

The torque capability about each body axis is therefore increased in the flight

geometry with respect to the prototype geometry by a factor of 9 = 1.7, while the

propellant expended to produce that torque is reduced by a factor of i = 3. The2

flight geometry is therefore 1.7 x 3 = 5.1 times more propellant efficient than the

prototype geometry in the production of body-axis torque. In addition, the flight

thruster geometry is easier to visualize than the prototype geometry, simplifying the

analysis of thruster status lights during development and debug operations.

The flight and prototype configurations have identical body-axis force capability,

and for a center of mass located at the body frame origin, the two configurations

give identical body-axis translation performance. In reality, the sphere center of mass

is offset slightly from the origin, and body-axis translation based on the body-axis

actuation guidelines in Tables 2.2 or 2.4 will produce an undesired torque. The mag-

nitude of this undesired torque can be reduced by scaling the thruster on-times based

on the location of the sphere center of mass. When using this approach, the larger

separation distance between thrusters in the flight geometry than in the prototype

geometry enables more precise control over the elimination of unwanted torque.

40

Chapter 3

State Determination

3.1 Overview

State determination involves creating an estimate of the current position, velocity, at-

titude, and angular rate of each sphere. The hardware and software that perform this

function on the SPHERES testbed are collectively termed the Position and Attitude

Determination System (PADS). This chapter describes the hardware and algorithms

used to determine the state estimate of each sphere. The attitude is calculated using

a memoryless least-squares optimal quaternion algorithm, and collections of range

measurements from which common-mode errors have been removed. Position and

velocity are updated using a Kalman filter acting on modified range measurements,

which are corrected to account for nonzero measurement bias errors.

3.2 PADS hardware

The SPHERES PADS provides real-time state (position, velocity, attitude, and an-

gular rate) information to each vehicle through the fusion of information from two

distinct, asynchronous local and global elements. Each sphere contains an inde-

pendent local element, consisting of three accelerometers and three rate gyroscopes.

These inertial sensors are used to propagate the state estimate of each sphere over

time, based on inertial measurements. The global element provides measurements of

41

each sphere state with respect to the global (laboratory) reference frame, in the form

of range measurements to points on each sphere from five external beacons mounted

at known locations on the periphery of the test volume. The local element is used to

propagate the state estimate at a high constant rate, and the state estimate is peri-

odically updated using the global element measurements at a lower, possibly variable

rate.

3.2.1 PADS local element

The PADS local element aboard each sphere consists of six instrument-grade inertial

sensors. Three Honeywell QA-T160 single-axis accelerometers are used to measure

linear acceleration. The accelerometer resolution of <5 ig is sufficient to provide

high signal-to-noise ratio measurements for state propagation and system identifica-

tion [13]. Three micro-machined, solid-state rate gyros are used to measure angular

rate. The BEI Gyrochip II by Systron Donner measures angular rates in the range

of +50/s using a vibrating quartz tuning fork sensing element [3].

Ideally, the accelerometers would be mounted along the three axes of the sphere

body frame, but this ideal mounting arrangement is not feasible given the spatial

requirements of other subsystems. The accelerometers are therefore aligned parallel

to the body axes, but mounted at various spatially distributed locations as space

permits inside the sphere. The measured acceleration component is,(w) that occurs

as a result of nonzero angular rate, is accounted for in the estimation algorithm. The

gyroscopes are mounted in alignment with the body axes, and all inertial sensors are

located on or near circuit boards to minimize electrical line noise [18].

3.2.2 PADS global element

The PADS global element performs a function similar to that of the Global Positioning

System (GPS), by providing measurements of the sphere state with respect to a

reference frame. These measurements take the form of ultrasound times of flight to

the sphere from five external ultrasound beacons that are mounted at known locations

42

200.s

150s

100

0

250

200

150

x [cm] 100 0
50

5150 100

0 200 y [cm]

Figure 3-1: A diagram of the PADS global element. Range measurements are taken
from the ultrasonic beacons mounted on the periphery of the test volume to 24 ul-
trasonic receivers mounted on the surface of the sphere. Direct range measurements
made between the individual sphere vehicles are not shown in this diagram.

and orientations on the periphery of the test volume. These times of flight are then

converted to range measurements using the speed of sound, and used to determine the

position and attitude of each sphere with respect to the global reference frame. The

range measurements are shown in Figure 3-1 as lines between the beacon transmitters

and the ultrasound receivers mounted on the sphere faces. Each sphere also has a

single ultrasonic transmitter on one of the faces that may be used for direct inter-

sphere ranging.

The local element is used to propagate the state estimate, and the global ele-

ment measurements are used to update the estimate at a variable rate of between

zero and 8 Hz, with a default rate of 1 Hz. To request a "global update," a sphere

designated as the PADS master flashes an omni-directional infrared synchronization

signal. This infrared signal is received by all the spheres and by the transmitter bea-

43

IR flash: t = 0

Sphere 1
US receive

Sphere 2
US receive

Sphere 3
US receive

[s]
t=5 t=25 t=45 t=65 t=85 t=105 t=125 t=145
US1 US2 US3 US4 US5 US6 US7 US8
ping ping ping ping ping ping ping ping

PADS global external beacons Inter-sphere direct ranging

Figure 3-2: The PADS global element timing sequence. The ultrasonic receive times
for each beacon/sphere pair are illustrated as series of lines rather than as isolated
events to represent reception of each ultrasonic transmission by multiple sensors on
each sphere. In this example, the direct-ranging transmitters on spheres 2 and 3
are pointed towards sphere 1, and the transmitter on sphere 1 is directed towards
sphere 2.

cons. In response to the infrared signal, each beacon waits a specified time and then

transmits a short ultrasonic pulse train. The ultrasonic pulse trains are detected by

the ultrasonic receivers on each sphere using threshold detection, and times of flight

are computed based on the difference in time between reception of the infrared and

ultrasonic transmissions at each sphere receiver. The timeline of a global update is

shown in Figure 3-2.

Each sphere has 24 ultrasonic receivers, distributed four per face on each of six

faces. Due to signal attenuation from body blockage and atmospheric effects, a par-

ticular beacon signal will generally be seen by the receivers on a maximum of three

of the six faces. The timing structure is designed to minimize or eliminate the oc-

currence of anomalous measurements produced by echoes off the walls of the test

area.

The following sections detail the algorithms used by the SPHERES onboard soft-

ware to determine the state estimate based on local and global measurements.

44

3.3 Attitude Determination

The orientation of a rigid body with respect to a reference coordinate frame may be

parameterized in several ways, such as with a direction cosine (rotation) matrix, an

Euler axis and angle, a quaternion, a Gibbs vector, or Euler angles. Of these param-

eterizations, only the direction cosine matrix and the quaternion are nonsingular for

all rotations [26].

The direction cosine matrix 9 transforms any vector v in the reference frame to

the equivalent vector yt represented in the body frame. The primary disadvantages

to the rotation matrix parameterization for attitude determination are the inclusion

of six redundant parameters and the difficulty involved with normalizing the matrix

after successive frame rotations [16].

The four-element attitude quaternion is non-singular, contains only one redun-

dant parameter, is easily normalized, and has simple rules for successive rotations. In

addition, there are several well-tested algorithms readily available for determination

of the optimal attitude quaternion based on vector attitude measurements [16]. The

quaternion is therefore used to parameterize attitude in the SPHERES testbed. Ap-

pendix A contains an overview of quaternion mathematics and the conventions used

in the following discussion and in the SPHERES software.

3.3.1 Problem formulation

Most well-known algorithms for determining the optimal attitude given over-deter-

mined or noisy measurements solve Wahba's problem [25]. Wahba posed the question

of how to determine the orthogonal matrix e with a determinant equal to one (i.e. a

rotation matrix) that minimizes the cost function

J(9) = a1 li - EVi 1 (3.1)

45

The measurement model is given by

yt = Ov (3.2)

for arbitrary pairs of noiseless physically equivalent vectors yL and v, measured in

the body and reference frames, respectively. The scalar non-negative weights a are

assumed to be unity in Wahba's original cost function, implying equally reliable mea-

surements [16]. The weights may instead be chosen as inverse variances ai =u07 2 to

account for differences in measurement validity and to relate the problem to weighted

least squares and maximum likelihood estimation [16, 22]. Inverse variance weighting

is not currently implemented in the SPHERES attitude determination algorithm, but

may be in the future.

The matrix E that rotates a vector from the reference frame into the body frame

can be written in terms of the four-element attitude quaternion q = [q q 4]T -

[q1 q2 q3 q4] as

E(q) = (q2 - qgq) 13x3 + 2qqT - 2q4 [qx] (3.3)

using shorthand notation based on the cross product operator [6]. The cross product

c = a x b is expressed as c = [a x]b for the matrix [ax] defined as

0 -a 3 a 2

[ax] a3 0 -a (3.4)

-a 2 ai 0

The reference to body frame rotation matrix expanded in terms of the quaternion

elements is

[-2 - q2 + q2 2(qlq 2 + q3q4) 2(qlq3 - q2q4)

-(q) 2(qlq2 - q3q4) -q2 + q2 - I + q2 2(q2q3 + q1q4) (3.5)
2 q 2 2 2 21['qlq3 + q2q4) 2(q2q3 - qlq4) -q 2 - q 2 + q 2 + q 2

46

Table 3.1: Quantities used in attitude determination.
Name Frame Description
q Global Orientation of body frame with respect to global frame
E Global Rotates global frame into body frame

vii Global Negative wavefront unit normal for face i, beacon j
Vij Global Face i to beacon j vector
73 Global Beacon (transmitter) j unit normal
tj Global Beacon (transmitter) j position
r Global Position of sphere body frame origin
yj Body Negative wavefront unit normal for face i, beacon j
s Body Vector from origin to center of side i
n j Sensor Negative wavefront unit normal for face i, beacon j
p Sensor Sensor plane i unit normal
Ij Sensor Rotates sensor frame i into body frame

- Receiver angle for face i, beacon j
'j - Transmitter angle for face i, beacon j

If noise and uncertainty are added to the measured body vectors and estimated

reference frame vectors, no unique solution to Equation 3.2 exists. The problem then

becomes one of non-linear least squares, as in Equation 3.1. Several algorithms have

been developed to solve Wahba's problem, such as Davenport's q-method, Singular

Value Decomposition, the Quaternion Estimator (QUEST), the first and second Es-

timators of the Optimal Quaternion (ESOQ-1 and ESOQ-2), and the Fast Optimal

Attitude Matrix (FOAM), along with first and second order variants on some of these

methods [16].

3.3.2 Direction measurements

In order to make use of an established solution to Wahba's problem, measurements

of vectors in the body frame and corresponding estimates of vectors in the reference

frame are required. In the SPHERES testbed, the vectors yA and v are unit vectors

directed from the center of each receiver face to each ultrasonic beacon, along the

vector vij shown in Figure 3-3. For reference purposes, the primary quantities used

in the following discussion of attitude determination are summarized in Table 3.3.2.

The ultrasonic transmitters and receivers used to obtain range measurements have

47

Sphere
'6

Side vector: sA

Ultrasonic
beaconFace to beacon

vector: vii
Receiver

angle: j
Transmitter

angle: Vij Receiver
normal: p~

Transmitter nra:p

normal: 9q

Beacon position: t, Sphere
position
vector: r

Global frame origin

Figure 3-3: Quantities used in attitude determination.

angle and range-dependent sensitivity. The "transmitter angle" / is defined as the

angle between the ultrasonic transmitter normal r and the vector from the transmitter

to the center of the receiver face. The "receiver angle" <$ is the angle between the

ultrasonic receiver normal p and the vector from the center of the receiver face to the

transmitter. The signal strength depends on these two angles and on the distance

between the transmitter and receiver, and signal degradation causes nonzero-mean

bias errors in the time-of-flight measurements.

The prototype spheres are equipped with three ultrasonic receivers per face on

each of six faces. The receivers on each face are mounted flush with the flat surface

of the face (the "sensor plane"), with their lines of sight normal to the plane. Be-

cause the receivers on a given face have parallel lines of sight and are mounted such

that the separation distance between two adjacent receivers is much smaller than

the distance from the receivers to the beacon, the time-of-flight bias errors due to

transmitter angle, receiver angle, and distance may all be considered common mode.

48

P

n

C

Figure 3-4: Sensor plane (solid square) with sensor coordinate system and unit normal
p, and incoming ultrasonic wavefront (translucent square) with negative unit normal
n. The three-sensor configuration corresponds to the prototype sphere geometry.

These common-mode errors are eliminated by considering only the differences be-

tween distance measurements at each combination of two receivers, and the resulting

bias-free quantities are used to produce vector measurements in the body coordinate

frame.

It is useful to define a u-v-w sensor plane coordinate system based on the sensor

geometry shown in Figure 3-4, where the origin of the sensor plane coordinate frame

coincides with the location of sensor A. The vector n is the negative of the unit

normal to the incoming planar wavefront, and p is the unit normal to the sensor

plane, pointing directly away from the geometric center of the sphere.

n = [ni n 2 n3]T (3.6)

p = [0 0 1]T (3.7)

Let a, b, and c be the positions of the ultrasonic receivers A, B, and C, re-

spectively. These positions are expressed in terms of the sensor plane coordinates

49

i

as

a = [0 0 0]T (3.8)

b = [u 0]T (3.9)

c = [0 v 0]T (3.10)

where u and is the separation distance between sensor A and sensor B, and v is the

separation distance between sensor A and sensor C.

Transmitter to receiver range measurements r are determined based on the times

of flight of ultrasonic signals between the beacons and the receivers. All delta times

are taken with respect to the receive time at sensor A, so by definition the sensor

plane and the wavefront plane intersect at sensor A. The corresponding differences in

measured distance are defined as ArB - rB - rA and Arc rc - rA. The wavefront

plane may be described with the standard plane equation. At sensor A, this equation

is

ni au + n2 av + n3 aw = nTa = d = 0 (3.11)

Since sensor A is located at the origin in the sensor plane coordinates, the plane

equation constant d = 0. The positions of sensors B and C may be mapped onto the

wavefront plane as

b = b+Ar n (3.12)

c = c+Arcn (3.13)

The points B' and C' have positions b' and c' on the wavefront plane, so they must

obey the plane equation. Applying the plane equation with b' and c' and expanding

terms gives:

nrb' = n T b+n ArBn=0 (3.14)

nc' = nTc+n T Arcn=0 (3.15)

50

Since ArB and Arc are scalars and n is a unit vector, Equations 3.14 and 3.15

simplify to

nT b+ ArB = 0 (3.16)

n Tc+Arc 0 (3.17)

Equations 3.16 and 3.17 may be solved simultaneously with the constraint equa-

tion nTn = 1 to determine the components ni,, n 2 , and n 3 of the wavefront plane

negative unit normal.

ni = - ArB (3.18)

n2 = - Arc (3.19)

Su2v 2 - u 2 Ar2 - v 2 Ar 2

n3 C B (3.20)
uv

The strict solution is n = [ni n2 in 3]T, but the positive value of n 3 is chosen to

create a vector pointing away from the sphere center. This solution for n is defined

whenever u2 v 2 > U2 Ars +v 2 Ar2, and this inequality must be verified in the attitude

determination algorithm. The relationship of the sensor plane coordinate frame to

the sphere body frame is determined by the geometry of the sphere, so the wavefront

normal direction n may be transformed with a predetermined rotation matrix from

the sensor plane coordinate system into the sphere body coordinate system. The

result is a unit vector pointing from the sensor plane to the transmitter, expressed in

the body coordinate system. This process is repeated for each beacon signal received

at each sphere face, to produce a collection of body vectors puij = Finij for face i and

beacon j, where the pre-determined (fixed) rotation matrix Fj rotates a vector in the

sensor plane frame of face i into the sphere body frame.

Estimates of these vectors in the reference frame (vij) are obtained by vector

subtraction using the state estimate and the known beacon locations, as illustrated

in Figure 3-3. The last known attitude estimate q is used to form an estimated

51

rotation matrix $(q). The body frame vectors si point from the origin of the body

frame to the center of each sensor plane i. Given the known beacon locations tj and

the estimated sphere position i , the estimated vector vij from face i to beacon j may

be expressed as

Vig = t, - T- S(4)si (3.21)

and the reference frame representation vij of the measured body frame vectors pi

from Equation 3.2 may be determined.

vij = vi- (3.22)
lvi I

The receiver angle #ij for a given face/beacon pair may be determined from the

dot product of the sensor plane normal pi and the wavefront normal nij, where both

vectors are expressed in the sensor plane coordinate frame. The receiver angle #ij is

therefore

#i arccos(pTnij) (3.23)

= arccos(ni,,) (3.24)

where nij,, signifies the w-axis component of ni . The transmitter angle Oij may

likewise be found from the dot product of the transmitter normal vectors rj and the

reference frame attitude vectors vij.

= arccos(-v rj) (3.25)

The quantities #ij and Oij are used by the SPHERES onboard software in the

determination of measurement reliability and in the calculation of range measurement

bias error. The flight spheres will be equipped with four ultrasonic receivers on each of

the six faces, resulting in an over-determined measurement problem. A least-squares

approach will be taken with these excess data to find the optimal body-frame vectors.

52

3.3.3 Davenport's q-Method

One of the established solutions to Wahba's problem is used to compare the body

and reference frame representations of each direction vector and so solve for the

optimal attitude, as characterized by the optimal quaternion. The spheres onboard

software currently uses Davenport's q-Method [16, 26, 15] because of its simplicity

and robustness. Davenport's q-Method is outlined here for completeness following

the derivation in [16]. Wahba's cost function of Equation 3.1 may be rewritten as

J(e) = Ao - tr(EB T) (3.26)

Ao aa (3.27)

B aipivi (3.28)

The cost is therefore minimized by maximizing tr(EBT). Since the rotation matrix

e(q) is a homogenous quadratic function of q, the trace may be rewritten as

tr(OB T) = qT Kq (3.29)

for the symmetric, zero trace matrix

2B 11 - tr(B) B 12 + B 2 1 B13 + B3 1 B 2 3 - B 32

K B 12 + B2 1 2B 2 2 - tr(B) B 23 + B32 B31 - B13 (3.30)
B 13 + B3 1 B2 3 + B 3 2 2B 3 3 - tr(B) B 1 2 - B 2 1

B 23 - B 32 B 31 - B 13 B 12 - B 2 1 tr(B)

The optimal quaternion is then the normalized eigenvector of K corresponding to

the largest eigenvalue.

Kq = Amaxq (3.31)

and the cost function may be written in terms of Amax as

J(() = A0 - Amax (3.32)

53

If the two largest eigenvalues of K are equal, there are not enough data to deter-

mine a unique attitude solution [15].

3.4 Position and Velocity Determination

The position and velocity of a sphere are determined using a continuous-discrete

extended Kalman filter. The SPHERES Kalman filter implementation currently up-

dates only position and velocity, since a sufficiently accurate attitude estimate (the

optimal quaternion) is obtained through the memoryless procedure described is Sec-

tion 3.3, and the angular rate is measured directly.

3.4.1 Continuous-discrete extended Kalman filter equations

The continuous-discrete extended Kalman filter equations are used to propagate and

update the state estimate of each sphere. A system with continuous dynamics and

discrete measurements may be modelled by

- = f[x(t), u(t)] + e'(t) E'(t) ~ N[O, Q(t)] (3.33)

Zk hk [X(tk) + ek Ek ~ N[O, Rk] (3.34)

for continuous time-varying system dynamics f[x(t), u(t)] and groups of measure-

ments Zk received at discrete times tk [12]. The vectors '(t) and Ek = E(tk) are

independent zero-mean white noise processes with covariance Q(t) and Rk, respec-

tively. The state estimate -i(t) and error covariance matrix P(t) are propagated using

&(t) = f[(t), u(t)] (3.35)

P(t) = F[i(t)]P(t) + P(t)FT[i(t)] + Q(t) (3.36)

54

where the over-hat, ^, signifies that the quantity is an estimate. The state estimate

and state covariance update equations are

Kk = P() H,,(i-)) [Hk (i -)) P HT H(C)) + R (3.37)
k, + Kk k hk k~

[M* = i +) - h\ (i-k)] (3.38)
PM*) = [I - Kk H, (;j))] P(-) (3.39)

where " signifies immediately prior to the update (a priori), and (+) signifies imme-

diately after the update (a posteriori). The vector hk(s) contains the values of the

measurements that are expected based on the current state estimate. The matrices

F(Si) and Hk (zCk) are the state and measurement Jacobians, respectively, linearized

about and evaluated at the current state estimate. They describe the linearized ver-

sions of the state dynamics and measurement influence, and are defined as

F(() Of (3.40
Fx X(t)=d(t)

H((t)) h(x(t)) (3.41)
O* x (t=itt)

where differentiation of a vector by a vector is defined by

a tai ... aal
ab1 4b2 abn
Oal aa ... &a2

Oa b1 ab2 c9b" (3.42)

ob1 Ob2 abn

3.4.2 State propagation

The sphere state vector must be propagated between PADS global measurement

updates, to provide current state information for control and to preserve the integrity

of the a priori information used in the Kalman filter update. The sphere state vector

contains position r, velocity v, quaternion q, and angular rate W components. The

position and velocity are expressed in the global reference frame, but the rate is

55

measured and expressed about the body frame axes. Only three quaternion elements

are required to define the attitude, but the fourth is included in the state vector to

simplify propagation and to help maintain normalization.

x = [rT vT qT wT]T

= [rx ry rz V1 v, vz q, q q3 q44 wx wy WzT] (3.43)

The angular acceleration of a body-fixed axis with origin at the center of mass

may be written with respect to the body frame as

Jc = -[wx]Jw + m (3.44)

for angular rate w, inertia tensor J, and applied body-frame moment m [14]. Expan-

sion of the right hand side leads to

Jc = R(w) + m (3.45)

where the quantity -[w x]Jw has been denoted R(w). Expanding R(w) in terms of

the components of w gives

R(w) E (JZZ - JXX)WWZ, + JYZWX 1Y + JXz(W2 - U) - J2Lwywz (3.46)

+ J22wuw, + J,(o - o) - Jzw, J
The angular acceleration of the body frame may then be determined as a function

of the body rates and the body-frame applied torque.

= J-'R(w) + J-m (3.47)

Given an applied force f expressed in the body frame, the reference to body frame

rotation matrix E(q), and the sphere vehicle mass m, the acceleration of a sphere

may be expressed in the reference frame as

56

1
1 =(q)Tf (3.48)

m

Using the mapping matrix M of Equation 2.14 or 2.24 (with parenthetical subscript

denoting prototype or flight omitted), the influence of the thruster pair forces on the

state dynamics is

E -(q) T 0 0

d 0 rJ-+ J-R(w) (3.49)

where r is the thruster moment arm, assumed equal for all thrusters, and fi, denotes

the six-place vector containing thruster pair forces from Equations 2.6 through 2.11

(prototype geometry) or Equations 2.16 through 2.21 (flight geometry), as appropri-

ate. The attitude quaternion may be propagated in time with

= Q(w)q (3.50)
2

where the matrix jQ(w) maps the quaternion into its derivative based on the body-

frame rates w(t) [26]. This matrix is dependent on the time-varying body rates, and

therefore must be computed at every propagation step using the current value for the

angular rotation rate.

0 Wz _WY, WX

(w) = Wz 0 w2 W (3.51)
WY - Wx 0 W

L-WX -WY, -Wz 0

Since the position and velocity components of the state vector are both expressed

in the global frame, the time derivative of the position is simply the velocity compo-

nent of the state.

r- = v (3.52)

Given an initial state and the thruster on-times over a small time step At, Equa-

57

tions 3.49, 3.50, and 3.52 may be used to propagate the state estimate through time.

During real-time SPHERES operations, it is unnecessary to use Equation 3.49 to cal-

culate v because accelerometers are used to measure linear acceleration. Knowledge

of the angular acceleration vector L is useful in some types of trajectory-following

attitude control algorithms, but it is not required for computation of the angular

rate vector, which is measured directly by rate gyroscopes. The primary applications

of Equation 3.49 are attitude trajectory tracking, determination of the motion of a

sphere in a simulation environment, and system identification.

It is therefore sufficient to propagate the state estimate & using a relatively simple

non-linear, time-varying differential equation, in which the linear acceleration 'i(t)

and angular rate w(t) are sampled directly from the PADS local sensors at every

propagation step. The differential equation describing the state is then

i(t) = A(-):(t) + Bi&(t) (3.53)

in which the matrices A(.) and B are defined as

0 3X3 I3X3
0
3X4

0
U3x

A(i) = 03X3 03X3 03X4 03X3 (3.54)
04X3 04X3 !Q(LZ) 04X3

03X<3 03X3 0 3X4 0 3X3

0
3X3

B = 13x3 (3.55)
0
4x3

0 3X3

The sphere attitude is updated using the optimal quaternion method described in

Section 3.3, so the Kalman filter updates only the position and velocity components

of the sphere state. Therefore only the position and velocity components of the state

error covariance matrix are propagated. The state process noise covariance Q(t) is

58

defined as

Q(t) = E [E'(t)E'(t) T] (3.56)

where the noise E' acts only on the position and velocity, and E[] is the expecta-

tion operator. The nature of this noise has not yet been well characterized on the

SPHERES testbed. The following value of Q(t) has been successfully used in the

laboratory:

Q(t) = 16x6 (3.57)

The linearized state Jacobian for position and velocity is simply

F(t) = 03x3 13x3 (3.58)
0 3x3 03X3

The error covariance matrix initial condition P(0) = 16X6 has been used success-

fully in the laboratory.

The state vector and error covariance matrix estimates are propagated by the

SPHERES onboard software using Equations 3.36, 3.53, 3.54, 3.55, 3.57, and 3.58

whenever a new local element measurement is made. Local element measurements

are received and the state and covariance are propagated in the PADS interrupt, at

a fixed frequency. The PADS interrupt frequency may be set as desired, as high as

100 Hz.

3.4.3 State updates

In the specific case of the SPHERES PADS, a distinction may be made between the

local element measurements, which may be considered continuous functions of time

and are used for state propagation, and global element range measurements, which

occur at discrete times and are used for state updates. The local measurements are

considered continuous because the local element sensors are sampled at every propa-

gation step, whereas the global measurements are made at a maximum frequency of

8 Hz. The global element measurement sets, Zk, consist of range measurements made

59

Side vector:s

Ultrasonic
beacon j Face to beacon

vector: Y

94 Receiver to beacon
vector: v

Receiver

vector: o'hi

Figure 3-5: Quantities used in position determination and similar quantities used in
attitude determination.

from external ultrasonic beacons to receivers mounted on the sphere faces.

At global update time tk, a set of M noisy scalar range measurements Ahi,(tk) +

Ehij (tk) are made to receivers h on faces i from beacons j. For beacon location tj and

sphere position r, the vector from receiver h on face i to beacon j may be expressed

as

o =j tj - r - 97(q)O'hi (3.59)

where Orhi signifies the location of the receiver expressed in the body frame. Note

that this v' is slightly different from the vij defined in Equation 3.21; okij measures

to the beacons from each receiver rather than from each face center. This distinction

is depicted in Figure 3-5. An error-free range measurement may then be expressed as

Ahij = (Vhij)T (Vhij) (3.60)

=- ty - r - eT(q) Uhi] [tj - r - ET(q) Uhi] (3.61)

The Kalman filter update equations utilize a single measurement vector Zk. The

collections of M measured and estimated ranges must therefore be arranged in vector

format, under a single index m. The function used to map the indices m = q(i, j, k)

does not matter, so long as it is one-to-one and consistently applied for all Aijk --+ Am.

60

The mapping algorithm used in the SPHERES Kalman filter implementation arranges

all valid measurements by beacon, then by face, and then by receiver.

It is necessary to form a vector of expected measurements hk(i(tk)), which con-

tains the corresponding expected range measurements Ahij (S) - Am(.), as computed

in real-time based on the current state estimate. The linearized measurement Jaco-

bian Hk of Equation 3.41 may then be determined. With the range measurements

organized into vector form, the partial derivatives of Am with respect to the position

components r., ry, and rz may be expanded as

- (q2 - q- q + g) O'hi,x + 2 (qiq2 - q3q4) Ohi,y

+2 (qiq3 + q2q4) Uhi,z - tj,2 - r± (3.62)

o9Am _ 1q2+q2_q2
)Oh~

9 1 [2 (qiq2 + q3q4) Uhi,x - (--+ - 2 -- + _4_

+2 (q2 q3 - qiq4) Ohi,z - t,, + ry (3.63)

S 12 (qiq3 - q2q4) Ohi,x -± 2 (q 2q3 + qlq4) Ohi,y

+ (-q - q + q + q2) Ohi,z - tjz + rz (3.64)

where for simplicity in notation the quantity (m = (hij has been defined as

'(hij [(q2 - q22 - ± q4) hi,x + 2 (qiq 2 - q3q 4) Ohi,y

+ 2 (qiq3 + q2 q4) Ohi,z - t, -+ r] 2

+ [2 (qiq2 + qaq4) Ohi,x - (-q2 + q2 - q2 + q Ohi,y

+2 (q2q3 - qlq4) Ohi,z - tj,y + ry]2

+ [2 (qiq3 - q2q4) Ohi,x + 2 (q2q3 ± qlq 4) Ohi,y

+ (-q - q2 + g3 + q) Ohi,z - tj,z + rz] 2 (3.65)

The partial derivatives of Am with respect to the velocity components vx, vy, and

61

v, may be expanded as

aAm = 0 (3.66)--- 0-
ov,
OAm = 0 (3.67)
Boy
aAm = 0 (3.68)
av,

and Hk may then be expressed in terms of the partial derivatives of Am:

0AI aA 1 -a 0 0 0
arx ar, ar2'
QA2 D)A Z A2 0 0 0

H(i) = ar Or, or (3.69)

9AM (AM aAM 0 0 0
a- ' 9ry ar,, Or Xx

The linearized measurement matrix Hk must be computed at each measurement

step, based on the current state estimate. The measurement noise covariance Rk is

defined by

Rk = E [ekE[] (3.70)

The SPHERES onboard Kalman filter currently uses a value of Rk = 2 5 IMxM.

The magnitude of the actual nonzero mean measurement noise is significantly smaller

than the value of E used to determine this Rk, but the noise is artificially inflated to

account for nonzero mean measurement error. A logic filter is used to remove the

nonzero mean measurement error, but it is imperfect, and increasing the value of Ek

in the measurement model has been empirically shown to result in filter stability in

the presence of these errors.

The state update is performed using Equations 3.37, 3.38, 3.39, 3.69, and 3.70,

where for the purposes of the update the quaternion and rate components of the state

vector are ignored, such that i is treated as consisting of only i and 0.

The state update as formulated here creates a significant computational load on

the digital signal processor. Formation of the optimal Kalman gain requires inversion

62

of an M x M matrix, and M may realistically be as large as forty when using four

sensors per face on the flight hardware. A possible alternative to this formulation that

requires significantly less computational time is mentioned briefly in Section 3.5.1.

3.5 PADS algorithm path

Unbiased measurements corrupted only by white noise are required by the Kalman

filter, but angle and range-dependent errors in the raw distance measurements have

non-zero mean. Several approaches may be taken to solve this problem, such as

augmentation of the state vector with quantities to represent the bias terms, or the

inclusion of a logic filter to remove the current expected value of each bias term. The

approach chosen for SPHERES is a logic filter, because the magnitudes of the bias

terms change dramatically between global updates, making estimation of the bias

quantities through augmentation of the state vector difficult. Several logic filters in

series are used to discard range measurements of questionable quality, and a lookup

table is used to correct for expected bias errors based on measured and estimated

angles and ranges. The steps taken to perform state estimation are shown in flow

chart form in Figure 3-6.

The steps taken to process range measurements are further detailed below, with

initialization steps omitted. These steps are designed to maximize the use of quantities

from which common-mode errors have been removed.

1. Read in ultrasound times of flight and multiply by the speed of sound to obtain

raw range measurements.

2. Keep range measurements between 20 cm and 290 cm. This step is intended to

reduce echo and multi-path effects.

3. Keep measurements on faces that received signals on at least three receivers.

The prototype sphere has three receivers per face, and three ranges to a face

are required for the attitude determination algorithm.

63

PADS interrupt process

Figure 3-6: State estimation implementation in the PADS interrupt and background
process.

64

4. Find body frame attitude vectors using Equations 3.18, 3.19, 3.20 and the pre-

defined rotation matrices li.

5. Determine receiver angles using Equation 3.23. Keep ranges for each face i,

beacon j pair that produces a receiver angle <i < 600.

6. Keep ranges that are within some specified tolerance of their expected value, as

determined from the current state estimate.

7. Perform a rough memoryless position estimate using only the body-frame at-

titude vectors and knowledge of the beacon positions. Compare this rough

estimate with the previous rough estimate, and abort if the change in position

exceeds tolerance.

8. Use Equation 3.22 to determine the reference frame attitude vectors from the

rough position estimate and the current attitude estimate.

9. Keep ranges for each face i, beacon j pair that produces a transmitter angle

Ot< 45. The transmitter angle is measured between the transmitter normal

and the vector connecting the transmitter and receiver.

10. Perform memoryless attitude update using Davenport's q-Method.

11. Apply bias correction terms to the range measurements, based on receiver an-

gles, transmitter angles, and estimated distances.

12. Perform Kalman filter update of position and velocity.

3.5.1 Future improvements to PADS

A memoryless algorithm is currently used to update the attitude of the sphere when-

ever global range measurements are received. For the purpose of testbed development,

the attitude determination algorithm was intentionally created separately from the

Kalman filter, which is currently used to update only the position and velocity es-

timates. Separate implementation of the two algorithms simplified the development

65

of the algorithms on the testbed hardware. Future plans include the integration of

the attitude determination algorithm into the Kalman filter framework, in order to

provide a more accurate attitude estimate.

Several additional approaches to the determination of position and velocity will

also be tested. One possible approach is to use an incremental Kalman filter to

process the range measurements received from each beacon at the time they are re-

ceived, rather than waiting to process the complete collection of range measurements

en masse. The primary obstacle to this method is the need for a rough state estimate,

which is used to determine the bias correction terms to apply to the range measure-

ments. This rough estimate is currently determined using the complete collection of

range measurements. One solution to the biased measurement problem is to treat the

face to beacon body-frame unit vectors p discussed in Section 3.3.2 as measurements

in the Kalman filter, rather than using the individual ranges. Common-mode errors

are not present in the body vectors, and it is possible that this approach will yield

superior results to the method currently in use, in terms of both estimate accuracy

and computational load.

66

Chapter 4

Control Interface Design and

Implementation

The SPHERES testbed is intended to support investigations by multiple guest scien-

tists. To simplify the use of the testbed by guest scientists located at remote facilities,

and to simplify the integration of guest scientist code by the MIT SPHERES team,

a set of three distinct interface frameworks has been developed: the standard, direct,

and custom interfaces. A package containing descriptions of the standard, direct, and

custom interfaces, several source code examples, and a simulation environment for

use in developing custom code is delivered to guest scientists. This package is termed

the Guest Scientist Program (GSP) interface, and the following sections describe the

SPHERES software framework, and relevant portions of the GSP interface. The stan-

dard, direct, and custom interfaces are described, and two examples are presented of

using the standard interface to create a test.

4.1 Flight Software Overview

The onboard DSP hardware supports two timer interrupt processes running over a

background process and other asynchronous support processes. A medium-priority

control interrupt runs at a fixed frequency which can be changed at any time by the

control algorithm. In the control interrupt, each thruster is assigned an on-time based

67

Table 4.1: Subsystem global variable data structures.

Structure Subsystem
comm Communications
ctrl Control
dbug Debug and error

gsp Guest Scientist Program
pads Position and attitude determination
prop Propulsion and housekeeping
sys Identification, time-keeping, etc.
tele Telemetry

on maneuver, control, and pulse width modulation algorithms. The control interrupt

may execute at any integer frequency as high as as 25 Hz. A high-priority propulsion

interrupt runs at 1 kHz to handle low-level interaction with the thrusters, providing

a pulse width resolution of one millisecond.

The low-priority background process contains an infinite loop that sequentially

handles communications processing, position and attitude updates, and housekeeping

tasks. An interrupt (the PADS interrupt) is triggered in the DSP whenever new sensor

data are available, and state propagation occurs as local element (inertial) sensor

data are received. The interactions between these processes are shown in Figure 4-1.

Detailed descriptions of the communications and general software architectures are

given by Saenz-Otero [21].

4.1.1 Global variable organization

To improve source code organization, all global variables are organized by subsystem

into eight global structures, listed in Table 4.1. Contents of the ctrl, pads, prop,

and sys structures that are relevant to guest scientists are described in Section B.2 of

Appendix B. The gsp structure contains any custom global variables required by the

guest scientist, and the structure definition may be changed as desired by the guest

scientist. Custom global variables and custom preprocessor directives are discussed

in Sections 4.3.9 and 4.3.10.

68

Figure 4-1: High-level organization of the flight code algorithms within the inter-

rupt and background processes, and their interactions with the external environment.

Process blocks with italicized text are external to the sphere onboard hardware and

software [18, 21].

69

4.2 Interfaces Overview

4.2.1 Standard interface

The standard interface consists of two parts: the standard control interface, and the

standard sensor interface. The standard control interface (SCI) framework is designed

to facilitate rapid test development using modular algorithm blocks with pre-defined

inputs and outputs. A collection of SCI algorithm modules is provided with the GSP

interface, and several of these modules are described in Section 4.3. Two example

tests in Section 4.4 make use of these modules to demonstrate the use of the SCI.

Guest scientists are encouraged to create new modules using the input/output rules

presented in Section 4.3. The modular, high-level design of the SCI framework allows

for rapid maneuver development and simple tracking of code changes, as individual

modules may be replaced without the need to write new code to perform the functions

handled by the other modules. Pre-defined inputs and outputs for each module type

ensure that old code can be reused, while allowing flexibility in the design of individual

modules.

The standard sensor interface may be used to increase the traceability of the

SPHERES testbed to actual space missions, by modifying or limiting the sensor in-

formation available to the onboard state estimator. The standard sensor interface

provides a means to simulate the information produced by different types of sensors,

through the use of algorithm modules that produce simulated sensor information

based on the current state estimate. For example, given the position and attitude

of the sphere, a sun sensor simulation module could produce a simulated sun sen-

sor measurement, which may then be used in a custom state estimation module to

produce a simulated state estimate based on the sun sensor data. The control code

then operates on this simulated state estimate rather than on the actual best state

estimate. Guest scientists are encouraged to write custom sensor simulation modules

to improve the traceability of the testbed to their missions of interest.

70

4.2.2 Direct interface

The direct interface offers greater freedom in the design of Guest Scientist code blocks.

In the direct interface, the contents of the control interrupt and background process

are replaced by the guest scientist with custom code. Use of this interface requires

familiarity with details of the SPHERES flight code and operations protocols, and

results in a steeper learning curve for the guest scientist. Feedback from the MIT

SPHERES team may take more time for tests created using the direct interface than

for tests created using the standard interface, due to increased integration time.

The relationship between the sphere dynamics and the standard and direct inter-

faces is shown in the block diagram of Figure 4-2, using the notation introduced in

Chapter 3. The top half of the figure represents the state dynamics and measure-

ment models for a single sphere vehicle, and the bottom half of the figure shows the

interaction of the flight software with the environment, through sensor readings and

thruster firings. The standard interface allows modifications to or replacement of the

individual algorithm blocks that are located within the shaded regions labelled Stan-

dard Control Interface and Standard Sensor Interface. The direct interface allows

modifications to or replacement of all functions contained within the shaded region

labelled Direct Interface.

4.2.3 Custom interface

It is possible to create algorithms that fall outside of the standard and direct frame-

works. The custom interface allows for modification of the flight code at any level,

and may be used if the guest scientist desires to completely reinvent the SPHERES

flight software. Use of this interface requires knowledge of operations protocols and

low-level hardware interfaces, and involves an extremely steep learning curve for the

guest scientist. Development of tests using the custom interface requires significant

interaction with the MIT SPHERES team.

71

Figure 4-2: The relationship between the sphere dynamics and the standard and
direct interfaces.

72

4.2.4 ISS operational requirements

International Space Station operational and safety considerations require that several

conditions must be met during pre-test, test, and post-test maneuvers. The follow-

ing conditions are handled automatically by the standard control interface. Guest

scientists choosing to use the direct or custom interfaces must guarantee that these

conditions are satisfied.

1. An Enable button is located on the sphere switch panel. When the Enable

button is pushed or the sphere receives an Enable command through the STL

communications channel, the sphere must begin state regulation to maintain a

stationary position.

2. The control code must disable the thrusters whenever the sphere leaves the test

volume.

3. When a test has completed, the sphere must notify the laptop of completion, null

any residual velocity, and then disable the thrusters. If the residual velocity has

not reached an acceptable threshold within a specified time period, the thrusters

must be disabled.

4.3 Standard Control Interface Modules

Under the standard control interface, a maneuver is defined as the repeated execution

of a sequence of algorithm modules. A maneuver ends when one or more specified

termination conditions are met. A test is defined as a group of related maneuvers

that may be executed in either a linear or non-linear sequence. During laboratory and

ISS operations, housekeeping tasks such as battery and propellent tank replacement

are performed as necessary between tests.

A basic SCI maneuver is represented in source code by a sequence of function calls

to the four basic types of SCI modules: command, controller, mixer, and terminator.

This sequence of function calls is termed a module sequence, and repeated executions

73

of a module sequence result in a maneuver. Figure 4-3 shows a schematic representa-

tive module sequence that could define a simple maneuver. A fifth module type, flow

control, may be used to modify the sequential flow of maneuvers during a test.

A maneuver may be defined using one or more of the modules included with

the GSP interface, or the guest scientist may create custom modules following the

input/output rules set forth in Sections 4.3.2 through 4.3.6. The maneuvers to be

performed during a specific test are specified by function calls to modules in the

function do-maneuver (---), in the file maneuverlist. c. During run-time, the module

sequence specified by the current maneuver number is executed repeatedly at the

control frequency. When the set of termination conditions specified in the termination

module is met, the terminator module sets the termination flag. Each time the

function domaneuver (...) returns, a layer of underlying controller housekeeping code

checks the status of the termination flag. If the flag is set, the maneuver number is

incremented and maneuver-specific variables such as the elapsed maneuver time are

reset. The next instance of the control interrupt will execute the module sequence

corresponding to the new maneuver number. Additional tasks performed by the

controller housekeeping code are discussed in Section 4.5.

In order to clearly define the boundary between constant and test-specific code,

the source code files are organized in a specific directory structure, shown in Fig-

ure 4-4. Files that may be modified or customized for individual tests are contained

in directories specific to each test. Files that are required by most or all tests are

included in the higher-level directories. For a test created using the standard con-

trol interface, the three files maneuverlist . c, gsp. h, and gsp. c contain the unique

information needed to define the behavior of a particular sphere during that test.

Appendix B contains source code for some of the pre-defined modules included with

the GSP interface.

The following sections describe the required inputs and outputs of each type of

SCI module, and the rules that must be followed in writing custom modules, in order

that the modules function correctly with the rest of the onboard code. Examples of

each module type are presented, and these example modules are then used in two

74

Global Variables

Command

Determine current desired state desired state vector:
based on desired maneuver profile ctrl. stateTarget

Determine state error: state estimate vector:

LU find~error(...) pads.state

state error vector:
LL ctrl.stateError
- Controller
Cd

Apply control law to state error
0

S E~JForce and torque commands trl co ntrol

3.1 MixerZ)

&. Determine appropriate thrusters to
(D produce desired force and torque

Set thruster on-times pthruster arsy:F prop. thrusters

Terminator

Check for termination condition

if TRUE, set
maneuver termination flag

Figure 4-3: A schematic representative module sequence defining a basic standard
control interface maneuver.

75

<SPHERES>/

maneuverlist.c
gsp.c T

F~1A gsp.h
<your-test-name/ gp

pad-
con maneuverlist.c

gsp.c

gsp.h
example/gsh

pads L

cont maneuverlist.c
gsp.c
gsp.h

example2_leader/

pad - - - - -

est-specific
files

con maneuverlist.c
gsp.c
gsp.h

example2follower/

pads.c
control.c

I - - - - - - - - - - - - - i

}
}

Standard
Control

Interface

Direct
Control

Interface

KEY

director

| files
-------- I

<representative name>

actual name

Figure 4-4: The SPHERES source code directory organization is designed to clearly
demarcate the boundary between constant files and test-specific files that may be
modified by the user, and to simplify the creation of new projects.

76

commands/ <command modules>

controllers/ <control modules>

mixers/ <mixer modules>

L -- - - - - - - - - -

terminators/ <terminator modules>

- - - - - - - - ---

multi-type/ <multi-type modules>

r -- - -----..... --....... I

flow control/ <flow control modules>

main.c math.c Common
- globals.h telemetry.c

comm.h <etc...> files
- - - --- - - - -- - - --

--- I

-k =tes

example tests in Section 4.4.

4.3.1 Module robustness and the universal module rule

There is one rule that must be followed when creating a new module of any type: local

variables of type static (e.g. static int vari, static f loat var2, etc.) must be

explicitly re-initialized whenever the maneuver elapsed time ctrl.maneuverTime ==

0.0. This condition is true only during the first execution of a module sequence when

the sphere begins a new maneuver. Explicit re-initialization is necessary because

static variables retain their values between successive function calls, and the ending

value of a static local variable from a previous maneuver should not affect the value

of that variable at the beginning of the current maneuver. Explicit re-initialization of

local variables that are not static is not necessary, as these variables do not retain

their values between successive function calls.

A module containing static variables is termed fragile, because if the module

is not called when the maneuver elapsed time ctrl. maneuverTime == 0.0, any lo-

cal static variables will not be initialized and the module will "break," resulting

in unexpected behavior. Such a situation could occur only if a fragile module was

embedded either in a conditional statement in the module sequence, or inside an-

other module. It may then be possible for the conditional to evaluate FALSE or the

higher-level module to not call the embedded module during the first execution of the

module sequence, resulting in uninitialized variables. It is possible to embed fragile

modules within other modules, but care must be taken to ensure that the fragile

modules are always called during the first execution of the module sequence. Mod-

ules not containing static variables are termed robust, and need not be called when

ctrl. maneuverTime == 0.0 to guarantee proper operation.

4.3.2 SCI module type 1: command

Each standard control interface maneuver begins with a command module. The

command module updates the values in the current target (i.e. desired) state vector

77

ctrl. stateTarget based on some desired trajectory algorithm, and calls the func-

tion finderror (...), which results in the creation of the current state error vector

ctrl. stateError. Valid indices into ctrl. stateTarget are listed in Table B.1 in

Appendix B. The error vector is used by the control module, the next function called

in the maneuver sequence. The following rules must be followed by all command

modules:

1. The command module must write some or all of the contents of the desired

state vector ctrl. stateTarget.

2. The command module must call f ind-error (---) with appropriate arguments to

create the state error vector ctrl. stateError.

The following command modules are among those included with the GSP interface,

and serve to illustrate the variety of maneuvers that can be performed using the SCI.

Several of these modules are used in the example tests in Section 4.4.

void regulate(void)

void regulate.specified(

float desiredPosX,

float desiredPosY,

float desiredPosZ,

float desiredQuatl,

float desiredQuat2,

float desiredQuat3,

float desiredQuat4)

void regulate-polar(

float radius,

float offsetAngle,

float circleX,

float circleY,

float circleZ,

float q1,

float q2,

float q3,

float q4)

//-

//-

//'

//I

//-

//-

//-

//-

//-

//-

//-

//

//-

//I

//-

//I

78

desired

desired

desired

desired

desired

desired

desired

x position
y position
z position
q1
q2

q3

q4

position radius

position offset angle

circle center, x-axis

circle center, y-axis

circle center, z-axis

desired q1

desired q2

desired q3

desired q4

void circle-z(

float

float

float

float

float

float

float

radius,

circleX,

circleY,

circleZ,

startAngle,

elapsedTime,

period)

//-
//
//-
//I
//-
//-
//-

//-
//-
//I

//-
//-
//

void circle-zjlag(

float radius,

float circleX,

float circleY,

float circleZ,

float lagAngle,

float leaderID)

position radius

circle center, x-axis

circle center, y-axis

circle center, z-axis

initial angular position

maneuver elapsed time

trajectory period

position radius

circle center, x-axis

circle center, y-axis

circle center, z-axis

angular offset from leader

ID number of leader

The function regulate 0 samples the position and quaternion when the elapsed

maneuver time ctrl. maneuverTime == 0.0. The state error is then determined on

all subsequent executions with respect to this initial sampled state. This module is

fragile, since the target state is determined only when ctrl. maneuverTime == 0.0.

The function regulate-specif ied(...) takes as arguments a desired position and

quaternion. The state error is produced based on these arguments and the current

state estimate. This module is robust, because it does not use any static variables.

The function regulatepolar(---) is similar to regulate.specif ied(...), but the

desired state is specified in polar coordinates. The origin of the polar system in the

global frame is defined by the point (circleX, circleY, circleZ), and the desired

position of the sphere is specified in the polar frame by (radius, of f setAngle, 0),

where of f setAngle is measured in radians from the global frame x-axis. This module

is robust.

The function circle_z(...) creates a circular target trajectory in the x-y plane,

at a radial distance of radius from the point (circleX, circleY, circleZ). The

argument startAngle specifies the initial angular offset of the trajectory from the

global frame x-axis, in radians. The argument period specifies the trajectory period,

79

and elapsedTime is used to determine the current position in the trajectory. The

desired position at a particular elapsedTime is determined by the equations

ctrl. stateTarget [POSX] = radius sin 27relapsedime + startAngle
period

ctrl.stateTarget[POSY] = radius cos 27r elaeime+ startAngle
period

ctrl.stateTarget[POSZ] = circleZ

The desired quaternion is calculated such that the body z-axis is aligned with the

polar (and global) frame z-axis, and the body x-axis points directly towards the circle

center. The state error is then determined based on this desired state and the current

state estimate. This module is fragile.

The function circle_zlag(...) determines the desired position in the specified

polar frame based on the specified radius and angular offset from another sphere,

rather than on a pre-determined trajectory. The argument leaderID specifies the

sphere identification number (SPHERE1, SPHERE2, or SPHERE3) of the sphere that is

being tracked. The argument lagAngle is the desired angular offset in the polar

frame from the current angular position of the leader sphere. The desired quaternion

is computed such that the body z-axis is aligned with the polar (and global) frame

z-axis, and the body x-axis points directly towards the circle center. An example

showing the use of circle-z(---) and circle_z-lag(-...) is given in Section 4.4.2. This

module is robust.

4.3.3 SCI module type 2: control

The control module applies a control law to the contents of the state error vector,

and assigns force and torque commands to the six-place array ctrl. control. Force

commands are represented in the global coordinate frame, and torque commands are

represented in the body coordinate frame. It is often convenient to use two separate

control modules to write the control vector: one for position and velocity and another

for attitude quaternion and angular rate. Valid indices into ctrl. stateError are

80

listed in Table B.1, and valid indices into ctrl. control are listed in Table B.2 in

Appendix B. The control array is used by the next function call, the mixer module.

The following rules must be followed by all control modules:

1. The control module must write the contents of the control array ctrl. control

with global-frame forces and/or body-frame torques.

The following control modules are among those included with the GSP interface,

and are used to determine the force and torque commands for both of the example

tests in Section 4.4.

void controlpositionPD(

float gainPos, // position gain

float gainVel) // velocity gain

void control-attitudeNLPD(

float gainAng, // angle gain

float gainRate) // rate gain

The function control-positionPD (...) acts on the position and velocity compo-

nents of the state error with a PD control law using the specified position and velocity

gains. This module writes only the force components of the control array, and a sepa-

rate attitude control law must be used to write the torque components. This module

is robust.

The function controlattitudeNLPD(...) acts on the attitude quaternion and

angular rate components of the state error with a non-linear PD-like control law, using

the specified angle and rate gains. This module writes only the torque components

of the control array, and a separate position control law must be used to write the

force components. This module is robust.

4.3.4 SCI module type 3: mixer

The mixer module assigns thruster on-times to prop. thrusters based on pulse modu-

lation and deadband rules, the thruster geometry, and the control array ctrl. control

81

of force and torque commands. The following rules must be followed by all mixer

modules.

1. The mixer module must write the contents of the twelve-place thruster array

prop.thrusters with integer millisecond on-times.

The following mixer function is included with the GSP interface, and is used

in both example tests in Section 4.4. A more complex mixer could be created that

accounts for thruster failure, or that implements a phase space deadband, for instance.

void mix-simple(

int minPulseWidth) // thruster on-time deadband

The function mixsimple (...) assigns thruster on-times based on force and torque

commands, a simple model of the thruster geometry, pulse width modulation rules,

and the specified thruster deadband in milliseconds. This module is robust.

4.3.5 SCI module type 4: terminator

The terminator function compares current conditions with one or more criteria for

maneuver termination. When the termination criteria are met, the terminator func-

tion sets the variable *fTerminate = TRUE. This variable is called the termination

flag, and must be included as an argument in all terminator modules. Each time the

function domaneuver(...) returns, the controller housekeeping code checks the status

of the termination flag. If the flag is set, the maneuver number is incremented and

maneuver-specific variables such as the elapsed maneuver time are reset. The next

instance of the control interrupt will execute the module sequence corresponding to

the new maneuver number. The following rules must be followed by all terminator

functions:

1. Terminator modules must include as an argument int *f Terminate.

2. The termination condition is signaled by setting the flag *f Terminate = TRUE.

82

The following terminator functions are among those included with the GSP in-

terface, and serve to illustrate the variety of criteria that can be used to determine

maneuver termination.

void terminate.elapsed(

int *fTerminate,

float endTime)

void terminateclock(

int *fTerminate,

float endTime)

void terminatecommanded(

int *fTerminate)

void terminate-holdvel(

int *fTerminate,

float threshold,

float holdTime)

void terminate.hold-pos(

int *fTerminate,

float threshold,

float holdTime)

void terminate-nreps(

int *fTerminate,

int nreps)

void terminateready(

int *fTerminate)

// termination flag

// maneuver time at which to terminate

// termination flag

// test time at which to terminate

// termination flag

// termination flag

// velocity threshold

// minimum hold time

// termination flag

// position threshold

// minimum hold time

// termination flag

// number of iterations

// termination flag

The function terminate-elapsed(...) ends the current maneuver when the ma-

neuver elapsed time clock ctrl.maneuverTime indicates a time greater than or equal

to the argument endTime. This module is robust.

The function terminate-clock (...) ends the current maneuver when the test clock

ctrl. testTime indicates a time greater than or equal to the argument endTime. This

module is robust.

83

The function terminate_commanded(---) ends the current maneuver according to

parameters specified by another sphere over the STS communication channel. The

termination command is sent by the remote sphere using send.terminate(...), with

parameters specifying the desired termination time and the commanded maneuver

number. Upon receipt of the sendterminate command, the recipient sphere saves

the commanded termination time and the commanded maneuver number in the global

variables ctrl. commandedTime and ctrl. commandedManeuver, respectively. The

function terminatecommanded (...) ends the current maneuver when the test clock

ctrl. testTime indicates a time greater than or equal to ctrl. commandedTime. Upon

termination the new maneuver number is set equal to ctrl. commandedManeuver,

unless ctrl. commandedManuever == NEXTMANEUVER, in which case the maneuver

number will increment as usual. This module is fragile.

The function terminateholdvel (...) terminates the current maneuver when the

magnitude of the velocity error has been below a specified threshold continuously for

some specified time. The velocity error magnitude is determined from the state

error vector, and compared to the specified velocity error threshold. If the velocity

error is less than the threshold value, a timer is incremented. If the threshold is

violated, the timer is reset to zero. When the value of the timer surpasses the specified

cumulative hold time, the function is terminated. This terminator is used by the

controller housekeeping algorithm to terminate a regulation maneuver that executes

automatically at the completion of each test. This module is fragile.

The function terminatehold-pos (...) acts on position error rather than velocity

error, but is otherwise identical to terminateholdvel (...). This module is fragile.

The function terminate.nreps(...) ends the current maneuver after nreps in-

stances of the control interrupt have occurred during the current maneuver. This

module is fragile.

The function terminate.ready(...) ends the current maneuver when all spheres

have signalled a state of readiness. Readiness is signalled using the signal-ready (...)

function.

84

4.3.6 SCI module type 5: maneuver flow control

Maneuver flow control modules are used to modify the sequential flow of the maneu-

vers within a test. The following flow control functions are included with the GSP

interface, and are located in the flowcontrol/ directory.

void goto-maneuver(

int *fTerminate,

int maneuverNum)

void delay-termination(

int *fTerminate,

float delayTime)

void signal.ready(

int fSendMsg)

void send-terminate(

int fSendMsg,

int sphereID,

int maneuverNum,

float delayTime)

void force-terminate(

int fSendMsg,

int sphereID,

int maneuverNum,

float delayTime)

void forcenext(

int fSendMsg,

int sphereID,

int maneuverNum)

void wait.for-all(

int *fTerminate,

float delayTime)

// termination flag

// maneuver number to

// termination flag

// delay from current

go to

time

// sends message when nonzero

// sends message when nonzero

// commanded sphere ID number

// maneuver number command

// delay for comm latency

// sends command when nonzero

// commanded sphere ID number

// maneuver number command

// delay for comm latency

// sends message when nonzero

// commanded sphere ID number

// maneuver number command

// termination flag

// delay for comm latency

85

When the termination flag is set to TRUE, the function goto-maneuver (...) causes

the next instance of the control interrupt to switch to maneuver number maneuverNum

rather than the next maneuver in the sequence. This function must appear in the

module sequence after the terminator module. This module is robust.

The function delay-termination(...) is used to temporarily delay termination

after the termination flag is first set TRUE. This function must appear in the module

sequence after the terminator module(s) that it is intended to delay. This module is

fragile.

The function signal-ready(-...) is used to signal to all operating spheres that this

sphere has reached a state of readiness. The ready signal is sent the first time that

the input argument f MsgSend is nonzero, and will not be sent again in the current

maneuver. Each recipient sphere saves readiness information in the global variable

ctrl. f Ready [sphere ID], where sphereID is the identification number of the sending

sphere. This module is fragile.

The function sendterminate (---) is used to command another sphere to terminate

the current maneuver and begin a particular maneuver number. For each value of

sphere ID, the command is sent the first time that the argument f MsgSend is nonzero,

and will not be sent again for the remainder of the maneuver. The recipient sphere

will be commanded to start maneuver number maneuverNum, unless the commanded

maneuver number is NEXTMANEUVER, in which case the maneuver number will in-

crement as usual. The argument delayTime specifies how long the recipient of the

command should wait before beginning the new maneuver, to account for communi-

cation processing delay. The commanded termination time is the sum of the current

test time ctrl.testTime and delayTime. The module sequence executing on the

recipient sphere must call terminate_commanded(---) to act on the command. This

module is fragile, and initialization occurs separately for each value of the argument

sphereID.

The function forceterminate (.-.) is similar to sendmaneuver(---). The differ-

ence is that this command is handled by the control housekeeping algorithm in the

recipient sphere, so the recipient sphere need not call terminatecommanded (...) to act

on the command. Receipt of a f orceterminate command immediately terminates

the current maneuver, and forces transition to the commanded maneuver number.

86

This function may be used to pre-empt the maneuver being performed by another

sphere, bypassing the need for maneuver termination on the remote sphere. This

module is fragile, and initialization occurs separately for each value of the argument

sphereID.

The function f orcenext (---) is used to change the maneuver sequence of another

sphere. For each value of sphereID, the command is sent the first time that the

argument fMsgSend is nonzero, and will not be sent again for the remainder of the

maneuver. The argument maneuverNum is saved by the recipient sphere in the global

variable ctrl. f orcedManeuver, and upon maneuver termination, the recipient sphere

maneuver number will be set to ctrl.f orcedManeuver. Note that this module does

not force immediate maneuver termination by the recipient sphere. The current

maneuver must terminate normally before the commanded maneuver will begin. This

module is fragile, and initialization occurs separately for each value of the argument

sphereID.

The function wait_for-all(---) is used to force the maneuvers in each sphere

to terminate simultaneously, after the termination conditions in all spheres have

been satisfied. A function call to waitforall(...) must appear after the termi-

nation module in the currently executing module sequence of all spheres. Internal

to waitforall(---), the state of the termination flag is checked, and when it is

first set, the signal-ready(...) module is called to signal readiness. The termina-

tion flag is then set FALSE to delay termination. When all spheres have signaled

a state of readiness, the instance of waitforall(...) running on the PADS mas-

ter calls sendterminate(...) and then delaytermination(...) with the specified

delayTime. The remaining spheres wait for a termination command, effectively ex-

ecuting terminate -commanded(...). Note that during the time period in which ter-

mination is delayed, the current maneuver module sequence continues to execute at

the control frequency; the setting of the termination flag is simply delayed until all

spheres are ready. This module is fragile.

87

4.3.7 SCI multi-type modules

It is occasionally necessary or convenient to combine one or more of the four types

of modules into a single function call, or to bypass one or more module types. An

example multi-type module is thrusters_timed(---), which turns on one or more

specific thrusters for a specified time.

void thrusterstimed(

long thrusters, // thruster numbers to fire

float onTime) // commanded on-time

The function thrusters-timed(---) performs low-level operations on the thrusters,

rather than implementing a control algorithm, and therefore bypasses the command

and control rules listed in Sections 4.3.2 and 4.3.3. Note that thrusters_timed(---)

replaces only the command, control, and mixer modules, and the maneuver must still

contain a termination module. Multiple calls to thrusters_timed(---) in a single ma-

neuver may be used to simultaneously fire two or more specific thrusters with different

on-time commands. The following sequence simultaneously turns on thrusters 1, 4,

and 12 for 50 ms, thruster 7 for 100 ms, and thrusters 8 and 9 for 35 ms. The

maneuver in this example is terminated after 100 ms. This module is robust.

thrusters-timed(THR1 I THR4 I THR12, 0.050);

thrusters-timed(THR7, 0.100);

thrusters-timed(THR8 I THR9, 0.035);

terminate-elapsed(fTerminate, 0.100);

4.3.8 Maneuver list file

The maneuver list file contains function calls to the modules that comprise the ma-

neuvers to be performed by a particular sphere during one or more tests. The function

do-maneuver (...) contains two conditional statements, one that conditions on the test

number, and one that conditions on the maneuver number. When do-maneuver(...)

88

is called with a particular test and maneuver number, the module sequence in the

corresponding block of the nested conditional is executed. The maneuver list file

must be included with the preprocessor directive #include in the file gsp. c. In the

following discussions, the file containing the definition of do.maneuver(...) will be re-

ferred to as maneuverlist. c, though the actual name of the file may be chosen by

the Guest Scientist to be representative of the test contents. The following rules must

be followed when writing a maneuver list file.

1. The maneuver list file must include with #include the files containing all mod-

ules called by do-maneuver (---).

2. The maneuver list file must contain the function domaneuver (---), with the func-

tion prototype void domaneuver (int testNum, int maneuverNum, long

elapsedTime, unsigned int *fTerminate, unsigned int *fTestDone).

3. The function domaneuver (...) must contain an outermost switch statement on

testNum, beginning at a value of 1, and with a maximum allowable value of 200.

4. The function domaneuver (...) must contain one or more inner if or switch con-

ditional statements to distinguish between maneuvers based on maneuverNum,

beginning at a value of 1, and with a maximum value of 200.

5. The flag *f TestDone = TRUE must be set when the last maneuver in a test has

completed.

A template maneuver list file and several example maneuver lists are included

with the GSP interface. Three of these example maneuver lists are used to create the

two example tests presented in Section 4.4.

4.3.9 Custom header: gsp.h

Custom global variables may be added by Guest Scientists through modification of the

definition of the global structure gsp in the header file gsp. h. Preprocessor directives

such as #def ine and #include may be used in gsp.h to define quantities or include

89

additional header files for use by Guest Scientist code. The variables in the gsp global

structure are initialized with the function initgsp 0, which must be defined by the

Guest Scientist in the file gsp. c. The following rules apply if custom global variables

are required for the test:

1. A structure to hold global variables must be defined with typedef struct.

2. An instance of that structure called gsp must be created.

4.3.10 Custom source: gsp. c

The file gsp. c contains versions of the functions init .gsp 0 and free -gsp () specific

to a particular sphere, for a particular test. The initialization function initgsp()

is used to set parameter and variable initial conditions, and to allocate memory for

vectors and matrices. This function is called only upon sphere power-on and reset.

The function free.gsp 0 is used to deallocate any memory space that was dynami-

cally allocated in initgsp(), and is required for the GSP simulation (discussed in

Chapter 5) but not by the flight code. The following rules must be followed in writing

gsp. C:

1. A call must be made in init-gsp() to init-sphereID(...), where the single

argument specifies the identification number of this sphere. Each sphere must

have a unique identification number, where valid values of the identification

number are SPHERE1, SPHERE2, and SPHERE3

2. A call must be made in init-gsp() to initcom(---), with three arguments

specifying which spheres are involved in this test. Valid values of the arguments

are TRUE and FALSE, where TRUE indicates that a particular sphere is involved

in the test. All spheres must specify the same arguments in order to properly

initialize the token ring communications protocol.

3. A call must be made in init.gsp() to set-pads-master(...), where the single

argument specifies the identification number of the sphere that will function as

90

the PADS master. Valid values of the argument are SPHERE1, SPHERE2, and

SPHERE3. All spheres must specify the same PADS master.

4. A file containing the maneuver list procedure domaneuver (---) must be included

with #include in gsp. c.

5. Each memory space that is dynamically allocated in initgsp() must have a

corresponding deallocation call in free-gsp 0.

4.4 Standard Control Interface Examples

Two example SCI tests are used to demonstrate the use of the standard control

interface. The first test involves a single sphere moving through a sequence of state

variable waypoints. The second test demonstrates the use of repeated maneuvers

to test multiple feedback gains during a propellant-intensive two-sphere formation

rotation.

4.4.1 SCI example 1: single sphere waypoint sequence

The following example illustrates the use of the standard control interface to instruct

the sphere to follow a simple sequence of maneuvers, in which each maneuver com-

mands a different target state. The contents of the three files gsp. h, gsp. c, and

maneuverlist . c (containing the function do-maneuver (...)) are discussed. This test

does not require any custom variables, so it is unnecessary to define the custom

structure gsp in gsp.h.

tests/example/sh

// this test requires no custom constants or variables

This instance of the function init-gsp) (in gsp. c) includes the required initial-

ization function calls, and initializes several other variables as well. In this case, the

three required function calls specify that this sphere is designated Sphere 1, that the

token-ring communications should be configured to support only Sphere 1, and that

91

Sphere 1 is the PADS master. Optional function calls appearing in this example ini-

tialize the state estimate and set the control frequency to 10 Hz. In this example the

function f ree-gsp () is empty, as no memory is dynamically allocated in init _gsp (.

tests/example1/gsp.c

// include the maneuver list file

#include "maneuverlist .c"

void init-gsp(void)

I
// set the sphere ID number

// valid values: SPHERE1, SPHERE2, SPHERE3

init-sphereID(SPHERE1);

// initialize token ring based on spheres being used

init-comm(TRUE, FALSE, FALSE); // sphere 1 only

// choose sphere to be in charge of requesting global updates

// valid values: SPHERE1, SPHERE2, SPHERE3

set-pads-master(SPHERE1);

// initialize state estimate

init.pos (100.0, 100.0, 100.0);

init-vel (0.0, 0.0, 0.0);

init-quat(0.0, 0.0, 0.0, 1.0);

init-rate(0.0, 0.0, 0.0);

// initialize other variables and

ctrl.controlFrequency = 10;

// [cm]
// [cm/s]
// [-]
// [rad/s]

(global frame)

(global frame)

(normalized)

(body frame)

parameters as desired

}

void free-gsp(void)

{
return;

I

This instance of domaneuver (...) specifies a sequence of three maneuvers for the

sphere to perform. The first maneuver involves travelling to and regulating about

the desired initial state. This maneuver is terminated when the position error has

been less than or equal to 2.0 cm for at least 3.0 seconds. The second maneuver

92

specifies a different desired state in the regulatespecified(---) command. This

second state is offset in angle about the z-axis by 900 from the first state. This

maneuver is terminated when 10.0 seconds have elapsed. The third maneuver makes

another change to the arguments of regulate-specif ied(...), telling the sphere to

move to the position coordinates (110.0, 80.0, 90.0). This maneuver is terminated

when the position error is less than or equal to 1.0 cm for at least 2.0 s, at which

point the test is ended by setting *f TestDone = TRUE.

tests/examplel/maneuverlist. c

// commands

#include ". ./. ./commands/regulate _specified.c"

// controllers

#include "../../controllers/control-attitudeNLPD.c"

#include "../../controllers/controlpositionPD.c"

// mixers

#include ". ./. ./mixers/mix.simple.c"

// terminators

#include "../../terminators/terminate.elapsed.c"

#include "../../terminators/terminate...hold-pos.c"

void domaneuver(int testNum,

int maneuverNum,

long elapsedTime,

unsigned int *fTerminate,

unsigned int *fTestDone)

{
switch (testNum)

{
case 1:

switch (maneuverNum)

{

// test number

// maneuver number

// elapsed maneuver time

// termination flag

// test finished flag

// go to initial state and hold

case 1:

regulate.specified(100.0, 100.0, 100.0,

0.0, 0.0, 0.0, 1.0);

// apply control laws to state error

// position
// quaternion

93

control-attitudeNLPD(0.10, 0.04);

control-positionPD(0.5, 0.2);

// attitude control

// position control

// set thruster on-times using pulse modulation rules

mixsimple(15); // deadband is 15 ms

// terminate when position error is <=2.0 cm for >=3.0 s

terminateholdpos(fTerminate, 2.0, 3.0);

break; // don't forget to break!

// rotate 90 degrees about the global (and body) z-axis

case 2:

regulate-specified(100.0, 100.0, 100.0, // position

0.0, 0.0, 1.0, 0.0); // quaternion

// apply control and mixer laws

controlattitudeNLPD(0.10, 0.04);

control-positionPD(0.5, 0.2);

mixsimple(15);

// attitude

// position

// deadband

// terminate after 10.0 seconds

terminate-elapsed(fTerminate, 10.0);

break; // don't forget to break!

// translate to new position

case 3:

regulate-specified(110.0, 80.0, 90.0,

0.0, 0.0, 1.0, 0.0);

// apply control and mixer laws

controlattitudeNLPD(0.10, 0.04);

controlpositionPD(0.5, 0.2);

mix-simple(15);

// position
// quaternion

// attitude

// position
// deadband

control

control

is 15 ms

// terminate when position error is <=1.0 cm for >=2.0 s

terminate.hold-pos(fTerminate, 1.0, 2.0);

break; // don't forget to break!

default:

*fTestDone = TRUE;

break;

}

94

control

control

is 15 ms

// break switch on test number

break;

} // end switch(testNum)

} // end do.maneuver()

4.4.2 SCI example 2: comparing control gain performance

during two-sphere circular formation rotation

This example demonstrates maneuver list synchronization between two spheres and

the use of an if conditional statement on maneuverNum to repeatedly execute a se-

quence of maneuvers. The goal of this test is to characterize the performance of a PD

control law with several values of the proportional gain during a propellent-intensive

maneuver. Two maneuvers are required to test each value of the gain. The first

maneuver is used to achieve desired initial conditions for the second. The second

maneuver is a leader-follower formation rotation, where the leader uses a constant set

of known effective gains, and the follower uses a set of test gains. This sequence of

two maneuvers is executed repeatedly until all specified test gains have been applied.

The formation rotation follows a circular trajectory in the global frame x-y plane.

Maintaining a circular trajectory requires constant actuation, and it is desirable to see

the effect on performance of changing the position gain in the proportional-derivative

position/velocity control law of the follower sphere. During the formation rotation

maneuvers, Sphere 1 acts as the leader, tracking a predefined circular trajectory of

specified radius, center, and period. Sphere 2 attempts to follow the same circular tra-

jectory, but always offset by 7r radians from the current angular position of the leader.

As in the single sphere example, the control functions control attitude_NLPD (...)

and control.positionPD (...) are used to determine the force and torque commands,

respectively, and the mixer function mix-simple(...) determines the actual thruster

on-times based on the force and torque commands, the specified deadband, and the

thruster geometry. The circular trajectory (odd-numbered) maneuvers are terminated

after a specified elapsed time, but the regulation (even-numbered) maneuvers termi-

95

nate only after a specified state error deadband is met. Termination is then delayed

with wait_f orall (...) until both spheres have achieved the desired error deadband.

When both spheres have achieved the error deadband, the regulation maneuvers of

the two spheres are terminated simultaneously. Note that during the delay time when

only one sphere has entered the error deadband, the current maneuver module se-

quence continues to execute at the control frequency; the setting of the termination

flag is simply delayed until both spheres are ready. Synchronized termination of the

regulation maneuvers ensures that the ensuing trajectory-following maneuvers are

synchronized to within the length of the control period.

The leader sphere does not require any custom variables, so it is unnecessary to

define the custom structure gsp in the leader version of gsp. h. The defined quantity

CIRCPERIOD is used to choose the period of the circular trajectory.

tests/example2-leader/gsp.h

#define CIRCPERIOD 72.0 // formation rotation period, in seconds

The follower instance of gsp. h includes the custom float variable posGain in the

gsp structure, and defines three additional custom constants that are used to choose

the test gain values. A total of NUMGAINS values of the position feedback gain will

be tested, beginning with FIRSTGAIN and incrementing each time by DELTAGAIN.

tests/example2_follower/gsp.h

// define custom constants here

#define CIRCPERIOD 72.0 // formation rotation period, in seconds

#define FIRSTGAIN 0.0 // first gain to be tested

#define DELTAGAIN 0.2 // gain increment

#define NUMGAINS 6 // number of gains to test

// define custom global variables in this structure

typedef struct

{
float posGain; // test value for proportional (position) gain

} gsp-g;

// create gsp structure

gsp-g gsp;

96

The leader and follower versions of init-gsp() are identical, with the exception

of the argument passed to init-sphereID(---).

tests/example2_leader/gsp.c

// include the maneuver list file

#include "maneuverlist .c"

void initgsp(void)

init.sphereID (SPHERE1); // this is Sphere 1

initcomm (TRUE, TRUE, FALSE); // spheres 1 and 2 are in use

set-pads-master (SPHERE1);

}

void free-gsp(void)

{
return;

}

#include "maneuverlist .c"

Itests/example2_follower/gsp. c

// include the maneuver list file

void init.gsp(void)

{
init-sphereID (SPHERE2); // this is Sphere 2

init-comm (TRUE, TRUE, FALSE); // spheres 1 and 2 are in use

setpads-master (SPHERE1);

I

void free-..gsp(void)

{
return;

I

In this test, the leader sphere follows the circular trajectory with identical gains

each time, so only two distinct module sequences are required in the leader version

of maneuverlist .c. The function telemetry(...) is used in this example to send the

current state of the leader sphere to the follower sphere. The second argument to

telemetry(...) is SAT2, the communications-specific identifier for the sphere having

97

identification number SPHERE2. Each sphere has a single-bit communications identi-

fier, simplifying the processing of communications data. The communications-specific

identifiers SAT1, SAT2, and SAT3 have values equal to 1<<SPHERE1, 1<<SPHERE2, and

1<<SPHERE3, respectively.

Itests/example2-leader/maneuverlist . c

// commands

#include "../../commands/regulatepolar.c"

#include ". ./. ./commands/circle-z.c"

// controllers

#include "../../controllers/control-attitudeNLPD.c"

#include "../../controllers/controlpositionPD.c"

// mixers

#include "../../mixers/mix.simple.c"

// terminators

#include ". . /. . /terminators/terminate_elapsed. c"

#include ". ./. ./terminators/terminateholdvel.c"

// maneuver flow control

#include "../.. /flow-control/wait _f orall.c"

void do.maneuver(int

int

long

int

int

switch (testNum)

testNum,

maneuverNum,

elapsedTime,

*fTerminate,

*fTestDone)

//-
//I
//-
//-
//

test number

maneuver number

elapsed maneuver time

termination flag

test finished flag

{
case 1:

// place position data in the telemetry queue to SPHERE2

telemetry(DATAPOS, SAT2); // comm-specific identifier

// end test when all gains have been evaluated

if (maneuverNum > 2*NUMGAINS)

{
*fTestDone = TRUE;

}

98

// reach desired initial state using standard gains

else if (maneuverNum % 2) // odd numbered maneuvers

{
regulate.polar(50.0, 0.0,

100.0, 100.0, 100.0,

0.0, 0.0, 1.0, 0.0);

control-attitudeNLPD(0.10, 0.04);

control-positionPD(0.5, 0.2);

mix-simple(15);

// r, theta

// circle center

// quaternion

// null residual velocity

terminatehold-vel(fTerminate, 0.5, 2.0);

// go to next maneuver when all spheres are ready

wait-for-all(fTerminate, // termination flag

1.0) // delay for comm latency

}

// circle with standard gains

else // even numbered maneuvers

{
circle_z(50.0,

100.0, 100.0, 100.0,

0.0,

elapsedTime,

CIRCPERIOD);

// radius

// center of circle

// initial angular position

// elapsed maneuver time

// trajectory period

control-attitudeNLPD(0.10, 0.04);

control-positionPD(0.5, 0.2);

mix-simple(15);

terminate-elapsed(fTerminate, CIRCPERIOD);

}

// break switch on test number

break;

} // end switch(testNum)

} // end do-maneuver()

The follower version of the maneuver list determines the value of the test gain

based on the current maneuver number and the constants defined in gsp.h.

99

tests/example2follower/maneuverlist. c

// commands

#include ".. /.. /commands/regulate -polar.c"

#include "../../commands/circlez-lag.c"

// controllers

#include "../../controllers/control-attitudeNLPD.c"

#include "../../controllers/control-positionPD.c"

// mixers

#include "../../mixers/mix.simple.c"

// terminators

#include "../../terminators/terminateelapsed.c"

#include "../../terminators/terminateholdvel.c"

// maneuver flow control

#include ". ./.. /flow-control/wait-forall.c"

void domaneuver(int

int

long

int

int

switch (testNum)

{
case 1:

testNum,

maneuverNum,

elapsedTime,

*fTerminate,

*fTestDone)

// test number

// maneuver number

// elapsed maneuver time

// termination flag

// test finished flag

// end test when all gains have been evaluated

if (maneuverNum > 2*NUMGAINS)

{
*fTestDone = TRUE;

}

// reach desired initial state using known effective gains

else if (maneuverNum % 2) // odd numbered maneuvers

{
regulate-polar(50.0, PI,

100.0, 100.0, 100.0,

0.0, 0.0, 0.0, 1.0);

control-attitudeNLPD(0.10, 0.04);

control-positionPD(0.5, 0.2);

// r, theta

// circle center

// quaternion

100

mixsimple(15);

// verify that velocity is small

terminate.hold-vel(fTerminate, 0.4, 3.0);

// go to next maneuver when all spheres are ready

wait.forall(fTerminate, // termination flag

1.0) // dummy value

}

// follow leader's circle using test gains

else

{
// choose gains for this time through

gsp.posGain = (maneuverNum/2-1)*DELTAGAIN + FIRSTGAIN;

circlez.lag(50.0,

100.0, 100.0, 100.0,

// radius

// circle

PI, // angula

SPHERE1); // leader

control-attitudeNLPD(0.10, 0.04);

control-positionPD(gsp.posGain, 0.2);

mixsimple(15);

terminateelapsed(fTerminate, CIRCPERIOD);

}

// break switch on test number

break;

center

r pos. offset

sphere ID

} // end switch(testNum)

} // end do.maneuver()

4.5 Controller Housekeeping

An underlying controller housekeeping algorithm in control. c is the foundation on

which the standard control interface is built. The housekeeping algorithm handles

lower-level and repetitive tasks such resetting maneuver and test variables in response

to maneuver termination and test done flags, and managing default control sequences

before and after each test. A block diagram outlining the controller housekeeping

101

algorithm is shown in Figure 4-5. The source code for the housekeeping algorithm is

in Section B.3.6 of Appendix B.

4.6 Control Interfaces Summary

A set of three control interfaces has been created, in order to facilitate the use of

the SPHERES testbed by remotely located guest scientists. The standard control

interface provides a framework into which algorithm modules with pre-defined inputs

and outputs are placed. This enables the guest scientist significant freedom in the

design of new modules, while maximizing the useability of old code and ensuring that

operational requirements are satisfied. The direct interface allows greater freedom

in algorithm design, but involves a steeper learning curve. The custom interface is

available for guest scientists who wish to completely redesign the SPHERES flight

software.

To assist guest scientists in the creation of new SCI modules and tests, a simulation

is provided with the GSP interface. This simulation is the subject of Chapter 5.

102

Figure 4-5: The controller housekeeping algorithm handles low-level and repetitive
tasks. This flow chart represents a single instance of the control interrupt. Shaded
regions indicate the algorithm blocks involving pre-test, test, and post-test maneuvers.

103

104

Chapter 5

Guest Scientist Program

5.1 Guest Scientist Program Overview

The goal of the SPHERES Guest Scientist Program (GSP) is to provide sufficient

information to allow remote investigators to independently design, code, and debug

control and autonomy algorithms for use on the SPHERES testbed. The GSP devel-

opment environment consists of four parts: the SPHERES GSP simulation, the Gen-

eralized FLight Operations Processing Simulator (GFLOPS) SPHERES simulation,

the 1-g ground laboratory, and the 0-g International Space Station laboratory. These

four parts vary in their degrees of accessibility and fidelity, as shown in Figure 5-1.

The process by which guest scientists develop and implement algorithms is out-

lined in Figure 5-2. Guest scientists are provided with the information necessary to

create new algorithms, and the algorithms are verified using each of the four parts

of the development process. The process is recursive, and feedback regarding algo-

Increasing
GSP simulation (0-g, 1-g) accessibility

GFLus SPHERES simulation (0-g, 1-g)
Laboratory testbed (1-g)
International Space Station (0-g) Increasing

fidelity

Figure 5-1: Variation in accessibility and fidelity among elements of the SPHERES
Guest Scientist Program.

105

Figure 5-2: High-level overview of the SPHERES Guest Scientist Program develop-
ment and implementation process.

rithm performance is provided to guest scientists at each test step. Performance data

include flight and/or simulation telemetry, and, when possible, video footage.

5.2 SPHERES GSP Simulation

The SPHERES GSP simulation is a tool for the independent development and coding

of SPHERES control and autonomy algorithms at MIT and in remote locations.

The simulation allows guest scientists to create tests and algorithm modules for the

standard and direct control interfaces described in Chapter 4.

The GSP simulation consists of the SPHERES onboard flight source code, and

additional code that simulates dynamics, communications, and other environmental

interaction. The simulation is designed to significantly reduce or eliminate the need

for direct interaction between Guest Scientists and the MIT SPHERES team during

early stages of algorithm development and implementation. Successful compilation

of guest scientist code and basic algorithm performance in a low-fidelity simulation

of the testbed O-g or 1-g environment can be verified. The simulation supports three-

sphere operations, and provides both sphere-to-sphere (STS) and sphere-to-laptop

(STL) communication channels.

106

5.2.1 Simulation files

The GSP simulation consists of four parts: the simulation control panel, the sim-

ulation server, source code for sphere applications, and a data reduction script.

The control panel and server are pre-compiled executables, and are located in the

<SPHERES>/simulation/ directory, where <SPHERES> refers to the root directory

containing the sphere flight code files, as depicted in Figure 4-4 on page 76. The

sphere application source code consists of the sphere flight software source code, a

few simulation-specific replacements for low-level functions, and a wrapper that sim-

ulates the test environment.

A new test is created by copying the contents of the <SPHERES>/tests/template/

directory to a new subdirectory of <SPHERES>/tests/. This new test-specific direc-

tory should have a descriptive name that reflects the purpose of the test. The project

workspace is opened by double-clicking the file sphere. dsw in the test-specific direc-

tory. The workspace contents are shown in Figure 5-3. The GSP standard interface

files gsp. c, gsp. h, and maneuverlist. c are discussed at length in Chapter 4, and

the GSP direct interface is accessed through modification of the files control. c and

pads. c. The file simulation-parameters.txt is used to specify simulation param-

eters and initial conditions, and is read at run-time by the sphere application.

5.2.2 System requirements and design trade-offs

The SPHERES GSP simulation requires an x86-compatible personal computer run-

ning the Microsoft@ Windows 2000 operating system, and Microsoft Visual C++.

The control panel, server, and sphere applications communicate using Windows in-

terprocess communication (IPC). This protocol was chosen in order to maximize the

amount of actual flight code that is used in the simulation. By using IPC, each

sphere can be a separate application, and it is not necessary to modify the variables,

function calls, or file inclusions in the flight code to support multiple simultaneous

sphere instances within a single executable. Another benefit of IPC is that additional

elements may be easily added to the simulation, with very few changes to the existing

107

.1 Ere -Mrw srt isua -[

I Workspace 'sphere': 1 project(s)
H $sphere files,

1+] Source Files
R, CJ Header Files
f C) Resource Files
SiA GSP Standard Interface

A gsp.c
gsp.h
rmaneuverlist.c
simulation_parameters td

- J GSP Direct Interface
Fi control c
N pads.c

Figure 5-3: GSP simulation project files. User-modifiable files are grouped according
to the standard and direct interface guidelines.

applications. Examples of possible additional elements include a run-time telemetry

viewer and a run-time 3-D display of the spheres in the test volume. These additional

applications simply need to open a handle to the appropriate process pipe, and listen

for data. The existing server application need only be modified to include the new

application in the data broadcast list. The simulation IPC framework is based on

sample code from Microsoft Source Code Samples [17].

5.2.3 Work in progress

The SPHERES GSP simulation is currently incomplete. The IPC framework, user in-

terface, measurement simulator, and telemetry communications are fully functional,

but command communications and the dynamics simulation are only partially im-

plemented at this time. As soon as the simulation is complete, the GSP interface

package containing descriptions of the control interfaces, sample code, and the GSP

simulation will be delivered to guest scientists.

An early incarnation of the GSP simulation was successfully used to test the state

update algorithms given in Chapter 3, before implementation was attempted on the

testbed hardware. Problems were identified and solutions were applied using the

108

simulation, resulting in considerable savings in time during the hardware phase of the

implementation. This smooth transition from theory to implementation verified the

usefulness of the simulation as a development tool.

5.2.4 Simulation server

The GSP simulation server acts as a hub for STS, STL, and simulation-specific com-

munications. The server creates a GSP (simulation-specific) pipe, and then waits for

a client to connect, as shown in the process flow chart of Figure 5-4. If a sphere con-

nects, STS and STL pipes are created. When clients are connected, the server reads

each pipe and redirects messages as appropriate to the other clients. For example,

an STS message sent to the server by a sphere is then broadcast by the server to all

spheres except for the message originator, simulating the behavior of radio-frequency

communications and enabling inter-sphere communication. Commands sent from the

control panel are rebroadcast by the server to all connected spheres.

The server is shown in the lower-left corner of Figure 5-5. The control panel is

shown in the top half of the figure, and three sphere processes can be seen to the

right of the server application. Shortcuts to the simulation executables are present

on the Windows desktop. When the control panel or a sphere connects to the server,

the corresponding icon changes from grey-scale to color. This visual feedback makes

it easy for the user to always know which spheres are connected to the server. During

simulation run-time, the server controls the simulation time, ensuring that all spheres

have completed a given time step before commanding the next one.

5.2.5 Control panel

In order to accurately model the behavior of the spheres during a test, the simula-

tion requires user input to separately power on the spheres and enable the onboard

controllers (see Section 4.2.4 for additional details regarding enabling the controller).

The control panel graphical user interface (GUI) is used to perform these tasks, and

to interface with the spheres during simulation run-time. The control panel GUI is

109

Figure 5-4: High-level block diagram of GSP Simulation server application.

110

MIT SSL SPHERES GSP
Simulation control panel v.0

-- Sphere Control

Poweron sphers

Begintest

Abortlesp

Power off sphers

tstmuiaiaan messages

Newielemetryfile opened.
Spheres re powered on.
Spheres enabled.
Commandsent. Test 1 started etme 17.58.

Control Panel

Sphere 1

Sphere 2

Sphere 3

Simulation Consol

oyiancs: r. o-g r i g

MaxTsim ie [s]

Time step [s] 0-011
Simme [s 261

Test We [s] 6,315

Telemeby savfile

Pata\18MayO02.dat

-J

GSP ControlGSP server

sphere 1 sphere2 sphere3

Figure 5-5: The GSP simulation control panel graphical user interface, simulation
server, and three sphere applications. Shortcuts to the executables can be seen on
the Windows desktop.

111

AAh

shown in the top half of Figure 5-5. Buttons on the "Sphere Control" section of the

control panel are used to power on and enable the spheres, and then to send com-

mands over the simulated STL communications channel. The following five buttons

on the control panel are used to control the simulation.

Power on spheres Starts the simulation, the equivalent of powering on the spheres.

The spheres perform state determination, but perform no control until an enable

command is sent.

Enable Sends a command over the STL communications channel to enable the con-

troller and the cold-gas thrusters. The spheres perform a default station-keeping

maneuver until a specific test number is commanded.

Begin test Sends a command over the STL communications channel to begin the

test number specified in the adjoining edit box.

Abort test Sends a command over the STL communications channel to abort the

current test and disable the controller and thrusters. The spheres drift freely,

performing state determination but no control.

Power off spheres Ends the simulation, equivalent to powering off the spheres.

The "Simulation Control" section of the control panel GUI allows the user to

view and modify some simulation parameters. Two different time counters are used to

track the simulation progress. The Sim time counter tracks the number of simulated

seconds that have elapsed since the spheres were powered on. The Test time counter

tracks the number of simulated seconds that have elapsed since the most recent Begin

test command was sent. The Telemetry save file specifies the relative path (from

<SPHERES>/simulation/) to the file where telemetry from the current test is located.

The file number increments whenever a new Begin test command is sent.

A high-level view of the control panel algorithm is shown in the process block

diagram of Figure 5-6. The control panel attempts to connect to the GSP pipe

created by the server. Upon connection, it enters an infinite loop where it reads

112

GSP pipe thread

Figure 5-6: High-level block diagram of GSP Simulation control panel application.

and processes information received through the GSP pipe. When the user presses a

button, the control panel sends the corresponding command through the GSP pipe

to the server application.

5.2.6 Sphere executables

The GSP simulation supports up to three simultaneous sphere processes, the number

of spheres that will be used on the International Space Station. A sphere executable

is created by opening the workspace file sphere. dsw and pressing the Build button in

Microsoft Visual C++. Modifications can be made to the standard control interface

or direct control interface files following the guidelines in Chapter 4 before building

the executable. The sphere flight code files are included with #include in the file

simulation. c, which takes the place of main. c in the simulation code. The function

simTimeStep(...) in simulation. c is called once during each simulation time step.

This function calls the various interrupt and background process functions at ap-

propriate times, in order to simulate the timed-interrupt nature of the digital signal

113

Main process

GSP pipe thread

Figure 5-7: High-level block diagram of GSP Simulation sphere application.

processor.

The file sphere. c contains the wrapper code that communicates with the server

and calls simTimeStep(...). A high-level block diagram of the tasks handled by the

functions in sphere . c is given in Figure 5-7. Simulation-specific functions replace

low-level flight software functions that access hardware directly, and provide simu-

lated communications queues and sensor readings. The dynamics of each sphere are

simulated by the wrapper code, rather than by the server, to minimize the message

traffic on the GSP pipe. Three instances of sphere processes (spheres 1, 2, and 3) are

shown below the control panel and to the right of the server in Figure 5-5.

114

"a*,blsea;; Main process

Create new thread ||iii Create new threa;d | Create new thread|

5.2.7 Data reduction

The simulation server records all received telemetry to a text file. Telemetry data

include estimated and actual state information, and may include any other data of

interest to the guest scientist. A MATLABB script m-file is included with the GSP

interface, to be used for reduction of the telemetry data. The script produces time-

history plots of the state and measurement information.

5.3 GFLOPS SPHERES Simulation

After guest scientist code compilation and basic algorithm performance are demon-

strated with the GSP simulation, the code is verified using a SPHERES simula-

tion running on the high-fidelity Generalized FLight Operations Processing Simu-

lator (GFLOPS) [8]. The GFLOPS testbed consists of eight networked PowerPC

single-board computers, running a real-time operating system. The real-time, multi-

processor nature of this testbed provides advantages over the GSP simulation. The

GFLOPS testbed better represents the asynchronous interrupt and background pro-

cess timing of the individual spheres' digital signal processors, and provides a higher-

fidelity model of the expected laboratory and on-orbit disturbance environments. Use

of the GFLOPS testbed requires that guest scientists deliver to the MIT SPHERES

team code that has been tested using the GSP simulation. The GFLOPS simulation

is a verification step in the development process, and test results are returned to guest

scientists so that algorithm performance may be improved through iterations of the

GSP simulation to GFLOPS simulation cycle. The GFLOPS SPHERES simulation

is described in detail by Radcliffe [19].

5.4 Laboratory Testbed

The laboratory testbed provides accessible hardware for implementation of devel-

oped algorithms. This hardware is identical to the ISS flight hardware, and realistic

imperfections, uncertainties, and unmodeled disturbances will be present.

115

In the laboratory, the SPHERES testbed may be used in two configurations. In

the laboratory standard configuration, the spheres are mounted on air carriages, and

suspended by compressed air on a 1.25 m x 1.25 m glass surface. The PADS beacons

are mounted to optimize coverage over the 2-D test surface. The laboratory standard

configuration is limited to one rotational and two translational degrees of freedom.

In the laboratory station configuration, the PADS beacons are mounted approxi-

mately as they will be in orbit aboard the ISS. One or more spheres may be suspended

in the test volume to verify correct state determination in 3-D. Rotational maneuvers

about a single axis may be performed, but the primary purpose of this configuration

is to verify the performance of state determination algorithms.

5.5 International Space Station

The SPHERES ISS testbed provides a risk-tolerant, long-duration, representative dy-

namic environment for the validation of control, metrology, and autonomy algorithms

for spacecraft formation flight, rendezvous, and docking. Accessibility to the testbed

by the MIT SPHERES team and guest scientists is limited to software changes and

the addition of accessory hardware via an expansion port on each sphere. The micro-

gravity environment of the ISS allows for 6-DOF maneuvers. The useable test volume

in the ISS is as yet undetermined, and may range from a 2m x 2m x 2m cube to a

1.5m x 1.5m x 3m box.

116

Chapter 6

Conclusions and Recommendations

6.1 Thesis Summary

This thesis has examined the components of the SPHERES testbed that are rele-

vant to control algorithm development. The topics addressed in each chapter are

summarized below.

Chapter 2 presented an overview of the SPHERES testbed and the sphere vehicle

subsystems relevant to control system design. A pulse modulation scheme was devel-

oped to overcome some of the physical limitations of the non-linear propulsion system

actuators. Mapping algorithms for the transformation of control commands to and

from thruster on-times were developed for the prototype and flight sphere geometries.

Chapter 3 described the Position and Attitude Determination Subsystem hard-

ware, and the methodology used to measure the sphere state with respect to the

laboratory reference frame. A memoryless optimal quaternion algorithm was used

to determine the sphere attitude from direction vectors, and a method was given for

the determination of those vectors from raw distance measurements. A Kalman fil-

ter was used to update the position and velocity components of the state estimate.

Suggestions were made for improvements to the algorithms.

Chapter 4 presented the SPHERES Standard Control Interface, designed to fa-

cilitate rapid test development through the use of modular algorithm blocks with

pre-defined inputs and outputs. The SCI enforces rules to ensure code compatibility,

117

while allowing freedom in the design of individual algorithm modules. The different

types of algorithm modules are explained, and two examples are used to clarify the

presentation.

Chapter 5 briefly described the SPHERES Guest Scientist Program simulation,

a tool for the development of SPHERES algorithms. The GSP simulation provides

a means for guest scientists to implement algorithms in the flight code environment,

without requiring access to the flight hardware.

6.2 Conclusions

The work presented in this thesis addresses all and satisfies most of the objectives

specified in Section 1.3.

Models were formulated to describe the sphere components. Sections 2.2 and 2.3

addressed the cold-gas thrusters that serve as the sphere actuators. A model of the

sphere dynamics was developed in Chapter 3, and the control system interface was

presented in Chapter 4.

A state estimator was developed in Chapter 3. The estimator provides real-time

estimates of the sphere position, velocity, attitude, and angular rate. The performance

of this estimator has been verified in the laboratory and in micro-gravity aboard

NASA's KC-135 aircraft, but several possible improvements remain to be investigated.

A simple, flexible user interface to the sphere flight hardware and software was

developed. The Standard Control Interface utilizes a modular approach to maneuver

and test design. The SCI specifies rules for module inputs and outputs, but allows

complete freedom of design within individual modules. Modules are arranged in

source code in a list format, facilitating the rapid recognition of test contents. An

underlying controller housekeeping algorithm performs low-level background tasks

without the need for user interaction, and ensures that ISS requirements are satisfied.

Support for fundamental tasks such as maneuver synchronization is provided by pre-

defined modules.

A simulation for use in the development of control and autonomy algorithms was

118

partially developed. The simulation uses the SPHERES onboard flight code in its

entirety, with the exception of a few functions that directly access flight hardware,

and are replaced by simulation-specific versions. The flight software runs in a wrapper

that handles communications, simulation timing, and the sphere dynamics. The

simulation is not yet complete.

6.3 Future Work

Recommendations for future work are as follows:

" Complete the GSP simulation and associated documentation.

" Improve the state update implementation, making use of the redundant ultra-

sonic receivers, higher communications bandwidth, and upgraded processing

power of the flight sphere. Incorporate attitude into the Kalman filter, and de-

sign and test an incremental Kalman filter to process direction vectors as they

are calculated, rather than processing ranges after all measurements have been

received.

" Better characterize the process and measurement noise to improve the perfor-

mance of the existing and future Kalman filters.

" The flight sphere has a transmitter for use in direct inter-sphere ranging. These

direct range measurements should be incorporated into the Kalman filter.

119

120

Appendix A

Quaternions

A.1 Properties of the attitude quaternion

Euler's Theorem states that "the most general displacement of a rigid body with one

point fixed is a rotation about some axis [26]." This rotation may be quantified by

describing the axis of rotation n and the angle of rotation 0. The following discus-

sion will outline quaternion mathematics and the specific conventions followed in the

SPHERES onboard code for the use of the attitude quaternion in the representation

of three-space orientation.

The four-element quaternion el may be used to represent an arbitrary rotation

or orientation in three-space. The quaternion consists of a three-element hyper-

imaginary "vector" part and a single-element scalar part, viz. [9],

4 = qii + q2j+ q3 k + q4 (A.1)

where the quantities i, j, k follow a set of rules analogous to the single-dimension

imaginary number i = v/Z1, and similar in form to the rules for forming cross prod-

121

ucts.

1 = -1 (A.2)

= k = -ji (A.3)

ik = i = -kj (A.4)

ki = j = -ik (A.5)

It is often convenient to utilize a real-vector expression of the quaternion, when

the hyper-imaginary nature has been accounted for elsewhere. The real coefficients

of the quaternion components may be expressed in vector notation as

q 1 q 2 q3 q4 (A.6)

A relatively simple physical interpretation of the real instantiation of the attitude

quaternion may be made through the following definition. Given a rigid-body rotation

of angle 0 about the axis n expressed in some reference frame, the resulting orientation

of the body may be characterized by

q n sin(2)T
q s() qi q2 q3 q4 (A.7)

From the physical interpretation of the attitude quaternion, it can be seen that a

rotation of angle 0 about the unit vector n followed by a rotation of angle -0 about

n results in zero net change in attitude, so the inverse of a quaternion may be found

simply by changing the sign on the vector part.

q - -q-
(A.8)

q4 q4

It is also apparent from Equation A.7 that the length of a quaternion must always

be equal to identity, since

122

= n n sin2 (')+ cos2 (

= sin 2 + cos 2 (')

= 1 (A.9)

The quaternion must be periodically re-normalized by dividing by its length, in

order to maintain this property in the presence of round-off errors incurred through

digital computation.

According to Euler's theorem, the attitude of the body frame with respect to the

reference frame can be specified by the rotation (represented by q) that transforms

the reference frame into the body frame. The 3 x 3 matrix E that rotates a vector

from the reference frame into the body frame can be written in terms of the attitude

quaternion as

e(q) = (q4 - q T q) 13x3 + 2qqT - 2q4 [qx] (A.10)

using shorthand notation based on the cross product operator [6]. The cross product

c = a x b is expressed as c = [a x]b for the matrix [a x] defined as

0 -a 3 a 2

[ax] a3 0 -a (A.11)

-a 2 a1 0

The reference to body frame rotation matrix expanded in terms of the quaternion

elements is

123

q q2 - q2 + q2 2(q 1q2 + q3q4) 2(qlq3 - q2 q4)

E(q) 2 (qlq2 - q3q4) -q2 + q2 - q2 + q4 2(q2q3 + qiq4) (A.12)

2(qiq3 + q2q4) 2(q 2q3 - qiq4) -q2 - q + q2 + q4

The product of two quaternions may be found using complex algebra with the

definition of Equation A.1 and the rules of Equations A.2 through A.5, viz. [9],

4" 44' (A.13)

= i(qiq' + q2q 3 - q3ql + q4qt)

±j(-qlq' + q~qt + q3q1 + q4q2)

+k(qlq1 - q29q + q3q4 + q4q3)

-qlq' - qsq - q3q 3 + q4q4 (A.14)

The resulting quaternion 4" represents the rotation of a rigid body through the

rotation defined by the quaternion 4, and then through the rotation defined by the

quaternion 4' [9]. It can be verified using Equations A.12 and A.14 that quaternion

multiplication and rotation matrix multiplication have opposite order of operations;

quaternions operate from left to right, and rotation matrices operate from right to

left.

O(qq') = O(q')E(q) (A.15)

The text "Rotations, Quaternions, and Double Groups" by Altmann deals exten-

sively with quaternions, and is recommended reading for advanced information [1].

A.2 Quaternion composition

To minimize confusion over order of operations, it is desirable to find a way to express

quaternion multiplication such that the multiplication of two quaternions corresponds

124

in order of operations to the multiplication of the corresponding rotation matrices.

The relationship of Equation A.14 may be expressed using matrix notation as

- q3 q4 q1 q(.6q = q (A. 16)
q2 -qi q4 q3

The appearance of the first (in order of operations) rotation q on the far right hand

side of this equation suggests the definition of a quaternion composition operator *,

where composition is defined in terms of a matrix-vector multiplication.

q" q' * q (A.17)

= [q'*] q (A.18)

where for simplicity in notation and to enable the use of matrix mathematics, the

quantity [q'*] is defined as

q4' qi3 -q2 qj

[q'*] q4 q1 2 (A.19)
q2 -q q q3

-ql -q2 -q3 q4

= qI 4 x4 + [q'x] q1 (A.20)
-(q') T 0

Given this new composition operator, successive quaternion rotations may be

written in the same order as successive rotation matrix rotations.

9(q' * q) = e(q')E(q) (A.21)

The approach of redefinition of quaternion multiplication in terms of a composition

operator, in order to follow the order of operations of rotation matrix multiplication,

125

has been taken by Markley and others.

Note from Equations A.17 and A.19 that each step in successive quaternion com-

position involves 4 x 4 = 16 multiplicative and 4 x 4 = 16 additive operations. Each

step in multiplication of successive rotation matrices requires 3 x 3 x 3 = 27 multi-

plicative and 3 x 3 x 3 = 27 additive operations, so it is significantly more efficient

to perform successive rotations using quaternion composition than using rotation

matrices.

A.3 The error quaternion

The convention used in the SPHERES code is that error in a state quantity is defined

as the change that must be made to the current state in order to reach the desired

state. Using the example of position r, desired position rd, and position error re, the

error may be defined such that rd = re + r. Following this convention, the attitude

error may be expressed in terms of rotation matrices as

O(q) = e(q,)E(q) (A.22)

in which the error rotation E(qe) is applied to the current attitude in order to achieve

the desired attitude. Solving for the error results in

E9(qe) = (')-(q) (A.23)

= e(qd)e(q-1) (A.24)

where the quaternion inverse was defined by Equation A.8. The error quaternion

may therefore be written using quaternion multiplication or quaternion composition,

respectively, as

4e = 4 q4 (A.25)

q, = qd * q-1 (A.26)

126

A.4 Quaternion propagation using body rates

Given measurements or estimates of body-frame rates, such as may be sampled di-

rectly with rate gyroscopes, the attitude quaternion may be propagated in time with

t= -Q(w)q
2

(A.27)

where the matrix !Q(w) maps the quaternion into its derivative based on the body

rates w(t) = w,(t) wy(t) w(t) [261:

0 wz -)

(w) = z 0 U

WY -WX 0

L-Wx -Wy Y _W

X y

W4z

'z 0

(A.28)

Note that the matrix Q(w) is dependent on the time-varying body rates, and is

therefore non-constant in time.

127

128

Appendix B

Guest Scientist Program Reference

B.1 Defined Quantities

Several commonly-used quantities are preprocessor defined to facilitate source code

organization and increase readability. Table B.1 lists the defined indices that may

be used to access elements of the state vectors pads. state, ctrl. stateTarget,

ctrl.stateError, pads.statel, pads.state2, and pads.state3. Table B.2 lists

the indices that may be used to access elements of the control array ctrl. control,

which contains force and torque commands. Defined quantities are capitalized to

enhance recognition.

B.2 Global Variables

All global variables in the onboard code are contained in the global structures listed

in Table B.2. The contents of several of these structures are listed in the following

discussion, and selected variables are described in detail. Standard ANSI C zero-

offset arrays are of type int, unsigned int (uint), long, or f loat, while dynamically

allocated single offset vectors and matrices are of type int*, float*, int**, float**,

etc. Distance is measured in centimeters, speed in centimeters per second, angle in

radians, and temperature in degrees Celsius. The contents of the ctrl, pads, sys,

and prop structures are listed in full in the following discussion, and selected contents

129

Table B.1: Indices into state vectors.
Quantity Description

POSX x-component of position
POSY y-component of position
POSZ z-component of position
VELX x-component of velocity
VELY y-component of velocity
VELZ z-component of velocity

QUAT_1 first vector component of quaternion
QUAT-2 second vector component of quaternion
QUAT-3 third vector component of quaternion
QUATA scalar component of quaternion
RATEX x-component of angular rate
RATEY y-component of angular rate
RATEZ z-component of angular rate

Table B.2: Indices into the control array ctrl. control.

Quantity Description
FORCEX x-component of force command
FORCEY y-component of force command
FORCE-Z z-component of force command

TORQUEX x-component of torque command
TORQUEY y-component of torque command
TORQUEZ z-component of torque command

130

Table B.3: Contents of the global structure ctrl.

Description
delay enabling of control
enable control flag
maneuver complete flag
reset maneuver variables
reset test variables

Type
uint
uint
uint
uint
uint
uint
uint
uint
uint
uint
uint
uint
uint
uint
uint
uint
uint
uint
int
int
int
int
float
float
float
f loat*
float*

Name
cDelayControl
fDoControl
fManeuverDone
fManeuverReset
fTestReset
fEnableAngX
fEnableAngY
fEnableAngZ
fEnableRateX
fEnableRateY
fEnableRateZ
fEnablePosX
fEnablePosY
fEnablePosZ
fEnableVelX
fEnableVelY
fEnableVelZ
fReady
testNum
maneuverNum
nextManeuver
controlFrequency
testTime
maneuverTime
control
stateTarget
stateError

of these structures are described in detail.

B.2.1 Control data structure: ctrl

The global variables contained in the global control structure ctrl are listed in Ta-

ble B.3. A subset of those variables are described in detail in the following discussion.

(f loat*) stateTarget [state index] is the current desired state vector. The con-

tents of this vector are written by the command module, and are compared to

the current state estimate to generate the state error vector. Valid indices into

131

enable
enable
enable
enable
enable
enable
enable
enable
enable
enable
enable
enable

x-axis angle control
y-axis angle control
z-axis angle control
x-axis rate control
y-axis rate control
z-axis rate control
x-axis position control
y-axis position control
z-axis position control
x-axis velocity control
y-axis velocity control
z-axis velocity control

readiness flags for all spheres
current test number
current maneuver number
next maneuver number
control frequency
test elapsed time
maneuver elapsed time
force & torque control array
current desired state vector
current state error vector

ctrl. stateTarget are the defined state indices of Table B.1.

(float*) stateError [state index] is the current state error, the difference be-

tween the desired state and the actual state. This vector is generated in the

command function from the state target vector ctrl. stateTarget and the cur-

rent state estimate pads. state through a call to the function finderror(---).

Valid indices into ctrl. stateError are the defined state indices of Table B.1.

(uint) f Ready [sphere ID] contains TRUE/FALSE flags specifying which spheres have

signalled a state of readiness.

(int) controlFrequency is the control interrupt frequency, in units of Hz. The

default value is 10 Hz, but the value may be changed at any time, up to a

maximum of 25 Hz.

(float) control [control index] contains three force commands, represented in

the global frame, and three torque commands, represented in the body frame.

Valid indices into ctrl. control are the defined control indices of Table B.2.

(uint) maneuverTime is the elapsed time since the beginning of the current maneu-

ver.

B.2.2 PADS data structure: pads

The global variables contained in the global PADS structure pads are listed in Ta-

ble B.4, and are used for position and attitude determination. A subset of those

variables are described in detail in the following discussion. PADS arrays have in-

dices organized by a subset of the order [transmitter] [face] [receiver] [dimension].

(float*) state [state index] is the current estimated state vector. Valid indices

into pads. state are the defined state indices of Table B.1.

(float) matrix [transmitter] [face] [receiver] begins as the array of raw dis-

tance measurements. The values in pads. matrix are overwritten during the

distance matrix correction routine called from within pads-global(...).

132

133

Type
uint
uint
uint
uint
uint
uint
uint
uint
long
long
long
int
int
int
int**
float
float
float
float
float
float
float
float*
float*
float*
float*
float*
float**
float**
float**
float**
float**
float**
float**
float**
float**
float**
float**
float**
float***
float***

Table B.4: Contents
Name
fGotGlobal
fSendGlobal
fUpdateAttitude
fUpdatePosition
fBiasReady
fGlobalTime
fNewMatrix
cGlobal
tstampMatrix
tstampIMU
tstampIMU-onboard
IMUdt
localPeriod
globalPeriod
txVecUse
IMUraw
mass
bias
temperature
speedOfSound
convGlobal
matrix
state
state1
state2
state3
stateRoughPrev
stateDynamics
dynamicsAtt
dynamicsPos
Q-att
Q.pos
body2Glo
covPos
covAtt
inertia
inertiaInv
rxAng
txAng
txVecBody
txVecGlo

of the global structure pads.

Description
have good state estimate
download distance matrix
perform attitude updates
perform pos/vel updates
bias calculation is complete
listening for ultrasound
have a new distance matrix
cumulative number of IR flashes
time stamp of last matrix
time stamp of last IMU reading
local clock version of tstampIMU
PADS local delta time
PADS local period
PADS global period
measurement validity matrix
raw IMU data from FPGA
mass of sphere
gyro. and acc. bias terms
ambient temperature
speed of sound
distance conversion factor
PADS global distance matrix
current state estimate vector
sphere 1 state estimate vector
sphere 2 state estimate vector
sphere 3 state estimate vector
previous rough position estimate
state dynamics matrix
attitude dynamics submatrix
pos/vel dynamics submatrix
attitude noise matrix
position/velocity noise matrix
body to global frame rotation matrix
position/velocity covariance matrix
attitude covariance matrix
inertial matrix
inverse of inertia matrix
measured body vector angles
estimated global vector angles
measured body vectors
estimated global vectors

(int**) txVecUse [transmitter] [face] contains TRUE/FALSE flags specifying the

validity of sphere to beacon unit vector information.

(float***) txVecBody [transmitter] [face] [dimension] contains the measured

unit vectors pij from sphere faces to beacons, expressed in the body coor-

dinate frame. These vectors are produced from the raw distance measure-

ments of pads.matrix, and are used in attitude determination. Known bad

vector measurements are identified by zeros at the corresponding locations in

pads .txVecUse.

(float***) txVecGlo [transmitter] [f ace] [dimension] contains estimated unit

vectors vij from sphere faces to transmitters, expressed in the global coordi-

nate frame. These vectors are based on a rough position estimate and the

last known attitude estimate, and are used in attitude determination. Known

bad vector estimates are identified by zeros at the corresponding locations in

pads.txVecUse.

(float**) rxAng [transmitter] [face] contains measured receiver angles in radi-

ans. Known bad angle measurements are identified by zeros at the correspond-

ing locations in pads . txVecUse.

(float**) txAng [transmitter] [face] contains the estimated transmitter angles,

in units of radians. Known bad angle estimates are identified by zeros at the

corresponding locations in pads . txVecUse.

(f loat**) body2Glo [i] [j] is the 3 x 3 rotation matrix that transforms a vector

from the body frame into the global frame.

(float**) inertia[i] [j] is the 3 x 3 inertia matrix about the center of mass, not

about the body frame origin.

(float**) inertiaInv[i] [j] is the inverse of the inertia matrix pads. inertia.

(int) globalPeriod is the time delay between PADS global update requests, ex-

pressed in milliseconds. The value of pads. globalPeriod may be changed at

134

Table B.5: Contents of the global structure sys.

Name
fTimeStarted
fTimeRequested
fPadsMaster
f Alive
ID
cGlobalRequest
Wdog
Wdog-on-off
spheresTime
onboardTime
tstampNextIR
tankTime
battTime

Description
testbed clock is running
an IR time update was requested
array of TRUE/FALSE specifying P)
array of TRUE/FALSE specifying if
sphere ID number
number of global requests
watchdog
watchdog bit
testbed clock
onboard clock
testbed time stamp of next IR
cumulative time on current tank
cumulative time on current batteries

any time by the control code.

(int) localPeriod is the expected time delay between PADS local sensor readings.

The local sensor readings are received in the PADS interrupt process, which is

triggered externally when new measurements are made.

B.2.3 System data structure: sys

The global variables contained in the global system structure sys are listed in Ta-

ble B.5. A subset of those variables are described in detail in the following discussion.

(uint) fPadsMaster [sphere ID] contains a set of TRUE/FALSE flags, one for

each sphere. The flag is TRUE for the sphere ID number of the current PADS

master and FALSE for other indices. Valid indices are SPHERE1, SPHERE2, and

SPHERE3.

(uint) ID is the sphere ID number of the current sphere. Valid values are SPHERE1,

SPHERE2, and SPHERE3.

(long) timeSpheres is the testbed clock, expressed in milliseconds. Periodic clock

synchronization occurs with IR flashes.

135

Type
uint
uint
uint
uint
uint
int
int
int
long
long
long
long
long

ADS master
alive

Table B.6: Contents of the global structure prop.

Type Name Description
int thrusters array of thruster remaining on-times
int thrustersUsed array of on-times between propagation steps
float thrForce array of thruster forces
float avgForce average force of a single thruster
float** forces2thr force and torque to thruster force mapping matrix

(long) onboardTime is the local clock, expressed in milliseconds. sys .onboardTime

counts from the previous DSP reset.

(long) tstampNextIR is the time at which the next IR flash will occur. The PADS

master sends the value of sys.tstampNextIR to the other spheres prior to an

IR flash. Upon reception of the IR flash, each sphere then sets the value of

spheresTime equal to tstampNextIR.

(long) tankTime counts the number of milliseconds for which the thrusters have

been open. This number is reset to zero upon tank replacement.

(long) battTime counts the number of milliseconds for which the batteries have

been in use. This number is reset to zero upon battery replacement.

B.2.4 Propulsion data structure: prop

The global variables contained in the propulsion subsystem structure prop are listed

in Table B.6. A subset of those variables are described in detail in the following

discussion.

(int) thrusters is a 12-place array containing the commanded thruster on-times

in milliseconds. The elements of prop. thrusters are set by the controller at

the control frequency, and are decremented at 1 kHz in the propulsion interrupt.

(int) thrustersUsed is a 12-place array containing the cumulative on-time of each

thruster since the last state propagation step. The elements increment at

the propulsion interrupt frequency whenever the corresponding elements of

136

prop. thrusters are greater than zero. The elements of prop. thrustersUsed

are set to zero during state propagation.

(float) thrForce is a 12-place array containing the best known estimate for the

force of each thruster.

(float**) forces2thr is a mapping matrix which transforms the ctrl. control

array of force and torque commands into thruster-pair force commands.

B.3 SCI module source code

B.3.1 SCI command modules

The command module sets the values in the current target (i.e. desired) state vector

ctrl. stateTarget based on some desired trajectory algorithm, and calls the func-

tion f inderror (...), which results in the creation of the current state error vector

ctrl. stateError. The source code for the following SCI command modules is in-

cluded for reference and clarification purposes. A description of each module is given

in Section 4.3.2.

commands/regulate . c

#ifndef INCLUDEREGULATE

#define INCLUDEREGULATE

void regulate(void)

{
int i;

// capture the initial position and attitude

if (ctrl.maneuverTime == 0.0)

{
for (i=POSX; i<=POSZ; i++)

ctrl.stateTarget[i] = pads.state[i];

for (i=VELX; i<=VELZ; i++)
ctrl.stateTarget[i] = 0.0;

137

for (i=QUAT_1; i<=QUAT_4; i++)

ctrl.stateTarget[i] = pads.state[i];

for (i=RATEX; i<=RATEZ; i++)

ctrl.stateTarget[i] = 0.0;

}

find-error(ctrl.stateError, pads.state, ctrl.stateTarget);

}
#endif

commands/regulate-specified.c

#ifndef INCLUDEREGULATESPECIFIED

#define INCLUDEREGULATESPECIFIED

void regulatespecified(

float desiredPosX,

float desiredPosY,

float desiredPosZ,

float desiredQuatl,

float desiredQuat2,

float desiredQuat3,

float desiredQuat4)

// set the target state

ctrl.stateTarget[POSX]

ctrl. stateTarget [POSY]

ctrl.stateTarget[POSZ]

ctrl.stateTarget[VEL_]

ctrl.stateTarget[VELY]

ctrl.stateTarget[VELZ]

ctrl.stateTarget[QUAT_1]

ctrl.stateTarget[QUAT_2]

ctrl. stateTarget [QUAT_3]

ctrl. stateTarget [QUAT_4]

ctrl. stateTarget [RATEX]

ctrl. stateTarget [RATEY]

ctrl. stateTarget [RATEZ]

// desired

// desired

// desired

// desired

// desired

// desired

// desired

x position
y position
z position
q1
q2
q3

q4

desiredPosX;

desiredPosY;

desiredPosZ;

0.0;

0.0;

0.0;

= desiredQuatl;

= desiredQuat2;

= desiredQuat3;

= desiredQuat4;

= 0.0;

= 0.0;

= 0.0;

138

finderror(ctrl.stateError, pads.state, ctrl.stateTarget);

}
#endif

B.3.2 SCI controller modules

The control module applies a control law to the contents of the state error vector, and

assigns force and torque commands to the six-place array ctrl. control. The source

code for the following SCI command module is included for reference and clarification

purposes. A description of this module is given in Section 4.3.3.

controllers/control-position-PD. c

#ifndef INCLUDE.CONTROLPOSITIONPD

#define INCLUDECONTROLPOSITIONPD

void control.positionPD(float gainPos, float gainVel)

{
// controller force outputs are in global coordinate frame

ctrl.control[FORCEX] = -1.0 *

(((float)ctrl.fEnablePosX)*gainPos*ctrl.stateError[POS.X] +

((float)ctrl.fEnableVelX)*gainVel*ctrl.stateError[VELX]);

ctrl.control[FORCEY] = -1.0 *

(((float)ctrl.fEnablePosY)*gainPos*ctrl.stateError[POS.Y] +

((float)ctrl.fEnableVelY)*gainVel*ctrl.stateError[VELY]);

ctrl.control[FORCEZ] = -1.0 *

(((float)ctrl.fEnablePosZ)*gainPos*ctrl.stateError[POSZ] +

((f loat)ctrl. fEnableVelZ)*gainVel*ctrl. stateError [VELZ]);

}
#endif

B.3.3 SCI terminator modules

The terminator module compares current conditions with one or more criteria for

maneuver termination, and ends the maneuver when those criteria are met. The

139

source code for the following SCI terminator modules is included for reference and

clarification purposes. A description of each module is given in Section 4.3.5.

terminators/terminate-elapsed.c

#ifndef INCLUDETERMINATEELAPSED

#define INCLUDETERMINATEELAPSED

void terminateelapsed(

int *fTerminate, // te

float endTime) / mai

{
if (ctrl.maneuverTime >= endTim

*fTerminate = TRUE;

}
#endif

rmination flag

neuver time at which to terminate

e)

Iterminators/terminateclock.c
#ifndef INCLUDETERMINATECLOCK

#define INCLUDETERMINATECLOCK

void terminate-clock(

int *fTerminate, // termination flag

float endTime) // test time at which to terminate

{
if (ctrl.testTime >= endTime)

*fTerminate = TRUE;

}
#endif

j terminators/terminate-commanded.c

#ifndef INCLUDETERMINATECOMMANDED

#define INCLUDETERMINATECOMMANDED

void terminatecommanded(

int *fTerminate) // termination flag

{
static int currentManeuver;

// initialize static variables

if (ctrl.maneuverTime == 0.0;)

140

currentManeuver = FALSE;

// respond to maneuver commands from another sphere

if (ctrl. commandedManeuver)

if (ctrl.testTime >= ctrl.commandedTime)

{
*fTerminate = TRUE;

// set commanded maneuver number

if (ctrl.commandedManeuver != NEXT-MANEUVER)

ctrl.nextManeuver = ctrl. commandedManeuver;

// don't force until commanded again

ctrl.commandedManeuver = FALSE;

currentManeuver = TRUE;

}
}

// occurs only if maneuver was unterminated

else if (currentManeuver)

*fTerminate = TRUE;

i
#endif

.terminators/terminate.hold.vel. c

#ifndef INCLUDETERMINATEHOLDVEL

#define INCLUDETERMINATEHOLDVEL

void terminate-hold-vel(

int *fTerminate,

float threshold,

float holdTime)

{
static float heldTime;

float vel = 0.0;

int i;

// termination flag

// velocity threshold

// minimum hold time

// initialize static variables

if (ctrl.maneuverTime == 0.0)

heldTime = -1.0;

141

// find magnitude of velocity error

for (i=VELX; i<=VELZ; i++)

vel += square(ctrl.stateError[i]);

vel = sqrt(vel);

// check to see if velocity error is under threshold

if (vel <= threshold)

{
// get time stamp when entering threshold

if (heldTime == -1.0)

heldTime = ctrl.maneuverTime;

// see if elapsed time in threshold is long enough

if (ctrl.maneuverTime-heldTime >= holdTime)

*fTerminate = TRUE;

}
else

{
heldTime = -1.0;

i

#endif

terminat ors/terminatehold-pos. cI

#ifndef INCLUDETERMINATEHOLDPOS

#define INCLUDETERMINATEHOLDPOS

void terminate-holdpos(

int *fTerminate,

float threshold,

float holdTime)

{
static float heldTime;

float pos = 0.0;

int i;

// termination flag

// position threshold

// minimum hold time

// initialize static variables

if (ctrl.maneuverTime == 0.0)

heldTime = -1.0;

// find magnitude of velocity error

for (i=POSX; i<=POSZ; i++)

142

pos += square(ctrl.stateError[i]);

pos = sqrt(pos);

// check to see if position error is under threshold

if (pos <= threshold)

{
// get time stamp when entering threshold

if (heldTime == -1.0)

heldTime = ctrl.maneuverTime;

// see if elapsed time in threshold is long enough

if (ctrl.maneuverTime-heldTime >= holdTime)

*fTerminate = TRUE;

}
else

{
heldTime = -1.0;

}
}
#endidf

terminators/terminateinreps. c

#ifndef INCLUDETERMINATENREPS

#define INCLUDETERMINATENREPS

void terminate-nreps(

int *fTerminate, // termination flag

int nreps) // number of iterations

{
static int reps;

// initialize static variables

if (ctrl.maneuverTime == 0.0)

reps = 0;

reps++; // increment repetition counter

if (reps >= nreps)

*fTerminate = TRUE;

}
#endif

143

I terminators/terminate-ready. c

#ifndef INCLUDETERMINATEREADY

#def ine INCLUDETERMINATEREADY

void terminate-ready(

int *fTerminate) // termination flag

int i, alive=O, ready=O;

for (i=SPHERE1; i<=SPHERE3; i++)

alive += sys.fAlive[i];

ready += ctrl.fReady[i];

// terminate if all spheres are ready

if (alive == ready)

*fTerminate = TRUE;

#endif

B.3.4 SCI flow control modules

Maneuver flow control modules are used to modify the sequential flow of the ma-

neuvers within a test. The source code for the following SCI flow control modules

is included for reference and clarification purposes. A description of each module is

given in Section 4.3.6.

flow-control/goto-maneuver.c

#ifndef INCLUDEGOTOMANEUVER

#define INCLUDEGOTOMANEUVER

void goto-maneuver(

int *fTerminate, // termination flag

int maneuverNum) // maneuver number to go to

{
if (*fTerminate)

ctrl.nextManeuver = maneuverNum;

}
#endif

144

flow-control/delay-termination. c

#ifndef INCLUDEDELAYTERMINATION

#define INCLUDEDELAYTERMINATION

void delay.termination(

int *fTerminate, // termination flag

float delayTime) // delay from current time

{
static initialTime;

// initialize static variables

if (ctrl.maneuverTime == 0.0)

initialTime = -1.0;

// when first terminated, save timestamp

if (*fTerminate && (initialTime == -1.0))

initialTime = ctrl.maneuverTime;

// terminate only after delayTime has elapsed

if (initialTime != -1.0)

if (ctrl.maneuverTime-initialTime >= delayTime)

*fTerminate = TRUE;

else

*fTerminate = FALSE;

}
}
#endif

flowcontrol/signal ready c

#ifndef INCLUDESIGNALREADY

#define INCLUDESIGNALREADY

void signal-ready(

int fSendMsg) // sends message when nonzero

{
static int fFirstTime;

unsigned char data = DATAREADY;

// initialize static variables

if (ctrl.maneuverTime == 0.0)

fFirstTime = TRUE;

145

if

{

send the ready message

(fSendMsg && fFirstTime)

send-command(SAT1+SAT2+SAT3-comm.ME,

sys.spheresTime, 1, &data);

fFirstTime = FALSE;

}
}
#endif

I flow-control/send-terminate.c

#ifndef INCLUDESENDTERMINATE

#define INCLUDESENDTERMINATE

void send-terminate(

int fSendMsg,

int sphereID,

int maneuverNum,

float delayTime)

{

// sends message when nonzero

// commanded sphere ID number

// maneuver number command

// delay for comm latency

static int fSent[SPHERE3+1];

int i;

long endTime;

unsigned char data[5];

// initialize static variables

if (ctrl.maneuverTime == 0.0)

fSent[sphereID] = FALSE;

if (fSendMsg && !fSent[sphereID])

{
// figure out the termination time

endTime = sys.spheresTime+(long)(1000.0*delayTime);

// fill
data [0]

data [1]

data [2]

data [3]

data [4]

in the data

= DATATERMINATECMD;

= manueverNum;

= endTime & OxFF;

= (endTime>>8) & OxFF;

= (endTime>>16) & OxFF;

146

// send the data

send-command(1<<sphereID, sys. spheresTime, 5, data);

fSent[sphereID] = TRUE;

}
}
#endif

flow-control/force-terminate. c

#ifndef INCLUDEFORCETERMINATE

#define INCLUDEFORCETERMINATE

void force-terminate(

int fSendMsg, // sends command when nonzero

int sphereID, // commanded sphere ID number

int maneuverNum, // maneuver number command

float delayTime) // delay for comm latency

{
static int fSent[SPHERE3+1];

int i;

long endTime;

unsigned char data[5];

// initialize static variables

if (ctrl.maneuverTime == 0.0)

fSent[sphereID] = FALSE;

if (fSendMsg && !fSent[sphereID])

{
// figure out the termination time

endTime = sys.spheresTime+(long)(1000.0*delayTime);

// fill in the data

data[0] = DATATERMINATE.FORCE;

data[1] = manueverNum;

data[2] = endTime & OxFF;

data[3] = (endTime>>8) & OxFF;

data[4] = (endTime>>16) & OxFF;

// send the data

send-command(1<<sphereID, sys.spheresTime, 5, data);

fSent[sphereID] = TRUE;

}

147

I
#endif

flow-control/force-next. c

#ifndef INCLUDEFORCENEXT

#define INCLUDEFORCENEXT

void force.next(

int fSendMsg,

int sphereID,

int maneuverNum)

{

// sends message when nonzero

// commanded sphere ID number

// maneuver number command

static int fSent[SPHERE3+1];

int i;

long endTime;

unsigned char data[2];

if

initialize static variables

(ctrl.maneuverTime == 0.0)

fSent[sphereID] = FALSE;

if (fSendMsg && !fSent[sphereID])

{
// fill in the data

data[0] = DATANEXTMANEUVER;

data[1] = manueverNum;

// send the data

sendcommand(1<<sphereID, sys.spheresTime, 2, data);

fSent[sphereID] = TRUE;

i

#endif

flow-control/wait-for-all c

#ifndef INCLUDEWAITFORALL

#define INCLUDEWAITFORALL

void wait-for-all(

int *fTerminate, // termination flag

148

static int fSent, fReady, currentManeuver;

int i;

// initialize static variables

if (ctrl.maneuverTime == 0.0)

{
fSent = FALSE;

fReady = FALSE;

currentManeuver = FALSE;

delay-termination(&fReady,0.0);

for (i=SPHERE1; i<=SPHERE3; i++)

send-terminate(FALSE, i, 0, 0.0);

}

// signal readiness and unterminate

signalready(*fTerminate);

*fTerminate = FALSE;

// wait until all ready signals have been received

terminate-ready(fTerminate);

if (*fTerminate)

fReady = TRUE;

if (fReady)

{
if (sys.fPadsMaster[sys.ID])

{
for (i=SPHERE1; i<=SPHERE3; i++)

send-terminate(TRUE, i, NEXT.MANEUVER, delayTime);

delay-termination(fTerminate, delayTime);

}
else

{
// unterminate until a maneuver command is received

*fTerminate = FALSE;

if (ctrl . commandedManeuver)

if (ctrl.testTime >= ctrl.commandedTime)

{
*fTerminate = TRUE;

149

float delayTime) // delay for comm latency

// set commanded maneuver number

if (ctrl.commandedManeuver != NEXTMANEUVER)

ctrl.nextManeuver = ctrl.commandedManeuver;

// don't force until commanded again

ctrl.commandedManeuver = FALSE;

currentManeuver = TRUE;

}
}

// occurs only if maneuver was unterminated

else if (currentManeuver)

*fTerminate = TRUE;

} // not PADS master

} // if (fReady)

i
#endif

B.3.5 SCI multi-type modules

It is possible to combine multiple module types into a single function call, or to bypass

one or more module types. The source code for the following SCI multi-type module

is included for reference and clarification purposes. A description of this module is

given in Section 4.3.7.

multi-type/thrusterstimed. c

#ifndef INCLUDETHRUSTERSTIMED

#define INCLUDETHRUSTERSTIMED

void thrusters.timed(

long thrusters,

float onTime)

{
int i;

for (i=O; i<12; i++)

{

// thruster numbers to fire

// commanded on-time

// cycle through thrusters

if (thrusters & (1 << i))

150

{
if (ctrl.maneuverTime < (thrTime+THRDELAY))

prop.thrusters[i] = THRDELAY

+ (int) (1000.0*(thrTime - ctrl.maneuverTime))

}
}

}
#endif

B.3.6 Control housekeeping algorithm

The standard control interface is built on a foundation provided by a controller house-

keeping algorithm. The housekeeping algorithm is described in Section 4.5, and is

implemented in the function cint02() in control. c.

<SPHERES>/tests/<testname>/control. c

/* */

/* DIRECT CONTROL INTERFACE USERS: */
/* Replace the contents of c_int02() with your own code. */

/* */

// these files are required for default station-keeping

#include "../../commands/regulate.c"

#include ". ./. ./controllers/control-attitudeNLPD.c"

#include "../../controllers/controlpositionPD.c"

#include ". ./. ./mixers/mix-simple.c"

#include ". . /. ./terminators/terminateholdvel. c"

#include "../../terminators/terminate-elapsed.c"

/* * * * * * * * * * * * * * */

/* Control interrupt routine */

/* * * * * * * * * * * * * * * */

void cint02()

{
unsigned char data[1];

// exit if control is not enabled

if (!ctrl.fDoControl)

{

151

dbug.blinkType = LEDBLINKFAST;

return;

}

NESTINTO; // enable nested interrupts

respond to forced maneuver commands from other spheres

(ctrl.forcedManeuver &&

(ctrl.forcedTime != WAITFORTERMINATION))

if (sys.spheresTime >= ctrl.forcedTime)

{
// prepare for a new maneuver

ctrl.fTestDone = FALSE;

ctrl.fTerminate = FALSE;

ctrl.fManeuverReset = TRUE;

ctrl.maneuverTime = 0.0;

// set commanded maneuver number

if (ctrl.forcedManeuver == NEXTMANEUVER)

ctrl.maneuverNum++;

else

ctrl.maneuverNum = ctrl.forcedManeuver;

// don't force until commanded again

ctrl.forcedManeuver = FALSE;

(ctrl.fTestReset)

ctrl.fTestReset

ctrl.fTestDone

ctrl.fTerminate

ctrl.testTime

ctrl.maneuverTime

ctrl.maneuverNum

// if new test

FALSE;

FALSE;

FALSE;

0.0;

0.0;

1;

// null residual velocity and

if (ctrl.fTestDone)

{

//-
//
//-
//-
//-
//

clear
clear
clear
reset
reset
start

new test flag

test done flag

termination flag

elapsed test time

elapsed maneuver time

with first maneuver

disable control

// regulate about initial state

152

if

{

}
}

if

I

}

regulate();

control.attitudeNLPD(0.10, 0.04);

control.positionPD(0.5, 0.2);

mixsimple(20);

terminate-hold-vel(&ctrl.fTerminate,

1.0,

2.0);

terminateelapsed(&ctrl.fTerminate,

10.0);

// termination flag

// velocity threshold

// threshold hold time

// termination flag

// timeout

// track elapsed time

ctrl.maneuverTime += 1.0/(float)controlFrequency;

ctrl.testTime += 1.0/(float)controlFrequency;

if (ctrl.fTerminate)

{
ctrl.fDoControl

ctrl.fTerminate

ctrl.fTestDone

ctrl.maneuverTime

ctrl.testTime

UNNESTO;

return;

}
}

FALSE;

FALSE;

FALSE;

0.0;

0.0;

// disable control

// clear termination flag

// clear test done flag

// reset elapsed maneuver time

// reset elapsed test time

// stationkeep if no start command has been received

else if (ctrl.testNum == 0)

{
// regulate about initial state indefinitely

regulate();

control-attitudeNLPD(0.10, 0.04);

control-positionPD(0.5, 0.2);

mixsimple(20);

UNNESTO; // disable nested interrupts

return;

}

// process module sequences in the current maneuver

else

{
dbug.blinkType = LEDBLINKCONTROL;

153

do-maneuver(ctrl.testNum,

ctrl.maneuverNum,

ctrl.maneuverTime

&ctrl.fTerminate,

&ctrl.fTestDone);

}

// if maneuver was terminated

if (ctrl.fTerminate)

{
ctrl.fTerminate = FALSE;

ctrl.maneuverTime = 0.0;

// test number

// maneuver number

// elapsed maneuver time

// maneuver termination flag

// test finished flag

// check to see if specific maneuver was commanded

if ((ctrl.forcedManeuver) &&

(ctrl.forcedTime == WAITFORTERMINATION))

{
ctrl.maneuverNum = ctrl.forcedManeuver;

ctrl.forcedManeuver = FALSE;

ctrl.nextManeuver = FALSE; // forced takes preference

}
else if (ctrl.nextManeuver)

ctrl.maneuverNum = ctrl.nextManeuver;

ctrl.nextManeuver = FALSE;

}

// otherwise increment maneuver number

else

ctrl.maneuverNum ++;

}
else // increment elapsed time

ctrl.maneuverTime += 1.0/(float)ctrl.controlFrequency;

// if test has completed

if (ctrl.fTestDone)

{
data[0] = DATATESTDONE; // notify laptop of status

send-command(GROUND, sys.spheresTime, 1, data);

ctrl.fTerminate = FALSE;

ctrl.testNum = 0;
ctrl.maneuverTime = 0.0;

// clear termination flag

// set default test number

// reset elapsed maneuver time

154

= 0.0; // reset elapsed test time

// change to known good control frequency

ctrl.controlFrequency = TESTDONECTRLFREQ;

else

ctrl.testTime +=1.0/(float)ctrl.controlFrequency;

UNNESTO; // disable nested interrupts

return;

}

/* */

/* finderror(...) is called by the command module */
/* to calculate the state error vector

/* */

void find-error(float *error, float *state, float *target)

{
int i;

// elements of the various quaternions

float ql,q2,q3,q4, qld,q2d,q3d,q4d;

for (i=POSX; i<=VELZ; i++)

error [i] = target [i] - state [i];

for (i=RATEX; i<=WDOTZ; i++)

error [i] = target [i] - state [i];

// desired quaternion

qid = target[QUAT-1];

q2d = target[QUAT_2];

q3d = target [QUAT-.3];

q4d = target EQUAT_4];

// current quaternion

q1 = state[QUAT_1];

q2 = state[QUAT-2];

q3 = state[QUAT_3];

q4 = state[QUAT_4];

155

ctrl.testTime

// error quaternion

error [QUAT_1] = -ql*q4d - q2*q3d + q3*q2d + q4*qld;

error[QUAT_2] = ql*q3d - q2*q4d - q3*qld + q4*q2d;

error[QUAT_3] = -ql*q2d + q2*qld - q3*q4d + q4*q3d;

error[QUAT_4] = ql*qld + q2*q2d + q3*q3d + q4*q4d;

quat.normalize(&error[QUAT_1]);

}

156

Appendix 7r

Sphere Paper Cutout Model

This appendix contains a flight sphere paper cutout model. To make your own paper

sphere model, follow these directions. Allow yourself at least an hour, as it's harder

than it looks to make it fit together cleanly.

1. Photocopy this page

2. Cut along all dark lines, and fold along straight light lines (the lines connecting

sides and tabs).

3. Attach tabs to the insides of the sides with glue (this is the hard part).

Congratulations! You now have yourself a sphere. Now make two more and you can

perform your own formation flying experiments.

-X

-Y +Z +Y

+X

157

158

Bibliography

[1] Simon L. Altmann. Rotations, Quaternions, and Double Groups. Oxford Science

Publications. Cambridge University Press, 1986.

[2] C. A. Beichman, N. J. Woolf, and C. A. Lindensmith, editors. The Terrestrial

Planet Finder (TPF): A NASA Origins Program to Search for Habitable Planets.

JPL Publication 99-3, 1999.

[3] BEI Systron Donner Inertial Division. BEI GYROCHIP II micromachined an-

gular rate sensor. http://www.systron.com/pdfs/GyroIIDS.pdf, 21 March 2002.

[4] Allen Chen, Alvar Saenz-Otero, Mark Hilstad, and David W. Miller. De-

velopment of formation flight and docking algorithms using the SPHERES

testbed. AIAA/Utah State University Conference on Small Satellites, August

2001. SSC01VIIIA-2.

[5] Allen Chen. Propulsion system characterization for the SPHERES formation

flight and docking testbed. Master's thesis, Massachusetts Institute of Technol-

ogy, Department of Aeronautics and Astronautics, June 2002.

[6] John L. Crassidis, Stephen F. Andrews, F. Landis Markley, and Kong Ha. Con-

tingency designs for attitude determination of TRMM. NASA Goddard Space

Flight Center.

[7] D. B. DeBra. Pulse modulators. Unpublished lecture notes for AA 277, Stanford

University.

159

[8] John Enright. A Flight Software Development and Simulation Framework for Ad-

vanced Space Systems. PhD dissertation, Massachusetts Institute of Technology,

Department of Aeronautics and Astronautics, June 2002.

[9] Lawrence Fallon, III. Spacecraft Attitude Determination and Control, volume 73

of Astrophysics and Space Science Library, appendix D, pages 758-759. Kluwer

Academic Publishers, Dordrecht, Holland, 1978.

[10] Philip Ferguson and Jonathan P. How. Formation flying experiments

on the ORION-Emerald mission. http://www.mit.edu/people/jhow/orion/

space2001. latest2.pdf, 2001.

[11] D. Folta, L. Newman, and T. Gardner. Foundations of formation flying for

mission to planet Earth and new millenium. AIAA-96-3645-CP, 1996. NASA

Goddard Space Flight Center.

[12] Arthur Gelb, editor. Applied Optimal Estimation. MIT Press, 1974. The Tech-

nical Staff, The Analytic Sciences Corporation.

[13] Honeywell International Inc., Inertial Sensor Products Redmond. Q-Flex

QA-160/185 Accelerometer. http://www.inertialsensor.com/docs/qa-t160.pdf,

21 March 2002.

[14] Peter C. Hughes. Spacecraft Attitude Dynamics. John Wiley & Sons, Inc., New

York, 1986.

[15] F. Landis Markley and Daniele Mortari. How to estimate attitude from vector

observations. In Astrodynamics 1999, volume 103, pages 1979-1996, 1999. AAS

99-427.

[16] F. Landis Markley and Daniele Mortari. New developments in quaternion es-

timation from vector observations. In The Richard H. Battin Astrodynamics

Symposium, volume 106, pages 373-393, 2000. AAS 00-266.

160

[17] Microsoft Corporation. MSDN Library Visual Studio 6.0. Sample projects:

namepipe/npserver/server32.dsp, namepipe/npclient/client32.dsp, 2000.

[18 David W. Miller et. al. SPHERES critical design review, February 2002.

[19] Andrew D. B. Radcliffe. A real-time simulator for the SPHERES formation

flying satellites testbed. Master's thesis, Massachusetts Institute of Technology,

Department of Aeronautics and Astronautics, June 2002.

[20] Alvar Saenz-Otero, Allen Chen, David W. Miller, and Mark Hilstad. SPHERES:

Development of an ISS laboratory for formation flight and docking research.

IEEE Aerospace Conference, 2002. 0-7803-7231-X/01.

[21] Alvar Saenz-Otero. The SPHERES satellite formation flight testbed: Design and

initial control. Master's thesis, Massachusetts Institute of Technology, Depart-

ment of Electrical Engineering and Computer Science, August 2000.

[22] Malcolm D. Shuster. Maximum likelihood estimation of spacecraft attitude.

Journal of the Astronautical Sciences, 37(1):79-88, January-March 1965.

[23] Stanford University. Emerald mission requirements document, revision 5.0.

http://ssdl.stanford.edu/Emerald/mission/pdf/Mission-Reqs.PDF, Dec 1999.

[24] University of Washington. ION-F/UW Dawgstar critical design review: Session I.

http://www.aa.washington.edu/research/dawgstar/docs/ppt/session1.ppt, July

2000.

[25] Grace Wahba. A least squares estimate of satellite attitude. SIAM Review,

7(3):409, 1965. Problems and Solutions, Problem 65-1.

[26] James R. Wertz. Spacecraft Attitude Determination and Control, volume 73

of Astrophysics and Space Science Library. Kluwer Academic Publishers, Dor-

drecht, Holland, 1978.

161

