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Abstract

Among the reforms adopted by the MIT Aeronautics and Astronautics department to con-
verge toward the Conceive, Design, Implement and Operate initiative (CDIO) was the
intention to develop a Design Environment for Integrated Concurrent Engineering (DE-
ICE) to be used by MIT students and faculty in future design classes. This thesis describes
the work done by the DE-ICE team, a group of MIT Master of Engineering students who
took up this challenging design project. Two main goals were identified: 1) to develop rec-
ommendations for the architecture of the design environment and 2) to discover a key
enabler of the system and to design a prototype of the key enabler.

A systems engineering process was followed throughout the project to maintain the trace-
ability between the architecture recommended, the prototype developed and the initial
departmental needs. The team benchmarked existing design processes, systems and facili-
ties like Jet Propulsion Laboratory’s Project Design Center, Aerospace Corporation’s Con-
cept Design Center, TRW’s Integrated Concept Development Facility and Caltech’s
Laboratory for Spacecraft and Mission Design. Interviews with faculty, an analysis of
pilot design courses and a survey of students’ and faculty’s design experience were per-
formed to develop the departmental needs for DE-ICE. Technical requirements were iden-
tified and mapped to the needs using a Quality Function Deployment matrix. A use case
study and a product matrix were utilized to identify design implementations, from which
three architecture variants were developed and evaluated using Pugh’s matrix. A final
architecture combining elements of the three variants was recommended to the Depart-
ment.

The On-Line Teaching Assistant (On-Line TA) was identified as the key enabler of DE-
ICE. A prototype of the On-Line TA was designed and its functionality is described using
Functional Flow Diagrams. Interfaces developed for the demonstration are illustrated.
Finally, a system implementation plan for both the recommended architecture and the On-
Line TA is presented.
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Operating System
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QFD
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SEMP
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SST
STEP
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SVGA
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TELEP
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TRW
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Preliminary Design Review
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Systems Engineering Management Plan
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Virtual Network Computing

Variational Simulation Analysis

Virtual Stochastic Life Cycle Design Environment
Wing Multi-Disciplinary Optimization

World Wide Web

17



18



Chapter 1

Introduction
1.1 Chapter Overview
Over the past few years, the MIT Aeronautics and Astronautics (A/A) department has
developed a Strategic Planning process to determine the future direction of aerospace
engineering education. With input from industry, alumni, and faculty, the strategic plan
leads to a series of curricular reforms to alter the way engineering is taught in the A/A
department. It embraces the notion that engineering education should be in the context of
Conceive, Design, Implement and Operate (the CDIO initiative). Infrastructure modifica-
tions leading to the development of a new laboratory for education were proposed.
Among the aspects of the strategic plan was the intention of the A/A department to
conceive a Design Environment for Integrated Concurrent Engineering (DE-ICE) to be
used by students and faculty in future design classes. The challenge was posed to a group
of Master of Engineering (MEng) students in Aerospace Engineering, who accepted the
task of designing and creating a prototype of DE-ICE. The project was conducted during
the Spring 2000 term. This report gives a full description of each of the succeeding steps
of the project. It covers every step from the research of existing systems to the identifica-
tion of the key design drivers, the architecture of the system and the development of a

component of the design environment.

The current chapter provides an overview of the main factors that led to the DE-ICE
project: the CDIO reform, the Microsoft I-Campus project and the development of the

Learning Laboratory for Complex Systems.

1.2 CDIO: The Context of Engineering Education

During the development of the Strategic Planning process, it was realized that education
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must consider the holistic view of the engineering process. According to industry, success-
ful engineers are those who not only understand the fundamentals of engineering science,
but combine knowledge of the fundamentals with the following skills:
¢ Understanding of multi-disciplinary design and the manufacturing process
* Ability to manage, to work in teams, and to communicate efficiently
* Ability to operate systems
* Possession of high ethical standards
* Appreciation of the forces at work in a commercial context
The aerospace industry now conceives, designs, implements, and operates very large
and complex engineering systems. The A/A department has expanded its mission to better
prepare engineers for success and leadership in the Conception, Design, Implementation
and Operation of aerospace and related engineering systems. A new integrated education
will be created whose goals are (see Crawley [25]):
1. To educate students to master a deep working knowledge of the technical funda-
mentals
2. To educate engineers to lead in the creation and operation of new products and sys-
tems
3. To educate future researchers to understand the importance and strategic value of
their work
The plan to implement the CDIO goals is composed of four strategic components (see

the Microsoft Proposal [26]):

1. Reforming curriculum and pedagogy, involving the creation of the CDIO syllabus -
a detailed listing of the skills and attributes desirable in a young engineer (see Figure

1.1, and also Appendix A for the entire syllabus)
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2. Developing a better understanding of technical learning as the basis for educational
assessment and improvement
3. Improving faculty competence, in order to develop a cadre facile in the skills of
modern engineering practice
4. Building the enabling infrastructure, the new Learning Laboratory for Complex
Systems, with new meeting, working, and learning spaces
The vision of this reform is to provide students with an education that stresses the fun-
damentals, and is focused on real-world systems and products. This is provided by the
development of innovative educational programs and pedagogy, and the creation of new
research opportunities having the CDIO of engineering systems and products as their edu-
cational context. To complement classroom instruction, there will be more open-ended
problems, laboratory design-build experiences and student projects leading to the opera-
tion of actual aerospace systems. The exercises will be based on authentic activities to
build a rich and deep understanding of the concepts and the system development process.
More students will be trained in the arts of architecting and integrating:
Architecting:
* Translating the requirements into a system concept
* Visualizing varying designs
Integrating:
* Combining the many subsystem elements into larger systems
* Designing for proper interaction and interdependence among the subsystem ele-

ments
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1.1 Knowledge Of
Underlying Sciences

[ 1. TECHNICAL KNOWLEDGE ]

& REASONING
1.2 Core Engineering 1.3 Professional Engineering
Fundamental Knowledge Knowledge And Skills
2.1 Engineering Reasoning 2.2 Experimentation And
And Problem Solving Knowledge Discovery

[ 2. PERSONAL AND PROFESSIONAL }
SKILLS AND ATTITUDES

2.3 System 2.4 Personal Skills 2.5 Professional Skills
Thinking And Attitudes And Attitudes

3.1 Multi-disciplinary
Teamwork

[ 3. INTERPERSONAL SKILLS:
TEAMWORK AND COMMUNICATION

l 3.2 Communications l

4.1 External And 4.2 Enterprise And
Societal Context Business Context

4. CONCEIVING, DESIGNING, IMPLEMENTING AND OPERATING
SYSTEMS IN THE ENTERPRISE AND SOCIETAL CONTEXT

4.3 Conceiving And
Engineering Systems

[ 4.4 Designing J [ 4.5 Implementing ] 4.6 Operating

Figure 1.1: Schematic representation of the CDIO syllabus main skills (see Appendix A)

1.3 The Learning Laboratory for Complex Systems

To understand abstract concepts, some learners must manipulate real and concrete objects.
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Piaget terms these people “concrete operational” learners (see Wankat [1]). Based on that
principle, a key element for delivering successful CDIO projects and enhanced learning is
the creation of an environment where multidisciplinary teams can meet and work in real-
time (both physically and virtually). The Learning Laboratory for Complex Systems (see
Figure 1.2 and Figure 1.3) is one of the main components of the A/A department strategic
plan to implement the CDIO initiative. Multidisciplinary teams, composed of both faculty
and students in a supportive environment, must have the capability to integrate engineer-
ing, manufacturing, business and management factors in their group process. The labora-
tory, designed to be an inviting and stimulating space that allows students to experiment
with many “true-life” variables not always reflected on paper, is organized around the con-
text of CDIO (see section 1.2) and includes:

* A modernized state-of-the-art aerospace engineering library

* A state-of-the-art Design Environment for Integrated Concurrent Engineering

* Workshops, including the “Instrumentation Laboratory”

* A new network

* A new vehicle operations area

» Refurbished wind tunnels

* A totally integrated data communications and computational infrastructure for
improved design and teamwork
* Social spaces for students to relax, meet and have fun
The laboratory has the capacity to support 300 people working on multiple projects,
classes, and informal activities. It enables students to have access to the computational
tools and information resources they need from anywhere in the world. It has the ability to

evolve in response to the demands of educational models the Institute follows.
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Figure 1.2: The Learning Laboratory for Complex Systems

Conceive

- Design
n Implement
& Operate

[ suiding systems

Figure 1.3: Description of the Learning Laboratory for Complex Systems
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1.4 The Microsoft I-Campus Project

To succeed in the reform and in the implementation of the Learning Laboratory, the A/A
department has decided to build an alliance with world-class companies both in the con-
ducting of the educational experiments and in the evaluation and feedback that will guide
the endeavour. Under the MIT/Microsoft alliance named I-Campus, a partnership to forge
a new model of university engineering education is proposed. The I-Campus effort in the
A/A department is entitled Active Learning Tools to Enrich Engineering Education (D.
Newman et al., January 2000) and is a joint program with the Civil and Environmental
Engineering department. There are three major areas of collaboration under the I-Campus
effort in the A/A department (see the Microsoft Proposal [26]):

* Education in distance collaboration for design supported by Information Technology

am)
* Learning-based education and educational assessment

* Active learning through IT simulations for education

The first phase of the I-Campus effort involved 1) the experimental use of distance
collaboration in two graduate design courses and 2) the development of DE-ICE. The
design courses were 16.89 Space Systems Engineering and 16.982 Aircraft Systems
Design. DE-ICE, the subject of this report, is going to be a major enabler of the Learning
Laboratory for Complex Systems. The objectives of the I-Campus effort are 1) to under-
stand the educational benefits (if any) of having students work in a non-collocated design
environment, and 2) to develop the necessary infrastructure and architecture proposed in

DE-ICE while collaborating with industry.

1.5 The Design Environment for Integrated Concurrent Engineering
(DE-ICE)

The idea of developing DE-ICE as part of a Master of Engineering team-oriented design

25



project originated in Fall 1999. The DE-ICE project fully supports the CDIO philosophy
developed by the A/A department and provides the tools and facilities that will help the
students to understand the complex and iterative nature of designing a product, and the
global effects of design decisions. This project was seen as a good opportunity for MIT A/
A graduate students to participate in the reform program of the A/A department and to

gain expertise in the conception of design centers.

Table 1.1: DE-ICE mission statement

Description To develop an operational framework for a design center to enhance
learning in an academic environment.

Context DE-ICE will be used in an academic environment to enhance the
learning of the process of conception, design, implementation, and
operation of complex aerospace systems.

Goals To develop recommendations for | To discover a key enabler of the
the architecture of the design system and develop a compo-
environment. nent.

Users Internal: Possible external users:

MIT Students Guest lecturers
Teaching Assistants Industry representatives
Faculty

Staff

Assumptions The system should utilize mature | The system will use existing
technologies. computer hardware.

Stakeholders End Users (MIT students)

MIT A/A department
Microsoft Corporation
Industry

The DE-ICE mission statement is to develop an operational framework for a design
center to enhance learning in an academic environment (see Table 1.1). It was established
by the team members with the help of faculty and staff. The primary design classes in the
A/A department using this kind of environment are 16.00 Introduction to Aerospace and

Design, 16.423J Aerospace Biomedical and Life Support Engineering, 16.621 Experimen-
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tal Projects I, 16.622 Experimental Projects II, 16.684 Experimental Capstone Subject,
16.82 Flight Vehicle Engineering, 16.83 Space Systems Engineering, 16.89 Space Sys-

tems Engineering and 16.982 Aircraft Systems Engineering.

1.6 The Team
The three students participating in the project were all involved in the A/A department

MEng program. Those students were Bruce Farnworth, Alex Manka and Simon Nolet.
The thesis advisors were Professor Dava J. Newman (Microsoft I-Campus Coordinator),
Professor Charles W. Boppe (MEng Program Supervisor) and Cory R. A. Hallam (Project
Manager of the Learning Laboratory for Complex Systems). Professor Edward F. Crawley

(Head of the A/A department, CDIO creator) was also involved in the project.

The following people from industry participated to the project and were present to the
reviews: Steve White (Microsoft), Dave Mitchell (Microsoft), Dr. Billy Fredriksson

(SAAB), Dr. Robert Shishko (NASA-JPL) and Professor Joel Sercel (Caltech).

1.7 Thesis Roadmap

This thesis is divided in the following sections. The results of benchmarking existing sys-
tems and design processes are presented in chapter 2. Then, an education needs study for
DE-ICE is achieved in chapter 3, followed by the design requirements establishment in
chapter 4. The architecture study of the design center is accomplished in chapter 5. Chap-
ter 6 concerns the work done to select a key enabler of DE-ICE and to design a prototype
of that key enabler. Finally, chapter 7 presents a system implementation plan and the rec-

ommendations for future work.

The final schedule of the project showing the activities performed during the Spring

2000 semester is illustrated in Figure 1.4.
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Chapter 2

Benchmarking Existing Systems and Design Processes
2.1 Chapter Overview

Recently, the development of new communication and computing technologies has
allowed new ways of studying and practicing engineering. It is now possible for people to
attend classes from their home or work place, to participate in meetings involving col-
leagues from all around the world, and even to participate in complex designs from distant
locations and keep track of the design evolution in real-time.

The purpose of this chapter is to give an overview of existing research and experience
acquired by academia, government and industry both in integrated concurrent design and
in distance collaboration. Examples of design centers established in industry and govern-
ment are given, with specific details on the ones that have been visited for this research

effort. An analysis of the various design processes used is made.

2.2 Literature Review

This section provides background literature on integrated concurrent engineering, engi-
neering education, and distance collaboration. Experiences and research achieved by
industry, government and academia are highlighted. The four subsections of interest for
the development of DE-ICE are: 1) teaching engineering design and active learning, 2)
facilities and technologies for teaching engineering design, 3) teaching distance courses
and distance collaboration, and 4) integrated concurrent engineering in industry and gov-

ernment.

2.2.1 Teaching Engineering Design and Active Learning

Aerospace engineering education has evolved in the last decade. Now, the objective is to
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prepare aerospace engineers to deal with more and more complex problems while cutting
cycle time of development and system costs. NASA has already adopted the philosophy of
time and cost reduction (see Goldin {2]). The MIT A/A department reform toward the
CDIO initiative is a good example of academic evolution focusing on systems engineer-
ing, design processes and information technology. Slocum [3] mentioned that “If each
engineer understands the structure of the design process and what other members of the
team have to do, he or she will be less likely to cause problems that adversely affect the
project.” There are numerous examples of engineering departments in academia modify-

ing their curriculum over the last decade to respond to this need from industry.

The Wearable Computer Design course at the Engineering Design Research Center
(EDRC, Carnegie Mellon University) is a good example of engineering education evolu-
tion. It involves students from four colleges in nine disciplines spread throughout five
engineering departments. This class serves as a testbed for learning about multi-disciplin-
ary design teams, geographically-distributed design teams, product design, design pro-
cesses, design tools, design methodologies and multi-semester courses (see Amon [4]). It
begins in the Fall semester with the high-level specifications for a wearable computer, and
it ends in the Spring semester with the evaluation of the prototype. Students are assigned
to groups and each group designs a subsystem. To improve the design of new products, the
design process is recorded through WWW pages, electronic bulletin boards and phase
reports. That allows further analysis and evaluation. Lectures and milestone meetings
(brainstorming sessions, design reviews and phase report presentations) are archived as
well (videotaped). Capturing the history of the project provides feedback and recommen-

dations for use in future courses and for research efforts.

Promoting Active Learning is one of the objectives of the CDIO reform in the A/A

department. DE-ICE helps to achieve this objective by giving access to tools and hardware
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that enable active learning activities. Richards, Gorman, Scherer and Landel from the Uni-
versity of Virginia provide explanations of active learning through case studies (narrative
account of a situation, problem or decision) and instructional modules (open-ended prob-
lems); see Richards [5] for more details. Two graduate design classes held at MIT in the
A/A department during the Spring 2000 semester are other examples of case studies and
instructional modules. Space Systems Engineering (16.89) involved the design of a satel-
lite constellation around Mars to provide navigation and communication to Mars ground
assets. Aircraft Systems Engineering (16.982) involved business case studies around the
implementation of a very large aircraft. These are the kind of activities to be performed in

DE-ICE.

Other activities promoting active learning can be found in Linder [30]. They are classi-
fied in four categories: engaging students with subject material, developing interactions
among students, developing faculty-student interaction, and incorporating engineering
practice. Simulations and games are other variations of active learning activities that can
be integrated in engineering classes. The multimedia format has the potential to help stu-
dents better assimilate knowledge through illustrations and simulations. Engineering cases
can involve significant graphical information and numerical data; therefore, DE-ICE facil-

itates these features.

2.2.2 Facilities and Technologies for Teaching Engineering Design
Through its Aerospace Systems Design Laboratory (ASDL), the Georgia Institute of Tech-

nology developed the Virtual Stochastic Life Cycle Design Environment (VSLCDE). The
purpose of the VSLCDE is “to facilitate design decision-making over time (at any level of
the organization) in the presence of uncertainty, allowing affordable solutions to be
reached with adequate confidence” (see Mavris [6]). It was developed after considering

the Integrated Product and Process Development (IPPD) concept, which suggests that
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downstream manufacturing related issues should be considered in early design phases
along with product performance. The five elements composing the VSLCDE (problem
formulation/uncertainty modeling, physics-based life cycle modeling, integration, deci-
sion making and decision support) are described in Figure 2.1. A design project typically

starts with activities being done concurrently in these five elements.
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Technology Readiness/Risk
Library of Uncertainty Model
Probabilitics or Possibilistic Dists.
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Figure 2.1: The Georgia Institute of Technology’s VSLCDE (see Mavris [6])

VSLCDE uses an Internet-enabled design framework called IMAGE (Intelligent
Multi-Disciplinary Aircraft Generation Environment). IMAGE is a modular, distributed
computing architecture used to assist in design activities. It provides functions for posing
design problems, for assembling necessary analyses to tackle them and to execute them. It
is an implementation of a complex synergism among information, process and architec-

ture theory. Using IMAGE, a designer can build application-based scenarios to investigate
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a variety of engineering systems. The main features and capabilities of IMAGE are (see

IMAGE web site [7]):
* A portable Graphical User Interface
* An easy-to-use, graphically driven, object-oriented modeling system
* A structured scheme for integrating analysis
* A plug-n-play mechanism for coupling analysis tools

* A mechanism for running codes on multiple platforms using comprehensive agent

technologies
* A method to export a design built in IMAGE to the Web
* A sound environment

At MIT’s Computer-Aided Design Laboratory, Center for Innovation in Product
Development, the Distributed Object-based Modeling Environment (DOME) is under
development. DOME is used for the modeling and evaluation of product design problems
in a computer network-oriented design environment using a standard network communi-

cation protocol. The DOME framework is intended to (see Pahng [8]):

* Integrate designer-specified mathematical models for multi-disciplinary and multi-

objective design problems

* Provide the ability to rapidly construct integrated design problem models to facilitate

collaborative design work
» Improve product quality while reducing development time

* Allow specialized engineering applications and design problem models to operate

under a common design environment

* Provide a context in which large problems can be modeled through the aggregation
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of subproblems.
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Figure 2.2: DOME’s distribution of the modeling resources for a particular scenario (see
Pahng [8])

As modern and hi-tech as the new design facilities like the VSLCDE or design frame-
works like IMAGE and DOME are, some authors insist on simple and basic hints and
techniques that have proven to be very useful over the last decades. Slocum [3] proposes
simple but interesting suggestions for design engineers, including reference books (see
Appendix B) and useful design materials to do quick solid representations of ideas (card-
board, modeling clay, Styrofoam, foam rubber, paper clips, etc.). These suggestions
should be considered when conceiving DE-ICE. A common error is to forget about the

educational benefits of simple solid modeling. Often the best results are obtained from a
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balanced mix of analysis and experimentation, whether facilitated with modern technol-
ogy or not. Students should be taught to keep an open mind, and to gather data in the
quickest, most efficient, and most accurate method possible. Table 2.1 highlights design
functions that are best accomplished by humans and computers. Having a good combina-
tion of human and computer tasks supports human strength, compensates for human

weaknesses and produces good synergy in design.

Table 2.1: Design functions that are best performed by computers and humans (see Neff

(9D
Computers Humans

- Make complex calcula- - Generate innovative solu-
tions quickly tions to difficult prob-

- Organize and store large lems
amounts of informations | - Apply technical judge-

- Communicate critical ment borne of long
design information experience in engineer-
quickly (when in a net- ing design
work)

2.2.3 Teaching Distance Courses and Distance Collaboration

With better technologies now available, it is possible for people to attend classes from
their home or work place, to participate in meetings involving colleagues from all around
the world, and even to participate in complex designs from distant locations. A mode of
teaching to distance students that could be eventually used in DE-ICE is through the Inter-
net. A distance teaching experience has been piloted at the University of New Hampshire
during the 1998 Spring semester under the Far View Program (see Williamson [10]).
Courses were given through the Internet to on- and off-campus students. The software
used was LearnLinc developed by Interactive Learning International Corporation
(ILINC). It produced only real-time audio with textchat capability for feedback and ques-

tions, and whiteboard capability to display and annotate Microsoft PowerPoint slides. The
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conclusions and recommendations collected were very similar to the ones made at MIT
following two design classes (see Nolet [31]). Learners appreciate the opportunity to inter-
act with practicing engineers and with graduate students from other universities not avail-
able otherwise. The unreliability and the limitations of the technology were seen as the
major drawbacks. Productive interaction between the lecturer and the students was seen as
a real challenge, especially considering the lack of video. Another obstacle is the different
pedagogical approach distance teaching requires. As mentioned in Nolet [31], more prepa-
ration from faculty is necessary to put the class material in an electronic form. This is
especially true the first time a course is given to distance students. This extra preparation
work certainly results in higher quality presentations than could be obtained in a tradi-
tional lecture (see Williamson [10]).

Interesting results have been collected from a survey made in industry by the Univer-
sity of York (see Brooks [32]). The analysis of the results from industry shows that the
most popular personal learning tool is interactive PC and video (far ahead of On-line
Internet trainiﬁg and virtual reality). Most organizations responding had an E-mail system
but not a conferencing facility, and believed that E-mail was a very effective form of com-
munication.

Some facilities are already in place at MIT to allow distance collaboration and dis-
tance teaching. The Center for Advanced Educational Services (CAES) has already con-
ducted a few classes concurrently with other universities like the National University of
Singapore and the Nanyang Technological University. The CAES experience shows the

high interest generated by the program (see Larson [33]).

2.2.4 Integrated Concurrent Engineering in Industry and Government

The Air Force Research Laboratory in collaboration with Georgia Institute of Technology
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developed a Conceptual Aerospace Systems Design and Analysis Toolkit (CASDAT) to
provide assessment capability for future military aircraft systems. Interesting lessons
learned from implementing and exercising the CASDAT framework are quoted here (see
Hale [11]):

» Modules should be integrated by task or functionality (module capabilities) and not
by programs (software tools used). Often, frameworks are measured by the number
of analysis tools that are integrated. More importantly, the capability to perform
user-defined tasks should be considered instead.

* An accurate parameterized geometric modeler is needed. The model must be para-
metric (overall geometry defined by easily changeable parameters) so that the con-
figuration can be automatically updated during the use of iterative design
procedures. Accuracy is required because the model is translated into various for-
mats depending on the disciplinary analysis tools to be employed.

* Disciplinary design software file formats are difficult to integrate. The format and
parameterization of disciplinary analysis tools were found to be strikingly disparate.
Their integration often required translators that resulted in loss of information or that
could function only in a single direction.

* Revolutionary concepts are difficult to analyze using conceptual tools. Physics-based
programs are typically unavailable, but critically needed to handle the intricacies of
revolutionary configurations.

While moving into the next millennium, NASA is expected to face design challenges
similar to those faced by industry: reducing cost (total life cycle cost) and new product
development cycle time, and increasing safety and product quality. Goldin [2] illustrated
the common problem NASA is facing: most of the decisions made early in the develop-

ment process commit about 90% of the cost when only 10% of the knowledge required is
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really understood. And the more cost committed and incurred in the design process, the
less available flexibility there is to make the necessary changes. This results in non-opti-
mized design, and is not as effective as it could be (see Goldin [2]). It is crucial for NASA
to capture design knowledge at each level of the design process before incurring any sig-

nificant costs.

To meet these challenges, NASA is developing an Intelligent Synthesis Environment
(ISE). ISE is used to create a seamless environment enabling new levels of distributed col-
laborative teaming. Through ISE, NASA envisions integration of conceptual design, pre-
liminary design, final design, manufacturing, training, maintenance, operations, risk
assessment, cost and even product disposal. It is hoped that by bringing disciplines
together, NASA will be able to reduce the time to analyze mission design concepts from
six months to two weeks. However, only preliminary design is a concern for now. In fact,
the gap between specialists doing conceptual design and specialists performing detailed
design can be significant (see Table 2.2). The long term goal is to do total end-to-end
product life cycle simulation.

As explained in the following section, some companies that have made the shift
toward integrated concurrent engineering have teams of specialists dedicated only to con-

ceptual design.
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Table 2.2: Differences between conceptual and detailed design (see Neff [9])

Conceptual Design

Problem is:
- Ambiguous
- Uncertain
- Unframed

Detailed Design

Problem is:
- Fairly well defined

Requirements are:

Requirements are:

- “Squishy” - Fairly stable
Challenge is: Challenge is:
- To define the concept - To make the details work

- To create a system that
hangs together

- To consider the system as
a whole

- To use integrated models
to capture ripple effect
through the system

- To work on the different
parts of the system

Many options at system
level

Few options at system
level

Process requires a large
amount of interaction and
coordination

Process can work well with
fair amount of individualis-
tic behaviors coordinated
by a program office

2.3 Site Visits

At the beginning of the semester, site visits were planned to better understand what indus-
try and governmental organizations are pursuing in terms of design centers and Integrated
Concurrent Engineering (ICE). The following companies were visited by MIT DE-ICE
team members: TRW, Aerospace Corporation, JPL, Boeing (Long Beach), and SAAB. A
description of each design facility is given below. A discussion of the different design pro-

cesses used in these facilities is also provided.
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2.3.1 TRW
The first site visited was the Integrated Concept Development Facility (ICDF) at TRW,

Redondo Beach, California. This facility was built to improve design quality and to reduce
conceptual design time, where more than 70% of the decisions affecting the life-cycle cost
are made (see Figure 2.3). One of the requests was to provide one or more conceptual

aerospace vehicle designs (including detailed costs and risk assessments) within a week or

less.

Figure 2.3: The decisions affecting the life-cycle cost of designs throughout the duration
of the design process (see TRW’s presentation [34])
The studies made in the ICDF vary from feasibility studies (10 years ahead of a
project) to preproposal studies (detailed cost estimates). They are executed in real-time by

a collocated team divided into subsystem groups. The key elements of the ICDF are (see

Heim [12]):



* A structured process and a detailed script

* A dedicated team with well defined responsibilities

* A physical environment

* Automated tools, databases, information exchange media, libraries

*» A standard Work Breakdown Structure (WBS) and cost estimating methodology
* A prescribed set of output product templates

The ICDF architecture is illustrated in Figure 2.4 and Figure 2.5. The facility is com-

posed of:
* A main design area to host the design sessions

* A separate conference room where offline meetings can occur without disturbing

people located in the main design area

* A storage library where resource documents, vendor specifications and technical

manuals can be accessed quickly

* A quiet side room that allows subsystem engineers to think through complex issues,

call vendors, or confer with colleagues

Figure 2.4: The ICDF team in action
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Figure 2.5: The ICDF room layout (see TRW’s presentation [34])

The ICDF team is composed of many key members. Table 2.3 describes the design

team roles.

The ICDF uses standard products database and tools for communication to ensure that
all data is accurate, in a standard format, and is manipulated by a consistent and reliable
set of design tools. Tools need to be simple and easy to use so that a backup subsystem
engineer wouldn’t take too much time to learn how to use them. Excel spreadsheets,

Access databases and NetMeeting communications are the most common tools used. The
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information and files generated during the design sessions are accessible at any time

throughout the company.

Table 2.3: ICDF key team members and their roles

Key Members Roles

Facilitator - Keeps the design momentum flowing

- Ensures that the scripted milestones are
met on schedule

- Identifies any potential holdups early

Technical Lead - Monitors the technical progress of the
design

- Verifies that the individual designs of all
subsystems tie together

- Reviews the design at a system level

Subsystem Engineers - Develop specific portions of a design
- Communicate designs to the managers
- Own the data that pertains to specific
design details

Pricing Representative - Provides costing structure and methodol-
ogy for competitive bidding

Systems Manager - Maintains system operations

- Keeps the data current throughout the
design sessions

- Coordinates the system updates

- Works out any software conflicts

- Manages the interfaces between sub-
system tools and the ICDF system tool

Database Manager - Ensures that a consistent format is used
- Ensures that the data values maintained
are current

Figure 2.6 illustrates the process used at TRW to complete a conceptual design study.
The process starts with pre-design meetings where the customer defines the customer
needs, the requirements, and the very top-level architecture. Political issues are discussed
at this point. Then, the design configurations are iterated within the ICDF. This occurs

during three sessions of half a day each. For each session, half a day is also required out-
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side the ICDF to communicate with colleagues, vendors, the customer, etc. A concept
design is the output of the sessions. The process finishes with managers approving the cost
and design of a program. Feedback from the team and the customer is solicited to continu-

ously monitor and improve the process.

~

Figure 2.6: The ICDF process (see Heim [12])

2.3.2 Aerospace Corporation
The second site visited was the Concept Design Center (CDC) at the Aerospace Corpora-

tion headquarters, El Segundo, California. Like TRW’s ICDF, the CDC was conceived to
create and evaluate conceptual designs in a synergistic and concurrent manner, recogniz-
ing the value of the up-front system engineering process to reduce time and cost to

develop new design concepts (see the video produced by Aerospace Corporation [35]).



The CDC is composed of three key elements (see Aguilar [36]):

1. Teams of multi-disciplinary experts

2. Facilities where the customer can interact efficiently with the teams of experts
3. A process for applying innovative design tools to produce quality results quickly

Each team is divided into groups assigned to a subsystem (like communications, ther-
mal, power, etc.). Each group is composed of at least one expert. Systems engineers,
whose role it is to capture internal (subsystems to subsystems) and external (specific con-
straint/requirements to subsystems) system interfaces, are an integral part of the team. The
customer is also part of the team to provide feedback on the mission, goals, and the critical
decisions made during the study. The CDC is mainly used for conceptual design, technol-
ogy insertions and trade space exploration. Experience has shown that this collaborative

design is best suited to system-level issues (see Neff [9]).

The CDC facility is shown in Figure 2.7. The subsystem groups with the most interac-
tion are located next to each other. Overhead projectors are available to project any moni-
tor focusing on specific design aspects. The cost of the facility is estimated at $500,000 for
the first year (implementation), and then about $100,000 per year for maintenance. Four
people are working half time to maintain the facility and the models used.

The tools used in the CDC are: Microsoft Excel for the environment for nearly all of
the modules developed by the specialists, Lotus Notes for communications, and Team
Effectiveness Tool (TET) as a way to regularly check on team dynamics and key CDC
processes. All of these tools are quite simple to use, and experience shows that the success
of a new collaborative conceptual design process is usually inversely proportional to the

time and effort required to learn the information system (see Neff [9]). The CDC does not
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use an extensive database of parts. The main reasons are the difficulty of implementing

and maintaining databases, and the difficulty of convincing people to use them.
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Figure 2.7: The CDC room architecture (see CDC User’s Guide [13])

People at Aerospace Corporation do not have a fully integrated software for their
design sessions since conceptual design does not deal a lot with numbers. They mentioned
the difficulty of development and the fact that by the time the software is running, it is
already obsolete.

The main metric used to evaluate the performance of the CDC is the time taken to pro-
duce a conceptual design for a spacecraft. Overall reductions of 50% to 75% have been
observed. Alternatively, the CDC provided greatly enhanced detail for an equivalent

resource expenditure (see Aguilar [36]).

46



Experience has shown that the human factor is very important in collaborative design.
Some people educated in the traditional way might have trouble dealing with a new inter-
active environment. Team members need to have good human interaction skills as well as
the required technical skills in order to create a productive team that is able to handle the
collaborative environment.

The CDC process is divided into three major milestones:

1. Study Planning (two to eight weeks prior to the CDC session)

During this phase, the systems engineer works with the customer. Together, they
scope the problem and define the statement of work. The team members do inde-
pendent research and analysis, and develop the software they will use in the CDC
session. Political decisions about the design (like the decision of doing a reusable
launch vehicle, for example) have to be made prior to the CDC session.

2. CDC Session (three hours sessions, two to four times)

Fifteen experts divide into subsystem teams to take part in the CDC design ses-
sions. During these sessions, the configuration of the project is generated. The
real-time design uses linked distributed software models on spreadsheets. All the
different subsystem teams work concurrently, and all of the subsystems are linked
to each other through a local file server. A change made to one subsystem affects
others instantaneously. This aspect allows for a rapid check of the impact of a
modification to the overall system. Figure 2.8 shows interactions among the CDC
Space Segment Team (SST) subsystems. A lot of these interactions are verbal
among the engineers. Subsystem interactions not captured electronically are docu-

mented later. The customer is always present at the CDC sessions.

3. Post-Session Activities (up to four weeks after the CDC session)
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The on-going support and the project report, a subsystem component level descrip-
tion of the conceptual system, compose the Post Session Activities (see the video
produced by Aerospace Corporation [35]). It records all the assumptions made
during the design. It is delivered to the customer two weeks after the CDC session
period. Risk and cost are emphasized in the report. A cost section provides not
only a life cycle cost for the entire system, but also a cost-risk analysis (see Aguilar
[36]). The on-going support consists of responding to customer requests for modi-

fications.

Spacecraft Subsystem Interaction
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Figure 2.8: Interactions among the CDC SST subsystems (see Aguilar [36])

2.3.3 Jet Propulsion Laboratory (JPL)
The third facility visited was the Project Design Center (PDC) of the Jet Propulsion Labo-
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ratory (JPL) located in Pasadena, California. PDC was formed to develop, promote and
support the use of concurrent engineering techniques by JPL design teams, especially at
the earliest phases of the design. It employs new processes that take advantage of real-time
computations to explore the design space with all relevant disciplines present (see Smith
[14]). It uses the Concurrent Engineering Methodology, a collection of techniques, lessons
learned, rules of thumb, algorithms, and relationships developed for conceptual space sys-
tem design by Aerospace Corporation. The facility provides similar equipment to the
design centers at TRW and Aerospace Corporation: computers, projectors, audio/video
conferencing, network connection, etc. (See Figure 2.9). It consists of three separate meet-

ing areas used by different design teams.

Figure 2.9: PDC main facility picture (see PDC web site [15])

Two concurrent engineering teams use the PDC: Team-X for space mission design and
Team-I for spacecraft instrument design. Team-X was formed to enable JPL to produce a
larger number of space mission proposals with the same amount of resources under the
new NASA philosophy faster, better, cheaper, adopted in 1992. Cost control in the propos-
als is now as important as mission performance (see Smith [14]). Team-X’s architecture is

illustrated in Figure 2.10.
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The main integrated tools used by Team-X are distributed Excel spreadsheets linked
using the Macintosh utility Publish and Subscribe (utility that allows users to share and
update data in models), a few databases of spacecraft components, distributed documenta-
tion software, graphics software to produce 3-D images and subsystem design tools for

each subsystem. Team-X has a preference for the Macintosh computer platform.
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Figure 2.10: The Team-X room architecture (see PDC web site [15])

The design process is similar to the one at TRW and Aerospace Corporation. The cus-

tomer is present throughout the process. The first step is for the customer to contact the
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Team-X leader for preliminary discussions (desired technical results, desired outputs, cost
model preference, report form, etc.). After an agreement, the first design session begins
with the customer briefing Team-X on the mission and the job requested. Then, the Team-
X leader takes control of the session. A scripted procedure is followed. A minimum of two
sessions of three hours each separated by a few days is always required to complete even
the simplest conceptual design. Complex missions can require up to ten design sessions.
Team-X does not search for optimal designs, but for one that meets all mission require-
ments at acceptable costs and risks. The final report documents the resuits of the concep-
tual design. It is drafted in real-time during the design sessions, and is ready one week
after the final design session.

Team-I was inaugurated to design space instrument concepts instead of space missions
and spacecraft. Space instrument concepts require optical, structural and thermal analyses
during the design. These analyses use high-end design tools: computer-aided drafting,
engineering and manufacturing tools (CAD/CAE/CAM), STEP (Standard for The
Exchange of Product model data) file format, and thermal analysis tools. STEP is a file
format used to represent and exchange digital product information. It covers geometry,
topology, tolerances, relationships, attributes, assemblies, configuration and more. Most of
these tools used by Team-I are Unix-based, while a few of them are PC based. The inte-
grating software is LabView.

To support these more detailed analyses, the concurrent design process was modified.
Significantly more off-line work was added prior to and between the concurrent sessions
to develop and parametrize CAD models, for example (see Figure 2.12). Once the basic
design is captured and parametrized, it can be employed in real-time ICE sessions. This

process could be applicable in some way to more detailed design, like preliminary design.
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Figure 2.11: The Team-I room architecture (see PDC web site [15])
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Figure 2.12: Team-I design process scheduling (see Smith [37])
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The cost of the development of the capabilities necessary for real-time design can be
quite substantial. Developing Team-X capabilities (computers, software and other facility
needs) involved over $1.5 million. Maintenance, operations and upgrades account for

about $500K/year.
The metrics used to evaluate the performance of Team-X are (see Smith [14]):
* Average cost to prepare conceptual mission/spacecraft designs
* Average time to prepare conceptual mission/spacecraft designs
* Number of missions studied per year

The implementation of the PDC, Team-X and Team-I resulted in large improvements
in cost, schedule and team performance during the design process. The principal lesson
learned was the importance of understanding and improving the design process in order to
enhance the productivity of the design teams. Introduction of enhanced software tools or
models were not sufficient to produce the results. Managers play a key role in keeping
everyone focused and on track. Sometimes, too much automation detaches engineers from
how the subsystems are interacting. In the industry context, several months of effort are
often required before any significant benefits can be proven using concurrent engineering

techniques.

2.3.4 Boeing (Long Beach)
The fourth site visited was Boeing in Long Beach, California. The Multi-Disciplinary

Optimization process (MDO) at Boeing (see Figure 2.13) was applied to the design of the
new Blended-Wing-Body (BWB) aircraft concept. This process is different from the ones
used in the three previous companies because it allows a deeper analysis (preliminary
design) of the trade space by optimizing a set of variables using complex optimization

algorithms. Instead of satisfying specific requirements with a distinct airframe part, an
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array of requirements are satisfied with an integrated airframe (see Wakayama [16]). This
process allows for reduced time in the preliminary design from eighteen to three months
by automating the study of design trades at a lower level of detail than the conceptual
design (the concept has already been defined). Designers can handle more degrees-of-
freedom than conventional trade studies at an earlier stage of the design process. It gives a

quantitative assessment of the design objectives and constraints.
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Figure 2.13: MDO process used at Boeing (Long Beach) for wing design

2.3.5 SAAB
The fifth company visited was SAAB in Linkoping, Sweden. SAAB has implemented a

company-wide integrated concurrent engineering process covering the whole life cycle of
a product to reduce cost, time and number of defects in their aircraft industry. Design tools
are distributed and linked throughout the organization. Design centers were created to
allow meetings where Integrated Product Development (IPD) teams work together (see
Figure 2.14). The objectives of the design centers were to (see Farnworth [17]):

* Decrease the time from design to decision

¢ Increase the rate of communication for the IPD team members

» Move decision making down to the lowest level possible
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*» Postpone generating drawings as long as possible

* Capture the design knowledge and carry it forward with the design
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Figure 2.14: The SAAB information system architecture (see Farnworth [17])
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Figure 2.15: SAAB structural analysis and modeling process (see Farnworth [17])
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A structural modeling process used to verify sub-assemblies is illustrated in Figure

2.15. A detailed description of the process and design experience is given in Farnworth

[17].

2.3.6 Caltech Laboratory for Spacecraft and Mission Design (LSMD)
The last site visited was Caltech’s LSMD. Caltech founded the LSMD to provide students

with world class educational opportunities in the emerging field of information system
assisted design and analysis of complex aerospace systems (see the LSMD web site [18]).
The LSMD is used to teach ICE and software development to graduate and undergraduate
students. Like the design centers of JPL, Aerospace Corporation and TRW, the facility is
equipped with computers around the outside of the room, a large whiteboard at one end,
and a large conference table in the middle (see Figure 2.16). The computers are all net-
worked together via a high speed fiber-optic network, and data is stored on the hard drive
of one of the computers which has been set up as a server. The facility is at the same time
a working and a meeting environment. It is possible to display the content of any monitor
on a large screen at one end of the room. Additional capabilities of the facility are two
overhead projectors capable of displaying SVGA and VGA, video conferencing (Polycom
Viewstation), DVD, and telephonic conferencing. All three different computing platforms

(PC, Unix and Macintosh) are available.

Figure 2.16: Caltech’s Laboratory for Spacecraft and Mission Design (LSMD)
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The most important course associated with the LSMD is Ael25 Spacecraft and Mis-
sion Design. This one year class (three terms) is offered to upper division undergraduate
and graduate students. In the class, students learn about the disciplines associated with
aerospace and about how information systems can be used in a multidisciplinary environ-
ment to enhance team productivity. In the first term, students are exposed to all the major
disciplines associated with space flight system and mission design and analysis. The sec-
ond term covers the principles of system engineering and software development for col-
laborative design and analysis. Finally, the third term is a collaborative study in which a
team of students from varied backgrounds work together to develop a complete end-to-
end mission and system architecture, and a conceptual design of a complex system. The
architecture typically includes a business case, a technical design and analysis, and an
implementation plan. During the fifteen weeks of the last trimester, twelve are used for
coding design software module and three for the ICE design study, as opposed to the fif-
teen weeks of design study required prior to the implementation of the LSMD. A total of
fifteen sessions of two to three hours each is generally required to complete the design.

The students flow down a design process to be used during the design sessions each
time the course is given. This process is customized to the specific needs of the project,
but is representative of the ones used in industry for conceptual design. Each workstation
in the LSMD represents a different subsystem. Data exchange between subsystems is
achieved using a spreadsheet software named ICEMaker. ICEMaker was developed under
an Excel environment. It consists of a “publish and subscribe” tool that allows designers to
share and update data in models. ICEMaker is linked to a software named DrawCraft.
DrawCraft is a parametric CAD software under development by Caltech that works in a
SolidWorks environment. It allows for a rapid visualization of a conceptual design of a

spacecraft. It offers templates for common spacecraft components used in conceptual
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design. The geometry is driven by parameters entered in [CEMaker. The STEP file format
is used to interface with CATIA when more detailed drawings are required. The genera-
tion of the requirements is implemented under Unified Modeling Language (UML). UML
is an international standard for software development. Other software tools like Pro/Engi-

neer (ProE), SOAP (for orbital analysis), and Matlab are used as well.

The cost to construct the LSMD was $65,000 with an additional $20,000 for hardware,

and $100,000 for software development. The maintenance cost is $1,000 per month.

Physically, the LSMD, which is representative of a design center used in academia,
has a very similar architecture to JPL’s PDC, TRW’s ICDF and Aerospace Corporation’s
CDC. The software tools used to communicate data are similar as well (linked spread-
sheets). However, since the students are writing their own software each time they take the
class Ae 125 Spacecraft and Mission Design, the LSMD provides more software develop-
ment tools and support (like UML). In industry, the software development phase does not
occur inside the laboratory. The software modules used in the design centers in industry
are customized for a certain type of project (mission design, instrument design, etc.),
while the ones developed by students are customized for a particular project since they

will be used only for that project.

2.4 Study of Design Processes Covering the Entire Life Cycle

This section is intended to present design processes covering the entire life cycle of a
product that could be used in DE-ICE for class purposes. Two design processes were con-
sidered: NASA’s program/project life cycle and Ulrich and Eppinger’s product develop-
ment process. Comparisons are made with the process followed during the Spring 2000

term in the class 16.89 Space Systems Engineering.
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For the management of major systems, NASA uses the program/project life cycle

illustrated in Figure 2.17, which consists of a categorization of everything that should be

done to accomplish a project. Each distinct phase of a project is separated by control gates.
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Figure 2.17: NASA program/project life cycle (see NASA Systems Engineering Hand-
book [19])

Following is the purpose of each phase:

* Pre-Phase A, Advanced Studies: To produce a broad spectrum of ideas and alterna-

tives for missions from which new programs/projects can be selected.

* Phase A, Preliminary Analysis: To determine the feasibility and desirability of a sug-

gested new major system and its compatibility with NASA’s strategic plans.

* Phase B, Definition: To define the project in enough detail to establish an initial base-

line capable of meeting mission needs.

* Phase C, Design: To complete the detailed design of the system (and its associated

subsystems, including its operations systems).

* Phase D, Development: To build the subsystems (including the operations system)

and integrate them to create the system, meanwhile developing confidence that it
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will be able to meet the system requirements, then to deploy the system and ensure
that it is ready for operations.

* Phase E, Operations: To actually meet the initially identified need or to grasp the

opportunity, then to dispose of the system in a responsible manner.

However, even if each phase is distinct, it is possible that the same activity occurs in
more than one phase. For example, different levels of trade studies are occurring during
Phase A (Preliminary Analysis), Phase B (Definition) and Phase C (Design). Project Mon-
itoring Against Project Plans is occurring in Phase C (Design) and in Phase D (Develop-
ment). The documentation produced in one phase is also verified and refined in the
following phase. A complete set of activities occurring in each phase is listed in (see
NASA Systems Engineering Handbook [19]).

Ulrich and Eppinger [20] suggested the product development process illustrated in
Figure 2.18. This process is more adapted to a specific product than to a program or a
project. It covers most of the life cycle of a product, from the mission statement to the

launch of a product.

o Phase 1 Phase 2 Phase 3 Phase 4 Phase 5
Mission Concept ystem-Level Detail esting and roduction Product
Statement _~Havelopment Design Design Refinement Ramp-Up Launch

Figure 2.18: Ulrich and Eppinger’s product development process (see Ulrich [20])

Activities performed in each phase are mentioned here:

* Concept Development: The concept development phase requires a lot of integration
among the functions performed by the development team. This phase has been

expanded and the set of activities achieved are illustrated in Figure 2.19.
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Figure 2.19: Activities performed during the concept development phase (see Ulrich [20])

*» System-Level Design: This phase includes the definition of the product architecture,

the division of the product into subsystems and components, and generally the final

assembly scheme for the production system. This phase output a geometric layout of

the product, functional specifications for each of the product subsystems, and a pre-

liminary process flow diagram for the final assembly process.

» Detail Design: This phase includes the complete specification of the geometry, mate-

rials, and tolerances of all the parts. The production process is established and tool-

ing is designed for each part. The output of this phase is the complete geometric

description of each part and its production tooling, the specifications of the pur-

chased parts, and the process plans for the fabrication and assembly of the product.

* Testing and Refinement: This phase involves the construction and evaluation of mul-

tiple preproduction versions of the product. Prototypes are first tested to determine

whether or not the product will work as designed and will satisfy the customer

needs. Then, the prototypes are tested by customers in their own use environment to

verify performance and reliability in order to identify changes for the final product.

* Production Ramp-Up: This phase involves the production of the product using the

intended production system. The work force is trained and any remaining problems
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in the production process are solved. The transition from production ramp-up to on-
going production is gradual and continuous, and the product is launched sometime
during this transition.

The process used by the students for the project of the class 16.89 Space Systems
Engineering is illustrated in Figure 2.20. This process was mapped during and after the
class. The students started the design having a minimum of requirements. The project was
divided into three main phases: the mission definition & preliminary analysis, the prelimi-
nary design and the detailed design. Activities were conducted concurrently in each of the
phases. Limited interactions between the groups occurred in the preliminary design phase
and difficulties were encountered. ICE sessions were conducted at the beginning of the
detailed design phased instead of the preliminary design phase after noticing the commu-

nication problem between the groups.

Mission Definition & Preliminary Analysis Preliminary Design Detailed Design

Requirements |
Praliminary Trade
Architecture Study Analysis
I D
'] Existent Systems Ressarch
- Four groups working concumently - Five groups working concurrently - Four groups working concurrently
- A lot of interactions - Each group representing a Each group representing a
- Iterations between statements subsystem subsystem
- Some Interactions - Alot of interactions
- No lterations - Few design iterations

Figure 2.20: Process used in 16.89 Space Systems Engineering during Spring 2000

All three design processes described present similarities. NASA’s program/project life

cycle covers the entire life cycle of a project and could be used as a template. Figure 2.21
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summarizes, compares and matches each of the different phases of the design processes

previously mentioned.

NASA Ulrich and Eppinger 16.89 Design
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Figure 2.21: Comparison of the design processes

2.5 Chapter Summary

This chapter presented an overview of existing research and experience acquired by aca-
demia, government and industry both in integrated concurrent engineering and in distance
collaboration. Experiences and research achieved in the following four subsections of
interest were presented: 1) teaching engineering design and active learning, 2) facilities
and technologies for teaching engineering design, 3) teaching distance courses and dis-
tance collaboration, and 4) integrated concurrent engineering in industry and government.

Numerous sites practicing integrated concurrent engineering were visited (TRW,

Aerospace Corporation, JPL, Boeing, SAAB and Caltech). The ICE process used by most
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of these sites is summarized in Figure 2.22 and Figure 2.23. Design sessions usually take

from two to three hours, and occur no more than three times per week in industry (Caltech

practices one session per day during three weeks to complete a design).
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Figure 2.22: Comparison between old and new conceptual design processes (see Oberto

[38D)

Lessons have been learned while developing and operating these design centers. The

understanding of the design process is very important in order to practice ICE. Following

a detailed script during the design sessions helps to keep all participants on track. Optimi-

zation techniques are generally not used for conceptual design. During conceptual design

sessions, designers should not search for optimal designs, but for a design that meets all

mission requirements at acceptable costs and risks. Face-to-face communication is very
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important, and faster than E-mail. Preparations, like research and tool development, need

to be done prior to the sessions.
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Figure 2.23: ICE process used in LSMD for conceptual design (see Sercel [39])

Finally, design processes covering the whole life cycle of a project/program/product
were introduced and compared with the process followed in the class 16.89 Space Systems
Engineering. NASA program/project life cycle is the one covering the most of the life
cycle of a project and therefore is the one recommended by the author to be used as a tem-

plate for design classes.
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Chapter 3

Education Needs Study For DE-ICE

3.1 Chapter Overview
The purpose of this chapter is to investigate the MIT A/A department’s needs for an edu-

cational design environment for integrated concurrent engineering (ICE). The academic
environment is characterized first. Then, the results from research performed during the
Spring 2000 semester with faculty members teaching pilot design courses is presented, as
well as the results of a survey distributed throughout the A/A department. The needs for
DE-ICE as defined by the team, and the constraints that the team had to deal with are
introduced. Finally, the experience acquired from two design classes during the Spring

2000 semester is used to justify the needs for DE-ICE.

3.2 Characterization of the Academic Environment

Academia involves different types of people, achieves different goals and has different
time constraints than industry. It is important to characterize this academic environment
before defining the needs for DE-ICE.

The main difference between industry and academia is obviously their end goal. The
ultimate goal of industry could be perceived as making a profit, while the ultimate goal of
academia is to teach students. As seen previously, industry’s goal in implementing design
centers is to lower cost and time required to design a product or a mission, and to increase
the quality of the design. Academia is implementing design centers to teach students the
product design/development process and to facilitate learning in the research environment.

Another difference between engineers in industry and students in universities is the
level of experience. Engineers in industry, especially the ones that are working in design

centers, have years to decades of engineering experience. They know how to efficiently
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approach a problem, and they often have developed a network of contacts with other engi-
neers for collaborative purposes. In comparison, students spend a lot of time learning
engineering fundamentals, theory and problem solving, and require more technical sup-

port than engineers in industry.

The time allocated to develop tools in a class is a lot different than in industry. Engi-
neers in industry can afford to take the time to develop many customized tools since they
use them for months, probably years. Students spend less time to develop customized tools
since they use them for one or two semesters for a particular project. Therefore, the tools
developed are less efficient and less powerful than the ones in industry. They are less user-
friendly, and often require the developer to be present in order to use them.

The variety of projects performed in academia is much broader than in a specific
industry. To illustrate this thought, one could consider the projects achieved by MIT A/A
department and the ones achieved by JPL’s Team-X and Team-I. Students at MIT A/A
department are performing aeronautics related projects (Lighter-Than-Air vehicle design
project in 16.00 Introduction to Aerospace Engineering and Design, for example) as well
as aerospace related projects (design of a satellite constellation around Mars to provide
navigation and communication to Mars ground assets in 16.89 Space Systems Engineer-
ing, for example). Team-X at JPL is performing only space missions/spacecraft design
while Team-I focuses only space instrument design (see section 2.3.3). Design environ-
ments in academia have to account for the project diversity to be performed, and the expe-

rience level of the learner.

3.3 Feedback on Design Pilot Courses

Interviews with faculty members teaching design classes were performed from March

through April 2000 to investigate how design classes are taught in the A/A department.
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Professors Dava Newman, David Miller, Mark Drela, Daniel Hastings, Peter Young, John
Hansman and Kim Blair were interviewed. The questions asked during the interviews and
the answers provided are given below:

1. What are you teaching in the class?

Faculty interviewed were developing and teaching both undergraduate and gradu-
ate design courses. The design project subjects varied significantly (Lighter-Than-
Air vehicle, heavy mass airplane, Precipitation Measuring Instrument for a Space
System (PreMISS), Synchronized Position Hold Engage Re-orient Experimental
Satellites (SPHERES), satellite constellation around Mars to provide navigation
and communication to Mars ground assets (Minerva), and projects involving busi-
ness issues). In some classes, the design projects differ from one year to another.
For example, in 16.89, the previous year’s (Spring 1999) project involved the
design of a system to search for terrestrial planets and related origins (the ASTRO
project). In Spring 2000, the Minerva design project for 16.89 involved the design
of a satellite constellation around Mars to provide communication and navigation
to Mars ground assets. Design projects last from one to three semesters. The longer
time frame allows coverage of the entire life cycle of a product and involves fabri-
cating engineering hardware.

2. How are you planning to use the new laboratory (teaching, distance teaching, design

laboratory, distributed classroom, etc.)?

All the faculty members interviewed are planning to lecture in DE-ICE and the
Learning Laboratory facilities. Some are even planning to do distance lecturing or
to attend lectures through the video conferencing system. Most of the instructors
wanted to use DE-ICE as a laboratory for their students to perform design projects

and other team related work. Some faculty required DE-ICE to have the capability
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to switch rapidly from a lecturing environment to a laboratory type environment
for team work. Some would like to have the technical ability to perform simula-
tions, demonstrations, and to interact easily with external facilities like machine

shops or laboratories.

3. How do you plan to teach to the class (special focus on activities to enhance active
learning)?

The first response to this question was obviously that performing a design project
is a form of active learning. Requiring the students 1) to interact with other stu-
dents and faculty during the lectures and the design phases, and 2) to present the
final design, was seen as a very effective way to achieve active learning. Some fac-
ulty want their students to develop design portfolios or a notebook describing their
experience, the design process and their contributions to the project. The use of
multimedia and interactive CD-ROMs was envisioned to achieve demonstrations,
real-time simulations and web-based exercises, as well as for the students to easily
access teaching material. The use of Lego building blocks was even suggested.

4. What is the design process you intend to follow?
Most of the faculty interviewed prefer to require specific project milestones to be
achieved instead of a specific design process to be followed to give more freedom
to the students. They set up specific design reviews throughout the semester, and
the students manage to achieve the required reviews on time. Faculty are not rigid
and vary in the way they teach the process of design. Graduate students get high
level statements at the beginning of the semester, and then flow down their own
design process. Undergraduate students, since they may not be experienced

enough to flow down their own process, receive more inputs in earlier steps of the
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design. Quality Function Deployment (QFD) might be taught, as well as other sug-

gested design processes (see Figure 3.1).

| Problem Definition and Idea Generation |
% ( Incubation / Synthesis ]
% ( Analysis ]
& ( Evaluation ]

Figure 3.1: Design process suggested in 16.00

5. What type and kind of guidance are you planning to give your students?

Most of the faculty give more lectures at the beginning of the semester to present
theory needed later in the semester, and then let the students do more work in class.
Some will give on-demand lectures after that, depending on how the project
evolves, trying to be as flexible as possible. A lot of feedback is always given to
the students after their design review presentations. However, more guidance is
provided to undergraduate students than graduate students. Faculty plan their work
a long time ahead with respect to the schedule. Class notes are distributed regu-
larly, and sometimes previous designs done by students in past years are provided.
In some classes, each subsystem group has a mentor or a staff member to work
with them on their chosen speciality. More flexibility is given to graduate students

and in some cases faculty just let them design free form.

6. What software tools do you ask your students to use?
Similar software to what was used in the A/A department’s design laboratory dur-
ing Spring 2000 is required:

* Access to the Internet, Athena and the A/A department’s design server
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» Microsoft Office tools (Word, Excel, PowerPoint, Access, FrontPage)
» Web-based tools (Internet Explorer, Netscape, Dreamweaver)
» CAD tools (ProE, Working Model, Adobe Photoshop)

» Programming language (Matlab, Maple, FORTRAN compiler, AVL code (Profes-

sor Drela’s code), NASTRAN)
* Video conferencing tools (NetMeeting)
» Simulation and demonstration tools (SOAP, Macromedia Director)

« Specialized tools (STK for orbital analysis, Orcad for electrical circuit layout, ICE-

Maker for design session management)
7. Any other suggestions?

Having phones and lockers available for students in DE-ICE would help. One fac-
ulty member suggested having a place to store printouts. Another faculty member
is more interested in the plan on how to use DE-ICE than in the tools and hardware
available. He insisted that he will need somebody responsible for collaborative
design, simulations, etc. This person could be a teaching assistant, for example. It
was suggested to have CD-ROM lectures available as backup resources for stu-
dents. Another faculty member mentioned that it would be good to find a way to

reduce noise when working in teams, maybe through movable walls.

3.4 Data Analysis of the DE-ICE Users Experience Survey

A web survey was performed at the beginning of the semester. The goal of the survey was
to better understand the experience of the potential users of DE-ICE in design and work-
ing with design tools, as well as their communication practices. Over 50 faculty/staff
members, graduate and undergraduate students completed the survey. A copy of the sur-

vey along with detailed results are provided in Appendix C.
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The results show that the most popular operating system for the students is PC-based
(NT), while the faculty prefer the Macintosh platform. The most common software tool is
MS Office (Word, Excel, PowerPoint, Access, FrontPage) for both faculty and students.
Matlab is the most common mathematical tool, being very important for the students.
ProE is the most popular CAD/CAM tool, followed by Autocad and I-DEAS. Microsoft
Visio 2000 was found to be quite important for graduate students. FORTRAN and Java

were the most used programming languages.

Software and system usability was found to be the most important factor influencing
the efficiency of the design process for faculty, and one of the most important factors for
the students. Communication with team members is critical for the students, and the abil-
ity to share data easily is very important for graduate students. The preferred communica-
tion method is still face-to-face communication for everybody, followed by E-mail. But
the preferred methods for communicating ideas, concepts and factual information are
meetings, E-mail, sketches and presentations. The difficulty of representing ideas in an E-
mail, and the varying interpretation of sketches (when the designer is not present to
explain the sketch) were found to be the most limiting factors of electronic communica-

tions.

The most important factors limiting the ability to share engineering data/information
are the different file formats used by the design tools and the speed of the network. Under-
graduate students consider the location of the team members to be an important factor
while graduate students put more importance on the system interfaces.

Understanding the models used in the environment and their limits makes faculty
more inclined to use an integrated engineering environment. The undergraduate students

rank the time saved by reducing repetitive tasks important, as well as the overall time
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needed to develop a design. The graduate students would like to have a system enabling

data integration, data access, and ease of use.

3.5 Needs Definition and Classification
One of the most difficult challenges that the DE-ICE team faced was to identify, define,

rationalize, group and order the needs of the A/A department concerning DE-ICE while
collecting data from the different end users (see Chapter 2 and the beginning of Chapter
3).

To start the iteration process, three main user needs were identified:

1. The system should be scalable for varying levels of user experience and training

2. The system should enable a distributed design team to concurrently design aero-

space systems

3. The system should add value to the engineering project and enhance previously

learned knowledge

After iterations and consultations with faculty members and staff, the three user needs
were expanded into nine specific needs, split into two categories: pedagogical needs

(boxes 1 to 4 in Figure 3.2) and operational needs (boxes 5 to 9 in Figure 3.2).
Each of these needs has been defined:
1. Active learning in a design environment

The design of a complex system cannot be easily taught solely by passive learning.
Other learning methods in which the students are encouraged to participate in their

own learning are used (see section 2.2.1). Learning modes that can be used are:
+Content experiential (i.e., hands-on experimental)
*Project-Based Learning

+Case-Based Learning
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+Chalk talk with class discussion, think-pair-share

+Self-Directed (interactive CD-ROM, Internet)

DE-ICE Needs
Hierarchy

[ o O

Constraint
apability to support MIT
L operational modes

i~ =
1. Active learning in a 2. Holistic view of 5. Improve the quality 5. Incre_ase productivity
. 3 x ¢ for a given amount of
design environment design of student design work fima

3. Impraove knowledge i "
of and experience with 4 Sup;:onl;lol's:rsfe ayole 8. Sustainable systems 7 Suzﬁ:m,’; eam % nghty l:sable
the design process ¥ yste

A

Figure 3.2: DE-ICE user needs

2. Holistic view of design
Design entails understanding the needs of the customer, conception, analysis, iter-
ation, planning, coordination, and communication. Designing a system while tak-
ing into account and understanding the life cycle costs and the risk issues of a
system are key to the design of modern systems. DE-ICE should enable students
to:
+Perform system-wide design analysis and trade studies
¢Better understand the effect of a modification of a subsystem on the overall sys-

tem

+Better understand the influences of the design decisions on manufacturing,

assembly and operation of a system
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3. Improved knowledge of and experience with the design process
By utilizing the DE-ICE system, the hope is that students should gain knowledge
and be enabled to make mature decisions early in a design process. Simulation and
modeling should be provided to allow students to establish estimates of the behav-
ior of a system (i.e. dynamics, thermal, structural, etc.), costs, performance, manu-
facturability, assembly, and operations.

4. Support of life cycle analysis
The system should be able to support any phase of the design: needs, requirements,
functional and behavioral analysis, interface specification, functional-to-physical
mapping, testing and verification planning, detailed design, digital mock-ups,
manufacturing and assembly, variational simulation analysis, operational planning
and support, data collection, and disposal.

5. Improved quality of student design work
The system should improve the quality (i.e.: depth of analysis, manufacturability)
of designs by allowing users to consider the downstream influences on the design
(fulfilling the requirements, depth of analysis, reducing reworks, ease of manufac-
ture, delighting the customer, etc.). The system should provide a method to analyze
the product and the design/manufacturing process and evaluate their fit. By inte-
grating models and simulations, DE-ICE should enable students to iterate a design
to achieve a much higher quality design than what could be done previously when

team members were working on separate models.
6. Increased productivity for given amount of time

The system should increase the productivity of the teams so that more time can be

spent on the design and not wasted learning new software or performing repetitive
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tasks. Users should be able to make changes to any part of the design and see the
effects automatically. Drawings, charts, graphs, and diagrams should be easily

extracted for use in reports, presentations, or electronic discussions.
7. Support for team enablers

Since the teams may be non-collocated, gathering the design team members for
meetings or reviews may be impractical. Therefore the system should support elec-
tronic meeting services where information can easily be shared. The system should
also have the capability for audio and video communication so non-collocated
team members, guest lecturers or expert help can communicate.

8. Sustainable system

Features of the system should be easily configured to work in a stand-alone com-
ponent design or configured to any users’ needs. The system should be easily
maintained and upgraded through the resources available within the MIT commu-
nity. The systems capability should evolve with the users’ needs and with time.
Users should be able and encouraged to make changes to the system for its
improvement.

9. Highly usable system

The system should be intuitive so as not to add complexity to the design process.
Users should be able to operate the system on any computer platform. They should
be able to use familiar tools and software interfaces when working on the system.
Integrating data into a model or running a global optimization on the system
should be simple tasks and not be time- or effort-intensive. Students should be able

to work on the design from any location and not be constrained to the lab.
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3.6 Constraints
The MIT A/A department foresees itself operating in many types of educational modes.

Approximately twenty operational modes ranging from teaching in labs to paper designs
were defined. The complete list and definitions of the modes can be found in Appendix D.
The DE-ICE system should be designed to support a number of these modes, principally:
* Design project mode
Class-based design projects that are carried out over the period of a semester by
student teams from a given class
* Lecture/presentation mode

Standard class mode, where a lecturer discusses/presents class material (boards,

web, overheads, etc.)
Also relevant to these modes are:
* Large systems mode

Team-oriented multidisciplinary programs that are very design-intensive and that

could include systems prototyping
* Collaborative project mode

The A/A department working with other universities, government and industry
* Research design support mode

Used by research teams to work through a segment of the research design (analy-

sis, design, communications, presentations)
* Distance learning/teaching mode

Video-conferencing, broadcasting classes/presentations, receiving classes/presen-

tations

* Interactive electronic class mode
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Fully electronic classroom where students are able to do computer-based work in

real-time, and to present a certain project

Supporting these modes was the main constraint that the team had to respect. It was

defined as a pedagogical constraint (see the constraint box in Figure 3.2).

3.7 Education Case Study
Two design classes were conducted in the A/A department during Spring 2000: 16.89

Space Systems Engineering and 16.982 Aircraft Systems Engineering. Space Systems
Engineering involved the design of a constellation of satellites around Mars while Aircraft
Systems Engineering focused more on business issues surrounding the design of a very

large aircraft. Both of these classes faced some difficulties during the semester.

Space Systems Engineering (16.89) was a technical design oriented class. The class
was designed so that interactions would occur with students taking a similar class in Cali-
fornia Institute of Technology. In fact, as described in Nolet [31], the level of interactions
attained was weak. One of the reasons for that was the lack of a facility in the A/A depart-
ment where students could do distance collaborative design with students from another
university. The laboratory temporary used during the construction of the Learning Labora-
tory was very small and equipped with very limited video conferencing capabilities. It
wasn’t seen as a good environment for distance collaborative design. Students mentioned
that they would need a larger and better equipped laboratory. Since this laboratory was the
only public PC laboratory for the A/A department, it was often packed with undergraduate

students doing their homework.

A lessons learned session at the end of Space Systems Engineering reveals valuable
information from the students concerning the pedagogical aspects of this design class.

Every student agreed that this class added a lot to their experience. They found it painful,
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requiring a lot of work, but at the end very valuable. The main problem encountered dur-
ing the semester was the organizational structure of the class. Faculty did not want to
impose too much structure because the course objectives included learning how to work in
teams. Students would like to have classes on the design process and teamwork at the
beginning of the semester. Another approach to help students would be to give them
access, through DE-ICE, to on-demand help, like on-line help, as well as access to previ-

ous design work.

Students found the design sessions very valuable to explore the trade space through
iterations. But, as mentioned in 2.3.1 - 2.3.3, it was found that a certain level of prepara-
tion had to be reached before those design sessions. ICEMaker, the software developed in
an Excel environment by Professor Joel Sercel from Caltech, was found to be very help-
ful, even though a package that connects Matlab and Excel was still missing. More infor-
mation can be found in the Project Minerva design report [49].

Space Systems Engineering lectures occurred in a room equipped with a PictureTel
video conferencing system. The video conferencing system was used when a distance
speaker was lecturing to the class. This occurred four times during the semester. The video
conferencing system allowed access to engineers in industry who would not have been
able to travel to MIT to deliver their lectures. Access to engineers in industry was found
very valuable.

Aircraft Systems Engineering (16.982) was less technical than 16.89 and was focused
more on aircraft business design issues. All the lectures were given to local and distant
students simultaneously. The lectures occurred in a room equipped with a PictureTel video
conferencing system. Some technical problems concerning reliability, time delays, audio
and visual quality, and synchronization were identified in Nolet [31]. Once again, students

were very pleased to have experienced engineers on their team. That would not have been

80



possible without the video conferencing system. On the other hand, students identified
some improvements, other than the technical issues previously mentioned, that should be
implemented in the future DE-ICE. DE-ICE should not require a professional technician
to operate the facility as is the case with the current facilities at MIT in building 9 (rooms
9-151, 9-152 and 9-057). Faculty members and teaching assistants ideally should be able
to operate the system by themselves. The system used in building 9 is quite expensive
(more than $250 per hour) and is not available for students to work with their distant col-

leagues.

3.8 Chapter Summary
The purpose of this chapter was to investigate the MIT A/A department’s needs for an

educational design environment for integrated concurrent engineering (ICE). The aca-
demic environment was characterized and differences between industry and academia

were highlighted. Specifically, differences occur in the:
* End goal
* Level of experience
» Time allocated to develop tools
* Variety of projects performed

The results from research performed during the Spring 2000 semester with faculty

members teaching pilot design courses were presented. The topics of interest were:
* Design course content
* Methods of using the laboratory
» Methods of teaching the class
* Design process followed in MIT design courses

* Guidance given to students

81



* Software tools used in design classes
The results from a survey to better understand the experience of the potential users of

DE-ICE in design and working with design tools, as well as their communication prac-

tices, are summarized in Table 3.1.

Table 3.1: Survey data summary

design process

Software and system
usability

Communication with
team members

Undergraduate Graduate Faculty
Students Students Members
Preferred operating system PC PC (NT) Mac
Most popular software tools Matlab Matlab MS Office
MS Office MS Office Matlab
ProE Mathematica FORTRAN
Basic FORTRAN NASTRAN
MS Visio
ProE
Factor influencing the effec- Communication with | Ability to share data | Software and system
tiveness and efficiency of the team members easily usability

Graphical capability
and visualization of
data

Preferred communication

Face to face

Face to face

Face to face

ing ideas in sketches

ing ideas in E-mail

method E-mail E-mail E-mail

Preferred method to communi- | E-mail Sketches Meetings

cate ideas and concepts to Sketches E-mail E-mail

team members Meetings Meetings Sketches

Preferred method to communi- | E-mail Meetings E-mail

cate factual information to co- | Meetings E-mail Meetings

workers/team members Sketches Presentations Presentations

Limiting factors of preferred Difficulty represent- | Varying interpreta- Difficuity represent-

communication method ing ideas in E-mail tion of sketches ing ideas in E-mail
Difficulty represent- | Difficulty represent- | Varying interpreta-

tion of sketches

Factors limiting the ability to
share engineering data/infor-
mation

Network speed
Location of the team
members

Network speed
Different file formats

Different file formats

Factors encouraging use of
DE-ICE

Reducing repetitive
tasks
Reducing design time

Allowing data access
and integration
Easy to use

Understanding the
models

Understanding the
limits of the models

Nine educational needs and one constraint were identified, defined and classified:
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1. Active learning in a design environment

2. Holistic view of design

3. Improved knowledge of and experience with the design process
4. Support of life cycle analysis

5. Improved quality of student design work

6. Increased productivity for given amount of time

7. Support for team enablers

8. Sustainable system

9. Highly usable system

CONSTRAINT: Capability to support MIT operational modes

Finally, the experience acquired in two design courses during the Spring 2000 semes-
ter (16.89 Space Systems Engineering and 16.982 Aircraft Systems Engineering) and the

lessons learned were presented.
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Chapter 4

Design Requirements

4.1 Chapter Overview

This chapter presents the technical requirements for DE-ICE that have been derived from
the needs previously discussed in Chapter 3. These requirements have been ranked in
order of importance using a Quality Function Deployment (QFD) matrix. Conflicts
between the most important requirements are described. A use case study which helped to
identify any missing requirements and the tasks that each different type of users can

achieve through DE-ICE is presented.

4.2 Technical Requirements Selection

The methodology used to develop and select the main technical requirements for DE-ICE
is based on the needs presented in Chapter 3. To minimize human biases, a QFD matrix
(see Boppe [50]) was used (see Figure 4.1). First, the needs were sorted by category (ped-
agogical or operational) in the left column of the QFD matrix. Then, a weighting factor
determined by the team and the advisors was applied to each one (10 = high priority, 1 =
very low priority). For each need, a set of technical requirements that satisfy it was devel-
oped. Then, the list of requirements established was thoroughly discussed and some
requirements were grouped together. The final list of requirements retained can be found
in the top row of the QFD matrix of Figure 4.1. The next step was to quantify the relation
between each of these technical requirements and each of the needs. The following factors
were used: 9 = strong relation, 3 = moderate relation, 1 = weak relation, and zero (or null)
meant no relation at all. The absolute scores were computed by multiplying the relation
factor by the weighting factor of the need assessed, and by adding the scores obtained for

each relationship for a particular technical requirement.
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The absolute scores for each technical requirement (TR) are displayed in the TR
Importance Weight row in the QFD matrix, and the relative scores are displayed in the

Relative Weight (%) row.

4.3 Requirements Prioritization
From the results obtained with the QFD matrix of Figure 4.1, the three technical require-

ments having the highest score were first selected. A sensitivity analysis (by varying the
factor representing the relationship) was performed to see the effect on the absolute
scores. The results of the sensitivity analysis convinced the team to retain two other tech-

nical requirements. The first five requirements retained are defined as:
1. Design and analysis support

Provide the hardware and software tools needed during the design and analysis

process.
2. Provide guidance throughout the design process

Provide a roadmap through the life cycle of a product by giving access to informa-

tion, examples, theory, etc.
3. Planning and management of the design process

Help to define, schedule and monitor tasks, deliverables between tasks and the

progress of the project.
4. Experimentation support

Support design, implementation, analysis and integration of the results of experi-
ments, including resources and tools that help to interface with computers,

machines, controllers, etc.

5. Operate on any platform
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Provide the ability to work in any environment (Unix, Mac, PC operating sys-
tems).

Three more technical requirements were selected because of their strong relation (rela-
tion factor of 9, see QFD matrix in Figure 4.1) with the constraint (capability to support
MIT operational modes). They are defined as:

6. Distance collaborative support

Provide the capability to remotely attend a class, easily interact with remote team-
mates and access external resources (specialists, professors, etc.).

7. Flexible system

Have the ability to adapt easily to different operational modes, subjects, projects or
new technology.

8. Presentation and reporting support

Provide students the capability to effectively present and report their progress and
results, and to give feedback.

Some metrics have been developed to assess each of the requirements after DE-ICE
becomes operational (see the Units row in the QFD matrix). Difficuities were encountered
in finding metrics to evaluate the pedagogical requirements, and improvements to the pro-
cess are recommended for future work. Comparisons with existing systems have been
made by evaluating the main technical requirements from the metrics selected (see the

Benchmarking rows in the QFD matrix).

4.4 Conflicts

Four main conflicts were identified between the eight technical requirements detailed. The

conflicting technical requirements are:

* Design and analysis support and flexible system
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Design and analysis tools are usually complex software requiring specific hard-
ware types in order to work optimally. They are often not compatible with each
other, which might cause problems when upgrading the system. The large amount
of memory required might limit the simultaneous use of other software.

* Design and analysis support and operate on any platform

Few design and analysis tools work on all three major platforms (PC, Mac and
Unix). Compatibility issues have to be considered when inputting a result from one
platform to another. Software has to be chosen carefully.
* Distance collaborative support and flexible system

Most of the distance collaborative tools have limited capability in terms of ease of
use, application sharing and mode of communication. This might affect the flexi-
bility of the system. The distance collaborative system to be implemented
shouldn’t limit the capability of the students to work in teams or to communicate
with their distant colleagues. The lecturer should be able to use any mode of com-
munication necessary (speech, slides, sketches, demonstrations, etc.).

* Distance collaborative support and operate on any platform

The distance collaborative system to be chosen has to be compatible with all of the
three major operating systems so that no constraint is imposed on the users of the

system.

A complete QFD matrix with all the conflicts identified can be found in Appendix E.

4.5 Use Case Study

To characterize and illustrate the way that users or other entities (computer, hardware, etc.)
directly interact with the system (see Boppe [50]), a use case study was undertaken. Two

main diagrams were drawn: the first representing the interaction between the main users
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(students, faculty, teaching assistants (TAs), staff and external users) and the system (see
Figure 4.2), and the second representing and expansion of a specific function of the first
diagram (see Figure 4.3).

On the first diagram, dashed lines represent tasks that flow from other tasks instead of
users. Tasks can be achieved by more than one user type. From this diagram, it can be seen
that the system itself has to interact with external facilities (wind tunnel and manufactur-
ing laboratory). The diagram helps define software/hardware accessibility once the system
is implemented. Faculty and teaching assistants (TAs), even if they are not performing all

the tasks, should have the ability to perform all functions needed during a class.
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Figure 4.2: DE-ICE use case diagram
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The function Perform design work in the DE-ICE use case diagram has been expanded
into the Design use case diagram of Figure 4.3. This diagram gives more details concern-
ing the design tasks achieved by the users. It is possible for the users to have their data

managed by a computer through a data managing software like DOME (see 2.2.2).
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Analyze designs
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Design SW \
Needs/Requirements Manufacture
development prototypes
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Figure 4.3: Design use case diagram
4.6 Chapter Summary

This chapter presented the technical requirements derived from the needs discussed in

Chapter 3. They were classified as following:
1. Design and analysis support
2. Provide guidance throughout the design process
3. Planning and management of the design process
4. Experimentation support

5. Ability to operate on any platform
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6. Distance collaborative support
7. Flexible system
8. Presentation and reporting support

Four main conflicts between technical requirements were presented and discussed. A
use case study was finally performed to characterize and illustrate the way that users

directly interact with the system.
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Chapter 5

Design Center Architecture Study

5.1 Chapter Overview

Having identified the main technical requirements and the tasks to be achieved by the
users, the next major milestone was to convert the requirements into an architecture. This
chapter presents the necessary steps along with the tools used. A product matrix study was
performed to identify and eventually select the hardware and software implementations
that fulfill the technical requirements. Considering all the inputs collected, three architec-
ture variants were designed by the team members. They were compared using Pugh’s
matrix (a technique used to visualize the evolution of a design concept from a baseline as
it improves with time; see Pugh [21]) with the Baseline Architecture, an architecture pre-
viously designed by MIT staff. From the results of this comparison, a preferred architec-

ture was selected.

5.2 Design Implementations Study Using a Product Matrix

To identify the design implementations that best support the most significant technical
requirements, a detailed product matrix was developed. The score obtained by these
implementations influenced the final architecture design. Using a product matrix allowed
for traceability from design implementations to user needs.

The product matrix developed is similar to the QFD requirements matrix previously
presented (see Figure 5.1 to Figure 5.4), except that the study is based on the most signifi-
cant technical requirements instead of the needs. The selected technical requirements are
displayed in the left column. Scores computed in the QFD matrix were used as a weight
factor. Design implementations (hardware and software) are listed and categorized in the

top row. The next step was to quantify how each of the design implementations satisfies
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each of the technical requirements. The following relation factors were used: 9 = strong
relation, 3 = moderate relation, 1 = weak relation, and zero (null) meant no relation at all.
Like the QFD requirement matrix, the absolute scores were computed by multiplying the
previous numbers by the weight factor of the technical requirement assessed, and by add-
ing the scores obtained for each relationship for a particular design implementation. The
absolute scores for each design implementation are displayed in the row named TR Impor-
tant Weight in the product matrix, and the relative scores are displayed in the Relative
Weight row.

The two highest rated implementations were DOME and Matlab. Matlab is an inte-
grated technical computing environment that combines numeric computation, advanced
graphics and visualization, and a high-level programming language. Matlab is very flexi-
ble, can be used for almost any kind of engineering calculation or simulation, and can be
used on almost any platform. DOME enables the integration of complex tools in a rela-
tively simple environment, operates on almost any platform, accommodates multiple
simultaneous users, and can enable distance collaborative support. Many discipline-spe-
cific tools were highly rated, like CAD tools or orbit analysis tools (Satellite ToolKit).
Guidance tools, like knowledge database or direct link to TAs, were considered very
important. Systems engineering tools (like DeMAID for N2 matrices, QFD capturing

tools or RDD-100) were highly rated as well.
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5.3 Architecture Variants

The next step was to create architecture variants from the results of the product matrix,
and to rate and compare three variants. Each team member developed an architecture. Dif-
ferent views were used to describe the architectures: a software/IT conceptual view, an
equipment block diagram and a physical view. Trade-offs between the best attributes of
each variant and expected life-cycle cost were completed to make a final architecture. All

architectures were compared to the Baseline Architecture.

5.3.1 Architecture A

Architecture A was the most complex and the most elaborate architecture variant devel-
oped. The three views illustrating this architecture are in Appendix F. A complete descrip-

tion of these three views can be found in Farnworth [17].
This architecture is composed of the following key architectural elements:
* Laptop PC for all users (Faculty and Students)
* Wireless network
* All software resident on laptop computers to reduce traffic on the wireless network
* CD-ROM for each student with all A/A software needed
* Liquid Crystal Display (LCD) second monitor for communication
* 100 Mbps Ethernet raceway
* DOME server to access the integrated modeling environment over the WWW

* NetMeeting/Collaborative Video Viewer (CVV)/Virtual Network Computing (VNC)

for communication
* ViewStation video conferencing system
* Video bridge with software video switching

* Round Table Virtual Presence to improve distant meetings
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» Electronic Writable Whiteboard to communicate sketches
» Software installation server

* Link to polymer rapid prototyping

5.3.2 Architecture B

Architecture B was developed by the author. This architecture emphasizes hardware flexi-
bility and work space for students. It’s the simplest of the three architectures developed,
and it could easily be fully implemented for Fall 2000 classes since it does not use com-

plex software under development like DOME.

5.3.2.1 Equipment Block Diagram

To satisfy the main technical requirements (see section 4.3), a set of hardware and soft-
ware tools were implemented. The IT configuration can be seen in the equipment block
diagram of Figure 5.5. A mix of PC and Mac laptop computers are used in this architec-
ture. They are connected via a wireless network to three servers: a Unix, a PC and a Mac
server. This configuration supports almost any kind of software since the three main plat-
forms (PC, Mac and Unix) are available.

A docking station is provided at each work space. It includes a second LCD monitor, a
small video camera and a NetPhone system to help in distance collaborative design (for
example, one monitor could be used as the interface with the distant colleague while the
other one could be used for drawing). The content of each monitor could be displayed on

one of the two main screens in front of the room through the video projectors.
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An IP camera system (like the Polycom ViewStation) is used to send an overall picture
of the main design room to distant sites through the Internet (high speed Internet). From
the experience of the author, this system is simpler to use than the PictureTel system com-
monly used at MIT, but doesn’t provide the same quality. Since other PictureTel facilities
are available in the Learning Laboratory, an IP system that can be operated by the teaching

assistant was judged satisfactory.

Links to Athena, external laboratories, external facilities, faculty members and teach-
ing assistants are provided. A free tether connection is provided as well to enable the stu-
dents to work with DE-ICE from their homes. A plotter and a digital copier (a machine

that integrates photocopier, fax, scanner and printer) are available.

5.3.2.2 Physical View Description

The nominal room arrangement is presented in Figure 5.6 and is similar to the ones devel-
oped in industry (see sections 2.3.1 to 2.3.5). A lot of working space is provided for the
students. The facility in which DE-ICE is implemented is divided into four rooms: one
main design room and three small offices for team working. The room divisions are the
same as the Baseline Architecture since the whole Learning Laboratory was already under
construction when DE-ICE was introduced.

Interviews with faculty members (see section 3.3) showed that DE-ICE use includes
different operational modes (like lecturing and performing designs in teams; see section
3.6 and Appendix D). Therefore, the ability to switch rapidly from one operational mode
to another is very important. The physical architecture is composed of rollable furniture
that enables a high level of flexibility. For instance, if a professor wants to interrupt a
design session to provide theory or explanations to his students, the students just have to

turn around and they have a desk in front or beside them to take notes. If the professor
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wants to group the students in teams, the small desks between the work spaces can be used
as work tables. The desks can be moved away very easily and joined to another desk if
many students want to work together. The use of laptop computers and a wireless network
enable the students to move the computers easily inside the facility in case they need it
when they are working in teams. The large conference table at the middle could be used

for long lectures, large group meetings, or simply as a work table if there are a lot of stu-

dents in the class.
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Figure 5.6: Architecture B physical view

The disposition of the projectors, the docking stations, the IP camera system and the
digital copier can be seen in Figure 5.6. The three main servers are located in another

room. A large moveable podium is available for the speaker, with a projection camera and
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a computer linked to the network. One large whiteboard is fixed behind the projection
screens, and two moveable whiteboards are available. Book shelves and other storage are

installed in the laboratory as requested by faculty members (see section 3.3).

5.3.2.3 Architecture B software/IT conceptual view

The software architecture is illustrated in Figure 5.7. The main software tools are installed
on the servers, and are remotely accessible to the users through the wireless network.
Whenever a new software tool is installed on the system, or an old one is upgraded, only
the servers have to be modified by the system administrator. The laptop computers use
what is available on the servers. This should facilitate the maintenance of the system, and
remove this responsibility from the students.

To communicate between Mac, Unix and PC computers, emulators (like Humming-
bird Exceed) are used. For instance, if a student working on a Mac laptop wants to use
CAD software available on the Unix server, he accesses the server through a Mac-Unix
emulator and remotely runs the software from the emulator. Having the three different
types of platform available in the laboratory makes it possible to easily upgrade the system
with almost any software. Therefore, a minimum number of software packages is initially
installed on the system. The architecture is designed to evolve with time, depending on the
software needs for each particular class. Cost, CAD and knowledge databases are also

available.

From the experience of existing industry design centers (see sections 2.3.1 to 2.3.3),
and because of the intention of using mature technologies (see Table 1.1), Architecture B

does not use a complex data integration environment like DOME. A simpler software
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package developed by Caltech named ICEMaker (see section 2.3.6) is baselined. How-

ever, the architecture is designed to support DOME for future development and evolution.
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Figure 5.7: Architecture B software/IT conceptual view
5.3.3 Architecture C

Architecture C is the most software/IT-oriented architecture. It has been optimized for

integrated concurrent engineering (ICE) sessions. The key architectural elements are:

¢ Windows 2000 workstations and servers
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* Physical layout similar to the Baseline Architecture

» System and subsystem models integrated in Matlab

» Discipline-specific tools used offline

» System summary Excel spreadsheet for ICE sessions and external viewers
» Comprehensive guidance

» Workstations and external computers with equivalent design functionality

The software/IT conceptual view of this architecture is illustrated in Appendix F. A

complete description can be found in Manka [22].

5.3.4 Baseline Architecture

The room arrangement of the Baseline Architecture was used for all the variants previ-
ously developed. The software/IT conceptual view and the physical view of this architec-

ture can be found in Appendix F. Here are the key architectural elements:
* PCs with Windows NT
» Athena clusters in the laboratory
* All software resident on PCs
* 100 Mbps Ethernet to the desktops
* NetMeeting for communication
* Cornstarch rapid prototyping
* Links to external laboratories
* Links to faculty/TAs

* ProShare Video on each PC or PicTel type video conferencing (no decision has been

made for the choice of the video conferencing system to be used)

More information about the Baseline Architecture can be found in Hallam [51].
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5.4 Architectures Evaluations

The next step was to extract all the best elements from each architecture developed, and to
integrate them in a final design. To evaluate and to compare the different architectures,
both a QFD-type product matrix and Pugh’s matrix were used. The Architecture B evalua-
tion is described below. Evaluations of Architectures A and C can be found in Farnworth

[17] and Manka [22].

5.4.1 Evaluation Through the Product Matrix

The evaluation of the architectures was achieved in the bottom section of the product
matrix illustrated in the previous Figure 5.1 to Figure 5.4. For each architecture, all the
design implementations used were checked, and the scores for each implementation were

added. Final scores are illustrated on Figure 5.4.

This way of evaluating the architectures is tricky since an architecture having many
implementations can obtain a high score even if the implementations are not compatible
when used together. But it gives a good idea of weaknesses of an architecture. For exam-
ple, the fact that Architecture B does not have any implementation for rapid prototyping or
cost analysis is well reflected in the product matrix. These weaknesses have to be consid-

ered for the final architecture.

5.4.2 Evaluation Through Pugh’s Matrix

Pugh’s matrix was used to better capture the improvements in comparison with the Base-
line Architecture for general criteria not assessed by the product matrix (like cost and
functionality). The Baseline Architecture developed prior the introduction of DE-ICE is
used as a datum. For each criteria, the architectures were compared with the datum using

“+” for general improvement, “S” for similar and “~” for general deterioration (see Figure

5.8).

107



Comparing Architectural Variants

Architecture Baseline [ A | B | C | Preferred Characteristics ABC’
Department
Cost to - | - | - |Baseline: simple S
Implement
Department I C: no dual monitors, laptops, wireless i
Cost to Operate network; common, off the shelf s/w
A & C: integrated subsystem models,
Design = +|s |+ broad range of design tools, UV polymer +
Functionality = for experimentation, brainstorming and
=} design evolution via DOME in A
Communication 8 +1+ls A innovative remote presence, many 4
Functionality modes avail., A & B: individual mobility
A & B: wireless LAN, room
Flexibility + | + | S | reconfigurable, B: OS mix, A: DOME & +
s/w distribution
o A & C: large systems, electronic
az:":: oal + [ S | + | whiteboard, knowledge database +
A, B & C : collaborative, distance learning
o+ B ABC': Laptops supplied to all students as
- B part of tuition, no maintenance or
s O upgrade cost for laptops L

Figure 5.8: Pugh’s matrix for architecture evaluation

Architecture B scored “-” for cost to implement and cost to operate mainly because of
the use of laptop computers with docking stations, and the use of a second LCD monitor
and a wireless network. This high technology hardware has not been used extensively yet

for teaching in the A/A department and some difficulties in the beginning are expected.

Due to the lack of an integrated environment like DOME, the Architecture B is com-
parable to the Baseline Architecture for design functionality (ICEMaker is used in the ICE

sessions).

Communication functionality is improved using Architecture B because of the use of
laptop computers and a second LCD monitor. It is possible for students to bring their lap-
top computers with them during team meetings. Efficiency of data communication and
illustration sharing are improved. The use of a second LCD monitor makes it possible to
communicate with distant colleagues on one monitor without losing work space on the

other one.
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Flexibility is enhanced because of the rollable furniture and the use of laptop comput-
ers. The room can be changed from a lecturing room to a design room in a few seconds.
Laptop computers can be moved around the place easily and still be connected to the net-
work via the wireless networking system. Tables can be moved quickly in case of team

meetings.

Architecture B supports operational modes similar to the Baseline Architecture. No
direct improvement was achieved due to the lack of maturity of the technology used to
improve distant collaboration in design (like DOME, electronic whiteboards that are still
relatively small and expensive, etc.). However, the architecture is designed to work with

that technology once it is mature enough.

5.5 Architecture ABC’

The evaluation and comparison of each architecture enable the creation of the final one
(called Architecture ABC’) using some components of each variant. Since Architecture A
obtained the highest score, the final architecture was based on its design. Figure 5.9 and -
Figure 5.10 illustrate the software/IT conceptual view and the equipment block diagram of

Architecture ABC’.

From Pugh’s matrix, it can be seen that the implementation and operation cost was the
main difficulty of the three variants. To reduce the cost while maintaining the flexibility of
Architecture A and B, it was decided that the laptop computers would be supplied by the
students. The purchase of a laptop would be included in the tuition fee, removing this cost
from the implementati(;n cost of the architecture. Since most of the students are using a
computer during their studies, this should not pose a problem. The A/A department would
have to figure out what would be the best computer configuration for the students to have.

A CD and a web site containing the tools needed by the students could be provided. Each
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student would be responsible for the management of his/her own computer. Removing this
responsibility from the faculty should help to reduce the operating/upgrading cost of the
computers, assuming that a lot of instructions would be provided on the CD or through the
web site. A new laptop could be provided on a regular basis to the students (like every two

years for example), allowing them to follow the advance of the technology.

Part of the flexibility of Architecture B would be removed by requiring everybody in
the laboratory to use PC laptop computers. Links to external Mac and Unix computers
could be through the use of emulators. This should not be a problem for the students since
it was demonstrated through the survey that they use more PC computers than Macintoshs
(see section 3.4 and Appendix C). Faculty members, who are more reluctant to use PC
computers and who are expected to access DE-ICE computers much less often than the
students, still have access to DE-ICE through emulators.

The wireless network was abandoned. The main reason was its slow speed (in the
order of 1 to 5 Mbps, compared to 100 Mbps for the standard network). This implementa-
tion will have to be reconsidered in the future when the wireless network reaches a satis-
factory speed.

Some of the software tools used in Architecture A were not considered, but Architec-
ture ABC’ is designed to evolve with time depending on the needs of a specific class.
Some hardware like the RTVP, the electronic whiteboard and the video bridge were

removed, mainly for cost reasons.

It was decided that DOME would be implemented in the final architecture and its use
will evolve with time when more integrating capabilities become mature enough to be

used in classes. A cornstarch rapid prototyping machine is also available.
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The product matrix (Figure 5.1 to Figure 5.4) shows the details of the design imple-
mentations of the final architecture. Pugh’s matrix (Figure 5.8) illustrates the evaluation of
Architecture ABC’ compared to the Baseline Architecture. Significant improvements in

almost every criteria can be seen.

5.6 Chapter Summary

This chapter presented the necessary steps completed to convert the requirements into an
architecture. A product matrix study was performed to identify and eventually select the
hardware and software implementations that fulfill the technical requirements. Consider-
ing all the inputs collected, three architecture variants were designed by the team members
(Architecture A, B and C). Emphasis was placed on the architecture developed by the
author (Architecture B). The three architectures were compared using Pugh’s matrix with
the Baseline Architecture, an architecture previously designed by MIT staff. From the
results of this comparison, a final architecture (Architecture ABC’) was developed using
components of the three previous architectures. This architecture was recommended as the

DE-ICE architecture.

The final architecture selected presents the following improvements over the Baseline
Architecture: higher design and communication functionality, better flexibility, more oper-
ational modes supported and lower operation cost. Implementation cost is similar to the
Baseline Architecture since the laptop computers used in the laboratory (PC computers
using emulators to communicate with Macintosh and Unix platforms) would be supplied
by the students. The author recommends strongly the presence of at least one Macintosh

and one Unix computer in DE-ICE.
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Chapter 6

Prototyping of a DE-ICE System Component

6.1 Chapter Overview

Having developed recommendations for the architecture of the design environment, the
last goal of the project was to discover a key enabler of the system and to develop a com-
ponent. This chapter presents the work of the team to discover the key enabler of the sys-
tem. The prototype is then defined in light of the key enabler. The process used to design
the prototype is presented. Emphasis is placed on the Work Manager since the author
actively pursued the specification of this design element. Its functionality is illustrated and
explained. Finally, a demonstration was achieved at the final design review of the project

and is highlighted herein.

6.2 Prototype Selection

The first step was to discover a key enabler of the selected architecture for designing a
prototype. The main ideas emerging from the elaboration of the architecture variants were:
1. The Round Table Virtual Presence (RTVP) system (see Farnworth [17])
The initial idea was to design the RTVP used in Architecture A’s design. The
RTVP promotes natural team presence for conferencing and consists of a triangu-
lar three-face monitor with a camera on the top and one microphone on each of its
bottom corners (see illustration in Appendix G). The system enables automatic
audio/video tracking of the speaker and is designed to be integrated with the IP
camera system of Architecture ABC’. It also consists of modular units for easy

reconfiguration.

2. The Electronic Writable Whiteboard (EWW) (see Farnworth [17])
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The EWW consists of a large-format whiteboard capable of capturing and redis-
tributing sketches, drawings and notes (see illustration in Appendix G). The data
captured is available for use in any application. The EWW allows multi-user inter-
action and enables real-time communication and visualization for all team mem-
bers through multiple distributed EWWSs. Capabilities include the capture of
interactive team decision processes and events, and the enhancement of team
brainstorming. EWWs already exist on the market, like the mimio system, but

some lack complete functionality.
3. Integrated On-Line Teaching Assistant (see Farnworth [17])

The integrated On-Line Teaching Assistant (On-Line TA) is envisioned as a
graphic and interactive system focused on the product development process (PDP),
providing access to relevant course notes, sample PDPs, Systems Engineering
Management Plan (SEMP) templates, external resources, and other relevant infor-
mation (see illustration in Appendix G). The On-Line TA is capable of acquiring
knowledge from current projects and retaining this knowledge in a knowledge
database for future reference. An automatic capture of student’s design objects into
this knowledge database is provided. Drag and drop of objects is also supported.
The interface with the user could be fully customized.
4. Distance Learning Software

The last prototype idea was to design a software capability that would improve dis-
tance learning education by integrating audio, video and some useful applications
like a video image of each distance student, a warning feature when somebody has
a question to ask, a system that links in real-time student’s notes taken electroni-
cally with the presentation slides, etc. Actual systems have limited functionality

and quality (see Williamson [10] and Nolet [31]). The Microsoft Tele-Presence
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Presentation system (TELEP) and the Microsoft Research Annotation Service

(MRAS), both systems in development at Microsoft, have aspects of the desired
capability.

To select the basis for the prototype, a matrix very similar to a product matrix was

developed (see Figure 6.1). Relations between each technical requirement and each proto-

type concept were identified. Final scores clearly identify the On-Line TA as being the

most relevant near-term prototype concept for the DE-ICE system.

Prototype Concepts
N &
& &
5 > é'\@g
Qé@o & & &&v éﬂ\?
& AR Q& WO &

Technical Requirements & é(*‘ N A
Design and analysis support 297 1 8
Pravide guidance thoughout design process 170 ]
Planning and management of design process 149 3
Experimentation support 145 1
Operate on any platform 143 9 9 9 g
Distance collaborative support 122 9 9 1 3
Flexible system 98 3 1 1 9
Presentation and reporting support 32 1 9 1 1
Design priorities _ hd

TR Importance Weight| 2711 | 3068 | 6334 | 2567

Relative Welght {%) 3 3 1 3

Figure 6.1: Prototype selection matrix

The On-Line TA is the only prototype idea that addresses the most important technical
requirements. The On-Line TA is a key element of DE-ICE, providing guidance to users
who lack an extensive industry background, providing information on when and how to
accomplish design goals, and helping users tailor DE-ICE resources to their needs. The
On-Line TA integrates multiple components into a highly usable system, performs certain
project manager functions, and automatically links student work. Using the On-Line TA,
the student work entities could be used as measurable outcomes for grading and accredita-

tion support to the faculty.
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6.3 On-Line TA Use Case Diagram

A use case diagram (see Figure 6.2) was prepared to characterize and illustrate the way in
which users directly interact with the On-Line TA. From this diagram, four main users

were identified: students, faculty, teaching assistants and staff members.

On-Line TA
Navigate in
Project Work )

Access Web Page

Input class
deliverables

Add to knowledge
database

StaffiTA

Manage Class Web Page

Attend e-class

Content: \
Faculty/TA -POP |
- Syll_ahus Manage and
- Deliverables distribute feedback

- Links

Figure 6.2: On-Line TA use case diagram

This use case diagram was used to determine the different components of the On-Line

TA.

6.4 The On-Line TA Prototype Breakdown

Considering the use case diagram in Figure 6.2, the decision to decompose the On-Line
TA concept in the following four major components was made: a web-based front end

interface, a front end for On-Line TA authoring, an interface to allow students to interact
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with their work and a project navigator. The system should be easy and fast for faculty to
create and customize for their specific needs, and should be fun for all users. Loading time
for the On-Line TA should be as fast as possible. Appendix G illustrates how the work was

split between the team members, and which components were prioritized.

6.4.1 Front End for User Interface
The user interface is a graphic web-based (platform and OS independent) application that

integrates (see Farnworth [17]):
1. A general PDP, like NASA Program/Project Life Cycle, Ulrich and Eppinger, etc.

2. Tools to create and analyze a PDP for a class/project, like Design Structure Matrix

(DSM), or Program Evaluation & Review Technique (PERT)
3. On-Line TA/DE-ICE help
4. Direct link to faculty and TAs through the Internet
5. Feedback on the DE-ICE system/On-Line TA/classes

6. Advanced search tools to gather information from multiple resources (i.e. patent

searches, knowledge database, lessons learned, course notes, SEMP, etc.)
7. Tool support in the DE-ICE system
8. Class materials that contain deliverables and timing
9. Class deliverables submission through the On-Line TA
10. Electronic classes and lectures

Students logged into the system have full access to resources on DE-ICE. Guests should
have the capability to log in and utilize some of the functionality. The log-in process can

be used to:
11. Generate the class customized PDP for a particular user

12. Automatically update only the changed information from the authoring tools
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13. Collect user information and access time/date
14. Tag objects

15. Capture objects

16. Collect electronic class attendance information

17. Collect On-Line TA/DE-ICE usage information

6.4.2 Front End Authoring Tool for Customizing the On-Line TA

Because the On-Line TA will quickly become a very complex network of web pages, an
authoring tool is needed to custom script the web pages and to reduce the time require-
ment placed on faculty when creating/tailoring the On-Line TA for a specific class. The

authoring tool is needed to perform the following (see Farnworth [17]):
1. Define a top-level PDP for the class
2. Customize an existing top-level PDP
3. Highlight PDP phase tasks that contain deliverables
4. Lay out deliverable schedule
5. Define PDP in phase tasks
6. Insert content to be displayed for top-level and in phase tasks
7. Define class goals and objectives
8. Insert class syllabus
9. Define class notes
10. Plug-in new tools for class use
11. Build the customized On-Line TA web pages
12. Automatically verify page links and view page layouts as thumbnails

13. Automatically record when changes are made to update the On-Line TA
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Time required of the faculty to interface with the authoring tool should be less that 1/10 of

the normal class preparation time, not including perpetration of the actual content. This is

a design constraint identified by the team.

6.4.3 Work Manager

The Work Manager consists of a multi-platform/multi-user interface acting between the

students and the knowledge database. It enables students to manage their work, whether

they are working in a team or by themselves, on campus, from home or even through the

Internet. Direct interactions with the Work Manager are illustrated in the use case diagram

of Figure 6.3.

Users
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Figure 6.3: Work Manager use case diagram

Some functions, like Manage Versions, Import External Work, Bring Work Home,

Unlock File/Element, Contact Editor of a File/Element and Rename File/Element are an
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expansion of the function Manage Work of the use case diagram in Figure 6.2. They were
all judged necessary from the experience of the author to support design (the most impor-

tant technical requirement retained).

The Work Manager is accessible to the users from the Front End for User interface.
Because of interactions with multiple software tools, the Work Manager is not integrated
in each software tool. Instead, the Work Manager is running in the background through an
applet loaded when somebody logs in. The Work Manager monitors the files directly on
the disk where they are stored (knowledge database) and warns the user when a file has
been modified (with a “*” beside the name on the Work Manager interface). The student

can make a new version of that file, project element, or even of the entire project database.

6.4.4 Project Navigator

The Project Navigator provides a roadmap allowing the visualization of the design process
work in progress (with inputs and outputs). The Project Navigator is accessible from the
Front End for User interface and the Work Manager. Each waypoint in the process is asso-
ciated with objects (presentations, design documents, prototypes). The relationship
between these objects is illustrated. Typically, the work is decomposed into different
objects and aggregated again at the project milestones and reviews. The Project Navigator

is used as (see Manka [22]):
1. A record

The working team uses the Project Navigator to map their project. The Project
Navigator archives the project’s whats and hows. It provides traceability of the

design decisions.

2. A guide
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Professors and TAs use the Project Navigator to build the roadmap of the project
deliverables and milestones. The Project Navigator suggests the steps to be used. It
includes data like descriptions, scheduling, number of people assigned, etc.

3. Both

Students build off the templates as they go.

6.5 Work Manager Functionality

Because of the software nature of the On-Line TA, its complexity, and the limited time to
design it, the team decided to develop a prototype of 1) sets of functional flow diagrams
(FFD) illustrating the functionality and 2) a mock-up demonstration showing how the
software behaves. Once this functionality is clearly defined and demonstrated, additional

development will be possible in the future.

This section presents the functionality of the On-Line TA (mainly the Work Manager)
through different FFDs. Emphasis is placed on functionality developed by the author of
this thesis. Figure 6.4 shows the On-Line TA top level FFD and gives an overview of the
functions performed by the whole system. The author developed the function 1.0 Provide
Log-In Service, 7.0 Access DE-ICE Tools, 7.8 Submit Homework and other sub-functions
(see Figure 6.8 to Figure 6.12).

The first function developed was 1.0 Provide Log-In Service (see Figure 6.5). This
function is used anytime somebody wants to log on the On-Line TA. The first task accom-
plished by the software is to identify the user. Once the user is identified, depending on the
type of user, appropriate access permissions are granted, preventing unauthorized users
from modifying any system database. After proper identification, some tasks are accom-
plished simultaneously. The most important ones are 1) asking the users the class/project

they would like to work on so that the correct PDP for that project is loaded and 2) launch-
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ing the Work Manager applet used to monitor file attributes in the knowledge database.

The last task is to personalize the web page (item 1.6) depending on the user information

collected
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WH, OLTA C N Personal PDI r_“—c‘)

40 11.0]

12.0f

1.0 Provide Log-in OLTA Web e e & o
Service Initiskzstion _"( ‘a Review Graded
10 ™ Homework

Authoring Tool
o
0 Deploy Content CoptireiMsintsin
LY -
100.1
Review and Grade
FacuyTA |  Homework i
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Figure 6.5: Log-in service FFD
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The main application developed by the author was the Work Manager defined in sec-
tion 6.4.3. The interface is illustrated in Figure 6.6. Each of the functions accomplished by
the interface are illustrated using a FFD. The interface is Java-based for multi-platform

and access through the Internet.

The first three columns on the left of the Work Manager main window are used for
hierarchical classification, the same way files and directories are related to each other in a
conventional operating system. The first column (Project), is the highest entity in the hier-
archy. The second one (Project Element) contains the subdirectories associated with the
project. The Filename column lists the name of the files associated with each project ele-
ment. Pale file names represent the ones that are viewable by multiple users. The others
are viewable only by the user who logged on. A simple click on the name of a file brings a
box asking for the correct version of the file to open. Multiple versions of the file would be
stored in the system (knowledge database) and would be accessible anytime.

The fourth column indicates the tool used to make a particular file. A click on a tool
name creates a new file and associates by default the file created to the corresponding

Project Element.

The fifth column shows the corresponding section in the PDP linked to the file. If a
user wants to have more information and theory, a click on the link brings him back to the
PDP where he could find information related to the file. For example, if a file is a QFD
matrix, the link connects the user to the section in the PDP giving theory and examples

about QFD matrices.

The next three columns are related to version management and submitting work. They
indicate when was the last time a file was modified, what is the latest version number, and

what is the version number of the latest version of the file submitted to the professor. The

125



Last Modified column is a real-time status given by the Work Manager applet launched

during the log-in process.

Project  Project Element  Filename Tool Section to PDP LastModified  Lastest Version Latest Submitted  Selection Locked
MINERVA 05/02/00 V1223 none r
05/02/00 v21.1° none r
Matlab 74.2 Matlab 05/02/00 v5.1* v4.0 | = AM.
Matiab  7.4.2 Matlab 04111700 vio v1.0 r
Matiab  7.4.2 Matiab 03/25/00 V21 Va1 K
04/19/00 v1.120° V1111 It
DeMaid  3.2.2 N2 diagrams 04/13/00 V3o Va0 r BF
Excel  3.1.1 QFDmatrices 03/25/00 8.3 v24 r
g ProE 7.21 Technical drawing  02/29/00 Va1 V4.0 ~ SN,
’_‘ Means that modifications have been made _]
since this version has been updated Only one box is checked at a time
{used to select file to update or submit)
Link to PDP

| u wu u| u u | wu

s |
TARR POR \ COR Time

Submit previous version of work

Figure 6.6: The On-Line TA Work Manager interface

The Selection column is used to select one or multiple entities (files, project elements
or projects). The Locked column is used to specify locked entities and contact whoever
locked an entity. More information about the buttons’ functionality is provided below
using FFDs.

The timeline in Figure 6.6 represents a possible scenario of file updating and file sub-
mission for a student. In this example, the project is divided into three milestones (Trade
Analysis and Requirements Review, Preliminary Design Review, Critical Design
Review). The student can update the version number of a file as often as he wishes. Each

time a new version number of a file is registered, a copy of the file as it is during the regis-
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tration process is automatically kept in memory for future reference. Each time a new ver-
sion of a file is submitted before the deadline to a professor, the previous version is
automatically deleted from the professor’s directory. A deleted file from the professor’s
directory 1s still kept in the main memory of the system. The student can submit any ver-

sion of the work, not necessarily the latest, as is shown in the example.

Figure 6.7 shows the top-level FFD for the Work Manager. After a click of the user on
the Work Manager link from the On-Line TA Front End (see Farnworth [17]), some vari-
ables are loaded in memory to be used later (the position of the user in the PDP when he
clicks on the Work Manager link, and the project name acquired during the log-in pro-
cess). Then, the Work Manager interface is loaded and a lot of functions can be accessed
by the student (see Figure 6.7). Appendix H contains the interfaces interacting with these

functions and developed for the purpose of the demonstration.

. Wak - Aributes aready in memory (from 1.0):

Complete Name (from 1.2)

User Type (from 1.3}

Update Version in Login Time end Date (from 1.7)
Database [ Class/Project (from 1.9)

Hew attributes setin memory

Submit an Position in PDP {from 7.2)
P Assignment [

18
| I .

Gobackto PDP
S -

13

H H | T
£ "Click” on Work | ‘Get Position in iGet User Current Display Work | Locate Work in o
i Manager PP Projects Menager Intsface -1 Design Process_(—{or)
H 144 12 13 14 7.10

-

|

__j Unlock File
7.14r

Contact Editor of 8
- Fils =

745

Figure 6.7: Work Manager top level FFD
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The first function developed was the 7.5 Start New Work function (see Figure 6.8).
This function is activated either by a click on the New button or on the tool name as
explained previously. The time and date are the first variables set in memory. If the user
clicks on the New button instead of the tool name link, he has to choose the name of the
tool he wants to use (Excel, PowerPoint, Autocad, etc.). After the tool name is acquired,
an interface (see Appendix H) appears with default values gathered in previous functions
(see the attributes’ description in Figure 6.8). Through the use of the interface, new
attributes are set in the memory, like the multi-user permission that decides to whom the
file is accessible. Once all the necessary information is gathered, an instance is created in
the knowledge database, the tool is launched and the Work Manager main interface is
updated. The file is automatically locked until the user decides to manually unlock it.
While the file is locked, the name of the person who owns the write permission is dis-
played in the Work Manager main interface, and the file is still accessible to other users in

the read-only mode.

The 7.6 Open Current Work function is simpler since the entity is already created and
monitored in the knowledge database. The function is activated when somebody clicks on
the name of a file. The program first asks the version number to open (see interface in
Appendix H). If the file is unlocked, the program asks the mode of editing (with write per-
mission or read-only). If the user selects to open the file with writing permissions, the pro-
gram locks it to avoid having more than one user at a time trying to edit the same file. If
the file is already locked, the program automatically opens it in read-only mode. When the
locking process is achieved, the program is launched (through an emulator if it is installed

on another platform) and the file is loaded.
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Figure 6.8: Work Manager detailed FFD 1 of 5

When somebody is editing a file (any file running on any program and any platform)
and performs the Save function in the program, the Latest Modified attribute for that par-
ticular file is updated. This is true for any operating system. This attribute is monitored by
the Work Manager applet launched during the log-in process. When the applet monitors
that the file has been modified after the latest version was made, a “*”” appears beside the
latest version number in the Latest Modified column for that file and the higher level enti-

ties (project element and project; see Figure 6.6).

When the editor of an entity wants to make another version of it, he first selects the file
by checking the appropriate box and clicking on Update. The program reads the box

checked and displays the Update interface (see Appendix H). It records the new version
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number entered by the user, stores the file in the database and updates the Work Manager

main interface (see Figure 6.8).

The version numbering works as follows: for a minor change on the previous file, the
user is encouraged to increment only the decimal digit of the version number. For a major
change, incrementing the unit digit is suggested. Each time the version number on a file is
updated, the version number of every higher level entity is automatically updated, but not
the one of the lower level entities. For example, updating launchcover.dwg in Figure 6.6
from version 4.1 to 4.2 will update Conceptual Design project element from 1.12.0 to
1.12.1 and Minerva project from 1.2.2.3 to 1.2.2.4. Updating launchcover.dwg from ver-
sion 4.1 to 5.0 will update Conceptual Design project element from 1.12.0 to 1.13.0 and
Minerva project from 1.2.2.3 to 1.2.3.0. Updating Conceptual Design project element
from 1.12.0 to 2.0.0 will update Minerva project from 1.2.2.3 to 1.3.0.0, but will not
change the version number of launchcover.dwg. Updating Minerva project from 1.2.2.3 to
2.0.0.0 will not change anything else. High-level entities cannot be updated if all the lower
level entities have not been updated before.

Another main function of the Work Manager is 7.8 Submit an Assignment (see Figure
6.9). It is activated after a user checks an entity to submit and presses the Submit button.

The first step the program achieves is to compare the time and date of the submission
with the deadline entered by the professor for that entity (this feature is not fully imple-
mented in the current version of the Work Manager). If the deadline is past, the professor
has the choice of accepting the work or rejecting it. If he accepts it or if the deadline is not
past yet, the submission interface (see Appendix H) appears, allowing the user to choose
the version number of the entity to submit. The program erases the previous version of the
file in the professor’s directory (if any) and copies the desired version of the file in the

same directory.
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7.8 Submit an Assignment
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Function 7.14 Unlock File is used when somebody wants to return the editing permis-
sion of an entity to the system so that it will be available to other users. It automatically

makes a new version of the entity and all the lower level entities not already updated if
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Figure 6.9: Work Manager detailed FFD 2 of 5

there is a “*” associated with the entity.

Function 7.16 Rename an Entity is used to change the name of an entity or to change
its multi-user accessibility. When the name of an entity is changed, the update is automati-

cally propagated in the previous versions of that entity. The other functions of Figure 6.9

are very simple and so the FFD description is sufficient.
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Function 7.10 Locate Work in Design Process (Project Navigator) of Figure 6.10 has
been developed by Manka [22]. This function uses attributes gathered when creating a

new entity in the Work Manager.

Function 7.13 Bring Work Home illustrated the process followed by the program when
a user wants to work on an entity somewhere the Internet is not accessible. The function is
activated when the user checks the entity and presses the BringHome button (see Figure
6.11). An interface appears (see Appendix H) to ask the user 1) whether the intention is to
modify the entity or not, 2) the version number of the entity to bring home and 3) the loca-
tion where the file has to be copied. If the user wants to edit the entity at home, the pro-

gram locks this entity. The user can take the entity for this purpose only if no other user

already locked the file.

cm:nn'Pmpw Search Database Genarat Lint of Idarttty Objects Calculata Object o

‘ ! by Project —| Project Objects |—p={ Wwith no inputs Placement s Objects Generate HTML

;E 7.10.0¢ 7.10.1 7.10.9 7.10.3) 7.10.4 7.105 7.,05—'

Input Mouse
Events
7.10.6) Isolate Related
- Objact

Isolats Object —p@;)—— -H@—
7.10.7] Dovmioed File
-
e 7.10.1
Resubmi File
L] -
7.10.18
Relum 1o Work
e Manager
7.10.12]
Add Link Attribule
—a Add to Database
7.10.10] 7.10.13
Remove Link
Deslsta C: Afribute fom
Database
7.10.11) 7.10.14

Figure 6.10: Work Manager detailed FFD 3 of 5 (see Manka [22])
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Figure 6.12: Work Manager detailed FFD 5 of 5

The last important function is 7.11 Import External Work (see Figure 6.12). This func-
tion is used when somebody checked a file out and wants to get it back into the system, or
to input outside-initiated entities into the system. Again, when a user clicks on the Import
button, an interface appears (see Appendix H). The interface is used to indicate the loca-
tion of the file to import. The user has to indicate if the work to import is new or if it is an

updated version of an entity already in the system. If it is new, the same attributes as the
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ones associated with the 7.5 Start New Work function are input by the user and the entity is
created in the system. If it is an updated version of an entity already in the system, the pro-
gram 1) asks for the new version number, 2) copies the file in the database and 3) updates

the Work Manager main interface.

6.6 Demonstration

As mentioned previously, the prototype consists of sets of FFDs illustrating the functional-
ity and a mock-up demonstration showing how the software would be used. The sugges-
tion of doing a mock-up demonstration came from experts consulted (Microsoft and
Wertheim Inc.).

The first idea was to integrate existing software into the On-Line TA so that a real
working prototype could be implemented. Research and consultations were performed to
identify the appropriate software tools. The main tools considered were:

» The Hummingbird Enterprise Information Portal (EIP) including PCDocs Fulcrum

and CyberDocs

« Rational ClearCase

» Microsoft Site Server

The first two are used mainly for e-Commerce applications, while the third one is a
tool facilitating the creation of sophisticated World Wide Web-based educational environ-
ments (see Goldberg [23]). Microsoft Site Server is used to create and manage sophisti-
cated web pages. None of these packages integrated all of the functionality of the On-Line
TA and the Work Manager. Investigations were made to see if it is possible to tailor
PCDocs Fulcrum to perform the Work Manager functions. This approach was finally
rejected because of the associated high cost and risk. Even having PCDocs Fulcrum tai-

lored to the Work Manager would have allowed demonstrating only limited functionality
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of the Work Manager. The creation of the Work Manager using Microsoft Site Server was
considered as well. This idea was abandoned due to the complexity of Microsoft Site
Server. For all these reasons and the project time constraints, it was decided that a mock-

up demonstration would be the best option.

The demonstration was performed during the final design review of the project. It con-
sisted of a set of web interfaces, pictures and documents linked together. The web inter-
faces for the Work Manager are displayed in Appendix H with the sequence of actions
taken during the demonstration. The demonstration showed how the software would
behave when the user inputs certain commands. The web interfaces were designed to be

very representative of the real software.

6.7 Chapter Summary
This chapter presented the work performed by the team to discover the key enabler of the

system, the integrated On-Line Teaching Assistant (On-Line TA), a graphic and interac-
tive system focused on the product development process (PDP), providing access to rele-
vant course notes, sample PDPs, Systems Engineering Management Plan (SEMP)
templates, external resources, and other relevant information. The prototype was then
defined in light of the key enabler and was divided into four main elements: a Front End
for User interface, a Front End Authoring Tool for Customizing the On-Line TA, a Work
Manager and a Project Navigator. Emphasis was placed on the Work Manager developed
by the author. The Work Manager is a multi-platform/multi-user interface accessible on
campus, from home or even through the Internet to help the students to manage their
work. The Work Manager is not integrated in each software tool, but runs in the back-
ground and monitors students’ files directly on the disk where they are stored (knowledge

database). Finally, the demonstration achieved at the final design review of the project was

highlighted.
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Chapter 7

System Implementation Plan and Recommendations for
Future Work

7.1 Chapter Overview

In order to move forward with the project, the A/A department needs estimates of time,
costs and impacts involved by the implementation of the On-Line TA. This chapter pre-
sents future work recommended for the On-Line TA concept through a system implemen-
tation plan. The level of completion of the On-Line TA is quantified to help identify and
select future design options. Time and cost estimates for each option are provided, as well
as a suggested schedule. Then, the work needed to be done in order to implement the
whole DE-ICE system as designed by the team is specified. Finally, recommendations and

conclusions on the overall project are made.

7.2 Level of Completion of the Prototype

Software design experts from Integrated Information Systems (IIS) were consulted to
evaluate the On-Line TA’s level of completion. The level of completion estimate is based
on the design process presented in Figure 7.1. A description of each phase of this design
process follows (see Appendix I):
1. Conceive
This phase is used to define the project scope. Critical issues are assessed and
experts explore how to resolve them. An overall vision of the project is provided
and strategic objectives are set.
2. Explore
Requirements are established in this phase, as well as preliminary project plans

and metrics. A technical feasibility study is completed, and risks are assessed.
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3. Design
An architecture is established based on the requirements elaborated earlier. Mod-
els, use cases, visual interfaces and test plans are defined.

4. Create
During this phase, the infrastructure is set up, the code and the production graphics
are developed, and the database is created. Testing and assessment are also per-
formed.

5. Support
Delivery, implementation, maintenance, hosting/management and enhancement of
the system are performed here. Training of the users is also completed.

6. Evolve
This phase proposes a direction for the next potential phases of the solution. The

project (solution and requirements) is reviewed. Feedback and lessons learned are

collected through surveys and meetings.

* 1IS = Integrated Information Systems, Burlington MA

Figure 7.1: Prototype level of completion (see Appendix I)
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The level of completion estimate from IIS is illustrated in Figure 7.1. The percentage
of the boxes filled is representative of the estimation. The Conceive phase was estimated
to be completed at 90%. The Explore phase estimate is 75%. The Design phase 50% and
the Create phase 25%. These estimates were based on the material presented during an

interview [52].

7.3 Designer Options

Following the consultations with internal (A/A system administrator) and external
(Microsoft, Wertheim Inc., and Integrated Informations Systems) experts, two main
options were considered for the design of the On-Line TA:

1. Create the On-Line TA at MIT

This option involves the use of MIT students and experts, Microsoft resources and
software, and possibly external consultants to add another perspective to the
project. MIT students and experts involved are a systems engineering student, a
programming student, a part-time System Administrator and a part-time Director
of Assessment. From Microsoft, two consultants interacting with MIT are avail-
able. The software to be used to create the On-Line TA are Site Server, Source
Safe, Front Page and Visual Studio (all Microsoft software). This suite was used to
make the Front End for User interface and the Front End authoring tool prototype
(see Farnworth [17]). The consultant company is Integrated Informations Systems.
2. Create the On-Line TA externally
This option involves outsourcing the contract to an external company so that mini-
mal supervision has to be maintained by MIT. The company creating the On-Line
TA could either work around existing systems like PCDocs Fulcrum or Humming-

bird EIP, or use software similar to that used in the previous option. Having the
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On-Line TA created by experts minimizes the risk of not having a fully functional
system at the right time and minimizes the time that MIT personnel have to spend
on the implementation of the On-Line TA (the MIT representative would act as a

customer). Cost estimates are provided in the following section.

7.4 Time and Cost Estimates for Implementing the On-Line TA

This section provides time and cost estimates for both of the options previously stipulated
(in-house or outsourcing). Most of these estimates are derived from discussions with

experts at MIT and in industry.

7.4.1 Estimates for the Option of Creating the On-Line TA at MIT

A time estimation to code and implement the On-Line TA at MIT was established consid-
ering the people mentioned in section 7.3. An interview with the A/A System Administra-

tor made it possible to gather the following information [54]:

Table 7.1: Time estimates to create On-Line TA elements at MIT

On-Line TA subsystem Function Time estimation (2 people full-time)
Front End 1.0 3-4 days
4.0 1 week
11.0 1 week
12.0 not available
Authoring Tool 3.0 more than one month
9.0 more than one month
Work Manager 7.0 2 months at most
Project Navigator 7.10 1 month

It was judged necessary to reconsider these estimates because students may face more

difficulties than experienced programmers. So the previous estimates were doubled, and
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an interval of +/- 1 month was added to each main function. Three more phases were

judged necessary to be added:
» Startup (1 month): recruiting programmers, forming the implementation team
* Design Iteration (1 month): improve weaknesses identified during FDR
* Front End Population (2 months): insertion of theory and design processes

The final time estimation is displayed in Figure 7.2.

Time Estimation* (months) to
Build the On-Line TA at MIT

M Total: 7
| ~13 - 18 months

-1-3 ~1

~1 M Conceptual Design
Iteration
A Aqa O Front End

@ Startup

O Front End Population
~1-3 B Work Manager

~3-5 [ Authoring Tool

8 Project Navigator

*assuming 2 students working as TA/RA

Figure 7.2: Time estimation for the implementation of DE-ICE

The cost estimate was based on the time estimation of Figure 7.2. The stipend of a stu-
dent working as a TA is $1,530/month, and the tuition is $26,050/year (rates of year 1999-
2000). Figure 7.3 considers two students receiving thirteen to eighteen months of stipends
and one year of tuition. This would be by far the main cost of the project. The estimated
hardware cost was judged to be $12,000 (three servers at $4,000 each). The use of these
servers is explained in Farnworth [17]. $6,000 was planned for a trip for three persons to

Microsoft in Seattle to learn how to use Microsoft Site Server. The external consulting
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cost estimation is derived from a proposition of IIS to help MIT complete the Explore
phase of the design process of Figure 7.1 (see Appendix I). It involves the participation of
a Solutions Architect, a Creative Designer and a Project Manager. Three weeks were esti-
mated for the completion of the Explore phase. This could occurred during the Conceptual

Design Iteration phase of the time chart of Figure 7.2.

Cost Estimation* to Build the On-Line
TA at MIT

~$6,000 (for 4 people)

~$15,500 Total :
~$125,000 - $141,000
@ Stipends

B Tuitions

O Hardware

O Learning Sessions
B External Consulti

~$12,000

~$52,000

~$40,000 - $55,000

*assuming 2 students working as TA/RA

Figure 7.3: Cost estimation for the implementation of DE-ICE

Figure 7.4 illustrates the proposed schedule for implementing the On-Line TA in DE-ICE,
assuming that it is created at MIT. The phases of Figure 7.2 are represented by the bars
linked together with an arrow in the Gantt chart. The order in which they are accomplished
is shown in Figure 7.4. Because of the small number of people at MIT working on the
implementation of the On-Line TA and because of the decision to test part of the system
during a Fall 2000 class, these phases are not completed concurrently. However, each one

is put in the context of the overall system during their implementation to help their inte-
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gration.
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4 {E : Authoning Tool User Testing 122days |
R
16 ]  Project Navigator User Testing 102 days
7Y 16428 DaveNewman) 83 days”

Figure 7.4: Proposed schedule for implementing DE-ICE

Parallel to the main phases are the test preparation and testing phases of each of the
main elements of the On-Line TA. Test preparation phases occur in the months prior to the
semester in which the tests are conducted. From Figure 7.4, it can be seen that:

* The Front End for User interface will be completed during Summer 2000 and the
beginning of Fall 2000. It will be tested during the following year in course 16.423]J
Aerospace Biomedical and Life Support Engineering, and 16.00 Introduction to
Aerospace and Design.

* The Work Manager will be created and implemented during Fall 2000 and the begin-
ning of Winter 2001. It will be tested during Winter 2001 in 16.00 Introduction to

Aerospace and Design.

* The third element to be completed will be the Front End Authoring tool, during Win-
ter 2001 and Summer 2001. Its testing will occur during Fall 2001 in the class

16.423]) Aerospace Biomedical and Life Support Engineering.

* The project Navigator will be created and implemented at the end of Summer 2001.
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It will be tested at the same time as the Front End Authoring tool.
» It is planned that the On-Line TA will be fully operational at the beginning of Winter

2002. It should then be available to other design classes.

7.4.2 Estimates for the Option of Creating the On-Line TA Externally

The other option considered was to ask a private company to create and implement the
On-Line TA. In the work proposition returned by IIS, a period of fifteen weeks was judged
necessary to complete the Explore, Design and Create phases of the process of Figure 7.1.
That means that the system should be ready for the end of August or the beginning of Sep-

tember 2000.

It was anticipated that services for the complete project implementation would be pro-
vided by a Solutions Architect, a Consultant, a Designer, a Design Implementer, a Project
Manager and a Database Administrator. A final staffing plan would have to be determined
at the end of the Explore phase. The estimated total cost was $321,500 (see Appendix I). It
was judged too early for IIS to make any final choice on the software tools to use to create

the On-Line TA.

7.4.3 Selected Option
After discussions with MIT staff, it was judged that the cost of doing the On-Line TA

externally would be prohibitive. MIT has access to good students and staff members that
can accomplish this challenging system design. Collaboration with Microsoft through the
I-Campus project for software and human resources positively influenced the decision to

create the On-Line TA at MIT.

7.5 The Use, Maintenance and Improvement of the System

A learning curve is associated with the use of the On-Line TA. It is estimated that the stu-

dents will need a tutorial period of about one and a half hours to learn the main features of
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the system.

More time would be required of the System Administrator. It is estimated that he will
have to spend about 50% of his time supporting the implementation of the system. Once
the On-Line TA is functional, about 20% of his time (five hours) is estimated to be

required for routine maintenance.

Time requirements for faculty vary a lot from one professor to another. The time
requirements depend on the percentage of the professor’s notes already in an electronic
form (notes to be inserted in the PDP of the Front End for User interface) and on his level
of expertise with the software to be used (mainly web interfaces). The use of teaching
assistants is strongly suggested, especially the first time a class uses the On-Line TA. Once
a professor gets used to the On-Line TA, it is estimated that the time to interact with the
On-Line TA to input new material will not exceed one tenth of the time he normally takes

to prepare his class.

As explained in Farnworth [17], DE-ICE captures lessons learned from each project
using it. From these lessons learned, faculty may want to improve the PDP they use for
their class. A research assistant student could be assigned to test the improvements sug-

gested by the On-Line TA users.

7.6 Learning and Educational Benefits Resulting from DE-ICE
The most important learning and educational benefit from the use of DE-ICE in the A/A

department is expected to be a better understanding by the students of the development
and the use of design processes to improve the management of a project and the design
quality. Having tools, templates and a dedicated facility should make it possible for better
project starts and more structured projects throughout their life cycle. Having completed

projects in a facility similar to the ones used in aerospace industries, having provided the
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students a holistic view of design, and having challenged them in team working situations

should better prepare the students to work in the aerospace industry.

7.7 Future Work/Recommendations

This section presents future work to be done and recommendations for both the On-Line

TA and DE-ICE.

7.7.1 Future Work To Be Done on the On-Line TA

As mentioned by a faculty member during the final FDR presentation, it seemed that the
connection between DE-ICE and the On-Line TA was not absolutely clear, even with the
matrix presented in Figure 6.1. A refinement of the needs and the technical requirements
specifically for the On-Line TA will have to be done in order to fully demonstrate the use-
fulness of the On-Line TA to the faculty. This will be achieved during the conceptual
design iteration phase of Figure 7.2.

After being officially approved by the faculty, the On-Line TA will have to be fully
coded and tested. This will occur over a period of 18 months (see Figure 7.4). The On-
Line TA team will need formation on the software and hardware to be used (like Site
Server, SQL databases, server configuration). This is judged necessary due to the com-
plexity of Microsoft Site Server and the difficulty of maintaining a stable development
environment for the Front End for User interface and the Front End Authoring tool (see
Farnworth [17]). Hardware will need to be bought and installed. The overall system will
need to be configured and tested. The metrics developed in the QFD matrix (see Figure
4.1) will have to be refined so that quantitative measurements could come out of the tests.

These measurements will be used to further improve the system.

7.7.2 Future Work To Be Done on DE-ICE

More feedback from faculty and students will have to be obtained on the final architecture
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selected (ABC’), mainly on the approach of including the purchase of a laptop in the stu-
dent’s tuition. This feedback could be obtained through informative meetings or through

surveys. A final decision on this topic will have to be made.

The distance collaborative system will have to be selected. Preliminary tests have
already been made on PicTel and NetMeeting (see Nolet [31]), but further investigations
will have to be completed before finalizing the choice. Inexpensive PC cameras could be

used in between to maintain a minimal video connection with external sites.

Further tests of the DOME system will have to be made before integrating it in DE-
ICE, since it is still under development. The tests should demonstrate that this environ-
ment will not add more constraints or more work to the users.

Once the construction of the Learning Laboratory is completed, elements identified in
Architecture ABC’ could be installed. This process could occur over an extended period
while the laboratory is being monitored and feedback from the users is received. The labo-

ratory could eventually look like the DE-ICE Architecture ABC’.

7.8 Conclusion
Among the reforms adopted by the A/A department to converge toward the CDIO initia-

tive was the intention of the A/A department to conceive DE-ICE. DE-ICE will be used by
students and faculty in future design classes. A group of MEng students formed the DE-
ICE team and took up this challenging design project. They identified the following mis-
sion statement: To develop an operational framework for a design center to enhance
learning in an academic environment.

Two main goals were identified. The first one was to develop recommendations for the
architecture of the design environment. To do so, a systems engineering process was fol-

lowed. Benchmarking of existing systems was completed, like JPL’s PDC, Aerospace
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Corporation’s CDC, TRW’s ICDF, Caltech’s LSMD, and more. Educational needs for DE-

ICE included:
1. Active learning in a design environment
2. Holistic view of design
3. Improved knowledge of and experience with the design process
4. Support of life cycle analysis
5. Improved quality of student design work
6. Increased productivity for given amount of time
7. Support for team enablers
8. Sustainable system
9. Highly usable system

The support of MIT’s operational modes was identified as a constraint and influenced

the choice of the final technical requirements.

Using a QFD matrix, technical requirements addressing the previous needs were iden-

tified, classified and selected. The ones retained were:
1. Design and analysis support
2. Provide guidance throughout the design process
3. Planning and management of the design process
4. Experimentation support
5. Ability to operate on any platform
6. Distance collaborative support
7. Flexible system

8. Presentation and reporting support
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Conflicts between these requirements were mentioned, and some preliminary metrics
were elaborated. A use case study was prepared in order to characterize the way the users

directly interact with the system.

Architectural elements were mapped with the main technical requirements in a prod-
uct matrix. From this assessment, four architectures were elaborated: three preliminary
ones and a final one (Architecture ABC’) that combined elements of the three preliminary
architectures. These architectures were evaluated and compared using Pugh’s matrix to the
Baseline Architecture initially planned by the A/A department. Architecture ABC’ was
the one recommended for DE-ICE architecture. The evaluation showed major improve-
ments from the Baseline Architecture.

The second goal of the project was to discover a key enabler of the system and to
develop a component. Different prototype ideas were defined. A matrix was developed to
assess each prototype idea with the technical requirements retained. The On-Line TA was
finally selected as being the DE-ICE key enabler to be made into a prototype.

Prototype elements were identified, and their design was split among team members.
The author elaborated the Work Manager that enables students to manage their work,
whether they are working in teams or by themselves, on campus, from home or even
through the Internet, using any kind of platforms (PC, Unix or Macintosh). Functionality
of the Work Manager was developed, and a demonstration was made during the team’s
final presentation.

The feedback received by the team was very positive throughout the semester. Profes-
sor Joel Sercel from Caltech even stated that “The On-Line TA could revolutionize engi-
neering education as we know it.”

The author further elaborated on an implementation plan of the On-Line TA. Options

of creating the On-Line TA internally or externally using a consultant company were
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described. Time and cost estimates for each option, as well as implementation schedules,
were developed. The option of creating the On-Line TA at MIT was finally selected.
Future work to fully implement the system was mentioned.

This project was a very important step toward integrated concurrent engineering
teaching in the MIT A/A department. It has paved the way for the creation of a design cen-
ter to be used in academia. Once DE-ICE is implemented, it will allow students to do bet-
ter projects and better quality designs and to gain an expertise that was previously only

available in industry and government.
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Appendix A

CDIO Syllabus

E. F. Crawley. The CDIO Syllabus: A Statement of Goals for Engineering Undergraduate
Education, MIT CDIO Report #1, Department of Aeronautics & Astronautics, Massachu-
setts Institute of Technology, June 2000.

In contemporary engineering undergraduate education, there is a seemingly irreconcil-
able tension between two growing needs. On one hand, there is the ever increasing body
of technical knowledge that it is felt that a graduating student must command. On the
other hand, there is a growing recognition that a young engineer must be possess a wider
array of personal, interpersonal and system building knowledge and skills that will allow
them to function within real engineering teams and processes, producing real products and
systems. In order to reconcile these disparate needs, we must develop: a new codified
understanding of the skills needed by the contemporary engineer; new approaches to
enabling and enhancing the learning of these skills; and new systems to assess learning
and improve our education. These are the broad goals of the CDIO program at MIT (the
origin of this name will become obvious shortly). The first tangible outcome of this pro-
gram is the CDIO Syllabus.

The primary objective of the CDIO Syllabus is to formally summarize a set of knowl-
edge, skills and attributes that alumni, industry and academia desire in young engineers.
The Syllabus can be used to prioritize the personal, interpersonal and system building
skills among themselves, and relative to the "traditional” body of technical knowledge and
reasoning. Further, the syllabus can be used to create and define new educational initia-

tives, and as a basis for a rigorous assessment process.

E. F. Crawley. CDIO Syllabus, V3.2.1, May 25, 2000.

1 TECHNICAL KNOWLEDGE AND REASONING

1.1 KNOWLEDGE OF UNDERLYING SCIENCES [a]
1.1.1 Mathematics (including statistics)
1.1.2  Physics

155



1.1.3
1.14

Chemistry
Biology

1.2 CORE ENGINEERING FUNDAMENTAL KNOWLEDGE [a]

1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6
1.2.7

Fluid Mechanics

Solid Mechanics and Materials
Dynamics

Signals and Systems
Thermodynamics

Control

Computers and computation

1.3 PROFESSIONAL ENGINEERING KNOWLEDGE AND SKILLS [k]

1.3.1
1.3.2
133
134
1.3.5
1.3.6
1.3.7
1.3.8
1.3.9
1.3.10
1.3.11
1.3.12

Aerodynamics

Structural Mechanics

Structures and Materials

Jet and Rocket Propulsion
Flight and Advanced Aerospace Dynamics
Computational Techniques
Estimation and Navigation
Human and Supervisory Control
Digital Communications
Software Engineering
Autonomy

Digital Circuits and Systems

2 PERSONAL AND PROFESSIONAL SKILLS AND ATTRIBUTES

2.1 ENGINEERING REASONING AND PROBLEM SOLVING (4.0) [e]

2.1.1

2.1.2

Problem Identification and Framing (4.4/4)
Evaluate data and symptoms
Analyze assumptions and bias
Examine issue prioritization in context of overall goals

Formulate a plan of attack (incorporating model, analytical and
numerical solutions, algorithms and qualitative analysis, experimen-
tation and consideration of uncertainty)

Modeling (4.3/4)
Employ appropriate assumptions to simplify complex systems and
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2.2

environment
Choose and apply conceptual and qualitative models
Choose and apply quantitative models and simulations

2.1.3 Estimation and Qualitative Analysis (4.0/4)
Estimate the order of magnitude, bounds and trends
Analyze possible errors (limits, units, etc.)
Demonstrate the generalization of appropriate analytic solutions

2.1.4  Analysis With Uncertainty (3.7/4)
Inventory incomplete and ambiguous information
Apply probability and statistics of events and sequences
Practice engineering cost-benefit or risk analysis
Discuss decision analysis
Schedule margins and reserves

2.1.5 Closing the Problem (3.8/4)
Analyze essential results of analysis and test data
Analyze and reconcile discrepancies in results
Synthesize solutions
Formulate recommendations
Appraise the problem solving process used

EXPERIMENTATION AND KNOWLEDGE DISCOVERY (3.3) [b]

2.2.1 Hypothesis Formulation (3.4/3)
Select the critical questions to be examined
Formulate hypotheses to be tested
Explain the need for controls

2.2.2 Survey of Print and Electronic Literature (3.0/3)
Choose the literature research strategy

Identify information using library tools (on-line catalogs, electronic
databases, search engines)

Locate, sort and classify the primary information

Question the quality and reliability of information

Discriminate the essentials and innovations contained in the informa-
tion

Identify research questions that are unanswered

Record citations to references

2.2.3 Experimental Inquiry (3.6/4)
Design the experimental concept and strategy
Discuss the precautions when humans are used in experiments
Execute experiment construction
Execute test protocols and experimental procedures
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23

24

Execute and record experimental measurements
Analyze and report experimental data
Compare experimental data vs. available models

2.2.4 Hypothesis Test, and Defense (3.3/3)
Discuss the statistical validity of data
Discuss the limitations of data employed
Prepare conclusions, supported by data, needs and values
Appraise knowledge discovery process used

SYSTEM THINKING (2.8)

2.3.1 Thinking Holistically (2.9/3)
Identify and define a system, its behavior, and its elements

Use trans-disciplinary approaches that insure the system is under-
stood from all relevant perspectives

Identify the societal, enterprise and technical context
Identify the interactions external to the system, and the behavioral
impact of the system

2.3.2 Emergence and Interactions in Systems (2.6/3)
Describe the abstractions necessary to define and model system
Identify the importance of the interfaces among elements

Identify the behavioral and functional (intended and unintended)
properties which emerge from the system

Recognize evolutionary adaptation over time

2.3.3 Prioritization and Focus (2.7/3)
Indicate all factors relevant to the system in the whole
Identify the driving factors from among the whole
Explain energy and resource allocations to resolve the driving issues

2.3.4 'Trade-offs and Balance (3.1/3)
Identify tensions and factors to trade-off

Choose and employ solutions that balance various factors, resolve
tensions and optimize the system as a whole

Describe flexible vs. optimal solutions over the system lifetime
Appraise the system thinking used

PERSONAL SKILLS AND ATTRIBUTES (3.4)

2.4.1 Initiative and Willingness to Take Risks (3.4/3)
Identify needs and opportunities for risks and initiative
Explain potential benefits and risks of an action
Explain the methods and timing of project initiation

Practice leadership in new endeavors, with a bias for appropriate
action
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242

243

244

245

24.6

247

Practice definitive action, delivery of results and reporting on actions

Perseverance and Flexibility (3.8/4)
Demonstrate self-confidence, enthusiasm, and passion

Demonstrate the importance of hard work, intensity and attention to
detail

Identify issues vital for success
Demonstrate adaptation to change

Demonstrate a willingness to work with others, consider and embrace
various viewpoints

Demonstrate an acceptance of criticism and positive responce
Discuss the balance between personal and professional life

Creative Thinking (3.6/4)
Demonstrate conceptualization and abstraction
Demonstrate synthesis and generalization
Use the process of invention

Critical Thinking (3.8/4)
Analyze the statement of the problem
Choose logical arguments and solutions
Evaluate evidence
Locate contradictory perspectives, theories and facts
Identify logical fallacies
Test hypotheses and conclusions

Personal Inventory (2.9/3)
Describe one's skills, interests, strengths, weaknesses
Explain one's skills, interests and strengths

Discuss the extent of one's abilities, and accept responsibility for self-
improvement to overcome important weaknesses

Discuss the importance of both a depth and breadth of knowledge

Curiosity and Lifelong Learning (3.1/3) [ 1]
Discuss the motivation for continued self-education
Practice working independently
Demonstrate the skills of self-education
Express an awareness of one's own learning style
Explain developing mentors

Time and Resource Management (3.3/3)
Discuss task prioritization
Explain important and/or urgent tasks
Explain efficient execution

2.5 PROFESSIONAL SKILLS AND ATTITUDES (3.0)
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2.5.1 Professional Ethics, Integrity, Responsibility and Accountability (3.7/
4) [f]

Analyze one's ethical standards and principles
Demonstrate the courage to act on principle despite adversity
Recognize the possibility of conflict between professionally ethical
imperatives
Demonstrate an understanding that it is acceptable to make mistakes,
but accept accountability for them
Practice proper allocation of credit and collaboration
Demonstrate a commitment of service

2.5.2 Professional Behavior (2.7/3)
Describe a professional bearing
Explain professional courtesy
Identify international customs and norms of interpersonal contact

2.5.3 Proactively Planning for One's Career (2.7/3)
Describe a personal vision for future
Describe network with professionals
Define one's portfolio of professional skills

2.5.4 Stay Current on World of Engineer (2.9/3)
Discuss the potential impact of new scientific discovery

Describe the social and technical impact of new technologies and
innovations (e.g. IT)

Discuss a familiarity with current practices/technology in engineering
Explain the links between engineering theory and practice

3 INTERPERSONAL SKILLS: TEAMWORK AND COMMUNICATION

3.1 MULTI-DISCIPLINARY TEAMWORK(3.3) [d]

3.1.1 Form Effective Teams (3.4/3)
Identify the stages of team formation and life cycle
Interpret task and team processes
Identify team roles and responsibilities

Inventory and analyze the individual goals, needs and characteristics
(works styles, cultural differences) of the team

Inventory and analyze the strengths and weakness of the team
Discuss ground rules on norms of team confidentiality, accountability
and initiative

3.1.2 Team Operation (4.0/4)
Choose goals and agenda
Execute the planning and facilitation of effective meetings
Apply team ground rules
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Practice effective communication (active listening, collaboration,
providing and obtaining information)

Demonstrate positive and effective feedback

Practice the planning, scheduling and execution of a project
Create solutions to problems (team creativity and decision making)
Practice conflict negotiation and resolution

3.1.3 Team Growth and Evolution (2.7/3)
Describe strategies for reflection, assessment, and self-assessment
Identify skills for team maintenance and growth
Identify skills for individual growth within the team
Explain strategies for team communication and writing

3.14 Leadership (3.4/3)
Explain goals and objectives
Practice team process management
Practice leadership and facilitation styles (directing, coaching, sup-
porting, delegating)
Explain approaches to motivation (incentives, example, recognition,
etc)
Practice team representation to the larger enterprise
Describe mentoring and counseling

3.1.5 Technical Teaming (3.0/3)
Describe working in different types of teams:
Cross-disciplinary (include non-engineer) teams
Small team vs. large team
Distance, distributed and electronic environments
Demonstrate technical collaboration with team members

3.2 COMMUNICATIONS (3.6) [g]

3.2.1 Communications Strategy (3.5/4)
Analyze a communication situation
Choose communications objectives
Analyze the audience
Analyze context
Choose a communications strategy
Choose media
Choose a style (proposing, reviewing, collaborating, documenting, teach-
ing)
Select content and organization
3.2.2 Communications Structure (3.8/4)
Construct logical, persuasive arguments
Create the appropriate structure and relationship amongst ideas
Choose relevant, credible, accurate support evidence
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324

3.2.5

3.2.6

Practice conciseness, crispness, precision and clarity of language
Analyze rhetorical factors (e.g. audience bias)

Recognize cross-disciplinary cross-cultural communications

Written Communication (3.9/4)
Demonstrate writing with coherence and flow
Demonstrate formatting
Practice writing without spelling, punctuation or grammatical errors
Demonstrate technical writing
Apply various styles (informal, formal memos, reports, etc)

Electronic/Multimedia Communication (3.1/3)
Identify the norms associated with the use of E-mail, voice mail, and
videoconferencing
Discuss writing supporting technical documentation
Demonstrate electronic and web presentations

Graphical Communication (3.4/3)
Demonstrate sketching and drawing
Interpret formal drawing, drafting and rendering
Demonstrate construction of tables, graphs and charts

Oral Presentation and Inter-Personal Communications (4.1/4)
Prepare presentation and support media
Use with appropriate language, style, timing and flow
Use appropriate nonverbal communications (gestures, eye contact,
poise)
Demonstrate answering questions

4 CONCEIVING, DESIGNING IMPLEMENTING AND OPERATING
SYSTEMS IN THE ENTERPRISE AND SOCIETAL CONTEXT

4.1 EXTERNAL AND SOCIETAL CONTEXT (2.0) [h]

4.1.1

4.1.2

4.13

Roles and Responsibility of Engineers (2.2/2)
Define the goals and roles of the engineering profession
Describe the responsibilities of engineers to society

Understand the Impact of Engineering (2.5/3)
Explain the impact of engineering on the environment, society, and
modern culture (including financial and economic factors)
Understand How Engineering Is Regulated (1.7/2)

Recognize the way in which legal and political systems regulate and
influence engineering
Describe how professional societies license and set standards

Describe intellectual property
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4.1.4 Knowledge of Historical and Cultural Context (1.4/2)

Describe the diverse nature and history of human societies as well as
their literary, philosophical, and artistic traditions

Recognize use of discourse and analysis appropriate to the discussion
of language, thought and values
4.1.5 Knowledge of Contemporary Issues and Values (2.2/2) [j]

Describe the important contemporary political, social, legal and envi-
ronmental issues and values

Recognize the mechanisms for expansion and diffusion of knowledge

4.1.6 Developing a Global Perspective (2.1/2)
Recognize the internationalization of human activity
Recognize international cultures and norms

4.2 ENTERPRISE AND BUSINESS CONTEXT (1.8)

4.2.1 Appreciating Different Enterprise Cultures (1.6/2)
Recognize the differences in process, culture, and metrics of success
in various cultures:

Academic vs. corporate vs. governmental vs, non-profit/NGO
Market vs. policy driven
Large vs. small
Centralized vs. distributed
Research and development vs. operations
Mature vs. growth phase vs. entrepreneurial
Longer vs. faster development cycles
4.2.2 Enterprise Strategy, Goals, and Planning (2.2/2)
State the mission and scope of the business
Recognize an enterprise's core competence and markets
Recognize the research and technology process
Recognize key alliances and supplier relations
List financial and managerial goals and metrics
Recognize financial planning and control
List the stake-holders (owners, employees, customers, etc)

4.2.3 Technical entrepreneurship (1.8/2)

Recognize entrepreneurial opportunities that can be addressed by
technology

Recognize technologies that can create new products
Recognize the issues in entrepreneurial finance and organizations

4.2.4 Working successfully in Organizations (1.8/2)
Define management function
Describe various roles and responsibilities in an organization
Describe the roles of functional and program organizations
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Recognize how to work within hierarchy and organizations
Recognize change, dynamics and evolution in organizations

4.3 CONCEIVING AND ENGINEERING SYSTEMS (3.1) [¢]

43.1 Setting System Goals and Requirements (3.2/3)

Identify market needs and opportunities
Elicit and interpret customer needs
Identify opportunities which derive from new technology or latent needs

Explain contextual factors
Identify enterprise goals, strategies, capabilities and alliances
Locate competitors and benchmarking information
Discuss ethical, social, environmental, legal and regulatory issues
Explain the probability of change in the factors which influence the sys-
tem, its goals and resources available

Express system goals and requirements
Indicate the language/format of goals and requirements
Interpret initial goals
Describe system performance metrics
Interpret requirements for completeness and consistency
4.3.2 Defining Function, Concept and Architecture (3.2/3)
Identify necessary system functions (and behavioral specifications)
Analyze system concepts
Identify the appropriate level of technology
Analyze trade-offs among and recombination of concepts
Identify high level architectural form and structure
Discuss the decomposition of form into elements, assignment of
function to elements (HW and SW), & definition of interfaces
4.3.3 Modeling of System and Insuring Goals Can Be Met (3.1/3)
Locate appropriate models of technical performance
Describe concept of implementation and operations
Describe life cycle value and costs (design, implementation, opera-
tions, opportunity, etc.)
Indicate trade-offs among various goals, function, concept and struc-
ture and iterate until convergence
4.3.4 Project Management (3.0/3)

Describe project control for cost, performance, and schedule
Indicate appropriate transition points and conduct reviews
Explain configuration management and documentation
Record performance against baseline

Define earned value recognition
Discuss the estimation and allocation of resources
Identify risks and alternatives
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Recognize development process improvement

4.4 DESIGNING (3.4) [c]

44.1

4.4.2

443

444

445

4.4.6

The Design Process (3.9/4)

Translate system level goals and requirements into requirements for
each element or component

Examine alternatives

Analyze alternatives

Resolve trade-offs

Experiment with prototypes and test articles

Apply appropriate optimization in the presence of constraints
Demonstrate iteration until convergence

Syntesize final design

Demonstrate accommodation of rapid/major changing requirements

The Design Process Phasing and Approaches (2.9/3)

Explain the activities in the phases of system design (e.g. conceptual,
preliminary, and detailed design)

Describe process models appropriate for particular development
projects (waterfall, spiral, concurrent, etc.)

Describe the process for single, platform and derivative products

Utilization of Knowledge in Design (3.4/3)
Exploit technical and scientific knowledge
Employ creative and critical thinking, and problem solving

Discuss prior work in the field, standardization and reuse of designs
(including reverse engineer)

Discuss design knowledge capture
Disciplinary Design (3.4/3)
Choose appropriate techniques, tools, and processes
Describe tool calibration and validation
Analyze alternatives quantitatively
Practice modeling, simulation and test
Describe analytical refinement of the design
Multidisciplinary Design (3.4/3)
Identify interactions between disciplines
Indicate dissimilar conventions and assumptions
Explain differences in the maturity of models
Describe multidisciplinary design environments

Multi-Objective Design (DFX) (3.5/4)
Tlustrate design for:
Performance, life cycle cost and value
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Aesthetics and human factors

Implementation, verification, test and environmental sustainability
Operations

Maintainability, reliability, and safety

Robustness, evolution, product improvement and retirement

4.5 IMPLEMENTING (2.3) [c]

4.5.1

45.2

453

454

4.5.5

4.5.6

Designing and Modeling of the Implementation Process (2.3/2)
State the goals metrics for implementation performance, cost and
quality
Recognize the implementation system design:
Task and cell/unit layout
Work flow
Considerations for human user/operators
Hardware Manufacturing Process (2.1/2)
Describe the manufacturing of parts
Describe the assembly of parts into larger constructs
Define tolerances, variability, key characteristics and statistical pro-
cess control
Software Implementing Process (2.4/2)

Explain the break down of high level components into module
designs (including algorithms and data structures)

Discuss algorithms (data structures, control flow, data flow)
Describe the programming language

Code the low-level design

Describe the system build

Hardware Software Integration (2.4/2)
List issues of integration of SW in electronic hardware (size of pro-
cessor, communications, etc)

List issues of SW integration with sensor, actuators and mechanical
HW

Describe HW/SW function and safety

Test, Verification, Validation, and Certification (2.7/3)
Explain verification methods selection

Discuss test and analysis procedures (hardware vs. software, accep-
tance vs. qualification)

Report on the traceability and verification of requirements
Explain the certification to standards

Managing Implementation (2.0/2)
Describe the organization and structure for implementation
Discuss sourcing, partnering, and supply chain
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Recognize control of implementation cost, performance and schedule
Describe quality and safety assurance
Describe implementation process improvements

4.6 OPERATING (2.2) [c]

4.6.1

4.6.2

4.6.3

4.6.4

4.6.5

4.6.6

Modeling, Designing and Optimizing Operations (2.6/3)
Interpret the goals for operational performance, cost, and value, and
identify metrics
Explain operations process architecture and development
Explain operations (and mission) analysis and modeling

Training and Operations (2.2/2)

Describe training for professional operations:
Simulation
Instruction and programs
Procedures

Recognize education for consumer operation
Describe execution of operations processes
Recognize operations process interactions

Supporting the System Lifecycle (2.4/2)
Explain maintenance and logistics
Describe assessment of performance and reliability
Describe assessment of life cycle value and costs
Explain feedback to system improvement

System Improvement and Evolution (2.4/2)
Define pre-planned product improvement
Recognize improvements based on needs observed in operation
Recognize system upgrades
Recognize operational work-arounds

Disposal and Life-End Issues (1.5/2)
Define the end of useful life
List disposal option
Define residual value
List environmental considerations

Operations Management (2.3/2)
Describe the organization and structure for operations
Recognize partnering and alliances
Recognize control of operations cost, performance and scheduling
Describe quality and safety assurance
Recognize operations process improvement
Define life cycle management
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Appendix B

Design Engineering References

B.1 Reference Books Suggested by Slocum [3]
1. T. Busch, Fundamentals of Dimensional Metrology, Delmar Publishers.

2. Machine Tool Specs, Huebner Publishing Co.

3. J. Lienhard, A Heat Transfer Textbook, Prentice Hall.

9. W. Moore, Foundations of Mechanical Accuracy, Moore Special Tool Co.
10. E. Oberg et al., Machinery’s Handbook, Industrial Press.

11. E. P. Popov, Engineering Mechanics of Solids, Prentice Hall.

12. J. Shigley and C. Mischke, Standard Handbook of Machine Design, McGraw-Hill

Book Co.
13. M. F. Spotts, Design of Machine Elements, Prentice Hall.
14. R. Steidel, Jr., An Introduction to Mechanical Vibrations, John Wiley & Sons
15. M. Weck, Handbook of Machine Tools, John Wiley & Sons.
16. W. Woodson, Human Factors Design Handbook, McGraw-Hill Book Co.

17. The Principles and Techniques of Mechanical Guarding, Bulletin 197, U.S. Dept.

of Labor Occupational Safety and Health Administration.
18. F. H. Rolt, Gauges and Fine Measurements, University Microfilms.
19. H. J. J. Braddick, The Physics of Experimental Methods, Chapman & Hall.

20. T. N. Whitehead, The Design and Use of Instruments and Accurate Mechanisms,

Dover Publications.

21. W. Mendenhall, Statistics for the Engineering and Computer Sciences, MacMillan.

22. R. Loewy, Industrial Design.
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23. One of the several biographies on Clarence “Kelly” Johnson, who participated in
the design of many of the commercial and military aircraft produced by Lockheed

Corp.
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Appendix C

DE-ICE Survey

C.1 Web Survey (see Farnworth [17])

The MIT Department of Aeronautics and A stronautics is cumrently mvestigating of the next of Design for . for lsaming (DE-ICE) in collsboration with
Microsoft Inc. DE-ICE will enabls i inesring and ¥ ication among  distrib idiscipls intering team. The system will be used by MIT undergraduate and graduate
students in design classes and extended projects.

This survey will be kept completsly anonymous.

This effost will bs grestly enhanced if you would take  fow mirutes 10 give us your fesdback

1. Please tell us about yourself

610

i;om of university sxperience [

[Yours of industry sxperience | o o e
:;",

You would ks to nchuds the orgenization that you re associaled with plsase foel fve 10 do.

Zh-[mywundmiuwd enginssting environment, if 5o how much.

[What proportion of yous time is spent in teams on enginsering

Have you had sny formal training in team dynamics/ working in teams.

Have you had eny traming in team problem solving skills

‘Please rate the importancs of these tools for your wark.
a8
Hi = Can't Live Without

‘Med = Often Usefil

‘Low = Rarely Useful

ftease slet ol oo you regulcy vse

Interactive Data Language

‘Nnunmgm

M Office
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Important ey

Catical

CIR-JE-18- ]

ainid 000800

o|lo ojalojo oo
o|loololo|eio e a

D|oioioja

9. What would make you more mclined to using an integrated engineering environment:

NotImportant

Some Importance

P
g

! Important

If I mow ths tools

‘a

Y

Iu& of use

Online help

Demanstrations orclasses

 Abiliy 10 integrate end access data from other epplications

Reduce the time needed to develop a design

o|lo|pioioa ois

Improve design quality

{Und, what the kmits of th ing models are

of

o olasa

oiolo/sioiojooloinlasia

aiolasooooioolooisla

o olaooooloioio o olelal

sio|o/soiojaoiniojo niolol
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C.2 Results

Faculty | Faculty Importance of Design Tools
Preferred
Operating Hi[Med] Low | NA
System CAD/CAM
Mac | 4 |ProE 1 1 2] 3
NT { 3 JAutoCAD 1] 0 1] 5
CATIA o} 1 0] 6
IDEAS 0] 1 0l 6
MasterCam 0f 0 0 7
DrawCraft o] O g 7
Visio 0f of 0y 7
3D Studio
Other Waorking Model
Conferencing
Net Meeting ] o] 1] 0| ]
Data Analysis, Visualization
ANSYS 1 0 0] b
ACSL 0l 0f ©of 7
MatrixX 0] 0 0o 7
Interactive Data Language! O 0] O] 7
Databases
IDS g o o 7
Ms Access g o 0 7
Finite Element Analysis
Nastran {1 2 ol 4
Mathematics
Matlab 2l 4 O] 1
Mathematica 0 1 1l 5
MathCAD 0] 1 0l 6
Office
Ms Office 7 0f 0
Corel Offica 0 1 0] 6
Programmin
Fortran 2 1 0] 4
Java 0f o 11 6
ADA 0 0f 0 7
Visual Basic gop ol 0 7
Turbo Pascal 0ol 0o 0] 7
Basic 0l 0f 0] 7
C+IC++
Project Management
MS Project 0 1 3] 3
YenSim 0] 0 0O 7
Primavera 0p of o 7
Requirement Management Tools
DOORS 0L 0of o 7
RDD100
Spreadsheets
MS Excel 3] 3 11 8
Lotus 123 f 0f O 7
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Undergrad Undergrad Importance of Design Tools
Preferred
Operating Hi|Med | Low | NA Hi {Medj Low | NA
System CAD/CAM Requirements Management Tools
Unix | 6 JProE 1] 4 1 | 12 |DOORS 010 1 17
NT { 4 |AuteCAD 112 1 | 14 |RDD100
Wing5| 3 {IDEAS 112 1 [14 Spreadsheets
WinS8| 2 JCATIA 01 1 | 16 |MS Excel 7 16 2 3
Mac | 2 |[MasterCam 0{ 0 1 [ 17 jlotus 123 0] 0 3 15
NA | 1 JDrawCraft 0} 0 1 117 Other
Visio 0} 0 1117 Shanghai is a favorite game.
3D Studio
Conferencin
Net Meeting 11012 [15
Data Analysis, Visualization
Interactive Data Language |0 | 1 1 116
ANSYS 0] 01 2 1186
ACSL glo 1117
MatrixX 0j 0 1 117
Databases
MS Access 0] 2|2 |14
10S 010|117
Cther Filernaker Pro
Finite Element Analysis
Nastran 10]o [ 1]
Graphics Presentation
Other ] MS Power paint
Mathematics
Matlab 9{5 | 0|4
MathCAD 1] 0 1 |16
Mathematica o1 1 2 115
Office
MS Office 81 4 115
Corel Office 210 2 |14
Other emacs-High
Orbital Analysis
Other [ sTKHigh
Programminn
Basic 111 3 {13
Java 0] 212 (14
Turbo Pascal a1 4 113
ADA gl 1 1186
Forran glo0 [ 31|15
CHC++
Visual Basic
Project Management
VenSim 110 (0|17
MS Project 012 [ 2|14
Primavera 0} 0 2 116
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Grad Grad Impartance of Design Tools
Preferred
Operating Hi[Med| Low| NA Hi {Med| Low | NA
System CAD/CAM Project Management
NT | 10 }Visio 1131 3 |19 |MS Project 1 2 4 19
Unix | 7 |ProE 0 5 [ 6 {15 ]venSim 0 1 1 24
Wing5| 4 |IDEAS O 4 [ 1 {21 |Primavera 0} 0 1 25
Mac | 3 JAutoCAD 0| 3 | 4 | 19 |Requirements Management Tools
Win88| 1 [MasterCam gl 0] 4 |22 ]|DOORS 1 0 1 24
NA | 1 |CATIA 0| 0] 2 |24 ]|RDD100
DrawCraft g{oj11]25 Spreadsheets
3D Studio MS Excel 13| 9 2 2
Other POV-Ray Lotus 123 1] 1 3 22
Conferencing Other
Net Meeting [o] 11 4 121 ]all Adobe products, Regular network
Data Analysis, Visualization connectivity: Email, ssh, www
ANSYS 31 0 | 3 |20 |browser clients
ACSL 11110 (|24
Interactive Data Language | 0| 1 1 (24
MatrixX 0] 0| 2|24
Other Labview
Databases
MS Access 11213120
IDS 0] 0 2 [24
Finite Element Analysis
Nastran 21 ] 1 ]2
Other ABAQUS
Graphics Presentation
Other | Powerpaint
Mathematics
Matlab 213 1 1 | 1
Mathematica 31313 |17
MathCAD 21115118
Other Mapls, Mapls Med
Office
MS Office 18] 7 1011
Core} Office g 1 3 |22
Other FrameMaker, LaTex
Photo Editing
Qther I Photoshop
Programmin
Java 2133118
Fortran 2{ 016 118
Turbo Pascal 00| 4122
Basic 0] 0 4122
ADA 0] 0} 2124
C+C++
Visual Basic
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Faculty Design Process Effectiveness and Efficiency

Critical Some Not
Importance Very Important |important Importance |Important
Software and System Usability 2 3 1 0 0
Graphical Capability and Visualization of Data 1 2 3 8] 0
Leaning Curve for New Tools 1 2 2 1 1]
Ability to use Familiar Tools 1 2 1 2 a
Ability to Work Anywhere 1 1 3 0 1
System Speed 1 1] 4 1 1]
The ability to share data easily 0 3 3 0 0
integrated Tools 0 3 1 2 0
Communication with Team Members 0 2 4 o] 0]
Preferred Communication Methods
Ciitical Some Not
Impottance Very important [Important Importance |Important
FacefFace 5 1 0 0 1]
Email 4 2 1 0 0
Audio/Visual Presentations/Communication 2 3 1 1 0
Phone 1 1 4 1 0
Fax 1 1 0 4 1
Tele-conferencing 0 1 2 4 0
Faculty Best Communication of Ideas and Concepts | Faculty Communication of Factual Information|
Hi Med Low NA Hi Med [Low| NA
Maetings 5 1 J 1 Email B 1 0 0
Email 4 2 1 0 Meetings 5 1 0 1
Skeiches 4 0 1 2 Presentations 4 1 2 0
Presentations 2 4 1 0 Maodsls 3 2 1 1
Models 2 3 1 1 Briefings 3 2 8] 2
Prototypes 2 2 1 2 Prototypes 2 1 2 2
Briefings 2 2 1 2 Graphs 2 1] 0 5
Phone/FAX 1 2 1 3 Memos 1 2 3 1
Memos 0 3 3 1 Phone 1 1] 1 5
Discussicn Sketches 0 2 1 4
Graphs Discussion
Design Review Design Review
Reports Reports
Shared Database Shared Database
Informal Other
Face to Face Informal
By Accident Face to Face
Other By Accident
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Undergrad Design Process Effectiveness and Efficiency

Critically Some Not

Important | Very Important |important | importance |Important
Communication with Team Members 8 4 2 2 0
Software and System Usability 7 4 5 1] 0
Ability to Work anywhere ) 4 4 3 0
Leaming Curve for New Tools 3 4 5 3 1
Systern Speed 2 5 4 5 0
Integrated Tools 2 5 4 4 1
Graphical Capability and Visualization of Data 3 3 7 3 0
The ability to share data easily 2 10 4 0 0
Ability to use Familiar Tools 0 5 6 4 1

Preferred Communication Methods

Critically Some Not

Important | Very Important |Important | importance |Important
Face/Face 10 4 2 g 0
Email 7 5 4 o 0
Phone 3 g 2 g 2
Audio/Visual Presentations/Communication 3 2 5 3 2
Tele-conferencing 0 <] 3 1 5
Fax 0 2 5 3 4

Undergrad Best Communication Ideas and Concepts

Undergrad Communication of Factual Info

Hi Med Low NA Hi Med [Low| NA
Email 11 3 1 3 Email 13 3 0 2
Sketches 7 6 1] 5 Meetings 5 5 1 7
Meetings 5 7 2 4 Sketches 4 3 2 9
Presentations 2 7 5 4 Presentations 3 6 2 7
Models 1 7 1 9 Briefings 3 2 2 11
Briefings 1 5 2 10 Memos 2 3 4 9
Phone/FAX 1 4 1 12 Prototypes 1 1 5 11
Memos 1 1 8 8 Models 1 1 4 12
Prototypes 0 4 3 11 Phone 1] 4 1 13
Discussion Graphs 0 3 5] 15
Graphs Discussion
Design Review Design Review
Reports Reports
Shared Databass Shared Database
Informal Other
Face to Face informal
By Accident Face to Face
Other By Accident
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Grad Design Process Effectiveness and Efficiency

Critically Some Not
Important | Very Important |lmportant { Importance |important
The ability to share data easily 9 1 <] 0 1]
Communication with Team Members 9 8 8 1 U]
Software and System Usability 8 16 1 1 1]
Graphical Capability and Visualization of Data 5 11 7 3 0
System Speed 4 15 B 1 0
Learning Curve for New Taols 3 1" 7 5 1]
Integrated Tools 3 3 8 5 0
Ability to use Familiar Tools 2 1 g 3 1
Ability to Work anywhere 1 9 8 7 0
Preferred Communication Methods .
Critically Some Mot
Important | Very Important |Important { Importance |lmportant
Face/Face 14 8 4 8] 0
Email 13 9 3 1 a
Phone 3 9 10 3 1
Audio/Visual Presentations/Communication 2 5 16 3 0
Tele-conferencing 1 2 4 15 3
Fax 0 2 B B 12
Grad Best Communication of Ideas and Concepts | Grad Communication of Factual Information
Hi Med Low NA Hi Med [Low]| NA
Sketches 14 9 1 2 Meetings 14 8 1 3
Email 13 8 3 2 Email 13 7 1 5
Meetings 10 13 3 0 Presentations 11 g 2 4
Presentations 7 12 5 2 Graphs 10 4 0 12
Briefings 4 g 3 10 Briefings 9 9 1 7
Models 3 10 8 5 Sketches 4 5 5 10
Prototypes 3 5 7 11 Models 4 B <] 10
Phone/FAX 1 B 7 12 Memaos 3 8 6 9
Memaos 0 12 7 7 Prototypes 3 5 5 13
Discussion Phone 0 3 8 15
Graphs Discussion
Design Review Design Review
Reports Reports
Shared Database Shared Database
Informal Other
Face to Face Informai
By Accident Face to Face
Other By Accident
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Faculty Limiting Facters

Varying Lack of ’ . Response
Sketches  |interpretations| Feedback Difficuft To Represent Nothing Other Time
2 1 1 1 1 0
Varying Response Difficult To .
Memos Interpretations Time Lack of Feedback Represent Time Nothing
2 1 1 1 1 0
Difficult To Varying Nothi Cant save/database] Response Lack of
Discussion Represent |Interpretations ing ideas, concepts Time Feedback
2 1 1 1 0 0
Difficult To Response Varying . Lack of
Models Represent Time Interpretations Nothing Feedback Other
2 1 1 1 0 0
. Lack of ) Difficult To Varying
Graphs Nothing Feedback Responss Time Represent Interpretations Other
4 1 0 1] 0 0
Responss Difficult Te . Varying
Phone Time Represent Nothing Lack of Feedback Interpretations Other
2 2 2 0 1] 0
. Difficutt To Nothing Lack of Feedback Response Time Varymg Other
Email Represent Interpretations
3 2 1 1] 0 0
Response Lack of . Difficutt To Varying
Reports Time Feedback Nothing Time Represent |Interpretations
3 1 1 1 0 1]
. Time, cant Difficult To Varying
Presentation Nothing save ideas Response Time Lack of Feadback Represent [Interpretations
3 2 1 0 g 0
Response . . . Lack of Varying
Meetings Time Nothing | Difficult To Represent| Can't save ideas Feedback |nterpratations
2 2 1 1 D 0
Response Lack of . Varying .
Other Time Feedback Dificult To Represent Interpretations Nothing Other
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Undergrad Limiting Factors

Difficult To Varying Drawings Skill, . Response
Sketches Represent {Interpretations Accuracy Lack of Feedback Nathing Time
5 4 2 1 1 1}
Response Lack of . Varying .
Memos Time Feedback Difficult To Represent Interpretations Nothing Other
5 3 2 2 1 0
Difficult To VYarying Nothin Accuracy, Time Response Lack of
Discussion Represent |Interpretations 9 limit Time Feedback
3 3 3 2 1 0
Response Difficult To . Varying
Modsls Time Represent Nothing Lack of Feedback Interpretations Other
5 3 2 1 1 0
Varying Difficult To . Response
Graphs Interpretations| Represent Nothing Lack of Feedback Time Other
6 3 2 1 Q 0
Difficult To Response Yarying .
Phone Represent Time Interpretations Lack of Feedback Nothing Other
7 5 1 0 g 0
Difficult To Response Varying -
Email Represent Time Asyncronous Comm | Lack of Feedback Interpretations Nothing
7 2 2 1 1 0
Response Lack of Varying Difficuit To .
Reports Time Feedback interpretations Represent Nothing Other
8 3 1 0 0 0
. Response ) . . Varying Difficult To
Presentation Nothing Time Time, Drawing Skill | Lack of Feedback Interpretations| Represent
4 3 2 1 1 0
. Difficult To Varying Response Lack of
Meetings Nothing Represent Interpretations Other Time Feedback
-] 2 2 1 0 0
Response Lack of . Varying .
Other Time Feedback Dificult To Represent Interpretations Nothing Other
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Grad Limiting Factors

Varying Difficult To . N Response Lack of
Skatches  |Interpretations| Represent Nothing Ease of Distribution Time Feedback
12 9 2 1 0 1]
Lack of Difficult To ) Varying .
Memos Feedback Represent Response Time Interpretations Nothing Other
1" 5 4 2 2 0
. Difficult To Varying Lack of
Discussion Nothing Represent Interpretations Response Time Feedback Other
14 4 4 1 1 0
Response . . Varying Lack of |Time, Ease of
Models Time Nothing | Difficult To Represent Interpretations Feedback Distribution
9 6 3 2 1 2
. Difficult To Varying Lack of
Graphs Nothing Represent Interpretations Response Time Feedback Other
8 7 4 1 1 0
Difficult To . Yarying Ease of Lack of
Phone Represent Nothing Interpretations Response Time Distribution | Feedback
15 4 2 1 1 0
Difficult To - Yarying Lack of
Email Represent Nothing Interpretations Response Time Feedback Other
8 8 4 3 1 0
Response Lack of Time to create, Nothin Difficult To Varying
Reports Time Feedback |Efficiency(time/payoff) othing Represent |interpretations|
9 7 4 2 0 1]
: Response Difficult To Varying Time to
Presentation Nothing Time Lack of Feedback Represent Interpretations create
7 3 3 3 3 3
. Varying . Time, poor meeting | Response Lack of
Meetings Nothing Interpretations Difficut To Represent skills Time Feadback
9 4 3 3 2 1
Response Lack of . Varying .
Other Time Feedback Dificult To Represent Interpretations Nothing Other
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Faculty Limits in Ability to Share Engineering Data/information

Critical Ver Some
Importance lmpoﬂgnt Important Importance Not Important
Other 2 1 1 0 1
Different File Formats 2 0 3 1 0
Slow/No Network 1 1 3 1 0
Different Operating Systems 1 1 2 2 0
Undefined System Interfaces 1 1 1 2 0
Non-static Interfaces 1 0 1 1 2
Very Large Files 0 1 3 2 0
Not Located With Team Members 0 0 1 2 1

Faculty Inclined To Use And Integated Engineeting Environment
Critical Ver Some
Importance Import};nt Important Importance Not Important

Understand what the limits of the

underlying models are 4 2 0 0 0
Have a thorough understanding of the 4 0 1 1 0
underlying models used in the environment

Reduce time needed to develop a design 3 3 0 0 0
Improve design quality 3 3 0 0 1]
Ease of Use 2 3 1 0 0
Reduce repetitive tasks 2 2 1 1 0
If | know the Tools 2 1 2 1 0
Ability to Integrate and Access Data 1 2 2 1 0
Online Help 1 2 1 2 0
Demonstrations or Classes 1 0 2 1 0
End to end porduct development tools 0 4 1 1 0
Mandate from upper Managemant 0 3 2 0 1

Faculty Comments

Key issue is that the process, particularly embedded models and databases are
transparent to all users - this requires careful documentation and establishing a
discipline in its use. Major weakness in my experience is that some users do not
understand the quality and fidelity of the data or models that they are utilizing
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Undergrad Limits in Ability to Share Engineering Data/lnformation

Critical Ver Some
Importance Imponim Important importance Not Important
Slow/No Network 5 2 2 2 0
Not Located With Team Mambsrs 4 1 4 2 1
Very Large Files 3 3 3 3 1
Undefined System Interfaces 3 2 3 1 2
Other 1 6 3 0 2
Diffarent Operating Systams 1 4 3 4 1
Different File Formats 1 3 4 3 1
Non-static Interfaces 0 3 4 1 2

Undergrad Inclined To Use And Integated Engineeting Environment

Critical Ver Some
Importance Importx;nt Important Importance Not Important

Reduce repstitive tasks 5 5 2 1 0
Reduce time needed to develop a design 5 5 2 1 0
Understand what the limits of the 4 4 3 1 1
underlying models are
Improve design quality 3 9 1 0 1]
If | know the Tools 3 B 4 [¢] 2
Eass of Use 3 4 5] 2 0
Ability to Integrate and Access Data 2 3 <] 3 0
Online Halp 2 3 4 4 1
End to end porduct development tools 2 3 2 4 2
Demonstrations or Classes 2 1 5 5 1

Have a thorough understanding of the 1 6 4 3 1
underlying models used in the environment
Mandate from upper Management 1 4 5 1 3
Data that shows these tools help 1 0 0 0

Undergrad Comments

Hl Bruce,

{ am only filling in things as a test, since | have just received email from some
who says that this survey did not work.

Phyllis

Hi Bruce,

This time | am taking your survey on my Windows NT machine (previously | used my MAC G3). So far it seems to
be working on this platform. | will send email to the complainant to see what platform he/she was using.

Phyllis Collymore (pco

Recognition that integrated enginsering is not atways the way to go.Integrated is another word for complex, which
can give way to chaos. | often find when working in a group that people tend to let the team (or the software) do their
engineering for them, and that doesn't wark. If this survey has any implications for academics, which is unclear, then
1 would make the point that the practice of integrated engineering should be a secondary skill to fundamental
engineering knowledge. Free Body diagrams are much more important than excel, and the de = dq - dw can take
AutoCAD any day of the week and twice on sunday.
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Grad Limits in Ability to Share Engineering Data/Information

Critical Very Some
Importance | Imporant Important Imporance | Not Important
Stow/No Network B 7 7 2 2
Different File Formats 4 11 4 & 0
Undefined System Interfaces 4 4 7 5 4
Different Operating Systems 2 11 6 4 1
Other 1 6 7 5 5
Not Located With Team Members 1 3 9 5 5
Non-static Interfaces 1 3 6 6 4
Very Large Files 1] 8 6 8 2

Grad Inclined To Use And Integated Engineeting Environment

Critical Ver Some
Importance Impon};nt Important Importance Not Important

Ability to Integrats and Access Data 9 10 5 1 0
Ease of Use 8 12 3 2 0
Improve design quality 7 8 8 1 0
Reduce time needed to develop a design B 9 7 2 0
Unders%and what the limits of the 5 5 12 4 0
underlying models are

Have a thorough understanding of the 5 5 g 4 a
underlying models used in the enviranment

If | know the Tools 4 9 8 2 2
Reduce repetitive tasks 3 13 B 3 0
Demaonstrations or Classes 2 5 11 6 1
Mandate from upper Management 2 3 5 9 5
Online Help 1 7 10 5 2
End to end porduct development tools 1 5 S 6 4
Well defined process in place 1 0 0 0 8]

Grad Comments

this is a very good survey

After reading this sntire survey, | still hava little idea what an "Integrated Design Environment” is. It sounds like some
buzzword thought up by business majors or LA folk to impress shareholders. Your first task is to relay to the
students exactly WHAT DE-ICE is.

From my experience with ‘integrated’ enviranments in a class setting | have observed:

a) Without a well designed and understood pracess for collaboration, much effort is spent trying to figure out this
mechanism on-the-fly. The amount of actual design goes through the floor. Assuming such a proces exists, maybe
an IAP class in preparation for a spring design class would be the best way to introduce it.

b) In a class setting (limited time, etc) distance 'education’ always provides a mediocre experience. A competant
lecturer in front of you is better than a genius on a TV screen. For design classes, the extra effort that must be put
into coordination detracts from that that could go into design.

Please, please, please do not convert all work space to open rooms without private work areas! Vvhile being in close
proximity is good for some amount of time, being together for all of the work time reduces productivity. have seen
many different computer facilities and work environments during my career to date, and the open environments foster
distractions and lower the ability to concentrate. We work on difficult problems in aerospace, and we need to be able
to think and focus well on our problems. While it may seen like a total integration of resources and people is “good
for the team”, | strangly believe that a group environment is not always good for the work. | do know that others feel
the same way - just ask around and see who can concentrate well in a full Athena cluster where people are talking.

Who wrote this survey? Ht's way too abstract for my practical engineering tastes. "Non-static interfaces”?
"Understand what the limits of the underlying models are*? What are we talking about here? You need maore
concrets statements,
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Appendix D

MIT Operational Modes

Operation Modes

*We have modes that are either physical equipment-based, paper design-based, or a
combination of both. The list of possible department operating modes is given

below
Teaching in Lab rate Mode o
.oi::i.,.:,g T Design Project Mode OLE.: torm Self-Directed
~Presentation area (16.82,83,89) -Dedicated space Learning Mode
-Demonstrations ) -Large scale project -Dedmmd equipment ,gu]r .
e Jongthi | Roahlinn commtiakation o dedieaid apuce Site Visit
-Virtual design, possibly H/W, S/W i work areas 4 5 1
Class Lab Mode -Dedicated space (ATC simm, mission control) Learning/Teachin
-Occasional use -Breakout / report-back space F menmdo g Mode
P Do : n Mode Dy
-Storable 3 Large Systems Mode Distance Daily -Off-campus work
v sﬁﬁnl, SDM) Leannngfl‘eachm Standard class and board | -Others on-campus |
-Ycar e
Tinkering Mode :Dedn inkeasive gn nMuOde i ' -
-Occasional _IN“““:"““ T es b Choun v Interactive Electronic Collabomative
-Temporary work space | ~Close connectivily to outside -Dedicated room and Class Mode Project Mode
-Hardware created 2 equipment Daily )
-Support staff needed -Dedicated equipment 'e"ﬂ"(?f‘;"“’"'

H -Support staff needed SHIL, A% 4
62X/UROP Mode | | Research Deﬁ:fﬂ Support Mode o istigesran ; —
‘mmjm -Temporary design space use by team P Cont Mod

-Weeks to months onference e
-Student ceveloped 4 a2 2| [ Grad Thesis Mode | | ot canpes posssmtien
?vuieach Mode -1+ years -Non-dedicated working areas and

Large Student Project Mode el visits, ﬁﬁﬁ: e !
-Large scale project lectures, presentations | -In and outcapability 2
-Dedicated space Paper Design Mode (&
:k:f:buml e Linked Projects Mode Income Generating External Mode || competition)

- ivity (multi-disciplinary) | | -Ongoing -Semcster

~Term or less -In and out testing -Design Intensive

~Multi-use lab experiments -Days/wesks -Some dedicated design/office

~Joint labs/designs 1| | -Dedicated space B space &
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How We Operate

The department of Aeronautics and Astronautics foresees itself operating in many
types of educational modes. Some of these modes are classroomv/theory focused, while
others are more hands-on/design focused. The following list of modes covers how the
department might function:

Large Systems Mode (M.Eng, LFM, SDM)
Design Project Mode (16.82,.83,.89)"
16.62X/UROP Project Mode

Large Student Project Mode

Class Lab/Experiment Mode
Operate Mode

Linked Projects Mode

Grad Thesis Mode

. Teaching in Labs Mode

10. Research Design Support Mode

11. Income Generating External Mode
12. Outreach Mode

13. Tinkering Mode

14. Self-Directed Learning Mode

15. Lecture/Presentation Mode

16. Interactive Electronic Class Mode
17. Paper/Conference Mode

18. Paper Design Mode (& competition)
19. Collaborative Project Mode

20. Site Visit Learning/Teaching Mode
21. Distance Leaming/Teaching Mode

00 NG R LN

! Aero/Astro Courses, 16.82-Flight Vehicle Engineering, 16.83-Space Systems Engineering, 16.89-Space
Systems Engineering
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Operational Modes Defined
The following sections provide definitions of the department’s operational modes.

Large Systems Mode (M.Eng, LFM, SDM)

The Large Systems Mode represents programs that are very design intensive and
team oriented, requiring a certain amount of dedicated space for doing the design work and
systems prototyping for periods of time ranging from a semester to a year. The definition
of large system is somewhat ambiguous, but will be taken to mean a system that requires
several disciplines to create it, and results in a final product or prototype consisting of
varying amounts of H/W, S/W, and L/W. The design work covers paper/virtual design
and some levels of physical prototyping and testing.

Design Project Mode (16.82, .83, .89)

The Design Project Mode represents class-based design projects that are carried out
over the period of a semester by student teams from a given class. The work includes
engineering trades from various facets of the field of aerospace engineering, perhaps trades
from socio-economic and environmental issues, some computer simulation and
visualization, and results in a paper design. The work may be conducted by 1 large class
team (10-20 people), or several smaller teams (3-8 people).

16.62X/URQP Project Mode

This mode focuses on the department’s senior research project which involves
teams of two undergraduate students designing, building, operating, and reporting on an
experiment that is conducted under the guidance of a faculty advisor. This mode is
conducted over two semesters, where the first semester is dedicated to the background
research, and the second is dedicated to building the apparatus (typically desktop size),
running the experiment, and reporting the results to the faculty in a formal presentation and
document. ’

Large Student Project Mode

The Large Student Project Mode centers on projects that are typically extra-
curricular, but are geared towards building something that is used in a competition (Human
Powered Aircraft, Robotic Helicopter, Solar Car). The teams working on these projects
are from several engineering disciplines and require a dedicated office for running the
project, design space, building and testing space, storage space, and access to the facilities
anytime that is convenient for them (this is typically after hours, since the project is extra-
curricular). These year-long to multi-year projects involve teams of 5 to 20 people and
result in operational prototypes of significant size (tens of feet in length and tens to
hundreds of pounds in weight).

Class Lab/Experiment Meode

The Class Lab/Experiment Mode is the traditional mode that labs operate in where
the instructor has assigned a lab for the class to perform, collect and reduce data, and write
a report on the procedure. These labs are usually conducted by small teams form the class
(3-6 students), and require bench-top set-ups, or the use of the department’s wind tunnels.

Operate Mode

The Operate Mode is intended to teach the students about the operational concepts
of engineering systems, and give them hands-on experience in the operation of the
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systems. This mode requires people dedicated to the maintenance and operation of the
systems, long-term dedicated space for the equipment, and probably real-time
communications with other departments/sites for systems such as satellite base stations.

Linked Projects Mode

The Linked Projects Mode represents term to year-long projects that are set-up as
interdisciplinary projects between several section of the department and/or the school. The
projects can be either multi-use projects that serve as labs for several classes (i.e. wing spar
for structures, airfoil for acrodynamics, aileron for control and stability -> all resulting in a
wing design) or a joint project between disciplines, where the team is formed of various
student show work together, but do the work that is centered on their discipline (i.e. wing
design by two Aero students, programmed logic circuit built and installed by EECS student
to enact control laws). The interdisciplinary nature of this mode will require meeting space,
work space, storage space, and possibly formal presentation space.

Grad Thesis Mode

The Grad Thesis Mode is intended to support a graduate student who needs to
establish an experimental set-up for some period of time, that cannot be supported by their
current research lab. The time scale could be from the semester length, to several years,
requiring that the space be dedicated for that amount of time.

Teaching in Labs Mode

The Teaching in Labs Mode is where faculty will actually bring their classes to the
lab to demonstrate certain principles and phenomena with equipment that is specific to the
lab (wind tunnels, space truss, etc.). An extension of this would be to use any conference-
style or electronic classrooms as teaching rooms in order to maximize the space use, and/or
utilize equipment specific to the room (i.e. networked projection units, video equipment,
etc.).

Research Design Support Mode

The design-center capabilities of the labs would be used by research teams to come
in for a short period of time (hours/days) to work through a segment of the research
design. This would be a short-term dedication of space that would support the research
teamn’s design efforts with analysis tools, design tools, communications, and presentation
equipment. This mode may be directly supported by the distance learning mode, where the
communications equipment could be used for meetings with research sponsors.

Income Generating External Mode

This mode will support external companies who lease the use of facilities such as
the Wright Brother’s Wind Tunnel. This mode typically lasts for several weeks, and
requires the dedicated use of the equipment, support staff to operate the equipment, and
some space. Security of information may be an issue with some companies.

Outreach Mode

This mode is used to support the publicity and awareness of the department and the
new teaching labs. Tours of the university will pass through the new teaching labs and be
given an introduction to what happens in the Aero/Astro department. An extension of this
might be sending people from the department out to talk about the department and labs.

Tinkering Mode

The Tinkering Mode represents the individual projects people do on their spare
time, that typically require the use of shop equipment (building models, furniture, repairing
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a bike or toaster, etc.). This mode needs some shop equipment, tools, and work surfaces,
and happens any time of day when the shop is open.

Self-Directed Learning Mode

This mode is where students go an learn material on their own. Traditionally this
has meant reading text books and going to the library, but with the advent of new
communications technology, this may include borrowing educational videos to watch,
surfing the Internet for information and programs, or exploring any other media or material
that will help the students gain a better understanding of the subject they are learning about.

Lecture/Presentation Mode

This is the standard class mode, where a lecturer discusses/presents class material.
While traditionally performed on chalk boards and overheads, some faculty are now
moving to Web-based courses that require electronic presentation H/W and S/W in the
classroom for showing he course material, videos, and running simulations to demonstrate
theories and principles.

Interactive Electronic Class Mode

This class mode represents the fully electronic classroom where students are able to
do computer-based work in real-time, under the tutelage of faculty, using interactive S/W
to mark/grade/comment on work and projection equipment to demonstrate certain work.
This may be extended to include the interactive design class where students perform trade
studies and design work on a large project.

Paper/Conference Mode

This mode represents the typical research paper/presentation mode that many
graduate students experience in their graduate career. This mode usually occurs off campus
and involves simple overhead, slide, or video presentations.

Paper Design Mode (& competition)

This mode represents design competition work where the end result is a document
and presentation that is used as the material for a competition. The support needed for such
a mode includes design tools, management tools, visualization tools, etc. This mode stays
in the electronic and paper realm and does not result in the construction of any H/W.

Collaborative Project Mode

This mode represents the department working on projects in collaboration with
other universities, government, and industry. The project may be conducted as a response
to one of these other organizations needs (similar to a contract), or in partnership, where
the teams members are all working on various segments of the system. This mode is
communications intensive, and requires data, voice, and video communications, often in
real time.

Site Visit Learning/Teaching Mode

This mode can operate in two ways. The first is students going out to visit sites
that have tools, equipment, etc. that are of interest to the subject being taught, and the
course is taught on site for the given day to let students see the application of the theory in
real life, including the design, manufacturing, implementation and operation of some of the
systems. The second way this could operate, is by the students acting as “teacher-hosts”
for part of a day, where a sponsoring company might send a group of employees to learn
about what the students are doing in their research, etc. This mode allows the students to
teach the material, which reinforces their learning, and also allows the interaction of
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industry and students to bring to light the application and operation of many of the ideas
they are working with at MIT.

Distance Learning/Teaching Mode
This mode represents the video-conference classroom, where the department is
broadcasting classes/presentations to other sites, or receiving classes/presentations at this

site.
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Appendix F

Architecture Variants

F.1 Architecture A Physical View (see Farnworth [17])
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F.2 Architecture A Software/IT Conceptual View (see Farnworth [17])
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F.3 Architecture A Equipment Block Diagram (see Farnworth [17])
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F.4 Architecture C Software/IT Conceptual View (see Manka [22])
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F.5 Baseline Architecture Software/IT Conceptual View (see Farnworth [17])
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F.6 Baseline Architecture Physical View (see Farnworth [17])
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Appendix G

Prototyping Ideas

G.1 The Round Table Virtual Presence System (see Farnworth [17])

Auto-focus CCD camera of

12 x 12 Image
three faces

Lazy Suzan base

: % Directional microphones
5 on three lower edges

201



T

G.2 The Electronic Writeable Whiteboard (see Farnworth [17])

Annotations displayed
on all screens

D All interactions
p— recorded for

_c% playback not

just screen-grab

/

Remote user sees image
adds annotations

User at board with
. pen based interface
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G.3 The Integrated On-Line TA (see Farnworth [17])
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G.4 Prototype Breakdown (On-Line TA)

Team. | Priority Task Functionality Demonstration of
member performance
Bruce 1 OLTA authoring Database with form to input PDP and coittent that will drive OLTA | Design display forms,
tool (OLTA-AT) | web-pages, define links to faculty and TAs, assign class ﬁ:ﬁﬁ ;“;8"“;;,,,
deliverables, input class specific tools input a0d W elﬂ;uil 4
2 OLTA front end User interface driven by OLTA-TA, integrating all functions Hardwired web-pages to
described in section 16.1 items j-x show concept, modifizble
v content on a few pages
from TA
3 Build your PDP Display tasks ag hierarchical list indexed under top-level PDP, Display PDP database
display task inputs and outputs, enable task selection by user, link to | W/inputs outputs, selection
DSM with inputs from user selection of tasks, input to DSM
Alex 1 Object capture, Object tagging, object capture, knowledge database structure Tags, file structure, student
knowledge database requirements, FFD
2 Search OLTA Integration of advanced search capability seeded from OLTA Search prompt, FFD,
current task, search criteria user modifiable, capability to define Example search results
search objects |
Dwig,u tools Testin_gl evaluation and reconmendations for d&ign tool iuteg'atiou Undefined
Simon 1 Subinit class Submission of class deliverables, interface to object tagging, input | Use case showing
deliverables to knowledge databage, possible auto-link? functionality, F¥D
2 DE-ICE support Filtered list of tools available to support tasks at cuirent point in Show tools supported at
PDP different level of the
process, FFD
3 Implementation Simple short and long term plan to implement the DE-ICE system, | Documént showing short
plan focus on fong term development of OLTA end long berm plan as
previously discussed
NSRRI FRSSRRRRRIREARE SRR R L



Appendix H

Demonstration

H.1 Sequence of Actions

Step Location Action 1 (click) Action 2 (click)
1 work_manager.htm pugh.doc
2 attributes_open.htm OK
3 pugh.doc back (on top)
4 attributes_open.htm back
5 work_manager.htm new
6 work_manager_new.htm PowerPoint
7 attributes_new.htm OK
8 CDR.ppt back (on top)
9 attributes_new.htm back
10 work_manager_after_new.htm 3.0 Detailed Design
11 detailed_design.htm back (on top)
12 work_manager_after_new.htm CDR.ppt box BringHome
13 attributes_bring_home.htm back
14 work_manager_after_new.htm import
15 attributes_import.htm back
16 work_manager_after_import.htm Unlock File
17 attributes_unlock.htm OK
18 work_manager_after_unlock.htm CDR.ppt box Update
19 attributes_update.htm OK
20 work_manager_after_update.htm CDR.ppt box Submit
21 attributes_submit.htm OK
22 work_manager_after_submithtm CDR.ppt box Rename
23 attributes_rename.htm back
24 work_manager_after_submit.htm

205



90T

H.2 Work Manager Main Interface

Work Manager

Project

MINERVA

Project Element  Filename

Trajectory Calculation
launch.m
otbitm
results.mat

Conceptual Design

QFD_LTA2 s
launcheover dwg

Open the file

=]
=

=
=3
=4

’_T

Link to Tool

Section to PDP

74.2 Matlab
7.4.2 Matlab
7.4.2 Matlab

3.2.2 N2 diagra

3.1.1_QFD matrices_
2.1 hnical drawi

Last Modified Lastest Version
05/02/00 v1.22.3*
05/02/00 v2.1.1*
05/02/00 v5.1*
04/11/00 v1.0
03/25/00 v2.1
04/19/00 v1.12.0*
04/19/00 v3.0*
03/25/00 v5.3
02/29/00 v4.1*

Means that modifications have been made
since this version has been updated

Link to PDP

:n Version

Update V

Latest Submitted ~ Selection  Locked
none |
none I
v4.0 = A.M.
v1.0 r
v2.1 K
V111 r
v3.0 r B.F.
v2.4 =
v4.0 = S.M.

Only one box is checked at a time
{(used to select file to update or submit)

Submit Work

CDR Time

Submit previous version of work




H.3 Function “7.6 Open Current Work” Interface

Open Current Work

Filename / Project Element / Project: IEth-d!JC -

@ Open Latest Modified

 Open Version I‘ﬂw! 3

@ Open for Editing

€ Open Read-Only

H.4 Function ‘7.5 Start New Work”’ Interface

Start New Work

PowerPoint document

First Name E; . S
Last Name: jFM i

Project:

Project Element: @ Curent: [TARRE] CMew: |
Filename: ‘ i

Type of Deliverables: © Current: [Presentetion TARR_

 New: ;—

Accessibility:  |Personal

For the Project Navigalar, enter input and oulput files, multiple files are allowed (optionaly
Input Files Output Files

[ ] ) i
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H.5 Function “7.13 Bring Work Home” Interface

Bring Work Home

Filename | Project Element ] Project:

 Bring Latest Modified

€ Bring Version V.0 5]

Select one of the following:
& Bring a Copy Only

€ Bring # Copy and Lock the File / Element / Project

Destination:

€ Zip Disk

© Floppy Disk

H.6 Function “7.11 Import External Work” Interface

Import Work

First Nama:

Last Name:

File Location: E_m

File Destination:

Project Slement: @ Cumeet. [TARRE  OMew [ |
£ Updating an Exiwing Fite: [FughocH]

© Croating a New Work Instance:

Typo of Dalwarables:  C Cumrent: | Preseniaion TARR

Crew [

For the Project Navigator, snter input and output les, multiple files are slowed [optional)
Output Files
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H.7 Function ““7.14 Unlock File” Interface

Unlock File

Filename / Project Element / Project:

Enter Modifications on File;

H.8 Function “7.7 Update Version in Database’ Interface

Update File

CDR.ppt

Update to version: V13,
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H.9 Function ‘7.8 Submit an Assignment” Interface

Submit File
CDR.ppt

Submit version:

H.10 Function ‘“7.16 Rename an Entity’’ Interface

Rename Work

Filename / Project Element / Project: [cORppt

Rename to; |COR.ppt

Enter New Accessibility (optional): | Personal
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Appendix I

Integrated Information Systems Work Proposal [53]

integrated information systems
innovations for the new Economy®

MIT-Aerospace
OLTA

(On line Teaching Assistant)

PREPARED BY:

Karen Rankin
Enterprise Solutions Executive
Integrated Information Systems

25 Corporate Drive
Suite 202
Burlington, MA 01803
781-743-2014

www.iisweb.com

©COPYRIGHT 2000 Integrated Information Systems, Inc. All rights reserved.
“Thus material may not be copicd or reproduced by any means except for the express purpose of preserving back-up copics or creating additional
work copies for internal use only. Unauthorized distnbution of this material is strctly prohibited.
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MIT — Department of Acronautics & Astronautics May 15, 2000

May 15, 2000

Mt. Simon Nolet

MIT

77 Vassar St.
Cambridge, MA 02142

Dear Simon:

The MIT Aerospace Engineering Group, as part of its continuing effort to provide the best possible
education experience and engineer the best products possible, would like to enhance the way they deliver
their course and product materials. As a means to achieve this, they would like to implement an On-Line TA
solution. This solution will enable them communicate and shate knowledge more efficiently between faculty,
students and external resources.

Integrated Information Systemns, utilizing our proprietary sesvice methodology, can conceptualize, design,
implement and support the right solution with the speed to market necessary to succeed in the rapidly
evolving Internet environment for the MIT Aerospace Engineering Group.

An innovative e-commerce consulting firm, #r is leading the industry in custom software solutions and
network integration. This is because our scasoned professionals—with a large number of certifications, a
deep understanding of strategic business issues, and a focus on training for new and evolving technologies—
are committed to personalized service. We establish long-term relationships by developing an intimate
knowledge of our clients” businesses, enabling us to leverage their internal technical resources as part of a
successful conclusion. Our goal is to go beyond the traditional client/vendor relationship by striving to
exceed expectations through a proactive approach to project management.

##s appreciates the opportunity to present this proposal to the MIT Aerospace Engineering group. We are
confident that our comprehensive solution and management approach will satisfy your requirements, and we

look forward to working with you on this project.

Very truly yours,

Karen Rankin
Enterptise Solutions Executive

Integrated Information Systems, Inc. Page 3
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MIT - Dep of A s & A

May 15, 2000
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MIT - Dep of A ics & Astronautics May 15, 2000

1.0 PROPOSAL SUMMARY

MIT Aerospace Engineeting Group has approached iis looking to establish a partnership for the development
of an enhanced On Line TA system to manage the Product Development Process for MIT s aerospace
curriculum.

#s is a full-service Internet professional services provider focused exclusively on the digital transformation of
businesses. We provide advanced Web-based solutions that distribute the power of information. The
common focus of our technology solutions revolves around the Web. Because we understand the value of
information, our consulting services cover all aspects of information management including strategy,
application development, network architecture, and business intelligence.

The following information was provided by MIT Aerospace Engineering Group and generally describes the
purpose and requirements of this project.

Purpose:

This projects initiative is to improve communication, promote knowledge transfer, and facilitate a more
cfficient Project Development Process throughout the aerospace engineering community. As this objective is
achieved the aerospace engineering students will then be better able to produce results consistent with the
mission of the Massachusetts Institute of Technology. “To advance knowledge and educate students in
science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st

century.”

General Solution Requirements:
*  Fast and easy system for faculty to create and customize class specific content
Web based user interface (OS independent)
Consolidate information for patent searches, knowledge base and Product Development Process
Allow full access to all resources on the DE-ICE system
Secure manageable access control
Reduce the time requirement on faculty to 1/10 of normal class preparation time
Allow students more flexibility to manage their work

® & ¢ & & @

Timeline:
®  August 2000 — Pilot for Fall Semester

Based on our proprietary development model, we addtess client needs in a manner that ensures a common
vision for the project’s completion. #s will begin the MIT Aerospace Engineering Group e-business project at
the Explore Phase to better define the technical requirements to develop an information architecture. The
Exploze Phase enables #r to better understand the breadth of the project and therefore document specific
trequirements critical to the project’s success. #r will deliver back to MIT Aerospace Engineering Group
the following documents, which in turn will be used to propetly define the scope, functionality and price the
MIT Aerospace Engineering Group project:

The Explore Phase is designed to discover and detail information pertinent to the following areas:

Existing Information architectute — data sources, access methods, schemas and process flows
Platform requirements — system capabilities, requirements and scalability

Functionality requirements — security & access control, usability & flexibility, pricing models &
options, search criteria & capabilities and information presentation.

1 d Inf ion § , Inc. Page 5
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MIT — Dep of A ics & A i May 15, 2000
R _

Deliverables:
* Functional Requirements Document — serves as the application’s the functional roadmap
® Project Plan — provides measurable timelines, milestones and defines resources
® Detailed Proposal - details project costs

#s will accomplish each of the outlined objects by employing our proven Project Methodology defined in
Section 3.9. Our methodology begins with the Conceive Phase. In this case, we feel this phage can be
bypassed due to the outstanding thought work, research and documentation effort that has been already been
conducted by Simon Nolet, Bruce Farnworth and Alex Manka.

Based on the foundation built in the Explore phase, the OLTA site will be designed, built and launched.

The work done in the Explore phase will result in the ability to accurately assess the costs for development,
quality assurance and launch of the site. The timeframe and cost for the Explore phase has been estimated in
Section 3.0, Project Costs & Timing. A ballpark estimate of cost for the balance of the project has also been
provided. A detailed estimate of cost for the balance of the project will be provided at the end of the Explore
phase, based on the level of detail uncovered in that phase.

1.1  Staff Location

#is currently has 550 employees. Company headquartets are located in the Tempe, Arizona, and we have
regional offices in Atlanta, Denver, Las Vegas, Los Angeles, and Boston.

1.2 Company Profile

Since /s was founded in 1988, we have put together a staff of highly experienced, certified professionals who
are not only technical experts, but who also have business savvy with years of industry experience and
advanced business degrees. This includes an extraordinarily high percentage of MBAs, plus business veterans
who have spent ten or more years succeeding in corporate environments.

iis believes its size, pace of growth, and strong reputation in the technology community position the company
as a leader in the information technology marketplace. #is was an early implementer of Client/Server

technologies and an eatly leader in Internet, Intraner, Extranet, and Electronic Commerce solutions beginning
in 1997.

1.3  ifis Qualifications

1.3.1 The iis Approach

Our business model has two major approaches that place #s in a unique category of IT service providers: our
approach to services, which combines business expertise and technological innovation, and our proptietary #s
Dimensionss™ methodology, which features rapid development and deployment.

The #s business style involves the client at every stage of the development process. At the foundation stage,
we work with your team to determine what business results you expect from the solution. Building on this
foundation, we work together to further define 1 vision for the prototype application. Using an approved

prototype, we then engineer your solution. When the system goes live, our project team is with you to ensure
a smooth transition.

1.3.2 The ifs Difference

What serve to distinguish #s from today’s growing crowd of I'T consultants are these key qualides: our
philosophy, our people, and our proprietaty methodology.
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fis is continually evaluating the services offered in light of the needs of our current customers and the needs
of an ever-changing marketplace. Currently, there are five key areas in which we provide services—Strategy
Consulting, Customer Experience Design Solutions, Application Development and Integration, Internet
Infrastructure Services, and Application Management Services.

1.3.3 Company Recognition

Recently, sis ranked 457 & on the prestigious Deloitte & Touche Technology Fast 500 list of the fastest
growing technology companies in the U.S. 4 was also included in the 1997 and 1998 Inc. 500 list of the fastest
growing private companies in America. Microsoft has recognized s as its Microsgft Southwest District Solution
Provider Partner of the Year for 1998 and 1999. In 1999 the Arizona Software Association named Jim Garvey, #s
CEQ, their CEQ of the Year.

14 Project Team

We anticipate that the s Project Team for the Explore Phase would consist of the following functional roles:

Solution Architect .

The Solution Architect has both strong technical capabilities and communications skills in order to translate a
client’s complex business problems into innovative technical solutions. As both a leader and role model, the
SA provides technical leadership on projects from beginning to end, with emphasis not only on excellent
initial design but also on creative and efficient problem resolution.

Creative Designer

#s Customer Experience Group (CEG) Senior Designers assist our clients in creating an effective online
presence rooted in the best interest of their end users. Information Architecture, Page Layout, Creativity, and
a User-Centered design approach are prerequisites to be a part of the CEG team. Through co-production,
innovation, and interactive design sessions, Senior CEG designers work in concert with an initiative's project
team and clients to produce a visual design which meets the needs of the initiative and exceeds the
expectations of it's users.

Project Manager
The Project Manager is responsible for developing strong relationships with clieats; leading, motivating and
focusing their team; understand how to apply technology to solve the client’s business problems.

Specific team members will be assigned when the project is awarded to s and an exact timeframe is
established.

1.5 Project Management Process

#s will take a phased approach to developing the she-eo.com website. A phased approach keeps the project
manageable and the project team focused, and ensures that the design and development of systems/solutions
are based on clearly defined business objectives and requirements. Though individual projects vary
substantially according to client needs, the description outlined below illustrates the usual process, the
potential tasks, and the potential deliverables for each phase of the iis approach.
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Phase 1: Conceive

We will work together to develop your new web site
strategy from the ground up with an /s Next
Dimension Innovation Workshop. Working in an
atmosphere of imaginative thinking and open
dialogue, we will size up your critical issues and
explore how to address them. Through this
collaborative, idea-engaging process, we will define a
website vision for she-eo.com and develop a
comprehensive plan for implementaton.

The workshop will defines the project scope while focusing on such issues as market and technology trends,
competition, and future business conditions. Also included in the process are any legacy system issues, your
financial requirements, and your required timelines. The emphasis is on providing clarity prior to the solution
development. In addition to refining your Web strategy prior to project initiation, this Innovation Workshop
jump-starts the development of your e-business site. Our Project Team will work with your Customer
Experience partner to generate ideas and demonstrate all the possibilities available. This workshop is
especially beneficial because it gives /s the opportunity to share its Internet expertise with your organizaton
and provide insight into how you can best utilize the Web as an e-business tool.

Phase 2: Explore

The Explore phase defines the parameters for the engagement’s success by establishing the preliminary
project scope, business and functional requirements, and preliminary project plans. Tasks include defining
project scope, business requirements, functional requirements, and project metrics (e, cost, schedule, etc.).
During this phase, /s will delivers a Preliminary Project Scope Document, A Business Requirements
Document, 2 Functional Requirements Document, and a Preliminary Project Plan.

Phase 3: Design

The Design Phase defines, based on the business and functional requirements, the architecture, algorithms,
data models, object models, use cases, visual interfaces, and test plans for the projected system. s
professionals define user interfaces, algorithms, data models, object models, use cases, visual interfaces and
the test plan, and refine project planning. During this phase, the team delivers items such as a Customer
Interface Document, a Technical Design Document, a Test Plan, and a Project Plan.

Phase 4: Create

During the Create Phase, #r constructs the client’s system based upon the 7 design documentation and
provides testing based upon client-approved system requirements. The #r team will set up the system’s
infrastructure, develop the code, develop production graphics, and create the database. In this phase, they will
also carry out unit testing, system integration testing, design testing, (i.e., load and performance testing), data
conversion, and requirements testing. Deliverables may include a Finished System, a Design Test Report, and
a Requirements Test Report.

Phase 5: Support

The Support Phase is defined by the delivery and support of the client’s system in line with the original iz
developed e-business strategy, and involves the tasks of implementation, training, maintenance,
hosting/management, and enhancement. The system is delivered, often along with a Training Plan and a
Maintenance and Support Plan.
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Phase 6: Evolve

The Evolve Phase provides closure for all project development activities for the release and proposes,
simultaneously, direction for the next potential phases of the solution. This is accomplished through a re
of the solution based on the previously defined success criteria, review of the business requirements,
customer surveys/feedback, a project configuration closure, and a Client-involved “lessons learned” sess
Deliverable documents may include a Survey Repott, 2 Review and Analysis Report, a Final Project Repc
and a project archive.
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218



MIT — Department of A ics & Al i May 15, 2000

2.0 PROJECT COSTS AND TIMING

21 Estimated Costs

#is believes in taking a holistic approach to solving client’s e-business needs. We accomplish this by ensuring
that business design and strategy is addressed at the initial stages of a client engagement. Our

e-Business Architects will help MIT Aerospace Engineering Group define the business requirements and
value proposition of their Web initiative based on the experiences to be delivered to MIT Aerospace
Engineering Group users. The MIT Aerospace Engineering Group value proposition will then dictate the
technical and creative development of the Web application.

The Explore Phase will be executed by a Solutions Architect, Creative Designer and Project Manager and the
cost estimate is provided below. We expect that this phase can be completed in a three-week timeframe
consisting of a half-day meeting, independent working sessions, review of draft documentation, editing and
follow up sessions and presentation of the materials.

In addition, an estimate for the implementation of the solution has also been provided. It is anticipated that
services for the complete project’s implementation would be provided by a Solutions Architect, Sr.
Consultant, Designer, Design Implementer, Project Manager and Database Administrator, but a final staffing
plan would be determined at the end of the Explore phase. Although we have provided this estimate as a
guideline, jis is willing to discuss options to work the OLTA project team to determine the most effective
options for utilizing MIT and /s resources.

wE . Frame | 8
Explore Phase Estimate* 3 weeks $15,500
Project Implementation Estimate* 12 weeks $306,000

(including the Design & Create phases)

*Work to be done on Time & Materials Basis Total| $321,500

This estimate is based on the information provided to 7 to date. Following the Explore Phase, a more
accurate estimate for development and launch of the OLTA site will be provided. Production environment
hardware and software costs are not included in the estimate.
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| APPENDIX A: EXAMPLES OF IIS WORK

VISITALK.COM

iis provided project management, analysis,
requirements definition, design, development, testing,
and implementation for the visitalk Internet Web site.
The goal of the site is to connect people around the
world to share voice, video, and information via the
Internet. This solution allows members to record, play,
and send voice messages over the Internet to anyone
listed in its global directory.

1BOOKSTREET.COM

iis provided project management, analysis, requirements
definition, design, development, testing, and
implementation for the Soda Creek Press Internet Web
site. Since launching www.1bookstreet.com in September
of 1998, Soda Creek Press has expanded its customer base
by over 200% and their Internet revenues have increased
twentyfold.

ORMESCHOOL.ORG

iis provided project management, analysis,
requirements definition, design, development, testing,
and implementation for the Orme School Internet
Web site. The Orme School was pleased with iis
technical expertise and performance on a networking
project and felt comfortable addressing the Web site
challenge with us as well. Equally important was the
fact that the school was able to leverage promotional
dollars they had previously spent.
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m,y CSKAUTO.COM

iis provided project management, analysis, requirements definition, design, development, testing,
and implementation for the CSK Auto Internet Web site. The solution provided an easy-to-use

self-service customer order channel to purchase antomotive parts on-line from a catalog of over
1.5 million parts.

}% ARTUP.COM

#is provided project management, analysis, requirements definition, design, development, testing, and

implementation for the artup.com Internet Web site. The solution included an auction site for artup.com
clients, a business-to-business channel for members, a ptivate pricing structure for artists, and the ability
artists to upload works from an Internet browser. The site also features an approval process for artup.co

verify members and artwork as well as the ability to ptrocess all credit card sales and handle accounting
functions.
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[ APPENDIX B: STRATEGIC PARTNERSHIPS

45" busi focus is vend L. We provide hardware and/or software only when our customers

specifically ask us to do so, However, in order to maintain our technical excellence and strong support
relationships with the technology vendors we integrate, we maintain strategic partnerships with the following
companies:

IBM (Premier BESTeam Member): i has been partnering with IBM for the past three years. IBM
BESTeam members are recognized as experts in delivering IBM-based solutions in Operating Systems,
Application Development, Data Management, Work Management, Networking, Internet, Systems
Management, and Transaction Systems. As a Premier BESTeam Member, jir enjoys such benefits as: direct
communication to top-level IBM technical support not available to the general public; advanced copies of
software and code to enable rapid adoption and deployment of IBM technology solutions; and access to
unlimited private training in IBM products, taught by IBM inside experts. #r has 17 consultants trained and
certified on DB2, 6 consultants certified on Net.Commerce, 12 people trained in the Websphere tools, 6
people trained in Visual Warehouse, and 2 CSEs.

Microsoft Certified Solutions Provider Partner (“MCSP?): iis has been partnering with Microsoft for six
years. #s has proven Microsoft product expertise and experience with a multitude of Microsoft products and
technologies. As an MCSP, #is enjoys the highest level of engagement with Microsoft through a variety of
exclusive benefits like business development tools, early access to Microsoft products, technical information
and resources, and wotldwide networking with other MCSP organizations. # has 25 MCSEs, 30 MCSDs, and
10 MCTs.

Sybase: iis has been in partnership with Sybase for five years. fis is authorized to sell, install, and configure
Sybase database products as well as connectivity and application development tools. #s has 6 Sybase DBAs
and 40 consultants experienced with Sybase database products.

Novell (Platinum Partner): s has been partnering with Novell for seven years. 7’ consultants hold
numerous certifications for the different Novell products available. Our partnership allows us to resell, install,
and configure these products.

Oracle (Business Alliance Partner): i# has been partnering with Oracle for five years. # is authorized to
sell, install, and configure Oracle database products as well as connectivity and application development tools.
#s has 6 Oracle DBAs and approximately 50 consultants that have been through various levels of Oracle
training and have experience with Oracle database products.

EMC Corporation: iis has a strategic relationship with EMC that involves partnering on project
opportunities to bring total project solutions to EMC customers involving e-commerce, business intelligence,
and client/server initiatives, providing training to EMC clients, and engaging in joint presentations and
serninars.

FileNET (Gold Authotized Reseller): iis has been partnering with FileNET for three years to implement,
customize, and configure FileNET’s intcgrated suite of client/server products for enterprise document
management.

Informix: #r has been partnering with Informix for four years. 4s is authotized to implement, customize, and
configure Informix database products, connectivity, and application development tools.

Lotus: iis has been partnering with Lotus for six yeass. # holds numerous certifications for the Lotus Notes
products. s can implement, customize, and configure the many Notes product lines.
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Sun Microsystems: # is in discussions with Sun Microsystems regarding becoming a Sun Authorized Java
Center. The services offered at an Authorized Java Center bring together proven and successful Java expertise
and can guide customers toward the best Java-based implementations and solutions. In addition, ## has many
experts trained in Networking, Web/Internet Development on the Sun Solaris platform and has worked on
more than 30 projects using Sun Solaris 2.6. éis is a member of the Sun Developer Connection as well as the
Java Developer Connection. s has developed an extensive four-module program for Java certification and
training of its consultants.

Baan: iis has been partnering with Baan for one year. #r is an authorized implementer and reseller of Baan
products.

Sagent: In the Business Intelligence area, #s has been partnering with Sagent for one year to implement,
configure, and customize its products.

Cognos: In the Business Intelligence area, #s has been partnering with Cognos for one year to implement,
configure, and customize its products.

Sales Logix: In the customer relationship management area, /is has been partnering with Sa.les Logix for one
year to implement, configure, and customize its products.

Siebel: ##s has been partnering with Siebel for one year to implement, configure, and customize its customer
relationship management softwate products.

Onyx: iis has been in partnership with Onyx for two years to implement, configure, and customize, its
customer relationship management software products.

HP Openview: /is has been partnering with HP Openview for one year to implement, customize, and
configure its products.

Wyse: iis has been in partnership with Wyse for two years to implement, customize, and configure its
products.

Citrix: i#s has been partering with Citrix for one year to implement, customize, and configure its products.
Cicso: 4is has been partnering with Cicso for one year to implement, customize, and configure its products.

#s also has numerous strategic relationships and business partnership with niche software and service vendors
tncluding the following:

®  Amnba (business to business e-commetce procurement);

¢ Cyclone Software (an XML trading engine for business to business e-commerce solutions and supply
chain management);

e-docs (the market leader in electronic bill payment and presentment);

Broadvision (a market leader in e-commerce solutions);

Usinternetworking (the nation’s largest application service provider);

UPS Logistics (the leading organization for logistics management);

CommercialWare (the matket leader in e-commerce solutions for the catalog and direct sales industry);
and

®  Quwest/US West (a strategic partnership to provide e-commerce related services to Qwest/US West
clients).
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APPENDIX C: MANUFACTURER CERTIFICATIONS

Company-wide, we maintain certifications in the following technologies:

e Databases
Certified Oracle DBAs
Certified Sybase DBAs)

v v

Programming Languages

Certified PowerBuilder Developers

Lotus Notes Certified—Consultant, Developer, and Spedialist
Microsoft Certified Solution Developers

Borland Delphi Certified Developers

vy vvwew?®

Network Engineering
Microsoft Certified Systems Engineers
Certified Netware Engineers

v -

Trainer Certifications
Borland Delphi Certified Trainer
Microsoft Certified Trainers

v v

Development Platform

IBM CSE Net.commerce Certified
Additional Certifications

Baan

Baan Finance—Advance

Certified Netware Administrators

Certified Production Inventory Management
Certified WinFrame Administrator

Cognos

Cognos Certified Impromptu Administrator
Cognos Certified Powerplay Administrator
Cognos Certified Impromptu Professional
Compaq Professional Sales Certification
Configuration Management: CMII Certification
FileNET Certified Professional

IBM Visual Warchouse 5.2

Integrated Resource Management

JADE (1)

Microsoft Certified Database Administrator
Microsoft Certified Product Specialists
Microsoft Certified Professionals

Microsoft Certified Professional + Internet
Project Management Professionals

Rapid Application Development Certification
Solutions Expert DB2 UDB V5 Database Administrator
SPHR

Y YWYV YPTYTVPYTY VYV YTEYTYTVITVYTYTYTYTYVYE® o
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