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ABSTRACT

The readability of formal specification languages has been hypothesized as a limiting
factor in the acceptance of formal methods by the industrial community. An
experimental study was conducted to determine how various factors of state-based
specification language design affect readability. Six factors were tested in all, including
state machine representation, the expression of triggering conditions, macros, the use of
internal events, hierarchies, and specification perspective. Subjects included computer
scientists as well as aeronautical engineers in an effort to determine whether a correlation
exists between a subject's background and his/her notational preferences. Such a
correlation was difficult to establish based on our results, however.

This thesis contains a survey of various state-based specification languages in use today,
and describes the design of a preliminary experimental study that was conducted to
investigate the readability of various language design features, as well as the objective
and subjective results obtained from the study. These results will serve as a starting point
for more thorough experimentation in specification language readability.

Thesis Supervisor: Nancy G. Leveson
Title: Professor of Aeronautics and Astronautics
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1. Introduction

Software systems are relied on heavily in the aerospace field, and this reliance

will only increase as their presence becomes more pervasive. However, this increased

presence of software systems has been accompanied by a dramatic increase in system

complexity. Aerospace systems being designed today are growing in scale and

functionality, which is increasing the likelihood of subtle errors [19]. In light of this

threat, we would like to provide some level of assurance for the system prior to its

deployment. Ideally, we would like to do so early in the design process, as errors made

during these stages are not only the most difficult to find, but can be the most expensive

to correct. However, assuring the robustness of system specifications and designs is

difficult to do using traditional software engineering practices.

One problem with testing large specifications is the typically large state-space

involved. Formal methods and mathematical analysis theoretically present a way out of

the dilemma posed by our inability to test even a small part of the enormous state space

involved in most digital systems. They have the potential for both increasing safety and

decreasing the cost of certifying flight-critical systems. The past 30 years have advanced

the state of knowledge about formal methods to the point where many important

problems can be solved. While formal methods are being applied to hardware in

industry, the results of formal methods research for software has only rarely reached

beyond the research lab and been used in industrial practice for day-to-day software

development [35].

Formal methods are mathematically-based languages, techniques, and tools which

typically accomplish one of two tasks in system development, specification or

verification [5]. Formal specification involves creating a mathematical model of the

system's behavior. This model usually contains behavioral information, but can include

other types of information such as timing constraints and performance characteristics.

Formal verification involves mathematically analyzing the model for various properties

such as completeness (there is a behavior defined for every environment) and consistency

(there is no non-deterministic behavior specified). This work will focus specifically on
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issues related to formal specification, in an effort to maximize the potential benefits of

this approach to specifying system behavior. While a formal method is usually better

suited for a particular type of system, several different types of formal methods have been

established in recent years, allowing us to specify and analyze a diverse group of systems

[2].

As mentioned before, formal specifications afford us several benefits. First, they

provide a precise, unambiguous specification of the system's behavior. System

specifications are typically written using English prose, which is of course easy to use

and conducive to creating specifications quickly. However, it can be ambiguous and

wordy, which are obviously problematic qualities when working with others to develop a

specification. Formal specification languages possess a defined syntax and semantics

which alleviate this confusion and ambiguity. Along the same lines, by providing a

single, explicit language of communication, a formal method can help bridge gaps

between a diverse set of system designers and developers.

Formal methods can also help decrease cost. Errors made during the specification

stage are not only the most difficult to find but can be the most expensive to correct.

Specification errors are typically not discovered until systems are designed or even

implemented. At this point, designers must trace back to the specification, fix the error,

and redesign the system. This process can not only be a tedious one, but an expensive

one as well. Because formal methods operate directly on a system specification, we can

prevent these added costs. In addition, because formal specifications are defined

mathematically, they are conducive to automated analysis. Properties such as

completeness and consistency can then be assured quickly with an automated tool,

eliminating the potential for human error.

Despite these benefits, formal methods have found a tremendous lack of interest

in industry. Several reasons may be hypothesized for this lack of wide-spread adoption.

First, most formal languages are based on discrete math and/or logic. However,

engineers are typically not trained in discrete mathematic. Further, the notations used in

these languages are often not as concise or as parsimonious as their continuous math

counterparts. So while a control law can be represented as a differential equation, the
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discrete mode logic for a flight management system might require hundreds of pages of

formal logic to specify. The review of such specifications by domain experts is a

daunting task. In addition, the tools provided for formal analysis of such specifications

are often difficult for engineers to use: They may require in-depth knowledge of discrete

mathematics, and may require domain experts to translate the problem as they

understand it in their domain of expertise into another domain; for example, they may be

required to specify a set of axioms that describe the domain and to restate the problem in

terms of theorems and lemmas that they must then prove, perhaps with some assistance

from an automated tool [35]. The scope and scalability of formal methods remain

additional concerns both in industrial and academic communities. As mentioned before,

there has been success with applying formal methods to hardware systems analysis.

Hardware systems typically exhibit a high degree of regularity, where you may find the

same component duplicated thousands of times on the same chip. Software systems, on

the other hand, very rarely exhibit this kind of regularity, and so there has as yet been

only limited success with applying formal methods to complex systems.

However, one of the biggest drawbacks to using formal languages is that they

simply are not readable. Readability is arguably one of the most important properties of

any specification [20]. The specification must not only be reviewable by those trained in

the language, but must be readable by a large variety of people with diverse backgrounds

and expertise including system designers and developers, customers, users, certifiers, etc.

Readability by a general audience allows all involved parties to discuss and analyze a

specification using a single common model. Furthermore, our experience in analyzing

formal specifications for complex systems suggests that the most significant errors and

omissions will be found by human experts rather than automated tools [35]. This

observation does not mean that automated tools are not useful and important in finding

some types of errors, especially those that require tedious checks, but humans are

required to determine whether a specification conforms with engineering expectations

and requirements. In addition, even those design or specifications flaws found by tools

will need to be evaluated by human experts. Therefore, readability of system

specifications is a requirement not only for human understanding of complex models but

also for human processing of the analysis results.
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Readability is also desirable as it has associated with it a short familiarization

time. Certainly any specification language is going to require some training in order to

understand and use. However, particularly with respect to review, this time cannot be too

long before it becomes impractical to coordinate the considerable amount of reviewing

that leads to high-quality specifications and software. It can require as much as 3-6

months training before an engineer can use some formal languages effectively. This

amount of training not only makes it difficult to review formal specifications, but also

discourages the addition of engineers to the specification and design teams.

In an effort to increase the practicality of formal methods, this thesis deals

specifically with the problem of specification language readability. Designing a

specification language that is readable by a general audience is a difficult problem, and

one that has received little attention in research communities. To date, there has been

little empirical evidence produced to guide specification language design that supports

readability. We have designed and completed an experiment which has provided

preliminary results to help us understand which notations and conventions are more

conducive to readability. We specifically included subjects with both computer science

and engineering backgrounds, as these are two fields that can directly benefit from the

use of formal methods. Understanding which notations are more readable, and to which

audiences, can help us create specification languages that are more expressive and

effective, allowing formal methods to become a more attractive alternative for the

industrial community.

This section has hopefully provided an introduction to the use of formal methods,

its benefits and drawbacks, as well as motivation for this thesis. The next chapter will

provide a detailed overview of a specific class of formal languages studied in this work -

state-based specification languages - as well as a survey of related work in language

readability. We will then discuss the design and implementation of our experiment,

followed by an analysis of our results. The final chapter will summarize the conclusions

drawn from this work, as well as identify some directions for future work in the area.
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2. Background

Formal specifications involve the creation of an underlying mathematical model.

This model can take on several different forms. In this work, we will focus specifically

on specification languages that use an underlying state machine model.

2.1 State Machines

A state machine models system behavior in terms of states and transitions

between them. Figure 1 shows a state machine model for a simple traffic light system,

called Traffic Light. Traffic Light has three different states - Green, Yellow, and Red -

which are denoted by circles. The arrows between them denote transitions from one state

to another. Transitions have a source and destination state, and are labeled with triggers

and possibly outputs as well. The trigger for a transition is made up of events and/or

conditions. An event is an occurrence in time, and a condition is a statement that can

have the value True or False.

Traffic Light (Time in Green state is > 30 seconds)
AND Cross traffic detected

Green Yellow

(Time in Red state is > 30 seconds) Time in Yellow state is > 5 seconds
AND Cross traffic is stopped

Transition Definition:
Trigger (events AND/OR guarding conditions) / output (optional)

Figure 1. State machine model for traffic light system.
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A transition will be taken from its source state to its destination state when the

corresponding trigger occurs. For example, the system in figure 1 will transition from

Green to Yellow when a "Time in Green State is > 30 seconds" event occurs and the

condition (i.e. cross traffic has been detected) is true. An arrow with no source state

denotes the starting state of the system (Green, in figure 1).

Traffic Light Display

(Time in Green state is > 30 seconds)
AND Cross traffic detected /Caution

Walk
Green Yellow

Safe Caution

Don't
Walk

(Time in Red state is > 30 seconds) (Time in Yellow state is > 5 seconds)
AND Cross Traffic is stopped /

Safe

Transition Definition:
Trigger (events AND/OR guarding conditions / output (optional)

Figure 2. Traffic light state machine operating in parallel with a display state machine.

As mentioned before, events can serve as triggers for transitions. However,

events can also be used as outputs. A transition can produce an output event, which in

turn can trigger another transition in the system. For example, figure 2 shows a state

machine model for a Walk/Don't Walk display that operates in parallel with the traffic

light system described earlier. When the traffic light state machine transitions from state

Green to Yellow, there is now an output event "Caution" generated. This event in turn

will trigger a transition from Walk to Don't Walk in the Display state machine.

State machines can also contain a hierarchy in the form of superstates. For

example, the states and transitions of the traffic light / display state machines can be

grouped together to form the superstate "On," as shown in figure 3. When we are in

superstate "On," the traffic light state machine behaves just as described earlier.

13



However, if the event "Power-Off' occurs at any time, the state machine in figure 3 will

transition to Off. So, in essence we have a two-level hierarchy in this example. At the

highest level, we have the On-Off state machine. However, within the On state, we find

another modular state machine - the traffic light - which is active only when the system

is in the On state. There are infinitely many possible levels to a state machine hierarchy,

which allows us to model complex systems.

Power
On

Green Yellow Walk

OFF

Don't Power

Walk ---- '-Off

Figure 3. State machine model using a superstate.

It is important to note that state machines are an abstract model that can be

described in several ways. Figure 1 describes the traffic light state machine graphically.

It could also be described textually, or in a table format, as in figure 4. Similarly, while

the trigger conditions in these examples are simple, complex conditions can be expressed

in a variety of ways (e.g. using propositional logic, graphically, in a table, etc.). There

are several ways to describe the parts of a state machine, each offering different potential

benefits. What differentiates one state-based specification language from another is

simply the way that it chooses to represent the parts of this underlying model. This

overview of state machines should provide adequate background for this thesis. For more

information regarding the formal mathematical definition of the state machine model,

please refer to [29].
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(Time in Green
> 30 seconds)
AND Cross
Traffic is
detected

Time in Yellow
> 5 seconds

(Time in Red >
30 seconds)
AND Cross
Traffic is
Stopped

NA [NA NA

Figure 4. Tabular representation of Traffic Light state machine.

As mentioned before, this work deals specifically with state machine-based

specification languages, primarily because they seem to be more likely to be adopted by

industry than other formal methods. The state machine model is well researched, and

supported by several proven analysis techniques. It also possesses several features that

make it a readable and understandable description of system behavior, arguably more

than other formal models. First, state machines do not require knowledge of their formal

foundation in order to be used effectively, in contrast to other formal models. In fact, one

requires little knowledge more than that presented in the traffic light example discussed

above. In addition, we hypothesize that state-machine models are a natural way for

engineers to think about control systems. The behaviors of many systems are easily

described using modes (states) and transitions between them. This type of description

can readily be expressed by a state machine.

2.2 Related Work

Program readability has been researched for years, as it is a useful property to

have when debugging software. However, from a system design and evolution

perspective, specification readability is paramount. The aim of this work is to determine

those features of specification language design, those representations of the parts of a

state machine, that can increase the readability and comprehensibility of system

specifications for an appropriate audience. We attempt to do so by human

experimentation, which seems to be the most appropriate and objective means of

assessing readability.
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Though there is no work known to date that deals with the specific topic of

specification language readability, the ideas developed in this thesis are drawn from

several related areas of research including specification language development,

visualization design, and computer science experimentation. Each of these related areas

of work are supported by several research efforts, which will be described in the

following sections.

2.2.1 State-based Specification Languages

Employing formal methods during the specification stage is arguably one of the

most effective ways of reducing specification errors. Several state-based specification

languages have been developed to date for this particular purpose. An overview of the

most significant contributions to this effort will be discussed in this section. Each

language presented employs the same underlying state machine model - they are

differentiated by the notations used to express the model to the reader.

SCR

Software Cost Reduction (SCR) is a state based specification language and

process originally designed to be used by engineers. It was actually introduced roughly

20 years ago, and has been undergoing refinement since, based on experiences with

applying the method to actual system development. The SCR method has proved

effective upon application to several avionics systems, such as the A-7 Operational Flight

Program and Lockheed's C-130J Operational Flight Program (OFP). Some of these

systems comprised over 100,000 lines of code, which provides partial evidence of the

method's scalability [15].

Monitored System Input Ou t ut Controlled

(Environment W Devices Software DeisEnromt

Figure 5. Overview of the Four Variable Model.
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The SCR method is based on a Four Variable Model, which is simply basic

control theory. The model is shown in figure 5. According to this model, system

behavior is described using mathematical relations over four sets of variables - monitored

variables, controlled variables, input data, and output data. Monitored variables

correspond to elements of the environment that can effect the system (or in particular, the

input devices). Controlled variables are those parts of the environment that the system

controls (via output devices). Input and output data describe the inputs and outputs to the

control software of our system.

To specify these relationships in the system, SCR uses four different constructs -

mode classes, terms, conditions, and events. A mode class is simply a state machine,

whose transitions are triggered by events, and whose states are determined by the values

of monitored variables. A term is "an auxiliary function defined on input variables,

modes, or other terms that helps make the specification concise. A condition is a

predicate defined on one or more system entities at some point in time. An event occurs

when any system entity changes value," and so individual events are not explicitly

defined as they are in other languages [15, pp.5-6]. The following example serves to

illustrate these constructs.

System Input Output

Four Variable Aircraft Alt. Data Data
Moel EviometInput Items I te ms Output Warng

Altitude Mode Class
SCR Software

Model

TERMS: Overridden

Figure 6. SCR model for altitude deviation detection system.

Figure 6 shows a model for a simple altitude deviation system. Depending on the

state of the system and the environment, the system will determine that the aircraft's

altitude is too high, permitted, or too low, and if necessary, it will issue a command to

adjust the altitude. Altitude is a mode class, or state machine, composed of three states

17



(Too high, Permitted, Too low). Altitude will transition between these states based on

the value of the aircraft's vertical position, which is a monitored variable of the system.

There is a term, Overridden, which is a function conditioned on the state of the mode

class and other inputs, and will determine whether any altitude warning should be

overridden (for example, if the pilot intentionally commands the aircraft Too High).

Warning is a controlled variable for the system, which will be activated when it is

desirable to send a warning signal to the environment (e.g. the cockpit).

Old Mode Event New Mode
Low @T(Aircraft Alt. > 1000ft.) OK
OK @T(Aircraft Alt. 1000ft.) Low
OK @T(Aircraft Alt. > 40,000ft.) High
High @T(Aircraft Alt. < 40,000ft.) OK

Altitude Mode Class (state machine)

Mode Events
High False @T(In Mode)
Low v OK @T(Ignore = On) @T(Ignore = Off)

Overridden True False
Overridden Term

Mode Conditions
High False True
Low Overridden = True Overridden = False
OK True False

Warning Off On
Warning Controlled Variable

Figure 7. Sample SCR specification for an altitude switch system.

SCR specifications use a tabular notation to specify the behavior of the system in

terms of these constructs. Figure 7 shows a tabular description of the Altitude mode

class, the Overridden term, and the Warning controlled variable. The first table specifies

the behavior of the Altitude mode class as a function of its current state and input events

(which are generated whenever the aircraft altitude input changes value). For example, If

the mode class is in state OK and the altitude becomes greater than 40,000 ft, the mode

class will transition to state High. The second table also uses events to specify the

18



Overridden term as a function of the mode class Altitude and the input Ignore.

According to the table, the warning can be overridden if the mode class is in state Low

and the system receives an Ignore = True signal from the pilot. The final table specifies

the behavior of the Warning variable, as a function of the mode class Altitude and the

term Overridden. For example, the warning will be On if the mode class is in state Low

and Overridden is False.

This overview should provide adequate exposure to the SCR method in so far as

readability is concerned. For a more detailed description of the underlying mathematical

model, the reader is referred to [15].

Statecharts

Statecharts is a visual formalism used to specify complex reactive systems [11].

Based on a more general model, the higraph, the statecharts formalism is actually very

similar to the state machine notation introduced earlier. States are represented using

boxes, or rounded rectangles, while transitions between them are described using arrows.

The arrows are labeled with triggers for the transitions they describe, which must include

an event, and may include a condition. Statecharts also makes use of a superstate

notation to describe hierarchies. A superstate is denoted by drawing a box around the

states of which it is composed. This notation allows a level of abstraction which is useful

in describing system behavior.

B C

D

A

Figure 8. Statecharts model with History.

The statecharts formalism is unique in that incorporates memory into its

specifications by means of the history notation. If a superstate is exited and then re-

19



entered, history allows a state machine to re-enter the superstate at the most recently

visited state within the superstate, rather than the superstate's default state. For example,

there is a history transition into superstate S of figure 8. If superstate S is in state C when

it is exited, then it will return to C if it is re-entered. The first time S is entered, it will be

in the default state, A. While the history notation implies a sense of memory, it is

important to realize that a functionally equivalent (but much more complex) statecharts

specification can be produced without history.

VCR Mode Display

Rewind

TimeOf

Stop Play

Status

Record F

Figure 9. Statecharts model of VCR System.

Often times, systems are composed of several subsystems, each of which can be

represented by a state machine. It should be clear that the state space (i.e. the number of

states) in the composite system can blow up very quickly with the addition of

subsystems, as the total state space is actually the cross product of the state spaces of

each component state machine [12]. However, we can describe the total space by

describing each component state machine. In this way, the total state space is not

generated, but it is clear how it could be generated if necessary. Statecharts is often

credited with creating the idea of the AND state, whereby two or more state machines

operate in parallel. An AND state is described by drawing a box around all component

state machines, and then separating each component state by a dashed line. Figure 9

shows an AND state On composed of the VCR Mode and Display state machines. When

20



the system transitions to On, both component state machines are entered as well. AND

state composition has proven to be a necessity when modeling any realistically complex

system, and has been incorporated into virtually all state based specification languages

developed since.

Off

VCR Mode

0
0

D
0

0

Figure 10. AND-state notations in Statecharts.

The statecharts formalism is not clear on how AND states are to be labeled,

however [11]. One possibility is to draw a new box around the entire AND state, and

include the label in the new box, another is to include a tag on the AND state with the

label. An example of both is shown in figure 10.

Figure 11. Overlapping state machines in Statecharts.

Statecharts makes use of internally broadcast events to allow communication

within and between state machines in a system. As described before, these events are

produced as outputs of transitions. Statecharts describes internally broadcast events on

transition arrows alongside triggering conditions. When an event is generated as an

21
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output of a transition, it is broadcast throughout the specification, and can then trigger

other transitions in the model.

While this definition of statecharts allows the specification of some fairly

complex mechanisms, there is also the possibility of extending the formalism to express

more complex behaviors. For example, one possible future extension involves

overlapping superstates, as shown in figure 11. This notation can potentially capture

conceptual similarities among superstates, or may simply be used to economize the

expression of certain state exits. Another possible extension to the formalism is to

incorporate temporal logic, which is often used in the specification of concurrent systems

[30]. This approach can take on a couple of different forms. First, based on given

constraints specified in temporal logic, we can develop an equivalent statecharts

specification, and then verify that the statecharts specification does in fact adhere to the

specified constraints. One possible solution to this problem may involve extending

previously derived methods to verify state machines against temporal logic constraints.

Another way to incorporate temporal logic into statecharts development is to possibly

derive a statecharts specification from a temporal logic specification. Such an ability

would make the use of statecharts more attractive to those that are more comfortable with

creating temporal logic specifications. For a more detailed discussion of statecharts

development, as well as the defined semantics of the language, please refer to [11].

RSML

In the early 1990's, researchers from the Safety-Critical Systems Research Group

at the University of California, Irvine set out to formally specify the requirements for

TCAS (Traffic Collision Avoidance System) II. The system was specified using RSML

(Requirements State Machine Language), a state machine based specification language

based on Statecharts [14]. RSML incorporates several features of the Statecharts

formalism, but exhibits new ones as well, to account for previous difficulties with

applying Statecharts to reactive systems. The TCAS experience was significant in that it

not only showed that RSML can be used to specify complex systems, but also that formal

specification languages can be readable by an engineering audience with limited training
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[18]. In fact, the RSML specification was eventually adopted as the official specification

for TCAS II.

Like Statecharts, RSML permits states of a state machine to be grouped together

into superstates. As explained before, this helps reduce the number of transitions that are

explicitly defined. RSML also makes use of AND-decomposition (or the orthogonal

product, in Statecharts), where state machines can operate in parallel. This allows a

much more concise representation of a system's total state space.

Another significant feature of RSML borrowed from Statecharts is the use of

internally broadcast events [13]. Transitions in RSML consist of a source and destination

state, a location (of the transition within the state machine), a triggering event, guarding

condition (if necessary), and an output action. A transition is taken when a triggering

event occurs and the corresponding guarding condition is true at the same time. After a

transition is triggered in a state machine, an internal event may be generated as an output

action. Other state machines are notified of this event via the broadcast mechanism.

Unlike Statecharts, RSML was designed to specify a system's blackbox behavior -

RSML specifications describe a system solely in terms of inputs and outputs, and the

relation between them. Furthermore, the relation between inputs and outputs is given

only in terms of variables and conditions that are externally visible. Internal events are

therefore used much less liberally than in Statecharts. In fact, they are used only to order

the triggering of transitions in a state machine, a function that can be likened to

parentheses/brackets in the evaluation of mathematical expressions.

By specifying purely blackbox behavior, RSMIL can potentially increase the

readability of its specifications. Leveson et al. hypothesize that readability and

reviewability are enhanced by minimizing semantic distance between the reviewer's

mental model of the system and the system specification model [18]. Semantic distance

can loosely be defined as the amount of effort required to translate from one model to

another. Leveson et al. believe that the application expert's ability to find errors in a

requirements specification can be enhanced by reducing the semantic distance between

their understanding of the required process control behavior and the specification of that

behavior. This, in turn, implies that specifications should use familiar engineering
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notations and that they be written in terms of the externally observable behavior of the

component being specified. Any information related only to the implementation of that

behavior should not be included. That is, the specification should be blackbox. Thus

RSMV1L specifications include only the input/output function being computed by the

component (the transfer function, in engineering terminology) and do not include any

information about the internal design of the component or how that externally visible

behavior is actually realized. In fact, the blackbox behavior might be achieved through

the use of hardware or software.

The notation used to express guarding conditions serves as another distinction

between RSML and Statecharts. Where Statecharts uses simple predicate calculus to

represent guarding conditions, RSML makes use of a mechanism known as an AND/OR

table, an example of which is shown in figure 12.

State Variable

Sample State Machine

Transition State A -- State B

Trigger: Aircraft Detected

Condition:

Altitude > 2000 ft. T

Autopilot is engaged T

Speed > 200 knots F

Figure 12. Sample AND/OR table.

AND/OR tables are concise representations of propositional logic [13]. The first

column is a set of boolean phrases - each of which evaluate to True or False - and the

additional columns represent various conjunctions of those phrases. If all of the elements

of a column evaluate to True, then the column evaluates to True. If any of the columns

evaluates to True, then the entire table evaluates to True, and a transition is triggered.

For example, in figure 12 we see that the state variable Sample State Machine will

transition from State A to State B if the Aircraft Detected event occurs and the AND/OR

table evaluates to True. This will happen if "Altitude > 2000ft" is True, OR if "Autopilot
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is engaged" is True and "Speed > 200 knots" is False. A '*' denotes a "Don't Care" (i.e.

the input can have any value). This representation of guarding conditions has been found

to be readable by engineers with a limited amount of training.

RSML also allows for simplification of guarding conditions with macros. Macros

in a state-based specification language function basically as they do in any programming

language. They are simply pieces of logic (an AND/OR table, in RSMiL) that, once

specified, can be referred to by name in other pieces of logic (AND/OR tables). This

modularization is conducive to specifying simpler blocks of logic which are theoretically

easier to read and understand. Using appropriate naming conventions when specifying

macros can also lead to more readable specifications. Previous work with formal

specifications has prompted researchers to conclude that macros are a necessity if formal

languages are ever to scale to realistic systems [35].

For a detailed discussion RSML's functional framework, the reader is referred to

[13].

SpecTRM-RL

Since creating the TCAS specification, Leveson et al. have created specifications

of real systems, experimenting with specification language features with respect to

usability. SpecTRM-RL (Specification Tools and Requirements Methodology-

Requirements Language) is the latest manifestation of the lessons they have learned to

date [20].

SpecTRM-RL is a state-based specification language that shares many similarities

with its predecessor language, RSML, that contribute to its readability including

superstates, AND decomposition, and the use of AND/OR tables to express guarding

conditions. Also, like RSML, SpecTRM-RL was designed to specify process-control

systems, and in particular the blackbox behavior of these systems. However, where

RSML simply allows blackbox specifications, SpecTRM-RL actually enforces them [21].

Previous experience with RSML (and other general modeling languages) has shown that

it is difficult to exclude design elements from (blackbox) system specifications.

Therefore, SpecTRM-RL was not designed as a general modeling language, but as a

blackbox specification language (like SCR, above). Certain features that are not required
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for blackbox behavior specifications are not included in the language, while other

features that encourage blackbox specifications have been included. For example,

SpecTRM-RL introduced a "mode" abstraction, which is a functional behavior that is

externally visible, and therefore blackbox.

SpecTRM-RL exhibits several other distinctions from RSML that can potentially

enhance the readability of the language. Most importantly, SpecTRM-RL does not use

internally broadcast events. Internally broadcast events proved to be the cause of the

majority of errors found during the review of the TCAS II specification [21].

Furthermore, internally broadcast events can be used to include design details and

programming features like counters, which are inappropriate for blackbox specifications.

Therefore, they were effectively removed from the language. Instead, SpecTRM-RL

relies on data dependencies in the specification to determine the order of execution of the

state machine model.

Vertical Flight Control
Specification Measured Variables

SUPERVISORY INFERRED SYSTEM OPERATING MODES
MODE Flght Phase

Control I re ight Clm Des nt App ch D n Control

Input -- Command

CONTROLINFERRED SYSTEM STATE
MODES I

Operation Mode Active Lateral Leg Descent Speed Violation
Vert Guid. Control Mode Active State Descent State
FMS Control Mode Active Thnst Liit Engine Out
FCC (Operating) Mode Aircraft Above 2 Engine Max Engine Out Level Deceleration
FCC Engaged Mode Aircraft Attained V3 FMS cm Req
Speed Scenario Aircraft Maneuver Go Arounid initiated
Vertical Guidance Type Aircraft Speed Status Last Takeoff Thrust Limit
FCC FMS Speed Mode Below Path Approach Level Next Cruise Fight Level
Clirb FMS Speed Mode Capture Hold Status Next Lateral Leg
Cruise FMS Speed Mode! Climb FMS Speed Operational Commands

Display Decent FMS Speed Mode! Cruise Fight (Status) Penetration Maneuver Measured
Output Cint FS Mode Cruise FigM Level Profile Descent Variables

Cruise Flight Speed Mode: Cruise FMS Speed ThnustLimit (Feedback)
Operating Procedure Decel Situation Available Thrust Limit Recycle

Decel Situation Engaged VG Altitude Target
Descert/Approach Path Valid VG Path Target
DescentFMS Speed VG Vercel Speed Target

Figure 13. Overview of SpecTRM-RL Specification.

SpecTRM-RL also differentiates itself from RSML by limiting the semantic

domain of the language, which can hypothetically increase the language's readability.

SpecTRM-RL was designed primarily for process-control systems. The high-levels of
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the specification look very similar to process-control diagrams. Figure 13 shows the

basic format of the specification [35]. This example in particular applies to a vertical

navigation system. There are four main parts: (1) a specification of the supervisory

modes of the controller being modeled, (2) a specification of its control modes (3) a

model of the controlled process (or plant in control theory terminology) that includes the

inferred operating modes and system state (these are inferred from the measured inputs),

and (4) a specification of the inputs and outputs to the controller. The graphical notation

mimics the typical engineering drawing of a control loop.

Every automated controller has at least two interfaces: one with the supervisor(s)

that issues instructions to the automated controller (the supervisory interface) and one

with each controlled system component (controlled system interface). The supervisory

interface is shown to the left of the main controller model while the interface with the

controlled component is to shown the right. There may be additional interfaces (shown at

the top) with various environmental sensors.

The supervisory interface consists of a model of the operator controls and a model

of the displays or other means of communication by which the component relays

information to the supervisor. Note that the interface models are simply the logical view

that the controller has of the interfaces - the real state of the interface may be inconsistent

with the assumed state due to various types of design flaws or failures. By separating the

assumed interface from the real interface, SpecTRM-RL is able to model and analyze the

effects of various types of errors and failures (e.g., communication errors or display

hardware failures). In addition, separating the physical design of the interface from the

logical design (required content) facilitates changes and allow parallel development of

the software and the interface design. During development, mockups of the physical GUI

or interface design can be generated and tested using the output of the SpecTRM-RL

simulator.

Supervisory modes are used in specifying information about the current supervisor

of the controller and are useful when a component may have multiple supervisors at any

time. For example, a flight control computer in an aircraft may get inputs from the flight

management computer and also directly from the pilot. Required behavior may differ
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depending on which supervisory mode is currently in effect. Mode-awareness errors

related to confusion in coordination between multiple supervisors can be defined (and the

potential for such errors theoretically identified from the models) in terms of these

supervisory modes. In systems with complex displays (such as Air Traffic Control

systems), it may also be useful to define various display modes.

The bottom left quadrant of figure 13 provides information about the control

modes for the controller itself. These are not internal states of the controller (which are

not included in our specifications) but simply represent externally visible behavior about

the controller's modes of operation. Control Modes are used in describing the required

behavior of the controller. Modern avionics systems may have dozens of modes. Control

modes may be used in the interpretation of the component's interfaces or to describe the

component's required process-control behavior.

The right half of the controller model represents inferred information about the

operating modes and states of the controlled system (the plant in control theory

terminology). A simple plant model may include only a few relevant state variables. If

the controlled process or component is complex, the model of the controlled process may

be represented in terms of its operational modes and the states of its subcomponents.

Operational modes are useful in specifying sets of related behaviors of the controlled-

system (plant) model. For example, it may be helpful to define the operational state of an

aircraft in terms of it being in takeoff, climb, cruise, descent, or landing mode.

In a hierarchical control system, the controlled process may itself be a controller

of another process. For example, the flight management system may be controlled by a

pilot and may issue commands to a flight control computer, which issues commands to an

engine controller. If, during the design process, components that already exist are used,

then those plug-in component models can be inserted into the SpecTRM-RL process

model. Additionally, parts of a SpecTRM-RL model can be reused or changed to

represent different members of a product family.

Each piece of the high-level SpecTRM-RL model needs to be specified in detail.

As an example, figure 14 shows the specification for the Target Altitude output. The

conditions under which outputs are assigned values are described using the AND/OR
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tables of RSML, with slight modifications. Each AND/OR table in SpecTRM-RL is

divided into two parts, Control Modes and State Values. The Control Modes section

describes the value of the control modes necessary for the transition, while the State

Values section describes the values of and conditions on inputs and state variables. This

distinction allows the reader to better understand each mode of the system's behavior,

and has been found helpful in detecting specification errors - particularly omissions.

|Output Variabl

Target Altitude

Type: INTEGER Feedback Information:
Destination: TBD Variables: UNDEFINED
Initiation Delay: 0 milliseconds Values: UNDEFINED
Completion Deadline: TBD Min time between outputs: 10 MHz
Exception Handling: None specified Max time between outputs: UNDEFINED
References: N/A Exception Handling: None Specified

Vertical Guidance Climb Target Altitude IF

TRIGGERING CONDITION

Control Modes

State Values

Vertical Guidance Operating Procedure INSTATE Airmass Ascent T T * *

Vertical Guidance Operating Procedure INSTATE Climb InterLev * * T T

Fight Phase INSTATE Takeoff T * T *

Flight Phase INSTATE Climb * T * T

Figure 14. Sample SpecTRM-RL output definition.

To assist with cognitive manageability, SpecTRM-RL also requires that its

specifications contain a graphical overview. An example of the information contained in

the overview can be found in the Flight Phase description in figure 13. The overview

simply contains a list of all component state machines in the specification as well as the

possible states each state machine can be in. For example, the flight phase state machine

can be in state Takeoff, Climb, Cruise, etc.

A final innovation of SpecTRM-RL is that it is well integrated into a complete

system engineering methodology called intent specification which combines both formal

and informal system requirements [23]. Intent specifications are a five-level approach to
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system specification that traces development from the highest level, goal and

requirements definition, down to implementation details. Levels of the specification

abstract on intent - each level explains "why" for the level below. SpecTRM-RL models

correspond to level three of the intent specification, specifying the system's blackbox

behavior. Providing the reader with the ability to trace requirements in a SpecTRM-RL

model up to higher levels, and thereby understand the rationale behind its development,

can theoretically increase the readability of the language. For a more complete

description of the language, the reader is referred to [22].

Op-Proc Tables

Like the other specification languages described in this section, the OpProc Table

is a state-machine based notation developed to specify embedded reactive systems.

OpProc Tables are actually used to describe the operational procedure model, illustrated

in figure 15 [28].

Figure 15. Operational Procedure Model.
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There are two parts to the operational procedure model, the conceptual

specification and the physical specification. The conceptual specification describes the

system as a set of operational procedures which are called upon to successfully achieve

the goals of the system. This part of the model is an informal specification, describing

operational procedures (behaviors) and the conditions (scenarios) under which each

procedure is called using English prose.

The physical specification contains roughly the same type of information, but

expresses it formally as the relationship between inputs and outputs of the system. This

relationship is described using an OpProc Table. The table defines scenarios based on

states of the system inputs, and then based on the appropriate scenario, determines which

operational procedure should be invoked. The behavior of each procedure is described

by specifying the behavior of the system outputs under each procedure.

As seen in figure 15, the conceptual and physical specifications are linked

together in two ways, by the scenario definition and behavior definition. Both

specifications describe the same scenarios and behaviors, one formally, and the other

informally. Requiring this type of redundancy can increase the readability of the

specification.

Like SCR, the OpProc formalism uses a tabular format to describe the state

machine underlying the physical specification. Figure 16 shows an example of an

OpProc table. There are three parts to the table, the Operational Procedures, the

Operational Scenarios, and the Operational Behaviors. The names of the Operational

Procedures are found in the top row of the table, i.e. Cruise Procedure, Climb Procedure

and Descent Procedure. The next section of the table defines Operational Scenarios

according to the states of the system inputs. The first two columns describe the inputs to

the system and the discrete values (or states) that each can take on. The following

columns define scenarios as specific combinations of input values, and detail which

scenarios will invoke a given operational procedure. For example, in figure 16, scenario

2 is defined to be the case where the altitude is less than the Cruise Flight Level, and the

current operational procedure is Cruise. The Climb Operational Procedure will be
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invoked if scenario 2 is true. Like RSML and SpecTRM-RL, OpProc tables enforce

AND/OR decomposition of conditions.

OpProcs Cruise Climb Descent
Procedure Procedure Procedure

Scenarios Inputs States Scenario 1 Scenario 2 Scenario 3
Altitude < Cruise Cruise < Cruise > Cruise

Flight Level, Flight Level Flight Level Flight Level
Cruise
Flight Level,
> Cruise
Flight Level

Current OpProc Cruise, Climb, Cruise Cruise
Climb, Descent
Descent

Behaviors Outputs Functions Behavior 1 Behavior 2 Behavior 3
Output 1 fl, f2 fl f2 f2
Output 2 fl, f3 fl f3 f3

Figure 16. Sample OpProc table.

The final section of the table defines the behavior of each operational procedure

by specifying the behavior of each output under each procedure. Each output is

associated with a given set of functions that can be used to determine its value. For

example, in figure 16, output 2 can be defined by function fI or f3. The specific

combination of functions that generates each output defines the behavior of an

operational procedure.

To assist with the task of developing a mental model, and hence to increase the

notation's comprehensibility, OpProc tables supports the following three abstractions:

conceptualization, (mathematical) simplification, and organization. Conceptualization

refers to the inclusion of the conceptual specification, which should represent an easily

read English language description of the system's behavior. Mathematical simplification

helps to reduce the number of scenarios that need to be defined by allowing AND/OR

decomposition of system inputs and by converting the underlying model from a fully-

connected state machine to one that is partially connected. Allowing AND/OR

decomposition of the inputs simply means that different values for a system input can be

grouped together into the same scenario definition. For example, in figure 16, the

Current OpProc input can be Climb or Descent in scenario 1. Organization, the final type
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of abstraction, can take on several forms, including aggregation (placing all operational

procedures in one cohesive table), and generalization (referring to different tables to

define the behavior of an Operational Procedure). Generalization in essence creates a

hierarchy in OpProc specifications.

This description of the OpProc notation should provide enough of a background

to understand readability discussions ahead. For further information regarding OpProc's

formal foundation, the reader is referred to [28].

2.2.2 Visualizations

This thesis draws upon another significant area of research in the area of language

design. This research focuses on specific features and notations that can make languages

more readable and comprehensible, though these results are not necessarily tied to formal

specification languages.

Fitter and Green published work in the late 1970's dealing directly with

readability in computer languages [9]. While some diagrammatic notations are more

expressive and comprehensible than others, it is not necessarily apparent why this is the

case. Further, some graphical notations are simply not very good, and not as readable as

other conventional notations. For the most part however, diagrams can be extremely

successful when designed correctly. Using several examples as well as empirical results,

Fitter and Green outline requirements for a readable diagrammatic notation suitable for

expressing software system behavior. In doing so, they draw a distinction between parts

of a notation that are expressed perceptually (using shapes, colors, layouts, etc.), and

parts that are expressed symbolically (or textually).

The first requirement is that information that is encoded perceptually must be

relevant. Because there are a finite number of variables that can be used to encode

information perceptually (shape, layout, etc.) in a diagram, it becomes extremely

important that such information be useful for tasks involving the particular diagram.

Otherwise, the perceptual coding is simply a waste of a resource which could be used

elsewhere. Several studies have shown that depending on the type of task required,
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certain diagrams are more effective than others. For example, Bingham and Davies show

by human experimentation that while flowcharts are better at showing procedural flows

than are decision tables, it is easier for non-specialists to check and modify decision

tables [1]. Both notations can express equivalent information, and certainly both have

advantages over each other, but designers must account for the audience and desired tasks

to be performed before deciding which perceptual encoding is more appropriate or

relevant.

The second requirement for a readable notation is that it should restrict the user to

creating forms that are readable and comprehensible. If a notation is too flexible, a

notation can be misused and ultimately blamed for allowing unreadable specifications.

The need for such a requirement is best shown by example, and Fitter and Green do so

with the flowchart. Using an unrestricted flowchart can, "...encourage spaghetti-like

programs. In particular, they provide irresistible temptations to jump into the middle of

otherwise working construction, violating their preconditions and generating untraceable

bugs [25, p. 36]." However, restricting the user to building a flowchart using only a

restricted set of building blocks can result in flowcharts which may not be concise, but

which will otherwise be readable. Editing a flowchart built from such a restricted set

tends to also be simpler than would otherwise be the case with an unrestricted flowchart.

Third, a diagrammatic notation should use redundant recoding to express

important information. For example, one means of redundant recoding that is common in

software programming is indentation. Two programs may be entirely equivalent in code,

but one that is properly indented provides redundant information that is nonetheless

easier to read, particularly nestedness. Though not supported with empirical evidence,

color seems to be another effective means of redundant recoding. For example, labeling

references to a particular variable in a program with a certain color makes it easier to

readily see how a variable is affected by a program's execution.

Diagrammatic notations should also reveal the underlying processes they

represent, if they are to be readable. Furthermore, images or notations should respond to

user manipulation [3]. These requirements are most applicable to interactive systems. In

fact, for some applications like air traffic control, interactive displays are almost a
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requirement for any sort of representation to capture the dynamics of the processes they

represent. The requirement of revelation (i.e. revealing an underlying process) is an

important concern when designing database query languages. Fitter and Green describe a

sharp division of opinion on how best to express the data-structure and access

mechanisms to the user, some preferring a natural language interface, others supporting

an interface language designed specifically to reflect a database's underlying structure.

At any rate, most parties agree that the ability of a query language to express the

underlying organization and access processes of a database is paramount if the language

is to be usable.

The final requirement of a readable notation is that it be revisable. Certainly no

description of a system's behavior is correct the first time, so the ability of a user to edit a

diagram is extremely important. However, this requirement is somewhat contradictory to

the earlier requirement that information be redundantly recoded. If a piece of information

needs to be revised, but it is redundantly recoded, then there may be additional work

involved in revising the diagram. The advantages of revisability vs. redundancy must be

weighed when making a decision about a diagrammatic notation.

Of course, following these prescribed requirements cannot guarantee a readable

notation. Wright, Brooks, and others have come to the conclusion that psychology and

linguistics can only help so much - common sense is just as important in language

design, if not more so [34,3]. Of course, what applied psychology can offer that

"common sense cannot is quality control: the testing of new designs to see how well they

work [9, p. 259]."

Green has also contributed work in human cognition (as it pertains to language

understanding) which can be applicable to visualization readability [10]. The field of

computer science made several advances in the 1970's and 80's based on simple models

of human understanding, which may no longer be appropriate if the field is going to make

large advances in the future. Language designers, for example, have sacrificed

readability for efficiency, operating under the assumption that computer programmers

can become accustomed to anything. While this philosophy can lead to programs that

require less typing time, such programs can also be more difficult to debug. Experience
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tells us that debugging is an essential and potentially time consuming process for any

software endeavor. However, by creating languages that are more expressive to

programmers, languages that are based on more sophisticated models of human

reasoning, we can reduce debugging and reviewing time significantly.

One of the most prominent contributors to the field of visualization and notation

readability is Tufte [31]. Recognizing that "confusion and clutter are failures of design,

not attributes of information," Tufte has produced several general principles that can help

govern the design, editing, and analysis of information representation [p.53]. These

principles are concerned mostly with visual characteristics, such as shapes, colors, and

organizations that can communicate information quickly and unambiguously. For

example, he warns against the ] + 1 = 3 effect, where adding marks to a notation or

visualization can activate negative shapes inadvertently. Surrounding words by a box, as

shown in figure 17, can activate white space between the box and the word, making the

text less readable.

Boston is cold
during the winter.

Figure 17. 1 + 1 = 3 Effect of poor visualizations.

Howard has provided a comprehensive survey of other contributors to the field of

visualization readability, addressing the readability of material ranging from printed

graphics to software systems visualizations [16]. Printed graphics should exhibit certain

qualities if they are to effectively transfer information to the reader. For example, a

graphic ought to show the data it contains, but do so without distorting what the data has

to say. Graphical elements should also serve multiple purposes, conveying several types

of information within the same figure. However, such properties should be considered

when designing software system visualizations as well.

Event trees, for example, provide assistance with visualizing the communication

between components of distributed systems, and are useful for debugging large parallel

systems that involve frequent message passing. However, event graphs must deal with

the problem of scale, as the graphs can quickly become cluttered and unreadable with the
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addition of processes and messages. Analysts have shown that grouping together nodes

and messages that provide similar purposes can help reduce the complexity of the graph,

while not distorting any information the graph is to display. Visual languages is another

means of visualizing system behavior which faces many of the same issues as printed

graphics. For example, designers of visual languages must decide exactly what should be

graphical in the languages. Certain aspects like control flow might be easier to express

graphically, while this type of expression is awkward for arithmetic expressions.

Based on his analysis of the field of visualization readability, Howard presents a

list of guidelines that should be observed in visualization design. His taxonomy can be

broken down into process, architecture, usability, visualization, memory, and navigation

guidelines. While some of these guidelines are only relevant to automated graphic

design and manipulation, most emphasize important characteristics such as clarity and

consistency, which should be observed in all visualization design.

Researchers at Monash University in Victoria, Australia have provided several

erroneous principles that are often followed in language design, including "less is more,"

"more is more," and "violation of expectations" (consistency) [26]. Though these

undesirable features are suggested in the context of programming language design, they

are certainly relevant (perhaps even more so) to graphics design. Guidelines to creating

more learnable, and hence more readable languages are also proposed. One of the most

appropriate is that designers should configure to an inexperienced audience. Knowledge

of the audience is incredibly important in making languages and visualizations more

readable, but is often overlooked in deference to designer preferences. Language

designers should also make use of a small, orthogonal set of features. Overlapping

features may provide a notational convenience, but the lack of uniqueness may confuse

the reader. Including too many features can make a language or visualization difficult to

read as well.

2.2.3 Human Experimentation

A final area of research drawn upon in this work deals with human experiment

design, specifically within the context of computer science. The use of human
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experiments has become an effective means to validate the use of certain software

engineering techniques. However, proper methodology must be employed in the design

of such experiments not only to generalize results obtained, but to defend work to the

research community.

In order to test an experimental hypothesis, a researcher must first create a

situation in which the desired behavior can be observed and measured. To create these

situations involves a few important issues, namely the selection of subjects, appropriate

material, and measures. These issues define an experimental methodology, and will be

discussed here [4].

In selecting subjects, there are two criteria that should be considered. One is that

they should be a representative set from the test population to ensure that the results can

be generalized to the test population (e.g. C++ programmers). However, the subjects

should also be as homogenous as possible, to eliminate the possibility of factors such as a

subject's background having an effect on the results. These criteria can be difficult to

reconcile, especially when the test population is heterogeneous. One solution that

experimenters have considered is to recruit subjects from a programming class. This

approach can be tempting in that it usually ensures that the subjects' background is

homogenous. However, this subject sample is difficult to generalize to the programming

population. Several studies have, for example, shown that even a few weeks difference

in training can have a significant impact on a subject's preferences and abilities.

Inter-subject variability is a difficult issue to address, and it often controlled by

testing a large sample (such as a classroom) and comparing the performances of different

subject groups. However, the most attractive method to control subject variability is to

design within subject experiments, where a subject is compared only to him/herself. A

subject is exposed to all levels of experimentation, and his/her relative performance at

each level is analyzed.

In selecting experimental material, the most important issue to consider is that the

material taps into the experimental feature being tested. For example, if the use of

macros is being tested, it is important that the tested material make use of an appropriate

number of macros. However, it must also be representative of a real class of problems.
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If experimental material is too contrived or pathological, reviewers will be unlikely to

make any conclusions based on the experiment.

Another important issue to consider in material selection is size. Experiments that

are based on small programs or specifications do not necessarily lead to scalable results.

Experience has shown that building large software systems is not simply a matter of

scaling manpower, but requires special methods and techniques. Therefore while a

certain mechanism or construct may not have an effect on a small experimental program,

it may in practice be influential.

Experimental material must also exhibit a high enough level of difficulty to

ensure an appropriately variable level of performance. For example, if the selected

material is inherently difficult to read, subjects may perform poorly in all levels of

experimentation, making it difficult to make conclusions based on the results.

Selecting an experimental measure may be the most important factor in

determining how a particular innovation effects the ease with which a program or

specification can be read or written. As Fenton writes:

In the absence of a suitable measurement system, there is no chance of
validating the claims of the formal methods community that their models
and theories enhance the quality of software products and improve the
cost-effectiveness of software processes [33, p. 216] [6].

One common measure in computer science experimentation involves subject construction

of a program. This measure is appropriate if the experiment is testing the ease with

which programs or specifications are created with a certain feature or mechanism.

Evaluation with this measure can be problematic, especially if the experiment tests the

quality of programs produced - this is difficult to judge any way other than subjectively.

Another means of evaluating produced programs is to measure the time necessary to

construct the program. However, this measure can be problematic for several reasons,

including the fact that any time measure should not include irrelevant behavior such as

time necessary to understand the directions, as well as time necessary to construct

irrelevant parts of the program (i.e. parts that do not involve the tested feature).

Debugging or modifying a program/specification is a useful measure for

experiments that involve readability. This measure relies on the assumption that a subject
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must understand a program in order to modify it correctly. However, experiment

designers must ensure that the requested modifications cannot be made simply (e.g.

looking for a particular statement), and that it involves actually understanding the

material. Experiment designers have also used memorization and recall tasks to test the

comprehensibility of a program/specification [27]. In these tasks, subjects are exposed to

a program for a limited amount of time and then asked to reproduce it. Experiment

designers should score both functional and literal accuracy. The effectiveness of this

measure relies on the assumption that if a program is easy to read and understand, it is

easy to learn, an assumption that is well supported. Unfortunately, memorization/recall

tasking is only appropriate for small programs/specs. It is obviously unrealistic to ask

subjects to reproduce large software systems.

One of the most popular experiment measures in use is question answering.

Questions can be open-ended or multiple choice, each with their own attributes. Open

ended questions tend to be difficult to score, but can be taken verbally. Multiple choice

questions are, of course, easy to score, but are difficult to generate. A final method of

measuring program comprehensibility is hand execution, where a subject is asked to trace

or simulate execution by hand. One concern with this measure, however, is that the

simulation may not require knowledge of a whole program, as execution can be

accomplished on a statement basis.

There has recently been research conducted to systematically validate software

measurements (e.g. measurement of complexity, readability). Fenton et al. discuss a

structural model (shown in figure 18) that serves to describe the parameters involved in

measurement, and the relationships between them [17]. With such a model as a basis,

they have proposed a framework for validating the use of software measurements. There

are two types of validations considered, theoretical and empirical. Theoretical

validations verify that the measurement does not violate any of the object's properties,

while empirical validations confirm that the actual measurements observed are in line

with those predicted from the measurement models. The authors ultimately suggest a list

of guidelines to adhere to in measurement selection for computer science

experimentation. The most relevant to this work is that if a practitioner is concerned with
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a complex property such as readability, then several different measures should be taken in

an effort to capture several of its attributes.

Figure 18. Structural model to define object measurement.

There has also been work involving the establishment of predictive measures, i.e.

measures that can predict the occurrence of errors in software and specifications. Based

on cognitive psychology experiments regarding the ability of subject to reason about

natural language, Vinter et al. have analyzed the ability of software engineers to reason

about formal specifications [33]. A human experiment was designed and run to test for

the types of reasoning errors made when processing Z specifications. Data collected

from this experiment was used to establish a predictive model of error, which can assist

with predicting the likelihood of errors being made by a designer using the Z language in

a particular task. This experiment bears some semblance to the work described in this

thesis. However, Vinter et al. have limited themselves solely to properties of the Z

language that are error-prone, rather than determining properties of a class of languages

that might be error-prone. Further, this experiment does not account for any subjective

feedback which might also be useful in determining those feature of Z that may be

difficult to reason about.
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Finney and Fedorec performed several experiments regarding the

comprehensibility of Z as well. In [7], they set out to determine the effects of comments

and meaningful names on the readability of Z specifications. The experiments involved a

2X2 factorial design with four versions of the same specification, each with a different

combination of { comments, no comments 1 { meaningful names, no meaningful names

Subjects were taken from several graduate and undergraduate classes, and were randomly

given one of the four specifications. They were asked to read the document and answer 3

questions regarding the system specified. They were then given access to every

specification, and asked to rank each in terms of comprehensibility. The times required

to answer the questions, the scores on the 3 questions, and subjective rankings of the

specifications' comprehensibility were recorded. The write-up for this experiment

focuses heavily on statistical analysis of data, while underscoring the difficulty of

determining a metric for comprehensibility. However, this experiment is not without its

shortcomings. The use of time to complete the experiment as an evaluation variable

brings with it several complicating factors (as discussed earlier), in addition to the fact

that subjects were asked to record their own completion time. Further, asking subjects to

answer 3 questions may not provide enough experience with the specification to make

any conclusions about its readability. And though alleviating measures were taken in the

experiment design, the structure of the specification may have affected the

comprehensibility of the specifications. Nonetheless, the results of this work imply that

only meaningful naming conventions affect comprehensibility.

In follow-up work, Finney, Fedorec, and Fenton analyzed the effects of structure

on the comprehensibility of Z specifications [8]. There are several facets to

comprehension, which, as stated before, makes it difficult to test for. The research

community has used several means to measure comprehension, some focusing on

technical questions and simulations, others focusing on simply reading notations. Finney

et al. focus on 4 aspects of comprehension, testing the subjects' ability to perform the

following four tasks: finding a relevant part of the specification, understanding the

notation, relating the specification to the model, and modifying the specification by

writing an extra feature.
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Subjects were taken from a class setting, and divided into 3 groups where each

group was given one of three different specifications: a monolithic specification (121

lines), a modularized specification, and a highly modularized specification. They were

then asked to complete 20 questions testing the four skills listed earlier. Though subjects

were taken from a classroom, the results may still be generalized to the software

engineering population. Total instruction time was about 40 hours per subject, which is

comparable to any formal methods training given to software engineers in industry.

Results of this work show that comprehensibility is in fact improved with

modularizing the specification's structure, but that no significant benefits come from

breaking down modules that are roughly 20 lines in length. One limitation encountered

with generalizing these results, however, is that of scale. The size of the specification

tested here is most likely not comparable to those encountered when specifying

industrial-size systems. However, the experiment designers argue that common software

engineer practice encourages system breakdown into subsystems that are roughly the size

of that used in this experiment. There are currently plans to improve the experiment by

including timing data, using larger specifications (to assist scalability of results), and by

investigating any correlation between a subject's academic background and his/her ability

to comprehend Z.

Tenny investigated readability via human experimentation as well [32].

Specifically, he looked at the potential effects of procedure format and comments on the

readability of a PII program (rather than a formal specification). The experiment was a

3X2 factorial experiment, where each subject was randomly given a program involving a

different combination of { inline code, internal procedures, external procedures },
{comments, no comments}. Subjects were then asked 12 short answer / multiple choice

questions about the program's behavior. Readability was measured in terms of the speed

and accuracy of a subject's responses.

Results of this work implied that the use of procedures does not have a significant

effect on readability, and that comments provided the greatest assistance with readability

of the program without procedures. It is difficult to generalize these conclusions,

however. The tested program, for example, contained between 70-170 lines of code,

43



depending on the specific features included. This of course, is smaller than most

programs encountered in industry. There also does not seem to be any structure or

methodology guiding the question selection, which makes it difficult to accept this as an

adequate measure of readability. Furthermore, this was a student-based experiment.

However, Tenny argues that the students tested were senior, ready to enter the software

industry, and that most of the documentation and maintenance positions in industry (i.e.

the positions that are most assisted by program readability) are typically filled by newly

graduated students.

The work discussed in this thesis draws heavily on previous experimentation

design, particularly with respect to measuring readability. However, while there has been

a significant amount of research in experiment methodology within a computer science

context, the specific goal of determining which factors affect the readability of state-

based specification languages has not been addressed. As discussed earlier, there has

been work that sought to determine factors that affect the readability of Z specifications,

but the number of factors considered (2) is much smaller in scope than that considered

here. As well, previous work with Z focuses on one specification language, rather than a

class of specification languages as is considered in this thesis. This becomes an

important distinction when determining which factors of language design should be

tested for readability.
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3. Experiment Design

The purpose of this work is to determine those factors that affect the readability of

(state-based) formal specifications. This direction of research is fairly innovative and as

discussed earlier, has not been addressed by related work. As a first step in this direction,

any results obtained are strictly preliminary, and will be used as a starting point for more

thorough experimentation in the future.

As mentioned before, this work focuses solely on state-based specification

languages, which is just one type of a formal language. The primary motivation behind

doing so is that they all employ the same underlying model. When looking at other

formal models, there are different issues that arise in expressing their different parts. For

example, the different ways to express the parts of a state machine are not the same as

those that can express the parts of a set theoretical model. For the sake of a fair

comparison, we restricted ourselves to one formal model, and investigated the different

ways that this abstract model, the state machine, can be expressed.

The first step of our approach, then, was to survey several state-based

specification languages and to determine the distinguishing features of each. What

differentiates each of these languages from each other are the ways that they express the

parts of the underlying state machine model. After determining exactly what these

distinguishing features are, we wanted to test the readability of each in experimentation,

to help us identify those features that most affect the readability of state-based

specifications.

The languages surveyed were Statecharts, Software Cost Reduction (SCR),

Requirements State Machine Language (RSML), SpecTRM-RL, and OpProc Tables. An

overview of each was presented earlier. The next section discusses those distinguishing

features that we identified as potentially affecting language readability.

3.1 Features Selection

There are several parts of a state machine that must be expressed in a specification

language. The features selected can be grouped together according to the parts of the
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state machine to which they apply - the state machine (in general), events, and

conditions.

3.1.1 Specifying the State Machine

The first factor related to the state machine description is the use of an overview.

Modem avionics systems are becoming increasingly complex, which in turn is leading to

large, complex specifications. Some languages, such as RSML assist with this

complexity by including a graphical overview of its specifications. The graphical

overview contains a list of all component state machines in the underlying model, the set

of possible values for each state machine, and the allowable transitions within each state

machine (there are no triggers included). Like the graphical state machine presented

earlier, states in the RSML overview are represented by squares, and transitions between

them by arrows. Such an overview encourages developing a system view of the

specification. SpecTRM-RL includes a graphical overview as well; however its

overviews contain only a list of all component state machines and the set of possible

values of each. Experience with RSML showed that presenting the reader with

transitions using the arrow notation led to a great deal of confusion when specifying large

systems. Using a different notation for transitions may lead to a more readable overview.

However, SpecTRM-RL removes this information from its overviews altogether.

In constructing an overview for a complex state machine, there are two issues that

should be dealt with. First, one must decide what type of information the overview

should contain. For example, the overview can include states, transitions, inputs, etc.

Second, the form of the overview must be established. The overviews discussed

previously were graphical, but they can also be represented other ways, such as textually

or tabularly. We hoped to determine by experiment which types of overviews do in fact

assist readability.

The next feature identified was the combination of informal and formal

specifications. SpecTRM-RL and OpProc tables incorporate informal requirements into

their state machine model. This type of information provides a more complete

understanding of a system's behavior, and is obviously required for a complete
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specification. However, it may be a source of confusion in understanding the state

machine model.

The representation of the state machine itself proved to be a distinguishing feature

as well. Op Proc Tables and SCR represented the underlying state machine in a table,

whereas Statecharts represented the model graphically, using boxes and arrows. RSML

and SpecTRM-RL in essence used text to describe the layout of the state machines. This

work tested the readability of equivalent graphical, textual, and tabular state machine

representations.

Due to the inherent complexity of modern software systems, most state-based

specification languages use superstates, or hierarchies, to provide logical modularizations

in the model. The use of hierarchies certainly is a notational simplicity and removes the

need to explicitly specify several transitions. For this reason, many have argued that

allowing hierarchical specifications is essential if formal methods are to be scalable. It

can also help the reader develop a better mental model for the system's behavior than

would otherwise be achieved in a flat state machine. However, by not explicitly

specifying several transitions, superstates can also lead to confusion regarding execution

of the state machine. In the specification languages surveyed, all employ hierarchies,

with the exception of SCR.

3.1.2 Specifying Events

One of the most controversial issues in state machine description is the use of

internally broadcast events. Statecharts, SCR, and RSMIL rely on internally broadcast

events to order execution of the state machine. However, experience using RSML in a

complex specification showed that the use of such events proved to be a source of several

errors. SpecTRM-RL then removed internally broadcast events from the language,

instead ordering execution based on data dependencies. In this experiment, we hoped to

provide empirical evidence regarding the readability of internal events.

Another issue encountered in the use of internal events is how their execution

should be ordered. Languages like RSML require the designer to explicitly specify the

order in which internal events are executed. In addition, RSML can allow different

output events to be generated for a single transition. For example, transitioning from a
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state A to B may generate one output event in one environment, but a different event in a

different environment. This feature provides a great deal of flexibility in describing

system behavior, but can make the specification unreadable. Requiring the reader to

carefully trace through specification in order to determine execution order can be a truly

onerous task. SCR, on the other hand, assigns an event to every entity change within the

state machine - the event generated depends only on the source and destination of the

transition triggered, not on the environment in which it is triggered. So transitioning

from A to B will always generate a certain output event, regardless of the environment in

which the transition is taken. SCR then adheres to a predetermined scheme to order the

execution of these events. This use of internal events provides a less flexible means of

specifying a state machine, but may increase the readability of the specification.

3.1.3 Specifying Transitions

The next issue investigated regarding state based specifications is that of

perspective. When specifying a state machine, transitions can be organized in one of two

ways. They can be organized by source state, where all the transitions out of a certain

state are grouped together. One can think of this organization by asking, "If I am in state

X, where can I transition to from here?" We refer to this as a going-to perspective.

Transitions can also be organized by destination state, where all the transition to a certain

state are grouped together, i.e. all the transitions that end in state X are grouped together

in the specification. We refer to this organization as a coming-from perspective.

Certainly both express equivalent amounts of information. However, we were interested

in determining whether one of these perspectives was a more intuitive way for readers to

think about state machine behavior. Graphical representations like Statecharts provide

both perspectives, which may or may not be an ideal property. Others, like SpecTRM-

RL and OpProc tables, use a coming from perspective. RSML and SCR do not restrict

the designer to either perspective. In fact, there is no enforced organization of the

transitions.

Macros in a state-based specification language function basically as they do in

any programming language. They allow us to modularize a piece of logic that can then

be referred to solely by name in the specification. This modularization is conducive to
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specifying simpler blocks of logic which are theoretically easier to read and understand.

Using appropriate naming conventions when specifying macros can also lead to more

readable specifications. Previous work with SpecTRM-RL have prompted researchers to

conclude that macros are a necessity if formal languages are ever to scale to realistic

systems [35]. However, macros also possess a drawback in that it may require the reader

to navigate through several parts of the specification to identify specific logic conditions

that may affect the state machine. The use of nested macros may confuse the reader

when trying to understand how the system behaves. Of course, this problem is not

unique to specification languages, but can arise when using programming languages as

well. Previous work in software engineering has concluded that the effectiveness of

macros is limited by the amount of modularizations used. For example, using a few, non-

nested macros can aid comprehension of the system, whereas using several nested macros

may not. Whether or not these conclusions apply to state machine specifications is

something we chose to investigate in this work. All state based specification languages

surveyed employ some form of macros (although they are called terms in SCR), with the

exception of statecharts.

The final feature selected was the expression of conditions, which of course are

used to specify triggers for transitions. SCR and Statecharts use simple propositional

logic to specify triggers. This representation is relatively simple and concise, but can be

difficult to read when used to express complex conditions. Both RSML and SpecTRM-

RL use a tabular notation (the AND/OR table, discussed earlier) to express conditions.

Experience using this notation with engineers has shown it not only to be readable, but

also easy to learn. OpProc tables also use a tabular notation (which is actually similar to

the AND/OR table) to represent conditions. In this experiment, we investigated not only

the use of propositional logic and tables to express conditions, but also textual and

graphical representations. Textual descriptions are used in most industrial specifications

to date, so served as a good baseline for comparison in this experiment. We also

considered AND and OR gates as a means of graphically specifying logical conditions.

AND and OR gates are familiar to most engineers (and computer scientists), and so

seemed an appropriate means of describing the logical triggers of a state machine.
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With these features established, we designed a human experiment to determine

how each affected a specification's readability. An overview of the experiment follows.

3.2 Experiment Overview

The experiment itself consisted of six (6) parts, one part for each feature tested.'

Each part of the experiment was run the same. Subjects were presented with 2-4

equivalent specifications, depending on the feature being tested. They were then asked a

serious of objective questions about the state machine behavior described by the

specifications. Initially, subjects were given access to any/all specifications when

answering the first few questions. They were instructed to indicate which specification(s)

they used to answer each. We were interested to see whether subjects had an intuitive

feeling for which notation or specification they would find to be the most effective or

readable. After this preliminary section, subjects were restricted to a particular

specification when answering questions until every specification was tested. For

example, in the macros experiment, subjects were asked two questions for which they

were given access to both the Macro and Flat specifications, then four questions for

which they were restricted to the Macro specification, then four more questions for which

they were restricted to the Flat specification. Following the objective questions, subjects

were asked to give a subjective evaluation of each specification used in that particular

part of the experiment.

Subjects were all graduate students in either aeronautics or computer science.

Prior to each experiment, the subject's background and familiarity with both fields were

ascertained. As mentioned before, there may perhaps be a correlation between a

subject's academic background and his/her notation preferences, which makes this an

obvious and necessary step to investigate this possibility. Twelve subjects were tested in

total, including six computer scientists and six engineers. Statistically, we would like to

have a larger subject base, but as this is a preliminary study, we believed that this was an

appropriate number of experiments to run.

Three of the factors established above were removed from consideration in the experiment, for reasons
discussed later.
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As far as training, subjects were given a simple introduction to state machines a

week before their experiments. The document simply familiarized them with basic state

machine terminology such as "states," "triggers," and "transitions." This introduction

provides a subject with no experience with state machines enough information to

complete the experiment. Furthermore, a practitioner was present throughout each

experiment to explain the directions for each part of the experiment, including how to

read the notations, as well as to answer the subjects' questions.

3.3 Experiment Material

For each feature tested, we decided upon a specific system with which the subject

would work. We developed several specifications for each system used in the

experiment. The specifications for a particular system were entirely equivalent, and

differed only with respect to the particular feature being tested.

Deciding appropriate systems to use in the experiment is an important task, which

can directly affect the credibility of any conclusions reached as a result of the work.

There are several issues that were considered in designing material for each part of the

experiment. First, we wanted the systems specified to be taken from several aeronautical

applications. Aeronautics is largely a safety-critical field, and one that could benefit

greatly from readable, reviewable specifications. So, we designed the experiment in an

aeronautics environment, though the results should be applicable to any software

specification.2 More importantly, the systems selected were real systems. We did not

want to test systems to be contrived or pathological, but rather we hope to use this

experiment as a practical experience. Using real systems should help us ultimately create

readable specifications that can actually be used in an industrial setting.

In developing this work, we were concerned with the readability of large-scale

system specifications. Specification language features can become much more influential

when dealing with large systems. However, we restricted the size of the systems used for

a couple of reasons. First, we wanted to minimize the duration of the experiment.

Several features were being tested in this experiment, and we recognized that duration

2 Both space and aviation systems were used in the experiment
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may affect a subject's performance. Using large system specifications can result in a

significant amount of time necessary for a subject to become familiar with and be able to

read them. We also limited the size of the test systems so as to minimize potential

sources of experimental error. As discussed in related work, several factors of a system

specification can affect its readability, including the way a specification is modularized,

fonts used, and naming conventions. As the size of the system is increased, there is a

greater potential for such factors to affect a specification's readability, in addition to the

specific feature being tested. By restricting the size of the specifications used, we hoped

to minimize any potential effect that external factors may have on the subject's

performance.

Another concern in designing the experiment material is that the notations used be

generic, so that it not require much training or foreknowledge of the subject. We also felt

it important to vary the notations used, so that a subject's preferences would not be

affected over the duration of the experiment. For example, if we described triggers using

propositional logic whenever possible, the subject might become biased against other

notations, which would affect his/her performance on the conditions part of the

experiment.

The overviews and formal/informal requirements were ultimately not tested in the

experiment. In designing the overview experiment, we decided that it would be unlikely

that an overview would ever detract from a specification's readability. We contemplated

testing how the inclusion of different types of information affected an overviews

readability (for example, showing possible states and transitions vs. showing possible

states only), but found that the readability of such overviews depended on the types of

questions being asked. This issue did not seem particularly interesting for this work, and

so was not pursued further. The inclusion of formal and informal requirements in a

formal model was not tested due to our belief that any complete specification must

contain informal requirements (such as timing requirements) as well, whether or not this

comes to the detriment of the specification's readability.

The experiment material selected and the notations used will be discussed in

detail in the next section
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3.3.1 Representation

This experiment was designed to test the following (null) hypothesis:

Hypothesis 1: The representation of a state machine model does
not affect its readability.

The system selected for the state machine representations part of the experiment

was the control software for the HETE (High Energy Transient Explorer) satellite. "The

purpose of the HETE mission is to study gamma ray bursts. Gamma ray bursts are high-

energy transients in the gamma ray portion of the electromagnetic spectrum that seem to

be isotropically distributed in the sky. These transient energy bursts range in duration

anywhere from a millisecond to a few hundreds of seconds, and they involve a high

amount of energy. In addition to capturing spectral information about these bursts, the

craft also relays position data about bursts as they occur to ground stations and other

satellites so that they can also study the phenomena [24]."

The control system software can be modeled as a simple state machine with ten

(10) states, each representing a different mode of behavior. The specifications for the

system contain the different modes of behavior, as well as the conditions under which the

system transitions between them. They do not contain any information regarding how the

system operates in each mode. The state machine model for HETE was appropriate in

that it did not contain an unreasonable number of states or transitions, nor was the

transition logic complex. Therefore we were able to express the state machine using the

tested representations, without drawing too much attention to any particular part of the

state machine. If we had chosen a state machine with complex triggers, for example, the

readability of the specifications would likely hinge on the representations of the

conditions, rather than the representation of the state machine.

This part of the experiment presents a textual, graphical, and tabular

representation of a state machine model for the HETE control system. The textual

specification is written in straightforward English text. For example, figure 19 shows one

part of the specification. Simple mathematical symbols such as >, <, and # were used in

the textual specification. The transitions in the specification were organized by source

state. For example, figure 19 contains all of the transitions out of Wait Mode.
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Wait Mode

Transition from Wait Mode to Wait Mode if the time that the
system has been in the Wait Mode is < Wait Mode Delay.

Transition from Wait Mode to Detumble Mode if the time that the
system has been in the Wait Mode is the Wait Mode Delay.

Figure 19. Sample textual specification.

The tabular specification for the control system uses a fairly generic notation,

resembling OpProc Tables. There are of course several ways to organize a tabular

representation of a state machine. However, it was important to have the entire state

machine (states, transitions, and triggering conditions) rely solely on the setup of the

table, rather than other notations. Each column in the table describes a transition, i.e. a

current mode, and destination mode, and a trigger for the transition from the current to

the destination mode. The source mode is listed in the top row, the destination mode in

the bottom row. Inputs to the system are listed in the far left column. Triggers for

transitions are described as a conjunction of various values of these inputs. So, a

transition will be triggered if every element in the corresponding column is true. Figure

20 shows an example of such a table. The system will transition from Performance Mode

to Economy Mode if the Pilot Requested Mode is economy and the flight phase is Cruise.

Figure 20. Sample specification table.
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Blank boxes denote "Don't Cares" -- the input can take on any value. In this example,

the transition from Performance to Economy mode does not rely on the Altitude, Thrust

Limit, or Engine Out inputs, so they can assume any value. As in the textual

specification, transitions in the tabular specification were grouped together according to

source state. We did not want to vary the organization of the transitions, as this might

affect a subject's performance.

[Time(In Mode) < Detumble Mode Delay]
OR

[(Time(In Mode) >= Detumble Mode Delay) A
(XZ Momentum Error >

XZ Momentum Error Threshold)] (Time(In Mode) >=
Detumble Mode Delay) V

(XZ Momentum Error <=
Time(In Mode) > XZ Momentum Error Threshold)

Command Mode Delay

n Detumble To Spinup Mode

Mode Md

From Spinup Mode
(Paddles are Not Deployed V

Optical System is Not Tracking) A
(Time(In Mode) >=

Spinup Mode Delay) A
Time (In Mode) >= (XZ Momentum Error >

Wait Mode Delay XZ Momentum Error Threshold)

Wait
Time(In Mode) < Mode

Wait Mode Delay

Figure 21. Sample graphical specification.

The graphical representation of the state system is fairly standard, where circles

represent states, and arrows denote transitions between them. A part of this specification

is shown in figure 21. This graphical notation has a small advantage above the other in

that it conveniently provides both a going-to and a coming-from perspective. When

looking at a certain state S, it is easy to see not only those transitions that have S as a

source, but also those transitions that have S as a destination. The triggering conditions

are written using simple propositional logic, and are written directly on the transition

arrow. This, of course, is one disadvantage of the graphical state machine. Expressing

conditions using a form other than text or logic is difficult due to spatial considerations.

The graphical specification spans 3 pages (another disadvantage of graphical state

machines), and can be found in the appendix, along with all specifications used in the

experiment.
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3.3.2 Conditions

This part of the experiment was designed to test the following (null) hypothesis:

Hypothesis 2: The representation of trigger conditions does not
affect its readability.

The system chosen for this part of the experiment is a simple Speed Mode

indicator, which operates as part of a flight management system (FMS). The Climb FMS

Speed Mode describes the mode to which the FMS should transition, and does so based

on the environment of the system. This simplified system can be modeled as a single

state machine with four states: Default, Economy, Max Climb, and Edit. These states

and the conditions that trigger transitions between them are described in each

specification. This indicator served as a suitable example for this part of the experiment.

It has a small number of states and transitions, but the conditions themselves are quite

complex.

In this part of the experiment, four different notations for the expression of

conditions were tested - textual, graphical, tabular, and logical notations. The triggering

conditions are broken down into a disjunction of conjunctions, so that they can be

expressed in a similar format, regardless of the notation used. This approach may mask

some benefits obtained by using certain notations, but should also minimize the effect of

structure on the readability of the specifications. The text expression reads as

straightforward English text, similar to that seen in the representations experiment. For

example, one part of the textual state machine reads:

The Climb FMS Speed Mode shall be the Default if any of the
following scenarios are true:

1. the Flight Phase transitions to Done
2. the Flight Phase transitions from Takeoff to Descent

The graphical notation makes use of AND/OR gates to express conditions. There are

several different ways to express conditions graphically. However, the AND/OR gate is

a notation with which most engineers are familiar. Figure 22 shows a sample taken from

the graphical speed mode specification. If the final gate (reading from left to right)
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evaluates to true, then the speed mode will be Economy. The graphical specification was

the lengthiest, due to the spatial layout required by the AND/OR gate notation.

Requested FCC Speed Mode
is Economy

Flight Phase is Preflight

Flight Phase is Takeoff

Flight Phase is Climb

Requested FCC Speed Mode Economy
is AFS Speed

Figure 22. Sample graphical specification for trigger conditions.

Economy =
((Requested FCC Speed Mode = Economy) A

((Flight Phase is Preflight) v

(Flight Phase is Takeoff) v (Flight Phase is Climb))) v

((Requested FCC Speed Mode = AFS Speed) A

((Flight Phase is Preflight) v

Figure 23. Sample logical specification for trigger conditions.

The logical specification uses simple propositional logic to express conditions. Figure

23 shows a sample taken from the logical speed mode specification. One problem

common to parenthetical notations is that they are difficult to decompose, i.e. to see how

the parentheses line up. For this reason, a standard size font (courier) was used, and lines

of the specification were indented and aligned to make the AND/OR structure of the logic

more readable. The logical specification was nonetheless the most concise of the four

tested. The tabular specification uses AND/OR tables (described earlier) to express

trigger conditions. The AND/OR table is, of course, just one type of table that can be

used here. Figure 24 shows a sample taken from the tabular speed mode specification.
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= Economy IF

Requested FCC Speed Mode = Economy T T T

Flight Phase = Preflight T T

Flight Phase = Takeoff T T T

Flight Phase = Climb T T T

Requested FCC Speed Mode = AFS Speed T T T

Requested Climb Speed Mode T T

Figure 24. Sample tabular specification for trigger conditions.

3.3.3 Macros

This part of the experiment was designed to test the following (null) hypothesis:

Hypothesis 3: The use of macros in the representation of trigger
conditions does not affect their readability.

The system chosen for this part of the experiment was a vertical guidance

reference altitude. This subsystem operates as part of an FMS, and computes the altitude

reference used in guidance and control functions. The reference altitude is based on the

aircraft's current flight phase, clearance altitude, target altitude and conflict altitude. The

computation of the vertical guidance reference altitude can be modeled as a single, fully-

connected state machine with roughly 10 states. Like the Climb FMS Speed Mode state

machine, this state machine has a relatively small number of state, but contains complex

trigger conditions which may warrant the use of macros. A system with simple triggers

would render macros useless, and so would be inappropriate for this part of the

experiment.

Subjects were given two specifications for the reference altitude, one with

macros, and one without. Both specifications were written using AND/OR tables. We

did not want the readability of the specifications to be hampered by logical notations.

AND/OR tables have been proven to be easily readable by an engineering audience with

a minimal amount of training, so seemed an appropriate mechanism to specify triggering

conditions. One issue encountered with placing macros in the specification is deciding

exactly what information should be modularized. We did not use any formal principle
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when modularizing logic in the trigger conditions. The most complex triggers were

identified, and then simplified by subjectively assigning macros. Small pieces of logic

that were referenced several times were also modularized. The macro specification

allows one level of nested macros in some places, which seemed appropriate. Studies

have shown that several layers of nesting can create confusion, but large system

specifications could remain quite complex if nesting were altogether prohibited.

= Climb Conflict Altitude IF

Engine Out is not engaged

Climb Conflict Situation

Climbing

T

TTj

with macros

= Climb Conflict Altitude IF

Engine Out is not engaged T T T T T T T T

Flight Phase is Takeoff T T T T

Flight Phase is Climb T T T T

Clearance Altitude < Aircraft Altitude - 250 ft. T T T T

Climb Target Altitude < Aircraft Altitude - 250 ft. T * T T *

Vertical Guidance Type is Profile T T T T

Vertical Guidance Type is Airmass PROF T T * T T *

FCC Autopilot is engaged T T T T T T T T

without macros

Figure 25. Sample reference altitude specification with/without macros

Another factor of the macro specification that may affect readability is naming

convention. We named macros in such a way that made semantic sense, according to the

function of the logic it contained (For example, we named a macro Cruise Conflict

Situation, rather than Macro A). References to macros were denoted using italics. For

example, figure 25 shows part of the vertical guidance reference altitude specification

using macros, and the corresponding part of the flat specification. The table with macros

refers to Climb Conflict Situation and Climbing, which are macros defined by separate

AND/OR tables earlier in the specification.
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3.3.4 Internal Events

This part of the experiment was designed to test the following (null) hypothesis:

Hypothesis 4: The use of internally broadcast events in a state
machine description does not affect its readability.

The system chosen for this part of the experiment is a simple altitude switch. The

altitude switch device operates onboard an aircraft and uses several sensors to determine

whether the aircraft altitude is above or below certain thresholds, and then sends a signal

to a controlled device. The system can be modeled using seven simple state machines,

operating in parallel. It was important to use multiple state machines in the system model

to make practical use of internal events for communication between state machines. On

the other hand, controlling the scale of the system was equally important. Presenting the

subject with numerous state machines and extensive internal events can make this part of

the experiment particularly time consuming. Our original state machine model for the

altitude switch contained 9 state machines, which proved to be demanding during

pretesting. Ideally, we would have liked to test the readability of internal events in large

specifications, as previous work with RSML suggests that this feature is extremely

problematic for such tasks. However, minimizing the duration of the experiment was

equally important.

Subjects were presented with two specifications for the altitude switch, one with

internal events, and one without internal events. Both specifications are specified using

generic tables. This representation may or may not be the most readable, but again we

attempted to vary the notations used as much as possible. The tabular notation used is

also very concise, which was important given the size of the system specified.

State Trigger
Unknown Startup OR

Controls Reset OR
[(Analog Altimeter = Unknown) AND (Digital Altimeter = Unknown)]

Below [(Analog Altimeter = Valid) AND (Analog Altimeter Value < 2000)] OR
Threshold [(Digital Altimeter = Valid) AND (Digital Altimeter Value < 2000)]

Figure 26. Sample eventless specification.
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A part of the eventless specification can be found in figure 26. Each state

machine is described by a separate table. The first column lists the possible states of the

state machine, and the next column describes the triggers, i.e. the conditions under which

the state machine will transition to each state. The state machines are fully-connected,

and conditions are described using simple ANDs and ORs. There is no explicit

communication between state machines by events. Rather, execution is determined based

on data dependencies, as in SpecTRM-RL.

State Trigger Output Event
(Event) (Condition)

Unknown Startup, OR ALTITUDE
Controls Reset UNKNOWN

ANALOG ALT UNKNOWN (Digital Altimeter = Unknown)

DIGITAL ALT UNKNOWN (Analog Altimeter = Unknown)

Below ANALOG ALT VALID Analog Altimeter Value < 2000 ALTITUDE
Threshold BELOW

DIGITAL ALT VALID Digital Altimeter Value < 2000

Figure 27. Sample specification with internal events.

Part of the specification with internal events is shown in figure 27. The table is

slightly more complicated, due to the additional amount of information contained. The

trigger now can contain an internal event and/or condition. There is also an Output Event

column. When a transition is taken, an output event can optionally be generated, which is

visible to other state machines in the system. For example, in figure 27 we see that if the

Altitude state machine transitions to state Below Threshold, and output event ALTITUDE

BELOW will be generated which can serve as a trigger event for other transitions. All

internal events are written in caps, to assist with readability.

The altitude switch system is the largest state machine used in this experiment,

and can be difficult to understand. However, we were hesitant to simplify the system any

more, as it would make the use of internal events irrelevant. Therefore, subjects were

given a graphical overview of the system to use in this part of the experiment. The

overview contained the names of all seven state machines, each of their possible states, as

well as inputs and outputs of the system.
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3.3.5 Hierarchies

This part of the experiment was designed to test the following (null) hypothesis:

Hypothesis 5: The use of a hierarchical state machine does not affect its
readability.

The system chosen for this part of the experiment was a simple digital timer. The

timer keeps track of the current time, signals an alarm, and possess a stopwatch timer

mode. The system can be modeled as a single state machine with 18 states. Conditions

that trigger conditions in the system are simple (e.g. button a is pressed). The timer

seemed an appropriate system here as there are enough states to justify using a hierarchy

in some places, and readability is not impeded by complex triggers.

The system was specified as a graphical state machine which should be a familiar

representation to subjects, and therefore not one that affects readability. Subjects were

given two different specifications for the timer, a flat state machine, and a hierarchical

state machine. Both can be found in the appendix. We contemplated providing subjects

with a third state machine that was semi-hierarchical in order to test the effects of

increasing modularity. However, this seemed inappropriate for a system this small. As

well, we were hesitant to use a larger system due to concerns over the duration of the

experiment.

3.3.6 Perspective

This part of the experiment was designed to test the following (null) hypothesis:

Hypothesis 6: The perspective (going-to vs. coming-from) used in a state
machine description does not affect its readability.

The system chosen to test the readability of perspectives was the HETE control

software, discussed earlier in the representations experiment. We expected subjects to be

familiar with the general functionality of the system (which would simplify this part of

the experiment), but did not feel that this would affect their performance here.

Subjects were given two specifications for the HETE control software, one using

a coming-from perspective, the other a going-to perspective. Both specifications use the

generic tabular notation described in the representations experiment earlier. The only
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difference between the two is the organization of the transitions. The coming-from

specification groups together transitions based on destination state, while the going-to

specification groups transitions together based on source state.

3.4 QUESTION DESIGN

To measure readability, we were looking for indications that the subject is able to

read and understand material in the specifications. Several approaches to measuring

readability have been proposed in previous work, some relying on specific technical

questions, others on general questions about a system's functionality. In this work, we

followed the approach taken by Finney et al. [8] and Brooks [4].

As no single measurement can capture all aspects of readability, we considered

both objective and subjective evaluations. Objective questions were designed to test for

four different aspects of readability. They are listed below, in order of increasing

difficulty:

Finding a relevant part of the specification
For example, one sample question of this type might be, "Where in the
specification is the trigger specified for a transition from the Cruise to
Descent state."

Understanding the notation
For example, one sample question of this type might be, "What does line 6
of the specification say?"

Relating the specification to the model
For example, one sample question of this type might be, "What will the
output of the system be if the Altitude input is 1000 ft.?"

Modifying the specification
For example, one sample question of this type might be, "What changes
need to be made to the specification if the transition 'Reorient mode to
Spinup Mode when condition C occurs' is added to the state machine?"

The number of questions of each type that were asked was relatively balanced. We did

not consider one type of question to be more important than another.

A lot of time was devoted to designing the objective questions for the various

parts of the experiment. Our biggest concern was that the questions asked involve
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realistic tasks, i.e. tasks that would be encountered during the review and modification of

real system specifications. We were aware that asking unnecessary questions would only

result in a longer duration for the experiment. We also took into account the potential

diversity in our subjects' backgrounds, recognizing that those that had never seen a state

machine before may require more time to complete the experiment than estimated. This

concern was validated during pretesting. Therefore, subjects were asked between four

and five questions about each specification, which allowed us to test the desired aspects

of readability, without requiring an inordinate amount of time for most subjects to

complete.

Editing the objective questions asked proved to be a time-consuming task. Again,

we removed any question that did not involve a realistic engineering task. For example,

the question "How many binary state machines are described in the specification?"

Answering this question certainly involves reading and understanding the notation used

in the specification, but the task is not a realistic one. Several questions were removed or

edited simply because they were too difficult or tedious, particularly simulation

questions. We found during pretesting that questions of the form, "To which state will

the system transition in the following environment?" took an inordinate amount of time

for subjects to answer. These are, of course, important types of questions asked of

specifications in practice. However, we tried to control the experiment's duration

whenever possible.

Another issue encountered while editing the experiment's questions was

consistency throughout the various parts of the experiment. For example, when subjects

are given three different specifications testing the readability of a certain feature, we

would like the types of questions asked of the three specifications to be as similar as

possible in terms of format and skills involved to answer. Obviously if more difficult

questions were asked of one specification, that would not only affect the subject's

objective performance in the experiment, but would likely affect his/her subjective

evaluation of the specification's readability as well.

One point that should be made is that no time measurements were taken during

the experiment. As discussed earlier, there are several (often overlooked) difficulties and
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inadequacies involved with using time as a recorded variable. Furthermore, we did not

want stress to play any part in a subject's performance. We wanted subjects to be able to

work through every question in the experiment, so that their subjective evaluations would

be as complete as possible (subjective evaluations will be discussed shortly). If subjects

were given a time limit, they may not have been able to attempt every question. As well,

they may have made errors in responding to questions that they would not have otherwise

made. Each part of the experiment contained an average of 12 objective questions and

was designed to take between 20-25 minutes long, bringing the total length of an

experiment with 6 parts to roughly 2.5 hours. Subjects were also encouraged (but not

forced) to skip questions that required more than 90 seconds to answer. Skipping

difficult questions provides useful information as well. For example, if it takes longer

than 90 seconds to answer a certain type of question using a certain specification, we may

be able to make a judgment about the specification's readability.

After each part of the experiment, subjects were asked a set of subjective

questions regarding their experience using the specifications. In some respects, this

measurement is more important than the subjects' objective performance. Readability is

a complex property which is difficult if not impossible to measure objectively. Subjects

were asked to rank the specifications used for each part of the experiment in terms of

readability, and then in terms of ease of editing. They were also asked to identify

advantages and disadvantages they found using each specification. Subjective responses

were taken verbally, which we feel is important for a couple of reasons. First, subject

tend to be more expressive when communicating orally, rather than in writing. We hoped

that this would lead to more insightful responses. Second, asking the experiment

practitioner to record subjects' subjective responses would lessen the workload of the

subjects, and hopefully help reduce the total duration of the experiment.

The experiment as administered, including test specifications and objective and

subjective questions asked of the subject can be found in the appendix.
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4. RESULTS

There were two parts of the results analysis - objective and subjective. The

objective questions for all subjects were graded by the same person to ensure consistency

in the analysis. Questions were graded as either correct, partially correct, or incorrect.

We did not refine the grading process anymore than this, as it did not seem likely that it

would affect our conclusions. This grading system is by no means ideal, however. A

subject may answer a question incorrectly, but it is unclear to the grader whether the

subject made a careless error, or whether he/she did not understand the specification(s).

The only way to clear up this ambiguity would be to talk with each subject about the

thought process involved in answering each question, which was not feasible in this

experiment.

Another problem with this grading system is that although subjects were

encouraged to skip questions that required more than -90 seconds to answer, subjects

often worked on a question for several minutes due to the fact that there was no enforced

time limit. This situation is not reflected in our grading system. If a subject worked on a

problem for 5 minutes, but answered it correctly, it would be recorded just as any correct

answer.

Because only twelve subjects were tested, only strong patterns were noted. No

conclusions can be made from a weak pattern occurring in such a small sample base.

In general, the experiment was run with few problems. For example, a few

subjects required additional explanation regarding the use of internal events after reading

the introduction to state machines provided to them. In instances like this, it proved

worthwhile to have a practitioner present throughout the experiment. Otherwise, the

training of the subjects appeared to be sufficient to complete the experiment.

The only major problem with the experiment was its duration. As discussed

earlier, we took great care to control the duration of the experiment and anticipated, based

on pretesting, that the experiment would be completed by each subject in roughly 2.5

hours. However, in practice the experiment took anywhere between 2.75 and 4 hours for

each subject to complete. Experiments of this length can of course affect a subject's
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performance. Subjects were offered short breaks (-10 minutes) after each part of the

experiment completed to lessen the effects of its duration, if necessary. More design and

pretesting could better alleviate this problem. Again, we considered enforcing a time

limit as well, but rejected that idea for reasons cited earlier.

Though performance time was not officially measured, it was interesting to note

that in general, those with a computer science background performed much faster than

those with an aeronautics background, and with comparable accuracy. Computer science

students finished the experiment in approximately 3 hours, and aeronautics students in

almost 4 hours. This observation was contrary to our expectations. We expected that

although aerospace engineers were not likely to be familiar with state machines, they

would be familiar with the types of aerospace systems specified in the experiment, and

would hence perform faster than computer scientists. However, it seems as though

familiarity with state machines is a much more influential factor in reading formal

specification than is familiarity with the systems themselves. This observation may help

explain the lack of widespread adoption of formal methods among aerospace industries -

aerospace engineers are not accustomed to using state machines.

Speaking with one of the computer scientists after the experiment helped offer

another explanation for the difference in performance times. He said that he actually

enjoyed taking the experiment because he found that a lot of the questions asked

reminded him of computer science exams, that the skills used in the experiment were the

same as those of his education. Computer science exams often involve asking a subject

to trace through a system specification, or to answer questions about a system's behavior

given a specification, which are very similar to the types of questions asked in this

experiment. Aeronautics students are rarely asked to answer questions about aerospace

system specifications. However, these types of tasks and skills are likely going to

become more important as automation assumes a larger part in the field, and so it may

benefit students to be exposed to them during their education.

Following is a detailed review of the results obtained for each part of the

experiment.
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4.1 Representation
As shown in figure 28, subjects consistently performed very well on the objective

questions, which made it very difficult to draw conclusions about readability. Most of

the mistakes made by those with a computer science background occurred when dealing

with the tabular specification (questions 11-14), whereas every aeronautical student

answered these questions correctly. The computer science subjects answered an average

of 3.3 of the 4 tabular specification questions correctly, where the aeronautical students

answered all 4 correctly. Using a two-tail t-test, we were able to show a statistically

significant difference between these means at the 97.5% confidence level, which implies

that aerospace engineers may find tables easier to use than computer scientists.
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Figure 28. Histogram of Subject Performance for Representation Experiment.

For the first two questions in this part of the experiment, subjects were given

access to all specifications. Without exception, every subject chose to use the table for

the first question, and all but two subjects chose to use the table on the second question

(as a matter of note, only one subject answered the second question incorrectly, and this

subject was one of the two that did not use the table). Though the particular table used in

this experiment may be more readable than others, it appears as though subjects prefer to

use a tabular representation of a state machine, which is in agreement with their

subjective rankings.

Subjects found that the graphical specification was useful for obtaining a high-

level understanding of the system, but that it became cumbersome when asked to answer
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questions about triggers for transitions. This difficulty may be dependent on the

propositional logic used to represent triggers, but is likely a drawback to graphs in

general. Graphical state machines are only practical when concise trigger representations

(like logic) are used. The tabular specification was better suited for answering questions

about specific transitions, such as whether two transitions are consistent. Though easy to

read, subjects (with two exceptions) found the textual specification very difficult to use in

the experiment.

According to subjective rankings, subjects on average preferred the tabular

specification, followed by the graphical, and then the textual. However, the ranking of

the tabular and graphical specifications differed slightly depending on background. Five

out of 6 computer scientists ranked the tabular specification the most readable, whereas

only 2 aeronautics students did so. Rather, 3 out of the 6 aeronautical students ranked the

graphical specification the most readable. This difference between computer scientists

and aeronautics students does not appear significant, however.

Ranking the textual specification as the least readable was consistent across

subject background.' This observation is not altogether surprising. However, it is

significant in that most specifications used today are specified textually.

4.2 Conditions
As shown in figure 29, subjects generally performed very well on the objective

portion of the conditions experiment, with no discernable pattern existing among the

types of questions answered incorrectly. Two of the questions drew a few more errors

than the others. The first, question 13, dealt with the AND/OR gate, and asked the

subject to trace through a part of the specification to determine whether the FMS Mode

could be Edit in a certain environment. One subject answered this question incorrectly,

and two others skipped it, presumably because it took longer than 90 seconds to answer.

These results suggest that the AND/OR gate notation may be error prone, though the

evidence is not overwhelming. Four subjects answered question 18 incorrectly, which

asked them to edit the propositional logic specification. These errors were mainly due to

1 It is important to note that for the sake of subjective rankings, readability is defined with respect to how
usable a specification was when answering questions in the experiment. The textual specification may
technically be easy to read, in that it is simple English prose, and does not make use of any special notation.
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mismatched parentheses and brackets, which of course is a difficulty encountered when

expressing complex triggers using propositional logic.
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Figure 29. Histogram of Subject Performance for Condition Experiment.

Subjects were given access to any specification for the first two questions. Every

aerospace student chose to use the tabular representation for these questions, which

supports Leveson's theory that the AND/OR table is easy for engineers to use. It was

somewhat surprising that no engineer chose to use the graphical specification. We

hypothesized that engineers would be familiar with AND/OR gates and so would prefer

to use that notation. The computer science students used the textual, tabular, and logical

specifications for these questions, making it difficult to draw conclusions.

Most subjects found the tabular representation concise and easy to use in the

experiment, though several complained that the large number of "don't cares" often make

the table confusing. One potential solution is to use a blank square to denote "don't

care," rather than a dot. Interestingly enough, every computer scientist commented on

the difficulty of using the graphical specification. Feelings about the graphical

specification were mixed among the aeronautical students. This observation may be

explained by the fact that computer scientists do not encounter AND/OR gates as often as

students of a traditional engineering curriculum. Six subjects (computer science and

aeronautics) expressed difficulty parsing the propositional logic specifications, though

this may be assisted by using different parentheses or brackets.

Several subjects made comments regarding the difficulty of using the textual

specification. Two subjects in particular admitted that when answering the questions for
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which they were restricted to using the textual specification, they actually gave up and

used a different specification to answer them. For the most part, however, subjects found

the readability of the textual specification to be adequate. One subject remarked that he

found the textual specification to be the most useful when answering the questions,

simply because the questions were given in English text as well. It is interesting then that

so many other subjects found non-textual representations (e.g. tabular) so readable,

despite the fact that questions were presented textually.

Subjects were asked whether they preferred the simplicity of a single notation, or

whether it was worthwhile to be provided with multiple representations for trigger

conditions. Ten of the twelve subjects felt that it is worthwhile to provide an analyst with

two different representations for trigger conditions. All ten of these subjects felt that one

of these should be the tabular specification, while choices regarding the second

representation were mixed between the textual and graphical specification. As a matter

of note, the two subjects that preferred the simplicity of a single representation felt that it

should be tabular.

Rankings for Readability

Ba ckgr o n d Subjct Text Table Graph L.i

AeAernatiscvras2333 1.66 3 2.

. 2 3A

Computer Science 7 1 1 4 3
8 2 1 3 4
9 2 3 1 4
10 2 1 3 4
11 4 1 3 2
12 1 4 3 2

Aeronautics Average 2.33333 1.16667 3 3.5
Computer Science Averagc 2 1.83333 2.8333 3.16667

Overall Average 2.16667 1.5 2.9167 3.33333

Table 1. Subjective Rankings for Conditions Experiment

As far as subjective rankings shown in table 1, subjects on average found the

tabular specification to be the most readable, followed by the textual, then graphical, and

finally logical. In fact 9 of the 12 subjects ranked the tabular specification the most
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readable. These rankings were consistent among computer science and aerospace

students. However, the rankings were slightly different with respect to ease of editing.

Subjects on average found the tabular specification to be the easiest to edit, followed by

the graphical, textual, and logical. Based on both objective and subjective evaluations,

the tabular representation appears to be the most readable of those tested, while the

logical proved difficult to understand when used to express complex behavior.

4.3 Macros
Subjects generally performed very well on the objective portion of the macros

experiment, as shown in figure 30. Question 9, however, drew several errors, with only 5

of the 12 answering it correctly (those five included both aerospace and computer science

students). This question restricted subjects to the macro specification, and asked them to

execute the state machine by hand in a given environment. Navigating through various

macros may have proved difficult here. A comparable question (question 5) was asked of

the flat specification, which 11 of the 12 answered correctly. These results imply that it

may be difficult to assess how specific conditions affect system behavior using a

specification that employs macros.
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Figure 30. Histogram of Subject Performance for Macros Experiment.
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Subjects were given access to both the flat and the modularized specification for

the first two questions. Eleven of the 12 subjects chose to use the flat specification.

While experience has shown that macros are almost essential when developing a

specification, it may be the case that they actually make a specification less readable.

This hypothesis was echoed in the subjective feedback given in the experiment.

Subjects consistently felt that macros were beneficial when specifying complex systems,

leading to less cluttered and more compact logical expressions. They also noted that

macros assist reuse, and that with proper naming conventions, they can make logical

expressions easy to read. However, subjects also commented that macros often made it

difficult to navigate complex specifications, often requiring lots of flipping back and

forth to understand how a particular input affects system behavior. This effort leads to a

loss of continuity when reading the specification.

Ranking for Readability Rank for Ease of Editing
Backrud uecs Mco Fa Macro Flat

Computer Science 7 1 2 1 2
8 2 1 1 2
9 2 1 2 1

10 2 1 1 2
11 1 2 1 2
12 1 2 1 2

Table 2. Subjective Rankings for Macros Experiment

This ambiguity regarding the usefulness of macros was further reflected in the

subjects' rankings, shown in table 2. Roughly half (5) of the subjects found that the

specification with macros was more readable than the corresponding flat specification.

We had anticipated that most of the computer science students would prefer to read the

macro specification, due to their presumed familiarity with the macro mechanism in

programming languages. However, this 50/50 split found among the computer scientists

as well, with only 3 of 6 computer scientists preferring the macro specification for

readability. With respect to editing, however, 11 of the 12 subjects found that it was
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easier to edit a specification using macros. One point that should be stressed is that

macros can potentially become more useful when dealing with large systems, much

larger than those specified in this experiment. Reading large specifications may have a

significant impact on subjects' preferences.

Based on our results, we hypothesize that reaction to the use of macros would in

fact be different if specifications were reviewed using an automated tool. The most

common complaint recorded regarding the readability of macros was navigation

difficulty, which could be assisted perhaps by hyperlinks in a tool. A tool could also

automatically expand a macro in place, eliminating the need to look at several macros

when reading a specification. The benefits of macros, particularly in writing a

specification, are unmistaken. Tool support can help ameliorate their drawbacks.

4.4 Events
Subjects generally did not perform as well on the events experiment, which was

expected. A histogram of subject performance is shown in figure 31. As far as general

trends, half of the subjects either skipped question 6 or answered it incorrectly. Question

6 restricted the subjects to the eventless specification, and asked them to simulate the

state machine model in a given environment. Ambiguity about the semantics of the

eventless specification may have been a factor here. Interestingly, four of the six

computer science students answered a comparable question of the events specification

(question 11) incorrectly, while every aerospace engineer answered this question

correctly. Based on a two-tail t-test, we can show at the 97% confidence level that there

is a statistically significant difference between the performance of computer science and

aeronautics students on question 11. Perhaps then aerospace engineers find that the use

of events creates more readable specifications, whereas computer scientists, who had

difficulty with both questions 6 and 11, simply have problems simulating several state

machines that operate concurrently, with or without internal events. However, this theory

not only seems unlikely, but is almost impossible to rationalize given the small number of

subjects sampled.

74



Figure 31. Histogram of Subject Performance for Events Experiment.

One interesting observation of the objective questions is that eleven subjects

incorrectly answered question 13, which asked them to add a transition to the events

specification. Most of the errors arose from the fact that subjects did not correctly see

that the new transition required an internal event in the trigger, and instead used only a

trigger condition. Question 13 specifically required subjects to change the specification

such that the Alarm state machine would transition to On when the Altitude state machine

is in the Hazard state. Figure 32 shows a correct response to the task, as well as a

common response given by subjects. Because the transition depends on another state

machine (i.e. Altitude) in the model, an internal event is necessary to communicate

between the state machines. Most subjects supplied only a trigger condition, without a

trigger event. This type of response is appropriate in an eventless specification, however.

As a matter of note, every subject responded correctly to a comparable task in the

eventless specification (question 8). Nonetheless, it seems clear from the responses that

the subjects were unclear about the use of internal events. This observation is consistent

with Leveson's experience with TCAS where they noted the difficulty they had in

reading and writing specifications using internal events.
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Figure 32. Responses to Question 13 of Events Experiment.

For the first three questions, subjects were given access to both the events and the

eventless specification. Eleven of the twelve subjects chose to use either the events

specification or both specifications. Only one subject chose to use only the eventless

specification. It appears as though subjects may feel comfortable using a specification

with events, whether or not they have an adequate understanding of its semantics. In

future work, it would be interesting to see whether subjects choose to use a specification

using events when answering questions about a large system.

When asked to identify advantages of using internal events, most subjects felt that

internal events made it easier to see how state machines affect each other. Internal events

explicitly describe interactions in the state machine model, which can make a

specification more readable. Defining these interactions without events can be difficult.

However, subjects did not appreciate the increased size associated with the events

specification. Using internal events can lead to repetitive specifications, which comes at

the expense of concision and readability. The triggers themselves are also more complex
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than their eventless counterparts, in that the triggers have two parts, an event and a

condition.

The greatest problem that subjects had with using events was determining when it

is necessary to generate an output event (this, of course, was not in issue in the eventless

specification). This difficulty was very apparent in the modification exercise, as

described earlier. It seems that more training than that given in this experiment is

necessary before one is able to use internal events effectively.

Ranking for Readability Ranking for Ease of Editing
Backgrna Subject Ecive nk Events Eent

2 1- 2 21

Computer Science 7 2 1 2 1
8 1 1 2 1
9 1 2 2 1
10 2 1 2 1
11 2 1 2 1
12 1 2 1 2

Table 3. Subjective Rankings for Events Experiment.

The results discussed thus far made it difficult to conclude anything about the

readability of events, and this difficulty continued after reviewing the subjective rankings

in this experiment, shown in table 3. Roughly half of the subjects (7/12) felt that the

specification with events was more readable, the otherror- , ierring to read the

eventless specification. This lack of preference was consistent across subject

background, which was actually surprising, as it does not match our previous experiences

with using internal events to create complex specifications. Subject preferences

regarding events may need to be investigated in greater detail in the future.

Given these observations, we can hypothesize why subjects may prefer to read a

specification with internal events. While potentially error-prone, internal events provide

more salient information regarding how a state machine is to be executed. This type of

information is not as explicit in an eventless language, so the reader may at first find a

specification that uses events to be more readable.
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Despite any ambiguity regarding the readability of internal events, ten of the

twelve subjects found it easier to edit the eventless specification, which is consistent with

the objective portion of our results discussed earlier.

These seemingly conflicting results about the readability of events made it

difficult to reject the null hypothesis, which would imply that events do in fact affect

readability. However, these results may just be random, and so we cannot accept the null

hypothesis either - events may be (and likely are) contributing factors to a language's

readability.

4.5 Hierarchies
Subjects again performed quite well in this part of the experiment, as shown in

figure 33. The only noticeable deviation is in question 2, where half of the subjects

(mostly computer scientists) responded incorrectly. The question asked subjects to

identify those states that can transition directly into state Time. This task is fairly

straightforward using the flat specification, as every transition is explicitly defined.

However, as shown in figure 34, the transition from Dead to Time is not explicitly

defined. The state machine transitions from Dead to Watch On, and the default state of

Watch On is Time. Those subjects that answered this question incorrectly used the

hierarchical specification, and failed to see that Dead can transition into Time.

o 8 *Aerospace

12

0

1 2 3 4 5 6 7 8 9 1011 1213

Question number

Figure 33. Histogram of Subject Performance for Hierarchy Experiment.
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Figure 34. Transition from dead to time in hierarchical specification.

Subjects were given access to all specifications for the first three questions. Three

subjects chose to use only the hierarchical, while the others used both. There did not

seem to be an absolute preference for either specification.

Subjective feedback about the experiment was remarkably consistent. Every

subject found that the flat specification was difficult to use due to the number of

transitions in the state machine. This observation was made with respect to the graphical

representation used, but may simply have to do with the fact that the state machine,

regardless of its representation, possesses too many explicit transitions. Furthermore,

only two of the subjects felt that special attention had to be paid when using the

hierarchical specification in order to notice every transition in the state machine. The rest

found no problems with the hierarchical state machine, which is surprising given the

number of people that answered question 2 incorrectly, as described above.

As far as subjective rankings, every subject found the hierarchical specification to

be more readable than the flat specification, and all subjects except three found it to be
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easier to edit as well. These rankings are a clear indication that subjects were more

comfortable using the hierarchical specification. However, these rankings are interesting

given that so many subjects unknowingly made errors reading the hierarchical

specification. When asked, all twelve subjects did not believe that flat specifications are

appropriate for complex systems, which is easy to rationalize. Clearly any scalable state-

based specification language must be hierarchical. However, it appears as though the

behavior of the state machine should be more explicit in hierarchical specifications.

4.6 Perspective

12

. 10

8

U Aerospace

0
1 2 3 4 5 6 7 8 9 10 11 12

Question number

Figure 35. Histogram of Subject Performance for Perspective Experiment.

As shown in figure 35, subjects generally performed well on this experiment. The

only question that drew a noticeable number of incorrect responses was Question 8,

which restricted subjects to the Coming-from specification. The question asked subjects

to determine whether it was possible for the state machine to be in a certain state, given a

certain environment, and five subjects failed to produce a correct answer. There was no

correlation between subject background and those that answered the question incorrectly.

This observation provides some indication that subjects may have greater difficulty using

a coming-from perspective. In fact, a total of 9 errors were made by subjects answering

the questions for which they were restricted to the coming-from specification (questions

5-8), whereas every subject answered every question correctly for which they were
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restricted to the going-to specification (questions 9-12). These results suggest that the

going-to specification is more readable.

We were particularly interested in seeing which specification(s) subjects chose to

use to answer the first four questions, for which they were given access to both

specifications. All subjects used both specifications at some point, which is not

surprising given that some questions are obviously better suited for one of the two

specifications. For example, if asked which states can transition directly to Wait Mode, it

is much easier to respond using the Coming-From perspective. However, for those

questions which required the same amount of effort with both specification (e.g. "when

will the system transition from state A to B?"), eight of the twelve subjects chose to use

the going-to specification. Engineers may be a little more comfortable reading a state

machine description with a going-to perspective, though the evidence found here is not

everwhelming.

However, when asked whether one perspective was more intuitive than another,

only five subjects responded that the going-to perspective provided a slightly more

intuitive way to describe state machine behavior - the rest felt that the two views were

basically interchangeable and that one was not more readable than the other. Of course,

most subjects commented that certain types of questions were better addressed by one

specification, which is an obvious observation.

When asked whether it is worthwhile to provide both perspectives in a

specification, only three subjects felt that both views would be helpful. Most subjects felt

that it would be better to become accustomed to one perspective rather than to switch

between two. Based on the results of this experiment, it seems that the going-to would be

the more readable perspective to provide. However, it may be the case that a going-to

perspective is easier to use when answering questions about the details of a system's

behavior - these are the types of tasks that were tested in this experiment. It has been our

experience that when trying to develop a general understanding for a system's behavior, a

coming-from perspective is easier to use.

Based on these experiments, we hypothesize that subject reaction to the use of

different perspectives would be different in an automated environment. Certainly some
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questions are easier to answer when considering a specification with one perspective

rather than another, but subjects noted an aversion to using two specifications to answer

questions. In an automated environment, these perspectives can be viewed without

hassle, allowing the analyst to use whichever perspective is more appropriate without

sacrificing convenience.

4.7 Experimental Error
As a human experiment, there are of course several potential sources of

experimental error. Most of these have been discussed in the previous two chapters, but

the most significant will be summarized here. We executed the experiment in spite of

these factors, as we were interested in a practical experiment - one where subjects are

placed in realistic scenarios and asked to perform realistic tasks. We recognize that this

comes at the expense of a perfectly controlled experiment.

Familiarity with the subject material is certainly a source of error. Subjects,

particularly the aerospace students, may be familiar with the concepts and terminology

used in the specifications which may affect how readable they found the specifications.

For example, a subject may have seen specifications for systems similar to those used in

this experiment, and may then be biased towards a notation similar to that seen before.

More generally, subjects may have experience with notations similar to those tested in

this experiment, which would certainly affect their performance in the experiment.

Subject familiarity with state machines, and in particular internal events, likely

affected our results. By providing an introduction to state machines, we hoped to bring

subject knowledge to a common level. However, those more familiar with state machine

terminology may have different preferences for notations. We attempted to analyze the

effect of subject background on notational preferences, though no significant

observations were made. Perhaps testing a larger subject pool would bring to light any

correlation between background and performance in this experiment.

We attempted to control the experimentation conditions. All experiments began

in the same office. However, due to distractions, three subjects were moved to

neighboring offices. This adjustment should not have a significant impact on our results,

but it is nonetheless noted here.
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Perhaps the biggest source of experimental error is in the specifications tested

themselves. Various studies have shown how factors such as modularization, naming

conventions, fonts, etc. can affect readability. We decided these factors based on what

we felt would be the most readable, which is of course subjective. With particular

attention to the macro experiment, the amount of modularization used may have a

dramatic impact on the specification's readability, as established in previous work. We

would have liked to test the affect of various amounts of modularization on specification

readability, but again sacrificed this for duration considerations.

As discussed previously, the length of the experiment was between 3-4 hours

depending on the subject. This duration certainly affected the subjects' performances,

and potentially their subjective rankings of the specification's readability. We

encouraged the subjects to take a break after each part of the experiment to lessen any

effects of boredom, but it was likely still an influential factor.

The difficulty of the questions asked is another source of experimental error. The

questions, though involving realistic tasks, may have been too easy to test the readability

of specifications in difficult scenarios. Most subjects performed very well on the

objective portion of the experiment, which made it difficult to identify types of common

errors, or to establish a correlation between subject performance and subject background.

Furthermore, we recognize that we do not address all aspects of readability in our

question set, as this is a difficult if not impossible task.

A final source of experimental error lies in the size of the specifications used.

Whether or not a feature is readable may depend entirely on whether it is used in large or

small specifications. Again, we are concerned with the readability of large system

specifications, but in an effort to reduce the length of the experiment, we were forced to

test only small specifications.

4.8 Recommendations

Based in part on these sources of experimental error, we have developed several

recommendations for repeating this experiment. First, it would be worthwhile to test

subjects with a non-technical background. Often times specifications for software
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systems are written not by computer experts, but rather by non-experts. The readability

of formal languages to non-experts may therefore be important if formal methods are

adopted. On a related note, testing a larger, more statistically significant number of

subjects would also be helpful in drawing conclusions from the experiment. A larger

subject base might also make relationships between a subject's background and his/her

preferences more apparent, if such relationships exist.

Providing a more thorough training of subjects in state machine behavior should

also improve the quality of this experiment. The brief introduction provided here

appeared adequate for our subjects, though we recognize that these subjects may be more

well-versed in the use of state machines than an average engineer, and certainly more so

than specification developers without a technical background. Furthermore, industries

adopting formal specification languages would likely provide a more substantial

background than provided here, and this may influence a subject's notational preferences.

Another recommendation for repeating this experiment is to better enforce the

rules of the experiment. As described earlier, some subjects "cheated," using

specifications other than that which they were restricted to using because they found it

unreadable. Though this did provide interesting results for our experiment, subjects

should not be permitted to use specifications other than those prescribed in the

experiment design.

It may be worthwhile to include a time limit for the experiment. Though we had

several reasons for eliminating a time limit, such a constraint may help to alleviate the

effects of tedium in the experiment. A time limit would also make it possible to run the

experiment with several subjects concurrently. Running the experiment in such a manner

would help control environment variability in our results.

A final recommendation for repeating this experiment is to use less discipline-

related experimental material. We focused our experiment material specifically on the

aerospace field. However, by testing systems with a broader appeal, experimenters may

be able to make more general conclusions about the readability of the various notations

tested here.
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5. CONCLUSION
One of the major obstacles facing the adoption of formal methods by the

industrial community is readability. Most formal specifications are simply difficult to

read, which limits their use as standalone specifications. We have attempted to alleviate

this problem by identifying those features of state-based specification languages that

most affect readability. We have surveyed different means of describing the various parts

of a state machine model, and tested the readability of each in a human experiment. To

date, claims about a language's readability rely on subjective or theoretical evidence,

without any sort of empirical evidence. Our work has provided a first step in providing

empirical evidence about readability, which we feel is essential in evaluating the

usefulness of state-based languages. Readability is a complex property, which we do not

feel can be predicted theoretically, but rather is best evaluated by human experience.

After surveying five state-based specification languages, we identified several

distinguishing features, and ultimately decided to test how the following affect

readability: representation of the state machine layout, expression of trigger conditions,

macros, internal events, hierarchical abstractions, and perspective. A brief summary of

our results follows:

Representation: We tested tabular, graphical, and textual representations of state
machines. Eleven of the 12 subjects found either the graphical or the tabular
representation to be the most readable, with only 1 subject preferring to read the
textual specification. This observation may imply that textual specifications,
though popular in industry, are not conducive to readability. Subjects were given
their choice of specifications to answer two questions - every subject chose to use
the tabular specification for the first question, and 10 of the 12 chose the table for
the second question.

Conditions: We tested textual, graphical, tabular, and logical expressions of
trigger conditions. Nine of the 12 subjects found the tabular specification to be
the most readable, and 7 of the 12 ranked the logical specification as the least
readable. Furthermore, 10 of the 12 subject felt that it is worthwhile to provide an
analyst with two different representations of trigger conditions, and that one of the
two should be tabular. The two subjects that preferred the simplicity of a single
representation said that this representation should be tabular as well. Our results
imply that tables are the most conducive to the readability of trigger conditions.

85



Macros: Results at first seemed to imply that macros were not conducive to
readability. Subjects were given their choice of specifications to answer two
questions, and 11 of the 12 subjects chose to use the flat specification.
Furthermore, only 5 of the 12 subjects ranked the macros specification as the
more readable. However, 11 subjects ranked the macros specification as the
easier of the two to edit. Based on these results and subject interviews, it appears
that macros are useful when writing a specification, but that they can become
difficult to navigate when reading a large specification. Prohibiting nested
macros may be a compromise for this situation. However, using macros in an
automated environment may alleviate much of the difficulty encountered using
macros in this experiment. Navigation could be simplified or even unnecessary
when specifications are reviewed with an automated tool.

Events: Results regarding the readability of internal events were inconclusive.
Seven of the twelve subjects ranked the events specification as more readable,
whereas ten of the twelve found it easier to modify the eventless specification.
Eleven subjects were unable to edit the events specification correctly, which
implies that subjects were not clear about how to execute internal events. More
training in the use of internal events than that provided here may be necessary.

Hierarchies: Interestingly, all 12 subjects agreed that a hierarchical specification
is easier to read than a flat specification, and that hierarchical abstractions are
absolutely necessary to specify complex systems. However, half of the subjects
unknowingly made errors reading the hierarchical specifications, errors that were
not made reading the flat specification. These results imply that notations
describing state machine hierarchies may need to convey information in a more
salient manner.

Perspective: Seven subjects felt that the going-to and coming-from perspectives
were interchangeable, and 9 subjects responded that it is more desirable to
become accustomed to one perspective rather than be provided with both, despite
the fact that certain questions were clearly easier to answer using one perspective
over the other. However, our results suggest that subjects may actually prefer
access to both perspectives in an automated environment.

Our subject pool consisted of graduate students in either aeronautics or computer science.

We attempted to find a correlation between a subject's background and his/her

performance in the experiment. For the most part, however, we were unable to do so.

Though time was not officially recorded, computer science students finished the

experiment in roughly 3 hours, while aerospace students finished in roughly 3.5-4 hours,

and with similar accuracy. This observation may indicate that a background in state

machines, which most aerospace students do not have, assists with reading state-based

86



state machines. This may also indicate that the tasks involved with reading and editing

specification are not addressed in aerospace curricula.

The most frequently referenced weakness in student-based experiments is that the

results are not generalizeable to industry. However, we do not feel that this weakness

applies to this experiment. The amount of training in state machine behavior given to

subjects in this experiment is comparable to training that might be given to professional

software developers. It in unlikely that engineers in the computer science (aerospace)

industry know any more about formal methods than the computer science (aerospace)

students tested here. In fact, most proponents of formal methods argue that these

specification languages can be used with a minimal amount of training, making it

appropriate to generalize our results to the industrial community.

As an assessment of formal specification readability, these results are preliminary.

We would ultimately like to run more extensive experimentation focusing on 2-3 of these

features. Based on our results, we will likely focus on conditions, macros and internal

events. Complex conditions seem to be more readable when expressed in a table, but we

would like to test this with a statistically significant number of subjects before claiming it

as a conclusion. The macros portion of our experiment was inconclusive regarding their

effect on readability. Though they seem to be extremely useful when writing and editing

specifications, there seems to be difficulty reading specifications with macros, which we

would like to address in future work. Specifically, we would like to investigate how

various levels of modularization (i.e. nested macros) affect a specification's readability.

Macros also are one feature whose utility is dependent on the size of the specification.

We would like to investigate how macros can affect the readability of large-scale system

specifications. Future work will also likely address the use of internal events. Again,

while most subjects found it easier to edit an eventless specification, feelings were mixed

regarding whether it is easier to read an eventless specification. The TCAS experience

found that reading large specifications was impeded by internal events. We would like to

provide empirical evidence to this claim by extensively testing the readability of events in

large specifications.
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We are not planning to investigate the readability of hierarchies or perspective in

future work. Our results, as well as previous experience, show that hierarchical

abstractions are essential if formal methods are to scale, so we do not feel that any insight

would come from further experimentation. We have learned, however, that notations

describing these hierarchies should use simpler semantics when describing state machine

behavior. Perspective does not appear to be a significant factor affecting readability, and

so it does not seem worthwhile to investigate further.

Our experiment was well designed and executed, and provided useful results.

However, there were lessons learned in this work that will be applied to future

experimentation. Again, we will focus on 2-3 features, rather than the 6 investigated

here. Investigating several features made it difficult to study any one in great detail, due

to concerns about experiment duration. We will also test a more statistically significant

number of subjects. This project was short-term, and as such it was difficult to test more

than twelve subjects, as each experiment ran between 3-4 hours. A greater subject base is

obviously important if any conclusions are going to be made about language readability.

Testing more subjects may also bring to light a correlation between a subject's

background and his/her notational preferences.

We tested for four different skills in our assessment of readability. Future

experimentation will likely include several objective questions testing each skill. This

will help us better analyze subjects' performance on

Duration of the experiment was a major concern throughout the experiment

design, and will be addressed in future experimentation as well. Specifically, we would

like to better pretest the experiment so that we can be assured of its duration. Another

possible solution is to use time limits as a measure of readability. For example, we can

require that subjects spend no longer than 90 seconds on a question, or that they spend no

longer than 20 minutes on a section.

For the most part, the amount of training provided to subjects was sufficient.

However, there still seemed to be some confusion about the operation of internal events.

Future experimentation will better address this aspect of training, so that we can more

accurately determine how the events impact readability. It is unfair to conclude that
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internal events are difficult to use if subjects are not adequately instructed in their

behavior. This need for more exhaustive training in using events implies that they are

harder to use than other mechanisms. However, it is important to note that the amount of

training provided here was minimal compared to the amount of training that would likely

be tolerated by industry. When understood, internal events may actually enhance

readability.

Of course, the most important issue that will be addressed in future work is the

testing of large scale system specifications. Scalability is one of the largest obstacles

facing the adoption of formal methods, and was not adequately addressed in this

experiment. For example, we tested the readability of a flat specification. While some

subjects found a flat specification easy to read when describing a state machine with ten

states, it is clearly inappropriate when describing a state machine with 1030 states.

After determining which notations and features are conducive to making large

system specifications readable, we can, in the long term, incorporate these conclusions

into the design of a more ideal state-based specification language. Such a language will

be able to produce specifications that not only possess the analytical power of a state

machine model, but that can function well as standalone specifications. These

characteristics will encourage the adoption of formal methods by aerospace and other

industries, which can ultimately improve the reliability and safety of modern software

systems.

89



Bibliography

[1] Bingham, J. and Davies, G. A Handbook of Systems Analysis. Macmillan
Publishers Ltd., London, 1972.

[2] Bowen, Jonathon and Hinchey, Michael. Ten Commandments of Formal Methods.
IEEE Computer. vol 28, no 4, April, 1995. pp. 56-63.

[3] Brooks, F. The Computer Scientist as Toolsmith: Studies in Interactive Computer
Graphics. Proceedings of the International Federation of Information Processing
Congress '77, Toronto, Canada, August 1977. pp. 625-634.

[4] Brooks, Ruven. Studying Programmer Behavior Experimentally: The Problems of
Proper Methodology. Communications of the ACM. vol 23, no. 4, April 1980. pp. 207-
14.

[5] Clarke, Edmund and Wing, Jeannette. Formal Methods: State of the Art and Future
Directions. ACM Computing Surveys. vol 28, no. 4, December 1996. pp. 626-43.

[6] Fenton, N. and Kaposi, A. An Engineering Theory of Structure and Measurment.
Software Metrics - Measurement for Software Control and Assurance. Elsevier Science,
London, 1989. pp. 27-62.

[7] Finney, K., Rennolls, Keith, and Fedorec, Alex. Measuring the Comprehensibility of
Z Specifications. The Journal of Systems and Software 42. Elsevier Science Inc., 1998.
pp. 3-15.

[8] Finney, K., Fenton, N., and Fedorec, A. Effects of Structure on the
Comprehensibility of Formal Specifications. IEE Proceedings - Software. vol 146, no. 4,
August 1999. pp. 193-202.

[9] Fitter, M. and Green, T.R. When Do Diagrams Make Good Computer Languages?
International Journal of Man-Machine Studies. vol. 11, 1979. pp. 235-261.

[10] Green, T.R. Design and Use of Programming Languages. NATO ASI Series. vol
F22. Sofware System Design Methods. Springer-Verlag, Berlin. 1986. pp.2 2 4 -3 8 .

[ 11] Harel, David. Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming 8. Elsevier Science Publishers B.V., North Holland. 1987. pp.
231-274.

[12] Harel, David et al. Statemate: A Working Environment for the Development of
Complex Reactive Systems. IEEE Transactions on Software Engineering. vol 16, no. 4
April, 1990. pp. 403-14.

90



[13] Heimdahl, Mats and Leveson, Nancy. Completeness and Consistency in
Hierarchical State-Based Requirements. IEEE Transactions on Software Engineering.
vol 22, no. 6 June, 1996. pp. 363-77.

[14] Heimdahl, Mats, Leveson, Nancy, and Reese, Jon. Experiences From Specifying
the TCAS I Requirements Using RSML. Proceedings of the 17th Digital Avionics
Systems Conference, November 1998.

[15] Heitmeyer, Constance, Jeffords, Ralph, and Labaw, Bruce. Automated Consistency
Checking of Requirements Specifications. ACM Transactions on Software Engineering
and Methodology, vol 5, no. 3, July, 1996. pp. 231-261.

[16] Howard, Jeffrey. Principles for Design of Software Engineering Visualization
Tools. Massachusetts Institute of Technology, S.M. Thesis, September 2000.

[17] Kitchenham, Barbara, Pfleeger, Shari, and Fenton, Norman. Towards a Framework
for Software Measurement Validation. IEEE Transactions on Software Engineering. vol
21, no. 12, December 1995. pp. 929-944.

[18] Leveson, N., Heimdahl, M., Hildreth, H., and Reese, J. Requirements Specification
for Process Control Systems. IEEE Transactions on Software Engineering. vol 20, no. 9,
September 1994. (TCAS)

[19] Leveson, Nancy. Safeware: System Safety and Computers. Addison-Wesley
Publishing Company, U.S. 1995.

[20] Leveson, Nancy. SpecTRM: A CAD System for Digital Automation. Proceedings
of the 17th Digital Avionics Systems Conference. November, 1998. pp. B52-1 - 8.

[21] Leveson, N., Heimdahl, M., and Reese, J. Designing Specification Languagesfor
Process Control Systems: Lessons Learned and Steps to the Future. SIGSOFT
Foundations of Software Engineering '99, Toulouse, France. September, 1999.

[22] Leveson, Nancy. Completeness in Formal Specification Language Design for
Process Control Systems. Proceeedings of Formal Methods in Software Practice
Conference, August 2000.

[23] Leveson, Nancy. Intent Specifications: An Approach to Building Human-Centered
Specifications. IEEE Transactions on Software Engineering. vol 26, no. 1, January,
2000. pp. 15-35.

[24] Leveson, Nancy. HETE System Specification. Massachusetts Institute of
Technology, Course 16.358 (System and Software Safety) Class Handout. March 9,
2001.

91



[25] Lindsey, G. Structure Charts: A Structured Alternative to Flowcharts. SIGPLAN
Notices. November, 1977. pp. 36-49.

[26] McIver, Linda and Conway, Damian. Seven Deadly Sins of Introductory
Programming Language Design. Proceedings of the IEEE International Conference on
Software Engineering: Education and Practice, 1996. pp.3 0 9 -316

[27] Schneiderman, Ben. Measuring Computer Program Quality and Comprehension.
International Journal of Man-Machine Studies. vol 7, no. 4, 1977. pp. 465-78.

[28] Sherry, Lance, Youssefi, David, and Hynes, Charles. A Formalismfor the
Specification of Operationally Embedded Reactive Avionic Systems. HSR FD G&C Task
4 - VMS Structure Development. Honeywell, October, 1995.

[29] Sipser, Michael. Introduction to the Theory of Computation. PWS Publishing
Company, U.S., 1997.

[30] Sowmya, Arcot and Ramesh, S. Extending Statecharts with Temporal Logic. IEEE
Transactions on Software Engineering. vol 24, no.3 March, 1998. pp. 216-231

[31] Tufte, Edward. Envisioning Information. Graphics Press, CT. 1990.

[32] Tenny, T. Program Readability: Procedures versus Comments. IEEE Transactions
on Software Engineering. vol 14, no. 9, September 1998. pp. 1271-9.

[33] Vinter, Rick, Loomes, Martin, and Kornbrot, Diana. Applying Software Metrics to
Formal Specifications: A Cognitive Approach. Proceedings of the 5 th International
Software Metrics Symposium. 1998. pp. 216-223.

[34] Wright, Patricia. Feeding the Information Eaters: Suggestions for Integrating Pure
and Applied Research on Language Comprehension. Instructional Science, an
International Journal. vol 7, no. 3, 1978. pp. 249-312.

[35] Zimmerman, Marc, Rodriguez, Mario, Ingram, Benjamin, Katahira, Masafumi,
de Villepin, Maxime, and Leveson, Nancy. Making Formal Methods Practical.
Proceedings of the 19th Digitial Avionics Systems Conference. October, 2000.

92



Appendix A: Experiment Questions

Subject Number:

Background Assessment

1. Describe any experience (research and/or class work) you have with:

Discrete math and/or logic

Formal methods

Complexity theory

Control Systems

Requirements or Software specification languages

Programming

2. What was your primary course of study at your undergraduate institution?

3. What is your primary course of study in graduate school?
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Representations

As a reminder, if you find that it is taking longer than 1 minute to answer a
question, please skip it and move on to the next one.

(Any specification)

1. Which transitions can be affected by the Wheel Spin Rate input? Give source and
destination of transitions. (2)

LQ
LQ
LQ

Table
Text
Graph

2. Unfortunately there is an error in this specification. Two transitions
mode can be satisfied simultaneously. Which transitions are they (give
of the transitions)?(3)

out of Acquire
destination states

0i
0i
LQ

Table
Text
Graph

(Textual specification only)

3. Which part of the specification details the conditions under which the system should
transition from Orbit Night Mode to Spinup Mode (label lines in the specification)? (1)

4. If we are currently in Spinup Mode, what will cause a transition to Reorient Mode?(2)

5. Add the transition from Wait Mode to Orbit Day Mode if the system is in Eclipse,
Time(In Mode) >= Wait Mode Delay, and the Optical System is tracking.(4)

6. With the addition of the previous transition, two transitions out of Wait Mode can be
satisfied simultaneously. Give any change that can be made to the specification to ensure
that only one transition out of Wait Mode is satisfied at any given time?(4)

(Graphical specification only)

7. Which states can transition directly to Ground Control Mode?(2)
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8. If I am in Orbit Night Mode, which of the following inputs are not relevant to any
immediate transition?(2)

Optical System Tracking/Not Tracking,
Momentum Error,
Sine Sun Elevation
Tumble Rate

9. Add the transition from Wait Mode to Orbit Day Mode if the system is in Eclipse,
Time(In Mode) >= Wait Mode Delay, and the Optical System is tracking.(4)

10. With the addition of the previous transition, two transitions out of Wait Mode can be
satisfied simultaneously. Give any change that can be made to the specification to ensure
that only one transition out of Wait Mode is satisfied at any given time?(4)

(Tabular specification only)

11. Which states can transition directly to Reorient Mode?(2)

12. If the system is in Orbit Day Mode, what transition would take place under the
following conditions?(3)

The system is not in an Eclipse
The Optical System is tracking
The Paddles are Deployed.
The Time in Orbit Day Mode > Orbit Day Mode Delay
The Sine Sun Elevation > Coarse Sun Elevation Error
The Sine Sun Azimuth = Coarse Sun Azimuth Error

13. Add the transition from Wait Mode to Orbit Day Mode if the system is in Eclipse,
Time(In Mode) >= Wait Mode Delay, and the Optical System is tracking.(4)

14. With the addition of the previous transition, two transitions out of Wait Mode can be
satisfied simultaneously. Give any change that can be made to the specification to ensure
that these two transitions cannot be satisfied at the same time.(4)
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Representation Evaluation

1. Rank the textual, graphical, and tabular representation in terms of readability.

2. Were certain forms good for certain tasks, or did you consider one model to be the
single most useful?

96



Conditions

As a reminder, if you find that it is taking longer than 1 minute to answer a
question, please skip it and move on to the next one.

(Any specification)

1. Describe two scenarios that would cause the Climb FMS Speed Mode to be Edit.
(label columns in the table) (2)

l
Q
Li
Li

Table
Gate
Text
Logic

2. Could the Climb FMS Speed Mode be Max Climb under the following
Engine Out is Engaged
Requested Climb FMS Speed Mode = Economy
Flight Phase transitions from Takeoff to Climb

conditions? (3)

l
LiLi
Li

Table
Gate
Text
Logic

(Tabular specification only)

3. Which part of the specification specifies that the Climb FMS
Default when the flight phase transitions from Climb to Descent
in table)?(1)

Speed Mode will be the
(label rows and columns

4. If the FCC Engaged Mode is Altitude Hold Speed, what additional conditions are
necessary in order for the Climb FMS Speed Mode to be Default? (2)

5. Could the Climb FMS Speed Mode be Default under the following conditions? (3)
FMS Mode is Lateral Only
Engine Out is Not Engaged
Flight Phase is Cruise
Economy is requested for the FCC Speed Mode

6. Suppose that in order for the Climb FMS Speed Mode to be Edit, the FMS Mode must
be Lateral-Vertical (this is in addition to the existing requirements). What changes
should be made to the specification to reflect this behavior? (4)

97



(Textual specification only)

7. Which part of the specification specifies that the Climb FMS Speed Mode will be the
Max Climb when the Max Climb is requested (label lines in the specification)? (1)

8. If the flight phase is Preflight, under what conditions will the Climb FMS Speed Mode
be Economy? (2)

9. Under the following conditions,

FMS Mode is Lateral-Vertical
Engine Out transitions from Not Engaged to Engaged
Flight Phase is Cruise
Economy is requested for the Climb Speed Mode

could the Climb FMS Speed Mode be Default? Economy? (3)

10. Suppose we want to add a new mode for the Climb FMS Speed Mode, called Flex.
The Climb FMS Speed Mode will be Flex if the FMS Mode is Lateral-Vertical, and the
flight phase is either Takeoff, Climb, or Cruise. What additions should be made to the
specification to reflect this behavior? (4)

(AND/OR gate specification only)

11. Which part of the specification specifies that the Climb FMS Speed Mode will be
Default when the FMS Mode is Lateral Only (label inputs/gates in the specification)? (1)

12. If the flight phase transitions from Approach to Done, what additional conditions are
necessary in order for the Climb FMS Speed Mode to be Default? (2)

13. Could the Climb FMS Speed Mode be Edit under the following conditions? (3)
there is no requested Climb FMS Speed mode
Flight Phase is Preflight
Economy is requested for the FCC Speed Mode
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14. Suppose that in order for the Climb FMS Speed Mode to be Edit, the FMS Mode
must be Lateral-Vertical (this is in addition to the existing requirements). What additions
should be made to the specification to reflect this behavior? (4)

(Propositional logic specification only)

15. Which part of the specification specifies that the Climb FMS Speed Mode will be
Economy when the Requested FCC Speed Mode is Economy and the Flight Phase is
Preflight (label lines in the specification)?(1)

16. If Edit CAS is requested for the FCC Speed Mode, what must the flight phase be in
order for the Climb FMS Speed Mode to be Edit? (2)

17. Could the Climb FMS Speed Mode be Economy under the following conditions? (3)
Requested for the FCC Speed Mode is AFS Speed
FCC Engaged Mode is Altitude Hold Economy Thrust
Flight Phase transitions from Descent to Cruise

18. Suppose we want to add a new mode for the Climb FMS Speed Mode, called
Endurance. The Climb FMS Speed Mode will be Endurance if the FMS Mode is Lateral-
Vertical, there is no requested FCC Speed Mode, and the flight phase is either Takeoff,
Climb, or Cruise. What additions should be made to the specification to reflect this
behavior? (4)
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Condition Evaluation

1. Rank the textual, tabular, graphical, and logical specification in terms of readability.

2. Do your preferences change with respect to ease of editing?

3. Did you find that certain forms were good for certain tasks, or were there
specifications that you consistently found to be easy to use in the experiment?

4. Do you consider it worthwhile to have several representations available? If so, which
ones?
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Macros

As a reminder, if you find that it is taking longer than 1 minute to answer a
question, please skip it and move on to the next one.

(Any specification)

1. What must the Vertical Guidance Type be if the Vertical Guidance Reference Altitude
is to be the Engine Out Driftdown Deceleration Altitude? (1)

Q Flat
o Macros

2. If the Final Approach prompt has been selected, is it possible for the Vertical
Guidance Reference Altitude to be the Altitude Constraint at the Destination? (2)

o Flat
LQ Macros

(Flat specification only)

3. Describe one scenario that can cause the Vertical Guidance Reference Altitude to be
the Cruise Conflict Altitude. (2)

4. Where is it stated that the Vertical Guidance Reference Altitude will be the Clearance
Altitude if the Vertical Guidance Type is Airmass AFS and the Flight Phase is Takeoff
(label rows and columns in the specification)? (1)

5. Can the Vertical Guidance Reference Altitude be Engine Out Driftdown Deceleration
Altitude under the following conditions? (3)

Altitude Rate is 350 ft/sec
Engine Out is engaged
Vertical Guidance Type is Airmass PROF
Flight Phase is Descent
Aircraft Altitude is above Computed 2 Engine Max. Altitude

6. Suppose we want to add a conditions to the first table of the vertical guidance Vertical
Guidance Reference Altitude specification (i.e. = Climb Target Altitude). The existing
conditions will stand, but in addition, the FMS speed mode must either be in Edit mode
or Economy mode. What additions must be made to the non-macro specification to
accommodate this condition?(4)
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(Macro specification only)

7. What defines a Climb Conflict Situation? (2)

8. Which part of the specification explains that the Vertical Guidance Reference Altitude
will be the Cruise Conflict Altitude if: (1)

Flight phase is cruise
Clearance altitude < aircraft altitude - 250 ft.
Vertical guidance type is airmass PROF
FCC autopilot is engaged
Step climb is active, AND
Descent/approach capture/hold criteria are not satisfied

(label lines in the specification)

9. Under the following conditions,
Flight Phase is Descent
Final approach prompt has been selected
Non-precision VFR approach type has been selected
Aircraft Altitude is 24,000 ft.
2 Engine Maximum Altitude is 40,000 ft.
Clearance Altitude = 25,000 ft.
Descent Target Altitude = 25,000 ft.
Aircraft is below path approach level-off
Descent speed limit violation = FALSE
The Profile Descent variable is TRUE
FCC Autopilot is Engaged
Vertical Guidance Type is Airmass AFS

which of the following will be the value of the Vertical Guidance Reference Altitude?
(Hint: Evaluate the Descending and Descent Conflict Situation macros first) (3)

a. Altitude Constraint at Destination
b. Below Path Approach Level Off Altitude

10. Suppose we want to add a condition to the fifth table of the vertical guidance Vertical
Guidance Reference Altitude specification (i.e. = Actual 2 Engine Maximum Altitude).
The existing conditions will stand, but in addition, the Thrust Limit must be FLX, Max,
or Climb. Add this condition to the macro specification, by first creating a macro, and
then referring to it in the table. (4)
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Macros Evaluation

1. Which specification was easier to read? to edit?

2. Did you find that a specification was good for some tasks and not others, or did you
find one specification consistently easier to use when answering questions in the
experiment?

3. What are some advantages to using macros in specifications? disadvantages?

4. Considering the advantages/disadvantages of using macros, would you prefer
specifications to include macros? Why?
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Events

As a reminder, if you find that it is taking longer than 1 minute to answer a question,
please skip it and move on to the next one.

State variables will appear in bold type.

(Any specification)

1. When will the system detect a fault in the Controlled Device Status? (1)
Li Events
Li Eventless

2. When Digital Altimeter transitions to Invalid, which other state variabes can be
directly affected by this transition? (2)

Li Events
U Eventless

3. When the Controls Reset occurs, which state variables are directly affected? (2)
0 Events
Q Eventless

(Eventless specification only)

4. When Altitude transitions to Below Threshold, which other state variables can be
directly affected by this transition? (2)

5. Which part of the specification specifies that the Altitude cannot be determined if the
Analog Altimeter and Digital Altimeter are invalid (label rows in table)?(1)

6. Assuming the following conditions:

Altitude is in state Below-Threshold
Controlled Device Status is in state Off
System Status is in state Operational
Digital Altimeter is in state Invalid
Digital Altimeter Value = 3500 ft.

what state will the Power Command Output be in if Analog Status becomes invalid? (3)

7. Assume we want to add another possible value to the Altitude state variable called
Hazard. Altitude will transition to Hazard if either of the altitude sensors (analog or
digital) is Valid and records an altitude of less than 1000 ft. What changes need to be
made to the eventless specification to reflect this addition?(4)
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8. Assume now that we want to add a state variable called Alarm. Alarm has 2 states
(on, off). The alarm will be on if the Altitude is in the Hazard state, and off at all other
times. What additions need to be made to the eventless specification to reflect this?(4)

(Event specification only)

9. Which part of the specification explains that the Altitude is Below Threshold when
Digital Altimeter is valid and measures an altitude of less than 2000 ft (label rows in
table)? (1)

10. If the Altitude Switch Status is in state Inhibited, what additional condition will turn
the Watchdog Probe Output on? (2)

11. What state will the Power Command Output be in after the following events are
received? (3)

1. Startup
2. Device Signal = Off
3. Digital Status = Valid
4. Digital Altimeter Value = 2100
7. Analog Status = Invalid
8. Analog Altimeter Value = 2200
9. Device Signal = On

12. Assume we want to add another possible value to the Altitude state variable called
Hazard. Altitude will transition to Hazard if either of the altitude sensors (analog or
digital) is Valid and records an altitude of less than 1000 ft. What additions need to be
made to the event specification to reflect this addition?(4)

13. Assume now that we want to add a state variable called Alarm. Alarm has 2 states,
(on, off). The alarm will be on if the Altitude is in the Hazard state, and off at all other
times. What changes need to be made to the event specification to reflect this?(4)
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Event Evaluation

1. Which specification did you find easier to read? Why?

2. Which specification did you find easier to edit?

3. Do you think that your preferences would change when dealing with large
specifications?

4. What are some strengths of the event specification? drawbacks?

5. What are some strengths of the eventless specification? drawbacks?
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Hierarchies

As a reminder, if you find that it is taking longer than 1 minute to answer a
question, please skip it and move on to the next one.

(Any specification)

1. Which states can transition directly into alarm?(1)
Li
0i

0i
0i

2. Which states can transition directly into time?(1)

Flat
Hierarchical

Flat
Hierarchical

3. If the watch is dead, and a battery is inserted, what
to?(3)

state will the sytem transition

u Flat
El Hierarchical

(Flat specification only)

4. Under what conditions will the system transition from (set alarm) am/pm to alarm?(2)

5. Suppose we want the watch to transition from time mode to (stop watch)-on,lap mode
when the c button is pressed. What changes must be made to the flat specification to
represent this behavior?(4)

6. If the stop watch is in state off and in lap mode, and button b is pressed, what state will
the system transition to?(3)

7. If the stop watch is On, under what conditions will it be reset to zero? (2)

8. Suppose we want to divide the chime state into 2 different states - visual chime and
audio chime. From the alarm state, the system will first transition into the visual chime
state when the a button is pressed, and will then transition into the audio chime state
when the a button is pressed again. If the d button is pressed while in the visual or audio
chime states, the system should transition to the stop watch-zero state. What changes
must be made to the flat state machine to reflect this behavior?(4)
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(Hierarchical specification only)

9. Under what conditions will the stop watch transition from regular mode to lap
mode?(2)

10. If I am updating the date setting of the watch (i.e. I am in the date state), under what
condition will the system transition to the time state?(2)

11. If the watch is in the (stop watch) zero state, and the d button is pressed twice
consecutively, what will be the final state of the system?(3)

12. Suppose we want the watch to transition from time mode to stop watch-run-on and to
stop watch-display-lap mode when the c button is pressed. What changes must be made
to the hierarchical specification to represent this behavior?(4)

13. Suppose we want to divide the chime state into 2 different states - visual chime and
audio chime. From the alarm state, the system will first transition into the visual chime
state when the a button is pressed, and will then transition into the audio chime state
when the a button is pressed again. If the d button is pressed while in the visual or audio
chime states, the system should transition to the stop watch-zero state. How could a
superstate chime, composed of the visual and audio chime states, be included in the
hierarchical state machine to reflect this behavior?(4)
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Hierarchies Evaluation

1. Which specification was easier to read?

2. Which specification was easier to edit?

3. Would you prefer access to a flat specification, or a hierarchical specification? Why?

4. What are some difficulties you had with the hierarchical specification? the flat
specification?

5. Do you think flat specifications are suitable for complex systems?
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Perspectives

As a reminder, if you find that it is taking longer than 1 minute to answer a
question, please skip it and move on to the next one.

(Any specification)

1. From which states can the system enter Wait Mode?(1)
Q Coming From
U Going to

2. Under what condition(s) will the system transition from Acquire Mode to Reorient
Mode?(2)

U Coming From
U Going to

3. When will the system transition from Orbit Night Mode to Spinup Mode?(2)
U Coming From
U Going to

4. If the system is in Orbit Day Mode, which states can it transition to directly?(1)
U Coming From
U Going to

(Coming-from specification only)

5. What conditions will trigger a self transition from Detumble Mode to Detumble
Mode?(2)

6. From which states can the system enter Deploy Wheel Mode?(1)

7. If the system is in Orbit Night Mode, what is the minimum number of transitions
necessary to enter Reorient Mode?(2)

8. If the system is in Acquire Mode, and has been in this mode less than the Acquire
Mode Delay time, is it possible to transition to Spinup Mode? If so, how? (3)
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(Going-to specification only)

9. If the system is in Deploy Wheel Mode, to which states can it transition directly?(1)

10. What conditions will trigger a transition from Spinup to Reorient?(2)

11. If the system is in Paddle Deploy Mode, what is the minimum number of transitions
necessary to enter Orbit Day Mode?(2)

12. If the system is in Reorient Mode, and the wheel spin rate is greater than the nominal
wheel rate, is it possible for the system to transition to Deploy Wheel Mode?(3)
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Perspectives Evaluation

1. In general, which perspective did you find easier to read? Did one perspective provide
a more intuitive way for you to think about state machine behavior?

2. Do you think making both persectives available is worthwhile, or would you prefer
the simplicity of only using a single perspective?
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Appendix B: Representations Experiment
Specifications

Satellite Control Specification: Textual Representation

Wait Mode

Transition from Wait Mode to Wait Mode if the time that the system has been in
the Wait Mode is < Wait Mode Delay.

Transition from Wait Mode to Detumble Mode if the time that the system has
been in the Wait Mode is the Wait Mode Delay.

Detumble Mode

Transition from Detumble Mode to Detumble Mode if either
1. the time that the system has been in Detumble Mode is < Detumble
Mode Delay, OR

2. time that the system has been in Detumble Mode is Detumble Mode
Delay and the XZ Momentum Error is > XZ Momentum Error Threshold.

Transition from Detumble Mode to Spinup Mode if the time that the system has
been in the Detumble Mode is Detumble Mode Delay, and the XZ Momentum
Error is XZ Momentum Error Threshold.
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Spinup Mode

Transition from Spinup Mode to Orbit Night Mode if the Paddles are deployed
and the Optical System is tracking.

Transition from Spinup Mode to Spinup Mode if either
1. the paddles are not deployed or the Optical System is not tracking,
AND the time that the system has been in the Spinup Mode is < Spinup
Mode Delay, OR

2. the paddles are not deployed or the Optical System is not tracking,
AND the time that the system has been in the Spinup Mode is > Spinup
Mode Delay, AND the XZ Momentum Error XZ Momentum Error
Threshold, AND the Momentum Error > Spinup Momentum Error or the
system is in Eclipse.

Transition from Spinup Mode to Detumble Mode if the paddles are not deployed
or the Optical Sytem is not tracking , AND the time that the system has been in
Spinup Mode > Spinup Mode Delay, AND XZ Momentum Error > XZ
Momentum Error Threshold.

Transition from Spinup Mode to Reorient Mode if the paddles are not deployed or
the Optical System is not tracking, AND the time that the system has been in
Spinup Mode > Spinup Mode Delay, AND XZ Momentum Error XZ
Momentum Error Threshold, AND the momentum error 5 Spinup Momentum
Error, AND the system is not in Eclipse.
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Reorient Mode

Transition from Reorient Mode to Spinup Mode if either
1. the system is in Eclipse, OR

2. the system is not in Eclipse, AND the time that the system has been in
Reorient Mode is Reorient Mode Delay, AND the momentum error >
Spinup Momentum Error.

Transition from Reorient Mode to Reorient Mode if either
1. the system is not in Eclipse, AND the time that the system has been in
Reorient Mode is < Reorient Mode Delay

2. the system is not in Eclipse, AND the time that the system has been in
Reorient Mode is Reorient Mode Delay, AND momentum error <
Spinup Momentum Error, AND Sine Sun Elevation > Coarse Sun
Elevation Error.

Transition from Reorient Mode to Deploy Wheel Mode if the system is not in
Eclipse, AND the time that the sytem has been in Reorient Mode is Reorient
Mode Delay, AND the momentum error Spinup Momentum Error, AND Sine
Sun Elevation Coarse Sun Elevation Error, AND the wheel spin rate < Nominal
Wheel Rate.

Transition from Reorient Mode to Acquire Mode if the system is not in Eclipse,
AND the time that the system has been in Reorient Mode is Reorient Mode
Delay, AND the momentum error Spinup Momentum Error, AND Sine Sun
Elevation Coarse Sun Elevation Error, AND the wheel spin rate Nominal
Wheel Rate.
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Deploy Wheel Mode

Transition from Deploy Wheel Mode to Deploy Wheel Mode if the time that the
system has been in Deploy Wheel Mode is < Deploy Wheel Mode Delay.

Transition from Deploy Wheel Mode to Acquire Mode if the time that the system
has been in Deploy Wheel Mode is > Deploy Wheel Mode Delay.
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Acquire Mode

Transition from Acquire Mode to Spinup Mode if the system is in Eclipse.

Transition from Acquire Mode to Acquire Mode if either
1. the system is not in Eclipse, AND the time that the system has been in
Acquire Mode Acquire Mode Delay, AND Sine Sun Elevation > Coarse
Sine Sun Elevation Error.

2. the system is not in Eclipse, AND the time that the system has been in
Acquire Mode Acquire Mode Delay, AND Sine Sun Elevation Coarse
Sin Sun Elevation Error, AND Sine Sun Azimuth > Coarse Sun Azimuth
Error.

Transition from Acquire Mode to Reorient Mode if the system is not in Eclipse,
AND the time that the system has been in Acquire Mode Acquire Mode Delay,
AND Sine Sun Elevation > Coarse Sin Sun Elevation Error.

Transition from Acquire Mode to Paddle Deploy Mode if the system is not in
Eclipse, AND the time that the system has been in Acquire Mode > Acquire
Mode Delay, AND Sine Sun Elevation Coarse Sin Sun Elevation Error, AND
Sine Sun Azimuth Coarse Sun Azimuth Error, AND the paddles are not
deployed.

Transition from Acquire Mode to Orbit Day Mode if the system is in Eclipse,
AND the time that the system has been in Acquire Mode Acquire Mode Delay,
AND Sine Sun Elevation Coarse Sin Sun Elevation Error, AND Sine Sun
Azimuth Coarse Sun Azimuth Error, AND the paddles are deployed.
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Paddle Deploy Mode

Transition from Paddle Deploy Mode to Acquire Mode if either
1. the paddles are deployed, OR
2. the paddles are not deployed, AND the time that the system has been in
Paddle Deploy Mode Paddle Deploy Mode Delay

Transition from Paddle Deploy Mode to Paddle Deploy Mode if the paddles are
not deployed, AND the time that the system has been in Paddle Deploy Mode <
Paddle Deploy Mode Delay.
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Orbit Day Mode

Transition from Orbit Day Mode to Spinup Mode if the system is in Eclipse,
AND the Optical System is not tracking.

Transition from Orbit Day Mode to Orbit Day Mode if either
1. the system is not in Eclipse or the Optical System is tracking, AND the
time that the system has been in Orbit Delay Mode < Orbit Day Mode
Delay, OR

2. the system is not in Eclipse or the Optical System is tracking, AND the
time that the system has been in Orbit Delay Mode Orbit Day Mode
Delay, AND the Sine Sun Elevation Coarse Sine Sun Elevation Error,
AND the Sine Sun Azimuth the Coarse Sine Sun Azimuth Error, AND
the Optical System is not Tracking.

Transition from Orbit Day Mode to Reorient Mode if the system is not in Eclipse
or the Optical System is Tracking, AND the time that the system has been in
Orbit Day Mode is Orbit Day Mode Delay, AND Sine Sun Elevation > Coarse
Sine Sun Elevation Error.

Transition from Orbit Day Mode to Acquire Mode if the system is not in Eclipse
or the Optical System is tracking, AND the time that the system has been in Orbit
Day Mode is Orbit Day Mode Delay, AND Sine Sun Elevation Coarse Sine
Sun Elevation Error, AND Sine Sun Azimuth > Coarse Sine Sun Azimuth Error.

Transition from Orbit Day Mode to Orbit Night Mode if the system is either not
in Eclipse or the Optical System is tracking, AND the time that the system has
been in Orbit Day Mode is Orbit Day Mode Delay, AND Sine Sun Elevation <
Coarse Sine Sun Elevation Error, AND Sine Sun Azimuth Coarse Sine Sun
Azimuth Error, AND the Optical System is tracking.
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Orbit Night Mode

Transition from Orbit Night Mode to Orbit Day Mode if the system is not in
Eclipse, AND either

1. Sine Sun Azimuth > Fine Azimuth Error, OR
2. Sine Sun Elevation > Fine Elevation Error, OR
3. the Optical System is not tracking.

Transition from Orbit Night Mode to Spinup Mode if the system is in Eclipse,
AND Sine Sun Azimuth Fine Azimuth Error, AND Sine Sun Elevation Fine
Elevation Error, AND the Optical System is tracking, AND o > Maximum
Tumble Rate.

Transition from Orbit Night Mode to Orbit Night Mode if the system is in
Eclipse, AND Sine Sun Azimuth Fine Azimuth Error, AND Sine Sun Elevation

Fine Elevation Error, AND the Optical System is tracking, AND w Maximum
Tumble Rate.

Ground Control Mode

Transition from Ground Control Mode to Detumble Mode if the time that the
system has been in Ground Control Mode is > Command Mode Delay.
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Satellite Control Specification:
Graphical Representation

Time
C

Ground
Control
Mode

Wait
Time(In Mode) < Mode

Wait Mode Delay

Time(In Mode) <
Deploy Wheel Mode Delay

[Time(In Mode) < Detumble Mode Delay]
OR

[(Time(In Mode) >= Detumble Mode Delay) A
(XZ Momentum Error >

XZ Momentum Error Threshold)]

(In Mode) >
ommand Mode Delay

(Time(In Mode) >=
Detumble Mode Delay) V

(XZ Momentum Error <=
XZ Momentum Error Threshold)

To Spinup Mode

From Spinup Mode
(Paddles are Not Deployed V

Optical System is Not Tracking) A
(Time(In Mode) >=

Spinup Mode Delay) A
(XZ Momentum Error >

XZ Momentum Error Threshold)

Time (In Mode) >=
Wait Mode Del,

(System is not in Eclipse) A
(Time (In Mode) >=

Reorient Mode Delay) A
(Momentum Error <= Spinup

Momentum Error) A
(Sine Sun Elevation <=

Coarse Sun Elevation Error) A
(Wheel Spin Rate < Nominal

Wheel Rate)

From Reorient Mode

Time(In Mode) >=
Deploy Wheel Mode Delay

To Acquire Mode

(Paddles are Not Deployed) A
(Time(In Mode) <

Paddle Deploy Mode Delay)

(System is not in Eclipse) A
(Time(In Mode) >= Acquire

Mode Delay) A From Acquire Mode
(Sine Sun Elevation <=

Coarse Sun Elevation Error) A
(Sine Sun Azimuth <= Coarse

Sun Azimuth Error) A
(Paddles are Not Deployed)

To Acquire Mode
(Paddles are Deployed)

OR
[(Paddles are Not Deployed) A
(Time(in Mode) >= Paddle

Deploy Mode Delay)]
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[(Paddles are Not Deployed V Optical System is not Tracking) A
Time(In Mode) < Spinup Mode Delay]

OR

From Detumble Mode

To Detumble Mode

[(Paddles are Not Deployed V Optical Syst
(Time(In Mode) >= Spinup Mode Delay) A
(XZ Momentum Error <= XZ Momentum Er
((Momentum Error > Spinup Momentum Er

(System is in Eclipse))]

em is not Tracking) A

ror Threshold) A To '
ror) V

From Orbit Night Mode

Mod

(System

[(System
(Time(In

Reori
(Moment

SpinL

To Deploy Wheel Mode

System is in Eclipse

om Deploy Wheel Mode

From Orbit Day Mode

is in Eclips
OR

is not in Eclips A
Mode) >=
ient Mode Delay) A
um Error >
up Momentum Error)]

(Paddles are Not Deployed V Optical
System is not Tracking) A

ime(In Mode) >= Spinup Mode Delay) A
(X omentum Error <= XZ Momentum

E r Threshold) A
(Momen m Error <=

Spinup omentum Error) A
(System is no in Eclipse)

((Sytem is not in Eclipse) V
(Optical System is Tracking)) A
(Time(In Mode) >=

Orbit Day Mode Delay) A
(Sine Sun Elevation > Coarse

Sun Elevation Error)

[(System is not in Ecli
(Time(In Mode) <

Reorient Mode De
OR

[(System is not in Ecli
(Time (In Mode) >=

Reorient Mode D
(Momentum Error <=

Momentum
(Sine Sun Elev

Coarse Su

Error)
ation >
n Eleva

(Syste
(Time(

M
(Sine

Su
To Paddle Deploy Mode

From Paddle Deploy Mod

pse) A

)II
Y Mode

pse) A From Orb

elay) A
Spinup
A

tion Error)]

m is not in Eclipse) A (System is not in Eclipse) A
In Mode) >= Acquire (Time (in Mode) >=

)de Delay) A Reorient Mode Delay) A
Sun Elevation > Co e (Momentum Error <= Spinup
n Elevation Er Momentum Error) A

(Sine Sun Elevation <=
Coarse Sun Elevation Erro A

Wheel Spin Rate >= Nomi
Wheel Rate

it Day Mode

[(System is not in Eclipse) A
(Time(In Mode) <

Acquire Mode Delay)]
OR

[(System is not in Eclipse) A
(Time(In Mode) >= Acquire

Mode Delay) A
(Sine Sun Elevation <=

Coarse Sun Elevation Error) A
(Sine Sun Azimuth > Coarse

Sun Azimuth Error)]

From Orbit Day Mode

To Orbit Day Mode
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(System is in Eclipse) A
(Sine Sun Azimuth <= Fine

Azimuth Error) A
(Sine Sun Elevation <= Fine

Elevation Error) A
(Optical System is Tracking)~ A

From Spinup Mode

(System is in Eclipse) A
(Sine Sun Azimuth <= Fine

Azimuth Error) A
(Sine Sun Elevation <= Fine

Elevation Error) A
(Optical System is Tracking) A
(Tumble Rate <= Maximum
--- umble Rate)

(T umble Rate >
Maximum Tumble Rate)

(Paddles are Deployed) A

To Spinup Mode (Optical System is Tracking)

To

To Spinup Mode (System is not in Eclipse) A
((Sine Sun Azimuth >

Fine Azimuth Error) V
(Sine Sun Elevation >
Fine Elevation Error) V
(Optical System is not Tra

(System is in Eclipse) A
(Optical System is Not Trackin

Reorient Mode

((Sytem is not in Eclipse) V
(Optical System is Tracking)) A

(Time(In Mode) >=
Orbit Day Mode Delay) A

(Sine Sun Elevation >
Coarse Sun Elevation Error)

((Sytem is not in Eclipse) V
(Optical System is Tracking)) A

(Time(In Mode) >=
Orbit Day Mode Delay) A

(Sine Sun Elevation <= Coarse
Sun Elevation Error) A

(Sine Sun Azimuth >
Coarse Sun Azimuth Error (S

(Ti

To Acquire Mode .

(Si

(Pa

cking))

stem is' clipse) A
ne(I ode) >= Acquire Mode

lay) A
ie Sun Elevation <= Coarse Sun
Elevation Error) A

ne Sun Azimuth <= Coarse Sun
Azimuth Error) A
ddles are Deployed)
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((Sytem is not in Eclipse) V
(Optical System is Tracking)) A

(Time(In Mode) >=
Orbit Day Mode Delay) A

(Sine Sun Elevation <= Coarse
Sun Elevation Error) A

(Sine Sun Azimuth <=
Coarse Sun Azimuth Error) A

(Optical System is Tracking)

(((System is not in Eclipse) V
(Optical System is Tracking)) A

(Time(In Mode) <
Orbit Day Mode Delay)]

OR
[((System is not in Eclipse) V

(Optical System is Tracking)) A
(Time(In Mode) >=

Orbit Day Mode Delay) A
(Sin Sun Elevation <=

Coarse Sun Elevation Error) A
(Sine Sun Azimuth <=

Coarse Sun Azimuth Error) A
(Optical System is Not Tracking)]



Satellite Control Specification
Tabular Representation

Paddles

Time In Mode < Wait Mode >= Wait Mode
Delay Delay

XZ Momentum Error

Optical System

Momentum Error

In Eclipse

Sine Sun Elevation

Wheel Spin Rate

Sine Sun Azimuth

Tumble Rate,
Omega

A



Paddles

Time In Mode < Detumble >= Detumble >= Detumble
Mode Delay Mode Delay Mode Delay

XZ Momentum Error > XZ Momentum <= XZ Momentum
Error Threshold Error Threshold

Optical System

Momentum Error

In Eclipse

Sine Sun Elevation

Wheel Spin Rate

Sine Sun Azimuth

Tumble Rate,
Omega

Satellite Control Specification
Tabular Representation

k)-



Satellite Control Specification
Tabular Reoresentation

Paddles

Time In Mode

XZ Momentum Error

Optical System

Momentum Error

Deployed

Tracking

Not Deployed

< Spinup
Mode Delay

<Spinup
Mode Delay

Not Tracking

Not Deployed

>= Spinup
Mode Delay

>= Spinup
Mode Delay

Not Deployed

>= Spinup

Mode Delay

<= XZ Momentum <= XZ Momentum <= XZ Momentum
Error Threshold Error Threshold Error Threshold

> Spinup
Momentum Error

Not Tracking

> Spinup
Momentum Error

>= Spinup
Mode Delay

<= XZ Momentum
Error Threshold

'Not Tracking

In Eclipse TRUE TRUE

Sine Sun Elevation

Wheel Spin Rate

Sine Sun Azimuth

Tumble Rate,
Omega



Satellite Control Specification
Tabular Representation

Not Deployed Not Deployed

Time In Mode >= Spinup >= Spinup >= Spinup >= Spinup
Mode Delay Mode Delay Mode Delay Mode Delay

XZ Momentum Error > XZ Momentum > XZ Momentum <= XZ Momentum <= XZ Momentum
Error Threshold Error Threshold Error Threshold Error Threshold

Optical System Not Tracking Not Tracking

Momentum Error <= Spinup <= Spinup
Momentum Error Momentum Error

In Eclipse FALSE FALSE

Sine Sun Elevation

Wheel Spin Rate

Sine Sun Azimuth

Tumble Rate,
Omega

Paddles



Satellite Control Specification
Tabular Representation

Paddles

Time In Mode >= Reorient < Reorient >= Reorient >= Reorient >= Reorient
Mode Delay Mode Delay Mode Delay Mode Delay Mode Delay

XZ Momentum Error

Optical System

Momentum Error > Spinup <= Spinup <= Spinup <= Spinup
Momentum Error Momentum Error Momentum Error Momentum Error

In Eclipse TRUE FALSE FALSE FALSE FALSE FALSE

Sine Sun Elevation > Coarse Sun <= Coarse Sun <= Coarse Sun
Elevation Error Elevation Error Elevation Error

Wheel Spin Rate < Nominal >= Nominal
Wheel Rate Wheel Rate

Sine Sun Azimuth

Tumble Rate,
Omega

00



Satellite Control Specification
Tabular Representation

Paddles

Time In Mode < Deploy Wheel >= Deploy Wheel
Mode Delay Mode Delay

XZ Momentum Error

Optical System

Momentum Error

In Eclipse

Sine Sun Elevation

Wheel Spin Rate

Sine Sun Azimuth

Tumble Rate, Omega
Omega



Satellite Control Specification
Tabular Representation

Paddles

Time In Mode < Acquire

Mode Delay
>= Acquire

Mode Delay
>= Acquire

Mode Delay

Not Deployed

>= Acquire

Mode Delay

XZ Momentum Error

Optical System

Momentum Error

In Eclipse TRUE FALSE FALSE FALSE FALSE TRUE

Sine Sun Elevation <= Coarse Sun > Coarse Sun <= Coarse Sun <= Coarse Sun
Elevation Error Elevation Error Elevation Error Elevation Error

Wheel Spin Rate

Sine Sun Azimuth > Coarse Sun <= Coarse Sun <= Coarse Sun
Azimuth Error Azimuth Error Azimuth Error

Tumble Rate, Omega
Omega

-e- -#a

Deployed

>= Acquire
Mode Delay

0



Satellite Control Specification
Tabular Representation

Paddles Deployed Not Deployed Not Deployed

Time In Mode >= Paddle Deploy < Paddle Deploy
Mode Delay Mode Delay

XZ Momentum Error

Optical System

Momentum Error

In Eclipse

Sine Sun Elevation

Wheel Spin Rate

Sine Sun Azimuth

Tumble Rate, Omega
Omega



Satellite Control Specification
Tabular Representation

Paddles

Time In Mode < Orbit Day
Mode Delay

< Orbit Day
Mode Delay

>= Orbit Day
Mode Delay

>= Orbit Day
Mode Delay

>= Orbit Day
Mode Delay

>= Orbit Day
Mode Delay

XZ Momentum Error

Optical System Not Tracking Tracking Not Tracking Tracking Tracking

Momentum Error

In Eclipse TRUE FALSE FALSE FALSE

Sine Sun Elevation <= Coarse Sun <= Coarse Sun > Coarse Sun > Coarse Sun
Elevation Error Elevation Error Elevation Error Elevation Error

Wheel Spin Rate

Sine Sun Azimuth <= Coarse Sun <= Coarse Sun
Azimuth Error Azimuth Error

Tumble Rate,
Omega

k)



Satellite Control Specification
Tabular Representation

Paddles

Time In Mode >= Orbit Day >= Orbit Day >= Orbit Day >= Orbit Day
Mode Delay Mode Delay Mode Delay Mode Delay

XZ Momentum Error

Optical System Tracking Tracking Tracking

Momentum Error

In Eclipse FALSE FALSE

Sine Sun Elevation <= Coarse Sun <= Coarse Sun <= Coarse Sun <= Coarse Sun
Elevation Error Elevation Error Elevation Error Elevation Error

Wheel Spin Rate

Sine Sun Azimuth > Coarse Sun > Coarse Sun <= Coarse Sun <= Coarse Sun
Azimuth Error Azimuth Error Azimuth Error Azimuth Error

Tumble Rate, Omega
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Satellite Control Specification
Tabular Representation

Paddles

Time In Mode

XZ Momentum Error

Optical System Not Tracking Tracking Tracking

Momentum Error

In Eclipse FALSE FALSE FALSE TRUE TRUE

Sine Sun Elevation > Fine <= Fine <= Fine
Elevation Error Elevation Error Elevation Error

Wheel Spin Rate

Sine Sun Azimuth > Fine <= Fine <= Fine

Azimuth Error Azimuth Error Azimuth Error

Tumble Rate, Omega > Maximum <= Maximum
Tumble Rate Tumble Rate

A



Satellite Control Specification
Tabular Representation

Paddles

Time In Mode > Command
Mode Delay

XZ Momentum Error

Optical System

Momentum Error

In Eclipse

Sine Sun Elevation

Wheel Spin Rate

Sine Sun Azimuth

Tumble Rate, Omega



Appendix C: Conditions Experiment Specifications

Climb FMS Speed Mode
Tabular Specification

= Default IF

PREV(Flight Phase) = Done

Flight Phase = Done

PREV(Flight Phase) = Takeoff

Flight Phase = Descent

PREV(Flight Phase) = Climb

Flight Phase = Cruise

Climb FMS Speed Mode = Max Climb

FCC Engaged Mode = Altitude Hold Speed

FCC Engaged Mode = Altitude Hold Idle Thrust

FCC Engaged Mode = Altitude Hold Maximum Thrust

PREV(Engine Out) = Not Engaged

Engine Out = Engaged

FMS Mode = Lateral Only

= Economy IF

IRequested Climb Speed Mode

Max Climb IF

Requested Climb FMS Speed Mode = Max Climb
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TT

T

T

T

T

T

T

T

T

T

T

Requested FCC Speed Mode = Economy

Flight Phase = Preflight

Flight Phase = Takeoff

Flight Phase = Climb

Requested FCC Speed Mode = AFS Speed

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

I FTI



Edit IF

Requested FCC Speed Mode = Edit CAS T T T

Flight Phase = Preflight T * * T * * * * * * * *

Flight Phase = Takeoff T T T T

Flight Phase = Climb * * T * * T * T * T * T

Requested FCC Speed Mode = Edit Mach T T T

Requested Climb FMS Speed Mode = Edit T

PREV(Flight Phase) = Cruise T

PREV(Climb FMS Speed Mode) = Economy Mode T T T T T

PREV(Cruise FMS Speed Mode) = Edit Mode T

PREV(Descent FMS Speed Mode) = Edit Mode T T T T

PREV(Flight Phase) = Descent T T

PREV(Flight Phase) = Approach T T
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Climb FMS Speed Mode
Textual Specification

The Climb FMS Speed Mode shall be the Default if any of the following scenarios are
true:

1. the Flight Phase transitions to Done

2. the Flight Phase transitions from Takeoff to Descent

3. the Flight Phase transitions from Climb to Cruise

4. the Flight Phase transitions from Climb to Descent

5. the Climb FMS Speed Mode is Max Climb
AND
at least one of the following is true:

a. FCC Engaged Mode is Altitude Hold Speed
b. FCC Engaged Mode is Altitude Hold Idle Thrust
c. FCC Engaged Mode is Altitude Hold Maximum Thrust

6. Engine Out transitions from Not Engaged to Engaged

7. FMS Mode is Lateral Only
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The Climb FMS Speed Mode shall be Economy if any of the following scenarios are
true:

1. Economy is requested for the FCC Speed Mode
AND
one of the following is true:

a. Flight Phase is Preflight
b. Flight Phase is Takeoff
c. Flight Phase is Climb

2. AFS Speed is requested for the FCC
AND
one of the following is true:

a. Flight Phase is Preflight
b. Flight Phase is Takeoff
c. Flight Phase is Climb

3. Economy is requested for the Climb
AND
one of the following is true:

a. Flight Phase is Takeoff
b. Flight Phase is Climb

Speed Mode

Speed Mode

The Climb FMS Speed Mode shall be Max Climb if any of the following scenarios is
true:

1. Max Climb is requested for the Climb FMS Speed Mode
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The Climb FMS Speed Mode shall be Edit if any of the following scenarios is true:

1. Edit CAS is requested for the FCC Speed Mode
AND
one of the following is true:

a. Flight Phase is Preflight
b. Flight Phase is Takeoff
c. Flight Phase is Climb

2. Edit Mach is requested for the FCC
AND
one of the following is true:

a. Flight Phase is Preflight
b. Flight Phase is Takeoff
c. Flight Phase is Climb

Speed Mode

3. Edit is requested for Climb Speed Mode

4. Flight Phase transitions from Cruise to Climb
AND
Climb FMS Speed Mode previously in Economy Mode
AND
Cruise FMS Speed Mode previously in Edit Mode

5. Climb FMS Speed Mode previously in Economy Mode
AND
Descent FMS Speed Mode previously in Edit Mode
AND
one of the following is true:

a. Flight Phase transitions from Descent to Takeoff
b. Flight Phase transitions from Descent to Climb
c. Flight Phase transitions from Approach to Takeoff
d. Flight Phase transitions from Approach to Climb
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Climb FMS Speed Mode:
AND/OR Gate Specification

PREV(Flight Phase) = Done

Flight Phase = Done

PREV(Flight Phase) = Takeoff

Flight Phase = Descent

PREV(Flight Phase) = Climb

Flight Phase = Descent

Flight Phase = Cruise

Climb FMS Speed Mode
is Max Climb

FCC Engaged Mode is
Altitude Hold Speed

FCC Engaged Mode is
Altitude Hold Idle Thrust

FCC Engaged Mode is
Altitude Hold Maximum Thrust

PREV(Engine Out) = Not Engaged

Engine Out = Engaged

FMS Mode is Lateral Only

Default
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Requested FCC Speed Mode_
is Economy

Flight Phase is Preflight

Flight Phase is Takeoff

Flight Phase is Climb

Requested FCC Speed Mode
is AFS Speed

Requested Climb Speed Mode
is Economy

Requested Climb FMS Speed Mode
is Max Climb

Economy

Max Climb
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Requested FCC Speed Mode is
Edit CAS

Flight Phase is Preflight

Flight Phase is Takeoff

Flight Phase is Climb

Requested FCC Speed Mode
is Mach

Requested Climb Speed Mode
is Edit

PREV(Flight Phase) =
Cruise

Cruise FMS Speed Mode
previously in Edit Mode

Climb FMS Speed Mode
previously in Economy Mode

Descent FMS Speed Mode
previously in Edit Mode

Flight Phase
previously in Descent

Flight Phase
previously in Approach



Climb FMS Speed Mode
Propositional Logic Specification

Default =
(PREV(Flight Phase Done) A (Flight Phase = Done)) v
(PREV(Flight Phase = Takeoff) A (Flight Phase = Descent)) v
(PREV(Flight Phase = Climb) A (Flight Phase = Cruise)) v

(PREV(Flight Phase = Climb) A (Flight Phase = Descent)) v

((Climb FMS Speed Mode = Max Climb) A

((FCC Engaged Mode = Altitude Hold Speed) v
(FCC Engaged Mode = Altitude Hold Idle Thrust) v
(FCC Engaged Mode = Altitude Hold Maximum Thrust))) v

(PREV(Engine Out = Not Engaged) A (Engine Out = Engaged)) v
(FMS Mode = Lateral Only)

Economy =
((Requested FCC Speed Mode = Economy) A

((Flight Phase is Preflight) v (Flight Phase is Takeoff) v

(Flight Phase is Climb))) v

((Requested FCC Speed Mode = AFS Speed) A

((Flight Phase is Preflight) v

(Flight Phase is Takeoff) v (Flight Phase is Climb))) v

((Requested Climb Speed Mode = Economy) A
((Flight Phase is Takeoff) v (Flight Phase is Climb)))

Max Climb =
(Requested Climb FMS Speed Mode = Max Climb)

Edit =
((Requested FCC Speed Mode = Edit CAS) A

((Flight Phase is Preflight) v (Flight Phase is Takeoff) v

(Flight Phase is Climb))) v

((Requested FCC Speed Mode = Edit Mach) A

((Flight Phase is Preflight) v (Flight Phase is Takeoff) v

(Flight Phase is Climb))) v

(Requested Climb Speed Mode = Edit) v

((PREV(Flight Phase = Cruise) A (Flight Phase = Climb)) A

PREV(Climb FMS Speed Mode = Economy Mode) A

PREV(Cruise FMS Speed Mode = Edit Mode)) v

(PREV(Climb FMS Speed Mode = Economy Mode) A

PREV(Descent FMS Speed Mode = Edit Mode) A

((PREV(Flight Phase = Descent) A (Flight Phase = Takeoff)) v

(PREV(Flight Phase = Descent) A (Flight Phase = Climb)) v
(PREV(Flight Phase = Approach) A (Flight Phase = Takeoff)) v

(PREV(Flight Phase = Approach) A (Flight Phase = Climb))))
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Appendix D: Macros Experiment Specifications

Vertical Guidance Reference Altitude
Specification (flat)

State Variable

Vertical Guidance Reference Altitude

= Climb Target Altitude IF

Engine Out is engaged

Aircraft Attained V3

Aircraft is not above 2 Engine Maximum Altitude

Engine Out Level Penetration = FALSE

Engine Out Level Deceleration = TRUE

Flight Phase is Takeoff

Flight Phase is Climb

= Clearance Altitude IF

Flight Phase is Takeoff

Flight Phase is Climb

Vertical Guidance Type is Airmass AFS

= Engine Out Driftdown Deceleration Altitude IF

Engine Out is engaged

Aircraft Altitude > Computed 2 Engine Maximum Altitude

Aircraft Altitude Rate <= 200

Flight Phase is Cruise

Flight Phase is Descent

Flight Phase is Approach

Vertical Guidance Type is Profile

Vertical Guidance Type is Airmass PROF
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Climb Conflict Altitude IF

Engine Out is not engaged

Flight Phase is Takeoff

Flight Phase is Climb

Clearance Altitude < Aircraft Altitude - 250 ft.

Climb Target Altitude < Aircraft Altitude - 250 ft.

Vertical Guidance Type is Profile

Vertical Guidance Type is Airmass PROF

FCC Autopilot is engaged

Actual 2 Engine Maximum Altitude IF

Engine Out is engaged

Flight Phase is Cruise

Aircraft is above 2 Engine Maximum Altitude

Aircraft Altitude Rate < 200 ft./sec.

Engine Out Level Deceleration = TRUE

Aircraft initiated maneuver to 2 Engine Maximum Altitude

Flight Phase is Approach

Flight Phase is Descent

= Cruise Conflict Altitude IF

Descent/Approach Path Capture/Hold Criteria is not satisfied
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Flight Phase is Cruise

Clearance Altitude < Aircraft Altitude - 250 ft.

Cruise Flight Level > Aircraft Altitude + 250 ft.

Vertical Guidance Type is Profile

Vertical Guidance Type is Airmass PROF

FCC Autopilot is engaged

Step Climb is Active
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= Descent Target Altitude IF

Flight Phase is Cruise

Target Altitude at Active Leg Termination = Descent Target Altitude

Clearance Altitude < Aircraft Altitude - 250 ft.

Vertical Guidance Type is Airmass AFS

FCC Autopilot is engaged

Descent/Approach Path Capture/Hold Criteria are satisfied

Cruise Flight Level > Aircraft Altitude + 250 ft.

Step Climb is Active

= Descent Speed Limit Altitude IF

Flight Phase is Descent

Descent Speed Limit Violation is TRUE

Flight Phase is Approach

= Descent Conflict Altitude IF

Descent Speed Limit Violation is FALSE

Flight Phase is Descent

Flight Phase is Approach

Clearance Altitude < Aircraft Altitude + 250 ft.

Descent Target Altitude < Aircraft Altitude + 250 ft.

Vertical Guidance Type is Profile

Vertical Guidance Type is Airmass AFS

FCC Autopilot is engaged

Final Approach Prompt is not selected
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= Altitude Constraint at Destination IF

Flight Phase is Descent

Flight Phase is Approach

Descent Speed Limit Violation is FALSE

Profile Descent is TRUE

Final Approach Prompt is not selected

Aircraft is not below path approach level-off

Non-precision VFR Approach Type selected

Clearance Altitude < Aircraft Altitude + 250 ft.

Descent Target Altitude < Aircraft Altitude + 250 ft.

Vertical Guidance Type is Profile

Vertical Guidance Type is Airmass PROF

FCC Autopilot is engaged

Below Path Approach Level Off Altitude IF

Flight Phase is Descent

Flight Phase is Approach

Descent Speed Limit Violation is FALSE

Profile Descent is TRUE

Final Approach Prompt is selected

Aircraft is below path approach level-off

Non-precision VFR Approach Type selected

Clearance Altitude < Aircraft Altitude + 250 ft.

Descent Target Altitude < Aircraft Altitude + 250 ft.

Vertical Guidance Type is Profile

Vertical Guidance Type is Airmass PROF

FCC Autopilot is engaged
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Vertical Guidance Reference Altitude
Specification (with Macros)

Macro

Climb Conflict Situation

FCC Autopilot is engaged

Descent Conflict Situation

Descending

Clearance Altitude < Aircraft Altitude + 250 ft.

Descent Target Altitude < Aircraft Altitude + 250 ft.

PROF Mode engaged

FCC Autopilot is engaged

Final Approach Prompt is not selected
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Climbing

Clearance Altitude < Aircraft Altitude - 250 ft.

Climb Target Altitude < Aircraft Altitude - 250 ft.

PROF Mode engaged
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Macro

Cruise Conflict Situtation

Flight Phase is Cruise

Clearance Altitude < Aircraft Altitude - 250 ft.

Cruise Flight Level > Aircraft Altitude + 250 ft.

PROF Mode engaged

FCC Autopilot is engaged

Step Climb is Active

Descent/Approach Path Capture/Hold Criteria are not satisfied

Macro

PROF Mode Engaged

Vertical Guidance Type is Profile

Veritcal Guidance Type is Airmass PROF

- iMacro

Climbing

Flight Phase is Takeoff

Flight Phase is Climb
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Macro

Descending

Flight Phase is Descent

Flight Phase is Approach

State Variable

Vertical Guidance Reference Altitude

= Climb Target Altitude IF

Engine Out is engaged

Aircraft Attained V3

Aircraft is not above 2 Engine Maximum Altitude

Engine Out Level Penetration = FALSE

Engine Out Level Deceleration = TRUE

Climbing

= Clearance Altitude IF

Climbing

Vertical Guidance Type is Airmass AFS

= Engine Out Driftdown Deceleration Altitude IF

Engine Out is engaged

Aircraft Altitude is above Computed 2 Engine Maximum Altitude

Aircraft Altitude Rate <= 200

Flight Phase is Cruise

Descending

PROF Mode Engaged
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Climb Conflict Altitude IF

Engine Out is not engaged

Climb Conflict Situation

Climbing

= Actual 2 Engine Maximum Altitude IF

Engine Out is engaged

Flight Phase is Cruise

Aircraft is above 2 Engine Maximum Altitude

Aircraft Altitude Rate < 200 ft./sec.

Engine Out Level Deceleration = TRUE

Aircraft initiated maneuver to 2 Engine Maximum Altitude

Descending

= Cruise Conflict Altitude IF

Flight Phase is Cruise

Cruise Conflict Situation

Descent Target Altitude IF

Flight Phase is Cruise

Target Altitude at Active

Cruise Conflict Situation

Vertical Guidance Type i

Descent Speed Limit Altitude IF

Leg Termination = Descent Target Altitude

s Airmass AFS

Descending

Descent Speed Limit Violation is TRUE
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= Descent Conflict Altitude IF

Descent Speed Limit Violation is FALSE

Descending

Descent Conflict Situation

= Altitude Constraint at Destination IF

Descent Speed Limit Violation is FALSE

Profile Descent is TRUE

Final Approach Prompt is not selected

Aircraft is not below path approach level-off

Non-precision VFR Approach Type selected

Descent Conflict Situation

= Below Path Approach Level Off Altitude IF

Descending

Descent Speed Limit Violation is FALSE

Profile Descent is TRUE

Final Approach Prompt is selected

Aircraft is below path approach level-off

Non-precision VFR Approach Type selected

Descent Conflict Situation
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Altitude Switch Specification (Eventless)

Controlled Device Status

System Status

State Trigger
Operational Startup, OR

Controls Reset

Internal Fault Internal Fault Detected

Inhibited Controls Inhibited

State Trigger
On Device Signal = On
Off Device Signal = Off
Unknown Device Signal = Obsolete OR

Startup OR
Controls Reset OR

Fault-Detected At least 2 seconds have passed since a
(Device Signal = On) message was received

~II
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Altitude Switch Specification (Eventless)

Altitude

State Trigger
Unknown Startup OR

Controls Reset OR
[(Analog Altimeter = Unknown) AND (Digital Altimeter = Unknown)]

Below [(Analog Altimeter = Valid) AND (Analog Altimeter Value < 2000)] OR
Threshold [(Digital Altimeter = Valid) AND (Digital Altimeter Value < 2000)]

At or Above [(Analog Altimeter = Valid) AND (Analog Altimeter Value > 2000) AND
Threshold (Digital Altimeter = Valid) AND (Digital Altimeter Value > 2000)] OR

[(Analog Altimeter = Valid) AND (Analog Altimeter Value > 2000) AND (Digital Altimeter = Valid)] OR
[Analog Altimeter = Valid) AND (Digital Altimeter = Valid) AND (Digital Altimeter Value > 2000)] OR

Cannot be (Analog Altimeter = Invalid) AND (Digital Altimeter = Invalid)
Determined



Altitude Switch Specification (Eventless)

Analog Altimeter

State Trigger
Valid Analog Status = Valid

Invalid Analog Status = Invalid

Unknown (Analog Status = Obsolete) OR
Startup OR

_Controls Reset

Digital Altimeter

State Trigger
Valid Digital Status = Valid

Invalid Digital Status = Invalid

Unknown (Digital Status = Obsolete) OR
Startup OR
Controls Reset

C.'



Altitude Switch Specification (Eventless)

Power Command Output

State Trigger
On (Altitude = Below Threshold) AND (Controlled Device Status = Off) AND

(System Status = Operational) AND (Altitude = At-or-above Threshold, in previous cycle)

Off (Altitude = Below Threshold) OR
(Controlled Device Status = On) OR
(System Status = Operational) OR
(Altitude = At-or-above threshold, in previous cycle)

Watchdog Probe Output

State Trigger
On [(No more than 200ms have passed since last output was generated) AND

(System Status = Operational) AND (Controlled Device Status = Fault-Detected) AND
(At least 2 sec have passed since Altitude last entered state Cannot Be Determined)] OR

[(No more than 200ms have passed since last output was generated) AND (System Status = Inhibited)]



Altitude Switch Specification (Events)

Controlled Device Status

To State Trigger Output Event
(Event) (Condition)

On Device Signal = On DEVICE ON

Off Device Signal = Off DEVICE OFF

Unknown Device Signal = Obsolete, OR DEVICE UNKNOWN
Startup, OR
Controls Reset

Fault-Detected At least 2 seconds have passed since a DEVICE FAULT-
(Device Signal = On) message was received DETECTED

System Status

State Trigger Output Event
(Event) (Condition)

Operational Startup, OR SYSTEM OPERATIONAL
Controls Reset

Internal Fault Internal Fault Detected SYSTEM FAULT

Inhibited _Controls Inhibited SYSTEM INHIBITED
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Altitude Switch Specification (Events)

Altitude

State Trigger Output Event
(Event) (Condition)

Unknown Startup, OR ALTITUDE
Controls Reset UNKNOWN

ANALOG ALT UNKNOWN (Digital Altimeter = Unknown)

DIGITAL ALT UNKNOWN (Analog Altimeter = Unknown)

Below ANALOG ALT VALID Analog Altimeter Value < 2000 ALTITUDE
Threshold BELOW

DIGITAL ALT VALID Digital Altimeter Value < 2000

At or Above ANALOG ALT VALID [(Analog Altimeter Value > 2000) AND (Digital Altimeter = Valid) AND ALTITUDE
Threshold (Digital Altimeter Value > 2000)] OR ABOVE

[(Analog Altimeter Value > 2000) AND (Digital Altimeter = Valid)]

ANALOG ALT INVALID, OR [(Digital Altimeter = Valid) AND (Digital Altimeter Value > 2000)]
ANALOG ALT UNKNOWN

DIGITAL ALT VALID [(Analog Altimeter = Valid) AND (Analog Altimeter Value > 2000) AND
(Digital Altimeter Value > 2000)] OR

[(Analog Altimeter = Valid) AND (Digital Altimeter Value > 2000)]

DIGITAL ALT INVALID, OR [(Analog Altimeter = Valid) AND (Analog Altimeter Value > 2000)]
DIGITAL ALT UNKNOWN

Cannot be ANALOG ALT INVALID (Digital Altimeter = Invalid) ALTITUDE
Determined INVALID

DIGITAL ALT INVALID (Analog Altimeter = Invalid)



State Trigger Output Event
(Event) (Condition)

Valid Analog Status = Valid ANALOG ALT VALID

Invalid Analog Status = Invalid ANALOG ALT INVALID

Unknown Analog Status = Obsolete, OR ANALOG ALT UNKNOWN
Startup, OR
Controls Reset

Digital Altimeter
State Trigger Output Event

(Event) (Condition)
Valid Digital Status = Valid DIGITAL ALT VALID

Invalid Digital Status = Invalid DIGITAL ALT INVALID

Unknown Digital Status = Obsolete, OR DIGITAL ALT UNKNOWN
Startup, OR
Controls Reset

Altitude Switch Specification (Events)

Analog Altimeter
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Altitude Switch Specification (Events)

Power Command Output
State Trigger Output Event

(Event) (Condition)
On ALTITUDE BELOW (Device Status = Off) AND (System Status = Operational) AND

(Altitude = At-or-above Threshold, in previous cycle)

Off ALTITUDE ABOVE, OR
ALTITUDE UNKNOWN, OR
ALTITUDE INVALID, OR
DEVICE ON, OR
SYSTEM FAULT, OR
SYSTEM INHIBITED

L (Altitude = At-or-above threshold, in previous cycle)

Watchdog Probe Output
State Trigger Output Event

(Event) (Condition)
On [(No more than 200ms have passed since last output was generated) AND

(System Status = Operational) AND (Controlled Device Status = Fault-Detected) AND
(At least 2 sec have passed since Altitude last entered state Cannot Be Determined)] OR

[(No more than 200ms have passed since last output was generated) AND
(System Status = Inhibited)]

SYSTEM OPERATIONAL [(No more than 200ms have passed since last output was generated) AND
(Controlled Device Status = Fault-Detected) AND
(At least 2 sec have passed since Altitude last entered state Cannot Be Determined)]

SYSTEM INHIBITED No more than 200ms have passed since last output was generated

DEVICE FAULT- [(No more than 200ms have passed since last output was generated) AND
DETECTED (System Status = Operational) AND

(At least 2 sec have passed since Altitude last entered state Cannot Be Determined)]



Appendix F:

Digital Watch Specification:
Flat State Machine dead

attery
re oved attery b r

batte re ved remove
rem ed

batt ry ba ery
remo ed rem ved (set alarm)

b 
m i nute 

b

daevi wt attery (set alarm) (set alarm

a in hour am/pm

ba ery as

Hierarchies Experiment Specifications
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Digital Watch Specification:
Hierarchical State Machine
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Satellite Control Specification
(Coming From Perspective)

Paddles

Time In Mode < Wait Mode
Delay

XZ Momentum Error

Optical System

Momentum Error

In Eclipse

Sine Sun Elevation

Wheel Spin Rate

Sine Sun Azimuth

Tumble Rate,
Omega
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Satellite Control Specification
(Coming From Perspective)

Paddles Not Deployed

Time In Mode >= Wait Mode < Detumble >= Detumble >= Spinup >= Spinup > Command
Delay Mode Delay Mode Delay Mode Delay Mode Delay Mode Delay

XZ Momentum Error > XZ Momentum > XZ Momentum > XZ Momentum
Error Threshold Error Threshold Error Threshold

Optical System Not Tracking

Momentum Error

In Eclipse

Sine Sun Elevation

Wheel Spin Rate

Sine Sun Azimuth

Tumble Rate,
Omega

0~
(A

01



Paddles Not Deployed Not Deployed

Time In Mode >= Detumble < Spinup <Spinup >= Spinup >= Spinup
Mode Delay Mode Delay Mode Delay Mode Delay Mode Delay

XZ Momentum Error <= XZ Momentum <= XZ Momentum <= XZ Momentum
Error Threshold Error Threshold Error Threshold

Optical System Not Tracking Not Tracking

Momentum Error > Spinup > Spinup
Momentum Error Momentum Error

In Eclipse

Sine Sun Elevation

Wheel Spin Rate

Sine Sun Azimuth

Tumble Rate, Omega

Satellite Control Specification
(Coming From Perspective)

ON
ON



Not Deployed

>= Spinup >= Spinup >= Reorient
Mode Delay Mode Delay Mode Delay

<= XZ Momentum <= XZ Momentum
Error Threshold Error Threshold

Not Tracking Not Tracking Tracking

> Spinup
Momentum Error

TRUE TRUE TRUE FALSE TRUE TRUE TRUE

<= Fine
Elevation Error

<= Fine
Azimuth Error

> Maximum
Tumble Rate

Satellite Control Specification
(Coming From Perspective)

a'
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Satellite Control Specification
(Coming From Perspective)

Paddles Not Deployed

Time In Mode >= Spinup >= Spinup < Reorient >= Reorient >= Acquire >= Orbit Day >= Orbit Day
Mode Delay Mode Delay Mode Delay Mode Delay Mode Delay Mode Delay Mode Delay

XZ Momentum Error <= XZ Momentum <= XZ Momentum
Error Threshold Error Threshold

Optical System Not Tracking Tracking

Momentum Error <= Spinup <= Spinup <= Spinup
Momentum Error Momentum Error Momentum Error

In Eclipse FALSE FALSE FALSE FALSE FALSE FALSE

Sine Sun Elevation > Coarse Sun > Coarse Sun > Coarse Sun > Coarse Sun
Elevation Error Elevation Error Elevation Error Elevation Error

Wheel Spin Rate

Sine Sun Azimuth

Tumble Rate, Omega

00
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Satellite Control Specification
(Coming From Perspective)

>= Reorient
Mode Delay

>= Deploy Wheel
Mode Delay

< Acquire
Mode Delay

>= Acquire
Mode Delay

Deployed

XZ Momentum Error 1 1 1

Optical System

Momentum Error

In Eclipse

Sine Sun Elevation

Wheel Spin Rate

Sine Sun Azimuth

<= Spinup
Momentum Error

FALSE

<= Coarse Sun
Elevation Error

>= Nominal
Wheel Rate

FALSE FALSE

<= Coarse Sun
Elevation Error

> Coarse Sun
Azimuth Error

Not Deployed

>= Paddle Deploy
Mode Delay

>= Orbit Day >= Orbit Day
Mode Delay Mode Delay

FALSE

<= Coarse Sun
Elevation Error

> Coarse Sun
Azimuth Error

Tumble Rate, Omega

Tracking

<= Coarse Sun
Elevation Error

> Coarse Sun
Azimuth Error

Paddles

Time In Mode

0O"
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Satellite Control Specification
(Coming From Perspective)

Paddles

Time In Mode >= Reorient < Deploy Wheel
Mode Delay Mode Delay

XZ Momentum Error

Optical System

Momentum Error <= Spinup
Momentum Error

In Eclipse FALSE

Sine Sun Elevation <= Coarse Sun
Elevation Error

Wheel Spin Rate < Nominal
Wheel Rate

Sine Sun Azimuth

Tumble Rate, Omega

Paddles Not Deployed Not Deployed

Time In Mode >= Acquire < Paddle Deploy
Mode Delay Mode Delay

XZ Momentum Error

Optical System

Momentum Error

In Eclipse FALSE

Sine Sun Elevation <= Coarse Sun
Elevation Error

Wheel Spin Rate

Sine Sun Azimuth <= Coarse Sun
Azimuth Error

Tumble Rate, Omega

-1
C
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Satellite Control Specification
(Coming From Perspective)

Paddles Deployed

Time In Mode >= Acquire < Orbit Day < Orbit Day >= Orbit Day >= Orbit Day
Mode Delay Mode Delay Mode Delay Mode Delay Mode Delay

XZ Momentum Error

Optical System Tracking Not Tracking Tracking

Momentum Error

In Eclipse FALSE FALSE FALSE FALSE FALSE

Not Tracking

FALSE

Sine Sun Elevation <= Coarse Sun <= Coarse Sun <= Coarse Sun > Fine
Elevation Error Elevation Error Elevation Error Elevation Error

Wheel Spin Rate

Sine Sun Azimuth <= Coarse Sun
Azimuth Error

<= Coarse Sun
Azimuth Error

<= Coarse Sun
Azimuth Error

> Fine
Azimuth Error

Tumble Rate, Omega

C$Lrrent A04 ire I , " , It NithtQ Orbit ! ptg



Satellite Control Specification
(Coming From Perspective)

Paddles Deployed

Time In Mode >= Orbit Day >= Orbit Day
Mode Delay Mode Delay

XZ Momentum Error

Optical System Tracking Tracking Tracking Tracking

Momentum Error

In Eclipse FALSE TRUE

Sine Sun Elevation <= Coarse Sun <= Coarse Sun <= Fine
Elevation Error Elevation Error Elevation Error

Wheel Spin Rate

Sine Sun Azimuth <= Coarse Sun <= Coarse Sun <= Fine
Azimuth Error Azimuth Error Azimuth Error

Tumble Rate, Omega <= Maximum
Tumble Rate



Satellite Control Specification
(Going To Perspective)

Paddles

Time In Mode < Wait Mode >= Wait Mode
Delay Delay

XZ Momentum Error

Optical System

Momentum Error

In Eclipse

Sine Sun Elevation

Wheel Spin Rate

Sine Sun Azimuth

Tumble Rate,
Omega



Paddles

Time In Mode < Detumble >= Detumble >= Detumble
Mode Delay Mode Delay Mode Delay

XZ Momentum Error > XZ Momentum <= XZ Momentum
Error Threshold Error Threshold

Optical System

Momentum Error

In Eclipse

Sine Sun Elevation

Wheel Spin Rate

Sine Sun Azimuth

Tumble Rate,
Omega

Satellite Control Specification
(Going To Perspective)



Satellite Control Specification
(Going To Perspective)

Paddles Deployed Not Deployed Not Deployed Not Deployed

Time In Mode < Spinup <Spinup >= Spinup >= Spinup >= Spinup >= Spinup
Mode Delay Mode Delay Mode Delay Mode Delay Mode Delay Mode Delay

XZ Momentum Error <= XZ Momentum <= XZ Momentum <= XZ Momentum <= XZ Momentum
Error Threshold Error Threshold Error Threshold Error Threshold

Optical System Tracking Not Tracking Not Tracking Not Tracking

Momentum Error > Spinup > Spinup
Momentum Error Momentum Error

In Eclipse TRUE TRUE

Sine Sun Elevation

Wheel Spin Rate

Sine Sun Azimuth

Tumble Rate,
Omega



Paddles Not Deployed Not Deployed

Time In Mode >= Spinup >= Spinup >= Spinup >= Spinup
Mode Delay Mode Delay Mode Delay Mode Delay

XZ Momentum Error > XZ Momentum > XZ Momentum <= XZ Momentum <= XZ Momentum
Error Threshold Error Threshold Error Threshold Error Threshold

Optical System Not Tracking Not Tracking

Momentum Error <= Spinup <= Spinup
Momentum Error Momentum Error

In Eclipse FALSE FALSE

Sine Sun Elevation

Wheel Spin Rate

Sine Sun Azimuth

Tumble Rate,
Omega

Satellite Control Specification
(Going To Perspective)



Satellite Control Specification
(Going To Perspective)

Paddles

Time In Mode

XZ Momentum Error

>= Reorient
Mode Delay

< Reorient
Mode Delay

>= Reorient
Mode Delay

>= Reorient
Mode Delay

>= Reorient
Mode Delay

Optical System

Momentum Error > Spinup <= Spinup <= Spinup <= Spinup
Momentum Error Momentum Error Momentum Error Momentum Error

In Eclipse TRUE FALSE FALSE FALSE FALSE FALSE

Sine Sun Elevation > Coarse Sun <= Coarse Sun <= Coarse Sun
Elevation Error Elevation Error Elevation Error

Wheel Spin Rate < Nominal >= Nominal
Wheel Rate Wheel Rate

Sine Sun Azimuth

Tumble Rate,
Omega
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Satellite Control Specification
(Going To Perspective)

Paddles

Time In Mode < Deploy Wheel >= Deploy Wheel
Mode Delay Mode Delay

XZ Momentum Error

Optical System

Momentum Error

In Eclipse

Sine Sun Elevation

Wheel Spin Rate

Sine Sun Azimuth

Tumble Rate, Omega
Omega

00
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Satellite Control Specification
(Going To Perspective)

Paddles Not Deployed Deployed

Time In Mode < Acquire >= Acquire >= Acquire >= Acquire >= Acquire
Mode Delay Mode Delay Mode Delay Mode Delay Mode Delay

XZ Momentum Error

Optical System

Momentum Error

In Eclipse TRUE FALSE FALSE FALSE FALSE FALSE

Sine Sun Elevation <= Coarse Sun > Coarse Sun <= Coarse Sun <= Coarse Sun
Elevation Error Elevation Error Elevation Error Elevation Error

Wheel Spin Rate

Sine Sun Azimuth > Coarse Sun <= Coarse Sun <= Coarse Sun
Azimuth Error Azimuth Error Azimuth Error

Tumble Rate, Omega
Omega



Paddles Deployed Not Deployed Not Deployed

Time In Mode >= Paddle Deploy < Paddle Deploy
Mode Delay Mode Delay

XZ Momentum Error

Optical System

Momentum Error

In Eclipse

Sine Sun Elevation

Wheel Spin Rate

Sine Sun Azimuth

Tumble Rate, Omega
Omega

Satellite Control Specification
(Going To Perspective)
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Satellite Control Specification
(Going To Perspective)

Paddles

Time In Mode < Orbit Day < Orbit Day >= Orbit Day >= Orbit Day >= Orbit Day >= Orbit Day
Mode Delay Mode Delay Mode Delay Mode Delay Mode Delay Mode Delay

XZ Momentum Error

Optical System Not Tracking Tracking Not Tracking Tracking Tracking

Momentum Error

In Eclipse TRUE FALSE FALSE FALSE

Sine Sun Elevation <= Coarse Sun <= Coarse Sun > Coarse Sun > Coarse Sun
Elevation Error Elevation Error Elevation Error Elevation Error

Wheel Spin Rate

Sine Sun Azimuth <= Coarse Sun <= Coarse Sun
Azimuth Error Azimuth Error

Tumble Rate,
Omega

00



Paddles

Time In Mode >= Orbit Day >= Orbit Day >= Orbit Day >= Orbit Day
Mode Delay Mode Delay Mode Delay Mode Delay

XZ Momentum Error

Optical System Tracking Tracking Tracking

Momentum Error

In Eclipse FALSE FALSE

Sine Sun Elevation <= Coarse Sun <= Coarse Sun <= Coarse Sun <= Coarse Sun
Elevation Error Elevation Error Elevation Error Elevation Error

Wheel Spin Rate

Sine Sun Azimuth > Coarse Sun > Coarse Sun <= Coarse Sun <= Coarse Sun
Azimuth Error Azimuth Error Azimuth Error Azimuth Error

Tumble Rate, Omega

Satellite Control Specification
(Going To Perspective)
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Paddles

Time In Mode

XZ Momentum Error

Optical System Not Tracking Tracking Tracking

Momentum Error

In Eclipse FALSE FALSE FALSE TRUE TRUE

Sine Sun Elevation > Fine <= Fine <= Fine
Elevation Error Elevation Error Elevation Error

Wheel Spin Rate

Sine Sun Azimuth > Fine <= Fine <= Fine
Azimuth Error Azimuth Error Azimuth Error

Tumble Rate, Omega > Maximum <= Maximum
Tumble Rate Tumble Rate

Satellite Control Specification
(Going To Perspective)
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Satellite Control Specification
(Going To Perspective)

Paddles

Time In Mode > Command
Mode Delay

XZ Momentum Error

Optical System

Momentum Error

In Eclipse

Sine Sun Elevation

Wheel Spin Rate

Sine Sun Azimuth

Tumble Rate, Omega

00


