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ABSTRACT

Development and Analysis of a High Fidelity Linearized J2

Model for Satellite Formation Flying

By

SAMUEL A. SCHWEIGHART

Submitted to the Department of Aeronautics and Astronautics
on June 8th, 2001 in Partial Fulfillment of the

Requirements for the Degree of Master of Science
at the Massachusetts Institute of Technology

With the recent flurry of research on satellite formation flying, a need has become
apparent for a set of linearized equations of relative motion that capture the effect of the
J2 geopotential disturbance force. Typically, Hill's linearized equations of relative
motion have been used for this analysis, but they fail to capture the effect of the J2
disturbance force on a satellite cluster. In this thesis, a new set of constant coefficient,
linearized differential equations of motion is derived. These equations are similar in form
to Hill's equations, but they capture the effects of the J2 disturbance force. The validity
of these equations will be verified by comparing the mean variation in the orbital
elements to the solutions of these equations. A numerical simulator will also be
employed to check the fidelity of the equations. It will be shown that with the appropriate
initial conditions, the new linearized equations of motion have periodic errors on the
order of centimeters that do not grow in time. The new linearized equations of motion
also allow for insight into the effects of the J2 disturbance on a satellite cluster. This
includes 'tumbling', the period of the relative orbit, and satellite separation due to
differential J2 effects. Overall, a new high fidelity set of linearized equations are
produced that are well suited to model satellite relative motion in the presence of the J2
disturbance force.
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Chapter 1

INTRODUCTION

Satellite formation flying is the placing of multiple satellites into nearby orbits to form

'clusters' of satellites. These clusters of satellites usually work together to accomplish a

mission. There are many benefits to using multiple spacecraft as opposed to one large

spacecraft. These include, but are not limited to: increased productivity, reduced mission

and launch costs, graceful degradation, on-orbit reconfiguration options, and the ability to

accomplish missions that would be unattainable any other way.

One example of a mission that will use formation flying is the Air Force's TechSat 21

mission [1]. The TechSat 21 mission is a distributed satellite system that is a flight

demonstration of space-based radar. Interferometry will be used to detect ground-moving

targets. The approach of interferometry to obtain high-resolution images is not new. It

has been used in many ground-based applications, most notably in the Very Large Array

[2]. The VLA is a radio observatory in New Mexico that uses 27 radio dishes, each 82

feet across, to produce an image with the same resolution as a dish 36 km wide. TechSat

21 will employ this same technique of interferometry by using up to 16 satellites in a

cluster approximately 500 meters wide. These satellites will work together to produce

high-resolution ground target information.

With the desire to place spacecraft into clusters, comes the need to accurately determine

and control the position of satellites within the formation. In order to accomplish this,

researchers initially turned to Hill's equations, also known as the Clohessy-Willshire

equations. Hill's equations are a set of linearized equations that describe the relative

motion of two spacecraft in similar near-circular orbits assuming Keplerian central force

motion [3]. In the past Hill's equations have been used for rendezvous maneuvers, but

these equations have started to find a new use in satellite formation flying.

11



As will be shown in Chapter 2, much research on satellite formation flying has been

accomplished through the use of Hill's equations. These equations are utilized because

they are easy to use. They are a set of linearized, constant coefficient differential

equations. Because of this, they can be solved analytically and provide a solution that is

fairly simple in form and is easy to understand. These solutions allow for an intuitive

sense of the relative motion of satellites in clusters. Hill's equations are also used in the

design of control laws since the most effective control schemes require a set of constant

coefficient, linearized equations. These reasons and more make them the logical first

choice in describing relative satellite motion.

However, while Hill's equations have proved very useful, they have several significant

limitations. Since they are linear, some error is introduced into the solution. However,

linearization errors are not the limiting factor. Hill's equations are derived under the

assumption that the disturbance forces acting on the satellites are negligible. This

assumption is usually acceptable for most relative motion problems, including

rendezvous maneuvers. In rendezvous maneuvers, the spacecraft are usually spaced

relatively close, and thus the differential effect on each spacecraft is small. Rendezvous

maneuvers are also relatively short in duration, so errors have little time to develop.

For formation flying, the conditions are a little different. Satellites are spaced from

meters to kilometers apart. Missions are also on a larger time scale, and errors begin to

add up. Because of these two issues, disturbances do have a significant effect on the

satellite motion.

The disturbance force cited time and time again as the preventing force from making

Hill's equations a completely useful tool is the J2 geopotential disturbance force. Because

the Earth is an oblate spheroid, (it's like a squished basketball bulging out at the equator),

the gravitational potential is not constant as the satellite orbits the earth. This disturbance

causes many variations over time in the satellite orbital elements. Independent of satellite

size or shape, the J2 force is always a dominating presence and cannot be changed.

12 Chapter 1 - Introduction



In the derivation of Hill's equations, the Earth is considered spherical, and the J2

disturbance in not incorporated. Thus, they do not capture the J2 disturbance effects.

Many papers have since been written that quantify the error resulting from their use.

Other papers do not use them at all, citing the fact that they do not capture the motion of

the satellites correctly.

It appears that there is a need for a set of linearized equations that are as easy and useful

as Hill's equations, but at the same time capture the effect of the J2 disturbance force. In

this thesis, a set of linearized, constant coefficient differential equations will be

developed that capture the J2 disturbance force.

These new equations are similar to Hill's equations in form. The radial and in-track

motion is still coupled, but are separate from the cross-track direction. They are easily

solvable, and the solutions look very similar to Hill's equations. However, they capture

the J2 disturbance that Hill's equations fail to capture.

Satellite formation designers will now be able to quickly and accurately predict cluster

size and shape. They will also be able to design optimal control laws that take into

account the effects of the effects of the J2 disturbance force.

Finally, the new linearized equations of motion allow for some new insight into the

motion of satellites under the presence of the J2 disturbance force. Cluster 'tumbling' is

discussed as a J2 effect. The cross-track motion has also been analyzed and determined to

be much more complex than previously thought.

The derivation of these equations will be presented in Chapter 3. Following in Chapter 4

is an analysis of the new linearized equations. The solutions to the new linearized

equations will be compared against the mean variation in the orbital elements. Then the

solutions will be compared to numerical simulation. Concluding in Chapter 5 will be a

discussion of the insights gained by using the new linearized equations.

Chapter I - Introduction





Chapter 2

PREVIOUS WORK

In this section, a brief overview will be given on a selection of papers that deal with the

relative positioning, motion, and control of satellites in clusters. Some of the papers

presented employ Hill's equations as their sole means of determining the satellite motion.

Others cite the errors in Hill's equations, primarily due to differential J2 forces and

calculate the errors incurred by using them. Finally some use non-linear techniques to

derive their solutions.

2.1 Using Hill's Equations as the Equations of Motion

There are many different ways of describing satellite motion within a cluster. In the past,

when relative motion between satellites has been needed, Hill's equations have been

used. This typically was for rendezvous missions where the distance separating the

spacecraft was small, and the mission time relatively short. However, due to their ease of

use and relatively good accuracy, they make a natural transition to satellite formation

flying. Once again the relative motion between two satellites is calculated, but now they

are separated by a greater distance and for longer periods of time. The following papers

in this section use Hill's equations as the primary means of describing satellite motion.

2.1.1 "Relative Orbit Design Tool"

The first paper discussed is written by Tollefson [4]. He has recently created a software

package for satellite formation flying. Using a graphical interface, this software package

allows users to rapidly design and test satellite clusters.

In his paper, Tollefson first uses Hill's equations to describe the different types of relative

orbits that are possible in a cluster. These relative orbits can be designed in the software

15



package, and the software is able to output the traditional orbital elements for each

satellite in the cluster.

The tool also has many graphical interfaces and displays that allow the user to see the

cluster in many different views. This allows a user to change the parameters of the cluster

while noting the effect it has on the cluster. Finally, the tool has three additional features:

a two-body orbit propagator (for elliptical reference orbits), collision detection, and the

ability to output the orbital elements of the cluster into Satellite Tool Kit. Overall, the

paper describes a tool that allows for the quick and easy design of satellite clusters.

2.1.2 "TechSat 21 Cluster Design Using AI Approaches and the
Cornwell Metric"

The next paper is by Kong, Tollefson, Skinner, and Rosenstock [5]. In their paper, they

describe an approach for choosing an optimal cluster design. Their research is primarily

focused on the TechSat 21 mission.

Because of the many different configurations possible for a satellite cluster, intelligent

search algorithms are utilized to choose an optimal design. Two different metrics are

disused for possible use in the optimization routine: Point Spread Functions, and the

Cornwell Metric. Using Hill's equations as the satellites' equations of motion, the paper

shows that intelligent search algorithms are nearly as effective as evaluating the whole

trade space. However, intelligent algorithms are faster by three orders of magnitude. The

paper also demonstrates that there are potentially new cluster designs for the TechSat 21

mission that may be better than current designs.

2.1.3 "Geometry and Control of Satellite Formations"

A paper by Yeh and Sparks [6] utilizes Hill's equations to present some interesting

geometrical relationships for satellites in clusters. For example, Hill's equations predict

that 'orbits' of one satellite around another satellite are restricted to the intersection of a

plane and an elliptical cylinder with an eccentricity of r3-/2. This allows for some
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interesting insight into which 'orbits' are possible, and which ones cannot be designed.

This same technique is used to help describe satellite 'tumbling' in section 5.3.

The paper also presents a control law using Hill's equations. Disturbances and control

forces are placed onto the right hand side of Hill's equations as forcing functions. These

control laws allow for the cluster initialization and adjustment. The author states, that

Hill's equations are a starting point for designing control laws, but also states that these

control laws may be inefficient when disturbances such as the J2 disturbance force are

incorporated.

2.1.4 "Satellite Formation Flying Design and Evolution"

The paper by Sabol, Burns, and McLaughlin, [7] gives a brief overview on the evolution

of cluster design, and utilizes Hill's equations to describe the different types of cluster

designs. Each cluster design is placed into a simulator with realistic dynamics, and the

results from each simulation are presented and discussed. The effects of the J2

disturbance force are noted and a control scheme is presented for formation keeping.

Using Gauss' variation of parameters, the minimum Av needed to counteract the J2

disturbance force was calculated. This required Av provides a minimum Av needed for

station keeping in the presence of the J2 disturbance force.

2.1.5 "Linear Control of Satellite Formation Flying"

In this paper by Sparks [8], Hill's equations are once again used to define the motion of

satellites in the cluster. The J2 disturbance force was labeled as the most destabilizing

perturbation. Just like in the previous paper, Gauss' variation of parameters was used to

derive a minimum value for the total Av needed to counteract the effects of the J2

disturbance.

A discrete time linear control law was then developed. This control law was placed into

a simulator and was able to produce approximately the same Av as the theoretical

minimum given by Gauss' variation of parameters.

Chapter 2 - Previous Work 17
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2.2 Quantifying the Errors of Utilizing Hill's Equations

While the previous papers have used Hill's equations as a means of describing satellite

motion, other papers analyze the errors that are incurred by using them.

2.2.1 "Gravitational Perturbations, Nonlinearity and Circular Orbit
Assumption Effects on Formation Flying Control Strategies"

The J2 disturbance force affects each satellite in a cluster differently. These differential

forces cause the cluster to change shape and separate. An analytical method by Alfriend,

Schaub, and Gim [9] is used to evaluate the differential forces, and the effects of using

Hill's equations.

In the paper, a state transition matrix is calculated that relates the changes in the orbital

elements to changes in the local coordinate frame. The resulting equations are compared

to Hill's equations in the presence of J2 perturbations, and eccentric reference orbits. The

results showed that using this state transition matrix provided better results than that

obtained with Hill's equations.

2.3 Eccentric Orbits

Due to the assumptions made in the derivation of Hill's equations, satellite clusters have

traditionally been considered to be in near-circular obits. However, there are some

benefits to placing satellite clusters into eccentric orbits. This allows for longer dwell

time over regions of interest, and shorter occultation time. Since Hill's equations are

based on a circular reference orbit, they fail for eccentric reference orbits.

First introduced by Lauden [10], time varying linear equations of motion can be

developed utilizing an elliptical reference orbit. The resulting differential equations,

while no longer time-invariant can be solved analytically.
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2.3.1 "Relative Dynamics & Control of Spacecraft Formations in
eccentric Orbits"

Inalhan and Hall [11] have expanded the topic of eccentric reference orbits to incorporate

satellite clusters. In their paper, they derive the linearized time varying equations of

motion, and present the homogenous solutions. They also present initial conditions that

produce periodic solutions, thus preventing satellites from drifting apart due to different

orbital periods. The solutions to the elliptical linearized equations are then compared to

Hill's equations for modeling satellite clusters in elliptical orbits. The errors incurred by

utilizing Hill's equations are presented.

2.4 Non-Linear Techniques

2.4.1 "J2 Invariant Relative Orbits for Spacecraft Formations"

The J2 disturbance causes many changes to a satellite's orbital elements over time. This

includes precession of the ascending node, argument of periapsis, and changes to the

mean motion. In a satellite cluster, the differential changes in the orbital elements causes

satellites clusters to change form and drift apart.

In this paper by Schaub and Alfriend [12], an analytical technique is used to derive a

class of orbits that are termed 'J2 invariant' orbits. Satellites placed into 'J2 invariant'

orbits are not immune to the J2 disturbance force, but instead two satellites placed into

these orbits will have the same drift, and thus the cluster remains together. The 'J2

invariant' orbits are created by using two first order conditions that determine the correct

differences in semi-major axis, eccentricity, and inclination.

2.4.2 "Impulsive Spacecraft Formation Flying Control to Establish
Specific Mean Orbital Elements"

In this paper by Schaub and Alfriend [13], an impulsive control algorithm is developed

using mean orbital elements. The change from osculating orbital elements to mean

orbital elements seems to have a two-fold purpose. The first is that small periodic



variations are not captured by the control system and thus propellant is not wasted

counteracting these variations. Instead only the secular drift in any of the orbital

elements is corrected for.

The second reason for switching to mean orbital elements is because impulsive

maneuvers are only applied once or twice during an orbital period. If the amount of

thrust applied is dependent on the current orbital elements, the average orbital elements

need to be used otherwise periodic variations may cause errors.

The reason why impulsive maneuvers are only performed once or twice an orbit, is

because the paper once again uses Gauss' variation of parameters. This allows the

controller to choose almost independently which orbital element to change and when to

apply that thrust at the most opportune time. The opportune time to thrust usually only

happens once or twice an orbit.

Numerical simulations were conducted to verify that the controller was capable of

controlling the variation in the mean orbital elements in the presence of disturbances, and

cluster misalignments.

2.5 Linearized Equations of Motion that Incorporate the J2
Disturbance Force

2.5.1 "Mitigation of Differential Perturbations in Clusters of Formation
Flying Satellites"

This paper by Sedwick, Miller and Kong [14] analyzed an assortment of perturbation

effects of a satellite cluster. These included a non-spherical Earth, atmospheric drag,

solar radiation pressure, and magnetic field interactions. This was first done by using a

non-dimensional approach to determine the scaling of each perturbation effect.

The next section of the paper looks at each perturbation effect in more detail. Focusing

on the TechSat 21 mission, only polar orbits were analyzed, and only in-plane

disturbances were accounted for. For the J2 disturbance analysis, the J2 disturbance force
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is added to the right side of Hill's equations as a disturbance force. In order to calculate

the differential J2 effects, a nominal trajectory is projected into the J2 force to produce a

new forcing function. The resonant terms in this forcing function are responsible for the

secular drift in the relative motion, and the Av needed to counteract these forces is

presented.

The other disturbance forces, including the error due to the linearization, are also looked

at in more detail. The resulting total Av necessary for station keeping is analyzed and

presented for the TechSat 21 mission.

2.5.2 "A Perturbative Analysis of Geopotential Disturbances for
Satellite Formation Flying"

Written by this author, the paper [15] is written on the same subject as this thesis. In this

paper, both the gradient of the J2 force and the gradient of the spherical gravitational

potential are incorporated to from a new set of linearized equations. This is the same

derivation that is presented in the next chapter. At the time of the writing, the cross-track

motion was just being understood, and was not fully explained. This thesis will complete

the analysis of the cross-track motion and provides the final linearized equations of

motion.

2.6 Conclusion

There has been a recent flurry of research on satellite formation flying. This research

falls into three general categories: papers that utilize Hill's equations, papers that show

Hill's equations do not capture the J2 disturbance effects, and papers that use a non-linear

method of capturing the J 2 disturbance effects.

From this survey of current research, there appears to be a need for a set of linearized

equations that are easy to use, but at the same time are able to capture the J2 disturbance.

In the next chapter a set of linearized equations of motion will be presented that captures

the J2 disturbance force but at the same time is as easy to use as Hill's equations.
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Chapter 3

DERIVATION OF THE NEW
LINEARIZED EQUATIONS OF
MOTION

In this chapter, a new set of linearized equations of motion will be developed. These

equations will be like Hill's equations in form, but will also capture the effects of the J2

disturbance force.

3.1 Approach Overview

The first step in the derivation is to write the equation of motion of a satellite under the

influence of the J2 disturbance in its simplest form, where g(i) is the gravitational force

due to a spherical Earth, and 2(V)is the J2 disturbance force.

r = g(i)+J 2(V) (3.1)

While this equation completely describes the motion of a satellite under the influence of

the J2 disturbance, it is not necessarily useful. First it cannot be solved analytically.

Second, it is not useful in visualizing the relative motion that is present in satellite

clusters.

The solution to these problems is to introduce a reference orbit. This reference orbit can

be tailored to be any type of orbit. In this thesis, four different reference orbits will be

used: an unperturbed circular orbit (Hill's Equations), a circular orbit with a modified

period (Solution 1), a circular orbit with modified period, inclination, and longitude of the

ascending node (Solution 2), and finally the center of the cluster itself (Relative Motion).
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The next step in the derivation is to linearize both the standard gravitational term and the

J2 disturbance around this reference orbit.

w = i ,- )+e2(= )-

where ?-, =X

(3.2)

(3.3)

Figure 3-1 : The Reference Orbit

Since we are interested in only the relative motion between the satellite and the reference

orbit, we subtract off the motion of the reference orbit from the equation of motion of the

satellite.

r -ef = (ef) + Vk( 'ef +j 2 ( 'ref+ Vj 2 ( 'ref) xrref (3.4)

Which can be simplified to

= g(ef )+V (,ef) + j 2 (ref )+Vj 2(4 i ef - ef (3.5)

In the rotating coordinate system of the reference orbit, the initial equation of motion is

x + 2x k +& xC +Cx(o x )= g('ef) + Vg(, ').e + j 2 (,ef +Vj 2(i,ef)- - ,ef (3.6)

It will be shown later that Vj 2 (ie) is not constant, and since we are looking for constant

coefficients, the time average of the gradient is taken. The resulting equation is

+2 + =

(3.7)
g(,ef ) + g(',ef )-+ j 2 (ef ) + fVJ 2 (ief)dO - -i

2r0 
-re
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Equation (3.7) forms the basic equation that will be used throughout this paper. The

main variations to it will be in the choice of the reference orbit, and corrections to the

cross-track motion. These topics and a more detailed analysis are discussed in section

3.3-3.6

3.2 The Coordinate System

Before going through a detailed analysis, the four coordinate systems used throughout

this thesis will be described. One system is an inertial coordinate system used to represent

the absolute position of the reference orbit while the other three coordinate systems are

body fixed coordinate systems.

3.2.1 The1 -Y^ - Z Inertial Coordinate System

The X - Y - Z inertial coordinate system is an Earth centered system. The X - Y plane

coincides with the equatorial plane, and the Z vector points through the North Pole. See

Figure 3-2.

2

r

u T
Figure 3-2: The X -Y -Z and r^ - 0 - i Coordinate Systems
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3.2.2 The r - - i Body Fixed Coordinate System

The second coordinate system used is a spherical coordinate system. The r points in the

radial direction, i is the azimuthal angle measured around the line of nodes, and $ is the

co-latitude measured from the ascending node which acts as the "pole" of the spherical

system. See Figure 3-2.

3.2.3 The R- - N Body Fixed Coordinate System

The third coordinate system is a body fixed coordinate system with the origin located at

the reference satellite. The R vector (radial) points in the radial direction. The N vector

(normal) is perpendicular to the orbital plane and points in the direction of the angular

momentum vector. Finally the T vector (tangential) completes the orthogonal triad, and

points in the direction of movement. See Figure 3-3.

R

N

Figure 3-3: The R - T - N Coordinate System

3.2.4 The X - - Body Fixed Coordinate System

The fourth and final coordinate system is also a body fixed coordinate system that is very

much like the R - T - N coordinate system. The X vector points in the R direction, the

j vector points in the T direction and the 2 vector points in the N direction. However,

with the £ - j - 2 coordinate system, the stipulation is made that it is a curvilinear

coordinate system. The X vector remains unchanged, however the j and the 2 vector

'curve' around the orbit. In this way, the coordinate system is very much like a spherical

coordinate system. See Figure 3-4.

M-1 t 76

26 Chapter 3 - Derivation



Chapter 3 - Derivation 27

X

Figure 3-4: The .^ - y - z Coordinate System

3.2.5 Converting Between the Body Fixed Coordinate Systems

Conversion between the body fixed coordinate systems is fairly straightforward. The

radial vector in each coordinate system completely coincides. The T vector, j vector,

and $ all coincide; and the N vector, the ^ vector and the i vector all coincide. The

only discrepancy comes from the fact that the R - T - N coordinate system was not

defined as a curvilinear system but as rectangular.

However, the only use of the R - T - N is when the J2 disturbance force is presented.

This does not pose a problem because only a direction is calculated using this coordinate

system and not a position. Therefore one can freely switch between the R - T - N system

and any of the other body fixed coordinate systems described here when describing a

direction or a force.

3.3 Detailed Derivation - Absolute Motion - Solution 1

Section 3.3 will present the initial derivation of the new linearized equations of motion.

The steps followed here will be the same as outlined in section 3.1. Each step will be

shown in more detail, and a reference orbit will be chosen. The result will be a set of

linearized, constant coefficient differential equations. The analytic solution to these

equations will also be presented.
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3.3.1 The Basic Equations of Motion

The first step is to start off with the analytical equation of motion

r =q) g(+ 2(T) (3.8)

where g(T) is the gravitational force due to a spherical Earth,

( - (3.9)
r

andJ 2 (') is the force due to the J2 disturbance [3].

i2(i)= 
3 J2 PRe [( 3 3Sin2i Sin2O)R
2 r (3.10)

+(2 Sin2 i Sin0 Cos0)T+(2 Sin i Cos i Sin 0) N]

where Reis the radius of the Earth.

3.3.2 The Unperturbed Circular Reference Orbit

The next step is to introduce the reference orbit. For simplicity, a circular reference orbit

only under the gravitational influence of a spherical Earth is initially used. This is the

same reference orbit used in Hill's equations. The position of the reference orbit is

denoted as .ef

efg(ref) (3.11)

3.3.3 Linearization of the Gravitational Terms

The next step in the derivation is to linearize the gravitational terms with respect to the

reference orbit. The resulting equation of motion is

r = g( ef) + Vg( f )-x + j 2 ('re )+V j 2(i,ef)- (3.12)



Using a spherical coordinate system (r -I) the gradient of the k(F) gravitational

force is calculated. The result is a 2nd order tensor.

2-L 0

0 0

0

0

-

(3.13)

The J2 disturbance force (equation (3.10)) is given in R - T - N^ coordinates. However

the equation can be transferred directly to a r^ - - t coordinate system without any loss

of generality. The resulting gradient is

VJ 2(r,0,i)=

(1-- 3Sin2i Sin20)

Sin 2i Sin 20

Sin 2i Sin G

Sin2i Sin 20

1 2 17 2-- Sin i ( _ Sin 2 )
2 2 4

Sin 2i Cos 0
4

Sin 2i SinG

Sin 2i Cos 0
4

3 Sin2i (- +-5Sin26)
4 2 4

3.3.4 Relative Motion

As in the derivation of Hill's equations, motion is taken with respect to the reference

orbit. This relative motion is denoted as i. See Figure 3-1

i =T -ref (3.15)

Since the reference orbit is rotating, rotational terms are needed when calculating the

relative motion of the satellites. Note the 'rel' subscripts will be dropped in the

remainder of the text.

Xre =r -261 x ,,, -c>x x -co x (Co x i)(

6pJ 2R2

ref

(3.14)

29
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Co is the rotational rate of the body fixed coordinate system, and thus the angular velocity

of the coordinate system. For a circular reference orbit

= 2 = n z (3.17)

Substituting equation (3.12) into equation (3.16) and re-arranging the terms yields

C +2xi +>x+sx(eCx3) = g(,ef)+ V( if )i + j 2 (ef )+VJ2 (2,f ) - ,f( 3 18 )

3.3.5 Time Averaging the J2 Gradient Term

Equation (3.18) is a linearized equation of motion, however, the problem arises that

VJ 2 (,ef) is not constant except for equatorial orbits. An approximate solution to this

problem is to take the time average of the VJ 2 () term.

4s 0 0

1fVZ2(i) d6= 0 -s 0
2 r d r [0 0 -3sj (3.19)

where s = 8 (1+3 Cos 2i)
8r2

Equation (3.18) now becomes

x+2s x i+ (>x + x (@x i)

1 2"r (3.20)
= ('ref )+ vg(Fef). + j 2 (Tef ) + r V' 2(Qef dO X - ref (.0

0

3.3.6 Adjusting the Period of the Reference Orbit

Under the influence of the J2 disturbance force, the perturbed satellite will have a

different orbital period than when unperturbed. Because of this discrepancy, the satellites

in the cluster drift from the reference orbit and eventually the linearized equations break
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down. To fix this problem, the period of the reference orbit must be adjusted to match the

period of the satellites in the cluster.

The change in period due to the J2 disturbance can be found from the average J2 force

(not to be confused with the time average of the gradient of the J2 term taken above). The

equation of motion of the reference orbit, see equation (3.11), now becomes

1 2;r
',ef =( ef )+- fJ 2 (ief )d0 (3.21)

2r0

where

1 
-- J 2(i) do = -nr s x

(3.22)

S = 82 * (1+ 3 Cos 2i)
8r2

Now that the reference orbit has a new period, the angular velocity vector of the rotating

coordinate system must also be updated.

r2;rxei,)$ + Z(gd (3.23)
ref 2; 0

which gives

n=nc2

(3.24)

3.3.7 Final Solution - Circular Reference Orbit - Solution 1

Equation (3.20) becomes

x + 26 x i + 6 x - + 6 x (6 x i)=

1 2 2; (3.25)
Vk(',f)-'+Z2(7,f)+-f VZ2(Q, )d6 -i- f2(re )d0

31



Substituting in all of the terms the resulting equations of motion are (in k - j - Z

coordinates)

-2 (n c) j -(5c2 -2)n2x = -3n2 12 (I 3 Sin 2i Sin 2 (n c t) (1+3 Cos 2i))
r 2 2 8

2(nc)i -n j - Sin 2i Sin (net)0 Cos (n ct)
rref

O+(C2 - 2) nJZ=-n 2 -E-Sin i Cos i Sin (n ct)
ref

(3.26)

Because these equations are linear, constant coefficient differential equations, they can be

easily solved. The results are presented below. The initial conditions, o & j5, that

specify no drift and no offset in any direction over time have been calculated and are also

presented below.

x = (x0 - a) Cos(n t4Vs) + yo Sin(n t VI) + a Cos(2n t1 + s)

t.4IV + ysCs~ 1+ 3s -y =- (x0 - a) Sin(ntv s + yo Cos(nt I)- )+ 1+s a Sin(2n t1 +s)
VI7 2(1+ s)

z = zo Cos(n t1+ 3s) + z Sin(n t1+ 3s)+
n-1+ 3s

#3(1I+ s Sin(n t41+ 3s) - A1+J3s Sin(n ti+s))
(3.27)

3n J2
j;o=-2ncx0 + .A (1R - Cos 2 i)

85 C

3J 2
a= 2 e (1-Cos2iref)

8,,(3+ 5s)

S 3J2R2
s=r2'(+ 3 Cos 2 i,,,) c=

1-s
. 0 =y 0 n( )

2c

3J 2 R2 Sin 2iref
4r,, s1+3s

32



Chaner - Deivaion33

3.4 Detailed Derivation Cont. - Absolute Motion - Solution 2

While the above equations of motion are a vast improvement over Hill's equations when

incorporating the J2 disturbance force, more can be done. Even though the orbital period

of the reference orbit has been adjusted to match the perturbed satellite they still drift

apart due to separation of the longitude of the ascending node. This section will derive an

expression for a new reference orbit that has the same drift in the longitude of the

ascending node as the perturbed satellite. This will be accomplished by using mean

variations in the orbital elements. It should be noted that this expression is only an

approximate solution to the new reference orbit and modeling errors are introduced.

3.4.1 Re-adjusting the Reference Orbit

While the current reference orbit and the satellites in the cluster have the same orbital

period, they still drift apart. This is due to the fact that the longitude of the ascending

node of a satellite will drift under the influence of the J2 disturbance.

B

AA Cos i

AO Equator

A

Figure 3-5: The Effects of a Changing Argument of Periapsis

If both the reference orbit and a satellite in the cluster start at point A, after one orbital

period the perturbed satellite will be at point B while the current reference orbit will

return to point A. The satellites are now separated by a distance Az. After two orbital
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periods, the satellites will be separated by an additional Az, and this process will

continue causing the satellites to drift farther and farther apart. See Figure 3-5.

Because the J2 disturbance force is causing this separation, the solution to this problem is

to determine the aspect of the J2 disturbance that causes the drift in the 2 direction and

incorporate it into the reference orbit.

Using Gauss' mean variation in the orbital elements [3], the normal component of the J2

force is responsible for the drift in the longitude of the ascending node. Applying the

normal component of the J2 disturbance force to the reference orbit results in

,ef g(ref )+ 2j 2(ief)d6+j 2(i)ef-N (3.28)
0

With the addition of this force onto the reference orbit, both the satellite and the reference

orbit will have a drift in the longitude of the ascending node. Thus, the satellites will not

drift apart. It should be noted that differential J2 effects due to the perturbed satellite and

the reference orbit having different inclinations may still cause differential drift in the

two orbits, but this drift is on a much smaller scale and will be accounted for in section

3.5

3.4.2 Describing the New Reference Orbit

With the addition of the new forcing term onto the reference orbit, it is not easy to

analytically describe the motion of the new reference orbit. One solution is to look at the

mean variation of the orbital elements.

The position of the reference satellite in X - Y - Z Earth-centered inertial coordinates is

[3]

ie = re (Cos 2 Cos 6 - Sin Q Sin G Cos i)x

+ r,,f (Sin Q Cos + Cos Q Sin 0 Cos i)Y (3.29)

+ r,.f (Sin 0 Sin i)Z
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The normal component of the J2 disturbance has an effect on four out of the six orbital

elements:

ai
at Normal

Force

C at JNormal
Force

at Normal
)Force

3JJ2R2
2 E Sini Cosi SinO Cos0

r7/

21~ RE Cos iSin 2 0

3JLJ2R 2.
- Cos i Sin2O

r 72
(3.30)

at a )Normal OtKNormal
Force Force

The above differential equations of motion of the orbital elements are not easily solved,

but a good approximation can be made by assuming a constant inclination.

3 1-uJ R 2
i(t) = io - j 2 'e Cos i Sini Sin2 (k t)

2kr
7 /2

3v/J 2R2 .t= -2' Cos i (tk2k r

O(t)=nct+ "2Re Cos 2 i(t
2kr 7

/
2

Sin(2kt)
2

Sin(2k t)
2

3 ,J2R2 2k =nc+ 3 /*2 Cos 2i
2 r'' 2

Equation (3.31) can now be substituted back into equation (3.29) to provide an

approximate equation of motion for the reference orbit.

(3.31)
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3.4.3 Angular Rotation Rate of the New Reference Orbit

Now that we have modified the reference orbit, the angular velocity C of the coordinate

system must now be calculated again. The angular rate can be defined by

(dQ . di
w Q=( - SiniSin 0+ - i Cos O)

dt) dt

(dC' di'
+( Sin i Cos 0 - i) Sin 0)9

dt dt Y(3.32)

+( ) - I + Cosi)2
dt dt

Substituting in equation (3.31) and taking the time average results in

C = c n 2 (3.33)

This is the same angular rate as derived with the previous reference orbit used in the 1st

solution. This makes sense because a normal force should not affect the angular

rotational rate.

3.4.4 Final Solution - New Reference Orbit - Solution 2

Because we have added a component of the J2 disturbance to the reference orbit, that

component must be subtracted from the equations of motion. The resulting equations of

motion are

x +2@xx + Ox - +Cox(ox i)=

1 21r 2z (3.34)
V (,f )-i+ j 2 ( ,f )+-f VZ2( ,r )d -.i -- 2 2( ,)d -Z2 ( , )-N
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Substituting the appropriate terms into the equations results in

-2 (n c)j-(5C2 -2)n2x =

9+2(nc)k=

-3n2j2R 2 (1 3 Sin2 i Sin2 (k t)

rre 2 2

-3n 2j 2 Sin2i Sin(kt) Cos(kt)
rref

(1+3 Cos2iref)

8

(3.35)

S+(3c 2 - 2)n2 z = 0

These can be solved, resulting in

x = (xO -a
2 ) Cos(nt-1i §)+ y 0 Sin(nt vi )+a 2 Cos(2k t)

2 NIT+-

y =-2 (xO -a 2) Sin(nt i7 s) + yo Cos(nt' si7)+Q 2 Sin(2kt)

z = zo Cos(n t1I+3s)+ ZO Sin(n141+3s)
n .1+3 s

po=-2n + 3nJ2+8kRf (1-Cos2i)
8 k r

ko=yon( 1 s
21i s

a 2 =-3J2Re2 n2 (3k - 2n + 7 )
8 k rre (n2(1-_ s) - 44kk2)

3J 2 Re n2 (2k(2k -3nh4 is)+n2(3+5s)) (I-Cos2i)
8 k ref 2k(n 2 (1- s)-4k 2)

M_ 3 2
S = 3J (1+3 Cos2i)

8 r,,
k =fnI+ s + 3nJ2Re Cos2

2r2 g2ref

(3.36)
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3.5 Correcting Out of Plane Motion - Solution 3

This next section will address a problem with the linearized equations of motion as

derived in the previous section. More specifically, the cross-track motion is not currently

modeled correctly. The cross-track motion is deceivingly the most complex motion seen

by the satellite cluster. While the linearized differential equations of motion look simple

for the Q direction, (they are not coupled with the other directions), the actual motion is

more complex and is not captured by the equations so far.

3.5.1 Why do the linearized equations of motion fail?

Under the influence of the J2 disturbance force, the orbital planes rotate around the Z axis

(the north pole). This is due to the fact that the J2 disturbance force is symmetric across

the equator. The new linearized equations of motion, instead of predicting that the orbital

planes rotate around the Z axis, predict that the orbital planes rotate around the vector

normal to the reference orbit. So in the equatorial case, the linearized equations of

motion correctly represent the out of plane motion, (the normal vector to the orbital plane

points in the same direction as Z ). However, for inclinations other than equatorial, the

linearized equations of motion incorrectly model the out of plane motion.

And again the question is why do the linearized equations of motion fail? The reason is

that the J2 disturbance force is modeled by taking the time average of the gradient of the

J2 disturbance force (see section 3.3.5). This assumption causes the J2 disturbance to

appear symmetrical about the current reference orbital plane. Once again, for an

equatorial orbit, the time average of the J2 disturbance is not a simplification since the J2

disturbance force is always a constant, and symmetrical about the equator.

For in-plane motion, the assumption of the time averaged J2 disturbance is not a

significant error and no changes are required. However for cross-track motion, the error

is significant. In this section we will develop a new equation for the out of plane motion

based on the geometry of the moving orbital planes. At the same time, the analysis will
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be expanded so that differential J2 effects due to different satellite inclinations will be

taken into account.

3.5.2 Description of Cross-Track Motion

Cross-track motion is due solely to the fact that the satellite orbit and the associated

reference orbit are not coplanar. It is a periodic motion that is equal to zero when the

two orbital planes intersect, and is at a maximum 900 away from the intersection of the

planes. The intersection of the two planes is based on differences in the inclination and

longitude of the ascending node between the orbital planes. Under the influence of the J2

disturbance force, these orbital planes move.

As these orbital planes move, both the period and the amplitude of the periodic terms

change. This changing is not linear, and spherical trigonometry will be used to derive the

out-of-plane motion. Once the period B(t) and amplitude A(t) are known as functions of

time, the equation for out of plane motion can be written in the form

r ~0

z = A(t) Z0 Cos(B(t) t)+ n +sSin(B(t) t) (3.37)
A(O) A(0)

3.5.3 The Period of the Periodic Terms

The period of the periodic terms is defined as the length of time between crossing the

intersection of the two planes and returning to that same intersection. When the orbital

planes move, the location of this intersection also changes, and thus the period of the

periodic terms is also changing. In this section, the distance between the intersections of

the orbital planes from one pass to the next will be calculated. Since the velocity of the

satellite is known, the resulting period can be determined.
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Satellite's
Orbit

Orbit

Figure 3-6: Location of the Intersection of the Two Orbital Planes

Figure 3-6 shows the orbit of a reference orbit, and the orbit of the satellite as they cross

the equator. iref and i,, are the inclination of the reference orbit and the satellite

respectively. Q0 is the initial angular separation of the longitude of the ascending node

between the two orbits. yo is the angular distance from the satellite's equatorial crossing,

and the crossing of the two orbits. yo can be calculated using spherical trigonometry.

Yo = C Cos' i Cos 0 -Cotiref Sin is,(3
yo = Cot ( i 0(3.38)

Sin2, )o

Because of the J2 disturbance force, the orbits' longitude of the ascending node will

precess. This precession of the two orbital planes causes the location of the crossing of

the two orbital planes to change. The extra distance that the satellite must travel before

crossing the reference orbit can be calculated using Figure 3-7.
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AY

AQsat COsa,

ftf
Perturbed

C Orbit

Reference
Orbit

AQref

Figure 3-7: The Moving Intersection of the Orbital Planes

Figure 3-7 shows the changing location of the orbital plane crossing. The dashed line

represents the initial orbital plane, while the solid line is the orbital plane at a later time.

The location of the orbital plane crossing can be described by a change in the distance

between the satellites equatorial crossing and the crossing of the reference orbit Ay.

CosiCosCnet -Coti Sini

Sin ,net (3.39)

ant 0 Msat -Aref

3 J2 Re t (3.40)
sat 2 COS isat2 r

3 J2 nR2 tref ~ _ 2 ref
2 re

Equation (3.39) determines the extra distance that the satellite must travel (Ay) as a

function of time. While this solution provides an accurate means of determining this

A2sat

41
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distance, it is a little tedious to calculate. A first order approximation can be made by

calculating the derivative of y with respect to Q.

dy = Sin i,ff (Cos i,f Sin isa, Cos Qo -Cos i, Sin i, )
dK (Cos iref Sinisa, -Cos isa, Sin irf Cos 20 )2 + (Sin irefSin 20 )2

From this equation, Ay can be calculated as

Ay -Y Anet - AQsat COS sat (3.42)
d92

Which is a linear function in time, and can be written as

Ay=bt (3.43)

where b is a constant.

Both methods provide roughly the same solution. While equation (3.39) is more exact,

equation (3.42) is easier to implement once the derivative has been calculated.

Equation (3.42) also allows for some insight into the motion of the location of the orbital

plane crossing. When the difference between iref and ,satis small, and A2 is small,

dy/dQ becomes very large. Thus small changes in A2,net can result in large changes in

Ay. This is due to the relative orientation of the orbital planes and the axis about which

they rotate.

This motion can be thought of as a scissoring effect. When a pair of scissors is opened,

the point of intersection of the two blades moves very rapidly from the tips back. As the

handle is opened further, the rate at which the intersection of the two blades moves

towards the handles slows down. With orbital planes, the location of the intersection of

the orbital planes will move very quickly away from the equator, and then as it

approaches the poles it will slow down.
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Once a function for Ay has been calculated, the arguments of the periodic terms can be

calculated.

A yB(t)= nc -
t

(3.44)

If the first order approximation of Ay, equation (3.41) and (3.42), is

calculate A y then B(t) is a constant.

B(t)= nc - b (3.45)

Also, if the orbital planes have no differential movement and the same inclination,

A,net =0 and iref = i 1,, then

B(t) = n c - b = k

k =nc+ 2  Cos2i
2rref

(3.46)

used to
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3.5.4 Amplitude

The amplitude of the out-of-plane terms is dependent on the maximum separation

between the two different orbital planes. This can once again be calculated with

spherical trigonometry.

Satellite's
Orbit

Orbit

(DI N,

Figure 3-8: Determining the Amplitude

From Figure 3-8, it can be seen that the maximum amplitude is based only on the

inclination of both orbits, and their separation at the equator.

The angle (D can be calculated using

900

Q1)(t) = COS-' (Cos isat Cos iref + Sin isat Sin irf Cos Q(t)) (3.47)

where 92 is the time varying separation of the longitude of the ascending nodes.

Now that D has been determined as a function of time, the amplitude of the out of plane

motion can be defined as

A(t)= ref (t)= ref Cos-'(Cosisat Cosirf + Sins, Siniref Cos4(t))

44 Chapter 3 - Derivation
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There are times when the inclination of the reference orbit and the inclination of the

satellite are identical. When this is the case, the two orbital planes intersect at 6 = 900,

and using Figure 3-9 the amplitude can be more simply calculated by

CD(t)= 2Sin-'(Sin i Sin ) (3.49)
2

When 92 is small, this can be approximated by

CD(t) ~ Q(t) Sin i (3.50)

Satellite's Reference
Orbit Orbit

7./2

S'/"2-, sat 1re
Equator

2

Figure 3-9: Determining the Amplitude when ref = isa
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3.5.5 Final Out-of-Plane Motion

We can now write the out-of-plane motion as

z = A(t) zo Cos(B(t) t) + Sin(B(t) t)
A(O) A(O)

A(t) = refD(t) (3.51)

B(t)= nc -AY
t

When differential motion is not taken into account, there is no change in the amplitude of

the cross track terms ( A(t) is a constant). B(t) is also a constant. The equations of motion

greatly simplify producing

z = zo Cos(k t)+ zo Sin(k t) (3.52)
n-1+3s

3.6 Relative Motion

While the motion of a satellite with respect to the reference orbit is interesting, what

really matters in formation flying is the relative motion of one satellite with respect to

another satellite in the cluster.

The equations of motion that describe differential motion can be obtained in two different

ways. First, the motion of each satellite can be calculated using the above equations of

absolute motion for each satellite. Then this motion is subtracted from one another to

produce the relative motion. Otherwise, the equations of motion can be derived by

creating a set of differential equations again. Both methods will produce the same

results, but the latter is shown here.

Deriving the relative motion can be accomplished by applying the substitution of

x2 -1 = 
(53

46
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into equation (3.34). i2 and 2, are the relative positions of two satellites in the cluster.

A + 26x A + xi +Cox (CoxA) =V (f + Vj 2 ('ef)d6- A (3.54)

3.6.1 Final Relative Motion Equations - No Cross-Track Corrections

Substituting in the appropriate terms results in the following differential equations of

motion in ^ - j - Z coordinates

i- 2(n c) (5c 2 -2)n2x =0

9+2(n c),i=0 (3.55)

&+(3c2 -2) n 2z =0

It should be noted that this is just the homogenous solution to the equations derived in the

10 and 2 nd solutions above.

Solving the differential equations results in

x = xoCos(VIs nt) + 2JiT)'yo Sin(i~ 7 nt)

y 2A- xs Sin(17 n t) + yoCos(V 1 7 s n t)

z = zoCos(n- + 3s t)+

co _ n yo (1- s)
2 .,/ -+

where

s = 2 (1+ 3 Cos 2i,,,
8r.f

(3.56)

fo = -2n xoV1 -0

n=
re
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3.6.2 Final Relative Motion Equations - With Cross-Track Corrections

The relative cross-track motion can now be corrected just like the absolute motion

equations were in section 3.5. The resulting equations of motion are

x xCos(IV1 nt) + - yo Sin(-Ii77 nt)

y= - x0 Sin(41 snt)+ yoCos(1 7s n t)

z = A(t) - Cos(B(t'
A(O)

io _ n yo (1-s)
2 ,I1

where

s= 3J 2Re, (1+ 3 Cos 2ie)
8ref

A(t ) = r,.f (D(t )

B(t)= nc - A
t

Z0

t)+ n-,1+3 3s Sin(B(t) t)
A(O)

jO = -2n xo1 is

(3.57)

3.7 Initial Conditions and Closed Form Solutions

The solution to the new linearized equations of motion is dependent on six initial

conditions. These initial conditions are specified as the initial position and velocity of the

satellite (xO, yo, zo, fio , ). However, two of the initial conditions (ki & f0) can be

solved for to eliminate drift and offset. These initial conditions for (*e & j0) have

always been calculated and specified in the above solutions for all of the linearized

equations of motion.

However, the initial conditions specified by the linearized equations of motion have

errors. Because of this, some offset and drift errors are produced. The most common drift
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observed is in the ^ direction. This drift signifies a mismatch between the orbital period

of the reference orbit and that of the satellite.

The initial conditions given by the new linearized equations of motion do a very good job

of predicting the appropriate initial conditions to match the periods. However, they are

not exactly right. It turns out that drift in the j direction is extremely sensitive to jY.
Because of this, an error on the order of a few meters per orbit is generated when using

the initial conditions specified by the new linearized equations of motion.

New initial conditions can be calculated that will produce closed form solutions. This is

done either numerically or analytically. In this section, an analytical method of

calculating the appropriate initial conditions is presented for satellites in the same orbital

plane. Using these new initial conditions completely removes any drift in the j direction.

3.7.1 Why is there an error in the linearized equations initial
conditions?

As stated above, the new linearized equations provide for initial starting conditions.

These initial conditions are very close to being exact, but there is still error. The reason

for this error has two parts. The first is the linearization of the gravity terms. Since these

are linearized equations, they do not model the exact gravitational force, but instead a

linearized version. Second, when calculating the gradient of the J2 term, the new

linearized equations use the time average of the J2 force calculated at the radius of the

reference satellite, and not the actual force. These two simplifications to the gravitational

force are responsible for the small error in predicting the appropriate initial conditions.
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3.7.2 Orbital Energy and Period

The period of an orbit is based on the orbit's energy. Satellites with the same energy

orbit and the same inclination, have the same period. Total energy is the sum of a

satellite's potential and kinetic energy.

E = K.E.+ P.E. (3.58)

Once the total energy the orbit is calculated the velocity can be found.

3.7.3 The Total Energy of the Orbit

The total energy of the satellite's orbit can be found by calculating the total energy of the

reference orbit. The specific kinetic energy of the reference orbit is given as

2 (wr) 2  (nlj 7  r)2 1+s
K.E. - (3.59)

2 2 2 rre 2

Because the reference orbit is considered to be under the influence of an averaged J2

disturbance, the average of the potential energy is used to calculate its gravitational

potential.

P JR 2
P.E. - (1+ e (1+ 3 Cos 2isa,)) (3.60)

re 8 r

Thus the total energy of the orbit is given as

E -p 1+= s p (1+ 2 e (1+ 3 Cos 2isa))
r 2 zef 8rf (3.61)

E=- P( s
re 2 6
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3.7.4 Determining the Velocity of the Perturbed Satellite

The satellite's specific kinetic energy is given as

2

K.E.= vin-Plane (3.62)
2

And the satellite's specific potential energy is given as

P.E. - (1 _ 2 R3Sin20sa, Sin2 _s - 1 (3.63)
rat rat 2

Equation (3.62) and (3.63), along with (3.61), can be substituted into (3.58) resulting in

p 1 s _ viJ_,, , R 2 3Sin2 6) Sin2i ' 1In PaneP_(l 2 e(3.64)
r,,, 2 6 2 rat rat 2

By solving the above equation, the speed of the satellite in inertial space can be

determined.

2p J2 Re u(1- 3 Sin2i Sin 20) _ 
VInPane + 3 (3.65)

rr ref

3.7.5 Direction and Relative Speed

One the inertial velocity of the satellite is known (whether through the steps outlined

above or by other numerical methods), the direction and relative speed must now be

calculated. Assuming that the error in the initial velocity conditions comes from

the ^ direction,

Vin-Track = In-Plane (3.66)



The relative velocity can be calculated by

90 =Vin-track -v,,, -n c xO (3.67)

where vref is the velocity of the reference orbit in inertial space, and ncx0 is due to the

rotating reference frame.

3.7.6 Closed Form Solutions Conclusions

The initial conditions given by the equations of motion are very close, but the small

errors eventually cause a drift in the in-track direction. In this section a method of

calculating the correct initial velocity is presented. However, this method only works for

satellites in similar inclinations. For satellites in different inclinations, the period will be

different even though both satellites have the same orbital energy. Another method must

be utilized to calculate the initial conditions for zero drift.

3.8 Detailed Derivation Conclusions

In this chapter, we have derived a new set of linearized equations of motion for satellite

clusters. As we stepped through the derivation process, three different absolute motion

solutions were developed. In the first solution, a circular orbit with a modified period

was used, but the satellite and the reference orbit still drifted apart due to drift in the

longitude of the ascending node. Because of this, the second solution was developed

which used a new reference orbit. This reference orbit incorporated the normal

component of the J2 disturbance into its own equations of motion. However, the equation

of motion of the reference orbit can no longer be analytically derived. An approximation

is developed and presented using variations in the orbital elements.

In the derivation of the final solution, the cross-track motion was examined. It was

determined that the cross-track motion was not being modeled correctly. Because of this

error, a new solution was developed based on the mean variations of the longitude of the

ascending node, and the geometric properties between the two orbital planes.

52 Chao~ter 3 - Derivation



Chanter 3 - Derivation

Relative motion was then considered. While the motion of a satellite with respect to a

known reference orbit is needed, the relative motion between spacecraft is more

important. The equations of motion for this relative motion were derived in the same

way the absolute solutions were. However, the solution could have been calculated by

just subtracting the absolute motion of the two spacecraft. The cross-track motion

correction was also applied to these relative motion equations. It should be noted that

this cross-track motion captures the differential J2 effects.

Finally, the error in the initial conditions is discussed, and a method of calculating the

correct initial conditions is presented for satellites in the same orbital plane. For satellites

having different inclinations, a different method, not discussed in this thesis, must be

used.

In the next chapter, the solutions to these new linearized differential equations of motion

will be compared to a numerical simulator to check for validity. It will be shown that the

equations developed here do a very good job of modeling the J2 disturbance force, and

will be a good replacement for Hill's equations for satellite formation flying.
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Chapter 4

VERIFFICATION OF THE NEW
LINEARIZED EQUATIONS OF
MOTION

In chapter 4, the solutions to the new linearized equations of motion will be checked for

validity. This will be done in two ways. The first method will be to compare the

solutions derived in chapter 3 to the mean variation of the orbital elements due to the J2

disturbance. Then the solutions will be compared to a numerical simulator.

4.1 Comparison of the Solution with the Mean Variation of the
Orbital Elements

The new linearized equations of motion are now checked for validity by comparing the

solution to the linearized equations with the mean variation in the orbital elements due to

the J2 disturbance.

Under the influence of the J2 disturbance, each of the satellite's orbital elements, (semi-

major axis, eccentricity, inclination, longitude of the ascending node, argument of

periapsis, and true anomaly), undergoes changes. Effects due to these changes will be

observed in the solution to the new linearized equations of motion.

The variations of the orbital elements averaged over one period were derived using first

principles in [3] and are used here to validate the linearized equations of motion. A

summary of these variations is shown below in equation (4.1).
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aa =0 - =0 -- =0
ajo )Avg ( o)Avg )oAvg

_ 2E COS~i](30 6 2r2
0Avg - 2  C i](4.1)

av - -- av Cos[i] + 2 E 3Cos[2i])
a0 )A, aoAv 8r2

at Avg aI~o1)Avg

4.1.1 Semi-major Axis

a = 0 (4.2)
a)Avg

The presence of the J2 term has no effect on the mean variation of the semi major axis. A

variation in the semi-major axis would manifest itself in the solution to the linearized

equations of motion as a secular drift term in the £ direction. Since the solution to the

linearized equations of motion has no such term, it is in agreement with the mean

variation of the semi-major axis.

4.1.2 Eccentricity

=0 (4.3)KIJ )Avg
The J2 disturbance force has no effect on the mean variation of the eccentricity. A

variation in the eccentricity would manifest itself in the solution to the linearized

equations of motion as an increase in the amplitude of the periodic terms in the

x direction. Since the amplitude of the periodic terms is constant, the solution is once

again in agreement with the mean variation of the orbital elements.



4.1.3 Inclination

-- =0 (4.4)

The J2 disturbance has no effect on the mean variation of the inclination of an orbit. A

variation in the inclination would be manifested as a combination of many different

components of the solution. These include the period of the 2 term, the magnitude of the

periodic terms in the 2 equation, and the initial conditions. As discussed in section 3.5,

the first two solutions to the linearized equations of motion do not properly capture this

cross-track motion. However, because the 3rd solution is based on the constant inclination

of the satellite, this variation is captured in the 3rd solution.

4.1.4 Ascending Node

( 3 JCR 2 Cos i (4.5)
I6 I 2r2o 1 Avg 2

The J2 disturbance does have an effect on the mean variation in the longitude of the

ascending node. A variation in the longitude of the ascending node would manifest itself

as a change in the amplitude of the periodic terms in the 2 direction.

It is interesting to note that the 1st solution does a very good job of capturing the change

in the longitude of the ascending node and will be looked at in more depth here.

When the reference orbit and the perturbed satellite's orbit have the same inclination, the

relationship between the variation in the longitude of the ascending node and the 2 terms

is shown in Figure 4-1. If both the satellite and the reference orbit start at point A, after

one orbital period the reference orbit will return to point A, and the perturbed satellite

will end up at point B.

This relationship is

Az = r Ai Sin i
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B 27r s C
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A

Figure 4-1 : Variation in the Longitude of the Ascending Node

From equation (3.27), the motion in the 2 direction is given as

z = zo Cos(n tv1+ 3s)+ zo Sin(n t,1+ 3s)
nh1Y+3s

+#J(Ii Sin(n tl-+ 3s) - 1+3s Sin(n tv'i7Y7))
(4.7)

It is the 2nd half of the equation that is responsible for the variation of the ascending node.

Az = #(,fl Sin(n t,1+3s) - 1+3s Sin(n t,11+ s)) (4.8)

This term is the combination of two periodic terms with a small difference in their period.

The resulting function is a periodic term with increasing amplitude. The envelope that

contains this function is given by

(-%1 - .1+ 3s)
A=#(,/1 -s + 1+ 3s) Sin[n t ] (4.9)
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Taking the derivative with respect to time and simplifying

(-, 1+ s - 1+ 3s)Z= (ns)Cos(nt )
2

I3 n J2Rf . .r . (~s - 1+ 3s)Z =- 2 e Cos i Sin i Cos (nt
2 r [1+3s 2 (4.10)

-1
Z=v (rnSini) at t=O

1+3s

Z=(rnSini) at t=O

As shown above, the solution does capture the precession of the longitude of the

ascending node. There is only a small discrepancy in the additional 1/1+3s term.

For the 3 'P solution of the absolute motion, and for the relative motion, changes in the

longitude of the ascending node were discussed in depth in section 3.5. The variation in

the longitude of the ascending node was used to derive the cross-track motion, and thus

the mean variation in the longitude of the ascending node is captured by the new

linearized equations of motion.

4.1.5 Argument of Periapsis

IJ -j - r ~Cos[i] +J 2  3Cos[2i])
ao , o 8r2

Avg = )Avg 8r +(4.11)

~ C IJCos[i]+s
)~UAvg = - 9 Avg

The variation in the argument of periapsis has two components. The first component is a

geometric effect due to the movement of the longitude of the ascending node. Once

again referring to Figure 4-1, after one orbital period the perturbed satellite and the

argument of periapsis will be at point B due to the variation in the longitude of the

ascending node. This is the first term in the variation of the argument of periapsis. The

second component is directly an effect from the J2 disturbance. After one orbital period

the argument of periapsis also moves an additional amount 2r s, and ends up at point C.



The first term is due to the variation in the longitude of the ascending node and has

already been verified.

The second term is represented in the new linearized equations of motion by the

difference in periods between the X^ and 9 terms and the reference orbit. The argument of

periapsis is the point of closest approach for the satellite. When periapsis drifts, the point

of closest approach is earlier or later in the orbit. At the point of closest approach, the

periodic terms in the ^ and j equations are at a minimum. So, as the argument of

periapsis move, so must the time of the minima. Therefore, the motion of the argument of

periapsis is represented in the difference between the periods of the x and y terms, and the

orbital period.

Shown below is the reference orbit's orbital period, and the period of the periodic terms

in the x and y directions.

= 2; s 2;

n ,1+s 2 n
______ s(4.12)

n.l-s 2 n

The difference between these two periods is the amount that the argument of periapsis

has moved.

P,, - P,,, = S - (4.13)
n

Which corresponds to a differential angular rate of s which is the second term in the

variation of the longitude of the ascending node. The movement of the argument of

periapsis is therefore captured by the linearized equations.
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4.1.6 Mean Anomaly

C ~ n (4.14)
at )Av a Av

A variation of the mean anomaly causes a change in the period of the orbit. This change

in the orbital period was captured by the new linearized equations by "speeding up" the

reference orbit to match the period of the perturbed satellites.

4.1.7 Conclusion

In this section, it was shown that the new linearized equations of motion are able to

capture all aspects of the mean motion of a satellite under the J2 disturbance force. This

was accomplished by calculating the mean variation of each orbital element and

observing the associated changes in the solution to the linearized equations of motion.

4.2 Numerical Comparison Overview

In the following sections, the solutions to the new linearized equations of motion will be

compared to a numerical simulation. These results will be used to verify that the new

linearized equations of motion are capturing the effect of the J2 disturbance force. Hill's

equations will be used as a benchmark for comparison.

There are six different initial conditions that can be specified. Three position components

(x0, y0, z0), and three velocity components (c o, i,). However, for zero-offset and

zero-drift conditions, two of the initial velocity components (i4, j0) can be solved for.

In each simulation, the closed form of the solution will be used. In other words, the initial

conditions (.o, 9,) will be set according to the linearized equations of motion to prevent

any type of drift or average offset. These initial velocities vary depending on the specific

linearized equations used.
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For these numerical simulations, a cluster with a semi-major axis of 7000 km, inclination

of 350, and an inter-satellite spacing of 100 m is used.

The results for each simulation will be presented in a similar method. Each figure will

have six different plots. Along the left side will be the motion of the satellite in the three

orthogonal directions (radial, in-track, and cross-track). Each plot will have the motion

of the satellite according to the linearized equations of motion (solid line), and the motion

as determined from a numerical simulation (dashed line). Along the right side of the

figure will be the differences between the numerical simulation and the solution to the

linearized equations of motion.

4.2.1 Types of Errors

Because the new equations of motion are approximate solutions, there will be errors.

These errors will generally be combination of three types of errors: periodic, periodic

with increasing amplitude, and secular errors.

4.2.1.1 Periodic errors

Throughout the simulation, periodic errors will always be present. The errors will have

many different sources. Periodic errors on the order of centimeters are due to the

limitations of the new linearized equations of motion. Because the equations are

linearized and time averaged, they do not capture the higher order effects of the J2

disturbance. These effects manifest themselves as small periodic errors.

4.2.1.2 Periodic with increasing amplitude

The second type of error is periodic with increasing amplitude. There are two different

reasons for this. First, the motion in all three orthogonal directions is usually periodic.

When the linearized equations predict motion with a different period than the numerical

simulation, a periodic error with increasing amplitude occurs.

The second reason why there could be a periodic error with increasing amplitude is that

the actual motion is periodic with increasing amplitude, and the linearized equations of
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motion don't capture the effect. This occurs when the satellite and the reference orbit

have different variations of the longitude of the ascending node. The amplitude of the

out-of-plane motion increases with time. When the linearized equations of motion do not

capture this effect correctly, an increasing periodic error appears.

4.2.1.3 Secular drift

The third type of error is secular. This error is only manifested in the in-track direction

and is a direct result of a difference in orbital periods. When the orbital periods of the

reference satellite and the actual satellite are different, they drift apart in the in-track

direction. Since the linearized equations will be in the closed-form solution, they will

predict no drift. When this drift does happen, there is a secular error in the in-track

direction.

4.3 Absolute Motion - Zero Initial Conditions

In this section we will look at the absolute motion of the satellite cluster. The origin of

the cluster can really be specified with any initial conditions, but this simulation will use

'zero' initial conditions. The satellite and the reference orbit will have the same position,

though not necessarily the same velocity, at the beginning of the simulation.

The solution to Hill's equations will be presented first and used as a baseline. This will

show the improvement the new linearized equations of motion have over Hill's

equations. Both the 1 st and 2nd solution derived in chapter 3 will be presented in this

section. The 3 'P solution where the cross-track motion is corrected is not presented

because there is no cross-track motion. Since both the satellite and the reference orbit will

have the same inclination, the 3 'P solution reduces to the 2nd solution in that case.

4.3.1 Hill's Equations

In Hill's equations, the reference orbit is an unperturbed circular orbit with the following

parameters
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'r,f = 7000 km

iref = 35 (4.15)

Of = n =0.00107801 1/sec

Hill's equations are given as

1
x = x0 Cos(n t)+- yo Sin(n t)

2

y = -2 xO Sin(nt) + yo Cos(n t)

z = zo Cos(nt)+-Sin(nt) (4.16)
n

=-2n xO . =-n yo

Using the 'zero' initial conditions, the position and velocity of the satellite are identical to

the position and velocity of the reference satellite. Because of this, the initial relative

states are zero.

n YO0
0O= X0 = 2 =

YO =0 jO =-2nxo =0 (4.17)

zO=0 50=0

Substituting the initial conditions (equation (4.17)) into the equations of motion (equation

(4.16)), the following equations of motion are created

x=0

y= 0 (4.18)

z =0

Essentially Hill's equations state that the origin of the cluster will remain at the exact

same position as the reference satellite. When there are no disturbance forces, this is a

correct assumption. However, under the J2 disturbance this is no longer true. Figure 4-2

shows the actual motion of the origin cluster compared to motion specified by Hill's

equations.
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Shown below are the results from the numerical simulation. The plots on the left show

the motion of the cluster origin in three directions. The dashed plot is the numerical

simulation, while the solid line is the solution to the linearized equations. Directly to the

right is the difference between the two solutions.
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From Figure 4-2, it can be seen that Hill's equations do not capture the motion of the

cluster's origin with respect to the reference orbit very well. According to Hill's

equations, the cluster's origin should coincide exactly with the reference orbit. In the

unperturbed case, this is true, but in the presence of the J2 disturbance, Hill's equations

fail.

In the radial direction, the origin of the cluster has periodic error of over 14 km. Under

the influence of the J2 disturbance, the cluster as a whole will "bob" up and down as the

cluster passes over the areas of high and low mass concentrations respectively.

In the tangential direction, the reference orbit, and the cluster origin separate due to a

difference in orbital periods. Under the J2 disturbance, a satellite will have a different

orbital period than it would in the unperturbed case. It was for this reason that the period

of the reference orbit was sped up in the new linearized equations.

The error in the cross-track direction is due to the fact that the origin of the cluster has a

drift in the longitude of the ascending node. Under the influence of the J2 disturbance

force, a satellite's longitude of the ascending node will precess. Hill's equations do not

take this into account and thus there is a large increasing periodic error introduced.

4.3.2 The New Linearized Equations - Absolute Motion - Solution 1

In the first solution of the new linearized equations of motion, many changes were made

to Hill's equations. The reference orbit is no longer a Keplerian reference orbit, but

instead has a modified period. The J2 disturbance force was introduced as a forcing

function, and the gradient of the J2 force was also incorporated into the equations of

motion. These changes allow the new linearized equations to capture much of the motion

due to the J2 disturbance. The parameters of the reference orbit is

r = 7000 km

iref= 35 (4.19)

(ff = n c = 0.00107837506 1/sec
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The location of the cluster origin is given with the following zero-drift parameters as

calculated by the linearized equations.

x0 =0 0o= n yo( 2 c2)=0
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From Figure 4-3 it can be seen that the errors from the initial linearized equations are

much less than those created by Hill's equations. The l0t solution of the linearized

equations produces an increasing periodic error of only 6 meters per orbit in the radial

direction. This is much improved from the 14 km error in Hill's equations.

In the in-track direction, there is both a secular error and an increasing periodic error.

The secular error is approximately 60 meters per orbit, and the increasing periodic error

is 100 meters per orbit. This is also a large improvement over Hill's equations that have a

secular error of 100 km/orbit. The increasing periodic error is due to the fact that the

orbital planes are separating, and the in-track motion is changing shape as a result.

Finally the cross-track direction has an increasing periodic error of approximately 100

meters per orbit. Again this is an improvement over Hill's equations that had an error of

30 km per orbit.

4.3.3 The New Linearized Equations - Absolute Motion - Solution 2

In the 2nd solution of the linearized equations of motion, the reference orbit was changed

so that it had the same variation in the longitude of the ascending node as the cluster

origin. This was accomplished by incorporating the normal component of the J2

disturbance force into the reference orbit.

From equation (3.29), the equation of motion of the reference orbit is given as

rf = re (Cos Q Cos0 - SinQ SinO Cos i)X

+ rf (SinQ Cos + Cos Q Sin0 Cos i)Y (4.21)

+ rf (Sin 0 Sin i)Z
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with

. 3J 2 R2
i(t) = io 2k r2 Cosi Sini

2k re

3JuJ R2
Q(tr) e9 2 e t Cosi (4.22)

ref

9(t) k t

The reference orbit parameters are

r = 7000 km

iref= 35 (4.23)

(Of = n c = 0.00107837506 1/sec

The origin of the reference orbit is given with the following zero-drift parameters as

calculated by the new linearized equations.

x =0 . =Y (2 -c2)=0

3n 2J 2 R2
yO =0 jO =-2ncxO+ e (1- Cos 2 if) 0.001 6 7 15 5 km/s (4.24)

8k ref

ze= 0 Zo=0
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Figure 4-4: Numerical Solution - Absolute Motion - Solution 2

By changing the reference orbit, the radial error has now been reduced to a constant

periodic error of only 14 meters. This is an improvement of three orders of magnitude

when compared to Hill's equations.

In the in-track direction, there is still a secular drift of 100 meters per orbit, but the

increasing periodic error has now been removed since the satellite remains close to the

reference orbit.

Tirre (s)

Tine (s)

Tine (s)
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Finally, since the reference orbit's longitude of the ascending node is moving at the same

rate as the perturbed satellite, there is no cross-track error except for a small periodic

error of 2 meters. This error is due to the fact that the reference orbit is not completely

modeled correctly and some errors were introduced as a result.

4.3.4 Conclusions - Absolute Motion

Figure 4-5 combines all the errors shown above and allows for comparison between

Hill's equations, and the two solutions. The plots on the left side are plots of the errors.

The plots on the right are plots of the same errors, just zoomed in to allow the differences

between the 1 st and 2 nd solution to be seen more easily.

From Figure 4-5, it can be seen that Hill's equations do not capture the absolute motion

of the cluster under the influence of the J2 disturbance force. The errors are large, on the

order of kilometers.

The first solution shows a marked improvement in the motion of these terms. Errors were

reduced from kilometers to meters. The second solution showed even more

improvements by eliminating increasing periodic terms.

Currently the average J2 disturbance force is calculated by using the reference orbit. This

is done because the reference orbit has a constant radius and constant angular rate.

However, this is not same as the average J2 force affecting the perturbed satellite. The

result is an error in the new analytically determined orbital period of the reference orbit,

and a drift in the in-track direction. This error can be corrected numerically, and a

relationship that would zero this drift can be created that is a function of inclination.

However, this correction factor is not determined in this thesis.

71



'77 r' nt,-r A - Veificritin

Radial Error (kn" Radial Error (km

/\ ('\\

I / \\ /!'\\ // I' i'\ I I' \ I
.1. \j* y

5000 10000 15000 20000 25000

0.04

0.02

T-irm (s)

-0.02

-0.041

A Ah
560 1ob 6o I 2 0 50j

In-Track Error (kn0

5000

-100

-200,

-300

-400

In-Trac Error (1"zr

10000 15000 20000 25000
Tine (s)

-0.

-0.

-0.

Cross-Track Error (km)"

100

50

-50

-100

--- \ A 1 !~ \ i

Cross-Tack Error ()

Tine (s)

Figure 4-5: Absolute Movement Errors - Combined Plots

14

12

10

8

6

4

2

Tine (s)

Tine (s)

5 10 1000 2 000
Tine (s)

72



4.4 Relative Motion

While the absolute motion with respect to the reference orbit is important for some

applications, the relative motion of satellites within the cluster is equally important. In

this next section, the relative motion of a satellite with respect to the cluster origin or

alternatively a second satellite will be calculated and compared to a numerical simulation.

Once again, Hill's equations will be used as a benchmark to compare the performance of

the new linearized equations of motion.

In order to better characterize the errors, each initial condition will be varied

independently. There are six different initial conditions that can be specified. Three

position components (x0, y, z,), and three velocity components (, j,,i,). However,

for zero-offset, and zero-drift conditions, two of the initial velocity components can again

be solved for. These initial velocities vary depending on the specific linearized equations

used.

The initial conditions will be such that each satellite will be a maximum of 100 meters

away from the origin of the cluster. The initial conditions for the origin of the cluster will

be those calculated with the 2 nd solution.

4.4.1 Radial Offset

The first parameter to be varied will be an offset in the radial direction. The satellite will

start off 100 meters away in the radial direction from the cluster origin.

4.4.1.1 Hill's Equations

Once again, Hill's equations are used as a benchmark. The initial conditions for the

satellite are

x0 =0.1 km x0 - n 0

yo =0 j= -2n x0 = -0.000215601403 km/s (4.25)

zo =0 4 0
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These initial conditions result in the following plots.
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Figure 4-6: Hill's Equations - Relative Motion - Radial Offset

The plots on the left side of the page are the actual and calculated movements of the

satellite in the radial, in-track, and cross-track direction with the errors on the right.

In the radial direction, there is an increasing periodic error. This periodic error increases

in amplitude at about 1 meter per orbit. The error in the radial direction is caused by the

incorrect period of the periodic terms in the radial direction. Over time, the two periodic
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motions, (numerical and Hill's), become more and more out of phase, and the error

grows.

In the in-track direction there is both a secular error, and a periodic error. The secular

error increases at a rate of about two meters per orbit. The secular error is caused by a

mismatch in the period of the satellite and the origin of the cluster. Essentially, Hill's

equations gives initial conditions that are not truly closed orbits, and the satellite is placed

into an orbit that does not have the same period as the cluster origin.

The periodic error in the in-track direction increases at a rate of about one meter per orbit.

The reason for this error is similar to that of the error in the radial direction. Hill's

equations specify the wrong period for the periodic terms in the in-track direction.

Finally, there is a small periodic error in the cross-track direction of approx 20 cm. The

amplitude of this error does not increase. This error is due to the fact that Hill's

equations assume that the earth is perfectly spherical. However, the effect of the J2

disturbance does cause periodic movement in the cross-track direction that is not

captured.

4.4.1.2 Relative motion

The new linearized equations of motion will be used. The initial position conditions will

remain the same, but some of the initial velocities will change. These velocities are

chosen to represent the zero-drift/zero-offset conditions given by the new equations

themselves. The first set of parameters is given as

xo =01km = _n 0y (2 - c' =0
2c

YO= 0 O= -2n c xO ~ -0.000215675 km/s (4.26)

zO =0 = 0

The results of the simulation are shown in Figure 4-7.
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Figure 4-7 : New Linearized Equations - Relative Motion - Radial Offset

In the radial direction, the increasing periodic error that was present in Hill's equations

has been eliminated. Now the only error is a periodic error of 17 cm. This small error is

due to the fact that a time averaged J2 disturbance is used to calculate the gradient of the

J2 disturbance force, and thus small periodic variations are not captured.

In the in-track direction, the increasing periodic error has also been eliminated. There is,

however, still a secular drift. This drift is on the order of 1 m per orbit, and is again due

to an orbital period mismatch due to incorrect initial velocity conditions.
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The error in the cross-track direction did not change very much, but has been reduced to a

periodic error of only 6 cm.

4.4.1.3 Relative motion with corrected initial conditions

In this version of the linearized equations of motion, the error in the initial conditions due

to the linearization of the gravity terms is removed. While the initial conditions used are

not the exact initial conditions specified by the new linearized equations of motion, they

are the initial conditions that match the orbital period of the satellite to that of the

reference orbit.

The new initial conditions are

xO=0.lkm O=YO( 2 c)=O2c

YO =0 yO ~ -0.000215722 km/s (4.27)
zo = 0 z0 =0

It should be noted that the change in the initial velocity is only 47 pm/s. This shows the

strong sensitivity of the in-track motion to the velocity. The plots are shown below.
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Figure 4-8: New Linearized Equations - Relative Motion - Radial Offset

The error in the radial direction has now improved to become a periodic error of only 3

cm. In the in-track direction, the error no longer has a secular component, but instead is

periodic with a magnitude of only a little more than 2 cm. The cross-track error remains

unchanged with a periodic error of 6 cm.

It should be noted that this version of the equation produces no errors that increase

appreciably over time.
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4.4.2 In-Track Offset

The next simulation will be an offset in the in-track direction of 100 meters. Normally,

an offset in the in-track direction will remain as a constant offset in the in-track direction.

However, the initial velocity conditions were selected such that there is no offset, and

thus the satellite is placed into a free orbit ellipse around the origin of the cluster.
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In this case, both the radial and the in-track direction experience an increasing periodic

error of approximately 0.5 m per orbit. This error is once again due to a mis-match in the

period of the periodic x and y terms. The cross-track error is also once again periodic

with a magnitude of 8 cm, but is not increasing in time.

4.4.2.1 Relative Motion

Once again, the initial conditions for the new linearized equations of motion are

calculated. The parameters for the in-track offset are

x0 =0 X0 = n yo (2 - c2)=0.0000538452 km/s
2 c

yo = 0.1km j 0 = -2ncxo= 0 (4.29)

zo=0 50=0
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Figure 4-10 : New Linearized Equations - Relative Motion - In-Track Offset

The radial direction has a periodic error of 2 cm. The in-track error is also periodic with

an error of 11 cm. There is also a small secular error present in the in-track direction with

a magnitude of 0.2 cm/orbit. The cross-track direction has a periodic error of less than 9

cm. These are once again a marked improvement over Hill's equations.
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4.4.2.2 Relative motion with corrected initial conditions

Because there is only an offset in the y-direction, the error in the initial conditions is very

small. This resulted in a small secular drift in the y-direction of only 0.2 cm per orbit.

However, this can still be removed. The new initial conditions are...

x = 0

y =0.1km

zo =0
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(4.30)

Radial Movemenit

0.04.

0.021

-0.02

-0.04

(ka)

~A AA
5\0 1 0 1 0/ 2 0 0 5

Tinre (s)

Radial Error I"

0. 00002

0.00001

-0.00001

-0.00002

In-Track Movement (an)

Tine (S)

Cross-Track Movement (kan)

0.00008

0.00006

0.00004

0.00002 \

-%O Time (s)

IA .... A

\j 00 \ 00 6000 7 0 7

In-Track Error(k)

0.0001

0.00008

0.00006

0.00004

0.00002

5000 10

Cross-Track Error(km)

I .

0.00002

-0.00004

-0.00006

-0.00008

000 15000 20000 25000

5 100 150 000 000

Figure 4-11: New Linearized Equations - Relative Motion - In-Track Offset
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From Figure 4-11, it can be seen that the secular drift in the in-track direction has once

again been removed. The motion in the other two directions remains unchanged.

4.4.3 Cross-Track Offset

The previous two simulations were variations that kept the satellite in the same plane of

motion as the center of the cluster. The next two sections will generate out of plane

motion.

4.4.3.1 Hill's Equations

The next simulation is an offset in the cross-track direction with the following parameters

x0=0 _ n yo - 0
2

Yo =0 j0 = -2nxo =0 (4.31)

zo =0.1 km to =0

Looking at Figure 4-12, there is no offset in the £ or j direction, and Hill's equations

state that there is no movement in the £ or j direction. As a result, there is no period

mismatch, and thus no increasing periodic error. There is still a small periodic error on

the order of 5 cm in the radial direction, and 20 cm in the tangential direction.

In the cross-track direction there is an increasing periodic error. Because both the

satellite and the origin of the cluster have very similar inclinations, there is no differential

drift in the longitude of the ascending node. The increasing periodic error is due to a

difference in the period of the 2 terms. The error is increasing at a rate of approximately

1.5 meter per orbit.
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4.4.3.2 Relative motion

The parameters for the cross-track direction are

x0 = 0
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zo =0.1km
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The new linearized equations offer the same amount of error in the radial and in-track

direction, 6 cm and 20 cm respectively. However, the cross-track motion has been

captured by the equations, resulting in a periodic error of less than 2 cm.

4.4.3.3 Relative Motion with Corrected Initial Conditions

Because the satellite started with the same radius and inclination as the reference satellite,

there is no error in the initial conditions. Because there is no change, the results are not

shown here.

4.4.4 Cross-Track Velocity Offset

The final simulation is slightly different than the previous three. In each of those, the

position of the satellite was varied, and the initial velocity conditions were calculated for

zero drift conditions. In this case, the fourth initial condition to vary is a velocity. Both

the satellite and the center of the cluster start in the same location, but the satellite has an

initial cross-track velocity. This causes an out of plane motion and places the satellite in a

different inclination than the reference orbit

4.4.4.1 Hill's Equations

The initial parameters are

x0 =0 k0 = n yo - 0
2

y0 =0 j 0 =-2nx0 =0 (4.33)

z0 =0 2 =0.1n =0.000107801 km/s
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Figure 4-14: Hill's Equations - Relative Motion - Cross-Track Velocity Offset

Once again, Hill's equations state that there is no movement in the radial and in-track

direction. There is still a small periodic error of 17mm in the radial direction. In the in-

track direction, there is a secular error of approximately 0.9 m per orbit once again due to

an orbital period mismatch. There is a cross-track error due to a period mismatch in the

cross-track terms.
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4.4.4.2 Relative motion

The initial parameters for the new linearized equations are

x0 =O -=nyo( 2 _C2)=0
2c

yo =0 90 = -2n cx 0 =0

z0 =0 40 =0.1
(4.34)
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Figure 4-15: Linearized Equations - Relative motion - Cross-Track Velocity Offset
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There is a slight periodic error in the radial direction of 16 cm. There is also a secular

drift in the in-track direction once again to a period mismatch. The cross-track error has

once again been captured with an error of 2 cm, but there appears to be a sight increase in

the error over time. This has been attributed to a slight numerical error in calculating the

effective inclination of the perturbed satellite.

4.4.4.3 Relative motion with new initial conditions

In the previous numerical simulations, all satellite orbital inclinations have been the

same, or very nearly the same. In this simulation, the inclinations are not the same.

There is a difference of 0.0008190. However this variation does cause the satellite to see

a different average J2 causing an orbital period mismatch. The correct initial velocities

were found numerically. The initial conditions used are

xO =0 .yo(2 =0
2c

Y=O0 jO 0.00000123505 km/s (4.35)

zo =0 io =0.000107911 km/s
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Figure 4-16 : Linearized Equations - Relative Motion - Cross Track Velocity Offset

Once again, by using the corrected initial conditions, the drift in the in-track direction

have been reduced to a periodic error of only two cm.

4.5 Numerical Simulations Conclusions

4.5.1.1 Hill's Equations

Throughout this chapter, Hill's equations were used as a benchmark against which the

new linearized equations were compared. When looking at the cluster motion as a whole,

Hill's equations failed to capture the motion of the cluster. In fact Hill's equations state
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that there should be no deviation of the cluster from the circular reference orbit. Under

the influence of the J2 disturbance this is not true, and therefore, Hill's equations do a

poor job of modeling the cluster's overall motion under the J2 disturbance.

When modeling the differential motion, Hill's equations fare much better. This is due to

the fact that the differential J2 forces are much smaller when comparing the relative

motion of two satellites. However, Hill's equations still failed to capture many of the

effects on the satellite motion. The periods of the radial, in-track, and cross-track motion

were modeled incorrectly. This resulted in periodic errors of increasing amplitude, and

caused the model to break down quickly over time.

Hill's equations also did not incorporate any differential J2 effects. These effects cause

the cluster to drift apart over time and are not captured by Hill's equations.

4.5.1.2 Absolute motion - Solution 1

The l0 solution showed a marked improvement from Hill's equations. Many of the

effects that Hill's equations failed to capture were captured with the 1 st solution of the

new linearized equations: the period of the radial and in-track motion was captured

correctly, and the drift in the longitude of the ascending node was also captured.

One problem however was that the cluster and the circular reference orbit drifted away

from each other due to a variation in the longitude of the ascending node. While the

equations do predict this motion, they eventually break down because of linearization and

geometry differences. The solution to this problem was introduced in 2nd solution.

4.5.1.3 Absolute motion - Solution 2

In this solution, the reference orbit was adjusted so that the circular reference orbit and

the cluster did not drift apart due to precession of the ascending node. With this change

came improvements in model accuracy. The satellite and the reference orbit remained

together over time. Some error is introduced in the modeling of the reference orbit. An

analytical solution was given for the new circular reference orbit, but this is not a perfect

model and errors are present. However, the 2nd solution is an improvement over the 1"
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solution. This model predicts the absolute motion with errors on the order of meters to

tens of meters per orbit.

4.5.1.4 Absolute motion - Solution 3

In the 3 rd solution, the cross-track motion errors were addressed. In these numerical

simulations only 'zero' initial conditions were used and there was no cross-track motion.

Because of this, the 2nd and 3 rd solutions were identical and are not presented.

4.5.1.5 Relative motion

When looking at the shape, size and motion within the cluster, relative motion is used.

The new linearized equations are a marked improvement from Hill's equations in terms

of modeling the motion of satellites in the cluster. While Hill's equations were not able to

predict the period of the radial, in-track, and cross-track direction terms when under the

influence of the J2 disturbance, the new linearized equations of motion were able to

successfully capture this motion.

The only significant error arose from a drift in the in-track direction. This was again due

to an orbital period mis-match. If the average J2 disturbance for each satellite could be

more accurately determined, this drift could be reduced.

4.5.1.6 Relative motion with correct initial conditions

Every version, including Hill's equations, of the linearized equations of motion suffers

from errors. This is due to the fact that the equations are, as the name implies, linearized.

They are not exact analytical solutions. Because of this, there is an error in the initial

velocity conditions, placing the satellites in the cluster into an orbit with a slightly

different orbital period than that of the reference orbit. While the linearized equations of

motion do a good job of predicting the zero-drift initial conditions, they are not exact. A

drift in the in-track direction develops as a result.

The exact initial conditions for zero drift were calculated and the results are presented.

When applied, the linearized equations of motion predicted the correct in-track motion of

the satellites without any drift in any of the directions.
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CONCLUSIONS

In this thesis, a need for a new set of linearized equations that capture the J2 disturbance

was identified. These equations were derived in chapter three and verified in chapter four.

We will conclude with a discussion on some of the insights that are gained by deriving

and using this new set of constant coefficients linearized differential equations of motion.

5.1 The Period of the Relative Orbits

In a satellite cluster, each satellite orbits the center of the cluster in a 'relative orbit'.

These relative orbits have a certain period. Hill's equations incorrectly predict that they

orbit with the same period as the satellite's orbital period. The new linearized equations

of motions state that this is not true under the influence of the J2 disturbance force.

Looking at the in-plane motion (X and 9 directions), the period is now

rel orbit 
21r

where (5.1)

_3J 2 R 2  
_

s = (I (+ 3 Cos 2ir ) n =r-
8 ref rf

As presented in section 4.1.5, the period of this motion is based upon the length of time

between periapsis crossings. Therefore the period of the relative orbit is a combination of

the orbital period of the satellite and the rate of precession of the longitude of the

ascending node. As discussed in section 4.1.5, the new linearized equations of motion do

indeed capture this effect.
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5.2 Cross-Track Motion

Cross-Track motion is probably the most complex motion in the cluster. Changes in

cross-track motion are due to differential changes in the longitude of the ascending node.

As the satellites' orbital planes separate, there is a change in both the period of the ^

terms and the amplitude of the Z terms. The change in the period of the Z terms

corresponds to the change in location of the intersection of the orbital planes. Changes in

the amplitude correspond to the maximum separation of the orbital planes (located 900

away from the intersection of the planes). Clusters that require even spacing of spacecraft

around the center of the cluster will have to fight the propensity for the orbital planes to

cross at the high latitudes. As the planes separate, the orbital crossing tends to drift away

from the equator and approach the poles.

The new linearized equations of motion were adjusted to capture this motion and as

shown in chapter 4 do indeed capture this effect of the J2 disturbance.

5.3 The 'Tumbling' Effect

A satellite's relative orbit is a function of the satellite's relative inclination, eccentricity,

longitude of the ascending nose, and argument of periapsis. Under the influence of the J2

force, these orbital elements undergo changes. Some of these variations cause a change

in the orientation of the cluster. This effect has been coined by the author as 'tumbling'

because the cluster appears to tumble around the 2 axis. Tumbling is caused by a

variation in the argument of periapsis, and differential drift in the longitude of the

ascending node.

If we first neglect differential J2 effects, under the influence of the J2 disturbance each

satellites' argument of periapsis changes at the same rate. As the argument of periapsis

changes, the orientation of the cluster also changes, and the cluster tumbles.

If the relative orbit of a satellite follows the locus of points defined by the intersection of

a plane with an elliptical cylinder, with the cylinder's axis aligned with the 2 axis, then

the tumbling effect causes this plane to rotate about the 2 axis. Figure 5-1 shows the
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relative orbit as the intersection of a plane and an elliptical cylinder. This plane is not

necessarily perpendicular to the axis of the cylinder. As the argument of periapsis

precesses, this plane will rotate about the 2axis. Therefore the projection in the

x-5 plane (Side view) remains undisturbed, while projections in the 5-2 and £ -2

(Top view and back view respectively) continuously change from an ellipse to a

degenerate ellipse (a line) and back again. The rate at which the ellipse tumbles is the

same as the rate of change of the argument of periapsis.

£

2

Figure 5-1: The Relative Orbit

Using the solution to the new linearized equations of motion, tumbling is exhibited by a

difference between the period of the £ and 5 terms and the 2 terms. The period of the

£ and 5 terms is based on the orbital period and the location of the argument of

periapsis, while the 2 term is based only on orbital period (ignoring differential effects).

This difference in periods is another way of looking at the tumbling effects. As the

periodic terms in the ^ and 2 direction become in phase with each other, the projected

motion in the £ -2 direction becomes a degenerate ellipse. As the two terms move out

of phase the ellipse expands until the two terms are 900 out of phase. This process

continues as the relative orbits continue to tumble. This motion also happens in the 5 - 2

direction, but when the projection in the 9 -2 plane is an ellipse, the projection in the

S- 2 direction is a degenerate ellipse, and vice versa. Motion in the ^ - 5 plane is always
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a 2x1 ellipse and does not show any tumbling effects because the k and j terms have the

same period.

Since this tumbling effect is dependent on the period of the 2 terms, changes in the

period of the 2 terms will also cause a change in the tumbling rate. If differential J2

effects are ignored, the Z terms have the same period as the orbital period (time between

equatorial crossings). However, as shown in section 3.6.3 the period of the 2 terms is a

function of the differential drift in the longitude of the ascending node, and this must be

accounted for when determining the tumbling rate.

For many missions, the correct projection of the cluster towards its target is imperative

for mission success. 'Tumbling' will cause this projection to degrade, and either control

must be used to counteract this effect or multiple orbit planes must be used so that a 2-D

projection is always facing the target.

5.4 Differential Drift in the Cross-Track Direction

In this paper, we have shown that secular drift in each direction, except for differential

drift in the longitude of the ascending node, can be eliminated by choosing appropriate

initial conditions. This differential drift occurs when satellites are placed into different

inclinations. For clusters that contain satellites in different inclinations, active control

methods must be applied to keep the cluster together. It can shown, that for a cluster with

500 meter spacing, the worst case Av needed to keep the cluster together is

approximately 5 cm/s/orbit and scales linearly with the size of the cluster.

5.5 Final Comments

In this thesis, a new set of linearized equations of motion that accurately predict relative

motion in the presence of the J2 disturbance force is presented. Past work in the field of

formation flying dynamics either uses Hill's equations, or dismisses them as not accurate

enough, and a more complex non-linear solution is used. The new linearized equations of
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motion will fill this void, and allow cluster designers to easily calculate the motion of

spacecraft in a cluster.

These linearized equations of motion were derived in detail in chapter 3. Two interim

solutions and a final solution for the absolute motion were presented. These solutions

increased in complexity, but at the same time more accurately modeled the effects of the

J2 disturbance force. The relative motion between two satellites or one satellite and the

origin of the cluster was also derived and presented. This relative motion turned out to be

the homogenous solution to the absolute motion differential equations.

In chapter 4 the new linearized equations of motion were verified in two ways. They

were first compared against the mean variation in the orbital elements. The equations

were able to capture the mean variation of all six orbital element. Next a numerical

simulator was used to verify the equations. Hill's equations were also analyzed and used

as a baseline.

The new linearized equations of motion outperformed Hill's equations by orders of

magnitude. The errors incurred by the new linearized equations of motion were on the

order of centimeters. The only significant error was the drift in the in-track direction.

The new linearized equations of motion were not able to exactly predict the correct initial

velocity. This is due to the fact that they are not exact equations of motion but instead

linearized equations of motion.

Because of this error, and the sensitivity to initial velocity conditions, there was a drift in

the in-track direction of a few meters per orbit. To fix this problem, a method of

calculating the correct initial velocity was presented for satellites in the same orbital

plane. For other satellites, a numerical method was used. This initial condition problem is

one area that is left open for future work. However, once the correct initial conditions are

used, the error in the in-track direction should be on the order of centimeters.
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Finally, in this thesis we have successfully presented a new set of linearized, constant

coefficient differential equations that are as simple in form as Hill's equations, but also

capture the effect of the J2 disturbance force. It is hoped that these equations will become

a valuable tool for satellite formation flying.
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