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TIP CASING HEAT TRANSFER MEASUREMENTS OF A FILM-COOLED TURBINE

STAGE IN A SHORT DURATION FACILITY

by

Bret P. Van Poppel

Submitted to the Department of Aeronautics and Astronautics on May 25, 2001, in partial fulfillment of
the requirements for the degree of Master of Science

Abstract

An experimental study of the heat transfer to the tip casing of a fully scaled turbine stage was conducted.
Pressure and surface temperature measurements were taken on the tip casing. Time-averaged heat flux
data was computed and used to assess the influence of stage total pressure ratio, corrected speed and tip
gap on casing heat flux.

The experimental work was conducted in the MIT Blowdown Turbine Facility using a highly loaded,
film-cooled turbine stage. The facility is a short duration experimental structure capable of testing turbine
stages under fully scaled conditions to produce useful test durations of 0.5 seconds. The turbine stage
tested consisted of film-cooled turbine blades and nozzle guide vanes. During the course of this research,
semi-infinite heat flux gauges were designed and fabricated by painting and baking thin platinum films
onto machineable ceramic substrates. These gauges were used to experimentally measure surface
temperatures on the tip casing with an estimated frequency response of 60 kilohertz. A tip casing insert
was designed as an instrument holder to orient the heat flux gauges and highly sensitive pressure
transducers on the tip casing surface to spatially resolve heat flux and static pressure.

A matrix of test conditions was devised to investigate the effects of various run conditions and tip gaps on
tip casing flow. Both a 3.0% and a 1.5% tip-gap-to-span ratio were tested. Run conditions were
established by varying the stage pressure ratio and the corrected speed. Results were compared within
each test, between tests at the same tip gap, and between tests at different tip gaps. Time averaged data
revealed the influence of rotor enthalpy extraction on casing heat flux. Pressure and corrected speed tests
showed similar trends at both tip gaps. At design conditions, average endwall heat transfer was
approximately 4% greater for the 1.5% tip gap.

Thesis Supervisor: Dr. Gerald R. Guenette
Title: Principal Research Engineer
Department of Aeronautics and Astronautics
Gas Turbine Laboratory
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NOMENCLATURE

Roman

a speed of sound
A area
c specific heat capacity
h enthalpy
I moment of inertia
k thermal conductivity
I length
Lref reference length
M mass flow rate
Nc corrected speed
Nh non-dimensionalized heat transfer coefficient
Nq non-dimensionalized heat flux
P pressure
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q heat flux
Qo resistive heat
R gas constant
R resistance
t time
t thickness
T temperature
V voltage
w width

Greek

a temperature coefficient of resistivity
S thermal penetration depth
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K thermal diffusivity
p density

angular velocity
o0 frequency

Subscripts

0 inlet conditions
s surface conditions
t stagnation quantity
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Chapter 1

Introduction

1.1 Background

Dramatic advances in gas turbine technology over the past 50 years have resulted in

much higher efficiencies and performance. In large electrical power applications, gas turbine

engine temperatures have exceeded 1700 K. Indeed, turbine inlet temperature is the defining

temperature for many engines. Polytropic efficiencies of axial flow turbines now exceeds 90%.

Higher heat loads within the turbine are by-products of these advances. As such, an engine's

ability to handle high heat loads has become a paramount concern and sparked extensive

research in the past decade, especially in high-pressure turbines. Conventional turbine cooling

schemes-including film-cooling, internal convective cooling, and internal impingement

cooling-have been designed and developed to mitigate the effects of extreme heat loads on

blades, shrouds, and tip casings.

Experimental testing has been used to study the magnitude and characteristics of heat

transfer within the turbine. Currently, steady state turbine testing has become expensive and

impractical. Costs can easily exceed $5 million even for relatively benign test conditions (inlet

temperatures approximately 450K). Thus, steady state testing is not a viable option at many

academic institutions. In the power generation industry, full-scale steady state test facilities are

typically not employed due to their immense size and power consumption. In most cases, engine

components are tested in service and result in minimal improvements in efficiency, performance

and cooling.
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In the 1980's, a new technology was developed to study turbine performance at the Gas

Turbine Laboratory at MIT: the Blowdown Turbine (BDT). Based upon transient testing

techniques, researchers at MIT have produced highly accurate data for heat transfer and

aerodynamic performance of axial flow turbines. The facility is a short duration test rig, with

time scales on the order of several hundred milliseconds. With high frequency instrumentation,

steady state data can be taken in less than one second. With scaling of relevant parameters-

Reynolds number, total stage pressure ratio, gas-to-wall temperature ratio, and corrected speed-

turbine inlet temperature can be significantly reduced. Compared with steady state rigs, the BDT

requires much less power to run. This adds up to considerably lower costs of construction,

maintenance and operation.

Heat transfer measurements on both turbine blades and tip casings have been

demonstrated in previous research programs on the BDT. Thus, with instrumentation of high

frequency response and accuracy, a test program to measure the heat transfer to the tip casing of

a film-cooled turbine stage has been undertaken. This document is a summary of the research

work and results.

1.2 Previous Work

A short history of the work conducted on MIT's Blowdown Turbine facility is reviewed

below.

The BDT was designed by Guenette [9]. The initial work focused on the design and

development efforts of the more salient components of the facility. In particular, the fast-acting

main valve, eddy current brake, and heat flux instrumentation constituted significant engineering

works. Initial testing in the facility consisted of tip casing heat transfer measurements of an

uncooled turbine stage.

Halderman [11] studied the influence of turbine inlet temperature non-uniformities on the

heat transfer to the tip casing.

Shang [24] examined the influence of turbine inlet temperature non-uniformities on the

heat transfer of turbine blades. Radial temperature distortions were found to have a large effect

on turbine heat transfer, while circumferential distortions revealed little effect.
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Keogh [15] and Spadaccini [22] examined and compared aerodynamic performance of

uncooled and film-cooled turbine stages. Extensive effort to modify an uncooled stage with

film-cooling was executed.

Keogh [14] examined the specific aerodynamic loss due to film-cooling and quantified it.

Additionally, this research provided a detailed breakdown of the losses associated with film-

cooling for the turbine stage.

1.3 Motivation

Previous experimental work has been conducted to measure heat transfer in non-rotating

cascades for uncooled turbines. Bunker et al [4] showed a decrease in heat transfer with

decreasing tip gap for a 1.45 pressure ratio linear cascade. In computation results based upon the

same cascade, Amer et al [2] showed the migration of flow from leading edge pressure-side to

mid-cord suction side, resulting in high levels of heat transfer around the mid-cord region of the

blade tip and endwall. Ameri et al [1], through CFD calculations, showed an increase in tip

casing heat transfer as the tip gap was increased-a trend prevalent along the entire cord.

Guenette [9], in his initial blowdown experiments, showed an increasing and then

decreasing heat load, commensurate with rotor enthalpy extraction, for all test conditions.

Additionally, he observed substantial variations in time-averaged heat loads at different

operating points and independent parameters. He concluded that the tip leakage flow was

coupled with incidence angle (largely a function of corrected speed) and airfoil loading

(determined by Pressure Ratio and loading distribution) for the uncooled turbine stage tested.

Little research in available in the literature on heat transfer for a fully scaled, film-cooled

turbine stage. The characteristics of an inherently unsteady, complex, three-dimensional endwall

flow, exacerbated by the influence of convecting nozzle guide vane wakes and coolant-to-

mainstream flow interactions, have not been extensively investigated. The research reported

herein constitutes an initial exploration of the tip casing heat transfer under fully-scaled, rotating

conditions for a film-cooled turbine stage.
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1.4 Objectives

The primary objective of this research was to experimentally measure the tip casing heat

transfer of a scaled film-cooled turbine stage. The project posed many engineering challenges to

that end. In all, the principal objectives for this project include:

1. The construction and validation of surface temperature thermometers with sufficient

frequency response, sensitivity, and stability to adequately measure tip casing heat transfer.

2. The design and fabrication of an instrumented device to hold surface temperature and

pressure instruments on the rotor tip casing to resolve spatial and temporal trends in heat transfer

and wall static pressure. This includes the necessary facility modifications to adequately house

and support the device.

3. The measurement of heat flux on the tip casing of a film-cooled turbine stage.

4. The preliminary investigation of measured tip casing heat transfer to identify trends in

time-averaged data and compare results for different operating points and tip gaps.

5. The creation of a detailed data set for use in physics-based modeling, CFD code

validation, and eventually the improved design of film-cooled turbine stages of this class.

1.5 Thesis Outline

This chapter introduces the content of the thesis, reviews previous work in the Blowdown

Turbine test facility and other related work, and outlines the objectives of the project. Chapter 2

introduces the MIT Blowdown Turbine facility and details all primary components. Facility

scaling issues and typical run conditions are discussed. Recent modifications for this research

are outlined. Chapter 3 outlines the development from concept through fabrication of semi-

infinite heat flux gauges for measuring heat transfer to a turbine tip casing. The chapter presents

a simple reduced order model to identify some criteria for material selection and gauge design.
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Chapter 4 gives a comprehensive report of the tip casing insert instrumentation holder,

identifying design criteria with instrumentation in mind in order to elucidate as much of the flow

phenomena as possible without requiring substantial facility modifications. Calibration

procedures are also presented. Chapter 5 presents measured turbine performance data to

characterize the stage's operation. Chapter 6 presents and discusses the experimentally

measured heat transfer data. Non-dimensionalized heat transfer results are displayed for both tip

gap ratio tests. Comparisons are made within each test, within the same tip gap for different

operating conditions, and between different tip gap tests. Relevant time scales for the purpose of

time-averaging are also discussed in this chapter. The thesis concludes with Chapter 7, a

summary of results and recommendations for future work.
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Chapter 2

Blowdown Turbine Test Facility

2.1 Introduction

The MIT Blowdown Turbine Facility is a short-duration, blowdown wind tunnel capable

of testing a complete, rotating stage in an environment that rigorously simulates the fluid physics

and heat transfer phenomena that occur in a turbine. This chapter reviews the MIT Blowdown

Turbine facility. Overall configuration and operational procedures are described. Scaling of the

turbine operating point for achieving full-scale similarity is discussed. Individual components

are examined as well as instrumentation and the recently modified coolant feed system. The data

acquisition system is also briefly presented.

2.2 Facility Configuration

The MIT Blowdown Turbine test facility is shown in Figure 2-1. The facility consists of

seven primary components: the supply tank, fast acting valve, test section, eddy current brake

torque meter, critical flow venturi nozzle, coolant feed system (not shown), and dump tank. A

detailed review of the overall design of the facility can be found in Guenette [9].

2.2.1 Supply Tank and Main Valve

The supply tank is a 364 cubic foot cylindrical pressure vessel rated at 150 psi. It is

surrounded by an external jacket through which heat transfer oil is circulated to heat the tank to

the desired test temperature. A stirring fan is employed to ensure a uniform test gas temperature
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distribution.

The test section is separated from the supply tank by a fast-acting, axially traversing, plug

valve. This valve is designed to fully open in approximately 50 ms and introduce disturbance-

free flow into the test section. Valve dynamics are controlled by damping chambers which

produce a force on the plug whose magnitude and direction depend on its position and velocity.

In its fully closed position, this force acts to seal the plug. After the seal is broken, the valve

plug is accelerated open. As it nears its fully open position the plug is decelerated to rest. The

force used to break the seal is provided by an internal pneumatic piston assembly actuated by a

small compressed gas cylinder.
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Figure 2-2: Test Section Detail
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2.2.2 Test Section

A cut-away of the test section assembly is shown in Figures 2-2 and 2-3. The test section

is composed of the forward frame, main frame, and the rotor unit. The forward frame contains

the nozzle guide vanes, the inlet boundary layer bleeds, and the rotor heat shield and mates to the

main valve. The forward frame is followed by the main frame which houses the turbine rotor

assembly, the downstream probe translator package, the eddy current brake magnet assembly,

the turbine throttle and drive motor. The rotor unit contains the rotor discs, blades, bearings,

shaft, and the eddy current brake 'loss' drum (not shown). This drum is inserted into the eddy

current brake magnet assembly.

Figure 2-3: Turbine Installation Detail

29



A cross-sectional view of the test section flow path is shown in Figure 2-4. Upstream of

the turbine stage a boundary layer bleed provides clean inlet flow. The rotor exit flow is

exhausted through an adjustable throttling area to provide the desired pressure ratio across the

turbine. During the usable portion of the test, this area is choked. Also shown in this figure are

the upstream and downstream measurement locations. Downstream, the total temperature and

pressure probes are mounted on a circumferential translator.
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2.2.3 Circumferential Probe Translators

Both upstream and downstream circumferential translators are available to provide

measurement of non-axisymmetric features of the turbine flow field. Both are composed of

drums forming the inner annulus of the turbine entrance and exit and are mounted on thin-line

bearings. For the experiments reported herein, only the downstream translator was employed.

The downstream translator houses three 'canisters' spaced 200 apart, which contain the

appropriate electrical and pneumatic connections to support either total temperature or pressure

rakes. Connections also provide for several wall static pressure taps. The translator is restricted

to a 350* rotation angle by a spring-loaded hard stop to prevent the translator from freely

spinning and destroying the canisters' electrical wiring. The translator is driven by a Baldor ME-

4090-BLBCE servomotor, delivering approximately 3 in-lb of torque through an equivalent

13.5:1 gear ratio. This motor is controlled by a Galil DMC-400-10 card and powered by a

Copley MB6-10 amplifier. In addition to the hard stop, an aluminum shear pin is installed on the

shaft coupling exiting the servomotor to prevent translator runaway.

2.2.4 Eddy Current Brake

The eddy current brake serves as both the turbine load and the turbine torque meter. It

consists of two components: a cylindrical, Inconel drum directly attached to the rotor shaft and a

stationary array of DC excited electromagnets arranged circumferentially around the drum.

Electric currents are induced in the drum as it rotates through the applied magnetic field. The

flow of this current through electrical resistance of the drum dissipates the power produced by

the turbine which appears as resistive heating of the drum. Turbine speed is controlled by setting

the magnitude of the applied magnetic field.

The braking system was modified by Keogh, [14], to serve as a shaft torque meter. The

electromagnet assembly was mounted on bearings and reacting the braking torque measured

through two load cells.

2.2.5 Critical Flow Venturi Nozzle

A critical flow venturi, developed and installed by Keogh [14] and Spadaccini [22] in line

with the exit flow path, is used to measure the mass flow rate through the turbine. The nozzle

design and upstream duct requirements are based upon the ANSI standard, [3], for torroidal
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throat critical flow venturi. Modifications to the facility were required to meet installation

requirements for the nozzle. A 66 in. extension was added between the dump tank and main

frame in order to relocate the eddy current brake and starter motor. Extensions were also

required to connect the boundary layer bleeds to the dump tank, and to connect the fill system to

the supply tank.

A 50% open area screen is installed at the entrance to the upstream duct. This reduces

the total pressure non-uniformity caused by the stepped transition from annular to circular cross

section around the starter motor. The nozzle was calibrated with the upstream duct and a

simulated blockage in place.

The nozzle was designed and built by Flow Systems Inc. of Boulder Colorado and

calibrated by Colorado EESI. This calibration is traceable to the National Institute for Standards

and Technology (NIST). A cross section of the critical flow venturi nozzle is shown in Figure 2-

1.

2.2.6 Coolant Feed System

The coolant system consists of a coolant supply tank, a fast-acting pneumatic ball valve, a

pipe network, and several orifice plates for metering the flow. Like the facility itself, the cooling

system operates in a blowdown mode. The existing facility coolant system was modified by

Spadaccini [22] to provide three independent and separately metered streams to the rotor blades,

vanes, and tip casing.

The coolant supply tank is 3.97 cu. ft. and has a pressure rating of 450 psia. Like the

main supply tank, it is surrounded by a metal jacket and insulation for controlling tank

temperature. A flow of liquid nitrogen mixed with compressed air is used to cool the tank lining

and the test gas to the desired temperature. The fast-acting ball valve at the tank exit is actuated

by a 1000 psi argon bottle. It is triggered simultaneously with the main valve and closes

approximately 1.2 seconds later. The piping network feeds the coolant from the supply tank into

the test section and to the turbine.

An overhead view of this network can be seen in Figure 2-5. Three independent feeds

are employed. One each to the rotor blades, nozzles, and tip casing. The flow is split in a

manifold downstream of the ball-valve. Each split is metered by a thick, square edged, choked
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orifice with known discharge coefficient which accurately sets the mass flow ratios to each

turbine component.

Mv Contnt rfri

Pede c'oo int Feed

It3R1fDIDI

Figure 2-5: Coolant Feed System

2.2.7 Film-Cooled Turbine Stage

In order to modify the uncooled turbine stage for coolant flow injection, the -scale film-

cooled model turbine was required to have similar external geometry, including the film hole

quantity, distribution, diameters, and injection orientations over the airfoil surfaces. The internal

passages were not directly replicated since the focus of the program was on external heat

transfer. Extensive work was done by Keogh [14] and Spadaccini [22] to modify the previously

existing, non film-cooled turbine stage. Sophisticated machining techniques, including electrical

discharge machining (EDM) and laser machining, were employed.

The nozzle guide vanes, turbine blades, and the tip casing were modified. Nozzle guide

vanes were retrofitted with 12 rows of coolant injection holes on the airfoil surface, as well as

several holes on the upper and lower platforms. Two vertical channels were required to feed all

the airfoil surface cooling holes. Coolant was supplied to the platform holes via manifolds above

and below the locations where the vanes mate to the facility. The scaled film-cooled turbine

blades consist of five rows of coolant injection holes: two on the leading edge, one on the
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suction surface and one on the pressure surface. The leading edge holes are also oriented at

compound angles. Although not used for this experiment, the rotor tip casing was modified with

film-cooling holes on the leading and trailing edges of the tip casing ring.

2.3 Scaling of Test Conditions

Validity of scaled wind tunnel experiments depends on the similarity between the test

flow and the actual flow being simulated. In dimensionless form, the equations for mass

continuity, momentum and energy transfer produce non-dimensional parameters that completely

characterize the physics of flow field. Similarity between experiment and reality only requires

that these non-dimensional parameters be reproduced.

For an uncooled turbine stage operating under adiabatic conditions, corrected mass flow

and total temperature ratio (or efficiency) depend on four dimensionless parameters: total

pressure ratio, corrected speed, Reynolds number, and specific heat ratio, [9]. Two additional

parameters are required to simulate the heat flux distribution: the gas-to-wall temperature ratio

and the Prandtl number. For a film-cooled turbine test, the coolant mass and momentum flux

ratios must also be reproduced. These parameters, which govern test similarity, can be matched

by properly setting the facility initial operating conditions.

The operating conditions consist of the test gas composition, upstream total temperature

and pressure, coolant total temperature and pressure, mechanical speed, throttle area, and brake

excitation. The supply tank temperature is set by matching the gas-to-wall temperature ratio.

Specific heat ratio is matched by setting the test gas mixture ratio, typically Argon and CO2.

Shaft mechanical speed is set by matching the corrected speeds. Initial supply pressure is set by

the Reynolds number, and pressure ratio by the downstream throttle position. Table 2-1

summarizes the conditions of a typical blowdown experiment and compares them to that of a full

scale engine.
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Table 2-1: MIT Blowdown Turbine Scaling

Parameters Full Scale Engine MIT Test Facility
Working Fluid Air Argon - CO 2
Ratio of Specific Heats 1.28 1.28
Mean Metal Temperature 1100 K 300 K
Metal to Gas Temp Ratio 0.647 0.647
Inlet Total Temperature 1700 K 464 K
Reynolds Number 5.6 106 5.6 106
Inlet Total Pressure 15 atm 7 atm
Exit Total Pressure 7.4 atm 3.47
Exit Total Temperature 1470 K 401 K
Prandtl Number 0.928 0.742
Design Rotor Speed 3600 rpm 5954 rpm
Design Mass Flow 312 kg/s 23.3 kg/s
Coolant/Inlet Flow 9.8% 9.8%
Stage Power Output 91 MW 1.26 MW
Test Time Continuous ~ 0.800 s

2.4 Test Procedure

Preparations for a blowdown experiment begin by determining the required conditions

for achieving full-scale turbine operating point. These consist of the upstream total temperature

and pressure, coolant total temperature and pressure, test gas composition, mechanical speed,

throttle area, and brake excitation. The experiment then proceeds as follows:

1. The entire facility is evacuated and the throttle plate is positioned for a predetermined

area based on operational experience.

2. The main supply tank is heated to the desired upstream total temperature and is brought

to thermal equilibrium.

3. The main valve is sealed and the supply tank is filled with the required test gas mixture to

the desired upstream total pressure.

4. Simultaneously, the coolant supply tank is filled to the desired pressure and cooled to the

predetermined temperature.

5. At this post-fill state, all differential pressure transducers are calibrated by cycling their

back-pressure ports between vacuum and atmosphere. This provides a scale factor for
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each transducer. Instrumentation and calibration are discussed in further detail in section

2.5.

6. The brake excitation is set.

7. The data acquisition system and translator servo-motor controller are set to stand-by

mode and are waiting to be triggered.

8. The turbine rotor is then accelerated to the desired mechanical speed by a starter motor.

9. Once this speed is exceeded, the motor is powered down and the rotor spins freely in the

vacuum. It is slowly decelerated by bearing friction and the applied back EMF of the

drive motor.

10. When the decelerating rotor reaches the preset speed, a trigger occurs causing the main

valve and coolant ball valve to open. Simultaneously, the data acquisition system begins

collecting data, the downstream translator begins it traverse, and the eddy current brake

torque meter is energized.

11. The test gases then flow through the test section and quasi-steady state operation is

reached after a 300 ms transient. The useful test window is approximately 500 ms.

12. After approximately 1.2 seconds the coolant ball valve closes and the brake is turned off.

13. The rotor decelerates and comes to a stop.

14. Once the gas inside the tunnel stabilizes, all differential pressure transducers are re-

calibrated to check for drift.

15. The tunnel is then re-evacuated and cooled to room temperature.
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2.5 Instrumentation

2.5.1 Introduction

The facility was designed to provide a rather benign experimental environment for flow

measurement. The nature of the short duration experiment casts a strict requirement on the time

response of instrumentation used to sample its flow field. Performance calculations based on

these measurements also require a high level of instrumentation accuracy. These considerations

led to the development of highly accurate total temperature and pressure instrumentation with the

capability of accurately characterizing turbine performance.

2.5.2 Total Temperature Instrumentation

The MIT Gas Turbine Laboratory has engaged in the development of total temperature

probes for use in turbine aero-performance measurements in the Blowdown Test Facility. With

each new design, time response and instrument accuracy generally improved. Work focused on

reducing the transient errors resulting from the heat transfer processes within the thermocouple

junction support wires and led to a design with much faster time response than previously

achieved. Attention was also paid to the probe head design to reduce probe sensitivity to flow

angle, which is important for downstream wake measurements.

Details of the temperature probes are shown in Figures 2-6 and 2-7. The measurement

heads consist of 0.0005 in. diameter type-K thermocouple junctions mounted in vented

stagnation tubes. The rake probe shown in figure 2-7 is mounted on the downstream translator

and contains an internal temperature reference junction. An identical probe with four heads is

also mounted on the downstream translator and a stationary six head version is mounted

upstream of the turbine. The radial rake of 6 heads is positioned roughly mid-way between two

of the facility's inner annulus support struts. The inlet rake can employ either an internally

mounted or external reference junction.

Three additional single head probes, spaced 1200 apart, are mounted upstream at mid-

span on the inlet annulus. The thermocouple reference junctions for these probes are external.

Three total temperature probes are dedicated to monitoring the flow through the critical flow

venturi nozzle. These probes are also 0.0005 in. diameter type-K thermocouples and have

similar time response and accuracy to the upstream probes.
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The cooling system is instrumented with seven type-K thermocouples. These probes do

not require the time response of the turbine inlet and outlet sensors and employ 0.003 in.

junctions. These probes are located at points upstream of the choked metering orifices and as

close as possible to where the coolant enters the test section.

With the exception of the turbine inlet and outlet rakes, all thermocouples are referenced

to Omega TRCIII ice point cells. The signals are processed using high stability DC amplifiers

and filters prior to being recorded by the data acquisition system. The long term static accuracy

of the system-consisting of the measurement head, reference junction and signal conditioning

electronics-is 0.13 K.

Thermocouple Thermocouple
Junction Wire

Inlet

Ceramic \__ Teflon L Stainless Steel
Tubing Tubing Probe Shield

Figure 2-6: Temperature Probe Head Detail
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Probe Head-

+ Airfoil

Rake Body

Copper Reference
Junction

STeflon Shell

Figure 2-7: Downstream Total Temperature Rake
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2.5.3 Total Pressure Instrumentation

The primary concerns in the design of the total pressure sensors for this facility are fast

time response and flow angle insensitivity. Flow angle sensitivity is particularly important for

downstream measurements where the probes are circumferentially translated through the NGV

wakes. To achieve the desired time response, semiconductor strain gauge type pressure

transducers, manufactured by Kulite, were used. A disadvantage of these transducers is their

tendency to drift with changes in temperature. As a consequence, extensive run-time calibration

routines were developed and used during every experiment. To allow a larger range of inlet flow

angle to the probe head, either vented Keil type or 150 beveled impact heads were employed.

Acceptable flow angles are estimated to be ±27.50.

Downstream of the turbine stage a rake type pressure probe with eight 150 beveled impact

heads is employed to survey the pressure in the radial direction. The probe is mounted on the

downstream translator to resolve flow characteristics in the circumferential direction. The

pressure transducers, (100psig XCQ-063-100), are mounted inside the probe body below the

heads. Transducer reference backpressure is provided via a tubing arrangement within the

translator. The estimated average uncertainty in total pressure measurement from these heads is

0.25%. More information on the design of this probe is available in [5].

In addition to this rake, there are differential sensors located upstream of the turbine and

in the supply, coolant, and dump tanks. There are also several highly accurate (0.05%) Sensotec

pressure sensors mounted throughout the facility for calibration reference. The coolant system is

instrumented with several lower accuracy (0.1%) Sensotec transducers.

2.5.4 Nozzle Guide Vane Static Pressure Taps

To take static pressure measurements on the hub and tip region of the platform surfaces

of the nozzle guide vanes, one NGV is instrumented with static pressure "taps" on the platform

hub and tip surfaces. Four through holes were drilled into each platform surface one-quarter

nozzle pitch apart. On the tip end, tubulations are bonded into grooves machined into the outer

manifold support of the nozzle cassette. For the hub static tap, stainless steel tubes are bonded

onto the top and run through the NGV's cooling plenum. The outer manifold support of the

nozzle cassette was modified with a feed through hole to allow access to the static tap

tubulations. With an access window removed, the tubulations are visible and accessible, as

41



shown in Figure 2-8. Nylon tubing connects each of four hub and four tip tubulations and is

passed through Cajon fittings. The nylon tubing connects to brazed brass tubes on a brass

support piece, which hold the tubes in place and provide a seal. Additional nylon tubes connect

the brass tubes to a Scanivalve Direct Sensor Array pressure-monitoring device. To maximize

frequency response and measurement fidelity, the DSA is placed as close to the tubulations as

facility construction permits. This work is part of concomitant research on the MIT Blowdown

Turbine and is ongoing.

Figure 2-8: Static Pressure Taps

2.5.5 Tip Casing Heat Transfer Instrumentation

Heat transfer instrumentation was developed and fabricated for the project to measure the

heat flux to the tip casing. Instrumentation design and construction is detailed in Chapters 3 and

4.

2.5.6 Other Instrumentation

Turbine speed and translator position are monitored by their respective digital encoders.

The optical shaft encoder consists of two rings of 366 divisions per revolution in quadrature and

a once per revolution ring. It is directly mounted to the turbine shaft. Both digital and analog

circuitry process the encoder signals to provide shaft position and velocity for storage by the

computer data acquisition system.
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Two piezoelectric sensors are mounted on the bearing housing to record shaft vibration

during an experiment.

The eddy current brake torque meter is instrumented with two load cells that provide a

measure of shaft torque. The brake voltage and current are also recorded by the data acquisition

system. A list of all instrumentation is provided in Table 2.2.

Facility reference instrumentation provides known conditions for use in the calibration

procedures. For these, time response is traded for absolute accuracy and stability since all tunnel

temperature and pressure measurements are based on these references. Pressure references are

available in the supply tank and test section via slower, but more accurate capacitive type

pressure transducers. Located on the supply tank is a Sensotec Super TJE 150 psia (0.05%)

transducer. A Sensotec TJE 50 psia (0.1%) transducer is located in the critical flow venturi. The

upstream Pitot probes are referenced to a Setra Model 228 1 psid capacitive type pressure

transducer. Temperature calibrations are referenced to a Rosemount Standard Platinum

Resistance Thermometer Model 162N100A (S/N3779), and when possible thermocouples are

referenced to Omega TRCIII ice point calibration cells. Efforts are now being made to convert

all temperature references to the ice point to simplify temperature data reduction.
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Table 2-2: Blowdown Turbine Instrumentation

Sensor Type Location
Facility Reference
PFEF300 300 psia, Sensotec: STJE/1835/15 Calibration: Coolant Tank

S/N: 589494 Facility
Run Time: Coolant Tank Initial
Pressure

PREF150 Calibration: Supply Tank / Facility
150 psia. Sensotec: STJE/1833-12-04 Run Time: Supply Tank Initial
S/N: 587965 Pressure

PREF050 50 psia, Sensotec: TJE/0713-04TJA-12 Calibration: Facility
S/N: 631656 Run Time: Critical Flow Venturi,

Test Section Initial Pressure
PREFOO1 1 psid, Setra: 228-1 S/N:708984 Calibration: Inlet Pitot Tubes
TREF3997 Rosemount Model 162N100A, Standard Calibration Reference

S/N3779
Standard Platinum Resistance
Thermometer

TREF10 0-100 "C Platinum RTD Run Time Reference

Supply Tank
PTOA 150 psid, pressure, Kulite Supply Tank, Internal
PTOB 150 psid, pressure, Kulite Supply Tank, Internal
TTOA 600 "F temperature, type J T/C Supply Tank, Internal
TTOB 600 "F temperature, type J T/C Supply Tank, Internal
TTOC 600 "F temperature, type J T/C Supply Tank, Internal

Shaft Monitoring
FTACH Speed, Digital Shaft/Bearing Assembly
ATACH Speed, Analog Shaft/Bearing Assembly
FBRING Vibration, forward Shaft/Bearing Assembly
RBRING Vibration, rear Shaft/Bearing Assembly

Eddy Current Brake
VTOT Excitation Volt External
ITOT Total Current External
IBRK Excitation Current External
ECBF1 Load Cell #1 Internal
ECBF2 Load Cell #2 Internal

Main Valve
PVLV 450 psia Kulite Valve Damping Chamber
XVLV 0-8 in Linear Potentiometer Valve Slider

Turbine Inlet
PT2x, (x=A,B,C) Total Pressure Main Frame, 1200 apart
TT2x. (x=A,B,C) Total Temperature Main Frame, 1200 apart
PP2x, (x=A,B,C) Dynamic Pressure Main Frame, 120 apart
PTYRn, (n=1,2,3,4,5,6) Total Pressure, 6 head radial rake Main Frame, fixed location
TTR1O1-n,(n=1,2,3,4,5,6) Total Temperature, 6 head radial rake Main Frame, fixed location
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Table 2.2: Blowdown Turbine Instrumentation, continued

Sensor Type Location

Turbine Outlet
PT45Rn,n=1,2,3,4,5,6,7,8 Total Pressure, 8 head radial rake Downstream Translator
TTR103-n, n=1,2,3,4,5 Total Temperature, 5 head radial rake Downstream Translator
RTD103-n, n=1,2 T/C Reference RTD's, 2 locations Downstream Translator
TTR104-n, n=1,2,3,4 Total Temperature, 4 head radial rake Downstream Translator
RDT104-n, n=1,2 T/C Reference RTD's, 2 locations Downstream Translator
P45HUB 50 psid wall static pressure Downstream Translator Hub
P45A 50 psid wall static pressure Main Frame Window

Critical Flow Venturi
PREF050 Static Pressure Venturi Inlet
PNOZ Static Pressure Flow Conditioning Nozzle
TTMFM1 Total Temperature Venturi Inlet
TTMFM2 Total Temperature Venturi Inlet
TTNOZ1 Total Temperature Flow Conditioning Nozzle
TTNOZ2 Total Temperature Flow Conditioning Nozzle

Dump Tank
PDMP Static Pressure Dump Tank

Cooling System
PREF300 300 psia, Sensotec: STJE/1835/15 Coolant Supply Tank

S/N: 589494
PTCO 300 psia Kulite Coolant Supply Tank
PTCl Total Pressure, 300psig Sensotek Coolant Supply Manifold
PTC2V Total Pressure, 100psig Sensotek Vane Feed Manifold
PTC2B Total Pressure, 100psig Sensotek Blade Feed Manifold
PCCV Static Pressure, 100psig Sensotek Vane Feed Entrance
PCCC Static Pressure, 100psig Sensotek Tip Casing Entrance
TTCO Total Temperature Coolant Tank Exit
TTC1 Total Temperature Coolant Supply Manifold
TTC2B Total Temperature Blade Feed Manifold
TTCBV Total Temperature Vane Feed Entrance, B window
TTCBC Total Temperature Casing Feed Entrance, B window
TTCCV Total Temperature Vane Feed Entrance, C window
TTCCC Total Temperature Casing Feed Entrance, C window
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2.6 Pressure Transducer Calibration

A standard calibration procedure is responsible for the calibration of all differential

pressure transducers. It is performed immediately after the supply tank is filled and at the

conclusion of each experiment. Calibrating data just before and after each experiment allows

transducer drift and non-linearity to be quantified. Figure 2-9 shows a typical calibration trace of

a differential pressure transducer. This figure and the calibration sequence are described below.

1. All transducers are provided a vacuum back-pressure reference by an external vacuum

pump. For a post-fill calibration this produces a zero pressure differential across the

transducers which are located inside the tunnel. For those in the supply or coolant tanks,

a pressure differential equal to the initial tank pressure is recorded.

2. Data is taken at this condition for approximately two minutes as shown by the first

segment of the trace in Figure 2.9.

3. After two minutes, the back-pressure reference is exposed to atmospheric pressure. Data

is acquired for two minutes as shown in Figure 2.9.

4. After four minutes, the back-pressure reference is returned to vacuum where it remains

for the experiment.

5. This procedure is repeated after the blowdown experiment has been completed.

Fg .2-9:.Typica ...Difeenia .Pressure .. Trc

0 1 2 3 4 5

Figure 2-9: Typical Differential Pressure Calibration Trace
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This data provides a voltage change for each differential transducer which corresponds to

the local atmospheric pressure. A transducer scale factor can then be computed. Transducer

zeros are taken to be the average output prior to the opening of the main valve. The scale and

zero can then be used in the data reduction process via the linear calibration relation.

2.7 Data Acquisition

The short duration nature of the blowdown experiment not only places special

requirements on instrumentation, but on data acquisition (DAQ) as well. The DAQ systems

must monitor all instrumented channels at a sampling rate sufficient to capture all time scales of

interest for the duration of the experiment. For aerodynamic performance measurements, 5 kHz

data sampling is sufficient to resolve the necessary time scales; however, for heat transfer

measurements, a 200 kHz high speed system is necessary. The 200 kHz high-speed system is

often utilized to accurately monitor turbine speed. The DAQ envelope typically spans 2-4 sec. to

record useful data and monitor tunnel 'spin-down.' The precise clocking sequence can be

modified to capture the desired window. In addition, the post-test calibration lends further

insight into the post-test tunnel state.

The data acquisition system monitors all instrumented channels at a sampling rate

sufficient for capturing time scales of interest during the experiment. The system typically

acquires data for 2-4 seconds depending on the experimental conditions being monitored. The

current hardware includes a Pentium II 450 MHz computer which is programmed with

LabVIEW lab automation software.

The current DAQ system consists of four computers. The low-speed system, which is

capable of monitoring up to 64 channels, samples at 2.5 kHz and 5 kHz. The high-speed system

monitors eight channels at up to 200 kHz. An IBM ThinkPad laptop computer collects NGV

static pressure data. Table 2.3 summarizes the Blowdown Turbine DAQ equipment.

47



Table 2.3: Blowdown Turbine Data Acquisition

Specification AST 4/66D A AST 4/66D B IBM PI IM ThinkPad

System 1 2 3 4
Speed High High Low Low
Operating Sys. Dos Dos NT 4.0 Windows 95
DAQ Platform In-House In-House LabView DSALink 2
DAQ Board ADTEK AD-830 ADTEK AD-830 NI MIO-64E3
Resolution 12-bit 12-bit 12-bit
Board Channels 8 8 64 16
No. of Boards 4 3 1 1
Total Channels 32 simultaneous 24 simultaneous 64 multiplexed 16
Sampling Rate 200 kHz 200 kHz 5 klz 200 Hz

2.8 Summary

This section has discussed the MIT Blowdown Turbine short duration experimental

facility used to acquire turbine data for calculation of adiabatic efficiency. It has covered run-

time preparations including determination of blowdown operating conditions to achieve full-

scale turbine similarity. Total temperature and pressure instrumentation for highly accurate flow

field measurements was briefly discussed along with other instrumentation used to characterize

turbine performance. This was followed by descriptions of the standard differential pressure

transducer calibration procedure and the downstream translator, a device for circumferentially

surveying the downstream flow field. This section concludes with information on Blowdown

Turbine data acquisition system.
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Chapter 3

Heat Flux Gauges

3.1 Introduction

The design and implementation of heat flux instruments was of chief importance to this

research effort. The following sections outline the development from concept through

fabrication of the semi-infinite heat flux gauges for measuring heat transfer to a turbine tip

casing. A simple reduced order model is presented to identify some criteria for material

selection and gauge design. Gauge fabrication procedures conclude the chapter.

Two methods of measuring surface heat flux have recently been used in the MIT Gas

Turbine Laboratory: a) multi-layer thin film gauges and b) thin film semi-infinite gauges.

Guenette [9] fabricated multi-layer gauges by plating nickel temperature sensors onto both sides

of 25 pm polyimide (Kapton) film; these gauges were used on tip casings and rotor blades.

Kirk' constructed semi-infinite thin film gauges using platinum paint on machineable ceramic

(MACOR) to detect the presence of a reacting flow in flat plate film-cooling schemes. With

institutional knowledge available, as well as documented success, variations of these techniques

were explored for use in this project.

The goals of this research required measurement of both time-averaged and time resolved

(blade passing) heat flux to the turbine rotor endwall. The design criteria for the heat flux gauge

development required that it must:

1. Be easily adaptable to the facility

Ongoing research in the MIT Shock Tunnel Facility by D.R. Kirk and G.R. Guenette to study Reaction

Effects on Film-Cooled Flat Plate Heat Transfer
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2. Be compatible with the operating conditions (450 K gas temperature)

3. Have frequency response from DC to 5 times blade passing frequency

4. Be small in scale (about 20-30 gauges along an approximately 1.5" by 1"

instrumentation region) to spatially resolve heat transfer

5. Minimize the disturbance in the flow field

6. Be simple to manufacture

7. Be replaceable in small denominations in the event of minor gauge failure

Both multi-layer and semi-infinite techniques were adaptable to the above criteria.

Multi-layer gauges of deposited thin film metal on a sheet of 25 pm Kapton film have been used

extensively in the MIT Blowdown facility. This technique imparts very little disturbance to the

flow. Frequency response has been demonstrated to nearly 60 KHz through appropriate choice

of substrate material and thickness. These gauges operate in a low frequency direct mode (direct

measurement of upper and lower temperatures) and a high frequency mode (one-dimensional

semi-infinite heat conduction based upon upper temperature). Notwithstanding these advantages,

fabrication techniques have proven unreliable and difficult 2.

The semi-infinite gauge was chosen to measure heat transfer on the tip casing. Frequency

response and robustness were demonstrated by Kirk [17] in conditions much more severe than

the Blowdown Turbine facility. When aligned properly, these gauges also create minimal flow

disturbances. An attractive feature of these gauges was their simplicity of fabrication and their

relatively small size in the instrumentation region. Compared to the multi-layer gauges, semi-

infinite gauges are much simpler to construct and were fabricated with in-house resources. They

can be installed and removed individually to replace inoperative gauges. Many gauges could be

installed in the same area-arrayed in rows and columns-to increase spatial resolution and

illuminate both circumferential and axial variations in heat transfer.

2 Improved multi-layer heat flux gauge fabrication technology is currently under development for use on

film-cooled turbine blades
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3.2 Semi-Infinite Heat Flux Gauge

The semi-infinite gauge is essentially a heat conducting substrate of known thermal

properties combined with a surface temperature sensor. For applications where heat transfer can

be considered one-dimensional within the body under investigation, the semi-infinite gauge is

advantageous because it can be mathematically modeled to provide exact solutions of its internal

thermal response to known external input heat load. Exact solutions were used to develop: a) the

design criteria for the heat flux gauges and b) the calibration and data reduction techniques. This

section discusses the gauge model and develops the background for gauge design criteria.

3.2.1 One-Dimensional Unsteady Heat Conduction Model

The heat flux measured by a particular gauge is modeled as one-dimensional unsteady heat

conduction. Heat flux is assumed to be spatially uniform within the length scale of the gauge.

The heat conduction equations are solved for a rod that appears semi-infinite in depth. The

following assumptions apply:

1. Heat flow is uniform (one-dimensional)

2. Gauge thermometer and substrate make perfect thermal contact

3. Thermal penetration depth does not exceed gauge length (semi-infinite)

4. Gauge and substrate properties are uniform throughout.

If no heat is generated within the region of interest, the general equation governing the

temperature distribution, T(x,t) is,

aT a 2T
=K- (3.1)

at ax2

where K is the thermal diffusivity of the substrate. The initial temperature is assumed uniform:

T(x, 0) =To (3.2)

and the semi-infinite condition requires that,

T (oo, t) = T (3.3)
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Since the tip casing may include both DC and periodic heat load components, temperature

responses to both a step in surface heat flux and steady harmonic surface heat flux must be

evaluated. The model provides exact solutions for both cases.

3.2.2 Response to Step in Surface Heat Flux

For a gauge suddenly subjected to a step in heat flux applied at the surface,

Os = { >o } (3.4)

the surface boundary condition becomes:

-k _ =LO (0, t) (3.5)

The solution to (3.1)-(3.5) gives the temperature distribution,

T(x,t)=q, 4K / -4at -x e rfc 1/2 J (3.6)
k 7di) (4Ktow

Temperature distribution for a constant surface heat flux is shown in Figure 3-1 below.
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Figure 3-1: Response to Step in Surface Heat Flux

The thermal penetration depth, 8(t), is seen to be proportional to Kt . It is noteworthy

here to discuss the implications of this thermal penetration depth. In order for the semi-infinite

condition-and thus equation (3.6)-to be valid in a region, 3 must be smaller than the gauge

length (L). Since the thermal penetration depth is a function of time, a time constant can be

established based upon VIK to determine valid test windows. Thus, for times less than the time

constant, the heat flux gauge can be considered semi-infinite and heat transfer data can be

reduced from a surface temperature history commensurate with equation (3.6). The temperature

response of equation (3.6) is portrayed graphically in Figure 3-2, contrasting the thermal

penetration depth with the length of the gauge.
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Figure 3-2: Thermal Penetration Depth

Equation (3.6) provides the temperature distribution in the heat flux gauge as a function

of: the position (x) and time (t); the heat flux applied (q,); and the thermal properties of the

gauge. Thus, to specify the temperature at any point and time, the thermal properties of the

gauge must be accurately known. Written a different way, equation (3.6) becomes:

2t t 1/2

T(x, t)= 2q
rc pc

\1/2

_x24Kt - x erfc 4 ) 1  
2(4et

The thermal properties of the gauge- p , c and k -form two parameters that govern its

performance: 1) K = k governs the penetration and 2) ,[p-ck governs the sensitivity. The

significance of pck is illustrated in the surface temperature solution to a step in surface heat

flux:

(3.8)

Temperature sensitivity per unit of heat flux applied is proportional to
/ p ck

. This

relationship clearly shows that a low value for pck is desirable for high sensitivity gauges.
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3.2.3 Response to Steady Harmonic Variation in Surface Heat Flux

The passing of turbine blades imparts a time varying heat load on the tip casing. Previous

experiments have shown the time-resolved heat flux to be rich in harmonics, with the

fundamental component at the blade passing frequency. An exact solution is available for the

case of a steady harmonic heat flux. The boundary condition describing this heat flux is:

43T
qs (t) = -k - = q0 sin(ot)|<_ , (3.9)

and the temperature distribution is found to be:

T(x,t)= - e sin(ot - x -2 ) (3.10)

Again, the temperature distribution depends upon time, position, and the thermal

properties of the gauge material. As in the case of the step response, the thermal scale factor

( pck) appears. For the temperature response due to a steady harmonic surface heat flux,

,pck affects the frequency response of the heat flux gauges. As shown by Guenette [9], the

impact of this factor can be readily seen in the temperature distribution of the surface (x=O).

This gives:

T (t)=W q0 (-112 (sin(ot -7 / 4)) (3.11)

Since the surface temperature response drops off as w-1/2, lower values of thermal scale

factor will improve the response for higher frequencies of heat load. As with the response due to

a step in heat flux, a low value of pck also increases gauge sensitivity (A ).

3.2.4 Gauge Material Selection

In addition to thermal properties, durability and machineability were also considered in

selecting the substrate material. It was desirable to develop a fabrication method that could be

easily mastered and executed with in-house resources. Materials that could be easily machined

were given strong consideration. Of the materials evaluated, Machineable Ceramic (MACOR)

was chosen. MACOR has a low value of pck, is widely available, and is simple to machine.

Unlike glass pyrex, another candidate material, MACOR gauges were machineable in the lab.
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The length scale of the gauge was given much consideration during the design phase.

Gauges were desired to be as small as possible to maximize spatial resolution. However,

mechanical design and fabrication constraints limited the size. An optimal size was selected by

balancing spatial resolution and construction.

3.3 Temperature Sensor

The temperature sensor is a film resistance thermometer constructed of a material whose

resistance is sensitive to temperature. When passing a current through it and observing the

voltage drop, it can be used to accurately measure surface temperature. The criteria used to

develop the thin temperature sensor include:

1. Thin Film Sensitivity and Stability

2. Thin Film Frequency response

3. Adhesion of Metal Film and Substrate

4. Abrasion resistance

These criteria will be discussed in this section.

The semi-infinite gauges are resistance thermometers mounted on a substrate. The

temperature coefficient of resistivity (a) defines the sensitivity of the metal films to a change in

temperature. Guenette [9] developed an extensive gauge model and used it to identify many

design criteria for multi-layer thin film gauges.

Since a(T) is normally a very weak function of temperature for the metals considered,

the change in resistance with temperature can be expressed as:

AR = RaAT (3.12)

This change in resistance can be measured with analog devices, appearing as a voltage drop. For

a constant current circuit, the voltage drop across the metal film gauge becomes:

AV = (Va)AT (3.13)

If the gauge sensitivity is now defined as the ratio of the voltage drop to temperature change, it is

clearly evident that this sensitivity is directly proportional to both the excitation voltage (V) and

the temperature coefficient of resistivity :
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=Va (3.14)
aT

Equation (3.14) shows that excitation voltage and metal film coefficient of resistivity are

important variables in gauge design. Thus, for high sensitivity, a metal film must have high

temperature coefficient of resistivity (a).

The ability of the metal film to dissipate the heat generated by resistive heating is an

additional factor in gauge design. The resistive heating- VR -- can be written as a heat flux:

q = (3.15)
(1w)

where 1 and w are the sensor length and width, respectively. This heat flux represents a

disturbance, and therefore must be kept small compared to the heat flux being measured by the

thin film gauges. Additionally, Kirk [17] discovered that metal film gauges can "burn out" if

excited by too high an excitation voltage.

Platinum was chosen as the metal film for the sensor due to its availability for use with

ceramics. Platinum has high resistivity and temperature coefficient. When painted onto a

substrate and then baked on at high temperatures, platinum retains its thermal properties well.

Coated with a thin layer of protective strain gauge glue, the platinum thin film becomes nearly

impervious to abrasions. Platinum thin films give reasonably high resistances and good

resistance stability, and platinum paint was also available at a reasonable cost.

3.4 Fabrication

The thin film temperature sensors were fabricated using a widely used and proven

technique. A platinum-in-oil suspension was painted on the MACOR and fired in a kiln. This

technique has been used to produce heat transfer gauges since the 1950's [23]. Additionally, the

ongoing research of Kirk [17] in the MIT shock tunnel has validated the robustness of these

gauges in an environment more severe than that of the MIT Blowdown Turbine. The choices of

both substrate and thin film thermometer have proven reliable.

For fabrication, MACOR was procured in long cylinders close in diameter to the gauge

diameter. The MACOR rods were first machined down to the precise outer diameter of a gauge,

with a tolerance of 0.0015 in. or less. MACOR rods were cut to a length of 0.35 in. to allow
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some length to protrude out of the back side (connector side) of the tip casing insert. Square

grooves were cut in the side of each MACOR cylinder, as shown in Figure 3-4 below.

Square Groov s

Thin Film Thermometer

Figure 3-3: MACOR Cylinder Top View

The MACOR cylinder was initially cleaned and the top (gauge) ends were smoothed

with pumice powder and dental floss. This edge must be rounded to facilitate current flow from

the side of the gauge (from wire leads) to the top of the thin film thermometer. A sharp edge

would pose a hurdle to current in the form of a discontinuity. Gauge cylinders were then

thoroughly cleaned in an ultrasonic bath and dried in a low temperature oven.

Prior to painting on platinum, the MACOR cylinders were inspected for surface

smoothness and rounded edges. Platinum was applied first to the top-the most critical painting

step. Using a single-hair paint brush, the metal film was painted as a smooth and thin strip. The

thin film top strip was then baked up to a temperature of 12000 F and then slowly cooled to avoid

cracking of the MACOR and the platinum thin film. The baking temperature and cooling

techniques were adopted from Vidal [23]. Following a post-bake microscope inspection of the

thin film strip, side coats were painted in the square grooves. Figure 3-5 depicts the position of

the side coat conductors with respect to the gauge. One layer was initially painted on both side

grooves and then baked and cooled. Multiple layers were painted to achieve a thick coat of

platinum. Since the platinum paint only serves to connect the top thin film to the wire leads, the

resistance of the sides must be as low as possible to avoid introducing uncertainty to the gauges.

Through experience, it was determined that four to five side coats of platinum paint reduced the
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conductor resistance to less than 2 ohms. Side resistance surveys were conducted to ensure

compliance.

hin FilmPlatinum Paint on
Round Edges

Gauge

I

Figure 3-4: Gauge Side Cutaway View

In order to connect the gauge to a wiring board, 36-gauge insulated copper wire was

soldered onto the side conductors of the gauges. The square grooves permitted an open space to

feed these wires through to the wiring board. To protect the platinum top strip, a thin film of

strain gauge glue was applied evenly to the top of the gauge. Once the protective coat was cured,

gauge resistances were very stable and nearly impervious to abrasion and cracking. In

experiments in the MIT Shock Tunnel, Kirk [17] demonstrated that the presence of the protective

coating had a negligible effect on gauge sensitivity or frequency response. This thin glue layer is

shown below in Figure 3-6
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Thin Glue Layer-.

Gauge

Figure 3-5: Side View Sketch showing Gauge Protective Coating

Gauges were tested for reliability and robustness by thermally cycling each gauge in an

oven at temperatures similar to those encountered in turbine testing. Each gauge resistance was

measured initially. Then all gauges were placed in an oven for ten minutes, cooled at room

temperature, and resistances again measured. Most gauges were quite reliable, showing less than

1% deviation in resistance. Less than 10% of gauges were found to be unstable or inoperative

during this initial thermal cycling.

Gauges were fabricated in groups of six or eight. In all, 64 gauges were built, with the

best 32 chosen for use in the tip casing insert. The overages were stored for use as replacements.

Chapter 4 provides more detail on the position and orientation of all 32 gauges with respect to

the flow.

3.5 Summary

The preceding sections detailed the heat flux gauges used for the investigation of heat

transfer to the tip casing of a power generation turbine. Beginning with a comparison of two

instrumentation techniques, a semi-infinite type gauge was selected and justified for use in this

research project. A semi-infinite transient heat conduction model was presented with solutions

for both a step and a steady harmonic surface heat flux. The model was used to understand the

temperature response of a gauge and the effects of material properties. Design criteria were

identified from the model, providing convenient metrics for comparison of substrate materials.
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An analysis of sensitivity yielded design criteria specifically for the metal film thermometer.

Materials for both thin film and substrate were compared with respect to the design criteria

identified. Finally, the method of gauge fabrication was outlined. The use of these gauges in the

MIT BDT facility will be the subject of the next chapter
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Chapter 4

Instrumented Tip Casing Insert

4.1 Introduction

In order to effectively measure heat transfer in the tip gap region, an instrumented tip

casing insert (TCI) was developed. This chapter details the TCI from design through calibration.

After reviewing the instruments contained within the TCI, the chapter concludes with fabrication

and calibration sections.

4.2 Tip Casing Insert Design

Critical design considerations for the tip casing insert include:

1. Ease of insertion and installation

2. Minimal modification to the facility structure

3. Accommodation of wire leads from the TCI to the data acquisition

system

The flow side (or sensor side) was designed to approximately match the curvature of the

tip casing and be inserted in a cutout in the tip casing ring. The TCI curvature was designed for

use with both 1.5% and 3.0% tip casing rings, resulting in negligible variations in fit. Figure 4-1

shows a three-dimensional view of the TCI.

The TCI was sized so that it could be inserted into the tip casing through an external

window in the main frame of the test section with the facility assembled. The tight spacing

between the main frame and tip casing ring precluded other installation techniques. Although

somewhat difficult, this technique was favored due to its ability to easily pass wire leads from
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the TCI out to the data acquisition system. Figure 4-2 shows the TCI inserted into the main

frame.

The TCI was constructed from machined Aluminum. Gauge holes for both heat flux

gauges and pressure transducers were drilled at angles to match the curvature of the tip casing.

The TCI was gold anodized to eliminate the possibility of short circuits or interference between

instrumentation and the TCI.

Connector Side

Sensor Side

Figure 4-1: Three Dimensional View of TCI

Fig. 4-2: TCI Inserted into Main Frame

Due to the fragility of the film-cooled turbine blades, an abradable coating was added to

the tip casing and is known as the "rub strip." The rub strip protects the turbine blades and the
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rotor from catastrophic damage that could be caused by a tip rub. In this vein, protective coating

for the TCI was considered. Although no protective coating to the TCI was examined, the

severity of instrument damage that would certainly result from even a slight tip rub eliminated

this alternative. Several other possibilities were considered, including:

1.

2.

3.

A thin sheet of polyimide (Kapton) film bonded on the surface

A thin sheet of rubber bonded on the surface

An abradable coating to match the existing coating on the tip casing

The final choice, and the one adopted, was a spray-on abradable coating identical to the

coating on the rest of the tip casing. This alternative provided the best surface finish and the best

bond onto the surface of the TCI. Additionally, the abradable coating eliminated concerns of

downstream thermal disturbances due to a circumferential discontinuity on the tip casing. The

sensor side of the TCI, with the gauges against the abradable coating, is shown in Figure 4-3.

Figure 4-3: TCI Sensor Side

The TCI in the tip casing ring is portrayed in Figure 4-4, showing the matching abradable

surfaces.
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Figure 4-4: TCI in Tip Casing (Looking Upstream)

4.3 Instrumentation

4.3.1 Heat Flux Gauges

The heat flux gauges described in Chapter 3 were employed in the TCI. Thin wire leads

were attached to bring the analog signal out to the data acquisition system. Chapter 3 provides

the theoretical background for the gauges and details design criteria.

4.3.2 Pressure Transducers

The pressure transducers used were Kulite XCQ-062-100D differential pressure

transducers. The Kulites measure pressure differential between the tip casing and backpressure

tubes. These transducers were calibrated three times during the course of a run-before the

supply tank was filled, after the supply tank was filled, and immediately after a test. These

calibrations are discussed in greater depth in Chapter 2.

The transducers were placed in sheaths machined from stainless steel tubing. The ID of

the tubes was machined to 0.066 in. to fit the 0.064 in. Kulites. The OD of the tubes was

designed to fit snugly into the TCI. Transducers were bonded into the sheaths using epoxy.

Back pressure tubes, made of Tygon tubing of 0.010 in. ID and 0.030 in. OD, were fitted onto
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the back of the pressure transducers. All eight backpressure tubes were secured to the wiring

harness and were brought outside for calibration.

The pressure transducers were specially ordered without front protective screens to

improve the frequency response. For protection of the micro-scale strain gauge in the transducer,

a thin coat of rubber was added. RTV1 1 was applied to the sensor surface of each Kulite prior to

insertion into the TCI. The rubber coating was estimated to be 0.002 in. thick; the effect on

frequency response was assumed to be negligible.

4.3.3 Resistance Temperature Detectors

The reference temperature devices were platinum thin film Resistance Temperature

Detectors (RTDs). RTDs were used as accurate reference temperature devices to determine an

accurate "zero" for all gauges. Prior to testing, the RTDs were calibrated in an oil bath against a

NIST traceable reference thermometer. They measure the temperature of the entire TCI during

both calibrations and test runs and provide reference measurements during a run. In addition, the

RTDs give supporting verification that the tip casing has come to thermal equilibrium by the end

of a run and is not in a thermal gradient. During a run, each heat flux gauge initial temperature is

matched to the temperature read by an average of both RTDs.

4.3.4 Instrumentation Arrangement

Two possibilities for axial arrangement of heat flux gauges and pressure transducers

existed: 1) along an axial line, or 2) along a blade chord line. The arrangement of blade chord

line might have provided better resolution of tip passing effects than along a straight axial line.

However, drilling instrument holes along a blade chord line would have greatly increased the

complexity of machining the TCI. Since heat transfer gauge holes were drilled at angles to

match the radius of the TCI, a blade chord arrangement would have required setting each hole

angle individually. Thus, for simplicity, a straight axial line arrangement was used for both heat

transfer gauges and pressure transducers. The effect of this arrangement on data resolution was

estimated to be negligible.

The TCI was designed to hold three types of instrumentation: 1) heat flux gauges; 2)

pressure transducers; and 3) resistance temperature detector (RTD) thermometers. Since the

flow physics in this region may be influenced by the film-cooled nozzle guide vane wakes,
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quantity and spacing of instrumentation was given significant consideration in the design of the

TCI. The semi-infinite gauges were arrayed to provide both axial (8 locations) and

circumferential (4 locations) spatial resolution of the endwall heat flux distribution. This

arrangement is portrayed in Figure 4-5.

C,

F_ Nozzle Pitch
Figure 4-5: Instrumentation Arrangement and Spacing

The columns of gauges and pressure transducers were spaced evenly at one-quarter

nozzle pitch (approximately 0.36 in.) in an attempt to resolve nozzle wakes in the heat transfer

data. The column of Kulite pressure transducers was evenly spaced from the last row of heat

flux gauges. Thus, one row of instruments included four heat flux gauges and one pressure

transducer. On the connector side (side opposite the gauge and transducer sensor), two RTDs

were onto the surface at opposite ends of the TCI. Figure 4-6, a view of the rotor looking

downstream, shows the position of the instruments with respect to the blades.
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Fig. 4-6: Inserted TCI Looking Downstream from Rotor

4.4 Assembly

Heat flux gauges and Kulite pressure transducers were inserted into the TCI so that the

sensor side of each gauge was flush with the curved surface of the TCI. The alignment process

required care for two reasons: 1) the gauge surface must align with the concave surface of the

TCI with minimal flow disturbance and 2) the abradable surface of the TCI was fragile and

susceptible to wear. To assist in the sensor side alignment, a convex aluminum tool was

machined to exactly match the concave surface of the TCI. Gauges were inserted and bonded

using epoxy. To ensure that each gauge was fully seated and oriented correctly, the gauges were

adjusted after the epoxy began to firm.

The grooves in the MACOR base of the gauges allowed the wire leads to feed through to

the connector side of the TCI. Wires were connected to solder tabs. The tabs were bonded onto

the aluminum surface of the connector side TCI. Five tabs were used for four gauges (one tab

was common). Wires from the solder tabs were run along the outside of the TCI to a circuit

board. The wiring configuration for each heat flux gauge is shown in Fig. 4-7 (note: this

photograph shows the TCI prior to the installation of the pressure transducers). With the circuit

board mounted on the TCI to facilitate wiring assembly, each heat flux gauge was connected to

its corresponding circuit board pin.
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Fig. 4-7: TCI Connector Side wiring

The wiring of pressure transducers presented another challenge. The Kulites were

manufactured with four wires in a wheatstone bridge configuration. Thus, the wiring task for

these transducers was nearly as large as the heat flux gauges. Once wired, small back pressure

tubes were attached to the Kulites to provide a vacuum reference for the purpose of calibration.

A side view of the final wiring board is presented in Figure 4-8 below.

Fig. 4-8: Side View of Completed TCI
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Each instrument on the tip casing was connected to the Blowdown Turbine DAQ system.

Pressure transducers, heat flux gauges and RTDs were all connected to the high frequency

ADTEK card systems. From the circuit board, the wiring harness comprised two Nanonics 44-

pin connectors'. All 88 wires were laced together to provide ample rigidity and support to the

wiring harness. The wiring harness was brought outside of the test section and contained in a

tunnel feed through housing, as shown in Figure 4-9.

Fig 4-9: Tunnel Feed Through

4.5 Calibration

During testing, the heat flux gauge measured a surface temperature on the tip casing,

which was reduced to determine heat flux. To compute an accurate heat flux, the thin film

thermometers were calibrated as accurately as possible. The calibration technique used was to

submerge the gauges and RTDs in a heated oil bath and record gauge analog output signal (a

voltage) and the analog output signal from a highly accurate reference thermometer. The TCI,

1 The Nanonics connectors are manufactured hermetic
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with gauges and RTDs installed and fully wired, was submerged in the bath along with NIST

traceable reference thermometer. A stirring mechanism was used to maintain an approximately

constant temperature throughout the bath. The TCI wiring harness was connected through the

wheatstone bridge amplifiers and into the DAQ for data collection. To begin the calibration, the

heating unit was powered and the oil temperature brought up over 1000 C. As the oil

temperature cooled to 1000 C, the DAQ system was started. Data was recorded every 5

seconds as the system cooled down to 400 C. Voltage signals for each heat flux gauge and RTD

were matched to temperatures of the reference thermometer to determine both a scale (0 C )

and a zero (X Volts = Y 4C). Three calibrations were performed prior to testing. The thermal

properties of the MACOR gauge substrate were not calibrated, however published data has been

shown by Kirk [17] to be very accurate in calculating heat flux.

4.6 Summary

A comprehensive report of the tip casing insert instrumentation holder has been presented

in this chapter. Beginning with research objectives, TCI design criteria were identified with

instrumentation in mind in order to capture as much of the physics of the endwall flow as

possible without saddling the research group with substantial facility modifications. Emphasis

was given to the academic issue of heat transfer and pressure resolution and the engineering

issue of the TCI's flow side surface coating. Assembly of the TCI was discussed, and the

chapter concluded with calibration procedures.
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Chapter 5

Experimental Testing: Turbine Operating Point

5.1 Introduction

The purpose of this chapter is to present the experimentally measured turbine

performance results for selected test conditions in order to fully characterize the operating point

of the film-cooled turbine stage. This chapter also discusses the development of the turbine test

matrix and defines the time window of useful data. This chapter forms the fundamental basis for

comparison of the measured heat transfer data in Chapter 6.

5.2 Development of Test Conditions

The goal of the tests was to experimentally measure the time-resolved and time-averaged

heat loads to the tip casing of the turbine over a range of turbine stage operating points at two

rotor tip-gap-to-span ratios. To minimize the number of tests required, the development of an

effective and efficient test conditions matrix was paramount.

A test matrix was developed to capture these trends in as few experimental tests as

possible. Design point conditions for each tip gap ratio were used as a starting point. The design

point was tested twice, serving as the first and last tests of each tip gap test series, to assess both

flow condition and instrumentation repeatability. Four additional tests at each tip gap were

conducted: low Nc, low PR, high PR, and high Nc. These tests represent the four cardinal

directions on a Pressure Ratio Corrected Speed turbine operating map and were chosen to

75



elucidate the changes in heat transfer for one changing operating condition. The 3.0% tip gap

test matrix is shown below, including the total percentage of coolant flow to the vane and blade.

Table 5.1: 3.0% Tip Gap Test Matrix

Test Gas PR Nc Mcool, %

T203 C02 Design Design 10%

T204 C02 Design Low 10%

T205 C02 Low Design 10%

T206 C02 High Design 10%

T207 C02 Design High 10%

T208 C02 Design Design 10%

A similar test matrix was developed for the 1.5% gap, shown below in table 5.2.

Table 5.2: 1.5% Tip Gap Test Matrix

Test Gas PR Nc Mcool, %

T210 C02 Design Design 10%

T211 C02 Design Low 10%

T212 C02 Low Design 10%

T213 C02 High Design 10%

T214 C02 Design High 10%

T215 C02 Design Design 10%

The tip casing remained uncooled throughout this test series.

5.3 Turbine Operating Point Test Results

Measurements were conducted on the film-cooled stage under the conditions shown in

Tables 5.1 and 5.2. This section outlines the procedure for obtaining the turbine operating raw

data for use in the interpretation of the tip casing heat transfer results presented in Chapter 6.

Example data for turbine power, inlet total temperature, inlet and outlet total pressures, stage
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non-dimensional parameters and a summary of measured operating parameters are presented for

the test series.

5.3.1 Measured Total Temperature and Pressure

Turbine inlet temperature was measured at three circumferential locations at midspan

around the annulus. Inlet temperature was also measured at one circumferential location using a

five-head radial total temperature rake. For the performance and heat transfer results presented

in this document, the midspan measurements were used. The inlet total temperature was

averaged using a simple arithmetic mean. The inlet circumferential temperatures are plotted in

Figure 5-1 for the design point conditions test, T208.
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Figure 5-1: Inlet Circumferential Temperatures, Test T208
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A steady decrease in total temperature after the initial transient (approximately 0.3 seconds) is

the result of the expansion of the test gas from the supply tank and follows the isentropic model.

The initial spike in the temperature figures is due to compressional heating.

The inlet total pressure is measured at three circumferential positions upstream of the test

section, and is presented in Figure 5-2. Outlet total pressure is measured using an eight-head

radial pressure rake that translates around the annulus to detect any non-axisymmetric features of

the flow. The outlet total pressure is plotted in Figure 5-3; the oscillations in the figure are the

result of NGV wake passing.
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Figure 5-2: Inlet Total Pressure, Test T208
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Figure 5-3: Outlet Total Pressure, Test T208

5.3.2 Flow Similarity Test Interval

The turbine stage experiences an initial unsteady transient during the startup of the

facility. Data taken during this period is not useful. The flow similarity test interval defines the

time window at which the flow is appropriately scaled. A time history of entropy of the inlet

flow and the turbine pressure rates are used to ascertain the interval. For these tests, the FSTI

begins at approximately 300 ms and ends near 900 ms.
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Flow Similarity Time Interval: Inlet Entropy vs. Time
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Figure 5-4: Entropy and Pressure Ratio, Test T208

Total pressure and temperature were fit using a 4 order polynomial fit over the flow

similarity test interval. The data regression scheme smooths outlet pressure measurements to

account for the NGV wakes, observed in the measured data presented above in Figure 5-3, and

renders data more convenient for calculations. The 4 th order fits of inlet and outlet total pressure

and pressure ratio are presented below in Figures 5-5 to 5-7, over the flow similarity test interval.
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Figure 5-5: Average Inlet Total Pressure over FSTI, Test T208
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Figure 5-6: Outlet Total Pressure over FSTI, Test T208
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Figure 5-7: Stage Pressure Ratio, Test T208

5.3.3 Turbine Shaft Speed and Power

Figures 5-8 and 5-9 display the mechanical speed, shaft acceleration, turbine torque and

power over the flow similarity test interval.
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Shaft Speed and Fit over FST1
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Figure 5-8: Shaft Speed and Acceleration, Test T208
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Turbine Torque and Power
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Figure 5-9: Turbine Torque and Power, Test T208

5.3.4 Corrected Speed

The turbine stage non-dimensional parameters of corrected speed, pressure ratio,

Reynolds number, and ratio of specific heat (y ) must be matched to the actual engine in order to

appropriately scale results. The pressure ratio and corrected speed are of primary importance for

these runs (R, and y are kept the same for the series), since these two parameters define the

turbine's operating point. Corrected speed is defined as:

N = ref

So yRTa

Figure 5-10 illustrates the time history of corrected speed and its 4th order fit over the FSTI.
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Stage Corrected Speed and Fit over FST1
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Figure 5-10: Corrected Speed, Test T208

5.3.5. Stage Operating Point

The turbine stage operating point is presented below over the flow similarity test interval.

Markers for the start and stop time of the FSTI, as well as indicators for every 5 complete rotor

revolutions, are indicated on Figure 5-11 for test T208. The operating maps, with FSTI start and

stop indicated, are presented in Figure 5-12 for all tests conducted. These figures form the basis

for determining suitable windows of comparison for heat transfer results. Operating point

stability as a function of rotor revolution will be addressed in the context of time averaging in

Chapter 6.
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Stage Operating Point Map over FST
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Figure 5-11: Stage Operating Point Map, Test T208
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Figure 5-12: Test Series Operating Maps

5.4 Summary

The data reduced from turbine tests and the relevant parameters have been presented. A

test matrix was developed to identify trends in heat transfer and has been discussed in this

chapter. Previous work-including experimental work at the MIT BDT facility and elsewhere

and computational work-were considered in the design of the test matrix. The experimental

turbine stage operating conditions have been presented and will form the basis of comparison for

heat transfer results presented in the next chapter.
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Chapter 6

Experimental Testing:

Tip Casing Heat Transfer Results

6.1 Introduction

The flow field on the tip casing surface is a complex, unsteady, three-dimensional flow.

It is heavily influenced by the passing of turbine blades in close proximity to it. Tip casing heat

transfer was measured for a fully scaled film-cooled turbine stage under rigorous conditions to

re-create the phenomena found in a full-sized engine. The results reported herein represent an

initial experimental investigation of the time-averaged heat transfer to the tip casing conducted to

elucidate trends and identify significant features of the flow that are pertinent to heat transfer.

Heat transfer measurements were taken over a range of operating points (pressure ratio and

corrected speed) for two different tip gap ratios. Heat transfer comparisons are made within each

test and between operating conditions at the same tip gap. The chapter concludes with a

comparison of tip gap measurements.

6.2 Approach

6.2.1 Time Averaging

For this research, several time scales are relevant. Surface temperature data was sampled

at high speed (200 kHz) to resolve the pertinent physics of the flow, particularly blade passing

phenomena. A stage steady state time scale is also relevant, as it represents an adequate time
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over which to compute the DC levels of heat flux that are valuable in design and analysis. For

the turbine, through flow times are roughly equivalent to the time required for several blade

passings. Additionally, the time scale for the operating point of the turbine must be considered,

since the operating point changes over the test time. A one-rotor-revolution technique was

selected as the averaging scheme for the steady state time scale. Over the time period of a rotor

revolution, the operating point remains nearly constant and can be considered quasi-static. Since

88 blade passings occur within this time, it also reasonably approximates steady state conditions.

Thus, for comparison of heat flux results within a test, a rotor-revolution average provides a set

of steady state operating points.

The operating points (Nc vs PR) of all experimental tests were observed to ascertain a

suitable averaging window (Figure 5-12). Corrected speed was plotted against pressure ratio to

find a period of stability in the operating point. This plot is shown again in Figure 6-1. The start

and end point of each run are annotated. For all runs the time period that provided the most

suitable window for averaging heat flux data was approximately 500 - 600 milliseconds (about 5

rotor revolutions). Results for heat flux are averaged over this time period.
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6.2.2 Non-dimensionalized Heat Flux

To effectively compare data within a test and between different tests, the tip casing heat

flux was non-dimensionalized based upon the inlet total temperature and the local static

temperature. In the form of a Nusselt number, Nq, it is defined as:

Nq qC (6.1)
k (T,)([t, -T, (x)]

In the above equation, q and T, are the heat flux and local wall static temperature averaged over

one rotor revolution; k(T,) is the thermal conductivity of the test gas based upon wall static

temperature; and C, is the axial cord. In this form Nq represents the non-dimensionalized heat

flux. It is important to note that it is based upon the global quantity of inlet total temperature,

and thus allows heat loads to be scaled for comparison with the full-scale turbine.
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6.2.3 Film Heat Transfer Coefficient

A second form of normalization is used to depict the changes in heat transfer coefficient

and to provide insight into the characteristics of the endwall boundary layer. Again in the form

of a Nusselt number, it is based upon the local total temperature and local wall static

temperature. A linear profile was assumed to estimate the local total temperature. The total

temperature drop across the rotor was computed using the measured stage pressure ratio and

calculated efficiency. Identified as Nh, it is defined as:

Nh =qC (6.2)
k (T, )(7Tt(x) -T,(x)]

NA accounts for the total temperature drop across the rotor due to rotor enthalpy extraction.

Unlike Nq, NA represents the inverse of a film's resistance to heat transfer-a heat transfer

coefficient. Defining the film coefficient h,

qh =(6.3)

Nh becomes:

hC
Nh= (6.4)

k

Written this way, N. reveals itself as a normalized heat transfer coefficient. To further illustrate

the implications of Nh , Figure 6-2 depicts an analogous situation. On the left, the figure shows

conduction through a film of static fluid with a representative temperature profile. On the right,

the film of fluid is now moving and heat convected to the wall, resulting in a different

temperature profile. Since both heat transfer mechanisms prevail in the turbine, the ratio of

convection to conduction is certainly relevant. In this way, Nh reveals characteristics of the

endwall boundary layer.
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Figure 6-2 Graphical Analogy of Nh

6.3 3.0% Tip Gap Results

A summary of the casing average values for N, and Nh for the different operating point

tests, given below in Table 6.x, is provided up front for initial comparison of results for different

operating conditions.
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Table 6.1: Heat Flux Summary for 3.0% Tip Gap Tests

Test PR Nc N Nh

T203 2.09 94.8 1465 2424

T204 2.05 86.0 1439 2302

T205 1.86 93.0 1493 2258

T206 2.19 92.0 1428 2424

T207 2.11 109.8 1443 2481

T208 2.08 95.7 1435 2382

6.3.1 Heat Flux and Surface Temperature

Surface temperature histories on the tip casing insert were measured during each

experimental test for the 3.0% gap. A representative surface temperature history for one gauge

during test T203 is presented in Figure 6-3. Noteworthy is the significant temperature rise at

approximately 0.2 seconds. Wall surface temperature shows a steady increase and then tails off

toward the end of the run.
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Figure 6-3: Measured Tip Casing Surface Temperature, Test T203

Heat flux was calculated, using the numerical technique discussed in reference [24],

based upon rotor-revolution averaged surface temperature. This technique yielded an

approximate heat flux time history, smoothing out extremity points from the true time-resolved

data. The rotor revolution averaged heat flux for test T203 is illustrated in Figure 6-4.
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Figure 6-4: Rotor Revolution Averaged Heat Flux, Test T203

6.3.2 Non-dimensional Heat Flux: Nq

When non-dimensionalized, the time resolved heat flux can be used in comparing run

conditions. Values for Nq were computed from dimensional heat flux and temperatures that

were averaged over a rotor revolution, and then averaged over the period of 500 to 600 ms.

Surface color contour plots of both design point tests are shown below in Figures 6-5. The x-

axis represents the axial cord position, normalized by the blade cord, and the y-axis represents

the circumferential position normalized by one vane pitch.
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Figure 6-5: Nq for Design Point Tests (T203, T208)

97





The heat flux contours show good agreement, lending credence to the repeatability of

measurements for this test series1 . Heat flux contours appear in the approximate direction of the

vane exit flow (stationary frame), implying an influence of nozzle wakes on heat transfer.

Additionally, the drop in Nq along the cord is the result of the rotor extracting work from the

fluid and thus reducing the gas total temperature. This trend is similar to other experimental data

[9]. The axial variation is highlighted in Figure 6-6 below, which show time-averaged Nq

plotted against normalized axial position for gauge locations at one-quarter normalized pitch.

Note the convention of the legend- "Nqlx" -where 1 represents the circumferential locations

(row number), while "x" identifies the axial position.

1It should be noted that run T203 was conducted at the beginning of the test series; T208 was the final test in the
series
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6.3.2.1 Pressure Ratio Tests

Heat flux contours for pressure ratio tests are shown in Figure 6-7. Axial distribution of

heat flux is presented in Figure 6-9. Low pressure ratio, design and high pressure ratio runs are

presented.

In the non-dimensional form, heat flux shows a decreasing trend with increasing pressure

ratio. For lower pressure ratios, there is less work and thus a lower total temperature drop across

the stage. Thus, the total temperature-and therefore the "driving temperature" difference-

remained higher. The higher driving temperature accounts for the higher endwall heat load in

lower pressure ratio runs

6.3.2.2 Corrected Speed Tests

Corrected speed was varied over three tests, with set conditions of 90%, 100%, and

112%. Contours are displayed in Figure 6-8 and axial distribution is plotted in Figure 6-10.

Corrected speed runs show only a slight increase in heat flux to the casing for higher speed runs.

Rotor corrected speed directly influences the incidence angle of the flow entering the rotor from

the vane row, which results in changing the rotor relative inlet flow angle. Additionally, higher

corrected speed tests have shown a higher stage efficiency. Both of these effects, to some

degree, may influence the heat load to the tip casing. The relative magnitude of the axial plots

(Figure 6-10) shows some agreement with previous tip casing heat transfer data taken by

Guenette in the MIT BDT [9].
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Figure 6-7: Nq for Pressure Ratio Runs (T205, T203, T206)
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6.3.3 Non-Dimensionalized Heat Transfer Coefficient

The normalized heat transfer coefficient based upon local total temperature, Nh , is

presented here for all experimental tests at 3.0% gap. Nh accounts for the drop in total

temperature across the stage, commensurate with equation (3.2), which is presented again for

reference:

qC,
Nh =

The driving temperature, normalized by its value at the stage inlet, is shown below in Figure 6-

11.

1.2

1

Driving Temperature Distribution

0.8-
0
CO

cc06
a)O6
E-

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
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Figure 6-11: Driving Temperature Profile I W - T"x)]
[T, -T"'(x)]

The significance of the driving temperature down the cord is evident; adjusting for this drop

provides insight into the characteristics of the endwall boundary layer along the cord.

108

x

0.4-

0.2-



At the design point tests, Nh shows strong agreement between tests. Design point tests

are illustrated below in Figure 6-12, again shown as color contour plots.

The larger variation in Nh , compared to Nq, is evident. Nh continues to increase along

the cord after the point at which heat flux begins to drop off. The magnitude of the cordwise

variations in N. can also be observed from plots of time-averaged Nh vs. cord, shown in Figure

6-13 for a design point test. Axial values of Nh and Nq are displayed together in Figure 6-14.

All test runs show similar trends in the broad sense. From Figure 6-14, the difference in shape of

the Nh and Nq axial variations is obvious. Nh , and thus the endwall boundary layer's ability to

transfer heat, continues to increase along the entire cord, dropping off at the gauge position

which is just downstream of the blade trailing edge (x/C=1.05). From Figure 6-14, the

considerable difference between the two non-dimensional values, beginning at approximately

30% x/C and continuing along the length of the cord, is evident and due, in part, to the rotor

enthalpy extraction in Nh .
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6.3.3.1 Pressure Ratio Tests

Heat transfer coefficient data for varying pressure ratio runs is displayed in Figures 6-15

and 6-17.

Of particular interest, the color contour plots for N, for varying pressure ratio runs reveal

the opposite trend as Nq. Whereas time-averaged Nq decreased as pressure ratio increased, Nh

increased with higher pressure ratio. The trend in Nh may be due to the difference in the loading

distribution along the blade for different stage pressure ratios. Since the higher driving

temperature is higher for lower pressure ratio runs, it is possible that this also contributes to the

differing behavior of Nq and Nh.

6.3.3.2 Corrected Speed Tests

Film heat transfer coefficient is shown for the different corrected speed runs, illustrated

as a color contour in Figure 6-16 and axially in Figure 6-18. Film coefficient showed very

similar trends to heat transfer for corrected speed runs. In both cases, the effect of increasing

corrected speed was to increase both Nq and NA. The implications of these observed trends will

be discussed later in this chapter
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Figure 6-15: Nh for Pressure Ratio Runs (T205, T203, T206)
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6.3.4 Discussion

The similarity in the contour maps of the design test runs for Nq suggests strong

repeatability of these measurements. The color contour maps of Nq show a steady increase in

heat transfer until the 70% cord position, and then a steady decrease through the aft-most gauge.

Figure 6-6 clearly illustrates this trend. The axial distribution of Nq with cord is similar to that

shown by Guenette [9], although these results show an earlier peak and smaller range of Nq.

Since Nq is a direct measure of heat flux to the wall, it can be concluded that this trend is, at

least in part, due to rotor enthalpy extraction and the resulting drop in driving temperature.

Along the blade cord, rows of gauges at different circumferential positions show varied

trends. Shown in Figure 6-6, the peak values in Nq occur at different locations for each of the

gauge rows along the circumference. This trend was observed in all experiments. The

circumferential variation implies the possibility of influence by the cooled NGV wakes

convecting through the rotor. In many of the contour maps presented, contours appearing as

"spurs" of high heat flux are visible from approximately mid-chord to the end of the passage.

The direction of these spurs approximates the flow direction as it exits the stator, and therefore

may represent further evidence of the influence of nozzle wakes on tip casing heat transfer.

Coolant injection at the nozzle trailing edge may affect the distribution of heat flux to the casing.

As little full-scale experimentation has been conducted with film-cooled stages, the effects of

NGV wakes and coolant injection are unclear. Further experimentation, supported by CFD

modeling, will be necessary to confirm any influence.

As pressure ratio was varied for tests, the observable trend in Nq in Figure 6-7 is a

dramatic decrease with increasing pressure ratio at 50% axial position and beyond. The

difference between the design (T203) and high pressure ratio (T206) tests show a slight decrease

in Nq, while the difference between the design and low pressure ratio run (T205) is much more

significant. This can be accounted for by the relatively small adjustment of pressure ratio from

the design test (approximately 2.1) to the high pressure ratio test (approximately 2.2). Since a

higher pressure ratio stage generates more work, the total temperature drop across the stage
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(AT, ) is also larger for the high pressure ratio run. A resulting decrease in the driving

temperature is therefore seen at aft gauge locations. It is postulated that the driving temperature

reduction is a significant contributor to the trend of Nq with pressure ratio.

Nq with corrected speed varies only slightly. Although the color contour maps show

some variation, the axial plots show very little change in heat flux. In particular, the design test

and the high corrected speed tests are nearly identical except for the 25% cord location. The

corrected speed for the three test compared was varied from 84% to 94% to 109%. As such, the

variation in Nq suggests little dependence of casing heat flux on corrected speed for this class of

turbines.

As discussed in section 6.2.3 above, Nh embodies a heat transfer coefficient. When rotor

enthalpy extraction is separated out and the effects of the local driving temperature are accounted

for, very different trends were observed. In both design point tests, Nh increased steadily

through the 75% cord location and then dropped off sharply. Note the similarity of the design

point contour maps in Figure 6-12. From Figure 6-14 it can be clearly seen that Nh continues to

increase down the cord after the point at which Nq begins to drop off. This trend was observed

in every test case. As a heat transfer coefficient, the axial trends of N. are representative of both

the endwall boundary layer and the influence of the tip leakage jet. Previous experimental work

has shown that the endwall boundary layer is dominated by the local tip leakage flow [9], with an

increasing N, indicative of a stronger tip leakage flow. The sharp drop at the 75% cord position

in Figure 6-14 is similar to that shown previously [9], and is likely the result of decreasing blade

thickness near the trailing edge.

One of the most salient trends observed in both N. and Nq is how each responded to

different pressure ratios. As discussed above, Nq decreased steadily at locations aft of mid-cord

as test pressure ratio increased. However, the opposite trend is shown in the contour maps of

Figure 6-15 for Nh . These results are indicative of a complex endwall flow. Given the higher

blade loading that accompanies a higher pressure ratio, it is likely that changes in the tip leakage

jet at different pressure ratios contribute to the reversing trends in N. and Nq . Three-

dimensional effects, influenced by coolant and mainstream flow interactions, might be another
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contributor. Additional experimental work will be necessary to directly identify any influence of

coolant and quantify its effect upon the endwall flow and casing heat load.

Both the color contour maps of Figure 6-16 and the axial plots of Figure 6-18 reveal a

region of locally high Nh for corrected speed runs. From Figure 6-18, note that the design and

the high corrected speed tests are closely aligned. Given the large increase in corrected speed

between the two tests (94% for design; 109% for high corrected speed test), the changes in heat

transfer coefficient appear insignificant. For the low corrected speed test, lower values of Nh

may be attributable to a low efficiency operating point and reduced loading aft of mid-cord.

6.4 1.5% Tip Gap Results

Heat transfer measurements were made in the MIT BDT with 1.5% tip gap for

comparison with 3.0% tip gap data to elucidate any sensitivity to tip gap ratio. The same test

matrix as for the 3.0% tests was used for the 1.5% gap tests. Corrected speed and pressure ratio

were varied to show any significant departure from trends observed in 3.0% gap tests. A

summary of results is provided in Table 6.2.

It must be noted that five of the 32 gauges were inoperative for the 1.5% tip gap tests2

The ramification of these gauges was enough to render any color contour plot useless for

comparison. Although comparison of different tip gap results was limited, trends of heat transfer

phenomenon were both observed and comparable for the 1.5% tip gap tests.

2 Although two gauges were found to be inoperative for the 3.0% tests, there was very little effect upon the color
contour plots displayed in section 6.3.
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Table 6.2: Heat Flux Summary for 1.5% Tip Gap Tests

Test PR Nc K Nh

T210 2.08 97.3 1469 2038

T211 2.03 86.3 1496 2062

T212 1.86 96.9 1486 1915

T213 2.18 99.0 1396 2075

T214 2.11 114.8 1417 2076

T215 2.09 99.7 1486 2099

6.4.1 Non-dimensionalized Heat Flux

Axial variations for 1.5% gap data are highlighted in Figure 6-19 below, which show

time-averaged Nq plotted against normalized axial position for gauge locations at one-quarter

normalized pitch. Note the convention of the legend- "NqIx" -where 1 represents the

circumferential locations (row number), while "x" identifies the axial position. The two design

point tests are shown to illustrate their agreement.
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For both corrected speed and pressure ratio tests, the endwall averages are shown in

Figure 6-20. The variation between tests shows somewhat more variation than was observed for

3.0% data, suggesting the possibility of increased sensitivity of endwall heat load to operating

conditions at the smaller tip gap. The extent of the research was unable to confirm this trend,

however, and additional research will be required to confirm any change in operating point

sensitivity.

126



- Lo Nc
DES

+ Hi Nc

1900-

1800-

1700-

1600-

1500-

1400-

1300-

1200-

1100-

1000-

900-
-0.2 0.8 1 1.2

0rz

1900-

1800-

1700-

1600-

1500-

1400-

1300-

1200-

1100-

1000-

Qn -

- Lo PR
DES

+ Hi PR

-0.2 0 0.2 0.4 0.6
Cord [x/C]

Figure 6-20: Axial Distribution of Nq for Corrected

0.8 1 1.2

Speed and Pressure Ratio Tests

127

a-
z

0 0.2 0.4 0.6
Cord [x/C]



6.4.2 Non-Dimensionalized Heat Transfer Coefficient

The non-dimensionalized heat transfer coefficient based upon local total temperature,

Nh , is presented here for all experimental tests at 1.5% gap. Figure 6-21 shows the relative

magnitudes of Nh and N. The axial distribution of all gauges is shown in Figure 6-22 for both

design point tests to highlight the agreement between runs. Figure 6-23 shows Nh for PR and

Nc tests.
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Figure 6-21: Nh and Nq vs. Cord (T210)
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Figure 6-22: Design Point Nq vs. Cord (T210, T215)
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Figure 6-23 Axial Distribution of Nh for Pressure Ratio and Corrected Speed Runs
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6.5 Comparison of Tip Gap Results

In order to compare heat transfer results between tip gaps, it was necessary to adjust the

results to one common operating point. An inspection of Figure 6-24 reveals that the operating

points for the design point tests align closely with respect to pressure ratio.

1.5% and 3.0% GAP OPERATING POINTS
102-

1.5%F 3.0%

/
I,

4- K

/ x

K

II I I I I

1.95 2 2.05 2.1 2.15
Pressure Ratio

2.2 2.25 2.3

Figure 6-24 Design Test Operating Maps

Thus, the simplest approach was determined to be an adjustment for corrected speed for

operating points at the same pressure ratio-in other words, estimating the partial derivative of

heat flux with respect to corrected speed and then adjusting heat flux for the difference in

corrected speed.
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Rotor revolution averaged heat flux for both design point 3.0% gap and both 1.5% gap

runs were averaged over the endwall for one representative pressure ratio. The partial derivative

aN
with respect to corrected speed, - , was approximated for both the 3.0% gap design point runs

by q . The 1.5% and 3.0% data were then adjusted to a common operating point corrected
C 3.0%

speed. This technique is summarized as:

Nq13.% = N q130% N + AANCI15%-3 % (6.5)
cN 3.0%

This procedure was repeated for many pressure ratios within the useful test window. Results are

displayed below in Table 6.3 for a pressure ratio of 2.1.

Table 6.3: Tip Gap Heat Transfer Comparison

Test PR Nc Nq Ncadj Nqadj

T203 2.1 94.9 1731.5 96.0 1694.6

T208 2.1 95.6 1708.0 96.0 1694.6

T210 2.1 96.8 1759.4 96.0 1765.5

T215 2.1 99.2 1741.0 96.0 1765.5

The adjustment for operating point revealed a 4% greater Nq at the 1.5% tip gap.

Additional testing at more closely matched operating points, as well as CFD simulations, may be

necessary to confirm this observation.

6.6 Summary

The results of an experimental investigation of time-averaged tip casing heat transfer

have been presented for two different tip gaps. The test reproduced all of the full scale, non-

dimensional turbine flow parameters. Measurements were taken as a function of operating

point-pressure ratio and corrected speed. Two non-dimensional parameters were defined to

compare both heat flux and the heat transfer coefficient of the endwall boundary layer. Heat

transfer data was compared within each test, for different operating conditions at the same tip

132



gap, and for different tip gap tests. The data shows some circumferential variation in heat flux at

the same axial position. Heat flux axial distribution reflects the influence of rotor enthalpy

extraction down the cord. Distinct trends in heat flux and heat transfer coefficient were observed

for both tip gaps; average levels of endwall heat load increased by approximately 4% when the

tip gap was decreased from 3.0% to 1.5%.
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Chapter 7

Closure

7.1 Review of Objectives

As described in Chapter 1, the primary objective of this research was to experimentally

measure the tip casing heat transfer of a scaled film-cooled turbine stage. The project posed

many engineering challenges to that end. In all, the principal objectives for this project included:

1. The construction and validation of surface temperature thermometers with sufficient

frequency response, sensitivity, and stability to adequately measure tip casing heat transfer

2. The design and fabrication of an instrumented device to hold surface temperature and

pressure instruments on the rotor tip casing to resolve spatial and temporal trends in heat transfer

and wall static pressure. This includes the necessary facility modifications to adequately house

and support the device.

3. The measurement of heat flux on the tip casing of a film-cooled turbine stage

4. The preliminary investigation of measured tip casing heat transfer to identify trends in

time-averaged data and compare results for different operating point and tip gaps

5. The creation of a detailed data set for use in physics-based modeling, CFD code

validation, and eventually for improved design of film-cooled turbine stages of this class.
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7.2 Summary of Work

An experimental study of the heat transfer to the tip casing of a fully scaled turbine stage

was conducted. Pressure and surface temperature measurements were taken on the tip casing.

Time-averaged heat flux data were computed and used to assess the influence of stage total

pressure ratio, corrected speed and tip gap on casing heat flux.

The experimental work was conducted in the MIT Blowdown Turbine Facility using a

film-cooled turbine stage. The facility is a short duration experimental structure capable of

testing turbine stages under fully scaled conditions to produce useful test durations of 0.5

seconds. The turbine stage tested consisted of film-cooled turbine blades and nozzle guide

vanes. During the course of this research, high frequency response heat flux gauges were

designed and fabricated by painting and baking thin platinum films onto machineable ceramic

substrates. These gauges were used to experimentally measure surface temperatures on the tip

casing with an estimated frequency response of 60 kilohertz. A tip casing insert was designed as

an instrument holder to orient the heat flux gauges and highly sensitive pressure transducers on

the tip casing surface to spatially resolve heat flux and static pressure.

A matrix of test conditions was devised to investigate the effects of various run

conditions and tip gap ratios on tip casing flow. Both a 3.0% and 1.5% tip-gap-to-span ratios

were tested. Run conditions were established by varying the stage pressure ratio and the

corrected speed. Results were compared within each test, between tests at the same tip gap, and

between tests at different tip gaps. Non-dimensionalized heat flux was used to reveal the

influence of rotor enthalpy extraction and operating point on casing heat flux. A non-

dimensionalized heat transfer coefficient was used to gain insight into the character of the

endwall boundary layer along the blade cord. Time averaged data revealed similar trends for

similar test conditions at both tip gaps. At design conditions, average endwall heat transfer was

approximately 4% greater for the 1.5% tip gap.

7.3 Recommendation for future work

There are several near-term recommendations that can be made to improve upon the

results reported herein. Additional experimental testing with various rates of coolant can be

conducted to elucidate the influence of film cooling on the endwall heat transfer. In particular,

136



the coolant to the NGVs should be varied, as the effects of the interaction of the trailing edge and

surface NGV coolant with the mainstream flow upon the casing flow are unclear.

Additional testing at more closely matched operating points, with very distinct changes in

pressure ratio and corrected speed, may be useful in supporting the conclusions of this work.

Experimental measurements of blade tip heat transfer may also provide further insight into the

complex flow field on the casing surface.

Further numerical analysis of the data for both tip gaps is warranted. Efforts should be

made to analyze the time resolved heat flux to determine the variation of peak heat loads with tip

gap and operating point. An analysis of both time average and time resolved casing pressure

measured during this experiment is also necessary. From a design perspective, the time-resolved

pressure measurements may prove valuable in reducing required coolant plenum pressure and

coolant mass flow for this class of turbines.

Long term recommendations include physics-based modeling of the endwall flow. In

conjunction with the data set provided, CFD simulations should model the NGV wake and

coolant-to-mainstream interactions in the endwall boundary layer to characterize the casing

surface flow and identify the effect on heat transfer. With simulated results for both 1.5% and

3.0% tip gaps, comparisons between CFD and experimental results can be made.
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