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Abstract

In this thesis, we investigate the improvement in treatment effectiveness when dynam-
ically optimizing the fractionation scheme in radiation therapy.

In the first part of the thesis, we consider delivering a different dose each day de-
pending on the observed patient anatomy. Given that a fixed prescribed dose must be
delivered to the tumor over the course of the treatment, such an approach results in a
lower cumulative dose to a radio-sensitive organ-at-risk when compared to that result-
ing from standard fractionation. We use the dynamic programming algorithm to solve
the problem exactly. Next, we suggest an approach which optimizes the fraction size
and selects a treatment plan from a plan library. Computational results from patient
datasets indicate this approach is beneficial.

In the second part of the thesis, we analyze the effect of repopulation on the optimal
fractionation scheme. A dynamic programming framework is developed to determine
an optimal fractionation scheme based on a model of cell kill due to radiation and
tumor growth in between treatment days. We prove that the optimal dose fractions
are increasing over time. We find that the presence of accelerated tumor repopulation
suggests larger dose fractions later in the treatment to compensate for the increased
tumor proliferation.
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Chapter 1

Introduction

Things alter for the worse

spontaneously, if they be not

altered for the better designedly.

Sir Francis Bacon

1.1 Motivation

This thesis deals with dynamic optimization in radiation therapy. Conventional radia-

tion therapy procedures deliver an equal dose to the tumor every day over the course

of 30-40 days. The spatial and temporal dose distribution is optimized assuming the

patient anatomy is static over the course of treatment. Yet, due to uncertainties in the

daily patient setup as well as motion, among other reasons, radiation-sensitive organs

near the tumor can get exposed to high radiation doses, which could result in acute

or late side-effects. Furthermore, treatment planning procedures barely account for

temporal effects, such as tumor growth and shrinkage, and radiation response. In this

thesis, we seek to understand, both qualitatively and quantitatively, the improvement

in treatment effectiveness that can result from dynamic adaptation of the fractionation

scheme, i.e., the total number of treatment days and dose delivered per day.

One way to adapt doses and treatments is to make use of information acquired
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between fractions (or treatment days). Such adaptation is becoming technologically

feasible because of improved imaging and information acquisition technologies. This

type of treatment modification, known as adaptive radiation therapy (ART), permits

customized day-to-day dose delivery to mitigate uncertainty in organ motion and/or

patient setup. The question arises as to whether adapting the fraction size based

on an acquired image of the patient anatomy immediately before delivery can improve

treatment outcome. If so, by how much? And under what circumstances? Although this

thesis primarily deals with optimization of fractionation schemes, we are also interested

to know whether spatial adaptation results in further improvement besides that due to

simply changing the fractionation scheme. We seek to identify the types of scenarios in

which adaptivity based on feedback information will be particularly fruitful.

Conventional radiation treatment plans mostly ignore the dynamic nature of the

inherent biological processes in a patient. Over the last 50 years, our understanding

of the biological effects of radiation has improved. With better models and imaging

technologies such as magnetic resonance imaging (MRI) and positron emission tomog-

raphy (PET), biologically-based treatment planning, aiming at optimal dose delivery

over time, has tremendous potential. Yet, the complexities of how radiation affects

the underlying biological processes make it difficult to determine how, if at all, treat-

ment planning should be changed. We seek to understand the relationship between

biological modeling assumptions and the resulting optimal fractionation schedules. We

investigate the circumstances under which these optimal schedules result in significant

improvement over current treatments. We hope that eventually through future research

the best possible individualized treatment can be administered to the patient, taking

into account both geometric and biological uncertainties.

We can dynamically optimize treatment in multiple ways. One way is to make use

of feedback information obtained from computed tomography (CT) or cone beam com-

puted tomography (CBCT) images throughout the course of treatment. If treatment

plans can be optimized and quality assured fast enough, we can adapt treatment im-

mediately before delivery, which is known as online ART; otherwise, we can use offline

16



ART, in which past CT images are used to adapt future treatment. Ideally, we would

like to adapt in real time as geometrical information about the patient anatomy is ob-

tained during the course of treatment. It is also possible to use functional imaging to

observe biological information, e.g., on metabolism, and adapt treatment. If existing

technology cannot be used to observe such biological information, models can still be

used to dynamically adjust a treatment. In the first part of this thesis, we provide

methods to adapt immediately before the delivery of a fraction by using geometrical

information about the patient anatomy. In the second part, we use models of cell dy-

namics to obtain insights about the optimal way to fractionate treatments. In this

thesis, we use dynamic programming as the primary solution method.

1.2 Outline and main contributions

In this section, we provide an overview of the topics covered in this thesis. We briefly

discuss the high level insights of each chapter and the way we approached the problem.

In doing so, we also briefly discuss the main contributions. A more detailed list of

contributions is given in the chapters themselves.

In Chapter 2, we provide an analysis of the adaptive fractionation problem intro-

duced in [48]. A tumor and one primary organ-at-risk (OAR) is considered. The main

idea is to use a large dose to the tumor when observing a favorable patient anatomy and

a small dose when observing an unfavorable anatomy. Given that a fixed prescribed

dose is delivered by the end of treatment, this approach results in a decrease in the

total OAR dose over the course of treatment. We develop and evaluate various solution

methods, both exact and heuristic. We frame the problem in a dynamic programming

framework and derive the structure of an optimal policy. We develop various heuristic

approaches based on the structure of the optimal one. The cost of one of the heuristics

converges to the optimal cost as we increase the number of days of treatment. The

algorithm in [48] is shown to perform very well compared to the optimal even though it

is an approximate DP approach. Though a dynamic programming approach has been
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used for adaptive fractionation in the past [13], it was in the context of the biological

effective dose (BED) model.

In Chapter 3, we investigate the benefit of adaptive fractionation methods for

prostate cancer patients. We used three patient datasets, each consisting of daily CT

images. We find that adaptive fractionation is beneficial when using the BED model but

not so much when using the physical dose model. We develop an approach to update

the probability distribution of the anatomy favorability over the course of treatment.

Such an approach is found to be useful when historical data from other patients is

not characteristic of the patient-specific anatomy variations from day to day. We also

suggest adaptation by selection of treatment plan from a plan library. The primary

advantage of the plan library is that the quality assurance (QA) procedure is avoided

after the initial plan generation phase. We study a proof-of-principle example in which

the library consists of two plans with different margins around the tumor. We find that

there is significant benefit from adaptive plan selection compared to a conventional

approach. While we mainly decoupled the problems of adaptive fractionation and plan

selection in our work, there were large gains from combining the two approaches.

In Chapter 4, we analyze the effect of accelerated repopulation on optimal fractiona-

tion schemes based on extensions of the BED model. There are multiple ways to model

accelerated repopulation. One approach is to increase the tumor proliferation rate with

already delivered dose or BED. Alternatively, accelerated repopulation can be modeled

implicitly by assuming a proliferation rate that is dependent on the number of tumor

cells. Due to radiation treatment, fewer cells remain towards the end of treatment,

thus resulting in faster tumor growth. We develop a solution approach based on dy-

namic programming to solve the optimal fractionation problem with repopulation for

general tumor growth characteristics. The optimization problem consists of minimizing

the expected number of tumor cells under a constraint on the BED in the OAR. We

prove that the optimal dose fractions are increasing over time. We find that faster

tumor growth suggests shorter overall treatment duration. In addition, the presence of

accelerated repopulation suggests larger dose fractions later in the treatment to com-
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pensate for the increased tumor proliferation. We characterize the special structure of

the problem for the case of exponential and Gompertz tumor growth. More research is

needed to determine tumor repopulation characteristics from clinical outcome data for

specific disease sites.

In Chapter 5, we model the repair effect in addition to tumor repopulation and

generalize the methods in the previous chapter to the case of a continuous dose rate

treatment. We write the dynamics governing the number of tumor cells at any instant

of time as an ordinary differential equation. We show that the proposed continuous-

time model is consistent with the discrete-time one in the previous chapter. Yet, the

work in this chapter is not completely developed and a similar setup is found in [87].

However, we hope that the derivations shed new perspective and provide a basis for

future work.

The final chapter summarizes the thesis and provides directions for future research.

1.3 Background

According to the American Cancer Society, at least 50% of cancer patients undergo

radiation therapy over the course of treatment. Radiation therapy plays an important

role in curing early stage cancer, stopping cancer from spreading to other areas, and

treating symptoms of advanced cancer. For many patients, external beam radiation

therapy is one of the best options for cancer treatment. Another form of radiation

therapy is brachytherapy, in which seeds continuously emitting radiation are placed

inside a patient’s body. In this thesis, we primarily focus on external beam radiation

therapy; thus in this section we will limit our discussion to this form of therapy.

1.3.1 Delivery of radiation treatment

Once a patient is diagnosed with cancer, a simulation 3D CT image of the anatomy is

taken prior to therapy. This CT is the basis for diagnosis and treatment planning. A
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physician or resident under the supervision of a physician contours the revelant tumor

volume and OARs, and specifies the set of constraints that need to be met in the

treatment plan (e.g., tumor prescribed dose). The primary target for radiation is an

expanded tumor volume. The visible tumor volume on the CT that is cancerous is

known as the gross tumor volume (GTV). To account for uncertainty in microscopic

spread not visible in the CT image, an expanded GTV, known as the clinical target

volume (CTV), is delineated. This is the primary volume that physicians want to

treat. Finally, to account for uncertainty in setup and organ motion from day to day,

a margin is added around the CTV, resulting in the planning target volume (PTV).

For example, for prostate cancer, it is reasonable to include a 5 mm margin uniformly

around the CTV. In the treatment planning phase, the PTV is prescribed a uniform

dose (anywhere between 40 Gy and 80 Gy). There are generally constraints such as a

limit on the maximum or mean dose on critical structures.

The treatment procedure is broken up into many sessions or fractions (where a pa-

tient undergoes at most one session per day). A typical treatment, for example, is 5

sessions per week for 7 weeks. One of the reasons for the above margin expansions of

the tumor volume is due to uncertainty in organ motion. Interfraction motion uncer-

tainty happens between fractions; for example, motion where a patient is setup in a

different position than in the previous session. This causes the target to have a dis-

placement. Intrafraction motion occurs during treatment sessions. An example could

be the breathing of the patient (inhaling and exhaling) which causes the target to move

even as the treatment is ongoing.

Different types of beam modalities can be used for external beam radiation treat-

ment. The two most common ones are photon beams and proton beams. Proton

treatments are preferable to photon treatments due to the nature of the dose as a

function of depth. Once the proton beam penetrates the skin, the dosage increases

exponentially as a function of the depth until it falls sharply down to zero. This allows

for more accurate dosage to the tumor cells but at the same time, is vulnerable to caus-

ing critical errors when uncertainty is present. For a photon beam, however, when the
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beam penetrates the skin, the dosage increases rapidly until it peaks. After peaking,

there is an exponential decrease in dose as a function of the depth. Although photons

are not able to focus the dose as well as protons, they are more robust to uncertainties

such as patient setup errors and organ motion.

After the imaging and contouring phases, the distribution of the radiation dose

on the patient anatomy is optimized. External beams of radiation can be delivered

in multiple ways. For photon beams, developments over the last few decades have

enabled modulation of the intensity of incoming beams as opposed to uniform intensity

using 3D conformal therapy. This modality is known as intensity-modulated radiation

therapy (IMRT). One popular way to deliver IMRT is to use a dynamic multi-leaf

collimator (MLC). The MLC leaves can move dynamically with time and block the

incoming radiation to create intensity modulation of the beam. In this way, instead of

a uniform dose of radiation, a modulated fluence profile is delivered from each beam

angle. Generally, a two step procedure is used in this case. First, the fluence maps of

the beams are optimized. Next, the fluence map is approximately sequenced into MLC

leaf movements. Other approaches such as direct aperture optimization avoid these two

steps altogether and directly optimize the MLC leaves. Intensity modulation can also

be delivered for proton beams, except that an MLC is not used. One way to deliver

the appropriate intensities would be to use beam scanning. This type of treatment is

known as intensity-modulated proton therapy (IMPT). The advantage of this modality

is that the optimized fluence map can be directly mapped with beam scanning and does

not have to be sequenced into MLC leaf trajectories.

1.3.2 Treatment plan optimization

In this subsection, we discuss optimization of the fluence intensity map in the treatment

plan. We omit discussion of MLC leaf sequencing; for references on possible approaches,

see [35, 75].

The basic problem is to optimize beam intensities (or bixel weights) delivered from
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various beams (generally coplanar) around the patient to capture the best tradeoff

between delivering a high dose to the tumor and minimizing the dose to the healthy

tissue. We let x ∈ Rn be the vector of bixel weights. For IMRT, the number of

bixels, n, can range from 1,000 to 100,000. In order to determine the dose delivered

to individual points on the patient (referred to as voxels), a dose deposition matrix

D : Rn → Rm is calculated (generally using Monte Carlo simulations). This deposition

matrix D describes a linear mapping from the vector of bixels x to a vector of doses

delivered to the corresponding patient voxels. The number of patient voxels m ranges

anywhere from 100,000 to 1,000,000 (all the points on a 3D scan of the patient) for a

full-scale problem. There are a number of ways to formulate the problem, including

linear/quadratic and other nonlinear formulations (see [69] for various approaches).

Regardless of the exact details of the formulation, the basic idea is to tradeoff between

dose to the tumor and healthy tissue. Usually, there are constraints on the minimum

tumor dose and maximum or mean dose to healthy OARs.

There are many metrics used to quantify the quality of treatment plan such as mean

or maximum dose to relevant organs of interest. But, often the dose-volume histogram

(DVH) is used to graphically assess the quality of a treatment plan. The DVH curve

for a volume plots the dose versus the percentage of the volume that receives at least

that much dose. In this way, DVH curves are generated for all of the organs of interest

and used for assessment.

1.3.3 Biological effective dose (BED) model

It is known that the effect of the same dose on different types of cancer varies. For

example, prostate cancers are known to be very sensitive to radiation [51] while head

and neck cancers are less so [74]. A common way to quantify this effect is to use the

biological effective dose (BED) model. The BED is defined as

BED = d

(
1 +

d

[α/β]
,

)
(1.1)
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where d is the physical dose and the α-β ratio denoted [α/β] is a tissue specific param-

eter. Essentially, the α and β refer, respectively, to a linear and quadratic dose effect

on tissue. For example, when the linear effect only matters, i.e., if β = 0, the BED

equals the physical dose. We will make use of this model in Chapter 3 when adaptively

varying the fraction size for prostate cancer. For a more detailed derivation of the BED

from linear and quadratic dose effects, refer to Section 4.3 in Chapter 4.

1.4 Literature review

The first part of the thesis (Chapters 2 and 3) fits in the general area of ART. The

second part (Chapters 4 and 5) deals with biological-based treatment planning. In this

section, we begin by surveying the literature in these two broad categories. Then, we

review literature that is more closely related to the work in this thesis. There is a vast

amount of literature in each of these subsections. We do not by any means attempt to

provide a comprehensive review, but rather strive to survey existing work particularly

as they relate to this thesis.

1.4.1 Adaptive radiation therapy

In its broadest context, adaptive radiation therapy (ART) is a radiation treatment

process that uses feedback information to modify and improve treatment plans [41,96].

Feedback information could include patient anatomy information such as positions of

tumor and organ-at-risk (OAR), and can be obtained from imaging modalities such as

cone-beam computed tomography (CBCT), ultrasound imaging, or portal imaging [63].

Detailed coverage of ART can be found in books such as [47].

We can correct for inter-fractional variations in patient anatomy by adapting a

treatment plan either offline or online. An offline adaptation uses imaging information

available after the delivery of a fraction to modify the treatment plan for the next frac-

tion. On the other hand, an online adaptation uses information acquired immediately
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before the delivery of a fraction for a quick modification of the treatment plan for that

fraction. The advantage of online ART is the availability of more data (inclusion of

patient anatomy for the current fraction). However, due to patient wait time and treat-

ment duration limitations, online ART requires (i) fast re-optimization of the treatment

plan, and (ii) re-planning across a small number of degrees of freedom. Conversely, in

offline ART, a re-optimized treatment plan can be determined on a slower time-scale.

Due to the immediate possibility of lower cumulative dose to healthy organs through

treatment plan re-optimization between fractions, offline ART has received much atten-

tion in the research community. One of the early approaches used information about

tumor variations (both systematic and random) during the first few fractions to deter-

mine a customized treatment plan for the remaining fractions [96,97]. The customized

treatment plan generally has a smaller planning target volume (PTV) suited to the

particular patient. Such adaptation is shown to improve treatment efficacy and to al-

low for dose escalation to the tumor [26, 95]. Another approach focused on using a

smaller PTV initially and re-optimizing treatment plans between fractions to compen-

sate for the accumulated dose errors [16, 18, 66, 84, 85]. We do note that the practical

applicability of this method relies on the ability to accurately determine the delivered

dose at each voxel. However, determining the delivered dose accurately requires reliable

deformable registration algorithms, which is still a major research topic.

In online ART, the focus has been on making adjustments to the existing treatment

plan rather than on re-optimizing for an entirely new plan. This is primarily because

the time between the acquisition of patient anatomy information and the delivery of a

plan is on the order of minutes rather than hours. In this case, a full re-optimization

and complete quality assurance of the treatment plan may not be possible. Several

online ART approaches have been developed that make quick modifications to either the

fluence map or multi-leaf collimator (MLC) leaves to match the planned dose [14,53,93].

Whereas these methods involve spatially varying the dose distribution, other methods,

including the work in this thesis, consider temporally varying the fraction size from day

to day [13, 48].
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1.4.2 Biological based treatment planning

One can incorporate biological information into the treatment process by using appro-

priate models in the treatment planning optimization problem. While such models have

uncertainties, they can provide insights on how to potentially improve treatment. In

the future, biological imaging technologies may allow customized delivery to the patient

based on biological processes observed during the course of treatment. Below, we briefly

review some literature in biological based treatment planning.

We can incorporate biological aspects into treatment planning by using models of

tumor and normal tissue response such as tumor control probability (TCP) and normal

tissue complication probability (NTCP). There are many ways to model these probabil-

ities; a short list of references is [33,49,86,99]. Other biologically based models include

the linear-quadratic (LQ) cell survival model [20], the BED model [20], complication-

free tumor control probability [33], and the equivalent uniform dose (EUD) model [56].

Several studies have investigated the use of biological based models for optimizing a

treatment plan [34, 71, 82]. However, due to lack of confidence in the parameters of

these models, such biological-based treatment plans are not universally used in the

clinic. Some studies have cautioned on the use of TCP and NTCP models in treatment

planning due to parameter uncertainty [42, 55].

Using biological information obtained from imaging, it is also possible to adapt treat-

ment. With technological advances such as functional and molecular imaging, there is

potential to track previously unobservable biological processes such as metabolic activ-

ity [68], tumor hypoxia [11], and tumor proliferation rates [3]. One approach is “dose

painting,” where escalated dose is delivered to regions of the tumor exhibiting a different

biological property such as increased radio-resistance. Many dose painting studies have

been conducted using various imaging modalities such as dynamic contrast-enhanced

MRI [80], 18F-fluorocholine PET [62], and 11C-choline PET [10]. Other sophisticated

approaches such as dynamically changing the beam intensities from day-to-day based

on the patient’s biological condition have also been studied [23, 38, 40].
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1.4.3 Overview of literature in relation to thesis

We primarily use the dynamic programming (DP) approach in this thesis. The DP

approach is useful for sequential decision making problems, especially when there is a

need for balancing the immediate and future costs associated with making a decision at

any particular stage [4,64]. For offline ART, the DP approach can be used to compensate

for past accumulated errors in dose to the tumor [18, 19, 70]. For online ART, an

approach for adaptive fractionation based on biological models and imaging also makes

use of DP [13,39]. A spatiotemporal DP approach that adapts to the patient’s biological

condition has also been recently been studied [40]. There is a significant amount of

literature, especially from the mathematical biology community, on optimal control

theory and DP for cancer treatment. Many of these works [44,60,100] have looked into

optimization of chemotherapy. For radiation therapy fractionation without the use of

imaging information, many studies [1, 28, 87] have used the DP approach and control

theory based on deterministic biological models. The work in Chapter 4 follows this

line of thought but is motivated by accelerated tumor repopulation.

Chapters 2 and 3 of this thesis deal with adaptive fractionation, which is a special

case of online ART. Adaptive fractionation assuming a physical dose model was intro-

duced in [48]. In Chapter 2, we solve the adaptive fractionation problem using a DP

approach; the results are also published in [65]. For the BED model, a DP approach

was used to solve the adaptive fractionation problem in [13]. In a similar spirit, the

work in [39] selects a dose based on the patient’s observed biological condition. In

Chapter 3, a method that can adapt the belief about the patient’s future condition

into the DP approach is also introduced. Even with several works that have described

possible adaptive fractionation approaches, such methods have not been substantiated

by results from patient datasets. In Chapter 3, prostate patient data is used to show

that adaptive fractionation (and also treatment plan selection from a plan library) can

be beneficial.

Chapters 4 and 5 deal with the effect of tumor repopulation on optimal fractiona-
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tion schemes. There is a large amount of literature on optimal fractionation; we mainly

discuss papers that relate to our work. Previous works have considered the case of

exponential tumor growth with a constant rate of repopulation [2,32,88]. Optimal frac-

tionation schedules for other tumor growth models, e.g., Gompertz and logistic, have

also been considered although mostly in the context of constant daily doses [50, 79].

Using the BED model, a recent paper [52] has mathematically analyzed the fraction-

ation problem for the case of no repopulation. An extension of this result to the case

where an inhomogeneous OAR dose is delivered has also been investigated [78]. The

work in Chapter 4 extends the mathematical framework in [52] by incorporating tu-

mor repopulation. There has been prior work [1, 76, 77, 94, 98] on the optimization of

non-uniform fractionation schedules, even analyzing the effect of tumor repopulation

as done in this thesis. However, they either have not used the BED model or have

primarily considered other factors such as tumor re-oxygenation. Perhaps the closest

work is [87], which considers both faster tumor proliferation and re-oxygenation during

the course of treatment. However, while a dose intensification strategy is also suggested

in [87], the rationale for dose escalation is different: it is concluded that due to the in-

crease in tumor sensitivity from re-oxygenation, larger fraction sizes are more effective

at the end of treatment. Our work, on the other hand, suggests dose escalation due to

accelerated tumor repopulation during the course of treatment.

In Chapter 4, we are primarily motivated by accelerated repopulation, which is an

important cause of treatment failure in radiation therapy, especially for head and neck

tumors [91, 92]. In addition to modeling tumor growth, we use the standard linear-

quadratic (LQ) model [15] to describe the effects of radiation dose on the survival

fraction of cells. Since our primary interest is in the effect of tumor repopulation, we

do not consider other biological aspects such as re-oxygenation, re-distribution, and

sublethal damage due to incomplete repair. However, it has been shown that such

effects can also result in non-uniform optimal fractionation schemes [5, 87, 98]. Our

main result is that accelerated repopulation suggests larger dose fractions later in the

treatment to compensate for increased tumor proliferation. The results are consistent
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with medical-oriented studies for prostate and cervical cancers [29, 81].

The notion of dose intensification during the course of treatment has now been

suggested by many studies, including our work. The Norton-Simon hypothesis [57, 58]

suggests increasing the dose intensity over the course of chemotherapy due to a Gom-

pertzian tumor growth assumption. Due to the increased sensitivity of the tumor to

radiation from re-oxygenation, such a dose intensification strategy has also been sug-

gested by several studies [1,28,87]. It has been noted in [61] that increased oxygenation

and proliferation at the end of treatment could be one reason for the effectiveness of

concomitant boost therapy, where increased radiation is delivered at the very end of

treatment. Medical-oriented studies [29,81] also suggest larger fraction sizes to compen-

sate for accelerated repopulation. This is consistent with our mathematical framework

incorporating accelerated tumor repopulation. Further clinical studies that substantiate

the dose intensification strategy would be useful.
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Chapter 2

A dynamic programming approach

to adaptive fractionation

2.1 Introduction

In this chapter, we consider delivering a different dose to the tumor each day depending

on the observed patient anatomy. We study various solution methods for this adaptive

fractionation problem. The two messages of this chapter are: (i) dynamic program-

ming (DP) is a useful framework for adaptive radiation therapy, particularly adaptive

fractionation, because it allows us to assess how close to optimal different methods are,

and (ii) the proposed heuristic methods are near-optimal, and therefore, can be used

to evaluate the best possible benefit of using an adaptive fraction size.

We now briefly motivate the adaptive fractionation problem introduced in [48]. We

focus on a model of the variations of the tumor and one primary OAR, which is usually

the limiting factor in escalating the dose to the tumor. Using an adaptive fraction

size can allow us to take advantage of a “favorable” patient anatomy by increasing the

fraction size. Similarly, we can decrease the fraction size for an “unfavorable” anatomy.

One simple way to think about this problem is to consider variations of the distance

between the tumor and the OAR from day to day (see Figure 2-1). If the distance is
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Figure 2-1: Adaptive fractionation capitalizes on tumor-OAR variations. Nominal dose
corresponds to leaving the fraction size unchanged, while scaled dose corresponds to a
changed fraction size. When we have a favorable anatomy (i.e., the tumor and OAR
are far apart) as in the left panel, we can use a larger fraction size. Similarly, for an
unfavorable anatomy (i.e., the tumor and OAR are close together) as in the right panel,
we can use a smaller fraction size. Our model is more general than this 1-dimensional
example and can be used for 3-dimensional realistic settings as well.

large, we can escalate the dose to the tumor (since the OAR dose per unit tumor dose is

small) and vice versa, if the distance is small. Given that a fixed prescribed dose must

be delivered to the tumor, adaptive fractionation results in a lower cumulative dose

to the OAR over the course of the treatment. We emphasize that our model is more

general than this 1-dimensional distance setting and can be applied to 3-dimensional

realistic settings as well.

The purpose of this study is to develop and evaluate solution methods for the adap-

tive fractionation problem. We use the dynamic programming (DP) algorithm to solve

the problem exactly and to assess how close to optimal various heuristic methods are.

The dynamic programming approach has been used before for adaptive fractionation

in [13], but this was in the context of the BED model. We focus on the fractionation

problem using a physical dose model, which was introduced in [48]. The results of

our study indicate that heuristic methods, both the ones proposed in this chapter and

in [48], are near-optimal under most conditions. The consequence is that these methods

can be used to evaluate in a simple manner the best possible benefit of using an adap-

tive fraction size. Furthermore, simple heuristics as proposed in this chapter provide a

quick way to measure the gain that results from adaptively varying the fraction size.

We first discuss the main contributions of this chapter in Section 2.2. In the next
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section, we discuss the model and formulate the adaptive fractionation problem. Sec-

tions 2.4 and 2.5 describe the dynamic programming (DP) approach and its theoretical

properties, and Section 2.6 describes two heuristics. In Section 2.7, the algorithm in [48]

is derived and shown to be a variant of the open-loop feedback control approximate DP

approach. Results from numerical simulations are evaluated in Section 2.8. Some fur-

ther theoretical properties of one of the heuristics are described in Section 2.9. Finally,

Section 2.10 includes discussions about realistic implementations, model assumptions,

and future directions.

2.2 Contributions

The idea of adaptive fractionation is not new; it was already introduced and an al-

gorithm was developed in [48]. Our contributions include further developing solution

methods and analyzing them on a theoretical level. In particular, we:

1. use the DP algorithm to establish a benchmark and to solve the problem exactly.

Under this problem setting, this gives us a lower bound which no other algorithm

can improve upon. We are able to show numerically that many of the heuristic

algorithms, including the one in [48], perform close to optimal for most assumed

probability distributions of the patient anatomy. However, when there is a high

probability of large tumor-OAR distances, we see differences as large as 10%

between an optimal policy and the algorithm in [48].

2. prove properties of an optimal policy and find that for most realistic cases, an

optimal policy has a special threshold form.

3. develop two intuitive, numerically near-optimal heuristic policies, which could

be used for more complex, high-dimensional problems. Furthermore, one of the

heuristics requires only a simple statistic (e.g., the median) of the motion proba-

bility distribution, making it a reasonable method for realistic settings.
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4. establish clearly the connection between this work and the one in [48] by rederiving

the algorithm in [48] as a variant of the open-loop feedback control approximate

DP approach (see [4] for a description of such an approach).

5. demonstrate through numerical simulations that we can expect a significant de-

crease in dose to the OAR when: (i) we have a high probability of large tumor-

OAR distances, (ii) we use many fractions (as in a hyper-fractionated setting),

and (iii) we allow large daily fraction size deviations.

6. prove that one of the proposed heuristics is asymptotically optimal as the number

of treatments N is large. The rate of convergence is O
(√

logN√
N

)
.

2.3 Model and formulation

We now describe the details of the model and formulate the adaptive fractionation

problem. Let N be the number of fractions and P be the total prescribed dose to

the tumor. The patient anatomy in the kth day is represented by a variable denoted

by sk, which is sampled, independent of everything else, from a known probability

distribution p(·) estimated from historical data. We assume that the patient anatomy

sk is observed just before the delivery of the kth fraction and can be obtained, for

example, from imaging modalities such as CBCT. We could also use this formulation

for intra-fractional variations, where sk would change during a fraction; in this case,

it would be more appropriate to assume that patient anatomy instances are correlated

rather than independent from one another. In general, the distribution p(·) can be

either continuous or discrete but for simplicity, we assume a continuous distribution and

denote by S the set of possible anatomy instances. We define rk to be the remaining

prescribed dose left to deliver to the tumor in the kth and future fractions. We must

determine the fraction size uk in the kth fraction based on the remaining dose rk and

patient anatomy sk. Here, rk and sk together represent the state of the system because

they are the only relevant pieces of information needed to determine the fraction size
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uk. It can be seen that the dynamics of the system are described by the equations

rk+1 = rk − uk, sk ∼ p(·), for k = 1, 2, . . . , N , with r1 initialized to the prescribed dose

P .

Given a patient anatomy sk, the dose delivered to the OAR in the kth fraction

can be written as ukh(sk), where h(sk) is the OAR dose per unit Gy dose delivered to

the tumor. For the 1-dimensional setting in Figure 2-1, the function h(sk) describes

the dose falloff, as a function of the location of the OAR. We could use other choices

for h(sk); what we need is a function that describes how favorable a particular patient

anatomy sk is. If current technology allows for a quick way to supply information about

the favorability of a patient anatomy before the delivery of a fraction, this information

can be captured in the h(sk) function. The main assumption here that a linear increase

in the dose to the tumor results in a linear increase in the dose to the OAR, which

is reasonable and is used in practice. For notational convenience, we also define the

cumulative distribution function (CDF) for h(sk) as

F h(z) =

∫

{s : h(s)≤z}
p(s) ds. (2.1)

In the model description, we have included the patient anatomy sk as a state variable.

However, this could result in a very high-dimensional state space if the entire 3D or 4D

anatomy information is included. In the following remark, we suggest an alternative

but equivalent state space description for this problem.

Remark 1. We could use h(sk) as the state instead of the entire anatomical information

given by sk. This would reduce the state space to a 2D quantity (rk, h(sk)). In this case,

instead of p(·), we would use the relevant probability distribution ph(·) associated with

the CDF F h(·) defined in (2.1).

The optimization problem of interest is to minimize the expected total dose to the

OAR subject to constraints that ensure that: (i) the prescribed dose to the tumor is

met with certainty, and (ii) the fraction size for each day is within a lower bound, u,

and an upper bound, u. Although optimizing non-linear TCP/NTCP functions might
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be a better choice here, it is simpler to use total dose, which is a reasonable surrogate

for most situations. For convenience in analysis, we also incorporate constraint (i) into

the objective cost function by adding a terminal cost g(rN+1), which assigns an infinite

penalty when the prescribed dose P is not met. Mathematically, we can formulate the

adaptive fractionation problem as follows:

min
{µk}

E

[
g(rN+1) +

N∑

k=1

µk(rk, sk)h(sk)

]

s.t. u ≤ µk(rk, sk) ≤ u, k = 1, 2, . . . , N, ∀rk, ∀sk
r1 = P,

rk+1 = rk − µk(rk, sk), k = 1, 2, . . . , N,

sk ∼ p(·), k = 1, 2, . . . , N,

(2.2)

where

g(rN+1) =





0, if rN+1 = 0,

∞, otherwise,

and where the expectation E[ · ] is taken with respect to the probability distribution

p(·).

In the above optimization problem, we are searching for an optimal policy µ∗
k(rk, sk),

which for any given time k, is a function of the remaining dose rk and the patient

anatomy sk. Here, the solution is not simply a single value of the optimal fraction

size for any particular day but rather, a policy or a strategy that can possibly choose

different fraction sizes based on state information. This is characteristic of closed-loop

control, which uses state (feedback) information to make decisions. Furthermore, a

brute search over all possible functions µ(rk, sk) to solve this problem is not feasible.

Notice that the first term in the objective function g(rN+1) simply ensures that after

N fractions, the prescribed dose to the tumor is met exactly. The second term is the

total dose to the OAR resulting from using the policy µk.
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2.4 A dynamic programming approach

We can solve the problem (2.2) exactly by using the DP algorithm (Bellman’s backward

recursion):

JN+1(rN+1, sN+1) = g(rN+1) =





0, if rN+1 = 0,

∞, otherwise,

Jk(rk, sk) = min
u≤uk≤u

(
ukh(sk) + E [Jk+1(rk − uk, sk+1)]

)
, (2.3)

for k = N,N − 1, . . . , 1, where the expectation is taken with respect to the distribution

p(·) of sk+1:

E [Jk+1(rk − uk, sk+1)] =

∫

S

p(s)Jk+1(rk − uk, s) ds.

For numerical implementation, however, we need to discretize the variables rk and sk

and solve a corresponding discrete problem. All of our subsequent numerical results

refer to this discrete problem.

It is well known that the policy resulting from the above DP algorithm is optimal

for the problem (2.2) — see [4]. Hence, the cost-to-go function Jk(rk, sk) is the resulting

cost from using an optimal policy starting with a given remaining dose rk and patient

anatomy sk in the kth fraction. The basic idea of the DP algorithm is to start from

the last fraction (when the optimal decision µ∗
N must be exactly equal to the remaining

dose rN for any possible sN), determine the optimal decision µ∗
N−1 given this new

information, and proceed backwards in determining the present optimal policy with

information about future optimal policies. We can see that Jk(rk, sk) is computed by

minimizing the sum of the present cost associated with delivering the fraction size uk in

the kth fraction (i.e., ukh(sk)) and the expected future cost resulting from delivering the

fraction size uk given that we use an optimal policy thereafter (i.e., E [Jk+1(rk − uk, s)]).

Essentially, the DP algorithm involves precomputing offline and storing the fraction size

uk, for every possible fraction k and value of the state (rk, sk). Therefore, choosing the

fraction size online right before the delivery of the fraction simply involves a quick table

lookup. A few observations about simplifying the DP algorithm in (2.3) are given in
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the following remark.

Remark 2. As suggested in Remark 1, we can simplify the DP algorithm by reducing

the state space to a 2D quantity (rk, h(sk)). A second simplification involves removing

the uncontrollable state sk (or equivalently, h(sk)) by “averaging it out” and keeping

track only of expected cost-to-go functions. For completeness, the simplified algorithm

is given below.

JN+1(rN+1) = g(rN+1) =





0, if rN+1 = 0,

∞, otherwise,

Jk(rk) = E

[
min

u≤uk≤u

(
ukh(sk) + Jk+1(rk − uk)

)]
, (2.4)

for k = N,N − 1, . . . , 1. For ease of exposition, we still use the original DP algorithm

given in (2.3) for the analysis and discussions in this chapter.

We now summarize interesting theoretical properties of an optimal policy resulting

from the qualitative structure of the cost-to-function. The piecewise linear structure of

the cost-to-go function (see next section for details) results in a special structure of an

optimal policy. Essentially, if it is possible to deliver the treatment with a sequence of

smallest fraction sizes u and largest ones u, an optimal policy does exactly that, i.e.,

the resulting optimal policy has the threshold structure:

µ∗
k(rk, sk) =





u, if h(sk) ≥ Tk(rk),

u, if h(sk) < Tk(rk),
(2.5)

for k = 1, 2, . . . , N , where the Tk(rk) are pre-computed thresholds (see next section for

details). The optimal policy (2.5) makes sense because unfavorable or large values of

h(sk) result in delivering a small fraction size u and vice versa. The policy is completely

characterized by the thresholds Tk(rk), k = 1, 2, . . . , N , which represent the points at

which it is optimal to deliver u when above it and u when below it. We note that

because the optimal policy has the structure (2.5), we can restrict the search for uk in
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(2.3) to the set {u, u} rather than the entire range of values between them and still

preserve optimality. Furthermore, as we will see in a future section, this structure of an

optimal policy can serve as the basis for simpler heuristics that could perform very close

to the optimal. To get further intuition about the optimal policy, let us consider the

case where the sequence of patient anatomy instances or costs h(sk), k = 1, 2, . . . , N ,

are known ahead of time for the entire treatment. Then, it is clear that the solution

would be to deliver u for the fractions with the smaller costs and u otherwise. Now, we

can view our original problem, where the information about the patient anatomy is only

available before the delivery of the fraction, as one of deciding whether the anatomy of

any particular day will be one of the fractions with the smaller costs. The threshold

Tk(rk) helps us make this determination.

2.5 Theoretical properties of the optimal policy

We provide additional details on the theoretical properties of optimal policies, after

first commenting on a generalization of our previously stated assumptions.

Remark 3. Although we assumed sk to be independent and identically distributed in the

previous section, our methods apply more generally to the case where the sequence of pa-

tient anatomy instances satisfy the Markov property. That is, the patient anatomy sk+1

is only dependent on sk and not on previous anatomies before the kth day. In this case,

the dependencies would be summarized in a new probability distribution pk(sk+1|sk); the
analysis and results in this section would still go through.

To facilitate the discussion, we define

Fk = {rk : (N − k + 1)u ≤ rk ≤ (N − k + 1)u} , (2.6)

Bk(rk) = max(u, rk − (N − k)u),
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and

Bk(rk) = min(u, rk − (N − k)u)).

The set Fk represents the feasible set of remaining dose values in the kth fraction. We

can verify this by noting that because the prescribed dose to the tumor must be met

exactly, the remaining dose rk must be between the smallest and the largest possible

fraction size deliverable to the tumor for the remaining fractions (i.e., (N −k+1)u and

(N − k + 1)u). As we will see below in Lemma 2.5.1, we can rewrite a simplified DP

algorithm in which Bk(rk) and Bk(rk) can be interpreted as the minimum and maximum

allowable dose in the kth fraction, respectively. We assume that the minimum of a

function over an empty set is equal to infinity.

Lemma 2.5.1. The DP algorithm given in (2.3) can be rewritten as follows

Jk(rk, sk) = min
Bk(rk)≤uk≤Bk(rk)

(
ukh(sk) + Jk+1(rk − uk)

)
, (2.7)

with the same terminal condition as before.

Proof. See Appendix 2.11.1.

In the following theorem (see Figure 2-2), we describe the qualitative structure of

the cost-to-go function and characterize the structure of an optimal policy.

Theorem 2.5.2. The cost-to-go function Jk(rk, sk), for k = 1, 2, . . . , N , is continuous,

non-decreasing, convex, and piecewise linear in rk for rk ∈ Fk, with breakpoints at

(N − k+1− i)u+ iu, for i = 0, 1, . . . , N − k+1. Furthermore, there exists an optimal

policy, for k = 1, 2, . . . , N , with the form:

µk(rk, sk) =





u, if rk ≥ u+ Ak(sk)

rk − Ak(sk), if u+ Ak(sk) ≤ rk < u+ Ak(sk)

u, if rk < u+ Ak(sk),

(2.8)
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rk

Jk(rk, sk)

...

0 1 2 N – k+1

Figure 2-2: Special structure of the cost-to-go function Jk(rk, sk). For simplicity, we
use u = 0 and u = 1 for the plot and see that Jk has N − k + 1 line segments and
breakpoints at all integer points in the range [0, N − k + 1].

where Ak(sk) = argmin
y∈Fk+1

[
−yh(sk) + Jk+1(y)

]
.

Proof. See Appendix 2.11.2.

The interpretation of the above optimal policy structure is that for a fixed patient

anatomy sk, provided that the dose stays within the lower bound u and upper bound u,

an optimal policy is to deliver a dose which linearly increases with the remaining dose

rk. If we fix the remaining dose rk, we find an optimal policy stated in the corollary

below.

Corollary 2.5.3. There exists an optimal policy, for k = 1, 2, . . . , N , which has the

form:

µk(rk, sk) =





Bk(rk), if h(sk) ≥ Ck(rk)

rk − ((N − k − i∗)u+ i∗u), if Dk(rk) ≤ h(sk) < Ck(rk)

Bk(rk), if h(sk) < Dk(rk),
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where i∗ is an integer between 0 and N − k such that (rk − ((N − k − i∗)u + i∗u)) ∈
[Bk(rk), Bk(rk)].

Proof. See Appendix 2.11.3.

For a fixed remaining dose rk, the above corollary states that an optimal policy will

take exactly one of three values: the minimum dose deliverable when the cost of the

patient anatomy h(sk) is above a point Ck(rk), rk − ((N −k− i∗)u+ i∗u) when the cost

h(sk) is between the points Dk(rk) and Ck(rk), and the maximum dose deliverable when

the cost h(sk) is below Dk(rk). By running the discretized DP algorithm on Matlab

using reasonable parameters, we plot the optimal policy decision region for the 15th day

(midway through treatment) in Figure 2-3 and see that it has the properties described

by the above two results.

An additional special consequence of the above theorem is that when it is possible to

deliver the treatment with a sequence of smallest and largest fraction sizes (i.e., when

rk is a nonnegative integer combination of u and u), an optimal policy does exactly

that. Moreover, an optimal policy has a threshold form and is essentially unique when

the probability distribution p(·) is continuous. This is stated mathematically in the

following corollary.

Corollary 2.5.4. If there exists an integer i between 0 and N such that the initial

remaining dose (or the prescribed dose) can be written as r1 = (N − i)u+ iu, then there

exists an optimal policy of the threshold form:

µ∗
k(rk, sk) =





u if h(sk) ≥ Tk(rk),

u if h(sk) < Tk(rk),
(2.9)

for k = 1, 2, . . . , N . Furthermore, this is the unique optimal policy (except possibly on

a zero probability set) if the probability distribution p(·) is continuous.

Proof. We proceed by induction. Let k = 1 and assume, for the base case, that there

exists an integer i1 between 0 and N such that the initial remaining dose (or the

prescribed dose) can be written as r1 = (N − i1)u+ i1u. We consider three cases:
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Figure 2-3: Decision region of an optimal policy. We use the following input parameters
to the DP algorithm: N = 30, P = 60 Gy, u = 1.6 Gy, u = 2.4 Gy, p(sk) ∼ U [0, 1], and
h(sk) = 1− sk. We see that the plotted optimal policy agrees with Corollary 2.5.3, and
for a fixed remaining dose, takes on exactly three values. We also observe that for a
fixed tumor-OAR distance, the optimal policy delivers a dose which linearly increases
with the remaining dose (truncated at the limits so that the fraction size stays within
the interval [u, u]), which is in agreement with Theorem 2.5.2. The white streaks in the
plot are probably due to discretization errors.
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1. When i1 = 0, i.e. r1 = Nu, the only possible solution is u1 = u2 = . . . = uN = u,

in which case we are done.

2. Similarly, when i1 = N , u1 = u2 = . . . = uN = u is the only solution.

3. We consider the more interesting case when i1 is an integer between 1 and N − 1.

First, we notice that for any choice of u1 between u and u, r2 = r1 − u1 remains

feasible, and hence, the cost-to-go function J2(r1 − u1, s) is finite for all anatomy

instances s. Second, since r1 = (N − i1)u + i1u, from Theorem 2.5.2, we have

that J2(r1 − u1, s) is linear in u1 for all values in between u and u. Since taking

an expectation preserves linearity, the function E [J2(r1 − u1, s2)] is also linear in

u1. Now, in the DP equation

J1(r1, s1) = min
u≤u1≤u

(
u1h(s1) + E [J2(r1 − u1, s2)]

)
, (2.10)

we are minimizing a linear function because adding a linear function u1h(s1)

preserves linearity. So, for any feasible r1, we can write

E [J2(r1 − u1, s2)] = a(r1)u1 + b(r1),

where a(r1) and b(r1) represent the slope and intercept, respectively. Let T1(r1) =

−a(r1). Then, since we are minimizing a linear function over an interval in (2.10),

µ∗
1(r1, s1) has the desired threshold form:

µ∗
1(r1, s1) =





u, if h(s1) ≥ T1(r1),

u, if h(s1) < T1(r1).

Now, it is clear that from the above form for µ∗
1(r1, s1), there exists an integer i2

between 0 and N − 1 such that the remaining dose in the next fraction can be

written as r2 = (N − 1− i2)u+ i2u. We can complete the induction by assuming

the appropriate form for rk in the induction hypothesis and following the same
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line of argument as above.

Notice that if h(sk) = Tk(rk), any choice of µk between u and u will be optimal. In

fact, this is exactly the set of all optimal decisions. However, under the assumption

that p(·) is continuous, the event h(sk) = Tk(rk) happens with zero probability, and

therefore, we need not specify the value of µk for this case. It follows that the policy

(2.9) is essentially unique when p(·) is continuous.

There is also a similar result to Corollary 2.5.4, in which the threshold condition is

written in terms of rk (as opposed to h(sk)); it can be derived using similar arguments

as in the above results. The assumption in Corollary 2.5.4 that the initial remaining

dose can be written as r1 = (N − i)u+ iu simply requires that it be possible to deliver

the treatment with a sequence of smallest fraction sizes u and largest ones u. Otherwise,

it would not be possible for the cumulative sum of the fraction sizes to be equal to the

prescribed dose when restricting to only the smallest or the largest fraction size. In

that respect, the assumption here is reasonable and is generally satisfied in a realistic

setting or at least satisfiable with a slight modification of the lower bound u and upper

bound u. For the case of continuous p(·), the uniqueness of the policies in Theorem

2.5.2 and Corollary 2.5.3 can be shown in a similar way as in the proof of Corollary

2.5.4.

2.6 Heuristic policies based on optimal policy struc-

ture

Although it is possible to solve the problem exactly using the DP algorithm, we develop

two heuristics that make use of the structure of an optimal policy and approximate the

threshold Tk(rk) in (2.5) by using: (i) the remaining dose rk, which summarizes past

information, and (ii) the distribution p(·), which summarizes information about the

expected patient anatomy in the future. We believe that such heuristics can provide
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simpler and intuitive solutions that can possibly be applied to more complex, high-

dimensional problems, where using the DP algorithm is no longer computationally

feasible.

Without loss of generality we assume 0 ≤ h(sk) ≤ 1, for all sk. For simplicity we

assume that (u+u)/2 = P/N , so that u and u need each to be applied half of the time

over the course of treatment. Our Heuristic 1 uses the following threshold:

Tk(rk) =





0, if rk = (N − k + 1)u,

1, if rk = (N − k + 1)u,

M, otherwise,

where M is the median of h(sk), which by definition satisfies F h(M) = 1
2
. Such a policy

has a simple interpretation: If the remaining dose rk in the kth fraction is such that

we must deliver the smallest fraction size u for the remaining fractions (in which case

rk = (N − k + 1)u), we set the threshold to 0, ensuring that regardless of the anatomy

sk, we always deliver the smallest fraction size u. And, similarly, if the remaining dose

rk is (N − k+1)u, we set the threshold to 1 and as a result, deliver the largest fraction

size u for the remaining fractions. Otherwise, for the interesting case when rk is between

(N−k)u and (N−k)u, this policy simply delivers the smallest fraction size u when the

cost h(sk) is above its median M (on average, this will happen half of the time) and the

largest fraction size u when below it (on average, this will happen the other half of the

time). Ignoring the possibility that the threshold Tk(rk), for k = 1, 2, . . . , N , can take

extreme values (either 0 or 1), this policy is stationary, in the sense that the thresholds

do not change with the fraction k. This is a simplistic approximation to the true values

of Tk(rk). The nice feature of this policy is that we do not need all of the information

given in the probability distribution p(·); the only information required is the median

M of h(sk). This could be useful in a realistic setting in which we do not actually have

accurate information about the distribution p(·). Here, one could estimate the median

M (perhaps by using statistical information from many patient datasets) and use the
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above heuristic policy.

An even better heuristic policy might use the entire distribution p(·) (as opposed to

just a statistic such as the median or mean) to determine the threshold Tk(rk). Consider

Heuristic 2, which uses a threshold Tk(rk) that satisfies

F h(Tk(rk)) =
ik

N − k + 1
, (2.11)

where ik is the number of largest fraction sizes u left to deliver in the remaining N−k+1

fractions. Given that Tk(rk) is fixed for the remaining N −k+1 fractions, the left hand

side of (2.11) represents the percentage of the remaining fractions for which we expect

to deliver the largest fraction size u. And the right hand side represents the percentage

of the remaining N − k+1 fractions for which we must deliver the largest fraction size

u. In some sense, this threshold represents the best balance between what we expect

to deliver and what we must deliver. For the uniform distribution, i.e. h(sk) ∼ U [0, 1],

the threshold Tk(rk) for Heuristic 2 has a simple closed form expression:

Tk(rk) =
ik

N − k + 1
.

Of course, it may not be possible to write Tk(rk) as a closed form expression but it can

be evaluated by looking at tabulated values of the function F h(·).1

2.7 Algorithm based on a variant of open-loop feed-

back control

In this section, we derive the algorithm in [48] as a variant of the approximate DP

approach known as the open-loop feedback control (see [4] for a description of this

1For the case of a discrete probability distribution with a few possible patient anatomy instances,
a naive implementation of Heuristic 2 can result in the threshold taking a value of 0 even though it is
not necessary to deliver the smallest fraction size u for the remaining fractions. In such cases, in our
numerical experiments, we forced the heuristic to deliver the largest fraction size u when h(sk) = 0,
and this resulted in better performance.
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approach).

Recall from previous sections that, to solve the original optimization problem in

(2.2), we use the DP Algorithm specified by (2.3). The expected cost-to-go function

Jk+1(rk − uk) in (2.4) represents the expected future cost of delivering the control uk

given that we use an optimal policy in the future. We consider a suboptimal approach

which approximates the cost-to-go function Jk+1 by evaluating the cost incurred from

using a heuristic policy in the future instead of an optimal one. Let us consider using a

stationary policy (i.e., one that does not depend on time) which is independent of the

future states, ri for i = k + 1, k + 2, . . . , N . This translates to replacing µi(ri, si) with

µ(s) = µ(sk+1) = µ(sk+2) = . . . = µ(sN) in the optimization problem (2.2). Therefore,

in the kth fraction (when the states rk and sk are known), we would be solving the

following problem:

min
uk, µ

E

[
g(rN+1) + gk(sk, uk) +

N∑

i=k+1

gi(µ(Vi), Vi)

]

subject to u ≤ uk ≤ u,

u ≤ µ(s) ≤ u, ∀s ∈ S,

rk+1 = rk − uk,

ri+1 = ri − µ(Vi), i = k + 1, k + 2, . . . , N,

Vi+1 ∼ p(·), i = k, k + 1, . . . , N,

where we distinguish the random future anatomies by Vi and the observed (known)

anatomy sk. Since we assume Vi are independent and identically distributed, the expec-

tation of the summation in the objective above simplifies to (N−k) identical terms. Now

we can remove the function g(rN+1) by including the constraint B(rk) ≤ uk ≤ B(rk).

Finally, we approximate the dynamics of the system rk+1 = rk − uk, ri+1 = ri − µ(Vi),

and si+1 ∼ p(·) by ensuring the expected delivered dose is equal to the prescription

dose. This is captured by the equation uk + (N − k)E [µ(Vk)] = rk. After these modi-

fications, we obtain the following linear programming (LP) formulation to solve in the
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kth fraction:

min
uk, µ

ukh(sk) + (N − k)E [µ(Vk)h(Vk)]

subject to B(rk) ≤ uk ≤ B(rk),

u ≤ µ(s) ≤ u, ∀s ∈ S,

uk + (N − k)E [µ(Vk)] = rk,

where we take the expectation with respect to the distribution p(·). The LP algorithm

above is the same algorithm as the one in [48]. We have derived this algorithm under

our problem framework and clearly established the relationship between this work and

the one in [48].

2.8 Numerical results

We discuss the results from implementing the adaptive algorithms (both exact and

heuristic) in Matlab. For the problem parameters, we take the number of fractions N

to be 30, the prescribed dose P to be 60 Gy, the smallest fraction size u to be 1.6 Gy,

the largest fraction size u to be 2.4 Gy, the set of patient anatomy instances S to be 10

equally spaced values between 0 and 1 representing the distance between the tumor and

OAR (see Figure 2-1), the distribution p(·) to be a discrete uniform, and the function

h(sk) to be 1 − sk. Essentially, we are allowing for a 20% daily fraction size deviation

from the standard 2 Gy per fraction.

We find that both Heuristic 1 and 2 do well in approximating the optimal threshold,

and as a result, perform numerically close to optimal. In Figure 2-4, for one treatment

simulation (i.e., one realization of the sequence {s1, s2, . . . , sN}), we show the thresh-

olds of the optimal and heuristic policies. When the tumor-OAR distance sk is large

and above the threshold, which indicates a favorable anatomy, the policy delivers the

largest fraction size u, and vice versa. We note that, for this 1-dimensional setting, the

threshold in Figure 2-4 is equal to 1− Tk(rk) because we are plotting the tumor-OAR
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Figure 2-4: Thresholds of optimal and heuristic policies resulting from one treatment
simulation run (i.e., one realization of the patient anatomy sequence {s1, s2, . . . , sN}).
For this 1-dimensional example, the threshold lines plotted represent the point at which
a policy delivers the smallest fraction size u when sk is below it and the largest fraction
size u when above it. These lines plotted are actually 1−Tk(rk) because we are plotting
sk instead of h(sk) = 1 − sk. The ‘x’ markers correspond to the actual realization of
the tumor-OAR distance sk. Heuristic 1 (Heu1) makes a crude approximation to the
optimal threshold while Heuristic 2 (Heu2) follows it closely. Since the ‘x’ markers are
uniformly spread out and rarely take values near the thresholds, the heuristic algorithms
perform well compared to the optimal DP approach.

distance sk on the y-axis rather than h(sk). While Heuristic 2 closely approximates

the optimal threshold, Heuristic 1 makes a crude approximation since it only uses the

median M of h(sk). Since the realized tumor-OAR distances sk (as shown by the ‘x’

markers) are uniformly spread out and rarely take values near the thresholds, we see

that the heuristic algorithms perform well.

In Table 2.1, we see that when using a uniformly distributed motion model, the

adaptive policies result in about a 10% decrease in dose to the OAR compared to that

resulting from standard fractionation. Note that the DP approach represents the opti-
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Table 2.1: Using a uniformly distributed motion model and a 20% daily fraction size
deviation, we find about a 10% decrease in dose to the OAR when using adaptive
policies. The dose to the OAR is averaged over 10,000 treatment runs in order to
report results to two decimal places.

Average Dose to OAR
Standard Fractionation 30.00
DP (Optimal) 27.00
Heuristic 1 27.13
Heuristic 2 27.00
Algorithm in [48] 27.07

mal policy, and hence, provides a baseline for comparison to the other heuristics. The

difference in the dose to the OAR resulting from Heuristic 1 and the DP approach is

very little, which means that using a statistic such as the median M of h(sk) is enough

for achieving significant decrease in dose to the OAR. Such a policy could be advanta-

geous in a realistic setting when it is not possible to have accurate information about

the distribution p(·). As expected, Heuristic 2 performs even better than Heuristic 1

since it uses the entire distribution p(·) in the threshold computation. We can see that

the numerical difference between the OAR dose resulting from Heuristic 2 and the DP

approach is not even visible when using two decimal places. Finally, we also simulate

the algorithm in [48] for comparison and notice that it is close to optimal as well, like

the other heuristics.

In Figure 2-5, we vary both the number of fractions N and the daily fraction size

deviations, and simulate the decrease in the OAR dose when using the optimal DP

approach. We use 20%, 50%, and 100% daily fraction size deviations, and 5, 30, and 60

fractions for N . This allows us to understand the benefit of adaptive fractionation in

hypo-, standard, and hyper-fractionation regimes. This, however, may not be entirely

accurate because we simply normalize the dose per fraction so that the same prescribed

dose P is met at the end of treatment, and we do not take into account the biological

effect of varying N . The error bars in Figure 2-5 correspond to one standard deviation,

as estimated from the simulation of 500 treatment runs. A larger number of frac-

tions and daily fraction size deviation result in more chances to capitalize on favorable
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Figure 2-5: Comparing adaptive fractionation in hypo-, standard, and hyper-
fractionated settings. We simulate the performance of just the optimal DP approach
through 500 treatment runs. The fraction size is adjusted when varying the number of
fractions N so that the same prescribed dose P is met at the end of treatment. The
error bars correspond to one standard deviation, as estimated from the results of the
500 runs. We find a larger decrease in dose to the OAR when using more fractions and
larger daily fraction size deviations.

anatomy, and therefore, result in more gain. We see bigger error bars when using larger

daily fraction size deviations due to the increased variation in the ability to capitalize

on favorable anatomy. On the other hand, we see smaller error bars when increasing

the number of fractions, which means the treatment outcome is more predictable; this

is because with a large number of fractions, laws of large numbers (from probability

theory) take effect. In summary, Figure 2-5 shows that the percentage decrease in the

dose to the OAR varies significantly (anywhere from 5 - 55%). But in general, we find

more gain when using a larger number of fractions and daily fraction size deviations.

As we see in Figure 2-6, the decrease in dose to the OAR is more pronounced when

we have a high probability of large tumor-OAR distances. We use three distributions,
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each corresponding to parameters of the beta distribution (p(s) = c · s1−α(1 − s)1−β,

where c is a normalization constant), and plot them in the right panel. As before,

we use 10 uniformly discretized values between 0 and 1 for the possible tumor-OAR

distances. In the left panel, for the Unfavorable distribution, the percentage decrease in

the OAR dose is minimal. On the other hand, there is a significant decrease in the OAR

dose for the Uniform and Favorable distributions. We conclude that when the OAR

tends to stay far away from the tumor, we see a larger decrease in dose to the OAR. In

such cases, favorable anatomies are frequent enough so that the DP approach is able

to make up for the small fraction sizes used for unfavorable anatomies. When allowing

a 100% daily fraction size deviations and using the Favorable distribution, there is at

least a 10% decrease in the OAR dose when comparing the optimal DP approach with

the algorithm in [48]. Here, the algorithm in [48] “believes” favorable anatomies will

be frequent enough over the course of treatment so that no matter what fraction size is

delivered in the initial fractions, it will be able to make up for the much more infrequent

unfavorable anatomies.

2.9 Convergence of Heuristic 1 to optimality as N →

∞

We analyze the asymptotic properties of Heuristic 1 (as a function of the number of

treatments, N). We find that the expected cost associated with Heuristic 1 converges

to the expected cost associated with the optimal DP algorithm as N → ∞, with

the discrepancy being of order O
(√

logN√
N

)
. The discussion in this section provides a

theoretical justification for Heuristic 1 and in some sense, convinces us of its “soundness”

as a solution approach. For our previous theoretical results, as mentioned in Remark 3,

we only required the Markov property to hold true for the sequence of patient anatomy

instances. The results in this section require however a stronger assumption, stated

next.
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Figure 2-6: Results from varying the motion probability distribution. In the right
panel, we show the three probability distributions used, each resulting from varying
parameters of the beta distribution. In the left panel, we show the average percentage
decrease (from 500 treatment runs) in dose to the OAR for each of these probability
distributions. For probability distributions in which the OAR tends to stay far away
from the tumor, there is a larger decrease in dose to the OAR, and the optimal DP
approach is at least 10% better than the other heuristics.

Assumption 2.9.1. The patient anatomy instances sk, for k = 1, 2, . . . , N , are inde-

pendent.

For our results to hold, we also need an additional assumption stated below to ensure

that the probability distribution is well-behaved. For this section, we use the probability

distribution ph(·) on h(sk) rather than p(·) on sk.

Assumption 2.9.2. The probability distribution of h(sk) is continuous, described by a

density ph(·), which is bounded above by a constant K (i.e., |ph(x)| ≤ K for all x).

We denote the expected cost associated with using the optimal DP approach and

Heuristic 1 by Cdp and Cheu1, respectively. We wish to show that |Cheu1 − Cdp| → 0 as

N → ∞. We will simplify the mathematical analysis by finding a lower bound for Cdp
instead of using the DP algorithm directly. To find such a lower bound, consider the

fractionation problem when the sequence of costs h(sk), for k = 1, 2, . . . , N , are known

prior to treatment. The resulting expected cost, which we denote by C∗, is definitely
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smaller than Cdp. Hence, we must have C∗ ≤ Cdp ≤ Cheu1, where the last bound is

due to the optimality of the DP algorithm. The analysis below will involve showing

|Cheu1 − C∗| → 0 as N → ∞, which will also imply |Cheu1 − Cdp| → 0.

Even though it may be inconsistent with prior notation, in this section, sk refers to

a random variable, not an observed or known quantity. We will relate the cost C∗ to

the empirical median MN , which we define below.

Definition 2.9.1. The empirical median MN satisfies FN(MN ) = 0.5, where the em-

pirical CDF FN is defined as

FN(x) =
1

N

N∑

k=1

I{h(sk)≤x}.

Here, I denotes the indicator random variable:

IA =






1, if event A occurs

0, otherwise.

In order to relate the empirical median MN to C∗, we note that the event Dk = {h(sk) <
MN} consists of N/2 patient anatomies with the lower costs (assuming, for simplicity,

N is even). The event Dc
k then corresponds to those with the higher costs. Now, it is

clear that

C∗ = E

[
N∑

k=1

h(sk)
(
uIDk

+ uIDc
k

)
]
. (2.12)

We can similarly relate Cheu1 to the true median M . We define the event Ak = {h(sk) <
M}, which consists of patient anatomies for which Heuristic 1 delivers u. In order to

incorporate the heuristic’s boundary conditions, we define the events Bk = {rk =

(N − k)u} and Ck = {rk = (N − k)u}. Finally, we can write

Cheu1 = E

[
N∑

k=1

h(sk)
(
uIAk∩Bc

k
∩Cc

k
+ uIAc

k
∩Bc

k
∩Cc

k
+ uIBk

+ uICk

)
]
.
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The empirical CDF FN(·) and empirical median MN are estimates of the true un-

derlying CDF F h(·) and true median M , respectively. Existing results in probability

theory prove the uniform convergence of FN (·) to F h(·) and also provide bounds on the

rate of convergence. In order to show the convergence of |Cheu1 − C∗| → 0, we will rely

on the convergence of the empirical median MN to the true median, M . The following

two lemmas show convergence in probability and convergence in the r-th mean of MN

to M , respectively.

Lemma 2.9.1. Assume a positive density in a small interval around the median M ,

i.e., ph(x) > 0 for x ∈ [M − γ,M + γ]. Then,

P(|MN −M | > ǫ) ≤






2e−2c2Nǫ2, if 0 < ǫ ≤ γ

2e−2c2Nγ2
, if ǫ > γ,

where c = min
x∈[M−γ,M+γ]

ph(x).

Proof. See Appendix 2.11.4.

Lemma 2.9.2. Assume a positive density in a small interval around the median M ,

as in Lemma 2.9.1. Then, the empirical median MN converges in the r-th mean to the

true median M as N → ∞. Furthermore, as a function N , we have for r ≥ 1

E
[
|MN −M |r

]
= O

([
logN

N

] r
2

)
.

Proof. See Appendix 2.11.5.

The cost C∗ uses the empirical median while Cheu1 uses the true median. Given the

nice convergence properties of the empirical median to the true one, it is reasonable to

relate the two costs and analyze convergence. The main difficulty lies in the boundary

conditions corresponding to the sets Bk and Ck in the definition of Cheu1. In the next
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lemma, we show that the probability of the sets Bk and Ck is small (exponentially

decreasing with N) for all but the last O
(√

N logN
)
fractions.

Lemma 2.9.3. For any a > 0, we have

max {P(Bk),P(Ck)} ≤ 1

Na
,

if k ≤ N − ⌊2
√

a
2
N logN⌋ − 1.

Proof. See Appendix 2.11.6.

Finally, we state the main result in the following theorem.

Theorem 2.9.4. Heuristic 1 is asymptotically optimal. That is, |Cheu1 − Cdp| → 0 as

N → ∞. The rate of convergence is O
(√

logN√
N

)
.

Proof. See Appendix 2.11.7.

We have shown that Heuristic 1 is “sound” in the sense that it is optimal in the limit

as the number of treatments N is very large. Though the results in this section have

little impact on the practical applicability of any particular method, it provides some

theoretical insight.

2.10 Discussion and conclusions

Realistic implementation of the approaches described in this chapter require the follow-

ing:

1. The motion probability distribution p(·) must be known. One could in principle

collect and analyze population data, and assign probabilities corresponding to a

few anatomy scenarios. However, this may not be an accurate representation of a

patient-specific probability distribution. Updating the probability distribution as

the sequence of patient anatomy instances are observed could be a topic of future

research.
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2. Immediately before the delivery of a fraction, imaging information about the

patient anatomy must be available as well as reliable automatic contouring and/or

contour registration algorithms to process this information. This would be needed

in order to determine the favorability of the patient anatomy in any particular

day. We can be optimistic that such technology will be available in the near

future.

3. The OAR dose per unit dose to the tumor, h(sk), must be computable before the

delivery of each fraction. In order to speed up the computation, one may use the

same dose deposition matrix from the initial CT scan as an approximation and

determine the dose projected on the OAR in the new CT. We emphasize that this

model does not depend on using the OAR dose per unit tumor dose for h(sk); we

simply need a function h(sk) which tells us how favorable a particular anatomy

sk is.

Other assumptions of our model include the following:

1. One primary OAR is the basis for making decisions about the fraction size. Mul-

tiple OARs can be used, for example, by using for h(sk) a weighted combination

of the dose to each OAR per unit dose to the tumor. However, this does not

capture the true tradeoff between the various OARs because there is also gener-

ally an upper limit to the dose of each OAR. The model would better represent

the radiation therapy problem if, for example, the non-linear NTCP curves were

incorporated into the cost function. There is potential for further research work

here.

2. The prescribed dose to the tumor must be met exactly and is penalized with

an infinite cost. One may also consider using a penalty (e.g., quadratic) on the

deviation from the prescribed dose, which would possibly result in a “smoother”

optimal policy that does not pick the extreme fraction sizes.

3. Variations in the patient anatomy are dose-independent and random. In order
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to incorporate systematic time varying trends (e.g., tumor shrinkage), we can re-

optimize the treatment plan (the dose profile) midway through treatment. Then,

we can use one of the adaptive fractionation methods in this chapter for the first

half of treatment assuming no systematic changes. For the latter half of treat-

ment, we would re-optimize the treatment plan, update the motion probability

distribution and/or escalate the prescribed dose if necessary, and restart the adap-

tive fractionation method. For other systematic offsets (e.g, patient setup errors),

we assume daily imaging modalities are accurate enough for correction.

4. When the daily fraction size deviations are not too large, the biological impact

of a varied fractionation scheme is negligible. It is likely that deviating 20% from

standard fractionation does not result in a major difference between physical dose

and biological dose [6]. Dose deviations of 50% and 100%, however, need further

study. Using large deviations and varied fractionation may require additional con-

siderations such as changes in the onset of early and late reactions. A biologically

based adaptive fractionation approach is given in [13].

Under our framework, it is possible to derive the algorithm in [48] and see that it is

a variant of the approximate DP approach known as open-loop feedback control (refer

to [4] for a description of such an approach). From the numerical results, we conclude

that the algorithm in [48] performs very close to optimal for almost all cases. However,

we do see that the DP approach performs about 10% better when allowing 100% daily

fraction size deviations and using a probability distribution that favors large tumor-

OAR distances. One difference in the way these algorithms would be used in practice

is that the DP approach involves an online table lookup, while the algorithm in [48]

requires solving a linear programming (LP) problem right before the delivery of every

fraction. Though a table lookup is quicker, solving a LP for this problem, where we are

simply searching for a scalar variable uk, is also very fast and can be done before each

fraction without much time overhead.
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Based on the linear-quadratic model of radiation effects, varying the fraction size

during the course of treatment while ensuring a fixed total prescribed dose leads to a

higher TCP [6]. One might argue that this benefit is neutralized by an increase in the

NTCP for the OAR. However, assuming that the OAR has an underlying motion, even

standard fractionation results in a different dose to the OAR from fraction to fraction.

Adaptive fractionation will lead to a more uniform dose to the OAR because a small

fraction size is delivered when the OAR-to-tumor dose ratio h(sk) is large (i.e., when

the tumor and OAR are close together), and vice versa. Further research can be done

to evaluate the biological benefit of varying the fraction size.

We have posed the adaptive fractionation problem in a theoretical framework and

have provided several solution methods. First, we used the DP algorithm to establish a

benchmark and to solve the problem exactly. This allowed us to show that the simple

heuristics proposed in this chapter were numerically near-optimal. One of these heuris-

tics only uses a statistic, such as the median or mean, rather than the entire probability

distribution. Such a policy can provide a quick way to estimate the best possible benefit

of using an adaptive fraction size in a realistic setting. We have demonstrated through

numerical simulations that we can expect a significant decrease in dose to the OAR

when: (i) we have a high probability of large tumor-OAR distances, (ii) we use many

fractions (as in a hyper-fractionated setting), and (iii) we allow large daily fraction size

deviations. We expect adaptive fractionation to be beneficial for disease sites in which

the OAR exhibits significant motion from day to day. Some examples include pelvic

cases such as rectal [59], prostate [83], and cervical [25] cancers.

2.11 Appendix: proofs

2.11.1 Proof of Lemma 2.5.1

Proof. From equation (2.3), we can see that Jk(rk, sk) = ∞ if (rk − uk) /∈ Fk+1 (since
∫
S
p(s)Jk+1(rk−uk, s) ds = ∞ if (rk−uk) /∈ Fk+1). Therefore, we can rewrite Equation
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(2.3) as

Jk(rk, sk) = min
uk∈Uk(rk)

(
ukh(sk) + Jk+1(rk − uk)

)
,

where Uk(rk) = {uk : u ≤ uk ≤ u, (rk − uk) ∈ Fk+1}. Using the definition of Fk+1 from

Equation (2.6), we see that

Uk(rk) = {uk : u ≤ uk ≤ u, (N − k)u ≤ rk − uk ≤ (N − k)u}

= {uk : max(u, rk − (N − k)u) ≤ uk ≤ min(u, rk − (N − k)u))}

= {uk : Bk(rk) ≤ uk ≤ Bk(rk)},

from which we can write Equation (2.7).

2.11.2 Proof of Theorem 2.5.2

Proof. We proceed by induction. For the base case, let k = N . It is clear that the

optimal decision in this last fraction, µ∗
N(rN , sN), is equal to the remaining dose rN .

(Otherwise, we would incur an infinite penalty for not meeting the prescribed dose

exactly.) In this case, for any rN ∈ FN , JN(rN , sN) = rNh(sN ), which has the desired

continuous, non-decreasing, convex, and piecewise linear form. Now, assume that Jk+1,

for rk+1 ∈ Fk+1, also has this form as stated in the theorem. First, we prove convexity

of Jk in rk. Then, we prove the remaining properties of Jk along with the structure of

an optimal policy.

Step 1: Proof of convexity For any r1k, r
2
k ∈ Fk, we have

Jk

(
r1k + r2k

2
, sk

)
= min

u≤uk≤u

(
ukh(sk) + Jk+1

(
r1k + r2k

2
− uk

))

≤ ukh(sk) + Jk+1

(
r1k + r2k

2
− uk

)∣∣∣∣
uk=

µk(r1
k
,sk)+µk(r2

k
,sk)

2

,

where µk(rk, sk) = argmin
u≤uk≤u

[
ukh(sk) + Jk+1(rk − uk)

]
. Notice that the choice

µk(r
1
k
,sk)+µk(r

2
k
,sk)

2

for uk above is feasible (i.e., between u and u) because the condition u ≤ µk(rk, sk) ≤ u
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is always true. We also claim that (r1k−µk(r
1
k, sk)), (r

2
k−µk(r

2
k, sk)) ∈ Fk+1. To see this

is true, suppose (r1k − µk(r
1
k, sk)) /∈ Fk+1. Then,

Jk(rk, sk) = µk(r
1
k, sk)h(sk) + Jk+1(r

1
k − µk(r

1
k, sk))

= µk(r
1
k, sk)h(sk) +∞

= ∞,

which contradicts the optimality of µk. Hence, (r
1
k−µk(r

1
k, sk)), (r

2
k−µk(r

2
k, sk)) ∈ Fk+1

must be true. Using this fact and the convexity of Jk+1(rk+1) in rk+1 (taking expectation

preserves convexity), we have

Jk

(
r1k + r2k

2
, sk

)
≤

(
µk(r

1
k, sk) + µk(r

2
k, sk)

2

)
h(sk)

+Jk+1

(
r1k − µk(r

1
k, sk)

2
+

r2k − µk(r
2
k, sk)

2

)

≤
(
µk(r

1
k, sk) + µk(r

2
k, sk)

2

)
h(sk)

+
1

2
Jk+1

(
r1k − µk(r

1
k, sk), w

)
+

1

2
Jk+1

(
r2k − µk(r

2
k, sk)

)

=
1

2
Jk

(
r1k, sk

)
+

1

2
Jk

(
r2k, sk

)
.

Therefore, Jk(rk, sk) is convex in rk (midpoint convexity implies convexity), and the

result follows.

Step 2: Proof of remaining properties We assume u = 0 and u = 1 for simplicity.

For the general case, the same arguments below can be used, with more bookkeeping

and algebra. The proof below uses similar types of arguments as the proof for the

inventory control problem in [4]. From the DP Algorithm, we have

Jk(rk, sk) = min
0≤uk≤1

[
ukh(sk) + Jk+1(rk − uk)

]
. (2.13)
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By introducing the variable y = rk − uk, we can rewrite (2.13) as

Jk(rk, sk) = min
rk−1≤y≤rk

[Gk(y, sk)] + rkh(sk), (2.14)

where Gk(y, sk) = −yh(sk) + Jk+1(y). From the previous step, we have that Jk+1(y) is

convex in y (taking expectation preserves convexity). Thus, the function Gk is convex

in y because it is a sum of two convex functions in y: −yh(sk) and Jk+1(y). Let us

suppose that the unconstrained minimum over y of Gk(y, sk) exists and denote it as

Ak(sk):

Ak(sk) = argmin
y∈R

Gk(y, sk).

Since Jk+1(y) is infinite for y /∈ Fk+1, we can simplify the minimization by restricting

y to be in Fk+1:

Ak(sk) = argmin
y∈Fk+1

Gk(y, sk).

Now, in the induction, we assume Jk+1, for rk+1 ∈ Fk+1, is continuous and piecewise

linear with breakpoints at integers between 0 and N − k. Therefore, Gk(y, sk) also has

the same form in y. Because we are minimizing a continuous, convex function in y over

Fk+1 (a compact, convex set), it follows that the minimizer Ak(sk) exists. Furthermore,

due to the particular piecewise linear form of Gk in y, Ak(sk) can be restricted to be

an integer between 0 and N − k without loss of optimality. Finally, incorporating the

constraint r − 1 ≤ y ≤ r, we have an optimal solution for (2.14):

y =





rk − 1, if rk ≥ 1 + Ak(sk)

Ak(sk), if Ak(sk) ≤ rk < 1 + Ak(sk)

rk, if rk < Ak(sk).
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Using the reverse transformation uk = rk − y, we have

µk(rk, sk) =





1, if rk ≥ 1 + Ak(sk)

rk − Ak(sk), if Ak(sk) ≤ rk < 1 + Ak(sk)

0, if rk < Ak(sk),

which has the desired form in (2.8). Substituting this policy into the DP equation, we

have

Jk(rk, sk) =





h(sk) + Jk+1(rk − 1), if rk ≥ 1 + Ak(sk)

(rk − Ak(sk))h(sk) + Jk+1(Ak(sk)), if Ak(sk) ≤ rk < 1 + Ak(sk)

Jk+1(rk), if rk < Ak(sk).

(2.15)

Using the properties of piecewise linearity of Jk+1 in rk+1 and integer Ak(sk), it

is clear from (2.15) that Jk in rk is piecewise linear with breakpoints between 0 and

N−k+1. Furthermore, assuming Jk+1 is continuous and non-decreasing in rk+1, we can

see from (2.15) that Jk is also continuous and non-decreasing in rk. We have completed

the induction.

2.11.3 Proof of Corollary 2.5.3

Proof. We assume u = 0 and u = 1 for ease in exposition. We use the DP algorithm

from Lemma 2.7:

Jk(rk, sk) = min
Bk(rk)≤uk≤Bk(rk)

(
ukh(sk) + Jk+1(rk − uk)

)
. (2.16)

From Theorem (2.5.2), it follows that Jk+1(rk−uk) continuous, non-increasing, convex,

and piecewise linear in uk with breakpoints at rk − i, where i is an integer between

0 and N − k. Note that there is at most a single breakpoint in between Bk(rk) and

Bk(rk). We will assume that uk = rk − i∗ is this breakpoint, where i∗ is between 0 and
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N−k. The derivative of the objective in (2.16) is h(sk) plus a non-decreasing piecewise

constant function. It follows that if h(sk) is very large, the optimum would be the

smallest deliverable dose Bk(rk). Similarly, if h(sk) is very small, the optimum would

be the largest deliverable dose Bk(rk). In between these two cases, the optimum would

be rk − i∗, which allows the subderivative of the objective in (2.16) to be zero. This

results in the desired form of an optimal policy. We can also use the above argument

for a general u and u.

2.11.4 Proof of Lemma 2.9.1

Proof. Since c is the minimum slope of F (x) in the interval [M−γ,M+γ], for 0 < ǫ ≤ γ,

we have

F (M − ǫ) ≤ F (M)− cǫ

and

F (M + ǫ) ≥ F (M) + cǫ. (2.17)

Note that since we have a continuous distribution, F (M) = 1/2. Also, FN(MN ) = 1/2,

by definition. Now we will show that if |MN −M | > ǫ, then |F (MN)− FN(MN )| > cǫ.

If MN −M > ǫ, then

F (MN) > F (M + ǫ) (2.18)

≥ F (M) + cǫ (2.19)

= FN (MN) + cǫ,

which implies F (MN) − FN(MN ) > cǫ as desired. In (2.18), we use the monotonicity

property of the distribution F (·), and in (2.19), we use Equation (2.17). Similarly, if
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MN −M < −ǫ, then:

F (MN) < F (M − ǫ)

≤ F (M)− cǫ

= FN(MN )− cǫ,

and therefore, F (MN)− FN (MN) < −cǫ. We have shown that if |MN −M | > ǫ, then

|F (MN) − FN (MN)| > cǫ. The first inequality below makes use of this property. We

have

P(|MN −M | > ǫ) ≤ P(|F (MN)− FN(MN )| > cǫ)

≤ P(sup
x
|FN(x)− F (x)| > cǫ)

≤ 2e−2c2Nǫ2, (2.20)

where in (2.20), we use the Dvoretzky-Kiefer-Wolfowitz inequality.

For ǫ > γ,

P(|MN −M | > ǫ) ≤ P(|MN −M | > γ)

≤ 2e−2c2Nγ2

,

where the last inequality follows from the result for the case ǫ ≤ γ.

2.11.5 Proof of Lemma 2.9.2

Proof. We use the definition of the expected value that makes use of the cumulative

distribution and write for 0 < ǫ ≤ γ (where γ is the distance from the median M within

64



which ph(·) has positive density as defined in Lemma 2.9.1) and r ≥ 1:

E
[
|MN −M |r

]
= r

∫ 1

0

xr−1 P(|MN −M | > x) dx

= r

∫ ǫ

0

xr−1 P(|MN −M | > x) dx+ r

∫ 1

ǫ

xr−1 P(|MN −M | > x) dx

≤ ǫr + r

∫ 1

ǫ

xr−1 P(|MN −M | > x) dx

≤ ǫr + 2re−2c2Nǫ2
∫ 1

ǫ

xr−1 dx (2.21)

= ǫr
(
1− 2e−2c2Nǫ2

)
+ 2e−2c2Nǫ2,

where in (2.21), we use Lemma 2.9.1 and the fact that the exponential function is

monotonically decreasing in x. Since the above bound holds for 0 < ǫ ≤ γ, we can take

the minimum of the right-hand side over this range. Now, since we are interested in

the limiting behavior as N → ∞, we can choose to analyze the case for large N so that
[
mlogN

N

] 1
2 ≤ γ, where m is some positive constant. In this case, we have

0 ≤ E
[
|MN −M |r

]
≤ min

0<ǫ≤γ

[
ǫr
(
1− 2e−2c2Nǫ2

)
+ 2e−2c2Nǫ2

]

≤
[
ǫr
(
1− 2e−2c2Nǫ2

)
+ 2e−2c2Nǫ2

]
ǫ=[mlogN

N ]
1
2

= m
r
2

[
logN

N

] r
2
(
1− 2

N2c2m

)
+

2

N2c2m

Since we can take m to be any positive constant in the above bound, we select large m

such that the right-hand side is O
([

logN
N

] r
2

)
. Thus, we have

E
[
|MN −M |r

]
= O

([
logN

N

] r
2

)
,

as desired.
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2.11.6 Proof of Lemma 2.9.3

Proof. Below, we use Hoeffding’s inequality:

P(Bk) = P(that of the first k fractions, at least N/2 were delivered u)

= P

(
k∑

i=1

IAc
k
≥ N

2

)

= P

(
k∑

i=1

(
IAc

k
− 1

2

)
≥ N

2
− k

2

)

≤ exp

[
−2 (N/2− k/2)2

k

]
.

By similar argument, we can show

P(Ck) ≤ exp

[
−2 (N/2− k/2)2

k

]
.

Now, for k ≤ N − ⌊2
√

a
2
N logN⌋ − 1, we have

max {P(Bk),P(Ck)} ≤ exp

[
−2 (N/2− k/2)2

k

]

≤ exp

[
−2
(
N/2− (N − ⌊2

√
a
2
N logN⌋ − 1)/2

)2

N − ⌊2
√

a
2
N logN⌋ − 1

]

≤ exp

[
−2
(
(⌊2
√

a
2
N logN⌋+ 1)/2

)2

N

]

≤ exp

[
−2
(√

a
2
N logN

)2

N

]

=
1

Na
.

2.11.7 Proof of Theorem 2.9.4

Proof. For convenience, we define up and up to represent the percentage deviation for

the upper limit and the lower limit of the tumor dose, respectively. These can be related

66



to the already defined quantities by the equations u = up(P/N) and u = up(P/N). We

first bound Cheu1:

Cheu1 = E

[
N∑

k=1

h(sk)
(
uIAk∩Bc

k
∩Cc

k
+ uIAc

k
∩Bc

k
∩Cc

k
+ uIBk

+ uICk

)
]

≤ E

[
N∑

k=1

h(sk)
(
uIAk

+ uIAc
k
+ uIBk

+ uICk

)
]
.

Now, using Equation (2.12) for C∗ and the above bound for Cheu1, we see that Cheu1−C∗ ≤
V1 + V2, where

V1 =

N∑

k=1

E
[
h(sk)

(
u (IAk

− IDk
) + u

(
IAc

k
− IDc

k

))]

and

V2 =

N∑

k=1

E [h(sk) (uIBk
+ uICk

)] .

We can bound these quantities:

V1 =
N∑

k=1

E
[
h(sk)

(
u (IAk

− IDk
) + u

(
IAc

k
− IDc

k

))]

=

N∑

k=1

E
[
E
[
h(sk)

(
u
(
IAk

− I(AN
k
)c

)
+ u

(
IAc

k
− I(AN

k
)c

))
|MN

]]
(2.22)

=

N∑

k=1

E

[
u

∫ M

MN

xph(x) dx+ u

∫ MN

M

xph(x) dx

]

= P E

[
up

∫ M

MN

xph(x) dx+ up

∫ MN

M

xph(x) dx

]

≤ P
(
up − up

)
E

[∣∣∣∣
∫ M

MN

xph(x) dx

∣∣∣∣
]

≤ P
(
up − up

)
K E [|MN −M |] (2.23)

= O

(√
logN√
N

)
, (2.24)
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where we use the law of iterated expectations in (2.22), Assumption 2.9.2 in (2.23), and

Lemma 2.9.2 in (2.24). We also have

V2 =
N∑

k=1

E [h(sk) (uIBk
+ uICk

)]

= E [h(sk)]

N∑

k=1

E [uIBk
+ uICk

] (2.25)

= E [h(sk)]

N∑

k=1

[uP(Bk) + uP(Ck)]

≤
P E [h(sk)] (up + up)

N

N∑

k=1

max {P(Bk),P(Ck)}

≤
P E [h(sk)] (up + up)

N



N−⌊2

√
a
2
N logN⌋−1∑

k=1

1

Na
+O

(√
N logN

)

 (2.26)

≤
P E [h(sk)] (up + up)

N

[
1

Na−1
+O

(√
N logN

)]

= O

(√
logN√
N

)
,

where we use independence (Assumption 2.9.1) in (2.25) and Lemma 2.9.3 in (2.26).

Now,

0 ≤ Cheu1 − Cdp

≤ Cheu1 − C∗

≤ V1 + V2

= O

(√
logN√
N

)
.

Since lim
N→∞

√
logN√
N

= 0, it is clear |Cheu1 − Cdp| → 0 as N → ∞.
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Chapter 3

Adaptive fractionation and

treatment plan selection from a

plan library

3.1 Introduction

In this chapter, we investigate the benefit of both adaptive fractionation and treatment

plan selection from a plan library. The presented methods are tested on three prostate

datasets, each consisting of a simulation CT and CTs for 38 fractions. We find that the

spatial adaptation offered by selection from a plan library and the temporal adaptation

from varying the fraction size can result in significant improvement in dose distribution

quality metrics.

Adaptive fractionation therapy was first introduced in [13,48]. The main idea is to

deliver a larger fraction size when the dose ratio (dose to OAR per unit dose to tumor)

is small and vice versa. We use the dose to the anterior rectum as the primary metric

for comparison; this is because it is the main dose-limiting organ in prostate cancer.

We investigate the benefit of the dynamic programming (DP) approaches presented

in [13,65] using patient datasets, which has not been studied before. We are particularly

69



interested in prostate cancer because of its low α-β ratio [51] and hence sensitivity to

fractionation. We believe this property of prostate cancer particularly makes adaptive

fractionation beneficial.

The purpose of this work is to develop novel adaptive treatment methods that avoid

or at least alleviate the required quality assurance (QA) procedures when a treatment

plan is adapted. The approach we take is to build and select from a library of physician

pre-approved treatment plans, and make quick modifications by changing the fraction

size based on the patient anatomy-of-the-day. We assume imaging information is ob-

tained before the delivery of each fraction; with recent technological developments such

as the CBCT, this assumption is reasonable. We assume that it is possible to automat-

ically propagate contours [12] from the simulation CT. In some sense, a plan library is a

hybrid approach, using both offline and online ART. The offline component is the gen-

eration of the set of treatment plans, and the online component is the selection based

on imaging information before the delivery of a fraction. The benefit of a hybrid offline

and online approach has been previously illustrated [45]. The concept of a plan pool for

prostate cancer has also been discussed before in [46]. Still, the dosimetric benefits of

such approaches need further investigation. In this chapter, we propose both adaptively

choosing the fraction size and selecting from a plan library.

In Section 3.2, we discuss in detail the contributions of this chapter. In Section 3.3,

the model, formulation, and solution approach are presented. Further discussion about

the estimation of the dose ratio probability distribution and generation of a plan library

is also provided. In Section 3.4, we present results from using adaptive fractionation

and treatment plan selection on prostate datasets.

3.2 Contributions

We quantify the benefit of temporal adaptation by varying the fraction size and spatial

adaptation by selecting a plan from a pre-approved plan library. Specifically, we:

1. suggest an approach for both adapting the fraction size and selecting a treatment
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plan from a plan library. For adaptive fractionation, we refer to the DP approaches

described in [13,65] and also in Chapter 2. For treatment plan selection, we choose

a plan which results in the smallest dose ratio (also smallest dose in the OAR) as

long as it provides sufficient tumor coverage.

2. provide an approach to estimate the dose ratio probability distribution from his-

torical datasets. An approximate DP approach is suggested to incorporate an

updated probability distribution over the course of treatment.

3. use three prostate datasets and find that adaptive fractionation is beneficial when

using the BED model and not so much when using a physical dose model. This

is especially the case because prostate cancer has a small α-β ratio and is very

sensitive to fractionation.

4. propose a new type of fractionation scheme, which we name adaptive hypofrac-

tionation. The idea is to wait for the appropriate opportunity to deliver a large

fraction size. Computational experiments suggest that such an approach can be

advantageous because it results in reduced dose to the OAR and shortens the

number of days of treatment in comparison to conventional fractionation. Al-

though the standard hypofractionation does better for the three patient datasets

we used, it is potentially beneficial and requires further investigation.

5. find that in some cases, when the assumed dose ratio probability distribution

is different from the true one, the benefit of adaptive fractionation is reduced.

However, the described approach of updating the probability distribution and

using an approximate DP approach results in almost the same gain as if the true

distribution were known.

6. find that selection from a plan library together with adaptive fractionation has

significant benefit.
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3.3 Formulation and methods

In Subsection 3.3.1, we formulate the adaptive fractionation and treatment plan selec-

tion problem. The proposed solution method decouples the problem by first choosing

the fraction size based on a fixed treatment plan and second, selecting the best plan

for the observed patient anatomy. In Subsection 3.3.2, we use the notion of equivalent

uniform dose (EUD) as a metric for measuring the dose to the OAR and tumor. In

Subsection 3.3.3, we describe an approach to estimate the probability distribution of

the dose ratio from historical data. An approximate DP approach is described to han-

dle the case when the dose ratio probability distribution is updated over the course of

treatment. In Subsection 3.3.4, we discuss the generation of treatment plans and a plan

library.

3.3.1 Model, formulation, and solution approach

In principle, given bounds on the fraction size each day and a library of treatment plans,

we would like to simultaneously optimize the fraction size and select a treatment plan.

We are interested in using the dose ratio (dose to the OAR per unit dose to the tumor)

as such a measure of the favorability of a patient anatomy. Yet, estimation of the

probability distribution of these dose ratios is not straightforward, especially because

the ratios will differ based on the choice of the treatment plan. We, therefore, choose

to decouple the two problems: first, select the fraction size assuming a fixed nominal

plan, using an estimated probability distribution for the dose ratios, and second, select

the treatment plan assuming a standard dose fraction.

We now introduce the necessary notation. Let N be the number of fractions and

P be the total prescribed dose to the tumor. We denote by hk the dose ratio in the

kth day as observed from the patient anatomy of the day. The probability distribution

p(·) of the dose ratio hk can be estimated from patient datasets. We assume that hk is

observed just before the delivery of the kth fraction; this can be obtained from imaging

modalities such as CBCT together with automatic contouring tools. We denote by
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S the set of possible values of hk. We define rk to be the remaining prescribed dose

or biological effective dose (BED) left to deliver to the tumor in the kth and future

fractions. We can determine the fraction size uk in the kth fraction based on the

remaining dose rk and dose ratio hk. Thus, rk and hk represent the state of the system.

The dynamics of the system are described by the equations rk+1 = f(rk, uk), where

the form of f(rk, uk) depends on whether we are using physical dose or BED, with r1

initialized to the prescribed dose P , and hk ∼ p(·), for k = 1, 2, . . . , N . For a physical

dose model, we would have f(rk, uk) = rk − uk, and for a BED model, we would

have f(rk, uk) = rk − uk

(
1 + uk

[α/β]T

)
, where [α/β]T is the α-β ratio, a tissue specific

parameter of the tumor.

For the fractionation problem, we are interested in minimizing the expected total

dose or BED in the OAR. We would like to ensure that the prescribed dose to the tumor

is met with certainty, and that the fraction size for each day is within a lower bound,

u, and an upper bound, u. To solve the fractionation problem, we use the dynamic

programming approaches presented in [13, 65]. The DP algorithm is given below:

JN+1(rN+1, hN+1) =





0, if rN+1 = 0,

∞, otherwise,

Jk(rk, sk) = min
u≤uk≤u

(
g(uk, hk) +

∫

S

p(h)Jk+1(rk − uk, h) dh
)
, (3.1)

for k = N,N − 1, . . . , 1, where p(·) is the distribution of hk+1. In the above equations,

a cost of g(uk, hk) is incurred in each fraction. This could represent for example the

dose to the OAR, in which case g(uk, hk) = ukhk. Or, it could represent the BED in

the OAR, for which g(uk, hk) = ukhk

(
1 + ukhk

[α/β]O

)
, where [α/β]O is the α-β ratio of

the OAR. Further details about this dynamic programming approach can be found in

Chapter 2 and in references [13, 65].

For the treatment plan selection problem, in the kth fraction, we choose the plan

that results in the smallest dose ratio hk for the observed patient anatomy assuming

the target coverage is satisfied. This type of selection is myopic in that it does not
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consider the future cost of selecting a treatment plan. This is in direct contrast with

the discussed fractionation problem, where we choose a fraction size based on both the

current cost and the resulting expected future cost. Yet, we think this approximation

of selecting a treatment plan based only on the observed anatomy of the day is a good

one. Let the control lk be the plan we choose to deliver in the kth fraction. The control

lk is selected from the set {1, 2, . . . , Lk}, which represents our plan library (either pre-

selected or continually updated). Let the cost vector hk(l) represent the dose per unit

Gy delivered to the OAR when using the lth treatment plan for the patient geometry

in the kth day. Mathematically in the kth fraction then, we solve

minimize
lk∈{1,2,...,Lk}

hk(lk)

subject to dose to tumor voxels ≥ P

N
.

(3.2)

In summary, we choose to solve the fractionation and plan selection problems by de-

coupling them. We propose to solve the fractionation problem by using a dynamic

programming method previously introduced in [13, 65]. For the treatment plan selec-

tion problem, we choose the plan that results in the smallest dose ratio hk for the

observed patient anatomy assuming that the target coverage is satisfied.

3.3.2 Equivalent uniform dose and biological effective dose

In the above formulations, it was assumed that a homogeneous dose is delivered to both

the tumor and the OAR. In practice, however, the OAR actually receives a non-uniform

dose distribution. Thus, the question of interest is how we can convert a non-uniform

dose in the OAR to the dose ratio hk for a given patient anatomy. Here, we use the

concept of EUD [56], which allows us to convert a non-uniform dose to an equivalent

uniform one. Given a dose distribution di, for which i indexes the set of voxels in the
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OAR denoted O, the EUD is defined as

EUD(a) =

(
1

|O|
∑

i∈O
dai

)1/a

,

where |O| is the number of voxels in the OAR and a is an exponent dependent on the

OAR considered. For example, a = 1 represents the mean dose and would be a good

choice for a parallel organ like the lung. For a serial organ, the max dose in the dose

distribution becomes more important, and thus, a large value of a would be appropriate.

For some organs, as in the prostate case, the organs are neither parallel nor serial, in

which case an appropriate choice would be somewhere in between the two extremes.

The EUD could also be a good measure of target coverage when a non-uniform dose is

delivered to the tumor. In such cases, choosing a large enough negative value, such as

a = −20, provides a good measure of dose to the tumor.

For the fractionation problem formulation, the cost incurred each day is g(uk, hk),

which represents either the physical dose or the BED in the OAR. Due to the non-

uniform dose in the OAR, we calculate the dose ratio hk as the EUD in the OAR

divided by the dose per fraction to the tumor, which is typically 2 Gy. Thus, given

that we are using the physical dose model, g(uk, hk) actually represents the EUD in

the OAR in the kth fraction. In this case, we are minimizing the sum of the EUD in

the OAR over all fractions, which is not the same as the total EUD in the OAR at the

end of treatment. Even though the total EUD in the OAR may be a more meaningful

quantity, it also requires that we know exactly how much dose is delivered to each voxel

at the end of treatment. Measuring this total dose requires deformable registration

tools. We choose, however, not to use this approach because such methods are not

always reliable. We also approximate the BED in each fraction by using the EUD and

summing the BED over all fractions. These are the metrics we choose to use later in

this chapter to judge the effectiveness of adaptive treatments.
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3.3.3 Estimation of dose ratio probability distribution

For the fractionation problem, we would like to estimate the probability distribution of

the dose ratio hk using historical datasets. Since the dose ratios are highly dependent

on the treatment plan, it is only reasonable to use data obtained from the same disease

site and under similar treatment plans. We choose to assign probability mass to a fixed

number of possible dose ratios. Suppose we would like to estimate the probability of

m possible choices of dose ratios within some bounds h and h. We split the interval

[h, h] into m intervals of equal size and denote by hi the dose ratio corresponding

to the midpoint of those intervals. Thus, the value under this ith scenario is hi =

h+ h−h
m

(i− 1/2). To each of these dose ratios, we associate a corresponding probability

pi. A simple way to determine pi from historical datasets is to count the number of

occurrences of the dose ratio h in the interval

[
h+

h− h

m
(i− 1) , h+

h− h

m
i,

]
,

and divide by the total number of measurements m. In summary, we can determine

the probability of the dose ratios from historical datasets by using the formula

pi =
number of occurrences of ith dose ratio in m measurements

m
.

Even with a reasonable estimate of the probability distribution based on historical

data, it is still likely that population data will not be an accurate representation of the

patient-specific distribution. It is more appropriate, therefore, to update the probability

distribution over the course of treatment. In the kth fraction, we would like to use an

updated version of the probability distribution using the history of past dose ratios,

h1, h2, . . . , hk. In this case, our state must include not only the current dose ratio,

hk, in the kth fraction but also the history of past dose ratios. We define the history

state vector, Ik = (q1k, q
2
k, . . . , q

m
k ), where qik is the number of occurrences of the ith

dose ratio in k treatment fractions. We denote the associated conditional probabilities
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p(hk|Ik) by pk = (p1k, p
2
k, . . . , p

m
k ) for each of the possible dose ratios {h1

k, h
2
k, . . . , h

m
k }

in the kth fraction. We would like to update our prior knowledge from historical data,

which is captured by the estimated distribution pi, using the additional information

from k patient anatomy instances. One way to update to the conditional distribution

is through the formula:

pik =
crp

i + qik
cr + k

,

where cr is a concentration parameter. The parameter cr weighs our prior beliefs about

the probability of each scenario. A larger value of cr would put a higher weight on our

estimated probability distribution from historical data.

We now discuss a DP approach when updating the probability distribution over the

course of treatment. With the terminal condition ensuring that the prescribed dose is

met, ideally we would like to run the DP algorithm with an augmented state vector:

Jk(rk, Ik) = min
u≤uk≤u

(
g(uk, hk) +

m∑

i=1

pikJk+1(rk − uk, Ik+1)
)

for k = N,N − 1, . . . , 1, where Ik+1 is updated by incrementing the appropriate dose

ratio scenario in Ik. The above cost-to-go function Jk is defined on a state space of

dimension m + 1, which could still be computationally expensive if the number of

possible dose ratios is large. A simplification which can result in a faster but effective

algorithm is approximating Jk+1 by re-running the DP algorithm assuming the updated

probability distribution pk+1 for the remaining treatment days. We denote this cost-

to-go function with an updated probability distribution as J̃k+1. Thus, we have an

approximate DP algorithm

Jk(rk, Ik) ≈ min
u≤uk≤u

(
g(uk, hk) +

m∑

i=1

pikJ̃k+1(rk − uk, h
i)
)

where the function J̃k+1 above is the cost-to-go function resulting from using the original

DP algorithm (3.1) assuming the updated probability distribution pk+1. To use this
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approximate algorithm, the DP algorithm with time horizon N − k− 1 needs to be run

in real time before the delivery of the kth fraction.

3.3.4 Generation of a plan library

We would like to solve an IMRT problem that provides a tradeoff between target cover-

age and healthy organ sparing. There are a number of ways to formulate the problem,

including linear/quadratic and other nonlinear formulations (see [69] for various ap-

proaches). Here, we choose to minimize the weighted sum of mean doses to the relevant

OARs and ensure a prescribed dose P/N to the tumor. We define mi, for i = 1, 2, . . . , 6,

to be the mean dose to the relevant OARs (see Table 3.1). Let di be the dose to the

ith voxel (i.e., individual points on the patient anatomy), and let T be the set of target

voxels (including margin expansion of the tumor volume). Mathematically, we solve

the following problem in order to determine the treatment plan from the simulation

CT:

minimize
{di≥0}

1

6

6∑

i=1

mi

subject to
P

N
≤ di ≤ 1.12

P

N
, i ∈ T ,

di ≤ 1.12
P

N
, i /∈ T ,

m1 ≤
P

N
,

mj ≤ 0.8
P

N
, j = 2, 3, . . . , 6.

(3.3)

Though it is not included in the above formulation, we actually optimize the beam

intensities (beamlets) delivered from various angles rather than the dose distribution

denoted by di. We can convert the optimization problem by simply adding the con-

straints d = Dx and x ≥ 0, where D is the dose deposition matrix, d is a vector of

doses to voxels, and x is a vector of beamlets.

In order to adapt the treatment from day to day, we choose to create a library of

plans. Depending on the anatomy observed before treatment, a plan is selected from
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Table 3.1: Summary of notation for treatment plan optimization.

Notation Definition

m1 mean dose to anterior rectum
m2 mean dose to posterior rectum
m3 mean dose to bladder
m4 mean dose to left femoral head
m5 mean dose to right femoral head
m6 mean dose to skin
di dose to ith voxel
T set of tumor voxels including margin
P prescription dose over entire treatment
N number of treatment fractions

this library. Our purpose is to illustrate the benefit of using such a plan library. In

this chapter, we generate 2 plans by changing the volume consisting of target voxels:

CTV+2mm and CTV+5mm. These plans have different size margins (2mm and 5mm,

respectively) that are uniformly expanded around the clinical target volume (CTV),

which is the tumor volume visible in the CT. It is reasonable to assume that a conven-

tional plan for prostate cancer uses a 5mm margin, i.e. the second plan CTV+5mm in

our plan library.

3.4 Results from prostate cancer datasets

In Subsection 3.4.1, we provide details of how the plan library is generated and the

dose ratio probability distribution estimated. We discuss results from using adaptive

fractionation on prostate datasets using a physical dose model and the BED model

in Subsections 3.4.2 and 3.4.3, respectively. We discuss the benefit of updating the

probability distribution over the course of treatment in Subsection 3.4.4. Finally, in

Subsection 3.4.5, we discuss results from using a plan library.
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3.4.1 Treatment plan optimization and probability distribu-

tion estimation

We study three prostate cancer patient datasets, each consisting of a simulation CT

image for optimizing a treatment plan and 38 CT images for each of the fractions.

The target and the relevant organs in all of the CT images were contoured by either a

physician or a resident under the supervision of a physician [83]. The target was the

tumor volume plus the margin expansion for addressing uncertainties.

For each patient, we generate two plans; one consisting of a 2 mm margin expansion

and the other a 5 mm expansion. We use seven 6 MV equispaced and coplanar photon

beams. The dose deposition matrix is computed by the quadratic infinite beam (QIB)

pencil-beam dose calculation algorithm in CERR 3.0 beta 3 (refer to [17]). The voxel

resolution grid is 1.96 x 1.96 x 5 mm3 for all three simulation CTs. The total number of

beamlets for patient 1, 2, and 3 are 280, 325, and 251, respectively. These only include

beamlets that contribute to the dose in the target. The total number of voxels per

structure for each patient is given in Table 3.2. The number of voxels in the bladder,

femoral heads, and skin were downsampled by a factor of 4, 8, and 16, respectively.

We solve the formulation (3.3) with P = 76 Gy and N = 38 using Matlab’s built-

in linprog function (large-scale interior point algorithm). The average solution time

for each treatment plan was about 5 minutes. For patient 3, the constraints in the

formulation (3.3) were too stringent; thus, we relaxed the upper bound on all voxels

from 1.12P/N to 1.2P/N , and solved this relaxed problem instead.

For patient 1, we generated the DVH curves for the CTV and anterior rectum

in the 2 mm and the 5 mm margin plan (Figure 3-1). We see that the dose to the

primary OAR, the anterior rectum, is significantly lower in the 2 mm margin plan

when compared to the 5 mm one; this makes sense because a smaller target volume

means fewer constraints for the optimization solver. Thus, we can conjecture that for

the 2 mm and 5 mm plans, the solution to (3.2) simply results in choosing the plan

with the smallest margin as long as target coverage is ensured.
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Figure 3-1: Dose volume histogram (DVH) for generated treatment plans. The CTV
DVH curves for both the 2 mm and 5 mm margin plans are very close and indistin-
guishable on the above plot. Note that the anterior rectum DVH curve for the 2 mm
margin plan is entirely below the one for the 5 mm plan.
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Table 3.2: Number of voxels for each patient. The bladder, femoral heads, and skin
voxels were downsampled by a factor of 4, 8, and 16, respectively. Any voxels not
influenced by beamlets were removed.

Number of voxels

Structure Patient 1 Patient 2 Patient 3

2 mm PTV 2,101 2,603 2,913
5 mm PTV 3,102 3,562 4,202
anterior rectum 1,142 751 668
posterior rectum 1,121 971 695
bladder 668 491 231
left femoral head 67 69 67
right femoral head 73 61 72
skin 2,487 2,729 1,807
total 10,761 11,237 10,655

For solving the fractionation problem, we need an estimate of the probability distri-

bution of the dose ratio. We only use a single treatment plan, in our case the 5 mm plan,

to estimate such a distribution. For the CT image of every fraction, we re-calculate

the dose deposition matrix using CERR’s QIB pencil beam algorithm as before. With

the new dose deposition matrix for each fraction, the optimized beamlets from the sim-

ulation CT were used to compute the dose distribution on the patient anatomy. The

patient setup was assumed to be perfect and the isocenter of the target, given by the

center of mass of the target volume, was aligned exactly for every fraction. To compute

the dose ratio (dose to the primary OAR of interest divided by dose to tumor), we use

the formula h = EUD(a)/2, where EUD(a) is the EUD with an exponent a and the two

in the denominator comes from 2 Gy per fraction dose to the target. Possible choices

for the exponent here could be 1, which is the mean dose, or larger values for a more

serial organ. The primary OAR of interest in the prostate case is the anterior rectum,

which is not completely parallel or serial; we choose a = 3 for this OAR. We assume

that the dose ratio lies somewhere between 0.5 and 1 (i.e., h = 0.5 and h = 1). We set

the number of possibilities m to be 10. For each patient, we count the fraction of dose

ratios falling within the corresponding intervals of even length, and determine the true,
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Figure 3-2: Estimation of true dose ratio probability distribution for each of the three
patients. We discretized the possible dose ratios into 10 intervals in the range 0.5-1.
Note that patient 3 has less variation than the other two patients due to less day to
day organ motion.

discretized probability distribution of the dose ratios (Figure 3-2). When solving the

fractionation problem, if we use this true distribution for each of the patients, we will

be able to quantify the best possible benefit of using an adaptive fraction size.

3.4.2 Fractionation using physical dose model

We consider solving the adaptive fractionation problem using a physical dose model.

That is, the state rk represents the physical remaining dose and the dynamics equation

satisfies rk+1 = f(rk, uk) = rk−uk. The cost per day is the dose resulting from delivering

a fraction size uk, i.e. g(uk, hk) = ukhk. For structural properties of an optimal policy,
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refer to Chapter 2 or the paper [65]. As mentioned before, we will use only a single

plan, in our case the 5 mm margin one, to determine the fraction size. The metric for

comparison will be the sum of the EUD in the anterior rectum, our primary OAR, over

all fractions. In this subsection, we will use the true, discretized probability distribution

for each of the patients, shown in Figure 3-2, to measure the best possible gain of using

an adaptive fraction size.

We run two simulations for each of the patients: 20% dose deviations from standard

fractionation and 50% dose deviations. For the 20% deviations, the range of possible

fraction sizes will lie within 20% of the standard 2 Gy per fraction, i.e. u = 1.6 Gy and

u = 2.4 Gy. For 50 % deviations, we have u = 1 Gy and u = 3 Gy. We use P = 76 Gy,

which results in 2 Gy per fraction for N = 38 days. We use the sum of the EUD (with

exponent a = 3) in the OAR over all fractions as a metric for comparison. Let DOAR
conv be

this EUD sum quantity when using the conventional 2 Gy per fraction and DOAR
adap when

using an adaptive fraction size. Using the true discretized probability distributions in

Figure 3-2, we find the resulting gain in total dose in the OAR when using an adaptive

fraction size (Table 3.3). Note that reduction in dose to the OAR is not more than 3%

for the three patients when using 50% deviations and around 1% or below when using

20% deviations. Note that patient 3 has the smallest gain which can be explained by the

little motion observed in the estimated dose ratio probability distribution in Figure 3-2.

These results indicate that using an adaptive fraction size is not much more beneficial

than standard fractionation, especially since we are measuring the best possible gain

assuming knowledge of the true probability distribution. Of course, larger deviations

in the fraction size would result in bigger gain, but ignoring biological effects by using

a physical dose model is not realistic. Indeed, it has been shown in [6] that biological

effects are insignificant only when dose variations are less than 10%.
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Table 3.3: Adaptive fractionation for prostate cancer using physical dose model. In
this case, we note little gain when using adaptive fractionation. The dose to the OAR
for conventional and adaptive fractionation are denoted DOAR

conv and DOAR
adap , respectively.

20% deviations 50% deviations

Patient DOAR
conv [Gy] DOAR

adap [Gy] Gain [%] DOAR
conv [Gy] DOAR

adap [Gy] Gain [%]

1 51.52 50.96 1.09 51.52 50.11 2.74
2 54.53 54.02 0.92 54.53 53.26 2.33
3 47.65 47.46 0.40 47.65 47.16 1.03

3.4.3 Fractionation using BED model

We use the BED model and take into account the biological effect of varying the frac-

tion size. There can be considerable potential for significant gain especially because

we can allow for larger fraction size deviations. Now, we use rk+1 = f(rk, uk) = rk −
ukhk (1 + ukhk/[α/β]T ) for the dynamics equation and g(uk, hk) = ukhk (1 + ukhk/[α/β]O)

for the cost per fraction. We use typical α-β values for the tumor and OAR to compute

the BED. Prostate tumors are known to have a very small α-β ratio compared to other

disease sites [51]. This means that the tumor is sensitive to fractionation effects, and

thus, there is potential for significant gain when compared to standard fractionation

schemes. We use [α/β]T = 1.5 Gy and [α/β]O = 3 Gy. For standard fractionation, using

2 Gy per fraction for 38 fractions, we deliver a total BED of 38 · 2 (1 + 2/1.5) = 177.33

Gy to the tumor. Thus, we use this as the total prescription dose in BED to be delivered

to the tumor. The metric used for comparison to the standard fractionation scheme is

the sum of the BED in each fraction, estimated by the EUD in the OAR (with exponent

a = 3 as before). We denote this quantity D̃OAR
conv when using conventional fractiona-

tion and D̃OAR
adap when using adaptive fractionation. In comparison to the physical dose

model used in the previous subsection, we find a significant gain using the BED model,

especially when using 50% deviations from conventional fractionation (Table 3.4). We

note as much as 9% reduction in the BED in the OAR, which would be significant

enough to justify using adaptive fractionation. This type of improvement is probably

85



Table 3.4: Adaptive fractionation for prostate cancer using BED model. We note
significant gain when using 50% deviations from standard fractionation. The BED in
the OAR are denoted D̃OAR

conv and D̃OAR
adap for conventional and adaptive fractionation,

respectively.

20% deviations 50% deviations

Patient D̃OAR
conv [Gy] D̃OAR

adap [Gy] Gain [%] D̃OAR
conv [Gy] D̃OAR

adap [Gy] Gain [%]

1 74.93 72.85 2.78 74.93 68.08 9.14
2 80.72 78.73 2.47 80.72 74.01 8.31
3 67.61 66.73 1.30 67.61 63.71 5.77

only going to arise for tumors with small α-β ratios like prostate cancer. Of course,

here we are using the true probability distribution to measure the best possible gain. In

a later subsection, we will investigate the result when using a probability distribution

different from the true one.

The linear-quadratic (LQ) model, from which it is possible to derive the BED model,

is an appropriate model for doses larger than 1 Gy [30] and doses smaller than 10 Gy [7].

It is thus possible for us to vary the dose more significantly than 20%. Clearly, this

would increase the benefit of adaptive fractionation, especially for tumors with small

α-β ratios like prostate cancer. We instead focus on an even more interesting type

of schedule, which we name adaptive hypofractionation. For tumors such as prostate

that have small α-β ratios, it is typical to hypofractionate (or deliver fewer number

of large fractions). In our case, given that we would like to deliver 5 fractions with a

total BED of 177.33 Gy as before, this results in delivering 6.58 Gy per fraction. In

principle, we could set the u = 1 Gy and u = 6.58 Gy and run our previous result.

However, we would like to address a more interesting question: can we deliver a few

large fractions adaptively over the course of treatment so that we can end the treatment

course earlier? We could use a principle similar to hypo-fractionation except that we

wait for the right opportunity to deliver the treatment. We propose an approximate

approach to solve this problem based on the previous algorithms. First, we solve the

fractionation problem with u = 0 Gy and u = 6.58 Gy. If the optimal dose is less than

86



Table 3.5: Adaptive hypofractionation and standard hypofractionation in comparison
to conventional treatment. We show that there is a significant gain in BEDO for both
types of hypofractionated treatments. Adaptive hypofractionation does worse than
hypofractionation because the first five fractions were not unfavorable. If the first five
fractions were in fact unfavorable, adaptive hypofractionation may fair better than
simply hypofractionation.

Patient Adaptive hypofractionation [% gain] Hypofractionation [% gain]

1 14.63 24.51
2 13.31 25.99
3 21.26 26.54

2 Gy (e.g., 0 Gy), then deliver a 2 Gy fraction if possible or whatever remaining dose is

left to deliver. On the other hand, if the optimal dose is greater than 2 Gy (e.g., 6.58

Gy), then deliver the dose as is. Finally, if the remaining dose is 0 Gy midway during

the treatment course, the entire BED has been delivered and the patients treatment is

complete. We run this algorithm for the three prostate patient datasets and find that

adaptive hypofractionation does better than conventional fractionation (Table 3.5) and

takes advantage of the days in which the dose ratio is particularly small (Figure 3-3).

We also note in Figure 3-3 that the treatments are completed in 25 days for patients

1 and 2, and 18 days for patient 3, which are significantly fewer than the 38 fractions.

In Table 3.5, we have also simulated hypofractionated treatment by delivering 6.58

Gy for the first 5 fractions. While we note that hypofractionation does better than

adaptive hypofractionation, the gain can fluctuate significantly depending on the dose

ratios in the first 5 days. Thus, adaptive hypofractionation provides a balance between

conventional therapy and hypofractionated therapy; on the one hand, it addresses the

uncertainty of organ motion by waiting for the right opportunity and on the other,

provides a shorter, more effective treatment than conventional fractionation.

3.4.4 Updating probability distribution over treatment course

In this subsection, we analyze what happens when the prior probability distribution

estimated through historical data is very different from the true probability distribution.
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Figure 3-3: Illustration of adaptive hypofractionation for prostate patients. Note that
large fractions are delivered when the dose ratio is particularly small. We also note
fewer days of treatment delivery are required compared to conventional treatment.
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To investigate this, we construct a probability distribution that is different from the

ones in Figure 3-2. Consider a distribution which assigns 0.5 probability to the first two

buckets of the ten possible dose ratios in the interval [0.5, 1] (Figure 3-4). Using 50%

deviations from standard fractionation and the BED model with the same parameters

as in the previous subsection, we find that the gain reduces significantly (Table 3.6). To

address this problem, we use the algorithm suggested in Subsection 3.3.3. We update

the probability distribution over the course of treatment and re-run the DP algorithm

before the delivery of each fraction. We use a small concentration parameter cr = 2 to

put little weight on our prior distribution and a large weight on the observations from

the patient anatomy when updating the distribution. Figure 3-4 shows that about

midway through treatment (fraction 19), the probability distribution looks much closer

to the true one, and at the end of treatment, the probability distribution looks almost

identical to the true one. As treatment progresses, the time horizon over which the DP

algorithm is run gets smaller. In our simulation, we find the DP algorithm takes less

than 1.5 minutes for the first fraction and less than that for later fractions. We find

that this approach of updating the probability distribution achieves almost the entire

gain as when using the true distribution (Table 3.6). For patient 3, we find that this

algorithm does even better than when the true distribution is known. However, this

is only a single run; on average, the gain will be smaller when the true distribution is

known, regardless of whether it is being updated or not.

3.4.5 Treatment plan selection from a plan library

In this subsection, we quantify the benefit of adapting a plan both spatially (by se-

lecting from a plan library) and temporally (by adaptively varying the fraction size).

For the treatment plan selection, we choose the plan that results in the smallest dose

ratio as long as the target coverage is satisfied. In our example, we only have two

plans: CTV+2mm and CTV+5mm. The CTV+2mm plan has fewer target coverage

constraints, and thus, will have a smaller dose ratio than the CTV+5mm plan (assum-
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Figure 3-4: Illustration of probability distribution adapted over the course of treatment.
The top plot displays the prior probability distribution. The middle and bottom plots
show the updated distribution after the 19th and the last fraction. The concentration
parameter cr is chosen to be 2.
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Table 3.6: Improvement in gain when updating dose ratio probability distribution over
course of treatment. The BED model with 50% deviations is used. We quantify the
gain resulting from using the true probability distribution, resulting from using a prior
distribution significantly different from the true one, and resulting from using an up-
dated distribution. The gains are denoted Gtrue, Gprior, and Gupdated respectively. The
prior distribution assigns 0.5 probability to the first two buckets of the ten possible
dose ratios.

Patient Gtrue [%] Gprior [%] Gupdated [%]

1 9.14 5.95 8.94
2 8.31 4.92 7.76
3 5.77 2.95 6.39

ing we compute the dose ratio by dividing the EUD in the OAR by the target dose of 2

Gy). Our plan selection then reduces to whether or not the CTV+2mm plan provides

sufficient target coverage. If target coverage is ensured, the CTV+2mm is chosen, and

if not, the CTV+5mm is chosen. In order to determine target coverage, we compute

the EUD with exponent a = −20 in the CTV and make sure it is at least the required

dose of 2 Gy. If so, the CTV+2mm plan is delivered and otherwise the CTV+5mm

plan is delivered. We find significant reduction in the physical dose in the OAR re-

sulting from adaptively selecting these two types of plans (Table 3.7). We note that

the reduction in dose for patient 3 is much greater than the other two patients; this is

because the CTV+2mm plan was used for most (92.1%) of the fractions. This is quite

interesting because patient 3 received the least benefit compared to the others when

adaptively varying the fraction size. Indeed, the dose ratio probability distribution in

Figure 3-2 tells us that patient 3 had little organ motion. This leads us to conclude

that more organ motion is better for adaptive fractionation and little motion is better

for spatial adaptation. This is part of the reason why a combination of both spatial

adaptation and temporal dose variations can together result in significant improvement

in treatment effectiveness (Table 3.8).
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Table 3.7: Results from treatment plan selection. We compute the gain in the physical
dose to the OAR as a result of selecting between two plans. The conventional treatment
is to deliver the CTV+5mm plan throughout the treatment. The physical dose in the
OAR using conventional and adaptive selection are DOAR

conv and DOAR
plan , respectively. The

fraction of the days that the CTV+2mm plan was used is given by Frac2mm.

Patient DOAR
conv [Gy] DOAR

plan [Gy] Gain [%] Frac2mm [%]

1 51.52 45.90 10.90 55.3
2 54.53 53.99 0.99 18.4
3 47.65 38.48 19.24 92.1

Table 3.8: Results from using both adaptive fractionation and plan selection. The BED
model with 50% deviations was used. We note significant gain for all three patients.
The gain from using plan selection, from adaptive fractionation, and both are denoted
Gplan, Gadap, and Gboth respectively.

Patient D̃OAR
conv [Gy] Gplan Gadap [%] Gboth [%]

1 74.93 13.43 9.15 22.46
2 80.72 1.25 8.32 10.30
3 67.61 23.72 5.78 28.41

3.5 Discussion and conclusions

We have presented an adaptive spatio-temporal approach, which involves varying the

fraction size and selecting from a plan library. For the three prostate patients, we find

that adaptive fractionation based on a physical dose model does not result in significant

benefit. However, using the BED model, we find that there is significant gain, especially

because of the low α-β ratio of prostate cancer. We present an interesting concept called

adaptive hypofractionation, which is potentially beneficial. Further investigation of the

benefit of this approach would be useful. We show that an inaccurate estimate of the

dose ratio probability distribution can reduce the benefit considerably. But, updating

the distribution based on observations of the patient anatomy during the course of

treatment and using an approximate DP approach overcomes this problem. We find

that adaptive fractionation is beneficial when there is significant organ motion. On the

other hand, selection from a library of plans, which consist of differing margins around
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the tumor volume, is more beneficial when there is less motion. Thus, the combination

of both adaptive fractionation and treatment plan selection has a significant potential

for improving treatments.

We point out limitations and further remarks about our assumptions:

1. For the methods in this chapter, we required an image of the patient anatomy

before the delivery of every fraction. We hope that this information together with

reliable automatic contouring and/or contour registration algorithms [12] will be

available in the future.

2. We assumed that the dose ratio is computed fast enough before delivery of each

fraction. In this chapter, we re-computed the dose deposition matrix to determine

the OAR dose ratio. However, it is possible to approximate this by using the same

dose deposition matrix from the simulation CT for every fraction; this could be

reasonable for a photon beam modality. If possible, fast dose computation on a

CBCT image could also be used.

3. The patient setup in this chapter was assumed to be perfect. That is, for every

fraction, we aligned the center of mass of the target volume to be the isocenter. It

may be necessary to consider a margin of error here even with image guidance. We

do not consider other intangibles such as contouring error when ensuring target

coverage for the CTV. It may be necessary to add a slight margin to the CTV to

determine target coverage.

4. We used the dose to one primary OAR, the anterior rectum in the prostate case,

as a metric for treatment effectiveness. It is possible to use other appropriate

cost functions here. Using multiple OARs and tracking them separately could

be a useful direction for future research. This would, however, involve additional

states and would increase the computation time for the DP.

5. We did not compute DVH type metrics to determine treatment effectiveness. For

such metrics, it is necessary to use deformable registration tools to determine the
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total dose in each voxel. Perhaps such metrics can be used in the future given

these registration tools are more reliable.

Future work could include determining other disease sites that could benefit from

adaptive fractionation and/or plan selection from a library of plans. It is possible to

re-optimize a treatment plan before every fraction perhaps, but many treatment centers

require QA procedures. The pre-approved library of plans approach has the advantage

of not having to go through these extra QA procedures. In this chapter, we selected

a plan with a small margin and another with a large margin to be part of the plan

pool. However, this approach was heuristically determined from intuition. A question

of interest could be how one can generate such a plan library. It may be possible to

mathematically optimize, for example, two treatment plans to be part of the library

so that treatment effectiveness is maximized and target coverage is ensured. At first

glance, this problem appears to be combinatorial in nature and possibly difficult to

solve. This could be an interesting problem for future research.
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Chapter 4

Effect of tumor repopulation on

optimal fractionation

4.1 Introduction

Radiation therapy treatments are typically fractionated (i.e., spaced out in time) so

that normal tissue has time to recover. However, such time in between treatments

allows cancer cells to proliferate and can result in treatment failure [37]. The problem

of interest then is the determination of an optimal fractionation schedule to counter

the effects of tumor repopulation. In this chapter, we develop a framework for optimiz-

ing non-uniform (in time) dose schedules for general tumor growth curves, motivated

primarily by the phenomenon of accelerated repopulation, i.e., a faster repopulation of

surviving tumor cells towards the end of radiation treatment. Accelerated repopulation

is considered to be an important cause of treatment failure in radiation therapy, espe-

cially for head and neck tumors [91, 92]. We choose to model this behavior by using

decelerating tumor growth curves, where a larger number of tumor cells results in slower

growth. Thus, faster growth is exhibited towards the end of radiation treatment, when

there are fewer cells.

To determine an optimal fractionation schedule, we formulate an optimization prob-
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lem. Consider a tumor and one dose-limiting organ-at-risk (OAR). We assume that a

dose di to the tumor in the ith day results in a homogeneous dose of γdi to the OAR,

where γ is the normal tissue sparing factor that satisfies 0 < γ < 1. We would like to

maximize the tumor control probability (TCP) subject to an upper limit on the normal

tissue complication probability (NTCP). A convenient way to model TCP is to use

Poisson statistics [54], under which

TCP = exp(−X+
N−1),

where X+
N−1 is the expected number of tumor cells surviving after the last dose of

radiation. In this case, maximizing the TCP is equivalent to minimizing the expected

number of cells remaining at the end of treatment. For the rest of the chapter, we focus

on minimizingX+
N−1 subject to a given level of probability of normal tissue complication.

In Section 4.2, we list the main contributions. In Section 4.3, we provide background

and existing results on optimal fractionation without tumor repopulation. In Section

4.4, we formulate the fractionation problem including general repopulation character-

istics. We propose a dynamic programming (DP) approach to solve the problem and

state the main result that optimal dose fractions are non-decreasing over time. In

Section 4.4.4, we analyze the special structure of the problem for the case of Gom-

pertz tumor growth. In Section 4.5, we discuss numerical results under exponential or

Gompertz growth models. The results indicate that accelerated repopulation suggests

larger dose fractions toward the end of treatment to compensate for the increased tumor

proliferation.

4.2 Contributions

In this chapter, we provide an insightful analysis of the effect of tumor repopulation on

optimal fractionation schemes. Specifically, we:

1. formulate a problem that includes general tumor repopulation characteristics and
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develop a DP approach to solve it.

2. prove that the optimal doses are non-decreasing over time, due to the decelerating

nature of tumor growth curves.

3. analyze the special structure of the problem for the case of Gompertz tumor

growth and show that it is equivalent to maximizing a discounted version of the

biological effective dose in the tumor.

4. show that when there is repopulation, the optimal number of dose fractions is

finite.

5. find through numerical simulations that faster tumor growth suggests shorter

overall treatment duration. In addition, the presence of accelerated repopula-

tion suggests larger dose fractions later in the treatment to compensate for the

increased tumor proliferation.

4.3 Optimal fractionation without tumor repopula-

tion

We provide some background relevant to optimal fractionation in the absence of repop-

ulation. This will be basis for the new results presented in Section 4.4. We first describe

the LQ model of radiation effects and the biological effective dose (BED) model. In the

second subsection, we state the optimal fractionation scheme when repopulation is not

considered [52].

4.3.1 LQ model

The relationship between radiation dose and the fraction of surviving cells is described

by the LQ model of radiation effects. Observations from irradiating cells in vitro support

this model [21]. The LQ model relates the expected survival fraction S after a single
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delivered dose d, in terms of two tissue parameters α and β, through the equation

S = exp(−(αd+ βd2)).

Thus, the logarithm of the survival fraction consists of a linear component with coeffi-

cient α and a quadratic component β (Figure 4-1). For N treatment days with radiation

doses d0, d1, . . . , dN−1, the resulting survival fractions from each individual dose can be

multiplied, assuming independence between dose effects. The resulting equation is

S = exp

(
−

N−1∑

k=0

(
αdk + βd2k

)
)
. (4.1)

The effect of the quadratic factor β, in the above equation, is that the survival fraction

is larger when splitting the total dose into individual dose fractions (Figure 4-1). Thus,

there is an inherent trade-off between delivering large single doses to maximize cell kill

in the tumor and fractionating doses to spare normal tissue. It is now clear that the

physical dose d by itself does not entirely capture the biological effect on tissue. A

common quantity that is used instead to quantify the effect of the radiation treatment

is the biological effective dose (BED). It is defined by

BED(d) =
1

α

(
αd+ βd2

)
= d

(
1 +

d

[α/β]

)
, (4.2)

where [α/β] is the ratio of the respective tissue parameters. Thus, the BED in the

above equation captures the effective biological dose in the same units as physical dose.

A small value [α/β] means that the tissue is sensitive to large doses; the BED in this

case grows rapidly with increasing dose. Note that BED, which is practically used to

quantify fractionation effects in a clinical setting, is related to the LQ model used in

vitro by setting BED = − ln(S)/α. With the relation given in Equation (4.2), we define

BEDT (d) as the BED in a tumor with parameter [α/β]T , and BEDO(d) as the BED in

an OAR with parameter [α/β]O. We assume throughout the chapter that [α/β]T and
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[α/β]O are positive. Finally, we also define (for convenience in notation) the total BED

in the tumor, BEDT , and the total BED in the OAR, BEDO, from delivering the doses

d0, d1, . . . , dN−1:

BEDT =

N−1∑

k=0

BEDT (dk) =

N−1∑

k=0

dk

(
1 +

dk
[α/β]T

)

and

BEDO =

N−1∑

k=0

BEDO(dk) =

N−1∑

k=0

γdk

(
1 +

γdk
[α/β]O

)
,

where γ is the sparing factor and [α/β]T and [α/β]O are the α/β-ratios in the tumor

and OAR, respectively. A common way to model normal tissue complication (NTCP) is

a sigmoidal function of the BED in the OAR, BEDO. Thus, since a sigmoidal function

is monotonic in its argument, it suffices to impose an upper limit on BEDO. From here

on, our optimization problem of interest is to minimize the expected number of tumor

cells subject to an upper limit on BEDO. The problem is stated mathematically as

minimize
{di≥0}

X+
N−1 s.t. BEDO ≤ c, (4.3)

where X+
N−1 is the expected number of tumor cells after radiation treatment and c is

an appropriate constant.

4.3.2 Optimal BED based fractionation

In the absence of repopulation, the expected number of cells at the end of treatment,

X+
N−1, is X0S, where X0 is the initial number of tumor cells and S is the expected

survival fraction given in (4.1) resulting from delivering doses d0, d1, . . . , dN−1. Taking

natural logarithms and dividing by −αT , where αT is a tumor tissue parameter, mini-

mizing the expected number of tumor cells is equivalent to maximizing the BED in the

tumor, BEDT . The next lemma states that the constraint on BEDO is always binding.

Lemma 4.3.1. In the absence of repopulation, the constraint in (4.3) will be satisfied
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Figure 4-1: Illustration of the fractionation effect using the LQ model. The cell kill
is exponential with both a linear and a quadratic term. Fractionating into multiple
individual doses results in a much lower survival fraction compared to a single dose
assuming the quadratic β term is significant.
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with equality at the optimum.

Proof. See Appendix 4.8.1.

Thus, a simplified version of the optimization problem without repopulation is

maximize
{di≥0}

BEDT s.t. BEDO = c. (4.4)

We characterize the set of all optimal solutions to this problem in the following theorem,

published in [52].

Theorem 4.3.2. Let N be given. If [α/β]O ≥ γ[α/β]T , an optimal solution is to deliver

a single dose equal to

d∗j =
[α/β]O
2γ

[√
1 +

4c

[α/β]O
− 1

]
(4.5)

at an arbitrary time j and deliver di = 0 for all i 6= j. This corresponds to a hypo-

fractionation regimen, i.e., a fractionation schedule that uses as few treatment days as

possible. If [α/β]O < γ[α/β]T , the unique optimal solution consists of uniform doses

given by

d∗j =
[α/β]O
2γ

[√
1 +

4c

N [α/β]O
− 1

]
, (4.6)

for j = 1, 2, . . . , N . This corresponds to a hyper-fractionation regimen, i.e., a fraction-

ation schedule that uses as many treatment days as possible.

Proof. A geometric proof is given in [52]. An alternate proof is provided in Appendix

4.8.2.

The above theorem states that if [α/β]O is small enough, i.e., the OAR is sensitive to

large doses and [α/β]O < γ[α/β]T , it is optimal to deliver the same dose during the N

days of treatment. Besides the distribution of doses during treatment for a fixed value

of N , the above theorem also has an interpretation on the optimal number of treatment

days, N∗. Note that taking N larger will only improve the objective BEDT and add

extra degrees of freedom. If [α/β]O ≥ γ[α/β]T , the theorem states that a single radiation
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dose is optimal, i.e., N∗ = 1. On the other hand, if [α/β]O < γ[α/β]T , the optimal

solution consists of uniform doses with N as large as possible. This would correspond to

choosing N∗ → ∞. For most disease sites, the condition [α/β]O < γ[α/β]T is generally

satisfied. Clearly, N∗ → ∞ is not realistic and is an artifact of modeling assumptions.

Later in the chapter, we will show how modeling tumor repopulation results in a finite

optimal number of treatment days.

4.4 Optimal fractionation for general tumor repop-

ulation

In this section, we present the problem statement and a solution method that determines

an optimal fractionation schedule for the case of general tumor growth.

4.4.1 Problem formulation

We are interested in minimizing the expected number of tumor cells at the end of

treatment. The two aspects that determine the expected number of cells at any point in

time are the sequence of doses that are delivered and the dynamics of the tumor growth

in between doses. Let us denote by x(t) the expected number of tumor cells at time t,

for any t between 0 and N − 1. We assume the sequence of N doses d0, d1, . . . , dN−1

are delivered at integer times, i.e., time is measured in days. For these integer times

i = 0, 1, . . . , N −1, the effect of radiation doses is described by the LQ model, resulting

in

x(i+) = x(i−) exp(−(αTdi + βTd
2
i )), (4.7)

where i− and i+ are the times immediately before and after delivering the dose di. The

dynamics of x(t) modeling tumor growth for non-integer times in [0, N−1] is described

by the differential equation
1

x(t)

dx(t)

dt
= φ(x(t)), (4.8)
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with the initial condition x(0) = X0 for the initial number of cells. In the above

equation, φ(x) represents an instantaneous tumor proliferation rate. By choosing an

appropriate functional form of φ, we can describe a variety of tumor repopulation

characteristics relevant for radiation therapy:

1. By choosing φ(x) = ρ, we model exponential tumor growth with a constant

proliferation rate ρ.

2. By choosing φ(x) to be a decreasing function of x, we are able to mimic the

case of accelerated repopulation [91, 92]. In this case, the instantaneous tumor

proliferation rate increases when, towards the end of treatment, the number of

remaining tumor cells decreases.

In the remainder of this section, we first consider the optimal fractionation problem for

a general proliferation rate φ(x). In Section 4.4.2, a DP approach is proposed to solve

the problem. In Section 4.4.3, the property that the optimal doses are non-decreasing

over time is established. In Sections 4.4.4 and 4.4.5, we consider the special cases of

Gompertzian growth (as a model for accelerated repopulation) and exponential growth

(as a model of constant repopulation), respectively.

We define some additional notation for ease of exposition. Since the range of possible

values of x(t) is large and the cell kill factor is exponential according to the LQ model,

it is convenient to work with the logarithm of x(t). Hence, we define y(t) = ln(x(t))/αT .

We also define X−
i = x(i−) and X+

i = x(i+) to be the expected number of tumor cells

remaining immediately before and after delivering the dose di, respectively. Similarly,

the logarithmic counterparts are Y −
i = ln(X−

i )/αT and Y +
i = ln(X+

i )/αT . We will

assume that the initial number of cells are X0 = X−
0 , and Y0 = Y −

0 for the logarithmic

version. Note that the equivalent of Equation (4.7) for y(t) is

Y +
i = Y −

i − BEDT (di),
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Figure 4-2: Schematic illustration of the expected number of tumor cells over the course
of treatment. The effect of radiation dose d is a reduction in the log of the number of
cells, proportional to BEDT (d).

where BEDT (di) is defined as before. We also define a growth function F that maps

Y + to Y − using the appropriate differential equation equivalent of (4.8). Thus, Y −
i+1 =

F (Y +
i ) for i = 0, 1, . . . , N −1. Figure 4-2 provides an illustration of the behavior of the

expected number of tumor cells over the course of treatment.

4.4.2 Dynamic programming approach

The optimization problem of interest is to minimize the expected number of tumor cells

at the end of treatment, X+
N−1, under the constraint that the BED in the OAR, BEDO,

is less than or equal to some constant c. Equivalently, we choose to minimize Y +
N−1. In

order to get from the initial Y0 to Y +
N−1, one recursively alternates between applying a

dose d and the growth function F . That is, Y +
N−1 takes the form

Y +
N−1 = F (· · ·F (F (Y0 − BEDT (d0))− BED(d1)) · · · )− BED(dN−1). (4.9)
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Such a recursive formulation lends itself naturally to a DP approach to solve the prob-

lem. We can solve the formulation by recursively computing an optimal dose backwards

in time. Note that although non-linear programming methods can be used, there is no

guarantee of the convexity of the objective (4.9), and the solution might provide only a

local optimum. On the other hand, a global optimum is guaranteed if the DP approach

is used.

We now formulate the problem in a DP framework. We define zi to be the cumula-

tive BED in the OAR resulting from delivering the doses d0, d1, . . . , di−1. We wish to

determine the dose di based on Y +
i−1 and the cumulative BED in the OAR zi. Here, Y

+
i−1

and zi together represent the state of the system because they are the only relevant

pieces of information needed to determine the dose di. Instead of additive costs, we

choose to formulate the problem by including only a terminal cost. Specifically, we

include the final expected (logarithmic) number of cells Y +
N−1 in the terminal condi-

tion. In order to ensure that the BEDO constraint is satisfied, we also assign an infinite

penalty to the terminal cost when the constraint is violated. The Bellman recursion to

solve the problem is:

JN(Y
+
N−1, zN) =





Y +
N−1, if zN ≤ c,

∞, otherwise,

Jk(Y
+
k−1, zk) = min

dk≥0

[
Jk+1(F (Y +

k−1)− BEDT (dk))
]
,

for k = N − 1, N − 2, . . . , 1. The initial equation for time 0, given below, is slightly

different because there is no prior tumor growth

J0(Y
−
0 , z0) = min

d0≥0
J1(Y

−
0 − BEDT (d0)).

For numerical implementation, the above state variables need to be discretized and the

tabulated values stored. For evaluating the cost-to-go function Jk at any non-discretized

values, an interpolation of appropriate discretized values can be used for accuracy.
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4.4.3 Properties of the optimal fractionation scheme

We begin with two lemmas. The first one is simply a counterpart of Lemma 4.3.1 for

the case where there is tumor repopulation.

Lemma 4.4.1. Assume that φ(x) > 0 for all x > 0. For the fractionation problem that

includes tumor repopulation, the constraint on BEDO will be satisfied with equality.

Proof. See Appendix 4.8.3.

Lemma 4.4.2. Assume that φ(x) > 0 for all x > 0. Suppose that i < j and that we

apply the sequence of doses di+1, . . . , dj starting with either Y +
i or Ỹ +

i . If Y +
i < Ỹ +

i ,

then Y +
j < Ỹ +

j .

Proof. See Appendix 4.8.4.

The second lemma above provides a monotonicity property of the mapping of the

expected number of cells from point in time to another, assuming that the same sequence

of doses are applied. Next, we state the following theorem.

Theorem 4.4.3. Let us fix N . Assume that the instantaneous tumor growth rate φ(x)

is non-increasing as a function of the number of cells x, and that there is always some

amount of repopulation, i.e., φ(x) > 0 for all x > 0. If [α/β]O ≥ γ[α/β]T , the optimal

solution is to deliver a single dose as in Theorem 4.3.2. If [α/β]O < γ[α/β]T , then the

optimal doses must increase over the course of treatment. That is, the optimal doses

will satisfy d∗0 ≤ d∗1 ≤ · · · ≤ d∗N−1.

Proof. See Appendix 4.8.5.

For the case where [α/β]O ≥ γ[α/β]T , it is reasonable that the optimal solution is to

use the most aggressive treatment of a single dose with the optimal N∗ = 1 because

this is the case even without repopulation. The interesting case is that when [α/β]O <

γ[α/β]T , the doses must increase over time. Intuitively, due to the decreasing property

of φ(x) as a function of x, the tumor grows at a faster rate when its size becomes smaller

over the course of treatment; higher doses are then required to counter the increased

proliferation.
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4.4.4 Gompertzian tumor growth

In this subsection, we discuss the Gompertz tumor growth model and present a sim-

plified DP approach with a reduced state space. The Gompertz equation a particular

model of a decelerating tumor growth curve. The dynamics are described by a differ-

ential equation that has the instantaneous proliferation rate

φ(x) = b ln

(
X∞
x

)
,

where X∞ is the carrying capacity and b is a parameter that controls the rate of growth.

(Here, the asymptotic limit X∞ is more of a mathematical abstraction rather than a

meaningful physical quantity; the death of a host would occur long before there are

X∞ tumor cells.) The resulting analytical solution n(t) from solving the differential

equation (4.8) with initial condition n(0) = X0 is

n(t) = X∞ exp

[
ln

(
X0

X∞

)
exp(−bt)

]

= X
exp(−bt)
0 X1−exp(−bt)

∞ , (4.10)

Here, n(t) is used to denote the expected number of tumor cells without radiation

treatment; this is to avoid confusion with the already defined x(t). The above equation

models slower repopulation for larger tumor sizes and vice-versa (see Figure 4-3).

For the case of Gompertzian tumor growth, it turns out that one can significantly

simplify the problem and solution approach. We will now derive an explicit expression

for the expected number of tumor cells at the end of treatment. We claim that

Y +
i =

1

αT

ln (n(i))−
i∑

k=0

exp[−b(i− k)]BEDT (dk), (4.11)

for i = 0, 1, . . . , N−1, where n(t) represents the expected number of tumor cells without

any radiation treatment. The above equation (4.11) holds for i = 0 because n(0) = X0

and Y +
0 = ln(X0)/αT −BEDT (d0). For the inductive step, suppose the equation (4.11)
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Figure 4-3: Various types of tumor growth curves. The Gompertz and logistic equations
both model slower growth for larger number of cells. The exponential model assumes
a constant growth rate.
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holds true. From the Gompertz growth equation (4.10), assuming the time interval

between fractions is one day (implying t = 1), we can write the function F mapping

Y +
i to Y −

i+1 resulting from tumor growth as

Y +
i+1 = F (Y +

i ) = exp(−b)Y +
i + (1− exp(b))

ln(X∞)

αT

.

Incorporating the growth and the radiation dose from di+1, we find

Y +
i+1 = F (Y +

i )− BEDT (di+1)

=
1

αT

ln
(
n(i)exp(−b)X(1−exp(b))

∞
)
−

i+1∑

k=0

exp[−b(i+ 1− k)]BEDT (dk)

=
1

αT

ln (n(i+ 1))−
i+1∑

k=0

exp[−b(i + 1− k)]BEDT (dk),

completing the inductive step. This results in the optimization problem

minimize
{di≥0}

1

αT
ln (n(N − 1))−

N−1∑

k=0

exp[−b(N − 1− k)]BEDT (dk)

s. t. BEDO ≤ c,

(4.12)

Notice the similarity between the problem without repopulation (4.4) and the above

problem (4.12) that includes Gompertzian tumor growth. The only addition is the ex-

ponential weighting term in the objective and the additive term. Note that the additive

term ln (n(N − 1)) /αT has no impact on the optimization because it is independent of

the dose fractions dk. However, if we were also to optimize over the number of fractions,

N , this term would come into play. Because the weighting term gives larger weight to

later fractions, we can conjecture that the optimal fractionation scheme will result in

larger fraction sizes towards the end of treatment.

From (4.12), we see that the expected number of tumor cells is not required as

a state variable; we can thus simplify the DP equation. We also choose to include

additive costs as opposed to a terminal cost as was done for the general case. The
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updated algorithm is

JN(zN ) =





0, if zN = c,

∞, otherwise,

Jk(zk) = min
dk≥0

[
exp[−b(N − 1− k)]BEDT (dk) + Jk+1(zk + BEDO(dk))

]
, (4.13)

for k = N − 1, N − 2, . . . , 0. For numerical implementation, we discretize the state

variable zk and solve a corresponding discrete problem. For evaluating the above J

function for general values of z, linear interpolation was used.

4.4.5 Exponential tumor growth with constant repopulation

rate

In this subsection, we discuss the exponential tumor growth model for which we provide

the optimal fractionation scheme in closed form. As opposed to Gompertzian growth,

the rate of growth does not change with tumor size (see Figure 4-3), and there is no

upper limit (i.e., X∞) on the number of tumor cells. The growth equation in this case

is

n(t) = X0 exp(ρt),

where X0 is the initial number of cells, as before, and ρ > 0 is the proliferation rate.

This corresponds to the case where φ(x) is constant and equal to ρ. We will show that

for exponential growth, the solution can be described in closed form.

Assuming ρ represents a measure of growth per unit day (or fraction), the number

of tumor cells is multiplied by a factor of exp(ρ) after every fraction. Since there are

N dose fractions and N − 1 days of repopulation in between treatment, the resulting

survival fraction of cells ST is

ST = exp (−αTBEDT + (N − 1)ρ) .
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By taking the logarithm, we obtain the following optimization problem:

maximize
{di≥0}

BEDT − 1

αT

(N − 1)ρ s.t. BEDO = c. (4.14)

This is the same problem as the one for the case without repopulation, except for the

additional − 1
αT

(N − 1)ρ term. For a fixed N , this additional term does not change

when varying the set of doses {di}. Thus, the optimal doses under the case of constant

exponential growth is exactly the same as in Theorem 4.3.2 for a fixed N .

To determine the optimal number of fractions N∗, one could compute the objective

(4.14) by brute force for a range of reasonable values of N . However, for the exponential

tumor growth case, one can characterize the optimal number of fractions in closed form.

The result is consistent and similar to the work in [2, 32, 89] though it is interpreted

differently here.

Theorem 4.4.4. The optimal number of fractions N∗ for exponential growth with con-

stant repopulation rate ρ is obtained by following this procedure:

1. If [α/β]O ≥ γ[α/β]T , then N∗ = 1.

2. If [α/β]O < γ[α/β]T , then

(a) Compute Nc = A

(√
(ρ+B)2

ρ(ρ+2B)
− 1

)
, where A = 2c2

[α/β]O
, B = αT [α/β]O

2γ

(
1− [α/β]O

γ[α/β]T

)
.

(b) If Nc < 1, then N∗ = 1. Otherwise, evaluate the objective at ⌊Nc⌋ and ⌈Nc⌉,
and let the optimum N∗ be the one that results in a larger objective value.

Proof. See Appendix 4.8.6.

This result also makes sense in the limiting cases when ρ → 0 and ρ → ∞. When

approaching the case of no repopulation, i.e., ρ → 0, we see that Nc → ∞ and the

optimum N approaches infinity. When ρ → ∞, we see that Nc → 0, meaning that

the optimum N is a single dose when repopulation becomes very large. Recall that if

[α/β]O < γ[α/β]T , the optimal N approaches infinity for the case without repopulation.
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For the case of exponential repopulation with constant rate, the above result shows that

the optimum N is finite. Indeed, even for general tumor growth characteristics, as long

as there is repopulation, the optimal number of fractions is finite. The result is stated

in the following theorem.

Theorem 4.4.5. Suppose that there exists r > 0 such that φ(x) > r for all x > 0.

Then, the optimal number of fractions N∗ is finite.

Proof. See Appendix 4.8.7.

4.5 Numerical experiments

4.5.1 Faster tumor growth suggests shorter treatment dura-

tion

We use realistic choices of radiobiological parameters in order to simulate the effect

of various rates of tumor growth on the optimal number of treatment days. Here, we

assume exponential growth with a constant rate of repopulation. We use [α/β]T = 10

Gy, [α/β]O = 3 Gy, and αT = 0.3 Gy−1 for the tissue parameters; these are appropriate

standard values [27]. We consider a standard fractionated treatment as reference, i.e.,

a dose of 60 Gy delivered to the tumor in 30 fractions of 2 Gy. For the above choice

of α/β-ratios and γ = 0.7, this corresponds to an OAR BED of 61.6 Gy, which we use

as the normal tissue BED constraint c. In order to choose appropriate values for the

proliferation rate ρ, we relate it to the tumor doubling time τd. Since τd represents the

time it takes for the tumor to double in size, we set exp(ρt) = 2t/τd , resulting in the

following relation:

ρ =
ln(2)

τd
.

For human tumors, the doubling time can range from a few days to a few months,

depending on the particular disease site. We show that for the parameters used above,

the optimal number of treatment days is smaller for faster growing tumors (Figure 4-4).
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The objective value plotted in Figure 4-4 is given by

BEDT − 1

αT

(N − 1)ρ.

For the reference treatment (N = 30) and α = 0.3, the decrease in the tumor BED due

to the second term (N − 1)ρ/αT evaluates to about 1.3 Gy for a slowly proliferating

tumor with doubling time τd = 50. This is small compared to BEDT = 72. For a fast

proliferating tumor with doubling time τd = 5, the correction (N−1)ρ/αT is about 13.4

Gy and becomes more important. Thus, smaller values of N are suggested for faster

proliferating tumors.

4.5.2 Accelerated repopulation suggests increasing doses to-

wards the end of treatment

One way to model accelerating repopulation is to use decelerating tumor growth curves

(see Figure 4-3). We model this behavior by using the Gompertz tumor growth model

and solve the fractionation problem by using the simplified DP equation (4.13). We

illustrate optimal fractionation schemes for both slow and fast proliferating tumors. For

a slow proliferating tumor, we choose the parameters X0 = 8.3×106, X∞ = 3×1012, and

b = exp(−6.8) so that the doubling time corresponding to the instantaneous growth

rate φ(x) starts at 50 days in the beginning of treatment and decreases to 20 days

at the end of treatment. For a fast proliferating tumor, we adjust the parameters

accordingly so that the doubling time goes from 50 days to 5 days: X0 = 3.6 × 1011,

X∞ = 3 × 1012, and b = exp(−5). As before, we use the parameters [α/β]T = 10

Gy, [α/β]O = 3 Gy, αT = 0.3 Gy−1, c = 61.6 Gy, and γ = 0.7. As shown in Figure

4-5, for a fast proliferating tumor, the sequence of radiation doses increase from 1 Gy

to 3 Gy, which is a significant difference from the standard treatment of 2 Gy per

day for 30 days. For a slowly proliferating tumor, the doses closely resemble standard

treatment and only increase slightly over the course of treatment. Note that the dose
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per day is almost exactly proportional to the plotted instantaneous proliferation rate

φ(x). In summary, we find that the optimal fractionation scheme distributes the doses

so that they are proportional to the instantaneous proliferation rate. For the reference

treatment of 2 per day with N = 30, in the case of a fast proliferating tumor, the

objective Y +
N−1 is 24.25. The objective Y +

N−1 for the optimal fractionation scheme in

plot b) of Figure 4-5 is 23.64. This is only a change of 2.5% in Y +
N−1 and about 16.7%

change in X+
N−1 in comparison to the reference treatment. It is not straightforward to

make a meaningful statement about the improvement in tumor control simply based

on these values. However, we can say that even a small improvement in tumor control

for a specific disease site can make a significant impact because of the large of patients

treated with radiation therapy every year.

4.5.3 Smaller α-β ratio of tumor results in larger changes in

fraction size and more gain

We use a smaller value for the α-β ratio of tumor and re-run the calculations from the

previous subsection. The parameters of the Gompertzian growth remain the same for

the slow and fast proliferating tumor. As before, we use the parameters [α/β]O = 3

Gy, αT = 0.3 Gy−1, c = 61.6 Gy, and γ = 0.7, with the only change being [α/β]T = 5.7

Gy. Note that the condition [α/β]O = 3 < γ[α/β]T = 4 is satisfied, meaning that

delivering only a single dose of radiation is not optimal (see Theorem 4.4.3). As seen

in Figure 4-6, we find that for a fast proliferating tumor, the sequence of radiation

doses increase all the way to 5 Gy, which is an even more significant difference from the

results in the previous section. Indeed, in this case, the objective Y +
N−1 is 16.00 for the

reference treatment of 2 Gy per day, and is 14.01 for the optimal fractionation scheme

in plot b) of Figure 4-6. This is a significant change of 12.4% in Y +
N−1 and about 44.5%

change in X+
N−1 in comparison to the reference treatment. Due to the change in the

optimal fractionation scheme, the rates of tumor growth have also changed. However,

these tumor growth rate changes have not been significant: the tumor doubling time
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Figure 4-5: Optimal fractionation for accelerated repopulation. Plot a) is an example
of a slow proliferating tumor, and plot b) is an example of a fast one. The doubling
time for the proliferation rate φ(x) begins at τd = 50 days and decreases to a) 20 and
b) 5 days, respectively, at the end of treatment. Larger dose fractions are suggested
later in the treatment to compensate for the increased tumor proliferation.
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at the end of treatment is about 18 days for the slowly proliferating tumor and 4 days

for the fast one. The exponential increase of the optimal fractions observed plot b) of

Figure 4-6 is likely due to the assumed Gompertzian tumor growth characteristic. The

take away message should not be that the dose increases have an exponential nature,

but rather that the fractions are proportional to the instantaneous proliferation rate.

Should it be that the proliferation rate increases linearly, the result would likely be

linearly increasing dose fractions. We can infer that a smaller α-β ratio of the tumor

suggests using larger changes in fraction size; this results in larger gains in the objective

value and hence in overall tumor control. Low values of the α-β ratio have been observed

for disease sites such as prostate cancer [51]. Of course, if the α-β ratio is very small,

a single dose would be optimal (see Theorem 4.4.3).

4.6 Further remarks

4.6.1 Non-uniform irradiation of the OAR

Although we assumed throughout the chapter that a dose d results in a homogeneous

dose γd to the OAR, in reality the OAR receives a non-uniform irradiation. In [78], the

basic result stated in Theorem 4.3.2 is generalized to arbitrary inhomogeneous doses

in the OAR. The arguments in [78] are also applicable to the case of repopulation

as considered here. In this case, we can define an effective sparing factor γeff and an

effective upper limit ceff on the BEDO. The results differ for the case of parallel OAR

and serial OAR. A parallel organ could remain functional even with damaged parts;

a serial OAR on the other hand remains functional only when all of its parts remain

functional. For the case of a parallel OAR (e.g., lung), assuming γid represents the dose

in the ith voxel (or spatial point) in the OAR, the integral BED in the OAR is given

by

BEDO =

N−1∑

k=0

∑

i

γi dk

(
1 +

γi dk
[α/β]O

)
.
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Figure 4-6: Optimal fractionation for accelerated repopulation in the case of [α/β]T =
5.7 Gy. Plot a) is an example of a slowly proliferating tumor, and plot b) is an example
of a fast one. The doubling time for the proliferation rate φ(x) begins at τd = 50 days
and decreases to a) 18 and b) 4 days, respectively, at the end of treatment. Smaller
[α/β]T values result in larger changes in fraction size and more gain.
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By algebraic manipulations, we obtain the same form for the normal tissue constraint

as discussed in this chapter:

N−1∑

k=0

γeff dk

(
1 +

γeff dk
[α/β]O

)
= ceff,

where γeff =
∑

i γ
2
i /
∑

i γi and ceff = cγeff/
∑

i γi. For the serial case (e.g., spinal cord),

only the maximum dose to the OAR matters, resulting in γeff = maxi γi and ceff = c.

Further details can be found in [78].

4.6.2 Variable time intervals

The above methodology is applicable also for the case of variable time intervals (e.g.,

weekends, holidays). However, in our formulation we neglect the Lea-Catcheside factor,

i.e., we assume that each radiation treatment is delivered in a short time period, and

time between fractions is long. Without these assumptions, the survival fraction will

have to take into account biological aspects such as incomplete sublethal damage. The

LQ model used in our formulation does not take such factors into account. For optimal

fractionation schemes resulting from incorporating incomplete sublethal damage repair,

see [5].

4.6.3 Multiple OARs

When optimizing the spatial dose distribution, radiation treatments generally involves

making tradeoffs in dose delivered to multiple OARs. In this work, we assume that

the spatial dose distribution is fixed, and that the fractionation schedule is temporally

optimized. Even with multiple OARs, a single OAR will be dose-limiting, which pri-

marily determines the optimal fractionation schedule. Thus, this OAR can be used for

the BEDO constraint discussed in this chapter.
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4.7 Discussion and conclusions

There are multiple ways to model accelerated repopulation. One approach is to increase

the tumor proliferation rate with already delivered dose or BED. In this chapter, we

chose to model accelerated repopulation implicitly by using a decelerating tumor growth

curve, e.g., Gompertzian growth, with a proliferation rate φ(x) that is dependent on

the number of tumor cells. Due to radiation treatment, fewer cells remain towards the

end of treatment resulting in faster tumor growth. We developed a DP framework to

solve the optimal fractionation problem with repopulation for general tumor growth

characteristics described by φ(x). More research is needed to determine φ(x) from

clinical outcome data for a specific disease site. We derived the special structure of the

problem when assuming Gompertzian tumor growth. This resulted in maximizing a

discounted version of BEDT , which placed a higher weight for later treatment days due

to increased tumor proliferation.

There are three main messages in this chapter. First, faster tumor growth suggests

shorter overall treatment duration. Second, accelerated repopulation suggests larger

dose fractions later in the treatment to compensate for the increased tumor proliferation.

And, finally, the optimal fractionation scheme uses more aggressive changes in the dose

fractions when the α-β ratio of the tumor is smaller; in this case, we can expect larger

gains in tumor control.

The advantage of the methods presented in this chapter is that a change in the

fractionation schedule can be readily implementable in a clinical setting, without tech-

nological barriers. However, the results presented in this chapter are for illustrative

purposes and should not be taken as immediate recommendations for a change in clin-

ical practice. We realize that actual tumor dynamics are more complex than presented

in this chapter. Yet, we hope that this analysis can provide useful insights and a basis

for further research.
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4.8 Appendix: proofs

4.8.1 Proof of Lemma 4.3.1

Proof. Suppose an optimal solution is d∗i , for i = 0, 1, . . . , N − 1, but the constraint in

(4.3) is not active. That is, there exists δ > 0 such that

N−1∑

k=0

γd∗k

(
1 +

γd∗k
[α/β]O

)
+ δ = c.

For every fraction i, let us increase d∗i by the same positive constant ǫ. Choosing ǫ small

enough so that
∑N−1

k=0 γǫ
(
1 + γ

[α/β]O
(2d∗k + ǫ)

)
< δ, we see that

N−1∑

k=0

γ(d∗k + ǫ)

(
1 +

γ(d∗k + ǫ)

[α/β]O

)
=

N−1∑

k=0

γd∗k

(
1 +

γd∗k
[α/β]O

)
+

N−1∑

k=0

γǫ

(
1 +

γ

[α/β]O
(2d∗k + ǫ)

)

<
N−1∑

k=0

γd∗k

(
1 +

γd∗k
[α/β]O

)
+ δ

= c,

which means that the constraint in (4.3) is satisfied. Furthermore, choosing d∗i + ǫ,

for i = 0, 1, . . . , N − 1, results in a strictly larger objective value than that of the

supposed optimal solution. This is a contradiction because we have found a strictly

better solution than the assumed optimal one.

4.8.2 Proof of Theorem 4.3.2

Proof. Using the equality constraint in (4.4), we can equivalently write the objective

BEDT as

BEDT =

(
1− [α/β]O

γ[α/β]T

)N−1∑

k=0

dk +
[α/β]O
γ[α/β]T

c.

Thus, if [α/β]O ≥ γ[α/β]T , we would like to minimize
∑N−1

k=0 dk subject to a fixed

BEDO. Otherwise, if [α/β]O < γ[α/β]T , we would like to maximize
∑N−1

k=0 dk. First,
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let us assume the former condition [α/β]O ≥ γ[α/β]T to be true. Suppose an optimal

solution is to deliver a non-zero dose in more than one fraction, i.e., that there exists i

and j with i 6= j such that d∗i > 0 and d∗j > 0. We would like to show that, leaving dk

unchanged for k 6= i, j, a better solution is to set di equal to 0 and dj equal to the dose

that would satisfy the constraint in (4.4). Essentially, this would mean that there is no

reason to “spread out” the dose among the fractions; it would be optimal to deliver all

the dose in a single fraction. We now set di = 0 and dj = d∗j + δ, where δ is positive

constant appropriately chosen so that the constraint in (4.4) is satisfied. Writing out

the constraint equation and carrying out algebra, we find

N−1∑

k=0

γdk

(
1 +

γdk
[α/β]O

)
=
∑

k 6=i
k 6=j

γd∗k

(
1 +

γd∗k
[α/β]O

)
+ γ(d∗j + δ)

(
1 +

γ(d∗j + δ)

[α/β]O

)

= c+ f1(d
∗
i , d

∗
j , δ),

where for the last equality we used the fact that the assumed optimal solution satisfies

the constraint in (4.4). The function f1 is defined as

f1(d
∗
i , d

∗
j , δ) = γδ

(
1 +

γδ

[α/β]O

)
− γd∗i

(
1 +

γd∗i
[α/β]O

)
+

2γ2δd∗j
[α/β]O

. (4.15)

Thus, we can choose δ > 0 that satisfies f(d∗i , d
∗
j , δ) = 0 to ensure the constraint in

(4.4). Since the third term in (4.15) is positive, such a choice of δ will result in δ < d∗i .

However, this means that we have found a strictly better solution because

N−1∑

k=0

dk =
∑

k 6=i

d∗k + δ <

N−1∑

k=0

d∗k,

resulting in a contradiction of the optimality assumption. Therefore, for [α/β]O ≥
γ[α/β]T , an optimal solution has exactly one non-zero dose. The closed-form solu-

tion, as given in (4.5), can be obtained by solving the quadratic equality constraint

γdj

(
1 +

γdj
[α/β]O

)
= c.
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Now, assume that [α/β]O < γ[α/β]T , and suppose that there exists i and j with

i 6= j such that d∗i 6= d∗j , with both d∗i and d∗j non-zero. We would like to show that,

leaving unchanged dose fractions at times other than i or j, a better solution is to

deliver equal dose in fractions i and j, scaled appropriately so that the constraint in

(4.4) is satisfied. Essentially, this would mean that the optimal solution “spreads out”

the dose uniformly amongst all fractions. Hence, we set di = dj = δ(d∗i + d∗j)/2, with

an appropriately chosen positive constant δ. Writing out the constraint equation and

carrying out the algebra, we find

N−1∑

k=0

γdk

(
1 +

γdk
[α/β]O

)
=
∑

k 6=i,j

γd∗k

(
1 +

γd∗k
[α/β]O

)
+ 2γδ

d∗i + d∗j
2

(
1 +

γδ

[α/β]O

d∗i + d∗j
2

)

=
∑

k 6=i,j

γd∗k

(
1 +

γd∗k
[α/β]O

)
+ f2(d

∗
i , d

∗
j , δ), (4.16)

where

f2(d
∗
i , d

∗
j , δ) = δγd∗i

(
1 +

δγd∗i
[α/β]O

)
+ δγd∗j

(
1 +

δγd∗j
[α/β]O

)
− (γδ)2

2[α/β]O
(d∗i − d∗j)

2.

Note that if we choose δ = 1, Equation (4.16) would simplify to c minus the third term

in the definition of the function f2. Clearly, in order to ensure that the expression in

(4.16) equals c and thus satisfies the BEDO equality constraint, δ > 1 must be true.

However, this means that we have found a strictly better solution because

N−1∑

k=0

dk =
∑

k 6=i
k 6=j

d∗k + δ(d∗i + d∗j) >
N∑

k=1

d∗k,

resulting in a contradiction of the optimality assumption. Therefore, for [α/β]O <

γ[α/β]T , the unique optimal solution consists of uniform doses. The closed-form so-

lution, as given in (4.6), can be obtained by solving the quadratic equality constraint

γNdj

(
1 +

γdj
[α/β]O

)
= c.
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4.8.3 Proof of Lemma 4.4.1

Proof. We use a similar argument to the one given in Lemma 4.3.1. Let us suppose

an optimal solution is d∗i , for i = 0, 1, . . . , N − 1, under which the BEDO constraint

is not active. Let {Ỹ +
i } be the result of delivering the optimal doses. Again, choose

the positive constants δ and ǫ in the same way as in Lemma 4.3.1. Then, for every i,

we are able to deliver di = d∗i + ǫ while ensuring the BEDO constraint is satisfied. Let

{Y +
i } now be the result of delivering the di, for i = 0, 1, . . . , N − 1. We will show by

induction that Y +
i < Ỹ +

i for every i. For the base case, we have

Y +
0 = Y0 − BEDT (d0) < Ỹ +

0

because d0 > d∗0. Suppose for the inductive step that Y +
i < Ỹ +

i . Then, we have

Y +
i+1 = F (Y +

i )− BEDT (di+1)

< F (Ỹ +
i )− BEDT (di+1)

= Ỹ +
i+1,

where the inequality holds because the growth function F is strictly increasing as a

result of the φ(x) > 0 assumption. The induction is complete, and we have shown that

Y +
N−1 < Ỹ +

N−1. This is a contradiction of the optimality assumption.

4.8.4 Proof of Lemma 4.4.2

Proof. Since φ(x) > 0 for all x, the rate of change of the number of tumor cells is

positive. Thus, assuming no delivered radiation, the number of cells is strictly increasing

due to repopulation. Now, given Y +
i < Ỹ +

i , it is clear that Y −
i+1 < Ỹ −

i+1. And after

applying radiation, we also have Y +
i+1 < Ỹ +

i+1. The lemma follows by induction.
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4.8.5 Proof of Theorem 4.4.3

Proof. Suppose that an optimal solution to the fractionation problem with repopulation

is the sequence of doses d∗0, d
∗
1, . . . , d

∗
N−1, resulting in the sequence Ỹ +

0 , Ỹ +
1 , . . . , Ỹ +

N−1.

We assume here that d∗i > 0 and d∗j > 0 for some i and j such that i < j. Consider

another sequence d0, d1, . . . , dN−1 that satisfies dk = d∗k for k 6= i and k 6= j, which

results in the sequence Y +
0 , Y +

1 , . . . , Y +
N−1. We will first show that if Y +

i > Ỹ +
i (or,

equivalently, di > d∗i ), then Y +
j ≤ Ỹ +

j + BED∗
T − BEDT , where BED∗

T and BEDT

are the total BED in the tumor resulting from delivering {d∗k} and {dk}, respectively.
Before delivering the dose di, the same sequences of doses were applied; this means

Y −
i = Ỹ −

i . Now, Y +
i = Y −

i − BEDT (di) and Ỹ +
i = Ỹ −

i − BEDT (d
∗
i ), implying that

Y +
i − Ỹ +

i = BEDT (d
∗
i )−BEDT (di). Since φ(x) is non-increasing as a function of x, we

have that

Y −
j − Ỹ −

j ≤ BEDT (d
∗
i )− BEDT (di). (4.17)

Note that BED(d∗i ) > BED(di) because of the initial condition Y +
i > Ỹ +

i . Then, we

have

Y +
j = Y −

j − BEDT (dj)

= Y −
j − BEDT (dj) + Ỹ +

j − (Ỹ −
j − BEDT (d

∗
j))

= Ỹ +
j + (Y −

j − Ỹ −
j ) + BEDT (d

∗
j)− BEDT (dj)

≤ Ỹ +
j + BEDT (d

∗
i )− BEDT (di) + BEDT (d

∗
j)− BED(dj)

= Ỹ +
j + BED∗

T − BEDT , (4.18)

where the inequality is due to (4.17).

Suppose that [α/β]O ≥ γ[α/β]T and that there exists i < j such that d∗i > 0 and

d∗j > 0. We set di = 0 and dj = d∗j + δ, where δ is a positive constant that enforces the

BED equality constraint for the OAR. Then, we find, as done using exactly the same

argument in the proof of Theorem 4.3.2, that BED∗
T < BEDT . Since di = 0 and d∗i > 0

imply that Y +
i > Ỹ +

i , we have from (4.18) that Y +
j < Ỹ +

j . Using Lemma 4.4.2, we
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conclude that Y +
N−1 < Ỹ +

N−1, so that we have found a strictly better solution than the

supposed optimal one. Thus, if [α/β]O ≥ γ[α/β]T , the optimal solution is to deliver a

single dose, as in Theorem 4.3.2.

Suppose [α/β]O < γ[α/β]T and ∃i < j such that d∗i > d∗j . Setting di = dj =

δ
(

d∗i+d∗j
2

)
so that δ ensures the BED constraint in the OAR. Again, we use the same

argument in Theorem 4.3.2 and conclude that BED∗
T < BEDT . Since di < d∗i , we have

Y +
i > Ỹ +

i . From (4.18), we conclude Y +
j < Ỹ +

j . This means that Y +
N−1 < Ỹ +

N−1 due to

Lemma 4.4.2. Thus, we have found a strictly better solution than the supposed optimal

one. For [α/β]O < γ[α/β]T then, the optimal doses must increase over the course of

treatment, i.e., d∗0 ≤ d∗1 ≤ . . . ≤ d∗N−1.

4.8.6 Proof of Theorem 4.4.4

Proof. We want to solve the optimization problem

maximize
N∈N

N−1∑

k=0

d∗k

(
1 +

d∗k
[α/β]T

)
− 1

αT
(N − 1)ρ, (4.19)

where d∗k for k = 0, 1, . . . , N − 1 is an optimal solution to (4.4). If [α/β]O ≥ γ[α/β]T ,

from Theorem 4.3.2, it is optimal to deliver a single dose on one day. Thus, the first

term in (4.19) is independent of N , and maximizing the second term results in N∗ = 1.

For the case when [α/β]O < γ[α/β]T , we first show that the objective in (4.19) is strictly

concave and eventually decreases as a function of N . Using the expression for d∗j given

in Theorem 4.3.2 and carrying out basic algebra, we find that the first term in (4.19)

representing the BED in the tumor satisfies

BEDT =

N−1∑

k=0

d∗k

(
1 +

d∗k
[α/β]T

)
B

αT

=
√
N2 + 2AN − B

αT
N + E,
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where A = 2c2
[α/β]O

, B = αT [α/β]O
2γ

(
1− [α/β]O

γ[α/β]T

)
, and E = [α/β]Oc2

γ2[α/β]T
. We want to show that

the objective (4.19) is concave in N for any N ∈ [0,∞). The domain [0,∞) is convex

as desired. Now, we compute the first and second derivative with respect to N of this

objective. After some algebra, we obtain the equations

d

dN

[
BEDT − 1

αT

(N − 1)ρ

]
=

B

αT

(
N + A√

(N + A)2 − A2
− 1

)
− ρ

αT

(4.20)

and
d2

d2N

[
BEDT − 1

αT

(N − 1)ρ

]
= − A2B

αT (N2 + 2AN)3/2
.

Note that A > 0, and since [α/β]O < γ[α/β]T , B > 0 is also true. Thus, the second

derivative above is strictly negative for all N ∈ [0,∞); this implies that the objective

is strictly concave. As N grows large, the first term in (4.20) approaches 0. Hence, the

first derivative eventually becomes strictly negative due to the repopulation term, which

means that the objective is a decreasing function for large enough N . Maximizing a

strictly concave function that eventually decreases results in a unique optimum over

the interval [0,∞). Now, we set the derivative (4.20) equal to 0 and solve for N . The

result is

Nc = A



√

(ρ+B)2

ρ (ρ+ 2B)
− 1


 .

Due to the concavity property of the objective, the additional constraint that N is a

natural number means that the optimum N∗ is either ⌊Nc⌋ or ⌈Nc⌉, whichever results

in a larger objective value. The only exception is when Nc < 1, in which case N∗ = 1

since N∗ cannot be 0.

4.8.7 Proof of Theorem 4.4.5

Proof. When [α/β]O ≥ γ[α/β]T , we already know from Theorem 4.4.3 that N∗ = 1

and thus the optimal number of fractions is finite. We now give the proof for the case

when [α/β]O < γ[α/β]T . For a fixed N , we assume d∗0, d
∗
1, . . . , d

∗
N−1 is the sequence of
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optimal dose fractions resulting from minimizing the logarithm version of the expected

number of cells Y ∗
N−1 subject to the BED constraint in the OAR. From the equation

dy/dt = φ(exp(αTy(t)))/αT , the assumption φ(x) > r implies dy/dt > r′/αT for some

other constant r′ > 0. The function mapping Y + to Y − as a result of repopulation

satisfies

F (Y +) > Y + +
r′

αT
.

Now, since F is applied N − 1 times, we can bound below Y +
N−1:

Y +
N−1 > −BED∗

T +
1

αT
(N − 1)r′

where BED∗
T is the BED in the tumor resulting from delivering the doses d∗0, d

∗
1, . . . , d

∗
N−1.

From Theorem 4.3.2, we know that when [α/β]O < γ[α/β]T , uniformly distributed

doses maximize BEDT subject to the constraint on BEDO. Let B̃EDT represent the

BED in the tumor resulting from delivering these uniformly distributed doses. Then,

BED∗
T ≤ B̃EDT and we have

Y +
N−1 > −BED∗

T +
1

αT
(N − 1)r′ ≥ −B̃EDT +

1

αT
(N − 1)r′.

Using equation (4.20) from the proof of Theorem 4.4.4, we have

d

dN

[
−B̃EDT +

1

αT
(N − 1)r′

]
= − B

αT

(
N + A√

(N + A)2 −A2
− 1

)
+

r′

αT
.

Since the first derivative above eventually stays positive for large enough N , Y +
N−1

approaches infinity as N → ∞. Thus, the optimal number of dose fractions N∗ cannot

be infinite.
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Chapter 5

Optimal fractionation for

continuous dose rate treatment

protocols

5.1 Introduction

We analyzed in the previous chapter the optimal fractionation scheme in the presence

of tumor repopulation. However, the model used was reasonable only for conventional

external beam radiation therapy, where there is plenty of time in between fractions. In-

complete repair of sublethal damage in cells becomes an important factor for treatment

modalities such as brachytherapy, where a continuous dose is emitted from implanted

seeds in the patient. In this chapter, we model this repair effect in addition to tumor

repopulation and generalize the methods in the previous chapter to the case where a

continuous dose rate d(t) is delivered instead of individual dose fractions. It may be

difficult for the reader to follow the arguments in this chapter without familiarity of

the model, formulation, and results from Chapter 4.

As before, we would like to minimize the expected number of tumor cells at the end

of treatment such that the BED in the OAR is constrained by an upper limit. The only
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difference is that incomplete sublethal damage repair needs to be taken into account due

to the continuous nature of the radiation dose. In this chapter, we derive an ordinary

differential equation describing the behavior of the number of tumor cells at any point

during treatment. This equation incorporates the effect of tumor growth, incomplete

sublethal damage repair, and radiation dose. Although the same differential equation

and a similar formulation is presented in [87], we hope that the derivation in this chapter

is insightful and sheds new perspective. The model and formulation can be the basis

for further research, e.g., determining the effect of accelerated tumor repopulation for

modalities such as brachytherapy. In a related paper [5], the effect of exponential tumor

repopulation and sublethal damage repair on optimal fractionation is analyzed for the

case of discrete radiation dose fractions. However, our main focus in this chapter is on

continuous dose rate treatment protocols and on general tumor growth characteristics.

In Section 5.2, we describe the model and formulation, including extensions of the

tumor dynamics and BED model in the continuous case. In Section 5.3, we show

that the presented continuous model is consistent with the discrete-time version in the

previous chapter. In Section 5.4, we summarize and discuss possibilities for future

research.

5.2 Model and formulation

In this section, we discuss the model and formulation for a continuous dose rate treat-

ment protocol. First, we describe an LQ model that includes sublethal damage repair.

Next, we develop a single differential equation that models the tumor dynamics. Then,

we extend the BED model to the continuous case; we use this extended BED model

to assert a constraint on the BED in the OAR. Finally, we summarize the problem

formulation of minimizing the expected number of tumor cells at the end of treatment

subject to an upper limit on the BED in the OAR.
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5.2.1 LQ model with incomplete sublethal damage repair

We define T to be the total treatment time (analogous to the number of dose fractions

N in the previous chapter). Assuming that the dose rate d(t) is delivered over the time

interval [0, T ], it is tempting to describe the cell survival fraction with the equation

S = exp

(
−
∫ T

0

(αd(t) + βd2(t)) dt

)
. (5.1)

However, this equation does not make sense for radiation dose delivered over very small

intervals of time. For example, suppose that a total dose d is uniformly delivered over

an interval of length δ1 or, alternatively, of length δ2. If 0 < δ1 < δ2, the above equation

(5.1) would suggest that the survival fraction is smaller when dose is delivered over the

interval of length δ1. Assuming both δ1 and δ2 are very small intervals of time, this does

not make intuitive sense. This apparent difficulty can be overcome by using a more

general version of the LQ model that includes incomplete sublethal damage repair.

Incomplete repair can be incorporated into the LQ model by introducing the dose

protraction factor G as done in [8, 67]. The surviving fraction including incomplete

repair of sublethal damage is given by

S = exp(−(αD +GβD2)), (5.2)

where D =
∫ T

0
d(t)dt and

G =
2

D2

∫ T

0

∫ T

0

d(t)d(τ)K(t, τ) dτ dt

=
2

D2

∫ T

0

d(t)e(t) dt,

where

e(t) =

∫ T

0

d(τ)K(t, τ) dτ (5.3)

and K(t, τ) is a suitable kernel function. We assume that the sublethal damage decays
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exponentially, i.e., that the kernel K(t, τ) takes the form

K(t, τ) = u(t− τ) exp(−(t− τ)/τr),

where u(·) is the unit step function and τr is the tissue repair time for sublethal damage.

Now, for very small values of the repair time τr, changes in the dose rate d(t) over

small instants of time can make a big difference in the survival fraction. Indeed, as

τr → 0, it can be seen that the survival fraction is described by Equation (5.1). In

our initial discussion, we provided an example of how dose variations over a small time

interval can result in a large effect on the survival fraction. A large τr, on the other

hand, results in little effect for these dose variations. Thus, based on the repair time

parameter τr, this model allows the choice of the right tradeoff for the particular cell

tissue under consideration.

5.2.2 Tumor dynamics

In this subsection, we derive a differential equation that describes the dynamics of the

number of tumor cells x(t) over the time interval [0, T ], where T is the total treatment

time. It includes general tumor growth characteristics and incomplete sublethal dam-

age repair due to continuous radiation dose administered. Assume that the dose rate

d(t) is delivered over the time interval [0, T ]. Let φ(x(t)) be the instantaneous tumor

proliferation rate. Given x(t), we will derive the resulting number of cells after a very

small unit of time δ > 0. This will lead us to the differential equation representation of

the tumor dynamics.

Based on Equation (5.2), the survival fraction in the time interval [t, t+ δ] will be

exp

(
−
∫ t+δ

t

(αTd(t) + 2βTd(t)e(t)) dt

)
= exp

(
−αT

∫ t+δ

t

d(t)

(
1 +

2eT (t)

[α/β]T

)
dt

)
,

where eT (t) is defined using Equation (5.3) with the repair time for the tumor, τ 1r .

For small δ, the effect of tumor repopulation results in x(t + δ) ≈ x(t) + δφ(x(t))x(t).
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Including the effect of radiation, we have that

x(t + δ) ≈
(
x(t) + δφ(x(t))x(t)

)
exp

(
−αT

∫ t+δ

t

d(t)

(
1 +

2eT (t)

[α/β]T

)
dt

)

≈
(
x(t) + δφ(x(t))x(t)

)
exp

(
−δαT

(
1 +

2eT (t)

[α/β]T

))

≈
(
x(t) + δφ(x(t))x(t)

)(
1− δαTd(t)

(
1 +

2eT (t)

[α/β]T

))
, (5.4)

where in (5.4) we use a Taylor series approximation. Rearranging the above equation,

we have that

1

x(t)

x(t + δ)− x(t)

δ
≈ φ(x(t))− αTd(t)

(
1 +

2eT (t)

[α/β]T

)
.

Thus, as δ approaches 0 in the limit, we arrive at the differential equation

1

x(t)

dx(t)

dt
= φ(x(t))− αTd(t)

(
1 +

2eT (t)

[α/β]T

)
. (5.5)

The first term on the right-hand side of the above equation represents the increase in

tumor growth due to repopulation, and the second term is the decrease due to radiation

delivery. We can also write the above differential equation in terms of y(t), which is

related to the x(t) through the definition y(t) = ln(x(t))/αT :

dy(t)

dt
=

1

αT

φ(exp(αTy(t)))− d(t)

(
1 +

2eT (t)

[α/β]T

)
.

The dynamics of tumor growth during therapy now is modeled. We would like to

constrain BED in the OAR in the problem formulation. To do this, we proceed to derive

the BED model including incomplete sublethal damage repair when using continuous

radiation delivery.
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5.2.3 BED model for continuous dose rate

We include the dose protraction factor G in the following derivation of the BED. We

denote BED(d, t′) to be the total BED resulting from delivering the dose rate d(t) in

the time interval [0, t′]. Recall from Chapter 4 that the BED related to the survival

fraction S through the equation BED = − ln(S)/α. Using this relation, we find

BED(d, t′) =

∫ t′

0

d(t)

(
1 +

2e(t)

[α/β]

)
dt.

Using the above relation, we define BEDO(d, t
′) as the BED in the OAR with parameter

[α/β]O and the sparing factor γ. We also define (for convenience in notation) the total

BED in the OAR, BEDO from delivering the dose rate d(t) over the time interval [0, T ]:

BEDO = BEDO(d, T ) =

∫ T

0

γd(t)

(
1 +

2γeO(t)

[α/β]O

)
dt,

where eO(t) is defined using the equation (5.3) with the repair time for the OAR, τ 2r .

As done in Chapter 4, we assert the constraint BEDO ≤ c in the optimization to ensure

a given level of NTCP.

5.2.4 Problem formulation

We formulate the optimization problem as

minimize
d(t)≥0

X+
N−1 s.t. BEDO ≤ c,

where X+
N−1 is the expected number of tumor cells after radiation treatment and c

is an appropriate constant. The dynamics of the tumor throughout the treatment

are governed by the differential equation (5.5). Though we do not provide a solution

method to solve this formulation, we discuss possible methods later in the chapter.
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Figure 5-1: Illustration of the discrete-time setup using the continuous-time model. The
repair time, treatment time, and time between fractions are τr,τt, and τf respectively.

5.3 Consistency with discrete-time model

In this section, we show that the continuous time model derived thus far is consistent

with the discrete time version in Chapter 4. In particular, given that τt is the delivery

time of a single dose fraction and τf is the time between dose fractions (Figure 5-1), we

show that the discrete time model in Chapter 4 is a good approximation if τt ≪ τr ≪ τf .

That is, if the delivery time of one dose is fast enough in comparison to tissue repair

times and if there is enough time between treatments for repair of sublethal damage, a

discrete time model can be used.

We will first consider the case where a single dose of radiation is delivered. Suppose

that a total dose of dk is delivered uniformly over the interval [k, k+ τt], i.e., d(t) equals

dk/τt for k ≤ t ≤ k + τt and 0 otherwise. We would like to now compute the resulting
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BED for this choice of d(t). The function e(t) is

e(t) =

∫ T

0

d(τ)u(t− τ) exp(−(t− τ)/τr) dτ

=

∫ t

k

dk
τt

exp(−(t− τ)/τr) dτ

≈
∫ t

k

dk
τt

dτ

=
dk
τt

(t− k) ,

where we modified the limits of integration due the definitions of d(t) and u(t) in the

second equality, and we assumed τt ≪ τr to obtain the approximation in the third

equation. Now we compute the BED:

BED =

∫ k+τt

k

d(t)

(
1 +

2e(t)

[α/β]

)
dt

≈
∫ k+τt

k

dk
τt

(
1 +

2dk/τt (t− k)

[α/β]

)
dt

= dk

(
1 +

dk
[α/β]

)
,

which is exactly the expression for BED for a single dose in the discrete time case.

Now we generalize the expression for BED for multiple radiation doses. Suppose

that N radiation doses d0, d1, . . . , dN−1 are delivered uniformly over time intervals of

length τt. Let the separation between each of the doses be τf (Figure 5-1). We will

assume τf ≈ 1 day; the analysis can be extended with the same arguments for any

τf . Thus, the kth dose dk is delivered in the time interval [k, k + τt], assuming time

in units of days. We assume that the repair time τr is much smaller than the time

between treatments τf , i.e. τr ≪ τf . In this case, note that exp(−(t− τ)/τr) ≈ 1 when

k ≤ τ ≤ k + τt and exp(−(t − τ)/τr) ≈ 0 when τ ≤ k − 1, assuming τt ≪ τr. We now
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compute the total BED:

BED =

∫ T

0

d(t)

(
1 +

2e(t)

[α/β]

)
dt

=
N−1∑

k=0

∫ k+τt

k

d(t)

(
1 +

2e(t)

[α/β]

)
dt

≈
N−1∑

k=0

∫ k+τt

k

d(t)

(
1 +

2
∫ t

k
d(τ) dτ

[α/β]

)
dt

=
N−1∑

k=0

dk

(
1 +

dk
[α/β]

)
, (5.6)

which is exactly the expression for BED in the discrete-time case.

Now, we would like to show that the continuous-time formulation is consistent with

the discrete-time one. For the discrete-time case in Chapter 4, tumor growth was

characterized by the differential equation

dy(t)

dt
=

1

αT
φ(exp(αTy(t)))

and at an integer time k, the radiation dose resulted in

y(k+) = y(k−)− dk

(
1 +

dk
[α/β]T

)
.

Let us again consider the single dose case in continuous-time. That is, let dk be uni-

formly delivered over the interval [k, k + τt]. Then,

y(t+ τt) ≈ y(t) + τt
1

αT
φ(exp(αTy(t)))− dk

(
1 +

dk
[α/β]T

)
,

which for very small treatment time τt approaches the equation (5.3) for the discrete-

time case. Furthermore, for k+τt ≤ t ≤ k+1, the continuous-time differential equation

consists only of the tumor repopulation term, and thus, matches the discrete-time

version. Finally, the BED constraint in the OAR (5.6) is also the same as in the discrete

137



time formulation. We have thus shown that the tumor dynamics and the constraint in

the continuous-time formulation is consistent with the discrete-time case.

5.4 Discussion, conclusions, and future outlook

We have extended the formulation from the previous chapter to the case of a continuous

dose rate d(t) treatment protocol. Due to the interactions between radiation dose in

close instants of time, it was necessary to include incomplete sublethal damage repair

into the LQ model. The dynamics governing the number of tumor cells at any instant of

time was written as an ordinary differential equation. We showed that this continuous

time model and formulation was consistent with the discrete-time one in the previous

chapter. We do not claim that the model and formulation is novel because a similar

setup is found in [87]. However, we hope that the derivations shed new perspective into

the problem and it may serve as the basis for future work.

The solution method to solve the fractionation problem was not discussed in this

chapter. One possibility is to use a dynamic programming approach similar to the one

in the previous chapter. However, we need to consider a few additional issues. First,

the continuous nature of the optimal control requires discretization in time. Using a

fine discretization and Euler’s approximation for example, the differential equation in

this chapter can be converted to a state update equation similar to the one in the

previous chapter. Second, due to inclusion of the incomplete sublethal damage repair,

additional states eT (t) and eO(t) are required. Thus, the state of the system would

be captured by (eT (t), y(t), eO(t), z(t)), where z(t) is the cumulative BED in the OAR

over the time interval [0, t]. Yet, an exact dynamic programming approach may not

be computationally tractable. If, for example, each state variable is discretized into

100 units, we will have to evaluate 100 million states for each time instant. It may

be necessary to resort to approximate dynamic programming methods in this case.

Since we have a deterministic problem, an alternative approach could be to use general

gradient-based non-linear programming methods. The dimension of the gradient would
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be determined by how finely one discretizes over time. Of course, there are no convexity

properties in this problem and only a local optimum is guaranteed with these methods.

There is scope for future work in the choice of solution method for this fractionation

problem.

The presented model and formulation could be used to analyze the implications

of accelerated repopulation on optimal fractionation schemes for continuous dose rate

treatment protocols such as brachytherapy. A recent paper has validated that acceler-

ated repopulation exists in cervical cancer with relatively short onset time [29]. Given

that conventional treatment for cervical cancer is a combination of external beam radia-

tion therapy and low-dose rate brachytherapy [9], there is potential for further research

investigating alternative fractionation schemes that can result in improved treatment

for this disease site.
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Chapter 6

Conclusions

In this thesis, we studied dynamic optimization of fractionation schedules for radiation

therapy. In the first part, in Chapters 2 and 3, we considered varying the daily fraction

size based on geometrical information from imaging of the patient anatomy. Along with

characterizing properties of optimal policies, we found that adaptively varying the frac-

tion size can be beneficial. We substantiated this conclusion with results from prostate

patient datasets. For prostate cancer, the approaches are particularly beneficial because

of the high sensitivity of the tumor to radiation. We also suggested daily selection of

a treatment plan from a plan library in order to avoid daily QA procedures. Future

work could couple the two problems and simultaneously optimize the dose intensities

spatially and temporally.

In Chapters 4 and 5, we considered the effect of tumor repopulation on the optimal

fractionation schedule. We were motivated primarily by the accelerated repopulation

observed towards the end of radiation treatment, which is believed to play a role in

treatment failure for some tumor sites. A dynamic programming framework was devel-

oped to determine the optimal fractionation scheme based on a model of cell kill due to

radiation and tumor growth in between treatment days. We proved that the optimal

dose fractions are increasing over time and suggested larger dose fractions later in the

treatment to compensate for the increased tumor proliferation.
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While much work has been done on the algorithmic aspects of adaptive fractionation,

there is still a need to quantify the benefit for specific disease sites. The work in

Chapter 3 found significant benefit for prostate cancer, particularly because of the

high sensitivity of the tumor to radiation. We would also expect significant benefit for

other tumors with high sensitivity. In Chapter 3, we also selected from a library of

two treatments plans: one with a small margin and one with a large one. However,

an interesting approach would be to generate the plan library itself by an optimization

procedure. The question of interest would be: Given some knowledge of the uncertainty

in motion, how can we generate two treatment plans? At first glance, this problem seems

to have a combinatorial nature and thus difficult to solve. The advantage is that this

type of selection from a plan library procedure and also adaptive fractionation does

not have the drawback of daily QA procedures. For adaptive fractionation, the beam

intensities simply need to be scaled up. For selection from a plan library, the treatment

plans would be pre-approved prior to the start of treatment.

The two parts of this thesis, adaptive fractionation and optimal fractionation in

the presence of tumor repopulation, were developed independently. But, an interesting

consideration for future investigation could be to assume that the normal tissue spar-

ing factor γ from Chapter 4 varies from day to day. This is similar to the adaptive

fractionation work except that tumor repopulation is included. Including more realistic

assumptions, such the repair effect from Chapter 5 and tumor re-oxygenation, into the

analysis could also be useful.

In Chapter 4, we looked into the effect of tumor repopulation on how the dose

should be varied temporally. A question of future interest is whether the dose should

be varied both spatially and temporally assuming tumor repopulation or more generally

a biological model. For example, it may be the case the a different dose distribution is

optimal on each treatment day even when no organ motion is assumed and no imaging

information is used. The work in [40] has looked into adapting spatio-temporally using

biological-based imaging. Yet, it is still of interest to understand the biological modeling

assumptions which lead to different treatment plans from day to day.
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In the general area of optimal fractionation for cancer treatment, a vast amount

of work has been done individually for radiation therapy and chemotherapy. Yet, far

fewer studies have considered the potential of optimal scheduling of combined radiation

and chemotherapy [22, 24, 31, 36, 43, 72, 90]. For certain cancers especially advanced

and metastasized ones, chemotherapy (treatment through anti-cancer drugs) is more

effective than radiation therapy. However, targeted tumor cells generally become more

resistant over time, and increasing the drug dose cannot always be a viable option

because it can cause systemic damage to the patient. There is significant potential

for improving treatment by modeling and optimizing the complex interactions between

anti-cancer drugs and radiation dose.

Biologically guided radiation therapy, where patient-specific treatment is achieved

through both modeling and imaging advancements, provides an exciting possibility for

the future. A survey and positive outlook towards clinical implementation is provided

in [73]. With advancements in PET imaging techniques that can measure for example

tumor proliferation rates during the course of therapy [3], the opportunity to adapt

rather than use models becomes a possibility. In terms of the physical dose, technology

and optimization techniques have enabled precise delivery to the tumor. Advances in

technology have enabled new modalities such as volumetric arc therapy (VMAT), and

there are challenges to overcome in the optimization of treatment planning. Still, it

is fair to say that the potential for drastic changes and improvements in treatment

planning exists more so when incorporating biological information. Understanding the

biological processes at the molecular level together with advancements in imaging can

enable effective treatment planning in the future.
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