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Abstract

We aim to produce predictive models that are not only accurate, but are also inter-
pretable to human experts. Our models are decision lists, which consist of a series of
if...then... statements (for example, if high blood pressure, then stroke) that discretize
a high-dimensional, multivariate feature space into a series of simple, readily inter-
pretable decision statements. We introduce a generative model called the Bayesian
List Machine which yields a posterior distribution over possible decision lists. It em-
ploys a novel prior structure to encourage sparsity. Our experiments show that the
Bayesian List Machine has predictive accuracy on par with the current top algorithms
for prediction in machine learning. Our method is motivated by recent developments in
personalized medicine, and can be used to produce highly accurate and interpretable
medical scoring systems. We demonstrate this by producing an alternative to the
CHADS2 score, actively used in clinical practice for estimating the risk of stroke in
patients that have atrial fibrillation. Our model is as interpretable as CHADS2, but
more accurate.

1. INTRODUCTION

Our goal is to build predictive models that are highly accurate, yet are highly interpretable.
These predictive models will be in the form of sparse decision lists, which consist of a series
of if... then... statements where the if statements define a partition of a set of features and
the then statements correspond to the predicted outcome of interest. Because of this form,
a decision list model naturally provides a reason for each prediction that it makes. Figure 1
presents an example decision list that we created using the NHBLI Framingham Heart Study
coronary heart disease (CHD) inventory (Wilson et al., 1998) for a 45 year-old male. The
list provides an explanation of the risk factors that can be used by both healthcare providers
and patients. A patient is at risk for CHD based on Figure 1, for example, because he has
high blood pressure and smokes. The list in Fig. 1 is one accurate and interpretable decision
list for predicting CHD, and there may be many other such lists. Our goal is to learn these
lists from data.

Our model, called the Bayesian List Machine (BLM), produces a posterior distribution
over permutations of if... then... rules, starting from a large set of possible pre-mined rules.
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The decision lists with the highest posterior values tend to be both very accurate and very
interpretable, where the interpretability comes from a novel sparsity-inducing prior structure
over permutations of rules. The prior favors concise decision lists that have a small number
of total rules, where the rules have few terms in the left-hand side.

The BLM provides a new type of balance between accuracy, interpretability and compu-
tation. Consider the challenge of constructing a predictive model that discretizes the input
space in the same way as decision trees (Breiman et al., 1984; Quinlan, 1993) or decision
lists (Rivest, 1987; Liu et al., 1998). Greedy construction methods like classification and
regression trees (CART), C4.5, or typical Bayesian decision tree methods (Dension et al.,
1998; Chipman et al., 1998, 2002) are not particularly computationally demanding, however
in practice the greediness heavily affects the quality of the solution, both in terms of accuracy
and interpretability. On the other hand, it is infeasible to fully optimize a decision tree due
to the exponential size of the search space in the possibilities for the leaves of the tree. The
BLM strikes a balance between these extremes, in that its solutions are not constructed in
a greedy way, yet it can solve problems at the scale required to have an impact on modern
healthcare.

BLM’s practical feasibility is due to its two step procedure. The construction of the
pre-mined rules in the first step massively reduces computation in the second step, where
the rules are fully ordered: a computation over permutations of rules is substantially less
demanding than a full optimization over the set of trees. As long as the pre-mined set of
rules is sufficiently expressive, the quality of the decision list will be similar to that of a
fully-optimized tree over the exponential search space. The rule ordering step for the BLM
uses Bayesian analysis, where the prior structure encourages decision lists that are sparse.
This serves not only the purpose of producing a more interpretable model, but also reduces
computation, as most of the sampling iterations take place within a small set of permutations
corresponding to the sparse decision lists. In practice, the BLM is able to compute predictive
models that are as accurate as the state-of-the-art machine learning methods, on a scale that
is much larger than that used for most modern medical scoring systems, yet maintain the
same level of interpretability as medical scoring systems.

The motivation for our work lies in developing interpretable patient-level predictive mod-
els using massive observational medical data. To this end, we use the BLM to construct an
alternative to the CHADS2 score of Gage et al. (2001). CHADS2 is widely-used in medi-
cal practice to predict stroke in patients with atrial fibrillation. Our model is built from

if total cholesterol ≥160 and smoke then 10 year CHD risk ≥ 5%
else if smoke and systolic blood pressure≥140 then 10 year CHD risk ≥ 5%
else 10 year CHD risk < 5%

Figure 1: Example decision list created using the NHBLI Framingham Heart Study coronary
heart disease (CHD) inventory for a 45 year old male. The total number of rules is only 3,
and the average number of terms on the left is 2, since both rules have 2 terms.
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over a thousand times the amount of data used to build the CHADS2 score, and is just
as interpretable as CHADS2 but much more accurate. In our experiments we compare the
stroke prediction performance of BLM to CHADS2, as well as to a collection of state-of-
the-art machine learning algorithms: C4.5 (Quinlan, 1993), CART (Breiman et al., 1984),
`1-regularized logistic regression, support vector machines (Vapnik, 1995), boosted decision
trees (Freund and Schapire, 1995), and random forests (Breiman, 2001).

2. MOTIVATION AND RELATED WORK

Most widely used medical scoring systems are designed to be interpretable, but are not
necessarily optimized for accuracy, and are generally derived from few factors. The Throm-
bolysis In Myocardial Infarction (TIMI) Score (Antman et al., 2000), Apache II score for
infant mortality in the ICU (Knaus et al., 1985), the CURB-65 score for predicting mortality
in community-acquired pneumonia (Lim et al., 2003), and the CHADS2 score (Gage et al.,
2001) are examples of interpretable predictive models that are very widely used. Each of
these scoring systems involves very few calculations, and could be computed by hand during
a doctor’s visit. In the construction of each of these models, heuristics were used to design
the features and coefficients for the model - none of these models were fully learned from
data.

In contrast with these hand-designed interpretable medical scoring systems, recent ad-
vances in the collection and storing of medical data present unprecedented opportunities to
develop powerful models that can predict a wide variety of outcomes (Shmueli, 2010). The
front-end user interface of risk assessment tools are increasingly available online, however in
large part the tools were developed using statistical models that are not interpretable. At
the end of the assessment, a patient may be told he or she has a high risk for a particular
outcome but have no understanding of why the risk is high or what steps can be taken to
reduce risk.

In this work, we focus on the CHADS2 score for predicting stroke in patients with atrial
fibrillation. A patient’s score is computed by assigning one “point” each for the presence
of congestive heart failure (C), hypertension (H), age 75 years or older (A), and diabetes
mellitus (D), and by assigning 2 points for history of stroke, transient ischemic attack, or
thromoembolism (S2). The CHADS2 score considers only 5 factors, whereas the updated
CHA2DS2-VASc score (Lip et al., 2010) includes three additional risk factors: vascular disease
(V), age 65 to 74 years old (A), and female gender (Sc). Higher scores correspond to increased
risk. In the study defining the CHADS2 score (Gage et al., 2001), the scores was calibrated
with stroke risks using a database of 1,733 Medicare beneficiaries followed for, on average,
about a year. These calibration data demonstrate a key challenge in making predictions
for (relatively) rare but important events. During the follow-up period, there were only 94
strokes across all risk categories (scores 0-6). Most patients were in lower risk categories,
leaving very few patients to calibrate risk for patients with the highest scores. There were
65 patients with a score of 5 and only 5 patients with the maximum score of 6, for example.
Thus, the CHADS2 score is calibrated using the least data for patients most at risk. For
the study in this paper, we use data from nearly ten times as many patients (n=12,586 with
1,786 strokes) and do not have the same problem with small samples for the highest risk
categories.
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2.1 Related work in machine learning and statistics

In general, humans can handle only a handful of cognitive entities at once (Miller, 1956;
Jennings et al., 1982). It has long since been hypothesized that simple models predict
well, both in the machine learning literature (Holte, 1993), and in the psychology literature
(Dawes, 1979). The concept of explanation in statistical modeling (which is related to
interpretability) has been explored in several past works (Madigan et al., 1997; Giraud-
Carrier, 1998; Vellido et al., 2012; Rüping, 2006; Bratko, 1997, for example).

Decision lists have the same form as models used in the expert systems literature from the
1970’s and 1980’s (Leondes, 2002), which were among the first successful types of artificial
intelligence. The knowledge base of an expert system is composed of natural language
statements that are if... then... rules. Decision lists are a type of associative classifier,
meaning that the list is formed from association rules. In general these rules indicate only
correlated factors, not necessarily causative factors. In the past, associative classifiers have
been constructed from heuristic sorting mechanisms (Rivest, 1987; Liu et al., 1998; Li et al.,
2001; Yin and Han, 2003; Yi and Hüllermeier, 2005; Marchand and Sokolova, 2005; Rudin
et al., 2011). Some of these sorting mechanisms work provably well in special cases, for
instance when the decision problem is easy and the classes are easy to separate, but are not
optimized to handle more general problems. Sometimes associative classifiers are formed
by averaging several rules together, but the resulting classifier is not generally interpretable
(Friedman and Popescu, 2008; Meinshausen, 2010). In the thesis of Chang (2012), rules are
ordered using discrete optimization.

Decision trees are closely related to decision lists, and are in some sense equivalent.
Decision trees are almost always constructed greedily from the top down, and then pruned
heuristically upwards and cross-validated to ensure accuracy. Because the trees are not
fully optimized, if the top of the decision tree happened to have been chosen badly at the
start of the procedure, it could cause problems with both accuracy and interpretability.
Bayesian decision trees (Dension et al., 1998; Chipman et al., 1998, 2002) use Markov chain
Monte Carlo (MCMC) to sample from a posterior distribution over trees. Early sampling
approaches in Bayesian decision trees converged slowly and required repeatedly restarting the
sampling procedure. Wu et al. (2007) improve chain convergence using a “radical restructure”
Metropolis-Hastings move. The space of decision lists using pre-mined rules is significantly
smaller than the space of decision trees, making it easier to obtain MCMC convergence.
Moreover, rule mining allows for the rules to be individually powerful.

This work is related to the Hierarchical Association Rule Model (HARM) presented
recently by McCormick et al. (2012). HARM is a Bayesian model that uses rules, but
for a different medical context and a different statistical problem. HARM estimates the
conditional probabilities of each rule in a conservative way, and does not explicitly aim to
learn the ordering of rules, as the BLM does.

3. THE BAYESIAN LIST MACHINE

We begin by presenting our method as a generative model. We are in the setting of multi-
class classification, where the set of possible labels is 1, . . . , L. In the case of predicting
stroke risk, there are only two possible labels: stroke or no stroke. The training data are
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pairs {(xi, yi)}ni=1, where xi ∈ Rd are the features of observation i, and yi are the labels,
within classes 1, ..., L. Our predictions are based on a set of rules r = 1, . . . , R (left-hand
sides) which are constructed from the training data and used to form lists. Informally, we
can describe the generative model as follows, where each step is discussed in more detail
below.

• Generate an exhaustive list of rules r = 1, . . . , R using a rule-mining algorithm. These
rules come from the set of features and are used to make lists.

• Generate a random permutation over rules π from a prior prior(p, C).

• Using this ordering, for each observation xi, select the first rule that applies, meaning
it matches the observed features. Call the rule r̃i.

• Generate the label yi from a Dirichlet-Multinomial distribution θ(r̃i), with Dirichlet
parameters α1, . . . , αL and counts nr̃i1, . . . , nr̃iL for rule r̃i chosen in the previous step.

The posterior and the prior are distributions over rule lists. To obtain a single rule list,
we could choose, for instance, the rule list having the highest posterior probability (the
maximum a posteriori estimate).

The first step in the model is to generate the set of rules. For situations where the
dimensionality of the features is fairly low, we may consider all possible candidate rules;
however in most applications we select a smaller number of rules using an algorithm for
frequent itemset mining. In our experiments we used the FP-Growth algorithm (Borgelt,
2005) which finds all itemsets that satisfy constraints on minimum support and maximum
cardinality. As long as the set of rules is large enough, we should be able to find subsets of
them, and permutations of the subsets, that form useful decision lists.

3.1 A prior over decision lists

After the set of rules is constructed, we draw an ordering over rules from a prior distribution
over permutations of rules, π ∼ prior(p, C). The prior favors shorter decision lists (small
total number of rules, sparse in the vertical direction of the list), and prefers rules with a
small number of conditional statements (small left-hand sides of rules, sparse in the horizontal
direction). Let Rπ be the number of rules in the list, Aπ be the average size of the left-hand
sides of the rules on the list, and M be the maximum allowed size of the rules. For example,
the decision list in Figure 1 has Rπ = 3 and Aπ = (2 + 2 + 0)/3. Then,

prior(π) ∝ 1(
Rπ + C Aπ

M

)p ,
where the user-specified parameter C in the prior trades off between horizontal and vertical
sparseness, and parameter p controls the overall strength of the prior. Aπ/M is a fraction
between 0 and 1, allowing the parameter C to be calibrated in a more intuitive way. For
instance, when C = 1, because Aπ/M ≤ 1, reducing the length of the decision list Rπ would
be favored over reducing Aπ. Both prior hyperparameters p and C can be adjusted to the
user’s view of interpretability, or can be cross-validated. To promote sparsity, one can mine
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only rules with small left-hand-sides, in which case M would be relatively small. In our
experiments we set C = 1 and used the single prior hyperparameter p to directly control the
length of the decision list, and set it either using cross-validation or to a specific value to
obtain a list of desired length. M was chosen to be 2 or 5 in our experiments.

3.2 The likelihood function

Define r̃ ∈ Rn as a vector of rule labels such that element r̃i = r if r is the first rule in the
decision list π that applies to observation xi. The vector r̃ partitions the set of outcomes yi
so that the likelihood for each response is computed under exactly one rule. We then use
these rule assignments to construct multinomial counts nr` for each rule r = 1, . . . , R and
for each class ` = 1, . . . , L by tallying the number of times rule r was associated with an
outcome in class `. That is, nr` is the number of observations x for which r was the first rule
in the list that applied, and which have label y = `. Let nr =

∑L
`=1 nr` be the total number

of observations classified by rule r. The likelihood is then

L(y1, . . . , yn|θ(1), . . . , θ(R), r̃) =
R∏
r=1

Multinomial(nr1, . . . , nrL|nr, θ(r)),

where
θ(r) ∼ Dirichlet(α1, . . . , αL).

Since the θ(r) are not of primary interest, we can marginalize over θ(r) in each Multino-
mial distribution in the above product, obtaining, through the standard derivation of the
Dirichlet-Multinomial distribution,

p(y1, . . . , yn|α1, . . . , αL, r̃) =
R∏
r=1

Γ(
∑L

`=1 α`)

Γ(
∑L

`=1 nr` + α`)
×

L∏
`=1

Γ(nr` + α`)

Γ(α`)

∝
R∏
r=1

∏L
`=1 Γ(nr` + α`)

Γ(
∑L

`=1 nr` + α`)
, (1)

The above equation depends on the rule indicators r̃i through the counts nr`.
In practice, many datasets are extremely imbalanced. For example, many fewer medical

patients have a stroke than do not have a stroke. In such circumstances, without an appro-
priate correction, the likelihood can be dominated by negative responses and as a result the
method will simply predict “no stroke” for each patient using a single default rule. We may
instead desire to trade off between sensitivity and specificity of the classifier. To do this, we
introduce an altered likelihood for imbalanced data:

p(y1, . . . , yn|α1, . . . , αL, r̃) ∝
R∏
r=1

∏L
`=1 Γ(υ`nr` + α`)

Γ(
∑L

`=1 υ`nr` + α`)
, (2)

where υ` = L/P (y = `). The υ` terms re-weight the observations in each class to introduce
additional weight in the likelihood for underrepresented cases. For imbalanced datasets,
we apply the rule mining algorithm separately to each class to ensure that rules that are
powerful for a particular underrepresented class are not rejected by the minimum support
threshold.
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3.3 Markov chain Monte Carlo sampling

The rule that ends the usable part of the list is called the “default” rule. The default rule
has an empty left hand side, so that every observation applies to it. In the example of Fig.
1, the default rule is “else 10 year CHD risk < 5%.” The default rule supplies the prediction
for every observation for which a prediction was not made at an earlier rule in the list.

We do Metropolis sampling, generating the proposed π∗ from the current πt using one
of three options: 1) Swap the position of two rules on the decision list. 2) Add a rule to
the decision list, by moving it above the default rule. 3) Remove a rule from the decision
list, by moving it below the default rule. Which rules to adjust, and their new positions, are
chosen randomly at each step. The option to swap, add, or remove is also chosen randomly.
As long as the probabilities of adding and removing are the same, the proposal distribution
is symmetric. In our experiments we used a uniform distribution over these choices. This
sampling algorithm is related to those used for Bayesian Decision Tree models (Chipman
et al., 2002, 1998; Wu et al., 2007), however, due to the reduction in the size of the search
space from the rule mining step, we do not have similar problems with local maxima. We
ensure that the sampler is not trapped in a local maximum using a convergence diagnostic
which we now describe.

3.4 Convergence diagnostic

We assess chain convergence using the method of Brooks et al. (2003) with the novel addition
of a randomization test on the chi-squared statistic. We begin J chains from randomly
selected initial conditions and run them for N iterations. We discard the first half of the
samples as burn-in, and thin the remaining samples at a rate of 100. Suppose that the J
chains visited a total of c decision lists. We define N j

ν as the number of times chain j visited
decision list ν in the thinned samples, j = 1, . . . , J and ν = 1, . . . , c. We then implement
a chi-square test of homogeneity across the chains. If the chains were homogeneous, the
expected number of visits per chain to each decision list ν would be Eν = 1

J

∑J
j=1N

j
ν and

the chi-squared statistic is

χ2 =
c∑

ν=1

J∑
j=1

(N j
ν − Eν)2

Eν
.

Brooks et al. (2003) use Pearson’s chi-squared test to compute a p-value. If the p-value
is sufficiently large (e.g., greater than 0.05) then the null hypothesis of chain homogeneity
cannot be rejected, and the chains can be considered converged. Pearson’s chi-squared test
tends to perform poorly when counts are less than around 5, which is often the case for
chains over decision lists because the space of decision lists is very large. Thus rather than
use the χ2 distribution which is only asymptotically accurate, here we empirically estimate
the actual distribution of the χ2 statistic. This is done by randomly sampling a large number
of contingency tables with the same marginals asN

1
1 . . . N1

c
...

...
NJ

1 . . . NJ
c
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and computing their χ2 statistic. Random contingency tables with fixed marginals can be
efficiently sampled using Patefield’s algorithm (Patefield, 1981), which is available as the R
function “r2dtable.” This provides an empirical distribution for the χ2 statistic and the p-
value can be estimated directly as the fraction of randomly generated tables with a χ2 value
larger than that of the Markov chain Monte Carlo sample chains. In our experiments, we
used 3 chains and determined chains had converged if p > 0.05, for which in our experiments
N = 106 was sufficient.

4. SIMULATION AND BENCHMARK DATASET STUDIES

We empirically analyzed the performance of the BLM using simulation studies to investi-
gate consistency, and benchmark dataset studies to investigate generalization and prediction
performance.

4.1 Simulation studies

We use simulation studies to demonstrate that when data are generated by a decision list
model, the BLM method is able to recover the true decision list. We generated independent,
random observations with d = 1000 binary features. Given observations with arbitrary
features and a collection of rules on those features, the observations can be transformed to
a new, binary feature space where each feature corresponds to a rule, and takes value 1 if
the rule applies to that observation and 0 otherwise. Thus, we can consider observations to
be binary vectors without loss of generality. We generated a random decision list of size 10
as a random ordering of 9 features, plus the default rule. Each rule in the decision list was
assigned a distribution over labels using a random draw from the Beta(1/2, 1/2) distribution,
which ensures that the rules are informative about labels. Labels were then assigned to each
observation using the decision list: For each observation, the label was taken as a draw from
the label distribution corresponding to the first rule that applied to that observation. We
applied BLM as described in Section 3, for a range of numbers of observations n and prior
strengths p.

To appropriately visualize the posterior distribution, we binned the posterior rules ac-
cording to their distance from the true decision list, using the number of incorrect positions
on the list as the distance metric. A position on a list was considered incorrect if it did not
contain exactly the rule that the true decision list had at that position, thus the number
of incorrect positions ranged from 0 (exactly the true decision list) to 10 (an error at every
position). This metric is conservative, because lists are equivalent when the positions of two
rules are swapped if the sets of observations satisfying those rules are disjoint. The results
of the simulations are given in Fig. 2.

Figure 2(a) shows that when the number of observations is small, the posterior mass is
primarily concentrated on decision lists with a large number of incorrect positions, and as
the number of observations is increased the posterior shifts to decision lists that are closer to
the true list. Figure 2(b) illustrates the balance between the prior, which encourages small
decision lists, and the data, which eventually overwhelm the prior. Together, Figs. 2(a)
and (b) show that even with very few observations many of the highest rules on the list are
in their correct positions, but the prior is encouraging lists that are shorter than the true,
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Figure 2: (a) Total posterior probability of all posterior decision lists with the specified
number of incorrect positions, for 100 observations (red), 1,000 observations (green), and
10,000 observations (black). (b) The length of the maximum a posteriori decision list for for
simulations with varying numbers of observations.

generating list. With 4,000 observations and higher, the maximum a posteriori list was the
true decision list.

4.2 Benchmark dataset studies

The simulation studies primarily address the question of consistency, and show that when
the data follow a decision list model, we are able to recover that model. We now use
benchmark dataset studies to address the questions of generalization and prediction accuracy.
We consider a collection of datasets from the UCI Machine Learning Repository (Bache
and Lichman, 2013) that are frequently used in the benchmark dataset studies of machine
learning papers: Tic-Tac-Toe Endgame, Mammographic Mass (Elter et al., 2007), Titanic,
Breast Cancer Wisconsin (Original) (Mangasarian and Wolberg, 1990), and Adult.

For each dataset, categorical features were separated into binary features and real-valued
features were split at their median into two binary features each. We used 5-fold cross
validation and measured classification accuracy on each fold. None of these datasets suffer
from extreme class imbalance, so we used the form of the likelihood given in (1). For
all datasets except Adult, the parameters for rule mining were 5% minimum support and
maximum cardinality of 5. For Adult the minimum support threshold was increased to 20%
due to a large number of itemsets. We chose the strength of the prior p using 5-fold cross
validation on each training set with p = 0.5, 2, and 5, and set p at the value that maximized
area under the receiver operating characteristic curve (AUC) over the validation sets. We
made predictions using the maximum a posteriori decision list.

In Table 1 we compare the prediction accuracy to C4.5, CART, `1-regularized logistic
regression, support vector machines (SVM), boosted decision trees (BDT), and random
forests. The implementation details for these comparison algorithms are in the Appendix.
For all of these datasets, the decision lists created by BLM had prediction power on par with
the other commonly used learning algorithms.

The BLM decision lists for these datasets were also all interpretable. For example, the
Tic-Tac-Toe dataset contains all possible end board configurations for the game Tic-Tac-Toe,
with the task of determining whether or not player “X” won. The dataset is deterministic,
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Table 1: Mean classification accuracy across 5 folds of cross-validation, and in parenthe-
ses standard deviation, for various machine learning algorithms applied to UCI benchmark
datasets

Tic-Tac-Toe Mammogram Titanic Wisconsin Adult

BLM 1.00 (0.00) 0.81 (0.05) 0.79 (0.02) 0.95 (0.02) 0.82 (0.01)
C4.5 0.86 (0.04) 0.81 (0.05) 0.77 (0.02) 0.93 (0.03) 0.83 (0.01)
CART 0.88 (0.04) 0.79 (0.06) 0.79 (0.02) 0.93 (0.02) 0.82 (0.01)
Logistic Reg. 0.98 (0.01) 0.81 (0.06) 0.78 (0.02) 0.96 (0.01) 0.85 (0.01)
SVM 0.99 (0.01) 0.79 (0.06) 0.78 (0.02) 0.96 (0.02) 0.84 (0.02)
BDT 0.86 (0.04) 0.81 (0.06) 0.78 (0.02) 0.96 (0.02) 0.85 (0.01)
Rand. Forest 0.98 (0.01) 0.81 (0.06) 0.79 (0.02) 0.96 (0.02) 0.84 (0.02)

if male and adult then died (80%)
else if 3rd class then died (59%)
else survived (93%)

Figure 3: Decision list for Titanic. In parentheses, we give the proportion of observations
satisfying that rule and no previous rule for which the classification was correct.

and there are exactly 8 ways that player “X” can win. The BLM decision list contained
exactly the 8 ways of winning, and thus achieved perfect prediction accuracy, something
that no other machine learning algorithm could do. As another example, the Titanic dataset
contains the ticket class, gender, and age for the passengers of the Titanic, with the task of
determining if the passenger survived or not. In Fig. 3 we give the fitted decision list for
the Titanic dataset, which is consistent with historical accounts of space on lifeboats being
limited to women and children, particularly those with higher-class tickets. Across all of the
benchmark dataset experiments, the mean size of the BLM decision list ranged from 3.8 to
8.4, which could certainly be considered interpretable.

The benchmark dataset studies show that for these simple, frequently used example
datasets, the decision lists produced by BLM have predictive power similar to popular ma-
chine learning algorithms. In the next section, we apply BLM to a large dataset of medical
histories and learn decision lists for the real problem of stroke prediction in atrial fibrillation
patients.

5. STROKE PREDICTION COMPARED TO CHADS2

We use the Bayesian list machine to derive a competitor to CHADS2 using the MarketScan
Medicaid Multi-State Database (MDCD). MDCD contains administrative claims data for
11.1 million Medicaid enrollees from multiple states. This database forms part of the suite
of databases that the Observational Medical Outcomes Partnership (OMOP, http://omop.
fnih.org) has mapped to a common data model (Stang et al., 2010). We extracted every
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if hemiplegia then stroke risk 58.0% (14.5%)
else if cerebrovascular disorder then stroke risk 46.6% (12.5%)
else if transient ischaemic attack and essential hypertension

then stroke risk 23.2% (8.3%)
else if occlusion and stenosis of carotid artery without cerebral infarction

then stroke risk 16.4% (7.8%)
else if age≤60 then stroke risk 3.7% (7.4%)
else stroke risk 8.5%

Figure 4: Decision list for determining 1-year stroke risk following diagnosis of atrial fibril-
lation from patient medical history. For each rule we give in parentheses the base risk for all
patients that make it to that depth on the list.

patient in the MDCD database with a diagnosis of atrial fibrillation, one-year of atrial
fibrillation-free observation time prior to the diagnosis, and one year of observation time
following the diagnosis (n=12,586). Of these, 1,786 (14%) had a stroke within a year of the
atrial fibrillation diagnosis. This is a much larger dataset than the one originally used to
develop the CHADS2 score (n=1,733, with 94 strokes).

As candidate predictors we considered all drugs and all conditions. Specifically, for every
drug and condition, we created a binary predictor variable indicating the presence or absence
of the drug or condition in the longitudinal record prior to the atrial fibrillation diagnosis.
These totaled 4,146 unique medications and conditions. We included features for age and
gender. Specifically, we used 50, 60, 70, and 80 years of age as split points, and for each split
point introduced a pair of binary variables indicating whether the patient’s age is less than
or greater than the split point. We mined rules separately for each class (stroke or no stroke)
using a minimum support threshold of 10% and a maximum cardinality M of 2. The total
number of rules used in five folds of cross-validation ranged from 2162 to 2240. We used
the likelihood model for imbalanced data, (2), and set the BLM prior hyperparameter at
p = 700 to obtain a list of similar complexity to the CHADS2 score. We followed the sampling
procedure and then evaluated the performance of the maximum a posteriori decision list
using 5-fold cross-validation, constructing a receiver operating characteristic (ROC) curve
and measuring AUC for each fold.

In Fig. 4 we show the maximum a posteriori decision list recovered from one of the folds.
For each rule we give the stroke risk estimated from the training data as the number of
patients satisfying that rule (and no preceding rule) that had a stroke. We give in parentheses
the stroke risk across all patients that did not satisfy any of the preceding rules in the list.
For example, the second line in the list indicates that among patients without hemiplegia
the stroke risk was 12.5%, which increased to 46.6% when patients had a cerebrovascular
disorder.

The list indicates that past history of stroke reveals a lot about the vulnerability toward
future stroke. In particular, the first half of the decision list focuses on a history of stroke,
in order of severity. Hemiplegia, the paralysis of an entire side of the body, is a symptom of
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Figure 5: ROC curves for stroke prediction on the MDCD database for each of 5 folds of
cross-validation, for BLM (black), CHADS2 (red), and CHA2DS2-VASc (green).

a severe stroke. Cerebrovascular disorder indicates a prior stroke, and transient ischaemic
attacks are generally referred to as “mini-strokes.” The second half of the decision list in-
cludes age factors and vascular disease, which are known risk factors and are included in the
CHA2DS2-VASc score. The lists that we obtained in the 5 folds of cross-validation were of
similar complexity to the CHADS2 score: the mean list length was 6.8 (standard deviation
0.8). For comparison, CHADS2 uses 5 features and CHA2DS2-VASc uses 8 features.

In Fig. 5 we give ROC curves for all 5 folds for BLM, CHADS2, and CHA2DS2-VASc, and
in Table 2 we report mean AUC across the folds. These results show that with complexity and
interpretability similar to CHADS2, the BLM decision lists performed significantly better at
stroke prediction than both CHADS2 and CHA2DS2-VASc (p < 0.01, t-test). Interestingly,
we also found that CHADS2 outperformed CHA2DS2-VASc despite CHA2DS2-VASc being
an extension to CHADS2. This is likely because the model for the CHA2DS2-VASc score,
in which risk factors are added linearly, is a poor model of actual stroke risk. For instance,
the stroke risk percentages calibrated to the CHA2DS2-VASc scores are not a monotonic
function of score: The stroke risk with a CHA2DS2-VASc score of 7 is 9.6%, whereas a
score of 8 corresponds to a stroke risk of 6.7%. The fact that more stroke risk factors can
correspond to a lower stroke risk suggests that the CHA2DS2-VASc model is misspecified,
and highlights the difficulty in constructing these interpretable models manually.

Table 2 also gives performance results for the same collection of machine learning algo-
rithms used in Section 4.2. The decision tree algorithms CART and C4.5, the only other
interpretable classifiers, were outperformed even by CHADS2. The BLM performance was
comparable to that of the standard, generally uninterpretable, machine learning algorithms.

6. DISCUSSION AND CONCLUSION

We are working under the hypothesis that many real datasets permit predictive models that
can be surprisingly small. This was hypothesized over a decade ago (Holte, 1993), however,
we now are starting to have the computational tools to truly test this hypothesis. The BLM
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Table 2: Mean, and in parentheses standard deviation, of AUC across 5 folds of cross-
validation for stroke prediction

AUC
BLM 0.750 (0.007)
CHADS2 0.721 (0.014)
CHA2DS2-VASc 0.677 (0.007)
C4.5 0.553 (0.019)
CART 0.703 (0.010)
Logistic Reg. 0.767 (0.011)
SVM 0.763 (0.013)
BDT 0.780 (0.017)
Rand. Forest 0.776 (0.012)

method introduced in this work aims to hit the “sweet spot” between predictive accuracy,
interpretability, and tractability.

For problems where interpretability requires extra constraints on the ordering or form
of the rules, the framework introduced here can be adapted to handle that, and there are
several ways to do this. First, the prior can be set to zero for lists that are “uninterpretable”
according to a given definition. Second, post-processing on the lists can be performed in
order to engineer the lists towards the desired level of interpretability. In that case, one
should beware of changing the accuracy level when working manually with the lists. Third,
one can explore the set of lists having high posterior values, and can choose among those
lists for the one that is the most interpretable.

Interpretable models have the benefits of being both concise and convincing. A small
set of trustworthy rules can be the key to communicating with domain experts and to allow
machine learning algorithms to be more widely implemented and trusted. In practice, a pre-
liminary interpretable model can help domain experts to troubleshoot the inner workings of
a complex model, in order to make it more accurate and tailored to the domain. We demon-
strated that interpretable models lend themselves to the domain of predictive medicine, but
there are a wide variety of domains in science, engineering, and industry, where these models
would be a natural choice.

APPENDIX

Comparison algorithm implementations

Support vector machines : LIBSVM (Chang and Lin, 2011) with a radial basis function kernel.
We selected the slack parameter CSVM and the kernel parameter γ using a grid-search over
the ranges CSVM ∈ {2−4, 2−3, . . . , 24} and γ ∈ {2−6, 2−5, . . . , 20} to find the parameters
that maximized AUC over a 5-fold cross-validation over each training set. C4.5 : C4.5
Release 8, distributed by Quinlan. CART : The R library “rpart” with default parameters
and pruned using the complexity parameter that minimized cross-validation error. Logistic
regression: The LIBLINEAR (Fan et al., 2008) implementation of logistic regression with `1
regularization. We selected the regularization parameter CLR from {2−4, 2−3, . . . , 24} using
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5-fold cross-validation over each training set to find the parameter that maximized AUC.
Boosted decision trees : The R library “gbm” with shrinkage = 0.005, ntrees = 10000, and
the number of iterations selected with 5-fold cross-validation. Random forests : The R library
“randomForest” with 10, 000 trees.
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