
A Bulky Biaryl Phosphine Ligand Allows for Palladium-Catalyzed
Amidation of Five-Membered Heterocycles as Electrophiles**

Mingjuan Su and Stephen L. Buchwald*

Department of Chemistry, Room 18-490, Massachusetts Institute of Technology, Cambridge MA
02139 (USA)

Abstract

Palladium-catalyzed amidation of five-membered heterocyclic bromides that contain multiple
heteroatoms was achieved for the first time using the Pd/1 catalyst system. This system allows for
efficient access to N-arylated imidazoles, pyrazoles, thiazoles, pyrroles, and thiophenes in
moderate to excellent yield. Experimental results and DFT calculations point to the need for
electron-rich and especially sterically demanding biaryl phosphine ligand to promote these
difficult cross-coupling reactions.
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Five-membered heterocyclic compounds are ubiquitous in both industrial and academic
settings.[1a–c] The biological properties they confer and their ability to engage in hydrogen-
bonding have rendered them exceedingly important, particularly in drug discovery
applications.[1d] As a testament to this, five of the top ten best-selling brand name drugs in
2010 contained five-membered heterocycles.[1e]

Despite significant advances made in palladium-catalyzed C–N cross-coupling
methodology, especially with respect to the historically difficult palladium-catalyzed
amidation reaction, five-membered heterocyclic halide electrophiles are notoriously difficult
coupling partners.[2] This is partially due to their altered electronic properties relative to six-
membered heteroarenes, which are more easily transformed. While halothiophenes, -furans
and -indoles have been utilized as substrates with some success, transformations of
analogous heterocycles containing multiple heteroatoms, such as haloimidazoles and
halopyrazoles, remain a challenge.[2a,e] One explanation for their reticence to react is based
on the presence of a basic heteroatom, which has the potential to ligate the palladium center
leading to catalyst inhibition or deactivation.[3] Further, despite interest in heterocycles
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containing a fused imidazole ring, such as imidazo[1,2-a]pyridine,[4a–c] imidazo[1,2-
b]pyridazine,[4d] and imidazo[1,2-a]pyrazine,[4e] the use of these types of substrates has not
been extensively explored in cross-coupling reactions.

Catalysts based on ligands L1–L4 have been shown to be uniquely effective in facilitating
palladium-catalyzed amidations with aryl and heteroaryl halides.[3,5] In the case of
monodentate biarylphosphine ligands (L2–L4), mechanistic studies and DFT calculations
have indicated that this enhanced reactivity may be due to their conformational rigidity; the
Pd(II) center is forced to position itself over the non-phosphine-containing ring, thus
preventing catalyst inhibition via formation of a κ2-amidate complex.[5c,e] It has also been
postulated that enhanced rigidity around the Pd(II) center accelerates the rate of reductive
elimination. However, despite the efficiency of these biarylphosphine-ligated palladium
complexes in facilitating a variety of C–N cross-coupling reactions, a prominent limitation
has been their deficiencies in processing five-membered heterocyclic halides that contain
multiple heteroatoms with success largely limited to aniline nucleophiles.[2a] Thus, the
development of a process for the combination of these difficult electrophiles with
challenging nucleophiles, has been a daunting task. Herein, we report an example of such a
technique, the first palladium-catalyzed amidation of multi-heteroatom, five-membered
heterocyclic bromides facilitated by a novel bulky biarylphosphine ligand bearing adamantyl
phosphine substituents (AdBrettPhos, L6).

Our initial studies focused on the coupling of 4-bromo-1-methylimidazole and benzamide
(Table 1). Among the previously reported ligands L1–L4, only the use of L3 provided a
moderate conversion of aryl bromide (entries 1–4), suggesting the importance of the
BrettPhos biaryl motif.[6] Considering the lessened steric bulk associated with five-
membered heterocycles, we reasoned that ligands bearing even larger substituents on
phosphorus might facilitate the product-forming reductive elimination step. Thus, we
prepared L5 and L6, which conserve the BrettPhos biaryl backbone framework yet possess
one or two extremely bulky adamantyl substituents. Indeed, the use of the larger L5 resulted
in a 43% conversion and an improved yield of 24% (Table 1, entry 5). Notably, the use of
the diadamantyl ligand L6 resulted in full conversion of the bromoimidazole and an isolated
yield of 83% of the desired amidation product (Table 1, entry 6).

The substrate scope of the palladium-catalyzed cross-coupling of five-membered heteroaryl
bromides and amides was examined and the results are shown in Table 2. The present
system was effective for the cross-coupling of a variety of five-membered heterocyclic
bromides, including imidazoles, pyrazoles, thiazoles, pyrroles and thiophenes. Notably, this
system provides access to the products derived from 4-bromo-1-alkylimidazoles (entries 1–
4). In addition, substrates of interest in the medicinal chemistry arena such as 3-
bromoimidazo[1,2-a]pyridine, -imidazo[1,2-b]pyridazine, and - imidazo[1,2-a]pyrazine
(entries 5–7) were also transformed in good yield. Other heterocyclic halides such as 4-
bromothiazole, 4-bromopyrrole and 2-bromothiophene (entries 8–12) were also found to be
suitable coupling partners, as well as 4-bromo-1-alkylpyrazoles, though in this case higher
temperatures were required (entries 13–16). In addition, amides containing pyridine,
thiophene or furan units were well tolerated. However, the reaction of substrates containing
free (H)N-bromoimidazoles and pyrazoles remain problematic.

We were particularly intrigued by the contrasting performance between reactions that
utilized L3 and L6, given that the difference in electronic effects between the tert-butyl and
adamantyl groups is minimal (e.g., the 31P NMR shift of L3 and L6 are nearly identical, 35
ppm and 37 ppm, respectively). This led us to speculate that the altered steric environment
of L6 might be the key in promoting cross-coupling in the case of five-membered
heterocyclic aryl bromides. Thus, we decided to examine the structural differences between
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the oxidative addition complexes derived from L3 and L6. Unfortunately, due to insufficient
crystallinity, structural information for the five-membered heterocyclic series could not be
obtained. However, we were able to prepare the oxidative addition complexes derived from
six-membered aryl bromides for a direct comparison of the L3- and L6-derived
intermediates (Figure 1). The X-ray structures of 2a and 2b revealed that the P–Pd–C1
angles were respectively, 96.0° and 99.1°.[7] It seems likely that the increased angle
observed in 2b can be attributed to the size of the adamantyl groups. With this information
in mind, we turned to computational studies in an effort to gain insight into the ligand effects
on the cross-coupling of five-membered heterocycles.

To conduct this study, geometry optimizations on LPd(HetAr)(benzamidate) complexes
were performed, where L was L3, L5 and L6 (Figure 2, A, B, C respectively). It has been
previously suggested that the most favored geometry around biaryl phosphine-ligated
palladium centers is one in which the amidate is trans to the phosphorus.[5c] While it has
also been reported that ligands with methoxy group ortho to phosphorus can freely rotate
with the palladium moiety being either over or away from the lower biaryl ring,[5e] we
believe that in the case of ligands like L6, this rotation is restricted due to the presence of the
very large adamantyl groups. Thus, based on our experimental results and the X-ray
structures described above, we postulated that five-membered heterocycles, require the
presence of a more sterically demanding dialkyl phosphino group to facilitate reductive
elimination. Indeed, upon examining the P–Pd–C1 angle for complexes A, B and C, we
observed that the heteroaryl group is pushed more towards the benzamidate in C relative to
A and B (bond angles in A: 97.0°; in B: 97.7°; in C: 98.5°), consistent with our experimental
observations; i.e., distorted toward the transition state for reductive elimination.[8]

In summary, the development of a bulky biaryl phosphine ligand L6 has allowed for
palladium-catalyzed amidation of five-membered heterocyclic electrophiles, representing
the first such cross-coupling with this class of substrates. Structural and DFT studies suggest
the need for the use of an electron-rich and sterically demanding ligand to promote these
amidation reactions. Further exploration of these concepts as applied to other cross-coupling
reactions involving five-membered heterocyclic halides is under investigation.

Experimental Section
General procedure

An oven-dried test tube was equipped with a magnetic stir bar and charged with
[(allyl)PdCl]2, L6, Cs2CO3 (2 mmol) and amide (2 mmol) (the heteroaryl bromide (1
mmol), if solid, is added at this point). The test tube was sealed with a screw-cap septum,
and then evacuated and backfilled with argon (this process was repeated a total of 3 times).
2-methyl-2-butanol (2 mL) and heteroaryl bromide (1 mmol) were then added via syringe.
The reaction mixture was heated at 90°C for 21h. The reaction mixture was cooled to room
temperature, diluted with EtOAc, washed with a saturated solution of sodium bicarbonate,
dried over Na2SO4, concentrated in vacuo and purified by flash chromatography on silica
gel to give pure products.
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Figure 1.
Synthesis and X-ray structures of oxidative addition complexes (where L3 = tBuBrettPhos
and L6 = AdBrettPhos). Thermal ellipsoid plot at 50% probability; hydrogen atoms omitted
for clarity.
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Figure 2.
Optimized ground state structures for monoligated LPd(HetAr)(benzamidate) complexes
(phosphorus in orange, palladium in green, nitrogen in blue, oxygen in red). Hydrogen
atoms omitted for clarity. Angle P–Pd–C1: (A, 97.0°; B, 97.7°; C, 98.5°)
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Table 1

Ligand effects in the palladium-catalyzed amidation of 4-bromo-1-methylimidazole.[a]

Entry Ligand Conversion [%][b] Yield [%][c]

1 L1 <5 0

2 L2 <5 0

3 L3 35 15

4 L4 <5 0

5 L5 43 24

6 L6 100 83

[a]
Reaction conditions: 4-bromo-1-methylimidazole (0.5 mmol), benzamide (1 mmol), [(allyl)PdCl]2 (0.75 mol%), ligand (3 mol%), Cs2CO3 (1

mmol), 2-methyl-2-butanol (1 mL), 90 °C, 21 h.

[b]
Determined by GC.

[c]
Yield of isolated product.
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