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Abstract

Recovering a full description of a wave from limited intensity measurements remains
a central problem in optics. Optical waves oscillate too fast for detectors to measure
anything but time–averaged intensities. This is unfortunate since the phase can reveal
important information about the object. When the light is partially coherent, a
complete description of the phase requires knowledge about the statistical correlations
for each pair of points in space. Recovery of the correlation function is a much more
challenging problem since the number of pairs grows much more rapidly than the
number of points.

In this thesis, quantitative phase imaging techniques that works for partially co-
herent illuminations are investigated. In order to recover the phase information with
few measurements, the sparsity in each underly problem and efficient inversion meth-
ods are explored under the framework of compressed sensing. In each phase retrieval
technique under study, diffraction during spatial propagation is exploited as an ef-
fective and convenient mechanism to uniformly distribute the information about the
unknown signal into the measurement space.

Holography is useful to record the scattered field from a sparse distribution of par-
ticles; the ability of localizing each particles using compressive reconstruction method
is studied. When a thin sample is illuminated with partially coherent waves, the trans-
port of intensity phase retrieval method is shown to be effective to recover the optical
path length of the sample and remove the effect of the illumination. This technique
is particularly suitable for X–ray phase imaging since it does not require a coherent
source or any optical components. Compressive tomographic reconstruction, which
makes full use of the priors that the sample consists of piecewise constant refractive
indices, are demonstrated to make up missing data. The third technique, known as
the phase space tomography (PST), addresses the correlation function recovery prob-
lem. Implementing the PST involves measuring many intensity images under spatial
propagation. Experimental demonstration of a compressive reconstruction method,
which finds the sparse solution by decomposing the correlation function into a few mu-
tually uncorrelated coherent modes, is presented to produce accurate reconstruction
even when the measurement suffers from the ‘missing cone’ problem in the Fourier

3



domain.

Thesis Supervisor: George Barbastathis
Title: Professor

4



Acknowledgments

First of all, I would like to express my gratitude to my advisor, Prof. George Barbas-

tathis. He has been not only a great advisor but also a sincere friend throughout all

these years. The most important thing I learned from him for research is to always

look for answers from the basics. I am also grateful for his encouragement when I

lack of confidence, and the many great experiences outside of MIT I got thanks to

his support, such as Singapore, and many conferences.

I would like to thank my thesis committee members: Prof. Colin Sheppard, Prof.

Ramesh Raskar, and Prof. Peter So for taking time to offer valuable advice on my

work.

I would also like to thank the members at the 3D Optical Systems group for all

their help throughout my graduate school life. I joined the group with almost no

idea about optics, the whiteboard drawings and lab demos from Jose A. Dominguez–

Caballero and Nick Loomis are the most memorable lessons during my first semester,

and I would like to thank for all the helps from them. Laura Waller introduced

me the TIE, and we have been collaborators and good friends ever since, which I

feel very grateful. I would like to thank Se Baeh Oh, and Zhengyun Zhang for the

insightful discussions on partial coherence and phase space and their contributions to

the phase space tomography project; Jonathan Petruccelli for all the helps he gave

me in various projects we have been working on together; Justin Lee for his helps on

compressed sensing and his hospitalities in many occasions; Chih–Hao Chang, Yuan

Luo, Baile Zhang, Dipanjan Bhattacharya, and Yongjin Sung for their helps in both

research and career advices; Qin Miao for sharing the X–ray imaging data; Jason

Ku for his American culture lessons; Nikhil Vadhavkar, Adam Pan, and Kelli Xu

for their helps at the last stage before my defense; Seongkeun Cho for proof–reading

the thesis. I also enjoyed and feel thankful for the opportunities to learn about

the nano–optics research from Nader Shaar, Tony Nichol, Satoshi Takahashi, Martin

Deterre, Chee Wee Tan, Se Young Yang, Hyungryul (Johnny) Choi, and Jeong-gil

Kim. Furthermore, I had my best memories with my Chinese friends in this group,

5



Yi Liu, Chih–Hung (Max) Hsieh, Yubo Duan, Yuanhao (Howard) Huang, Hanhong

Gao, Yen–Sheng Lu, Xiaogang (Larry) Liu, Wensheng Chen, Zhi Chen and Hongyi

(Thomas) Xu, which I would never forget.

Lastly and specially, I would like to thank my family for their love and support.

6



Contents

1 Introduction 17

1.1 Quantitative phase imaging . . . . . . . . . . . . . . . . . . . . . . . 18

1.1.1 Interferometric/holographic techniques . . . . . . . . . . . . . 19

1.1.2 Propagation based techniques . . . . . . . . . . . . . . . . . . 20

1.2 Computational imaging and compressed sensing . . . . . . . . . . . . 21

1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Compressive holography applied to particulate flows 27

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Theory and method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Forward model . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.2 Back–propagation method . . . . . . . . . . . . . . . . . . . . 33

2.2.3 Compressive reconstruction method . . . . . . . . . . . . . . . 34

2.3 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Transport of intensity imaging with partially coherent illumination 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 TIE with coherent illumination . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 Validity of the TIE . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 TIE with partially coherent illumination . . . . . . . . . . . . . . . . 46

3.3.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7



3.3.2 Experimental verification of the PC–TIE . . . . . . . . . . . . 51

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Transport of intensity phase imaging with nonlinear diffusion regu-

larization 55

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Theory and method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Compressive X–ray phase tomography based on transport of inten-

sity 63

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Forward model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Compressive reconstruction method . . . . . . . . . . . . . . . . . . . 68

5.4 X–ray phase tomography . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.5 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . 73

6 Compressive Phase Space Tomography 79

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Theory and method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4 Experimental results for 2D PST . . . . . . . . . . . . . . . . . . . . 90

6.5 Experimental results for 4D PST . . . . . . . . . . . . . . . . . . . . 96

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7 Wigner function measurement using a lenslet array 103

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.3 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8



8 Conclusion and future work 119

A Proof of Eq. (7.13) 123

9



10



List of Figures

1-1 (a) A coherent wave has a well–defined amplitude and phase as illus-

trated by the set of blue curves. (b) Partially coherent light contains a

statistical mixture of coherent fields; here, the sets of red, green, and

blue curves indicate three different coherent fields that are mixed in

space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1-2 Architectures of (a) conventional imaging and (b) computational imaging. 22

1-3 Geometry of the (a) `2 and (b) `1 recovery for an unknown vector

x = [x(1), x(2)]. A single measurement Ax = y can be graphically

represented by the red line in both figures. Since the cost function for

‖x‖`2 is a circle, while for ‖x‖`1 is a diamond, the solution for either

problem is found by the intersection between the cost function and the

line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1-4 Numerical example of compressed sensing. (a) A sparse real–valued

signal containing 10 spikes; (b) The Fourier transform (the blue curve)

of the signal in (a) is sampled at 40 random locations (as marked by

the red circles); (c) The reconstruction by `1 minimization. . . . . . . 24

2-1 Experimental geometry for in–line holography . . . . . . . . . . . . . 31

2-2 The total error q using the compressive reconstruction method (solid

red) and BPM-based method (dashed blue) at different seeding densi-

ties measured by the geometrical occlusion factor Rg. . . . . . . . . . 36

11



2-3 Left: Sample holograms; middle: real part of a depth slice from the

BPM–obtained focal stack; right: real part of a depth slice from the

focal stack estimated by the compressive reconstruction method. First

row: Rg = 0.011; second row: Rg = 0.096; third row: Rg = 0.35. . . . 37

2-4 The SNR of a hologram decreases as the density of bubbles increases. 39

3-1 Imaging system used for the partially coherent TIE . . . . . . . . . . 52

3-2 Experimental measurements and results for (a–c) the sample with uni-

form illumination, (d–f) the illumination modulation mask alone, and

(g–k) both sample and modulation mask in place. (a,d,g) In–focus in-

tensity measurements. (b,e,h) Intesnity difference between defocused

measurements. (f) The scalar phase reconstruction for the illumination

with only the field modulation mask in place. Sample thickness recon-

structed from (c) Eq. (3.28) with uniform illumination, (i) Eq. (3.28)

with both sample and modulation mask in place, (j) Eq. (3.29), as-

suming a pure–phase sample, and (k) Eq. (3.27), assuming a sample

containing both amplitude and phase variations. . . . . . . . . . . . . 54

4-1 (a) The NLD regularizing function and (b) the magnitude of the flux

as a function of the normalized magnitude of the gradient of the phase. 58

4-2 (a) Original phase, (b) intensity derivative, (c) direct, (d) Tikhonov–

regularized, (e) TV–regularized, (f) Weickert function regularized and

(g) the hybrid function regularized solutions. (f) Phase cross–sections

taken along the dashed–line in (a). . . . . . . . . . . . . . . . . . . . 59

4-3 Average per-pixel RMS error versus SNR . . . . . . . . . . . . . . . . 60

5-1 Imaging geometry for TIE tomography . . . . . . . . . . . . . . . . . 65

5-2 Experimental process for a pure phase sample. A background image Ii

is first taken without the object in place; images I with the sample in

place are taken next at the same plane. . . . . . . . . . . . . . . . . . 68

5-3 X–ray TIE tomography experimental setup . . . . . . . . . . . . . . . 72

12



5-4 Normalized intensity variation of a beetle sample measured at (a) θ =

0◦, (b) θ = 30◦, (c) θ = 60◦, (d) θ = 90◦. . . . . . . . . . . . . . . . . 74

5-5 Phase projection reconstructions of the beetle sample at (a) θ = 0◦,

(b) θ = 30◦, (c) θ = 60◦, (d) θ = 90◦. . . . . . . . . . . . . . . . . . . 75

5-6 Reconstruction results for the real part of the refractive index. (a)

Fourier based TIE solver + FBP; (b) Fourier based TIE solver +

Fourier domain tomographic inversion; (c) Compressive reconstruction

by solving Eq. (5.13). The three cross–sections are taken from the

three orthogonal planes going through the center of the sample. . . . 76

5-7 3D rendering of the refractive index reconstruction by the compressive

method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6-1 Experimental arrangement of PST for recovering the 2D mutual inten-

sity J at the plane of incidence O. . . . . . . . . . . . . . . . . . . . . 82

6-2 Experimental arrangement of PST for recovering the 4D mutual inten-

sity J at the plane of incidence O. A pair of cylindrical lenses oriented

perpendicularly are used to introduce astigmatism to the measurement.

Intensities are measured at planes with axial coordinate zo. . . . . . . 84

6-3 (a) Input mutual intensity of a GSMS with paramters σI = 17 and

σc = 13, (b) data point locations in the Ambiguity space, mutual

intensities estimated by (c) FBP and (d) LRMR methods. . . . . . . 86

6-4 The first nine coherent modes of the mutual intensity in Fig. 6-3(a).

(a) Theoretical modes, and (b) LRMR estimates. . . . . . . . . . . . 87

6-5 Eigenvalues of the mutual intensity in Fig. 6-3(a). (a) Theoretical val-

ues, (b) FBP estimates, (c) LRMR estimates, and (d) absolute errors

in the LRMR estimates versus mode index. . . . . . . . . . . . . . . 87

6-6 Oversampling rate versus relative MSE of LRMR estimates. The input

field is a GSMS with parameters σI = 36 and σc = 18. The noisy data

is generated with different SNR from (a) an additive random Gaussian

noise model, and (b) a Poisson noise model. . . . . . . . . . . . . . . 89

13



6-7 Experimental arrangement for 2D PST. A 1D rectangular slit is illumi-

nated by a partially coherent light. The coherence of the illumination

is controlled by the size of the slit placed at the front focal plane of

the condenser. Free space diffraction patterns after the object slit are

recorded at multiple axial locations. . . . . . . . . . . . . . . . . . . . 90

6-8 Intensity measurements at several unequally spaced propagation dis-

tances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6-9 (a) Real and (b) imaginary parts of the radial slices in Ambiguity

space from Fourier transforming the vectors of intensities measured at

corresponding propagation distances. . . . . . . . . . . . . . . . . . . 91

6-10 Real part of the reconstructed mutual intensity from (a) FBP; (b)

LRMR method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6-11 Eigenvalues estimated by (a) FBP, and (b) LRMR method. . . . . . . 93

6-12 (a) Intensity measured immediately to the right of the illumination

slit; (b) real part of van Cittert–Zernike theorem estimated mutual

intensity immediately to the right of the object slit; (c) eigenvalues of

the mutual intensity in (b); (d) absolute error between the eigenvalues

in Fig. 6-11(b) and 6-12(c) versus mode index. . . . . . . . . . . . . . 94

6-13 (a) LRMR estimated coherent modes of the mutual intensities in Fig. 6-

10(b), and (b) coherent modes of the mutual intensities in Fig. 6-12(b),

calculated via use of the van Cittert–Zernike theorem, and assumption

of incoherent illumination. . . . . . . . . . . . . . . . . . . . . . . . . 95

6-14 Experimental arrangement for 4D PST. A circular object is illuminated

by a partially coherent illumination, which is generated by placing a

rectangular aperture at the front focal plane of a spherical lens. A pair

of cylindrical lenses are used to intentionally introduced astigmatism

to the system. During the measurement, both the second cylindrical

lens oriented along y and the camera is scanned axially. . . . . . . . . 97

14



6-15 Missing data problem in the 4D PST. The white region indicates the

locations of the measured data in the Ambiguity space, and the black

region the inaccessible points due to the limitation of the experimental

arrangement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6-16 Real part of the mutual intensity from (a) LRMR, (b) FBP reconstruc-

tions, and (c) the van Cittert–Zernike theorem estimation. . . . . . . 100

6-17 Eigenvalues estimated from (a) LRMR, (b) FBP reconstructions, and

(c) the van Cittert–Zernike theorem. . . . . . . . . . . . . . . . . . . 101

6-18 The first 9 coherent modes estimated from (a) LRMR, and (b) the van

Cittert–Zernike theorem. . . . . . . . . . . . . . . . . . . . . . . . . . 102

7-1 Illustration of a lens measurement of the SWDF in 1D. (a) A probe

scans across the WDF forms an SWDF measurement according to the

convolution in Eq. (7.5). (b) Points at x0 and along ux in the SWDF

domain are mapped to detector pixels at x0 +λfux at the lens’ Fourier

plane according to Eq. (7.4). . . . . . . . . . . . . . . . . . . . . . . . 105

7-2 Lenslet array geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7-3 Sampling of the SWDF using an array of three lenslets. (a) One–to–

one mapping from the SWDF to the detector coordinate according to

u = (xo − lw)/(λf) as the angular spread of the SWDF is narrower

than the numerical aperture of a lenslet. (b) Multiple points in the

SWDF domain contribute to detector pixels in the cross–talk region

as the angular spread of the incident field is wider than the numerical

aperture of a lenslet, which produces the 0th order cross–talk. . . . . . 110

15



7-4 Left: highly incoherent; middle: highly coherent; and right: partially

coherent case. (a) Total output intensity is composed of (b) SWDF

term and (c) total contribution from cross–talk terms. The total cross–

talk is composed of (d) 0th order cross–talk and (e) total of higher

order cross–talk. All the intensities are normalized to the maximum

value in the total output. The horizontal axis is the spatial coordinate

normalized by the width of a lenslet. . . . . . . . . . . . . . . . . . . 113

7-5 Comparison of WDF (solid red line), SWDF (dashed blue lines) and

measured intensity (dotted green lines) for (a) highly incoherent (σc =

0.01w), (b) highly coherent (σc = 20w), and (c) partially coherent

(σc = 0.1w) incident light. . . . . . . . . . . . . . . . . . . . . . . . . 114

7-6 Error metricRerror in solid blue curve, cross–talk power fractionRcross–talk

in dashed green curve, and signal broadening metric Rconv in red dot-

ted curve as functions of the normalized coherence length of incident

light σc/w. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

16



Chapter 1

Introduction

Optical waves have amplitude and phase, but light oscillates too fast for electronic

detectors to measure anything more than time–averaged intensities (amplitude). This

is unfortunate since the phase of an optical wave can reveal important information

about the object. Transparent objects, such as most of unstained biological cells and

tissues, do not change the intensity of light passing through them, but introduce phase

delays due to variations of thicknesses and/or refractive indices. Knowledge about

these phase delays allows physical properties of the object, otherwise ‘invisible’, to

be inferred.

When light is partially coherent, a complete description of the phase of the opti-

cal wave requires a more detailed treatment. For instance, light from a lightbulb (a

partially coherent source) measured at any single point in space will fluctuate ran-

domly on a time scale of femtoseconds. To gain quantitative information from these

fluctuations, we can use statistical tools to specify the correlations for each pair of

points in an optical wave [70, 49]. The challenge is that the number of pairs grows

much more rapidly than the number of points (e.g. 103 points have 106 possible

combinations of pairs). Another useful and intuitive description of partial coher-

ence is via the superposition of mutually uncorrelated coherent modes [70, 49]: fully

coherent light contains only a single coherent mode; while partially coherent light

consists of a mixture of coherent modes at any single point in space, as illustrated

in Fig. 1-1. Partially coherent illumination is widely used in modern imaging and
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(a) (b)

Figure 1-1: (a) A coherent wave has a well–defined amplitude and phase as illustrated
by the set of blue curves. (b) Partially coherent light contains a statistical mixture
of coherent fields; here, the sets of red, green, and blue curves indicate three different
coherent fields that are mixed in space.

manufacturing systems, such as microscopes, telescopes, X–ray imaging systems, and

photo–lithography systems, comprehensive characterization of the wave fields may

create opportunities for innovation in these areas by exploiting the extra degrees of

freedom in partially coherent fields.

1.1 Quantitative phase imaging

Phase contrast was first introduced in the early 1900s [132, 131]. It solves the problem

of directly visualizing phase from a single intensity measurement, for which Frits

Zernike won the Nobel prize in 1953. However, the greyscale value obtained from a

phase contrast image has a nonlinear relationship with the underlying phase, yielding

only a qualitative description of the object.

In order to quantitatively recover the phase information, computational methods

can be applied to the measured intensity data to account for the measurement process.

This idea in principle is applicable to any phase contrast imaging system; in practice,

however, a physical measurement that maps the underlying phase to the observed

intensity greatly influence the quality of the inversion result. For example, a nonlinear

mapping may not be easily inverted, or some spatial frequency components may

be lost during the measurement. Here, two types of quantitative phase imaging

techniques are investigated: (1) interferometric techniques recover the phase difference

18



between the unknown field and a known reference field by extracting information from

the interference term in a interferogram; (2) propagation based techniques rely on

measurements of diffraction during spatial propagation and computational inversion

of the propagation operator.

1.1.1 Interferometric/holographic techniques

There are many experimental arrangements for interferometry [117, 95], but the main

idea is that an unknown field f(x, y) = Af (x, y) exp[iφ(x, y)], where Af is amplitude

and φ is phase, is interfered with a known reference wave r(x, y) = Ar(x, y) exp[iφ0(x, y)]

and the measured intensity is

I(x, y) = |Af (x, y) exp(iφ(x, y)) + Ar(x, y) exp(iφ0(x, y))|2

= If (x, y) + Ir(x, y) + 2Af (x, y)Ar(x, y) cos[φ(x, y)− φ0(x, y)], (1.1)

where the first two terms are the intensities of the two fields and the cosine term is the

interference term. Depending on the experimental arrangements, φ is either directly

related to the phase of the underlying object or the wavefront of the propagated field

from the object plane. In the first case, φ may be recovered by computationally ex-

tracting the interference term from I; the phase unwrapping algorithm is often also

needed when the phase difference is larger than 2π in the post–processing [117]. For

the second case, the recorded intensity is also known as a hologram [95]. The inter-

ference term encodes the information about the defocus distance. A computational

method that accounts for propagation and other reconstruction artifacts in order to

find the ‘in–focus’ objects is often the concern. A detailed discussion on holographic

imaging is in Chapter 2.

When the underlying field is partially coherent, interferometric techniques can

also be applied. The measured intensity takes a similar form as the coherent case

[Eq. (1.1)], except that the contrast of the interference term is modified by the corre-

19



lation µ(x, y) between the two fields, as given by the following expression,

I(x, y) = If (x, y) + Ir(x, y) + 2
√
If (x, y)Ir(x, y)µ(x, y). (1.2)

Note that often in practical the two fields are originated from different parts of the

same field, and in this case µ is the degree of coherence of this field [70, 49]. Equa-

tion 1.2 is the principle of interferometric–based coherence state measurement tech-

niques [110, 59, 41, 71].

1.1.2 Propagation based techniques

The propagation based phase retrieval techniques rely on intensity measurements of

the unknown field at one or more propagation distances. One such method is the

iterative technique, which often uses the image and the far–field diffraction pattern

as the input. The unknown phase is estimated by computing the fields at the image

and Fourier planes, enforcing constraints based on prior knowledge about the field at

each iteration until the algorithm converges to the final solution [48, 44, 74].

An alternative propagation based technique estimates the unknown phase by tak-

ing intensity measurements in closely spaced planes. According to energy conserva-

tion, the intensity flow in or out of a point in space in the lateral dimension must

be compensated by the intensity flow along the longitudinal direction in free space.

Under the paraxial approximation, this continuity relation can be written as the

transport of intensity equation (TIE) [109]:

−2π

λ

∂I

∂z
= ∇⊥ · (I∇⊥φ), (1.3)

where ∇⊥ denotes the gradient in the lateral dimension. The energy flux (the Poynt-

ing vector) F along the transverse direction is related to the gradient of the phase

by F = I∇⊥φ. The phase φ is solved given the knowledge about the longitudinal

derivative ∂I/∂z, which can be estimated by finite difference method based on the

intensity measurements in two or more planes [105, 120]. Extensions to the original
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TIE and computational methods to invert the equation will be discussed in detail in

Chapters 3–5.

For partially coherent fields, a similar technique known as phase space tomography

(PST) allows the reconstruction of the correlation function at a transverse plane

from a stack of many propagated intensity measurements [91]. Experiments and

reconstruction methods for the PST will be discussed in Chapter 6.

Another method to estimate the energy flux vector is to use an array of lenslets,

such as in a Shack–Hartmann sensor [90]. The direction of the vector of the incoming

wave averaged over the underlying lenslet’s aperture is estimated by the location of

the focal spot after the wave propagates to the focal plane of the lens. It turns out

that the same setup can be used to estimate the coherence state of partially coherent

light. Its properties and limitations will be discussed in detail in Chapter 7.

1.2 Computational imaging and compressed sens-

ing

Quantitative phase imaging falls under the category of ‘computational imaging’.

Computational imaging refers to the idea that computation is explicitly integrated

as a part of the image formation process. As illustrated in Fig. 1-2, comparing to a

conventional imaging system [in (a)] in which the desired final image is directly ob-

tained after passing through the optical elements, a computational imaging system [in

(b)] first captures a representation of the original object, which is then processed to

produce the final image. The goal is no longer to design an optical system to acquire

images that replicates the underlying object, but to design a system which optimizes

the optics and computation simultaneously to allow information to be transferred

more efficiently.

A recent design of computational imaging system is based on the notion that

the natural representation of an object is often not the most efficient way to encode

information. For example, discrete cosine transform and discrete wavelet transform
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Figure 1-2: Architectures of (a) conventional imaging and (b) computational imaging.

require much fewer coefficients to represent an image of a natural scene, both of

which are widely used in modern image compression techniques [108]; human faces

can be constructed by just a few ‘eigenfaces’ [98, 116]. Sensing/imaging models that

maximally utilize the knowledge about the ‘sparse’ representation of an unknown sig-

nal are systematically studied by a recent theory, known as compressed sensing or

compressive sampling (CS). As contrary to conventional wisdom in data acquisition

based upon Nyquist–Shannon theorem, CS theory asserts that one can recover cer-

tain signals/images from much fewer measurements without sacrificing reconstruction

fidelity [19, 23, 40]. In addition to the ‘sparsity’ (defined by the number of nonzero

coefficients in a specific basis) assumption about the signal of interest, CS also re-

lies on efficient measurement models. The idea is that to make the best use of a

measurement, the system should spread out the information about the object evenly.

The amount of spreading is measured by a quantity called ‘incoherence’ parameter

(not in the typical sense we assign in Statistical Optics). If the object has a sparse

representation in Ψ, an incoherent measurement means that the sensing vectors have

an extremely dense representation in Ψ. Under the CS framework, the number of
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Figure 1-3: Geometry of the (a) `2 and (b) `1 recovery for an unknown vector x =
[x(1), x(2)]. A single measurement Ax = y can be graphically represented by the red
line in both figures. Since the cost function for ‖x‖`2 is a circle, while for ‖x‖`1 is
a diamond, the solution for either problem is found by the intersection between the
cost function and the line.

measurements m to ensure successful reconstruction satisfies

m ≥ CµS log n, (1.4)

where n is the length of the unknown object vector, S is the sparsity and measures the

compressibility of a signal, µ is the incoherence parameter, and C is a small positive

constant. The optimal solution x of a linear system y = Ax with measurement y is

found by solving the following `1 minimization problem

min ‖x‖`1 subject to Ax = y, (1.5)

where ‖x‖`1 =
∑

n |xn|. The geometry of `1 minimization is illustrated by an unknown

vector of length two in Fig. 1-3. The solution of `1 minimization will lie on one of

the axes with very high probability, the sparsest solution for this problem is obtained

by this method since only one coefficient is nonzero in this case. The application of

CS is demonstrated by a simple example in Fig. 1-4. The original unknown signal

consists of 10 spikes [in (a)], which means that the signal is sparse in its natural

representation. The measurement is carried out by taking samples from the discrete
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Figure 1-4: Numerical example of compressed sensing. (a) A sparse real–valued signal
containing 10 spikes; (b) The Fourier transform (the blue curve) of the signal in (a) is
sampled at 40 random locations (as marked by the red circles); (c) The reconstruction
by `1 minimization.

Fourier transform of the signal. 40 samples are taken at random locations [as marked

by the red circles in (b)] in the simulation. Taking Fourier transform is an incoherent

measurement since a signal contains a single spike in the spatial domain results in

an evenly spread–out signal in its Fourier domain. The `1 minimization accurately

recovers the unknown signal, whose result is shown in (c).

A fundamental problem addressed by this thesis is how to best recover phase

from a minimal set of measurements. Sparse models and compressive measurement

and reconstruction techniques are investigated for different phase retrieval problems.

Diffraction during spatial propagation provides a convenient and effective way of

evenly mixing the phase information of the object. Efficient compressive inversion

methods are designed to recover the phase using much fewer measurements.

1.3 Outline of the thesis

Chapter 2 studies holography under the CS framework. When the complex field

scattered from particle–like objects are recorded as an interference pattern, the in-

formation about the objects are mixed on the hologram during propagation. The

compressive method and its limitation for reconstructing the 3D information about

the particles will be discussed.
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The TIE is originally derived for a coherent field; the difficulty in extending the

TIE from coherent to partially coherent fields arises from the fact that the latter

does not have a well–defined phase, as a partially coherent field experiences random

fluctuations over time. Chapter 3 presents a new form of the TIE and the experimental

demonstration of recovering the optical path length (OPL) of a thin sample under

partially coherent illumination.

The phase reconstruction from the TIE often suffers from low–frequency arti-

facts due to the physics. Chapter 4 describes an iterative reconstruction method,

called nonlinear diffusion (NLD) regularization, to mitigate these artifacts under the

assumption that the sample is piecewise constant.

Chapter 5 presents the TIE tomography in the X–ray regime using a table–top

X–ray microfocus source. A compressive reconstruction method to alleviate the TIE

low–frequency artifacts and tomography high–frequency streaking noise from limited

sampling angles is demonstrated.

The propagation based correlation function recovery technique, the phase space

tomography (PST), for partially coherent fields is described in Chapter 6. Unphysical

artifacts often arise in the recovered correlation function using traditional reconstruc-

tion method because of inaccessible data in the experiment. A compressive recon-

struction method that looks for a sparse solution in the coherent mode superposition

representation is demonstrated experimentally for both 1D and 2D fields.

Chapter 7 investigates the use of a lenslet array to measure the coherence state

of partially coherent light. Properties and limits of this techniques are studied by

numerical examples. Design parameters and constraints are suggested.

Finally, Chapter 8 states conclusions and future work.
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Chapter 2

Compressive holography applied to

particulate flows

2.1 Introduction

The fundamental problem addressed by holography is that of recording, and later re-

constructing, both the amplitude and the phase of a coherent optical wave based on

interferometric principle. A hologram is formed by the interference between the scat-

tered field from a coherently illuminated object and a reference wave. Conventional

holography is recorded on a photographic film or plate. In the last decades, Digital

holography (DH) becomes increasingly popular due to advances in megapixel elec-

tronic sensors, e.g. CCD and CMOS, with high spatial resolution and high dynamic

range. Compared to traditional holography, DH records holograms on an electronic

detector array, which does not have the cumbersome requirement of film position-

ing, handling, and processing. In addition, with direct access to the hologram in

the digital form, various signal processing techniques can be applied to extract use-

ful information from the hologram during reconstruction. DH has proven to be a

powerful computational imaging technique in a number of applications. For example,

quantitative phase information can be obtained by DH microscopy using the off–axis

geometry [73]. The alternative in–line DH geometry, in which both the illumination

and the reference waves are served by the same beam, is also widely used due to its
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simple optical geometry and better stability. However, since the ghost terms, e.g.

twin image and halo, cannot be easily removed with a single image, in–line DH has

shown to be more suitable for 3D localization applications. For example, it has been

used for localizing particulate objects in flow cytometry [31, 96], holographic particle

imaging velocimetry (PIV) [38, 85, 61], marine biological imaging [39, 75], and two–

phase flows [113, 111]. In these applications, the object under interrogation typically

consists of many point–like scatterers, such as particles, blood cells, and air bubbles,

sparsely distributed in a 3D volume. The benefit of using the in–line DH is the abil-

ity to capture the shape and 3D position information of the scatterers within the 3D

volume in a single shot. Since the scatterers are typically some distance away from

the detector, the hologram records some defocused information about each scatterer.

The task of digital reconstruction is to find the in–focus information.

Traditional reconstruction methods typically consist of two separate steps. First,

a focal stack is generated by the back–propagation method (BPM) [94], in which

the hologram is convolved with a series of depth dependent free–space propagation

point spread functions. An image in this focal stack often contains both in–focus

features and diffraction fringes from out–of–focus objects. The goal in the next step

is to isolate in–focus objects by using image segmentation techniques. A common

approach is to apply an experimentally determined threshold to a focus metric, such

as edge sharpness [75], minimum amplitude/intensity [42, 113] and correlation coef-

ficient [130], to each plane in the focal stack. The advantage of this method is that

the algorithm can be implemented very efficiently. In practice, however, the values

computed from the focus metrics are often sensitive to noise, resulting spurious ob-

jects in the segmentation results. Furthermore, the localization accuracy from this

method is limited by the Nyquist sampling rate induced by the finite pixel size of the

detector [62, 45].

An alternative holographic reconstruction method is to treat the hologram as the

output from a linear system with the unknown object as the input signal. Direct

inversion will not produce satisfactory results because the equation describing the

system is under–determined and it contains infinite numbers of possible solutions.
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This solution uniqueness problem can be alleviated by enforcing constraints based

on prior knowledge about the objects and then inverted by standard regularization

method [9]. It should be noted that the use of focus metric in the previous method can

be seen as an approach to utilize priors in order to get an unique interpretation of the

object distribution based on the BPM–obtained focus stack; the difference from the

method discussed here is that the priors are expressed as a regularization term, and

then the reconstruction of a hologram is converted into a constrained optimization

problem [100, 101, 36, 13]. Recent studies on the inversion of linear under–determined

systems show that it is still possible to obtain a highly accurate solution in such a prob-

lem given that the expected solution is known to be sparse in some pre–determined

basis; the optimal solution can be found by solving an `1 minimization problem by

standard convex optimization algorithms (compressed sensing) [19, 20, 40]. The appli-

cation of this theory combined with coherent diffraction in holography is compressive

holography [13]. It is shown that the solution to the compressive model is robust

to noise; artifacts from the twin–image/halo artifacts are greatly suppressed in the

reconstruction [13]. In addition, a recent study on applying compressive holography

models to object localization problem has shown orders of magnitude improvement on

the localization accuracy in the lateral dimension by finding the sparsity constrained

solution [67]. Improvement in the axial localization compared to the BPM–obtained

result has also been reported [34].

For the application of imaging particulate flows, an important question is to un-

derstand how the quality of the reconstruction is affected by the seeding density of

particles. In this chapter, the performance of the compressive and BPM–based meth-

ods are compared quantitatively by simulating holograms resulting from scatterings

of air bubbles immersed in water with increasing seeding density. The simulation

results show that the compressive reconstruction method provides better results over

a wide range of seeding densities. The theoretical limit of the seeding density is an-

alyzed in the compressed sensing framework and found in good agreement with the

results from the simulation.
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2.2 Theory and method

2.2.1 Forward model

The in–line hologram is a record of the interference between a plane reference wave

Er of amplitude a and the scattered field E from a 3D object. A schematic diagram of

the experimental geometry for the in–line holography is shown in Fig. 2-1. Assuming

that the wavefront of the illumination beam is not significantly disturbed due to the

presence of the object and a = 1 without loss of generality, the intensity g recorded

on the detector located at the z = 0 plane is

g(x, y) = |1 + E(x, y, 0)|2

= 1 + |E(x, y, 0)|2 + E∗(x, y, 0) + E(x, y, 0), (2.1)

The object of interest consists of micro–sized dielectric particles sparsely distributed

in a transparent medium. If we further assume that the effect due to the multiple

scattering between particles is small such that it can be ignored, the total scattered

field at the detector plane is

E(x, y, 0) =
π

λ2

y
Er(x

′, y′, z′)f(x′, y′, z′)h(x− x′, y − y′, 0− z′)dx′dy′dz′, (2.2)

where f is the object function, and h is the depth dependent point spread function

for free–space propagation. Under the paraxial approximation,

h(x− x′, y − y′, z − z′) =
exp[i2π(z − z′)/λ]

(z − z′)
exp

{
iπ

λ(z − z′)
[(x− x′)2 + (y − y′)2]

}
.

(2.3)
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Figure 2-1: Experimental geometry for in–line holography

Together with expression for the plane reference wave Er(x
′, y′, z′) = exp(i2πz′/λ),

the total scattered field is

E(x, y, 0) =
π

λ2

y
f(x′, y′, z′)

(
− 1

z′

)
exp

{
− iπ

λz′
[(x− x′)2 + (y − y′)2]

}
dx′dy′dz′.

=
iπ

λ

y [x
f(x′, y′, z′) exp{−i2π(ux′ + vy′)}dx′dy′

]
exp{iπλz′(u2 + v2)} exp{i2π(ux+ vy)}dudvdz′, (2.4)

where the second equality is due to the Fourier transforming property of convolution

integrals. Equation (2.4) is a form of the multi–slice approximation: the integration

inside the square brackets with respect to du and dv represents the field contribution

from the object at a given depth slice z′; the integration with respect to dz′ calculates

the superposition of fields from all depth slices.

Next, let us consider the discretization model for Eq. (2.4). Assume the object

is discretized into Nx × Ny × Nz voxels with lateral spacing ∆, and axial spacing

∆z. Without loss of generality, assume the number of samples in both lateral dimen-

sions are the same and Nx = Ny = N . Equation (2.4) is rewritten as the following
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discretized form

En1n2 =
iπ∆z

λN2

∑
l

[∑
p

∑
q

(∑
m1

∑
m2

fm1m2le
−i2π

pm1+qm2
N

)
eiπλl∆z(p2+q2)∆2

uei2π
pn1+qn2

N

]
,

(2.5)

where the matrix element for a physical variable is denoted by the same letter used

in the continuous model with a subscript indicating the index, and the value is de-

termined by fm1m2l = f(m1∆,m2∆, l∆z) and En1n2 = E(n1∆, n2∆). The spatial

frequency sampling pitch is ∆u = 1/(N∆), with p and q indicating the indices along

the two directions.

It is also useful to define a 2D matrix f (l) denoting the lth 2D slice from the

3D object matrix, whose element is defined by f
(l)
m1m2 = fm1m2l. Consider the term

enclosed by the square bracket in Eq. (2.5) by rewriting it as the following form

E(l) = H(l)f (l), (2.6)

where E(l) is a vector denoting the field contributed from the lth object slice, f (l) is a

vector form of f (l) with its entries defined as f
(l)
(N−1)m1+m2

= f
(l)
m1m2 , and

H(l) = F−1
2DQ

(l)F2D (2.7)

is the free–space propagation operator for the lth object slice, which applies the 2D

Fourier transform F2D of f (l), multiplies a depth dependent quadratic phase function

Q(l) = exp{iπλl∆z(p
2 + q2)∆2

u}, and then applies the inverse Fourier transform (F−1
2D ).

The total scattered field is the sum of all the E(l), and takes the following form

E =
∑
l

E(l) = Hf

≡

H(1) H(2) · · · H(Nz)




f (1)

f (2)

...

f (Nz)

 , (2.8)
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where E is a vector form of E with its entries defined as E(N−1)m1+m2 = Em1m2 , and

H is the propagation operator for all the object slices.

The final form for the discretization model of Eq. (2.1) is

g = 1 + |Hf |2 +H∗f∗ +Hf , (2.9)

where g is a vector containing samples from g, whose entries are defined as g(N−1)n1+n2 = gn1n2 .

2.2.2 Back–propagation method

In the BPM, a focal stack is generated by convolving the hologram with a series

of depth dependent point spread functions for free–space propagation.In its discrete

form, the back–propagation operator is simply H†, where † denotes the complex

conjugate transpose of a matrix. The focal stack s generated by the BPM from the

hologram g is given by

s = H†g

= H†1 +H†|Hf |2 +H†(Hf)∗ +H†Hf . (2.10)

Since H(m)H(n) = H(m+n), it can be easily verified that the last term in Eq. (2.10) is

H†Hf =


IN H(1) · · · H(Nz−1)

H(−1) IN · · · H(Nz−2)

...
...

. . .
...

H−(Nz−1) H−(Nz−2) · · · IN




f (1)

f (2)

...

f (Nz)

 (2.11)

=


f (1)

f (2)

...

f (Nz)

+


H(1)f (2) +H(2)f (3) + · · ·+H(Nz−1)f (Nz)

H(−1)f (1) +H(1)f (3) + · · ·+H(Nz−2)f (Nz)

...

H−(Nz−1)f (1) +H−(Nz−2)f (2) + · · ·+H(−1)f (Nz−1)

 ,

where the object vector f is recovered as shown in the first term along with the out–of–

focus term in the second vector. In addition, the focal stacks are further corrupted by
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the halo [the second term in Eq. (2.10)] and twin–image [the third term in Eq. (2.10)]

terms.

2.2.3 Compressive reconstruction method

To construct a linear model for compressive reconstruction, consider an unknown

vector x consisting of the real and imaginary parts of f , Eq. (2.9) is rewritten as

y =
[
2Hr −2Hi

] fr

fi

+ |Hf |2

≡ Ax + e, (2.12)

where x = fr + ifi and A = Hr + iHi. Equation (2.12) is under–determined because

the number of unknowns in f is 2Nz times as the number of measurements in y. As

a result, the solution is not unique unless prior information is utilized to constrain

the solution space. Compressed sensing tries to find a unique solution by enforcing

sparsity constraints.

Successful implementation of compressed sensing is conditioned upon two require-

ments: incoherence of measurements and sparsity [24]. The first requirement does

not mean “incoherence” in the typical sense we assign in statistical optics; rather, it

means that the information of the unknown vector must be evenly spread over the set

of basis vectors that describe it at the detector. Here, we utilize Fresnel diffraction

to generate incoherence at the sensing plane. The mixing produced by the Fres-

nel propagator is not provably optimal, but it is extremely easy to attain by simple

free–space propagation [112]. The second requirement is fulfilled by finding a set of

basis functions such that the original unknown function can be expressed by a few

non–zero coefficients under this basis. We choose total variation (TV) as our sparsity

basis, since it prefers solutions with sharp boundaries and the original object can be

modeled as small particles with sharp edges in an otherwise empty space.

The sparse solution under the TV basis is obtained by solving the following min-
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imization problem,

x̂ = arg min
x

‖x‖TV such that y = Ax, (2.13)

where ‖x‖TV is defined as a function of the magnitude of the gradient of the object

function according to [92]

‖x‖TV =
∑
l

∑
m1

∑
m2

|∇x(l)
m1m2
|, (2.14)

where ∇ denotes the finite difference operator in the lateral dimension. In practice,

the following regularization problem is often solved instead to account for imperfect

measurement [20, 10]

minimize
1

2
‖y − Ax‖2 + τ‖x‖TV, (2.15)

where the TV constraint is adapted as a regularizer, and the regularization parameter

τ controls its relative weight as compared to the data fitness term ‖y − Ax‖2.

2.3 Numerical simulations

To study the performance of both reconstruction methods, we simulate holograms

of air bubbles immersed in water with increasing seeding density. The bubbles are

modeled as perfect spheres, the diameters of which are determined randomly from

a uniform distribution ranging from 10µm to 20µm. The bubbles are located at

random positions within a volume of 512× 512× 6000µm3; the center of this volume

is 6mm away from the hologram plane. The total scattered field is calculated at

the hologram plane, consisting of 256 × 256 pixels with 2µm pixel pitch. Under a

plane wave illumination of 632nm wavelength, the scattered field from each individual

bubble is calculated based on the Lorentz–Mie theory. Assuming that the effect of

multiple scattering between bubbles are negligible, the total scattered field is the

linear superposition of the scattered fields from each bubbles. We also assume that
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Figure 2-2: The total error q using the compressive reconstruction method (solid red)
and BPM-based method (dashed blue) at different seeding densities measured by the
geometrical occlusion factor Rg.

the reference wave is an undisturbed plane wave, the hologram is calculated as the

interference between the total scattered field and the plane reference wave. Holograms

containing 8, 16, 32, 64, 128, 256, 512, 1024 bubbles are calculated. For each data

set containing the same number of bubbles, 20 holograms generated from different

distributions of bubbles are simulated.

We qualify the seeding density with a dimensionless variable called the geometrical

occlusion factor Rg, defined as

Rg =
total cross–section area of all bubbles

area of the hologram
≈ Npπr̄

2

(N∆)2
, (2.16)

where Np is the number of bubbles, r̄ is the mean radius, and Rg measures the

fractional area taken up by the parallel projection of all bubbles on the hologram

plane.

During the reconstruction using either method, the estimated object function is

expressed as a 256 × 256 × 30 matrix corresponding to discretization of the actual
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Rg=0.011
(Np=16)

Rg=0.086
(Np=128)

Rg=0.35
(Np=512)

Figure 2-3: Left: Sample holograms; middle: real part of a depth slice from the
BPM–obtained focal stack; right: real part of a depth slice from the focal stack
estimated by the compressive reconstruction method. First row: Rg = 0.011; second
row: Rg = 0.096; third row: Rg = 0.35.
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volume with lateral spacing ∆ = 2µm and axial spacing ∆z = 250µm. The BPM–

estimated object is obtained by applying a threshold on the intensity focal stack

matrix. Since the diameter of a bubble is much smaller than ∆z, each bubble is

represented as a single disk located at some depth slice in the true object matrix. Note

that within the region of a disk where a bubble is located, the reconstructed values

from the two methods are different because they have different physical meanings.

It is not straightforward to relate the value to some physical quantity, such as the

refractive index or the scattering potential, because the Mie scattering is not a linear

function of either of these quantities [12]. When comparing the reconstruction results

produced by either method with the ground truth, the value within each disk is

ignored as long as the disk is correctly detected. The quality of the reconstruction

is measured by the number of falsely detected voxels weighted by the value in the

original intensity focal stack. The total reconstruction error q is defined as

q =

∑
all false voxels |value of false voxel|2∑

all voxels |voxel value of the true object matrix|2
; (2.17)

The total error q of each reconstruction method is plotted as function of Rg in Fig. 2-

2. The error of the BPM–based method grows approximately linearly as Rg increases

when both are plotted in the log–scale. The results from the compressive reconstruc-

tion method remain accurate until Rg > 0.086 (Np=128). Beyond that value of Rg,

the error grows rapidly as the seeding density increases. Reconstruction slices from

sample holograms with Rg = 0.011, Rg = 0.086, and Rg = 0.35 are shown in Fig. 2-

3. A sample hologram at each Rg is shown in the first column. It is seen that the

quality of the BPM reconstruction degrades as the number of bubbles increases, as

shown in the middle column; it is impossible to find a single threshold value to isolate

the in–focus bubbles when the degradation is severe. The compressive reconstruction

method successfully finds the in–focus bubbles and removes most of the unwanted

artifacts in the first two cases, as shown in the third column.

It should be noted that the signal–to–noise ratio (SNR) of a measurement by an

in–line hologram decreases as the density of bubbles increases. For an ideal hologram
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Figure 2-4: The SNR of a hologram decreases as the density of bubbles increases.

with no random measurement noise, the noise is entirely contributed from the halo

term, so the SNR is

SNR =
power in the real and twin–image terms

power in the halo term
, (2.18)

As Rg increases, the SNR deceases almost linearly when both are plotted in the log–

scale), as shown in Fig. 2-4. We expect the qualities of the hologram at high seeding

densities are even worse since the effects of multiple scatterings and the deviation

from an ideal planar reference wave become severe.

Next, we study the maximum Rg allowed for accurate reconstruction under the

compressed sensing framework. Let s denote the “sparsity” of the problem, i.e. the

number of non–zero coefficients of the unknown expressed in the sparsity basis. Since

the TV basis is used in our problem, s can be estimated by the total number of edge

voxels for all the bubbles:

s ≈ Np2πr̄/∆, (2.19)

where the average number of edge voxels for a bubble is estimated by the number of

voxels on the perimeter of a disk of radius r̄. To accurately reconstruct an s–sparse
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vector of length N0, the number of samples M should satisfy [24]

M ≥ Cµs logN0, (2.20)

where C is a small positive constant and µ is another constant called the coherence

parameter, which measures the correlation between the measurement matrix and the

sparsity basis. In our problem, M = N2, and N0 = 2N2Nz. As a result, the number

of bubbles Np that can be successfully reconstructed should satisfy

Np ≤
N2∆

2Cµπr̄ log(2N2Nz)
, (2.21)

and the corresponding constraint for Rg is

Rg ≤
r̄

2Cµ∆ log(2N2Nz)
. (2.22)

After substituting the values for all the variables used in the simulation and assuming

Cµ = 1 [28] in Eq. (2.22), the maximum value of Rg is 0.168.

2.4 Discussion

Our simulation result and theoretical analysis based on compressed sensing both

indicate that the maximum geometrical occlusion factor Rg allowed for accurate re-

construction is around 0.086. Equation (2.21) shows that the maximum number

of particles that can be accurately reconstructed increases as the number of pix-

els (space–bandwidth product) of the hologram increases and the size of a particle

decreases; the number limit is not very sensitive to the discretization in the axial

direction since Nz only affects the results in its log–scale. A nonlinear forward model

that properly treats the halo term as part of the useful signal may help to improve

the reconstruction.
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Chapter 3

Transport of intensity imaging with

partially coherent illumination

3.1 Introduction

While interferometric methods, such as holography, are useful for phase measurement

for a coherent field, their performance is often limited due to the extreme sensitivity to

mechanical stability and environmental conditions and the requirement for a coherent

(laser) source and reference beam. In cases where analogous optical elements are

difficult to manufacture, such as X–ray [80], electron [58], and neutron imaging [2],

the propagation–based (noninterferometric) techniques, which relies on measurements

of diffraction patterns of the unknown field upon propagation, are more suitable.

The transport of intensity imaging is a non–iterative propagation–based technique,

which allows the recovery of the unknown phase by solving a linear equation, i.e.

the transport of intensity equation (TIE) by measuring intensities in closely spaced

planes [109, 105, 120]. It is easy to implement since the measurements can be taken

by simply displacing the detector or the sample along the optical axis.

The TIE is originally derived for a coherent field; the difficulty in extending the

TIE from coherent to partially coherent fields arises from the fact that the latter

does not have a well–defined phase, as a partially coherent field experiences random

fluctuations over time. Although it is possible to decompose a partially coherent
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field into a sum of fully coherent fields through a process known as coherent mode

decomposition [127], it is shown that a weighted average of the phases of all the modes

does not match well with the TIE–obtained phase [135]. An alternative interpretation

of the TIE–obtained phase is by a scalar phase whose gradient is proportional to the

time–averaged transverse component of the Poynting vector [84]. In this chapter,

we clarify the TIE–obtained phase in terms of the optical path length (OPL) of a

thin sample and show that the OPL can be accurately recovered even with partially

coherent illumination from TIE measurement, the effects of the illumination may

be removed provided its transverse flux vector is first characterized by another TIE

measurement. The remainder of this chapter is structured as follows: the TIE with

coherent illumination will be reviewed in Section 3.2; the partially coherent TIE (PC–

TIE) for recovering the OPL of a thin sample and the experimental verification of

this equation will be presented in Section 3.3.

3.2 TIE with coherent illumination

3.2.1 Theory

Following the original work of Teague [109], TIE for a monochromatic coherent field

can be derived directly from the paraxial wave equation. Consider a monochromatic

coherent paraxial field of the form

U(x, z) =
√
Ic(x, z) exp[iφ(x, z)], (3.1)

where Ic is the intensity, φ is the phase, x denotes a 2D vector specifying the position

in a plane transverse to the optical axis along z, and the subscript c denotes the

properties of coherent light. The propagation of the field U(x, z) satisfies the following

paraxial wave equation
∂U(x; z)

∂z
=

i

2k
∇2
⊥U(x; z), (3.2)
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where ∇⊥ is the 2D gradient operator in the transverse plane. To derive the TIE,

consider the propagation of intensity by differentiating Ic with respect to z, and since

Ic = U∗U ,

∂Ic(x; z)

∂z
=

i

2k
∇⊥ · [U∗(x; z)∇⊥U(x; z)− U(x; z)∇⊥U∗(x; z)]. (3.3)

Equation 3.3 is an expression of energy conservation under paraxial propagation, and

the intensity at a point measures the local energy. The local intensity changes as the

field propagates along the optical axis, which is compensated by the energy flow in or

out of that point from neighboring points; this transverse flow of energy is measured

by the transverse energy flux density Fc:

Fc(x; z) = − i

2k
[U∗(x; z)∇⊥U(x; z)− U(x; z)∇⊥U∗(x; z)]. (3.4)

Substitution of the definition of U(x; z) relates Fc to the underlying intensity and

phase of the field as

Fc(x; z) =
1

k
Ic(x; z)∇⊥φ(x; z). (3.5)

Finally, the TIE, which relates the phase to variations in the propagation of intensity,

is given by
∂Ic(x; z)

∂z
= −1

k
∇⊥ · [Ic(x; z)∇⊥φ(x; z)]. (3.6)

3.2.2 Validity of the TIE

The TIE states that the phase distribution on a plane of constant z can be recovered

by solving a partial differential equation (PDE) with the knowledge of the intensity

derivative along the optical axis. However, since the intensity derivative cannot be

measured directly, finite difference methods are used to approximate the derivative

from two or more defocused images in practice [120]. For example, the central dif-

ference scheme can be implemented by capturing two defocused images at planes

located symmetrically before and after the focal plane, (the focal plane is assumed to

be located at z = 0 without loss of generality), to estimate the derivative with third
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order accuracy:

∂Ic(x; 0)

∂z
=
Ic(x,∆z)− Ic(x,−∆z)

2∆z
+O

(
∂3Ic(x; 0)

∂z3

)
, (3.7)

where ∆z is some finite defocus distance.

To understand the limits in which TIE is still valid when implemented with finite

defocus distance, consider the intensity measured at the plane which is ∆z away from

the focal plane. The Fourier transform Ĩc(u; ∆z) of this intensity can be written

as [54]

Ĩc(u; ∆z) =

∫
U

(
x +

λ∆zu

2
; 0

)
U∗
(

x− λ∆zu

2
; 0

)
exp(−i2πx · u) d2x, (3.8)

where u is the spatial frequency variable. Assume that the field U(x; 0) at the focal

plane varies slowly with respect to changes in u, in which case the field can be

approximated by the first order Taylor expansion term as

U

(
x− λ∆zu

2
; 0

)
= U(x; 0) +

1

2
λ∆zu · ∇⊥U(x; 0). (3.9)

Substituting Eq. (3.9) into Eq. (3.8) and keeping only the first order terms with

respect to ∆z yields

Ic(x; ∆z) = Ic(x; 0)− ∆z

k
∇⊥ · [Ic(x; 0)∇⊥φ(x; 0)]. (3.10)

Equation 3.10 can be treated as a forward–difference approximation of the TIE, and

it is valid as long as

|λ∆zu|2 � 1. (3.11)

The condition in (3.11) implies that the high spatial frequency components of the field

can only be captured with a relatively small defocus distance so that the condition

still holds; whereas low spatial frequency components tolerate a much larger defocus

distance. When ∆z is large, the high spatial frequency components of the field pro-

duce diffraction fringes, which violate the linearity assumption inherent in the TIE.
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The loss of high spatial frequency information results in a low–pass filtering effect

on both the measured data and the recovered phase. A small ∆z avoids loss of high

frequency information, however, may result in measurement with low signal–to–noise

ratio in practice, as the differences between the defocused images may be too small

as compared to the noise level. An optimal ∆z is object and system dependent, and

needs to be found experimentally.

In many practical situations, the concern is to recover the optical properties of a

sample rather than the phase of the incident field. Consider a thin sample character-

ized by the following transmission function

g(x) =
√
T (x) exp[iψ(x)], (3.12)

where T (x) is the transmittance of the sample, which characterizes the total atten-

uation property of the sample; ψ is the phase of the sample, which is equal to the

product of the OPL though the sample with the wavenumber of the illumination,

ψ(x) = kOPL. If the sample consists of homogenous material of known refractive

index n, the physical thickness L of the sample is related to the OPL by L = OPL/n.

For a sample consisting of multiple materials with different refractive indices, to-

mographic TIE measurement is required to fully recover the 3D index distribution;

experimental results of TIE tomography will be discussed in Chapter 5. Here, the

thin sample approximation will be used throughout this chapter.

When a sample is illuminated by a plane wave with constant intensity I0, the

phase of the field at the plane immediately after the sample is entirely due to the

sample’s phase. The transverse flux vector at this plane is fully characterized by the

absorption and phase of the sample:

Fc(x; z) =
1

k
I0T (x)∇⊥ψ(x; z). (3.13)

A special case of practical interest is when the sample is “pure–phase” as T (x) = 1.

In this case, the TIE can be simplified by taking the intensity term I0 out of the
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gradient operator in Eq. (3.6) and rearranged to

−k 1

I0

∂Ic(x; z)

∂z
= ∇2

⊥ψ(x; z). (3.14)

Equation 3.14 is a Poisson equation, stating that the change of intensity at small

defocus is proportional to the Laplacian of the phase of the sample. When the sample

contains both amplitude and phase variations, the full solution of TIE requires to solve

two Poisson equations, as described below. First, we introduce an auxiliary function

Γ(x; z) as the solution of the following equation,

∇⊥Γ(x; z) = I0T (x)∇⊥ψ(x; z). (3.15)

Substitution of Eq. (3.15) into Eq. (3.6) gives

∇2
⊥Γ(x; z) = −k∂Ic(x; z)

∂z
, (3.16)

which is a Poisson equation which can be solved for Γ(x; z). Next, the second Poisson

equation relating the phase can be obtained by rearranging Eq. (3.15) to get

∇⊥
[
∇⊥Γ(x; z)

I0T (x)

]
= ∇2

⊥ψ(x; z). (3.17)

3.3 TIE with partially coherent illumination

3.3.1 Theory

A partially coherent field does not have a well defined phase since the field at any

point in the space experiences statistical fluctuations over time. To fully characterize

a partially coherent field, second–order correlations between pairs of points need to

be used. The correlation function for a stationary quasi–monochromatic spatially

partially coherent field on a plane of constant z is the mutual intensity

J(x1,x2; z) = 〈U(x1; z)U∗(x2; z)〉 , (3.18)
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where 〈·〉 denotes the ensemble average over a statistical ensemble of realizations of

the field, {U(x; z)}. The intensity Ip of this field is related to J according to

Ip(x, z) = J(x,x; z) = 〈U(x; z)U∗(x; z)〉 , (3.19)

where the subscript p denotes the properties of partially coherent light. Note that J

is a complex–valued correlation function and defined over the 4D space spanned by

the pair of 2D position vectors, {x1,2}. Therefore, although one can still measure a

focal stack of intensities and apply the TIE in order to reconstruct a 2D function in

this plane, the recovered “phase” clearly does not provide the phase of J .

Since a partially coherent field can be represented in terms of an ensemble of

coherent fields, each of which satisfies the paraxial wave equation, the propagation

equation of intensity can be obtained by differentiating Ip with respect to z, with the

substitution of Eqs. (3.2) into (3.19), yielding the PC–TIE:

∂Ip(x; z)

∂z
= −∇⊥ · Fp(x; z), (3.20)

where Fp(x; z) is the transverse flux vector of partially coherent field, and Fp(x; z) is

defined as [70]

Fp(x; z) = − i

2k
〈U∗(x; z)∇⊥U(x; z)− U(x; z)∇⊥U∗(x; z)〉

= − i

2k
∇x′J

(
x +

x′

2
,x− x′

2
; z

) ∣∣∣∣
x′=0

. (3.21)

Equation 3.20 is the analogous energy conservation equation for partially coherent

field under paraxial propagation, which states that the transverse flux can be charac-

terized given the knowledge of intensity derivatives along the propagation direction.

Since Fp(x; z) is a vector over a transverse plane, it can be uniquely decomposed

into a curl–free component and a divergence–free component via the Helmholtz de-

composition [84]:

Fp(x; z) = ∇⊥φs +∇⊥ ×A(x). (3.22)
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Substitution of Eq. (3.22) into Eq. (3.20) results in a Poisson’s equation for φs:

∂Ip(x; z)

∂z
= −∇2

⊥φs, (3.23)

which can be solved for specified boundary conditions, yielding Fp uniquely up to the

addition of ∇⊥ ×A(x). Note that Fp retrieved by this procedure has a similar form

as the coherent flux in Eq. (3.5), in which the gradient of the scalar “phase” function

∇⊥φs measures the rate of the transverse energy flow as the field propagates. The

coherent case can be treated as a special case of this result where the scalar phase

function equals to the phase of the complex field up to a multiplicative constant.

While the complex field representation for a coherent light can be fully determined

with the knowledge of Fc and Ic; it is not sufficient to characterize the mutual intensity

with only the knowledge of Fp and Ip for a partially coherent light expect for trivial

cases.

In many practical applications, it is only important to characterize the optical

properties of a sample rather than the full coherence state of the incident field. It will

be shown in the following that it is still possible to recover the optical thickness of a

sample by modifying the PC–TIE to account for the partially coherent illumination.

A thin sample, described by Eq. (3.12), is illuminated by a partially coherent field

with mutual intensity Ji(x1,x2; z) and intensity Ii(x; z), where the subscript i denotes

the properties of the illumination. At the plane immediately after the sample, the

mutual intensity is given by

Jt(x1,x2) = Ji(x1,x2; z)g(x1)g∗(x2) = 〈Ui(x1)g(x1)U∗i (x2)g∗(x2)〉 , (3.24)

where the subscript t denotes the properties of the field immediately after the sample,

and the intensity at the same plane is

It(x; z) = Ii(x; z)T (x). (3.25)

The propagation of the intensity It(x; z) follows the PC–TIE in Eq. (3.20); the trans-
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verse energy flux vector Ft can be obtained by substituting Ui(x; z)g(x) for U(x; z)

in Eq. (3.21), yielding

Ft(x; z) = T (x)Fi(x; z) +
1

k
It(x; z)∇⊥ψ(x). (3.26)

Equation 3.26 shows that two terms contribute to the total flux Ft: the first term

characterizes the flux of the illumination modified by the absorption of the sample;

the second term characterizes the flux due to the presence of the sample, which takes a

similar form as the one for the coherent case in Eq. (3.13). Substituting the expression

of Ft(x; z) into Eq. (3.20) yields the PC–TIE for the field immediately after the thin

sample:
∂It(x; z)

∂z
+∇⊥ · [T (x)Fi(x; z)] = −1

k
∇⊥ · [It(x; z)∇⊥ψ(x)]. (3.27)

Equation 3.27 shows that the phase ψ of a sample can still be recovered by conducting

TIE measurements even if the illumination is partially coherent. The only difference

from the coherent TIE is that the term ∇⊥ · [T (x)Fi(x; z)] needs to be properly

accounted for. To do that, we assume the illumination flux is divergence free so it

is fully described by a scalar phase by Fi = ∇⊥φs. φs at the sample plane can be

calibrated by first taking intensity focal stacks without the sample in place and then

recovered by solving Eq. (3.23). Next, the sample’s phase can be retrieved by taking

the second set of TIE measurements with the sample in place and solving Eq. (3.27).

Note that when Fi(x; z) = 0, Eq. (3.27) simplifies to

∂It(x; z)

∂z
= −1

k
∇⊥ · [It(x; z)∇⊥ψ(x)], (3.28)

which has the exact same form as the coherent TIE. This implies that the optical

thickness of a sample can be retrieved by taking a single set of TIE measurement as

long as the illumination does not have transverse flux at the sample plane. This is

approximately the case when the sample is illuminated by Köhler illumination in a

standard bright–field microscope [105].

Another special case is when the sample is pure–phase, where Eq. (3.27) reduces

49



to the simpler form

∂It(x; z)

∂z
− ∂Ii(x; z)

∂z
= −1

k
∇⊥ · [Ii(x; z)∇⊥ψ(x)], (3.29)

where Eq. (3.20) is used to express the left–hand–side as the difference between the

two intensity derivative measurements taken with and without the sample in place.

The result of Eq. (3.27) assumes that intensity derivative can be measured ac-

curately. In reality, one is limited to estimate the derivative from finite difference

measurements. The validity of Eq. (3.27), taking the finite displacement distance

along z into account, can be examined as follows. The Fourier transform Ĩ(u; ∆z) of

the intensity taken at the plane defocused by ∆z from the focal plane (assumed at

z = 0) can be written as [56]

Ĩ(u; ∆z) =

∫
Ji

(
x +

λ∆zu

2
,x− λ∆zu

2

)√
T

(
x +

λ∆zu

2

)
T

(
x− λ∆zu

2

)
× exp

{
i

[
φ

(
x +

λ∆zu

2

)
− φ

(
x− λ∆zu

2

)]}
× exp(−i2πx · u) d2x, (3.30)

where u is the spatial frequency variable. Assume that all functions of λ∆zu vary

slowly with respect to changes in u and

|λ∆zu|2 � 1, (3.31)

Eq. (3.30) can be simplified by taking up to the first order terms with respect to

λ∆zu, yielding

Ĩ(u; ∆z) =

∫
[T (x)Ii(x; 0) + i2π∆zT (x)u · Fi(x; 0) + iλ∆zIt(x; 0)u · ∇⊥ψ(x)]

× exp(−i2πx · u) d2x. (3.32)
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Taking inverse Fourier transform on both sides of Eq. (3.32) yields:

I(x; ∆z) = T (x)Ii(x; 0)−∆z∇⊥ · [T (x)Fi(x; 0)]− ∆z

k
∇⊥ · [It(x; 0)∇⊥ψ(x)]. (3.33)

Equation 3.33 is a good approximation to Eq. (3.27) as long as the condition in

(3.31) is satisfied. The spatial frequency dependence in this condition implies that

the validity of PC–TIE with finite difference implementation depends not only on

spatial features in the sample, but also on the coherence state of the incident light.

3.3.2 Experimental verification of the PC–TIE

The experimental arrangement used to test the PC–TIE is illustrated in Fig. 3-1.

An LED with central wavelength λ̄ =620nm and bandwidth 20nm is placed before

a pinhole with a diameter d = 500µm; a diffuser is placed in between to create

a uniform angular distribution of light. We use a Köhler illumination system, by

placing a condenser lens at one focal length (f =50mm) away from the pinhole, to

create a uniform intensity distribution after the lens. If we assume that the lens is

perfect and neglect the effect of finite apertures, the field after the lens consists of

plane waves propagating at different directions. If we further assume the primary

source is incoherent with uniform intensity I0, which is a good approximation in our

case, then the mutual intensity at any arbitrary plane z after the lens can be obtained

according to the van–Cittert Zernike theorem as

Ji(x1,x2, z) =
πI0d

k|x2 − x1|
J1

(
kd|x2 − x1|

2f

)
, (3.34)

where k = 2π/λ̄. Note that Fi = 0 due to the symmetry in this illumination. In

order to produce a partially coherent field with non–zero flux, a field modulation

mask is placed in the beam prior to the sample being imaged. The field modulation

mask is an MIT logo, and the phase object being imaged is an MIT beaver. Both

samples were made by etching into a glass microscope slide (n ≈ 1.5) to a depth of

approximately 100 nm. The object is relayed onto the detector (Aptina MT9P031)
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Figure 3-1: Imaging system used for the partially coherent TIE

by a 4f system with unit magnification. The detector is placed on a linear motion

stage (Zaber T–LSM025A), which can be moved along the optical axis. For each

set of TIE measurements, an under–focused, over–focused and in–focus images were

taken with axial displacement in steps of 250µm. For display, all intensities shown in

Fig. 3-2 are normalized so that the maximum value is unity. The TIE was solved by

the Fourier domain method with the adoption of Tikhonov regularization to suppress

the low–frequency artifacts in the reconstruction [83].

To provide a baseline measurement for comparison, measurements were first taken

with only the phase object in place with quasi–uniform illumination, as shown in

Figs. 3-2(a–b). The thickness of the sample is recovered by solving the simplified

PC–TIE in Eq. (3.28), and the result are shown in Fig. 3-2(c).

In order to test the PC–TIE when the object is illuminated by non–uniform par-

tially coherent light, measurements were taken with both the field modulation mask

and the object in place, as shown in Figs. 3-2(g–h). As already explained in the the-

ory, to correctly reconstruct the phase of the object in this case, the transverse flux

vector Fi of the illumination needs to be calibrated alone by another TIE measure-

ment. After taking the intensity measurements shown in Figs. 3-2(d–e), the scalar

phase φi shown in Fig. 3-2(f) is reconstructed by solving Eq. (3.23); Fi is determined

by ∇⊥φs, assuming zero contribution from the divergence–free component. The result
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of applying the coherent TIE, without accounting for the illumination, is shown in

Fig. 3-2(i), which clearly mixes illumination flux with sample’s phase. The sample’s

thickness reconstructed from Eq. (3.29), assuming a pure–phase sample, is shown

in Fig. 3-2(j), while the result of applying Eq. (3.27) is shown in Fig. 3-2(k). The

difference between Figs. 3-2(j) and (k) is minimal, due to the fact that the in–focus

intensity of the sample exhibits minimal variation, i.e. it is nearly pure–phase.

3.4 Conclusion

The PC–TIE thats allows recovery of the OPL of a thin sample and accounts for

the effect of partially coherent illumination is demonstrated. For illuminations with

transverse symmetries, this equation reduces to the same form as the coherent TIE.

Otherwise, two sets of TIE measurements are required in order to account for the

nonuniform illumination flux.
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Figure 3-2: Experimental measurements and results for (a–c) the sample with uniform
illumination, (d–f) the illumination modulation mask alone, and (g–k) both sample
and modulation mask in place. (a,d,g) In–focus intensity measurements. (b,e,h)
Intesnity difference between defocused measurements. (f) The scalar phase recon-
struction for the illumination with only the field modulation mask in place. Sample
thickness reconstructed from (c) Eq. (3.28) with uniform illumination, (i) Eq. (3.28)
with both sample and modulation mask in place, (j) Eq. (3.29), assuming a pure–
phase sample, and (k) Eq. (3.27), assuming a sample containing both amplitude and
phase variations.
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Chapter 4

Transport of intensity phase

imaging with nonlinear diffusion

regularization

4.1 Introduction

The transport of intensity equation (TIE) follows from the wave equation under parax-

ial propagation and in the simplest case relates the first derivative of intensity along

the optical axis to the Laplacian of the phase in the transverse direction. In prac-

tice, recovery of phase from the TIE involves estimating the first intensity derivative

from finite differences taken between two or more intensity images at different prop-

agation distances [120, 121, 112] followed by numerical inversion of the Laplacian

operator. Phase reconstructed from noisy images using the TIE often contains un-

wanted low–frequency artifacts [83], which existing denoising methods often do not

remove effectively [58, 83]. On the other hand, proper adaptation of prior knowledge

of the object can significantly improve recovery, as has been shown in numerous other

inverse problems. In this chapter, we consider the prior, often encountered in prac-

tice, of the objects consisting of regions of piecewise constant phase and demonstrate

how to incorporate this prior into the TIE solution as nonlinear diffusion (NLD)
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regularization.

4.2 Theory and method

Consider a pure phase object oriented perpendicular to the optical axis, z, whose op-

tical thickness is specified by φ(x, y). If this sample is illuminated by a normally inci-

dent plane wave of intensity I0, the intensity immediately after the object, I(x, y, z),

satisfies a simplified form of the TIE

− k
I0

∂I(x, y, z)

∂z
= ∇2φ(x, y), (4.1)

where k = 2π/λ is the wave number. This has the form of Poisson’s equation in 2D. If

∂I/∂z is known along with suitable boundary conditions for the phase, the phase φ can

be uniquely computed from Eq. (4.1). For a more general phase and amplitude object,

the full solution of the TIE can be obtained by solving two Poisson’s equations [109],

the reconstructed phase has been shown to be unique up to phase singularities [55].

To understand low–frequency artifacts in the TIE solution, it is instructive to

consider the TIE in the Fourier domain. Consider a single Fourier component of

the phase, which has spatial variation proportional to sin(u0x). From Eq. (4.1) it

is clear that the change in intensity upon propagation, ∂I/∂z, is proportional to

u2
0 (a more rigorous analysis for a bright–field microscope may be found in [3, 97]).

Therefore, low spatial frequency components yield a much weaker signal than those

with high spatial frequency. The inversion of the TIE to recover phase involves

multiplication in the Fourier domain by the transfer function, H = −1/(u2 + v2),

where u and v are the spatial frequency variables along x and y, respectively. This has

the effect of significantly amplifying low frequency noise in the phase reconstruction.

Traditional linear denoising utilizes a Tikhonov regularized transfer function, HTR =

(u2 + v2) /
[
(u2 + v2)

2
+ γ
]
, where γ is a regularization parameter. HTR behaves like

a high–pass filtered version of H and γ controls the lower cutoff frequency.

An alternative nonlinear method is to write the TIE in terms of a linear model
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A = F∗HF that relates the measured intensity derivative f to the phase, where F

is the Fourier transform operator; then solve it as a minimization problem where the

quadratic error is balanced against a denoising (regularization) term by a weight τ as

minimize
1

2
‖f − Aφ‖2 + τ

x
Ψ (|∇φ|) dxdy. (4.2)

The argument of Ψ is deliberately chosen as the magnitude of the phase gradient, so

that a proper choice of Ψ can successfully penalize low–frequency artifacts.

In a pure denoising context, A in Eq. (4.2) is simply the identity matrix and the

method of steepest descent for minimizing Eq. (4.2) results in a partial differential

equation for NLD denoising [93, 88, 125]:

∂φ(x, y; t)

∂t
= τ∇ ·

(
Ψ′(|∇φ|)
|∇φ|

∇φ
)
. (4.3)

The diffused image at t = T is generally computed iteratively by finite differences.

At each step in t, the local flux points along the direction of the gradient, ∇φ with

magnitude given by F = Ψ′(|∇φ|). For denoising TIE, Ψ should be such that F

is preferentially large for small values of the phase gradient and nearly zero above

some cutoff value. This would result in denoising through diffusion for low–frequency

artifacts while preventing diffusion across sharp boundaries.

A widely used Ψ for recovering piecewise constant signals is the total variation

(TV) function [106], ΨTV = |∇φ|, FTV = 1. Because F is constant, TV regular-

ization behaves like an unbiased diffusion process so that low–frequency artifacts

are not preferentially removed. In order to preserve sharp features while diffus-

ing low–frequency regions, Weickert instead introduced an NLD flux of the form

FW = 1.67s [1− exp(−3.86/s12)] (where s = |∇φ|/k0 is the normalized magnitude of

the gradient) [124]. Here k0 is the critical gradient that controls the position of the

deflection point in both the curve of ΨW and FW in Fig. 4-1(a) and (b), respectively.

The Weickert function has small flux at high gradient, and thus preserves sharp fea-

tures. However, it also has linearly decreasing flux below k0 and therefore does not

remove low–frequency artifacts efficiently. To meet that goal as well, we removed the
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“1.67s” term from the Weikert function, resulting instead in the “hybrid” NLD flux

FH(s) = 1− exp(−3.86/s12). (4.4)

This hybrid NLD regularization function and the magnitude of the flux are shown in

Fig. 4-1(a) and (b), respectively. Below the critical gradient, FH behaves like the TV

function; and above the critical gradient, it behaves as the Weickert function.
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s

0

(a) (b)

Figure 4-1: (a) The NLD regularizing function and (b) the magnitude of the flux as
a function of the normalized magnitude of the gradient of the phase.

Pseudocode to implement the optimization in Eq. (4.2) based on the iterative

shrinkage/thresholding(IST) algorithm [10] is as follows:

1. Initialize φ̂
(0)
b = A∗f ;

2. For i = 1, 2, . . .,

(2.a) apply gradient descent with a step size α for the data fidelity term: φ̂
(i)
a =

φ̂
(i−1)
b + αA∗(f − Aφ̂(i−1)

b );

(2.b) apply NLD with time t such that t/α = τ : φ̂
(i)
b = φ̂

(i)
a +t∇·

(
Ψ′(|∇φ̂(i)

a |)∇φ̂(i)
a /|∇φ̂(i)

a |
)

;

3. Stop and yield the final estimate φ̂ = φ̂
(i−1)
b when the change in the minimizing

functional in Eq. (4.2) between consecutive steps falls below some threshold.

For large t, we implement the NLD with n time–marching steps of step size dt

(t = ndt) using the additive operator splitting (AOS) scheme [124]. Additionally,

before computing the flux at each step, we smoothen the gradient by convolution
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with a Gaussian to reduce potential staircasing artifacts [125].
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Figure 4-2: (a) Original phase, (b) intensity derivative, (c) direct, (d) Tikhonov–
regularized, (e) TV–regularized, (f) Weickert function regularized and (g) the hybrid
function regularized solutions. (f) Phase cross–sections taken along the dashed–line
in (a).

4.3 Simulations

We demonstrate our method by a numerical example: a pure phase object with the

phase distribution given in Fig. 4-2(a) is illuminated by a normally incident plane

wave. The intensity derivative in Fig. 4-2(b) was generated by simulating over–

and under–focused images, each defocused from the in–focus plane by a normalized

distance znorm = 8 (znorm = z ·NA2/λ, where z is the physical distance and NA=0.14

is the numerical aperture). Each defocused image was corrupted by Poisson noise

such that the signal–to–noise ratio(SNR) in this intensity derivative data is 0dB. Low

frequency artifacts are clearly seen in the directly inverted result in Fig. 4-2(c). The

effect of Tikhonov regularization with the regularizer γ = 10−12 (chosen to minimize

the average per–pixel root–mean–square (RMS) error) is shown in Fig. 4-2(d). We

implemented the NLD regularization with the TV, Weickert and hybrid functions

and the results are shown in Fig. 4-2(e), (f), and (g), respectively. The TV function
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Figure 4-3: Average per-pixel RMS error versus SNR

smooths the result. Both the Weickert and hybrid functions preserve the edge features

and diffuse the low frequency artifacts into piecewise constant patches; however, the

Weickert function requires approximately 5 times more steps than the hybrid function

to converge. Figure 4-2(h) compares the phase distributions using NLD diffusion along

the dashed line indicated in Fig. 4-2(a) to phase recovered without regularization. The

noise performance of the NLD method is studied in Fig. 4-3. For each SNR level, we

repeat the simulation 100 times. In Fig. 4-3, the data points are the average per-pixel

RMS errors in the recovered phase and the error bars are the standard deviations. In

terms of RMS after convergence, the hybrid and Weickert functions perform similarly

but, as mentioned previously, the latter converges much slower.

4.4 Discussion

We have demonstrated that the use of the piecewise constant priors in the TIE by NLD

regularization to account for low–frequency artifacts while preserving sharp edges and
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introduced a new function combining the desired properties of TV and Weickert NLD.

It should be noted that, aside from the TV case, the NLD regularization explored here

is not a provably convex problem; therefore, the recovered phase is not necessarily

the global minimizer of Eq. (4.2). This problem also occurs in edge-preserving NLD

since the regularization functions, Ψ that preserve edges and smooth low–frequency

artifacts are not convex. However, in NLD it is generally observed that discretization

due to finite differences (or Gaussian smoothing of the gradient prior to performing

the NLD) greatly stabilizes the results [125]. Based on our observations, this appears

to be the case for the technique presented here as well. For phase maps that are not

piecewise constant, but have strong sparsity priors in other domains, e.g. the phase

is piecewise continuous or consist of a small set of Zernike modes, similar techniques

may prove useful for removing low–frequency artifacts.
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Chapter 5

Compressive X–ray phase

tomography based on transport of

intensity

5.1 Introduction

Traditional tomography with hard X–rays recovers the attenuation of an object. At-

tenuation does not always provide good contrast when imaging objects made of ma-

terials with low electron density, e.g. soft tissues. In these cases, richer information is

often contained in the phase, i.e. the optical thickness of the sample [76, 89, 129, 35],

since the X–ray phase shift is almost 103 times larger than the X–ray attenuation

for low–Z elements [107], such as hydrogen, carbon, nitrogen and oxygen. X–ray

interferometry based on Mach–Zehnder geometry using Bragg crystals [76] provides

X–ray phase information; however, it suffers from extreme sensitivity to mechanical

stability and alignment, the coherent synchrotron source is necessary for good fringe

contrast. The diffraction enhanced X–ray phase imaging technique measures the re-

fraction angle after an X–ray beam passing through a sample using crystal analyzers.

Enhancement of the X–ray phase contrast has been demonstrated using this tech-

nique [29], however, the experimental setup is also very complicated and relies on a
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synchrotron source. Recently, a grating based X–ray interferometer is demonstrated

using a table–top X–ray source [77, 89]; the spatial coherence requirement is satisfied

by the introduction of a narrow pitch grating at the source plane. However, the mea-

surement process is cumbersome since it requires scanning a analyzer grating in front

of the detector. Propagation based techniques are particularly suitable for X–ray

phase imaging because they allow phase to be recovered from intensity images taken

at multiple propagation distances without the need for optical elements [54, 81]. Here

we adopt the transport of intensity equation (TIE) which relates the measured inten-

sity to the Laplacian of the phase under a weakly–attenuating sample approximation.

Implementing TIE at many angles while rotating the object allows tomographic re-

construction of the refractive index distribution [16, 57, 51].

TIE tomographic reconstruction consists of two tasks: (1) retrieving the phase pro-

jections by solving the TIE at each angle and (2) applying a tomographic inversion

algorithm to the phase projections to reconstruct the refractive index distribution.

The two steps are often treated as separate problems [17]. First, the TIE is solved

by an off–the–shelf Poisson equation solver. This step typically requires regulariza-

tion, e.g. Tikhonov [51, 17] to mitigate amplification of low spatial frequency noise

by the inverse Laplacian operator. For the second step, standard tomographic re-

construction is carried out, e.g. using the filtered back–projection (FBP) method.

This requires additional regularization to mitigate the well known streaking (high–

frequency) artifacts due to under–sampling in the Fourier domain. In this chapter,

we design a forward model that combines TIE and tomography operations in a single,

discretized linear operator and develop a compressive reconstruction method which

allows suppression of both low and high–frequency artifacts.

The remainder of this chapter is structured as follows: Section 5.2 describes the

forward model that is used to relate the unknown 3D refractive index distribution to

the intensities measured at different rotational angles; the compressive reconstruction

method to invert the model is developed in Section 5.3; experimental results from X–

ray TIE tomography are presented in Sections 5.4; Section 5.5 concludes this chapter

with some discussions.
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Figure 5-1: Imaging geometry for TIE tomography

5.2 Forward model

A schematic diagram of the imaging geometry for X–ray TIE tomography is shown

in Fig. 5-1. A quasi–monochromatic source with mean wavelength λ is located at

the plane of z = −z0 with coordinates x0 = (x0, y0). Here, we consider a planar

incoherent source with intensity distribution I0, which is a good approximation for a

table–top X–ray source. The mutual intensity of the incident field Ji at the plane of

z = 0 with coordinates x = (x, y), under the paraxial approximation, is [70]:

Ji(x1,x2) =
1

λ2z2
0

exp

{
ik

2z0

(
|x1|2 − |x2|2

)}
H0

(
x1 − x2

λz0

)
(5.1)

where the exponential term measures the wavefront curvature in the illumination; the

term H0 is source dependent:

H0

(
x1 − x2

λz0

)
=
x

I0(x0) exp

{
i2π

x1 − x2

λz0

· x0

}
d2x0, (5.2)

which relates the mutual intensity of the partially coherent illumination to the Fourier

transform of the intensity distribution of the primary incoherent source.
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The sample is characterized by the 3D distribution of the complex refractive

index, n(x, z) = nr(x, z) + ini(x, z), where the origin of the cartesian coordinates

is located within the object. We further assume that the interaction between the

sample and the field can be treated using the projection approximation. Under

this assumption, the intensity attenuation and phase delay imparted upon the field

passing through the sample can be characterized by a simple transmission function,

t(x) =
√
T (x) exp[iφ(x)], where the transmittance function T is defined by the in-

tegral T (x) = exp
(∫

L
α(x, z)dl

)
, and L defines a ray path of a straight line in the

(y, z) plane, and the absorption coefficient α = kni; the phase delay φ measures the

total optical path length (OPL) along the same ray path L: φ(x) =
∫
L
knr(x, z)dl. By

adopting this approximation, we assume that the size of the sample is small compared

to the curvature of the illumination at the object and the wavelength of the incident

light is much smaller than the size of the finest structure in the sample. Under these

assumptions, the mutual intensity J ′ immediately after the sample is given by

J ′(x1,x2) = Ji(x1,x2)t(x1)t∗(x2). (5.3)

The intensity after light passing through the object is recorded by an area detector

located at the plane of z = d with coordinates x′ = (x′, y′). Under the paraxial

approximation, the intensity I on the detector plane is given by the following propa-

gation integrals:

I(x′) =
1

λ2d2

∫∫∫∫
J ′(x1,x2) exp

[
ik

2d

(
|x′ − x1|2 − |x′ − x2|2

)]
d2x1d2x2. (5.4)

Substitute Eqs. (5.1–5.3) into Eq. (5.4), and then take the Fourier transform on both

side of Eq. (5.4), yielding

Ĩ

(
u

Ms

)
=

1

λ2z2
0

H0

(
− u

Mi

)x √
T

(
x− λd′u

2

)
T

(
x +

λd′u

2

)
exp

{
i

[
φ

(
x− λd′u

2

)
− φ

(
x +

λd′u

2

)]}
exp(−i2πx · u) d2x (5.5)
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where ˜ denotes the Fourier transform, u = (u, v) is the spatial frequency variable,

x = (x1 + x2)/2, Ms = (z0 + d)/z0 and Mi = (z0 + d)/d are the geometrical magni-

fication factors for the sample and the source, respectively, and d′ = z0d/(z0 + d) is

effective propagation distance. Assuming that |λd′u| is small compared to the varia-

tions in the transmission and phase functions, Eq. (5.5) can be expanded to the first

order in λd′u, yielding

Ĩ

(
u

Ms

)
=

1

λ2z2
0

H0

(
− u

Mi

){
T̃ (u)−

∫
[iλd′T (x)u · ∇xyφ(x)] exp(−i2πx · u) d2x

}
.

(5.6)

By taking the inverse Fourier transform on both sides, Eq. (5.6) can be expressed as

g(x) ≡ − k
d′

[M2
s I(Msx)− Id(x)] =

M2
i

λ2z2
0

I0(Mix) ∗ ∇xy · [T (x)∇xyφ(x)], (5.7)

where ∗ denotes the convolution operator. The in–focus intensity measurement at the

plane immediately after the sample is Id(x) =
M2

i

λ2z20
I0(Mix) ∗ T (x). Equation 5.7 is a

modified TIE that includes the filtering effect due to the finite size of an incoherent

source. Since the total intensity can be treated as an incoherent superposition of

intensities generated from every points on the source, each of which illuminates the

sample with a slightly different displacement with respect to the center, the overall

effect on the final intensity is the convolution with intensity distribution of the source.

When the sample is weakly attenuating such that T ≈ 1, Id is entirely determined

by the intensity profile of the source. If we further ignore the filtering effect due to

the finite source size, Eq. (5.7) is simplified to

g(x) ≡ − k
d′

[Is(Msx)− Ii(Msx)] = Ii(Msx)∇2
xyφ(x), (5.8)

where Ii is the background image taken without the sample in place. Equation 5.7

is a form of the TIE that uses two images taken with and without the sample in

place and no detector motion in order to recover the phase projection of a weakly

attenuating sample. The measurement process is illustrated in Fig. 5-2.

In a tomographic measurement, the sample is rotated about the x axis and the
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Figure 5-2: Experimental process for a pure phase sample. A background image Ii is
first taken without the object in place; images I with the sample in place are taken
next at the same plane.

phase projection φ for a given rotation angle θ can be expressed as:

φ(x; θ) =
x

nr(x, ys, zs)δ(y − ys cos θ − zs sin θ) dysdzs, (5.9)

The set of measurements g obtained from many angles of rotation can be arranged

into a vector g. The forward model that relates the unknown n to the data takes the

simple form

g = PR n ≡ An. (5.10)

where the TIE operator P is performed on each phase projection and the forward

operator A = PR takes the projection of n by R at each angle.

5.3 Compressive reconstruction method

Since n generally contains more unknowns than measurements in g, inversion is ill–

posed; assuming n can be expressed as sparse, i.e. it contains only a small number

of nonzero coefficients in some specified basis, an effective and elegant approach to

invert it is to adapt compressed sensing theory [19]. Since the sample of interest

often consists of regions with constant refractive indices, we choose the following
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compressive reconstruction model

n̂r = arg min
n

‖n‖TV such that g = An, (5.11)

where the total variation (TV) function ‖n‖TV is our sparsity basis, defined as

‖n‖TV =
∑√

(∇xn)2 + (∇yn)2 + (∇zn)2, (5.12)

and ∇x, ∇y, and ∇z are the finite difference operators in the three spatial dimen-

sions. The solution of the optimization in Eq. (5.11) is found by solving the following

regularization problem instead to account for imperfect measurement [20, 10]

minimize
1

2
‖g − Anr‖2 + τ‖nr‖TV, (5.13)

where the regularization parameter τ controls the relative weight of the TV constraint

as compared to the data fidelity term ‖g − A nr‖2. We adapt the two–step iterative

shrinkage/thresholding algorithm (TwIST) [10] to solve this minimization problem.

When implementing the algorithm, nr is discretized into a N × N × N matrix

with voxel length ∆. The operator P is performed in the Fourier domain:

P ≡ I0 ∗ ∇xy · T∇xy

= F−1
xy Hi ◦Hx ◦ FxyT ◦ F−1

xy Hx ◦ Fxy

+F−1
xy Hi ◦Hy ◦ FxyT ◦ F−1

xy Hy ◦ Fxy (5.14)

where the gradient operator∇xy is replaced by (F−1
xy Hx◦Fxy,F−1

xy Hy◦Fxy) and the en-

tries of Hx and Hy at (p, q) are given by Hx,pq = i2πp/(N∆) and Hy,pq = i2πq/(N∆),

respectively; Fxy and F−1
xy denote the discrete Fourier and inverse Fourier trans-

form, respectively, with respect to the (x, y) variables; the transfer function ma-

trix due to the incoherent source is considered by Hi, whose entry is determined by

Hi,pq = H0(−p/(MiN∆),−q/(MiN∆))/λ2z2
0 ; and ◦ denotes entry–wise multiplica-

tion. For a weakly attenuating sample illuminated by an ideal point source, the TIE
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operator Pph takes a much simpler form:

Pph = Ii ◦ F−1
xy H ◦ Fxy, (5.15)

where H is the transfer function matrix with entries defined as Hpq = −4π2(p2 +

q2)/(N∆)2.

The operator R can be implemented in either the spatial domain [50] or the Fourier

domain [43]. Generally, it is observed that the performance of the Fourier domain

method is more robust to discretization and noise, which has been demonstrated in

both X–ray CT [82] and MRI [68]. We adopt the Fourier domain method to write R

as

R = F−1
y SFyz,x (5.16)

where Fyz,x denotes the discrete 2D Fourier transform taken for the cross section at a

constant x, S takes radial slices in the Fourier domain, and F−1
y = [F−1

y,θ1
,F−1

y,θ2
, · · · ,F−1

y,θN
],

where F−1
y,θm

denotes the 1D inverse Fourier transform of a radial slice along the angle

θm. Since the radial slices need to be taken from points equally spaced along the

radial direction, while the result of Fyz,x is on a Cartesian grid, S requires interpo-

lation and then resampling (gridding) [43]. We implement S together with Fyz,x by

adapting the non-uniform FFT (NUFFT) algorithm [43].

The TIE and projection operators may be combined and simplified as

A = (F−1
xy Hi ◦Hx ◦ FxyT ◦ F−1

xy Hx ◦ Fx

+F−1
xy Hi ◦Hy ◦ FxyT ◦ F−1

xy Hy ◦ Fx)FNU, (5.17)

where FNU is the NUFFT operator. For a weakly attenuating sample illuminated by

an ideal point source, A is further simplified as

A = F−1
xy H ◦ FxFNU. (5.18)
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5.4 X–ray phase tomography

The experimental setup for the X–ray TIE tomography is shown in Fig. 5-3. A

microfocus source (Hamamatsu, L8121–03) with a circular focal spot size of 5µm in

diameter, located at z0 = 0.765, was operated at 20kVp to produce a diverging X–ray

beam with central wavelength λ = 0.062nm. For a beetle sample, intensity images

were obtained with an X–ray detector consisting of a CsI:Tl scintillator (RMD Inc.)

coupled to an EMCCD (Andor, ixon, 512×512 pixels, 16µm pixel size) by an imaging

system with 6× demagnification; the effective pixel size of an image directly seen at

the scintillator is 96µm. The scintillator was placed at d = 1.711m. We assume the

beetle sample is weakly attenuating. During the tomographic measurement, a single

image was taken at every 5 degrees with 6.7 seconds exposure time. The intensity of

the incident beam Ii was calibrated by taking a single background image without the

sample in place.

The coherence width xc of the illumination at the sample plane is estimated by

calculating the width of the main lobe of the Fourier transform according to Eq. (5.2),

yielding xc = 19µm. Since xc is much smaller than the finest feature size of the sample,

the low–pass filtering effect due to the finite source was ignored for the inversion. We

have also verified that blurring due to the finite spectral bandwidth of the source

is orders of magnitude smaller than xc, so our model based on monochromaticity

assumption applies in this experiment.

During the reconstruction, we first compute g for each angle, four examples of

which are shown in Fig. 5-4. Reconstruction results using three different methods

are compared in Fig. 5-6. In (a), the Fourier domain TIE solver with Tikhonov

regularization chosen to provide optimal results is used to compute phase projections

at each angle (the reconstructed phase projections for the measurements in Fig. 5-4

are shown in Fig. 5-5), and then the FBP method with a Ram–Lak filter is applied for

the tomographic inversion. In (b), the same phase projections are inverted using the

Fourier domain tomographic reconstruction method. The results from both methods

suffer from severe streaking artifacts due to missing samples between slices in the
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Figure 5-3: X–ray TIE tomography experimental setup
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Fourier domain. Low–frequency artifacts (blurring) around edges are also observable

but are less severe as compared to a single phase projection reconstruction. This

is likely due to denser sampling around the origin resulting from the intersection

of the Fourier slices. Both artifacts can be greatly suppressed using compressive

reconstruction with TV minimization, Eq. (5.11), whose results are shown in (c),

since TV minimization favors large structures with sharp edges. A 3D rendering of

the refractive index reconstruction by the compressive method is shown in Fig. 5-7.

5.5 Conclusion and future work

A forward model that relates the refractive index distribution of the underlying sam-

ple to the intensity measurements of the straight–through X–ray beam has been de-

veloped. A compressive reconstruction method that simultaneously suppresses both

high and low–frequency reconstruction artifacts is proposed and demonstrated exper-

imentally for a weakly attenuating object in a microfocus X–ray system.

The current forward model shows that the intensity distribution of the primary

incoherent source acts like a filter in the Fourier domain. The fringe contrast of the

measured intensity data is controlled by the source size. When the blurring due to

low–pass filtering from a medium–sized source is not severe, deconvolution techniques

might help to improve the phase reconstruction. From an opposite perspective, the

intensity distribution of the primary source provides extra degrees of freedom for

designing the phase imaging system.

Compressed sensing techniques work best when the measurement is “incoherent,”

i.e. the sparse information in the unknown is evenly spread out in the measurement

[19]. This is achieved in our model by the projection operator R. The measure-

ment could be made more incoherent through the use of source coding or coded

apertures [69].
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Figure 5-4: Normalized intensity variation of a beetle sample measured at (a) θ = 0◦,
(b) θ = 30◦, (c) θ = 60◦, (d) θ = 90◦.
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Figure 5-5: Phase projection reconstructions of the beetle sample at (a) θ = 0◦, (b)
θ = 30◦, (c) θ = 60◦, (d) θ = 90◦.
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Figure 5-6: Reconstruction results for the real part of the refractive index. (a) Fourier
based TIE solver + FBP; (b) Fourier based TIE solver + Fourier domain tomographic
inversion; (c) Compressive reconstruction by solving Eq. (5.13). The three cross–
sections are taken from the three orthogonal planes going through the center of the
sample.
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Figure 5-7: 3D rendering of the refractive index reconstruction by the compressive
method.
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Chapter 6

Compressive Phase Space

Tomography

6.1 Introduction

In the previous three chapters, the TIE method is shown to be able to recover the

phase based on measurements of propagated intensities. When the light is partially

coherent, the TIE technique cannot recover the full statistical correlation information

about the field. In this chapter, a technique, called phase space tomography (PST),

which also relies on taking an axial stack of intensity images while the beam propa-

gates, will be described. By using a different method to process the data, PST allows

the recovery of the full correlation function of the underlying partially coherent field.

Correlation functions provide complete characterization of wave fields in several

branches of physics, e.g. the mutual intensity of stationary quasi–monochromatic

partially coherent light [70], and the density matrix of conservative quantum systems

(i.e., those with a time–independent Hamiltonian) [11]. Classical mutual intensity

expresses the joint statistics between two points on a wavefront, and it is tradition-

ally measured using interferometry: two sheared versions of a field are overlapped

in a Young, Mach–Zehnder, or rotational shear [59, 71] arrangement, and two–point

ensemble statistics are estimated as time averages by a slow detector under the as-

sumption of ergodicity [70, 49].
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As an alternative to interferometry, PST is an elegant method to measure correla-

tion functions. In classical optics, PST involves measuring the intensity under spatial

propagation [79, 91, 114] or time evolution [8]. In quantum mechanics, analogous

techniques apply [118, 99, 64, 63]. However, the large dimensionality of the unknown

state makes tomography difficult. In order to recover the correlation matrix corre-

sponding to just n points in space, a standard implementation would require at least

n2 data points.

Compressed sensing [19, 20, 40] exploits sparsity priors to recover missing data

with high confidence from a few measurements derived from a linear operator. Here,

sparsity means that the unknown vector contains only a small number of nonzero

entries in some specified basis. Low–rank matrix recovery (LRMR) [25, 27] is a

generalization of compressed sensing from vectors to matrices: one attempts to re-

construct a high–fidelity and low–rank description of the unknown matrix from very

few linear measurements.

In this chapter, the experimental measurement and verification of the correlation

function of a classical partially coherent field using LRMR will be presented. It is

worth noting that LRMR came about in the context of compressive quantum state

tomography (QST) [53], which utilizes different physics to attain the same end goal of

reconstructing the quantum state. In PST, one performs tomographic projection mea-

surements, rotating the Wigner space between successive projections by evolving the

wave function [79, 91]. This is directly analogous to the classical optical experiment

we are presenting here, where we perform intensity measurements (i.e., tomographic

projections in Wigner space) and utilize propagation along the optical axis to rotate

the Wigner space between projections. The difference lies in the fact that in QST

the state is recovered via successive applications of the Pauli dimensionality–reducing

operator, and there is no need to evolve the state. Nevertheless, both approaches lead

to the same Hermitian LRMR problem, as long as the assumption of a quasi–pure

unknown state is satisfied. In [52], it was shown that estimation of a low–rank matrix

of dimension n and rank r requires only O(rn lnn) to O(rn ln2 n) data points.

The low–rank assumption for classical partially coherent light anticipates a source
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composed of a small number of mutually incoherent effective sources, i.e. coherent

modes [127], to describe measurements. This is essentially equivalent to the low

entropy assumption [53], i.e. a nearly pure quantum state in the quantum analogue.

This assumption is valid for lasers, synchrotron and table–top X–ray sources [87], and

Köhler illumination in optical microscopes [70]. An additional requirement for LRMR

to succeed is that measurements are “incoherent” with respect to the eigenvectors

of the matrix, i.e. the measured energy is approximately evenly spread between

modes [52, 26]. Diffraction certainly mixes the coherent modes of the source rapidly,

so we expect LRMR to perform well for classical PST. The same expectation for QST

has already been established [53].

6.2 Theory and method

The two–point correlation function of a stationary quasi–monochromatic partially

spatially coherent field is the mutual intensity [70]

J(x1,x2) = 〈g∗(x1)g(x2)〉 , (6.1)

where 〈·〉 denotes the expectation value over a statistical ensemble of realizations of

the field g(x).

PST recovers the mutual intensity by successive measurement of intensities at

multiple propagation distances. For simplicity, let us first consider a 1D case, as

shown in Fig. 6-1. The intensity after propagation by distance z is [70]

I(xo; z) =
x

J(x1, x2) exp

(
− iπ

λz
(x2

1 − x2
2)

)
exp

(
i2π

x1 − x2

λz
xo

)
dx1dx2. (6.2)

This can be expressed in operator form as

I = tr(PxoJ), (6.3)

where P denotes the propagation operator that combines both the quadratic phase
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z

xo

incident field (J)

x

O

Figure 6-1: Experimental arrangement of PST for recovering the 2D mutual intensity
J at the plane of incidence O.

and Fourier transform operations in Eq. (6.2), tr(·) computes the trace, and xo de-

notes the lateral coordinate at the observation plane. By changing variables x =

(x1 + x2) /2, x′ = x1−x2 and Fourier transforming the mutual intensity with respect

to x we obtain the Ambiguity Function (AF) [14, 15, 115]

A (u′, x′) =

∫
J

(
x+

x′

2
, x− x′

2

)
exp (−i2πu′x) dx. (6.4)

Eq. (6.2) can be written as [79, 91, 114, 14, 115],

Ĩ(u′; z) = A (u′, λzu′) , (6.5)

where Ĩ is the Fourier transform of the vector of measured intensities with respect

to xo. Thus, radial slices of the AF may be obtained from Fourier transforming the

vectors of intensities measured at corresponding propagation distances, and from the

AF the mutual intensity of a 1D field can be recovered by an additional inverse Fourier

transform, subject to sufficient sampling.

The extension of Eq. (6.5) for a 2D partially coherent field [described by the 4D
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mutual intensity J(x1, y1, x2, y2)] is given by

Ĩ(u′, v′; zx, zy) = A (u′, v′, λzxu
′, λzyv

′) . (6.6)

It is worth noting that measurements by simple free space propagation arrangement

can only access specific hyper–planes in the 4D Ambiguity space due to the constraint

zx = zy = z. To break this symmetry in the x and y dimensions, astigmatic optics

can be used in the measurement [91, 72]. Consider the geometry in Fig. 6-2, a pair of

cylindrical lenses oriented perpendicularly are placed in between the plane of incidence

and the detection plane. Without loss of generality, we define the plane of incidence

at z = 0, the detection plane is at z = zo, whereas the cylindrical lenses oriented

along x and y are located at z = z1 and z = z2, respectively. The intensity measured

at point (xo, yo) is

I(xo, yo; zo) =

∫∫∫∫
J(x1, y1, x2, y2) exp

[
iπ

(
x2

1 − x2
2

λzxa
+
y2

1 − y2
2

λzya

)]
exp

[
−i2π

(
x1 − x2

λzxb
xo +

y1 − y2

λzyb
yo

)]
, (6.7)

where

zxa = z1
1/z1 + 1/(zo − z1)− 1/f1

1/(zo − z1)− 1/f1

, zxb = zo −
z1(zo − z1)

f1

,

zya = z2
1/z2 + 1/(zo − z2)− 1/f2

1/(zo − z2)− 1/f2

, zyb = zo −
z2(zo − z2)

f2

, (6.8)

and f1 and f2 are the focal length of the cylindrical lenses oriented along x and y,

respectively. The 2D Fourier transform of the measured intensity is related to the AF

by

Ĩ(u, v) = A
(
− zxb
zxa

u,−λzxbu,−
zyb
zya

v,−λzybv
)
, (6.9)

which shows that the effective propagation distances in x and y are zxa and zya,

respectively. By changing the distances (z1, z2, and zo) and/or the focal lengths (f1

and f2), zxa and zya can be varied independently.
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incident field (J)

x

y
zo

xo
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z1 z2

Figure 6-2: Experimental arrangement of PST for recovering the 4D mutual intensity
J at the plane of incidence O. A pair of cylindrical lenses oriented perpendicularly
are used to introduce astigmatism to the measurement. Intensities are measured at
planes with axial coordinate zo.

In both cases, a linear model for compressive PST can formulated by first arranging

the measured intensity data in the Ambiguity space. The mutual intensity is defined

as the “sparse” unknown to solve for. To relate the unknowns (mutual intensity) to

the measurements (AF), the center–difference coordinate–transform is first applied,

expressed as a linear transformation T upon the mutual intensity J , followed by

Fourier transform F , and adding measurement noise e as

A = F · T · J + e. (6.10)

The mutual intensity propagation operator is unitary and Hermitian, since it

preserves energy. We use eigenvalue decomposition to determine the basis where the

measurement is sparse. The resulting basis, i.e. the set of eigenvectors, is also known

as coherent modes in optical coherence theory, whereas the whole process is known as

coherent mode decomposition [127]. The goal of the LRMR method is to minimize the

number of coherent modes to describe measurements. By doing LRMR, we impose

two physically meaningful priors: (1) existence of the coherent modes [127], and (2)

sparse representation of the partially coherent field in terms of coherent modes.

Mathematically, if we define all the eigenvalues λi and the estimated mutual in-
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tensity as Ĵ , the method can be written as

minimize rank(Ĵ)

subject to A = F · T · Ĵ ,

λi ≥ 0, and
∑
i

λi = 1. (6.11)

Direct rank minimization is NP–hard; however, it can be accomplished by solving

instead a proxy problem: convex minimization of the “nuclear norm” (`1 norm) of

the matrix J [25, 22]. The corresponding problem is stated as

minimize ‖ Ĵ ‖∗

subject to A = F · T · Ĵ ,

λi ≥ 0, and
∑
i

λi = 1, (6.12)

where the nuclear norm is the sum of the singular values σi = |λi|, ‖ Ĵ ‖∗=
∑

i σi.

This problem is convex and a number of numerical solvers can be applied to solve it.

In our implementation, we used the singular value thresholding (SVT) method [18].

The output estimate after each iteration of SVT typically has a sub-normalized total

energy, i.e.
∑

i λi < 1; we compensated for this by renormalizing at the end of each

iteration [53].

6.3 Numerical simulations

First, we demonstrate the LRMR method with a numerical example using a 1D

Gaussian-Schell model source (GSMS). Both the intensity distribution and the degree

of coherence of GSMS follow a Gaussian distribution [103]

J (x1, x2) = [I(x1)]1/2[I(x2)]1/2µ(x1 − x2), (6.13)
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Figure 6-3: (a) Input mutual intensity of a GSMS with paramters σI = 17 and
σc = 13, (b) data point locations in the Ambiguity space, mutual intensities estimated
by (c) FBP and (d) LRMR methods.

and

I(x) = exp

(
x2

2σ2
I

)
,

µ(x1 − x2) = exp

(
(x1 − x2)2

2σ2
c

)
, (6.14)

where σI determines the spatial extent of the source, and σc is proportional to the

coherence length and determines the number of coherent modes in the input source.

The eigenvalues of GSMS are never zero (analytical solution given in [103]). We

defined the number of modes (rank of the source) r as the first r modes containing

the 99% of the total energy.

One example is shown in Fig. 6-3(a). The parameters in this example are σI = 17
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Figure 6-4: The first nine coherent modes of the mutual intensity in Fig. 6-3(a). (a)
Theoretical modes, and (b) LRMR estimates.
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Figure 6-5: Eigenvalues of the mutual intensity in Fig. 6-3(a). (a) Theoretical val-
ues, (b) FBP estimates, (c) LRMR estimates, and (d) absolute errors in the LRMR
estimates versus mode index.

and σc = 13 (rank r = 6). Intensities are calculated at 40 different axial distances

and the coverage in Ambiguity space is shown in Fig. 6-3(b). We simulate the case
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where data from both the near field and the far field are missing due to the finite

range of camera scanning motion allowed in the actual experiment. The missing cone

around the u′-axis is due to missing data from near field, while the data missing from

far field results in the missing cone around the x′-axis. Both cones have an apex angle

of 20 degrees.

For comparison, the data are first processed using the traditional filtered-backprojection

(FBP) method [60]. Applying the Fourier-slice theorem to Eq. (6.5) implies that the

1D Fourier transform of a radial slice in the Ambiguity space (an intensity measure-

ment) is related to a projection in the AF’s 2D Fourier space (the Wigner space [5, 7]).

The Wigner distribution function (WDF) is related to the mutual intensity by

W (x, u) =

∫
J

(
x+

x′

2
, x− x′

2

)
exp (−i2πux′) dx′. (6.15)

To implement the FBP method, each intensity projection is first filtered by a Ram–

Lak kernel apodized by a Hamming window; the estimated WDF is obtained by

back-projecting all the filtered intensities, and then an inverse Fourier transform is

applied to produce the mutual intensity. Figure 6-3(c) shows the reconstructed mu-

tual intensity following this procedure. Three types of artifacts can be seen in this

reconstruction. First, the reconstructed mutual intensity has lower values along the

diagonal of the matrix due to the missing cones. However, this is unphysical because

a correlation function should always have maximum value at zero separation. Sec-

ond, the estimated degree of coherence is lower than the original field. The third

artifact is the high frequency noise around the diagonal of the matrix, which is due

to undersampling between the radial slices. All these artifacts have been greatly

suppressed or completely removed by LRMR, whose reconstruction result is shown

in Fig. 6-3(d). The disappearance of the correlation peak along the diagonal (i.e.,

the intensity) when we use FBP for the reconstruction can be best explained with

the help of Figure 6-3(b). Going from the Ambiguity space to the mutual intensity

space involves Fourier transforming along horizontal lines, parallel to the u′ axis. The

diagonal in particular corresponds to the line x′ = 0. It can be easily seen that, due
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Figure 6-6: Oversampling rate versus relative MSE of LRMR estimates. The input
field is a GSMS with parameters σI = 36 and σc = 18. The noisy data is generated
with different SNR from (a) an additive random Gaussian noise model, and (b) a
Poisson noise model.

to the missing cone, pretty much all the data are missing from that line, except near

the origin; thus resulting in a low–pass filtering effect. The fact that the compressive

reconstruction method manages to restore the physically correct values of the corre-

lation along the diagonal corroborates that the missing cone is successfully retrieved

in our LRMR reconstruction. The FBP reconstruction may also be compared quanti-

tatively to the compressive reconstruction in terms of the global degree of coherence

parameter µ̄ =

√P
i λ

2
iP

i |λi| [102, 6], which was found as 0.150 and 0.617, respectively; the

true state has µ̄ = 0.618.

The coherent modes for a GSMS are Hermite–Gaussian sources [103]. The theo-

retical and LRMR estimated first nine coherent modes in this example are shown in

Fig. 6-4(a) and 6-4(b), respectively. The theoretical eigenvalues are shown in Fig. 6-

5(a). The FBP and LRMR estimated eigenvalues are compared in Fig. 6-5(b) and

6-5(c), respectively. The FBP estimates have several negative values, which does not

satisfy the positive energy constraint. The absolute errors in LRMR estimates are

plotted in Fig. 6-5(d).

Next, we study the noise performance of the LRMR method with a numerical

example. In this simulation, the dimension of the input GSMS is 256 × 256 with
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Figure 6-7: Experimental arrangement for 2D PST. A 1D rectangular slit is illumi-
nated by a partially coherent light. The coherence of the illumination is controlled
by the size of the slit placed at the front focal plane of the condenser. Free space
diffraction patterns after the object slit are recorded at multiple axial locations.

parameters σI = 36 and σc = 18 (rank r = 9). We generate noisy data with different

signal-to-noise ratio (SNR) from both an additive random Gaussian noise model and a

Poisson noise model. However, we emphasize that the reconstruction algorithm does

not make use of the noise statistics. For each SNR level, we repeat the simulation 100

times with different random noise terms, and then record the average relative mean-

square-error (MSE) from the LRMR reconstruction. The ratio between the number

of samples taken from the intensity measurements and the rank r of the input mutual

intensity matrix determines the oversampling rate [21]. This rate is plotted versus

relative MSE for different SNR cases in Fig. 6-6. For good performance, the required

oversampling rate is at least 5–6 (the theoretical oversampling rate is on the order of

ln(256) = 5.5 according to [52]). Furthermore, the LRMR method is robust to noise

in the sense that the reconstruction degrades gracefully as the SNR decreases.

6.4 Experimental results for 2D PST

The experimental arrangement for 2D PST is illustrated in Fig. 6-7. The illumination

is generated by an LED with 620nm central wavelength and 20nm bandwidth. To

generate partially coherent illumination, a single slit of width 355.6µm (0.014′′) is

placed immediately after the LED and one focal length (75 mm) to the left of a

cylindrical lens. One focal length to the right of the lens, we place the second single
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Figure 6-8: Intensity measurements at several unequally spaced propagation dis-
tances.
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Figure 6-9: (a) Real and (b) imaginary parts of the radial slices in Ambiguity space
from Fourier transforming the vectors of intensities measured at corresponding prop-
agation distances.

slit of width 457.2µm (0.018′′), which is used as a one–dimensional (1D) object.

The goal is to retrieve the mutual intensity immediately to the right of the object

from a sequence of intensity measurements at varying z–distances downstream from

the object, as described in the theory. We measured the intensities at 20 z–distances,

ranging from 18.2mm to 467.2mm, to the right of the object. The data are given
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Figure 6-10: Real part of the reconstructed mutual intensity from (a) FBP; (b) LRMR
method.

in Fig. 6-8. Each 1D intensity measurement consists of 512 samples, captured by a

CMOS sensor with 12µm pixel size. The dimension of the unknown mutual intensity

matrix to be recovered is 512 × 512. Since only intensities at positive z, i.e. down-

stream from the object, are accessible, we can only fill up the top right and bottom

left quadrants of Ambiguity space. The other two quadrants are filled symmetrically,

i.e. assuming that if the field propagating to the right of the object were phase con-

jugated with respect to the axial variable z, it would yield the correct field to the left

of the object, i.e. negative z [114, 63]. Under this assumption, a total of 40 radial

slices are sampled in Ambiguity space, as shown in Fig. 6-9. The apex angle of the

missing cone around the u′–axis is approximately 17.4 degrees, and the one around

the x′–axis is approximately 28.6 degrees. The number of measurements is only 7.8%

of the total number of entries in the unknown mutual intensity matrix.

The reconstructions from the FBP and LRMR methods are compared in Fig. 6-

10(a) and 6-10(b), respectively. The FBP reconstruction suffers from the same ar-

tifacts detailed in the numerical simulations section. All these artifacts are greatly

suppressed or completely removed in the LRMR reconstruction. In the real part of

the reconstruction, the width of the square at the center is approximately 456µm (38

pixels), which agrees with the actual width of the slit. The imaginary part is orders
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Figure 6-11: Eigenvalues estimated by (a) FBP, and (b) LRMR method.

of magnitude smaller than the real part.

FBP estimated eigenvalues contain several negative values, and are shown in

Fig. 6-11(a). This does not satisfy the positive energy constraint. LRMR estimated

eigenvalues are compared in Fig. 6-11(b), and all eigenvalues are positive.

We further validated our compressive estimates by measuring the field intensity

immediately to the right of the illumination slit [Fig. 6-12(a)]. Assuming that the

illumination is spatially incoherent (a good assumption in the LED case), the mutual

intensity of the field immediately to the left of the object is the Fourier transform of

the measured intensity, according to the van Cittert–Zernike theorem [70, 49]. This

calculated mutual intensity, based on the measurement of Fig. 6-12(a) and screened by

the object slit, is shown in Fig. 6-12(b). The eigenvalues computed by coherent mode

decomposition are shown in Fig. 6-12(c) and are in good agreement with the LRMR

estimates, as compared in Fig. 6-12(d). It is seen that 99% of the energy is contained in

the first 13 modes, which confirms our low–rank assumption. The FBP reconstruction

may also be compared quantitatively to the compressive reconstruction in terms of the

global degree of coherence parameters, which were experimentally found as 0.12 and

0.46, respectively; whereas the estimate yielded by the van Cittert–Zernike theorem

is 0.49. The first nine eigenvectors of each individual mode are shown and compared

in Fig. 6-13. Small errors in the compressive estimate are because the missing cone
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Figure 6-12: (a) Intensity measured immediately to the right of the illumination slit;
(b) real part of van Cittert–Zernike theorem estimated mutual intensity immediately
to the right of the object slit; (c) eigenvalues of the mutual intensity in (b); (d)
absolute error between the eigenvalues in Fig. 6-11(b) and 6-12(c) versus mode index.
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Figure 6-13: (a) LRMR estimated coherent modes of the mutual intensities in Fig. 6-
10(b), and (b) coherent modes of the mutual intensities in Fig. 6-12(b), calculated via
use of the van Cittert–Zernike theorem, and assumption of incoherent illumination.
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is still not perfectly compensated by the compressive approach, and because of other

experimental imperfections.

6.5 Experimental results for 4D PST

The experimental arrangement for the 4D PST is shown in Fig. 6-14. The illumina-

tion is generated by an LED with 620nm central wavelength and 20nm bandwidth.

A diffuser is used to generate a quasi–uniform intensity distribution. A rectangu-

lar aperture (100µm× 300µm) is placed immediately after the diffuser and one focal

length (100 mm) to the left of a spherical lens to control the coherence of the illumi-

nation. The goal is to retrieve the mutual intensity immediately to the right of the

circular iris object (�640µm). A pair of cylindrical lenses are used to intentionally

introduce astigmatism to the system; Lens 1 is oriented along x and Lens 2 is along

y, both of which have focal length 100mm. Lens 2 and the camera are placed on sep-

arate linear motion stages to allow them moving independently along the optical axis

z. For each lens figuration, an axial stack containing 23 intensity images is recorded

by displacing the camera between the back focal plane of Lens 1 (BFP1) and the

image plane of lens 2 (IP2). A total of 12 axial stacks are taken by displacing Lens 2

from the location immediately to the right of Lens 1 to BFP1. Each image contains

512×512 pixels with pixel size 2.2µm.

To process the data, each image is down–sampled to 32×32 due to memory lim-

itation for the computation. The Fourier transforms of the down–sampled intensity

images are arranged into the Ambiguity space according to Eq. (6.9). Due to the scan-

ning range limitation, only a portion of the Ambiguity space is accessible, as shown by

the white region in Fig. 6-15; the missing data in the black region need to be compen-

sated by the post–processing. The LRMR and FBP reconstructed mutual intensities

are compared with the theoretical prediction based on the van Cittert–Zernike the-

orem in Fig. 6-16. Similar to the 2D case, LRMR reconstruction alleviates most of

the artifacts in the FBP reconstruction. The reconstructed eigenvalues are shown in

Fig. 6-17. The LRMR reconstructed eigenvalues are very similar to the theoretical
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Figure 6-14: Experimental arrangement for 4D PST. A circular object is illuminated
by a partially coherent illumination, which is generated by placing a rectangular
aperture at the front focal plane of a spherical lens. A pair of cylindrical lenses are
used to intentionally introduced astigmatism to the system. During the measurement,
both the second cylindrical lens oriented along y and the camera is scanned axially.

prediction, while the FBP result contains unphysical negative eigenvalues. The first

9 coherent modes estimated from the LRMR reconstruction and the van Cittert–

Zernike theorem are compared in Fig. 6-18. Since the coherence aperture is wider

along the horizontal direction, the field is less coherent in this direction, resulting in

more oscillatory modal structures in the coherent mode representation. The LRMR

reconstruction clearly matches this prediction.

6.6 Discussion

In conclusion, we experimentally demonstrated compressive reconstruction of the mu-

tual intensity function of a classical partially coherent source using phase space to-

mography. By exploiting the physically justifiable assumption of a quasi–pure source,

both measurement and post–processing dimensionality are greatly reduced. We used

the van Cittert–Zernike theorem to estimate the true mutual intensity function as a

way to cross–validate the compressive reconstruction, and found indeed good agree-
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ment.

In this classical experiment, we have the benefit that direct observation of the

object is available; thus, we were able to carry out quantitative analysis of the accu-

racy of the compressive estimate. In the quantum analogue of measuring a complete

quantum state, direct observation would have of course not been possible, but the

accuracy attained through the compressive estimate should be comparable, provided

the low entropy assumption holds [53].

Here we followed a much simplified version of the approach described in [26] which

showed that the complex operators describing the measurements should be uniformly

distributed in the n–dimensional unit sphere, whereas we simply utilized free space

propagation. The phase masks described in [26] to implement optimal sampling are

outside the scope of the present work.
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Figure 6-15: Missing data problem in the 4D PST. The white region indicates the
locations of the measured data in the Ambiguity space, and the black region the
inaccessible points due to the limitation of the experimental arrangement.
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Figure 6-16: Real part of the mutual intensity from (a) LRMR, (b) FBP reconstruc-
tions, and (c) the van Cittert–Zernike theorem estimation.
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Figure 6-17: Eigenvalues estimated from (a) LRMR, (b) FBP reconstructions, and
(c) the van Cittert–Zernike theorem.
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Figure 6-18: The first 9 coherent modes estimated from (a) LRMR, and (b) the van
Cittert–Zernike theorem.
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Chapter 7

Wigner function measurement

using a lenslet array

7.1 Introduction

In this chapter, another non–interferometric coherence recovery technique based on

the measurement of the radiance will be described. The radiance is a function that

characterizes the distribution of the power of an optical field over position and direc-

tion. Let the radiance at some plane z be denoted by B(r,p; z) where p = (px, py)

is the transverse component of the unit direction vector. Propagation of radiance is

based on geometric optics and is simple to calculate:

B(r,p; z) = B(r− zp,p; 0). (7.1)

The intensity at any point is given by the integral of B over all directions

I(r; z) =

∫
B(r,p; z)d2p =

∫
B(r− zp,p; 0)d2p. (7.2)

Use of the radiance predates the wave theory of light, and it was initially described

by assigning non-negative values to all trajectories coming from source points. Such

descriptions are insufficient to model wave effects since these trajectories contain
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no information about constructive or destructive interference. However, in certain

situations, these wave effects can be safely ignored, and a lenslet array can then be

used to obtain an estimate for the radiance since they allow joint measurement of

the spatial and directional distribution of light, as in Shack-Hartmann sensors [90],

integral imaging systems [66, 104, 86] and light field cameras [1, 78].

More recently, generalized radiance functions have been proposed that describe

interference while satisfying Eqs. (7.1) and (7.2); B is allowed to become negative to

account for destructive interference, and it is also allowed to have non–zero values

outside of the source [46]. The generalized radiance and mutual intensity both contain

equivalent information: when defined over a plane, they are 4D functions that fully

describe the intensity of an optical field (including wave effects) over a region of free

space. In fact, for a quasi–monochromatic paraxial field of mean wavelength λ, the

two descriptions are related by a simple Fourier transform relationship [126, 37, 122]:

1

λ2
B (r,uλ) =W(r,u) =

∫
J(r + r′/2, r− r′/2)e−i2πu·r′d2r′, (7.3)

where W is known as the Wigner distribution function (WDF); it is related to the

radiance by a change of variables from transverse direction vector p to spatial fre-

quency u = (ux, uy) = p/λ. From Eq. (7.3), it is evident that if W is known, an

inverse Fourier transform can be used to obtain the mutual intensity.

It turns out that not only can lenslet arrays measure radiance in the geometric

optics sense, they can also provide information about the WDF when wave optics

is considered. In order to understand how a lenslet array measurement relates to

the WDF, we first consider a single lenslet with an aperture function p centered at

position r and placed one focal length f away from a detector [133]. If this lens

is illuminated by a field with WDF Wi, then the intensity in the detector plane is a

function of both the incident WDFWi and the WDFWp of a plane wave illuminating

the aperture [4, 123, 30, 133, 119]:

I(r + λfu) =
1

λf
S[Wi,Wp](r,u), (7.4)
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Figure 7-1: Illustration of a lens measurement of the SWDF in 1D. (a) A probe
scans across the WDF forms an SWDF measurement according to the convolution in
Eq. (7.5). (b) Points at x0 and along ux in the SWDF domain are mapped to detector
pixels at x0 + λfux at the lens’ Fourier plane according to Eq. (7.4).

where S[W , P ] denotes the smoothed WDF, defined as a convolution between two

WDFs:

S[W , P ](r,u) =

∫
W(r′,u′)P (r′ − r,u′ − u)d2r′d2u′. (7.5)

The SWDF can be thought of as measuring W at each point by taking a weighted

average of a neighborhood around the point, with weighting function P , as illustrated

in Fig. 7-1(a). Equation (7.4) also implies that the detector pixel at r+λfu is mapped

to the unique point at (r,u) of the SWDF, illustrated in Fig. 7-1(b). In order to fully

measure the SWDF, one could scan the lenslet and take multiple images [123, 119]. If

it were possible to use an aperture for which P = δ(r)δ(u), where δ is the Dirac delta

function, the WDF could be measured with perfect resolution. However it may be

easily verified from Eq. (7.3) that the existence of this WDF is physically impossible;

uncertainty relationships place limits on the product of the widths of P in space and

spatial frequency. The finite width of P limits the resolution in space and spatial

frequency of the measurement of Wi. Despite these limitations, in many cases the

SWDF itself is useful to provide a direct estimate of the WDF [123, 119]. However, if

the exact WDF is required, Eq. (7.5) shows that the recovery of the WDF from the

SWDF generally requires deconvolution [30].

A periodic array of lenslets enables measurements of different r simultaneously

105



and removes the need to scan. The advantage of using lenslet arrays is that the

SWDF may be measured in a single snapshot. However, if light passing through

different lenslets overlaps at the detector, the unique mapping implied by Eq. (7.4)

no longer holds. In this chapter, we conduct a more rigorous analysis, considering the

mapping between pixels on a detector and point samples of the SWDF in the presence

of cross–talk. For simplicity, we consider only scalar fields in one spatial dimension.

We show that the intensity at a detector pixel in general contains contributions from

multiple points of the SWDF due to cross–talk. In Section 2, we develop a rigorous

mathematical theory and show that both fully incoherent and fully coherent cases

have large amounts of cross–talk; it is caused by the large angular spread in the

former and high number of interference terms in the latter. In Section 3, we illustrate

tradeoffs between coherence and fidelity using a numerical example, showing that

there exists an optimal “Goldilocks” regime for array pitch, given the the coherence

width of the input light, such that cross–talk is reduced to a minimum without the

need for additional barriers to block light between lenslets. It is in this optimal regime

that each detector pixel corresponds to a single point in the SWDF domain, allowing

lenslet array systems to measure the SWDF with high accuracy.

7.2 Theory

We now present a rigorous analysis of a 1D field passing through a 1D lenslet array.

This analysis can be easily extended to a 2D rectangular array; other configurations,

such as a 2D hexagonal array, require straightforward modifications. Consider a

quasi–monochromatic paraxial field with wavelength λ incident upon an ideal lenslet

array with 100% fill factor, as illustrated in Fig. 7-2. A detector is placed at the

back focal plane of the lenslet array, and we will refer to the region directly behind

each lenslet on the detector as that lenslet’s detector cell. We assume an array of

2N + 1 identical unaberrated thin lenses, each of width w and focal length f . The
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Figure 7-2: Lenslet array geometry.

transmittance function of such an array is given by

T (x) =
N∑

l=−N

rect

(
x− lw
w

)
exp

[
− iπ

λf
(x− lw)2

]
, (7.6)

where rect(·) denotes a rectangular function. In this configuration, we assign an

integer index l to each lenslet, with the center lenslet having index l = 0; the N

lenslets above and N lenslets below the center lenslet take on positive and negative

values of l, respectively. Thus, the center of each lenslet is located at x = lw. We

have assumed an odd number of lenslets to simplify notation, although the results we

obtain can easily be extended to an even number of lenslets.

The mutual intensity immediately to the right of the lenslet array is [70]

J1

(
x +

x′

2
,x− x′

2

)
= Ji

(
x +

x′

2
,x− x′

2

)
T

(
x +

x′

2

)
T ∗
(

x− x′

2

)
, (7.7)

where x and x′ are the center and difference coordinates, respectively, Ji is the mutual

intensity of the illumination immediately before the lenslet array; the subscript i

indicates that its associated function describes properties of the incident field at the

input plane, and we will use this notation through the rest of the chapter.

As a stepping stone to the full relationship between the incident field and the

observed intensity behind the lenslet array, we will first consider a simpler system

107



wherein we scan through the lenslets. That is, instead of letting light pass simulta-

neously through all the lenslets while recording the intensity image, we only let light

pass through one lenslet at a time, cycling through all the lenslets while still recording

a single image. This removes the effect of cross–lenslet interference, whose derivation

we will consider later.

According to Eq. (7.4), each measurement samples the SWDF over spatial fre-

quency with position fixed at the lenslet’s center, x = lw. The aperture of each

lenslet is a rect function of width w, and thus the weighting WDF is given by

Wr(x, u) =
sin[2πu(w − 2|x|)]

πu
rect

( x
w

)
(7.8)

The total intensity at the detector plane is given by

I0(xo) =
1

λf

N∑
l=−N

S[Wi,Wr]

(
lw,

xo − lw
λf

)
. (7.9)

where 1
λf
S[Wi,Wr]

(
lw, xo−lw

λf

)
is the contribution of light through a single lenslet.

It is clear from this equation that the SWDF is sampled spatially at intervals of w,

the spacing of the lenslet centers. The sampling rate along the spatial frequency axis

in the SWDF is determined by both the detector pixel size and the linear mapping

u = (xo − lw)/λf between detector coordinate xo and spatial frequency coordinate

u. The mapping can be explained by the fact that (xo − lw)/f equals to the angle

between the ray reaching the detector pixel at xo and the optical axis of the lth lenslet

under a small angle approximation. Note that if the angular spread of the SWDF is

large enough, each detector cell will include contributions to intensity not only from

the SWDF associated with its lenslet, but also from neighboring lenslets. This can

be prevented by increasing the size of the lenslets or by decreasing the angular spread

of the incident field by placing either a main lens with finite numerical aperture in

front of the array [78] or physical barriers between lenslets [33]. If we assume that

each detector cell measures only light from its associated lenslet, then we would have
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a detected intensity of the following form

ISWDF(xo) =
1

λf

N∑
l=−N

S[Wi,Wr]

(
lw,

xo − lw
λf

)
rect

(
xo − lw
w

)
. (7.10)

We refer to this expression as ISWDF, because the intensity measured at xo maps

uniquely to the point [l̂w, (xo − l̂w)/λf ] in the SWDF, where l̂ is xo/w rounded to

the nearest integer.

The difference between Eq. (7.9) and Eq. (7.10) yields what we will call the 0th

order cross–talk term I
(0)
c :

I(0)
c (xo) =

1

λf

N∑
l=−N

S[Wi,Wr]

(
lw,

xo − lw
λf

)[
1− rect

(
xo − lw
w

)]
. (7.11)

This term describes the additional light from other lenslets if the previous assumption

were to not hold. In this situation multiple points in the SWDF can contribute to

the same point on the detector.

To demonstrate the sampling described by Eqs. (7.9–7.11), an array containing

three lenslets (centered at −w, 0, w) is shown in Fig. 7-3. According to Eq. (7.9),

three lines sampled at spatial coordinates −w, 0, w parallel to the u–axis from the

SWDF are mapped to the detector plane (marked by different colors in Fig. 7-3).

To ensure one–to–one mapping, the maximum spatial frequency um of the lth line

sample cannot exceed w/2λf , as shown in case (a); otherwise, points at (lw, um) and

[(l+1)w, um−w/(λf)] from the SWDF domain will be measured by the same detector

pixel at xo = lw + λfum, as shown in case (b).

So far, we have only considered the incoherent superposition of light from all of the

lenslets, whereas light passing through all of the lenslets simultaneously should create

additional interference terms. Since light from lenslets separated by a distance greater

than the incident field’s coherence width will not create appreciable interference when

mixed, it is useful to enumerate these cross–talk terms with an index n proportional

to the lenslet separation. All possible pairs of lenslets with indices l′ and l′′ such that
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Figure 7-3: Sampling of the SWDF using an array of three lenslets. (a) One–to–one
mapping from the SWDF to the detector coordinate according to u = (xo− lw)/(λf)
as the angular spread of the SWDF is narrower than the numerical aperture of a
lenslet. (b) Multiple points in the SWDF domain contribute to detector pixels in
the cross–talk region as the angular spread of the incident field is wider than the
numerical aperture of a lenslet, which produces the 0th order cross–talk.

|l′ − l′′| = n > 0 contribute to the nth order cross–talk term I
(n)
c , given by

I(n)
c (xo) =

2

λf

N−n
2∑

l=−N+ n
2

x
Wi(x, u)Wr

(
x− lw, u− xo − lw

λf

)
cos

[
2π

(
x− xo

λf
+ u

)
nw

]
dxdu.

(7.12)

Note that when n is odd, l takes a value halfway between two integers, and thus Wr

is centered at the edge between the (l − 1/2)th and (l + 1/2)th lenslets; when n is

even, l takes every integer value, thus Wr is centered at the lth lenslet. We expect

the n = 1 term to be significant even in highly incoherent fields, since some points

near the boundary between two neighboring lenslets are expected to be within the

coherence width of the field.

The total output intensity, considering all of the discussed effects, can be written

as the sum of three components

I(xo) = ISWDF(xo) + I(0)
c (xo) +

2N∑
n=1

I(n)
c (xo). (7.13)
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A detailed derivation of this result, obtained by performing Fresnel propagation inte-

grals on Eq. (7.7), is given in Appendix A. Equation (7.13) demonstrates that if all

orders of the cross–talk could be made small, then the measured intensity would be

an accurate representation of the SWDF. In order for the cross–talk to be negligible,

both the angular spread of the SWDF should be small [for I
(0)
c (xo)] and the coherence

width should be less than the width of a single lenslet [for I
(n)
c (xo)]. In order to op-

timally measure the SWDF, the angular and coherence widths of the SWDF should

be balanced so that as much of each lenslet’s detector cell is utilized as possible while

minimizing cross–talk. It should also be noted that even with minimal cross-talk, the

measurement yields only the SWDF; recovery of the mutual intensity (or WDF) of

the field still requires deconvolution of the SWDF with the aperture WDF.

7.3 Numerical Example

We study the effect of coherence width on the quality of the resulting measurement by

studying the following example. Let us consider a spatially homogeneous Gaussian–

correlated Schell–model incident field, which can be described by the following mutual

intensity,

Ji(x1, x2) = exp

[
−(x2 − x1)2

2σ2
c

]
. (7.14)

The coherence width is proportional to the standard deviation σc of the coherence

term. The WDF of the incident field is

Wi(x, u) =
1√

2πσu

exp

[
− u2

2σ2
u

]
, (7.15)

where σu = 1/(2πσc) quantifies the spatial frequency bandwidth of the WDF and

is proportional to the angular spread of the field. The SWDF resulting from the

convolution between the WDF of the input field and that of a rectangular aperture

is

S[Wi,Wr](x, u) =
w2

√
2πσu

∫
exp

[
−(u− u′)2

2σ2
u

] [
sin(πwu′)

πwu′

]2

du′. (7.16)
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Therefore the SWDF term in Eq. (7.13) is

ISWDF(xo) =
w2

√
2πσuλf

N∑
l=−N

rect

(
xo − lw
w

)∫
exp

{
− [(xo − lw)/λf − u′]2

2σ2
u

}[
sin(πwu′)

πwu′

]2

du′,

(7.17)

and the 0th order cross–talk term is

I(0)
c (xo) =

w2

√
2πσuλf

N∑
l=−N

[
1− rect

(
xo − lw
w

)]
∫

exp

{
− [(xo − lw)/λf − u′]2

2σ2
u

}[
sin(πwu′)

πwu′

]2

du′. (7.18)

The nth order cross–talk term by carrying out the integration in Eq. (7.12) is

I(n)
c (xo) =

2w2

√
2πσuλf

N−n
2∑

l=−N+ n
2

∫
exp

{
− [(xo − lw)/λf − u′]2

2σ2
u

}
cos(2πnwu′)

sin[πw(nu0 + 2u′)/2]

πw(nu0 + 2u′)/2

sin[πw(nu0 − 2u′)/2]

πw(nu0 − 2u′)/2
du′, (7.19)

where u0 = w/λf is the spatial frequency support of a single lenslet.

Three different cases with varying coherence widths are simulated based on the

results in Eqs. (7.16–7.19). In the simulation, the wavelength of the incident field

is 500nm. Five lenslets are used in the array, each having width w = 330µm and

focal length f = 5mm, yielding spatial frequency support of u0 = 0.132µm−1. The

simulation results are shown in Fig. 7-4. For all three cases, the total output intensity

in row (a) is composed of the SWDF term in row (b) and the total contribution of

cross–talk in row (c). The total cross–talk is further analyzed by decomposing it as the

0th order term in row (d) and the total of higher order terms in row (e). Simulations

on arrays with larger numbers of lenslets were also conducted; results are not shown

here because they are very similar to the ones in Fig. 7-4.

In the highly incoherent case shown in the left column (σc = 0.01w), higher order

cross–talk is minimal. However, due to the large angular spread in the incident field,

the measurement is corrupted by 0th order cross–talk. The opposite is the highly
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Figure 7-4: Left: highly incoherent; middle: highly coherent; and right: partially
coherent case. (a) Total output intensity is composed of (b) SWDF term and (c)
total contribution from cross–talk terms. The total cross–talk is composed of (d)
0th order cross–talk and (e) total of higher order cross–talk. All the intensities are
normalized to the maximum value in the total output. The horizontal axis is the
spatial coordinate normalized by the width of a lenslet.
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Figure 7-5: Comparison of WDF (solid red line), SWDF (dashed blue lines) and
measured intensity (dotted green lines) for (a) highly incoherent (σc = 0.01w), (b)
highly coherent (σc = 20w), and (c) partially coherent (σc = 0.1w) incident light.

coherent case, shown in the middle column (σc = 20w). Here, most of the cross–talk

comes from higher order terms. The results for a partially coherent field (σc = 0.1w)

is shown in the right column; cross–talk contributes minimally to the final intensity,

although both 0th order and higher order terms are present.

The effect of the convolution with the aperture on the accuracy of WDF estimation

is studied as follows. In Fig. 7-5 we compare the measured intensity to the actual

SWDF and WDF for each of the three different fields. Since the fields are spatially

homogeneous, we only look at slices along u of the WDF (solid red lines) and SWDF

(dashed blue lines), mapped to the xo coordinate. The intensity distribution behind

the central lenslet is shown using dotted green lines. In both the highly incoherent

and partially coherent cases, the SWDF and WDF are very similar, since the WDF

of the aperture is much smaller than any variations in the incident WDFs. In the

highly coherent case, the incident WDF is narrower in u than the aperture WDF,

and therefore the SWDF is significantly broadened by the convolution. In order to

recover the WDF from the measured intensity, deconvolution is necessary [30].

We define a total error metric Rerror by measuring the difference between the

output intensity and the original WDF as

Rerror =
|output intensity− sampled WDF|2

total output power
. (7.20)
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Note that the “sampled WDF” refers to the values of the WDF over a single line in

x−u space corresponding to the line of the SWDF mapped to the output intensity. To

quantify the cross–talk corruption in the output, define the cross–talk power fraction

Rcross–talk as

Rcross–talk =
total power in all terms of cross–talk

total output power
. (7.21)

The signal broadening caused by the convolution in the SWDF is also considered by

qualifying the difference between the SWDF and the WDF by the signal broadening

metric Rconv defined as

Rconv =
|sampled SWDF− sampled WDF|2

total output power
. (7.22)

Here, both the SWDF and WDF are sampled over the same line.

All these variables are plotted as functions of the coherence of incident light (mea-

sured by the ratio of σc to w) in Fig. 7-6. As seen in the dashed green curve, the con-

tribution from cross–talk increases quickly as the field becomes less coherent. When

the field becomes more coherent, the contribution from cross–talk also increases until

it saturates to the point in which the field is coherent within the whole array. There

exists a partially coherent regime where the SWDF can be measured with minimal

cross–talk corruption. Depending on accuracy requirements, this regime may provide

acceptable measurements. For example, if less than 1% of cross–talk can be tolerated,

then the coherence width should be such that 0.02w < σc < w. On the other hand,

signal broadening increases as the field becomes more coherent, making the SWDF a

less accurate estimate of the WDF in these situations. The total error metric, which

considers artifacts from both cross–talk and signal broadening, has a similar shape

to the cross–talk curve. The measurement deviates from the original WDF except

in a partially coherent region. If error needs to be at most 1%, then we would need

0.02w < σc < 0.4w.
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Figure 7-6: Error metric Rerror in solid blue curve, cross–talk power fraction Rcross–talk

in dashed green curve, and signal broadening metric Rconv in red dotted curve as
functions of the normalized coherence length of incident light σc/w.

7.4 Concluding Remarks

Although the numerical example was chosen explicitly to consider the effect of coher-

ence width on the measurement of the SWDF using a lenslet array, this simple model

can also provide useful insights for a much broader class of fields whose intensity

varies slowly across the field, with features much wider than the coherence width. As

a rule of thumb, higher order (coherent) cross-talk can be reduced by ensuring that

the lenslet apertures are at least one coherence width in size. This makes intuitive

sense, since an aperture larger than the coherence width will not cause the incident

beam to diffract significantly, and any light that is diffracted from the aperture will

not interfere with that from neighboring lenslets. Both 0th and higher order crosstalk

can be reduced by ensuring the incident illumination’s angular spread is such that

each lenslet primarily illuminates only the pixels lying within its detector cell, such

that there is a nearly one–to–one mapping from SWDF space to each detector pixel.

It should also be noted that we have derived these results under the paraxial

approximation and that both the 0th and higher order cross–talk can include contri-

butions for which the light propagates highly non–paraxially from one lenslet to its

neighbors. In these cases, we expect that a similar analysis can be performed using
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non–paraxial versions of the Wigner function [128, 32], although this is outside the

scope of our current work.

As was discussed while analyzing the example, there are cases where the SWDF

is not an accurate estimate of the WDF. Performing deconvolution to recover the

WDF may benefit from techniques such as coded apertures [65, 47] and compressed

sensing [112, 134].
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Chapter 8

Conclusion and future work

This thesis has explored various imaging methods and computational algorithms for

quantitative phase retrieval. A fundamental problem that the author hope to address

is the recovery of a full description of wave fields (either fully coherent or partially

coherent) with a small number of measurements. Compressed sensing provides an

intriguing recipe that allows the recovery of an unknown signal with the number of

measurements scaled by the ‘information rate’ (sparsity) of the signal. A central

idea that has been explored throughout is that free space propagation provides easily

accessible phase information. For instance, by recording the propagated wavefront

through holography, 3D information can be efficiently encoded on a 2D plane; the

transport of intensity relies on defocus to measure the curvature of the phase; the

coherence state of light can be recovered by phase space tomography using a stack of

intensity measurements during propagation.

The main contributions of the thesis include:

• Proposed and numerically verified a model to analyze the maximum number

of particles that can be reconstructed from an in–line hologram based on the

compressed sensing framework.

• Developed and experimentally verified a form of the TIE that can be used to

recover the OPL of a thin sample that works for partially coherent illumination.
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• Developed an iterative algorithm based nonlinear diffusion regularization to

invert the TIE to recover piecewise constant phase signals.

• Developed a compressive reconstruction model for X–ray phase tomography

based on the TIE measurements. The experimental results demonstrated that

both high and low–frequency artifacts are mitigated by this method.

• Proposed and experimentally verified a compressive phase space tomography

model based on coherent mode decomposition to reconstruct the correlation

function of a partially coherent field.

• Developed a rigorous mathematical theory to analyze the measurement from a

lenslet array for partially coherent light. An optimal design allowing accurate

sampling of the Wigner distribution function.

Beyond this work, there are many more unexplored problems in the application of

novel sensing method to quantitative phase recovery problem. Venue to extend the

current work includes:

• In holography, it is well known that the depth localization capability is much

worse than the one in the lateral dimension due to the missing spatial frequency

samples in the longitudinal direction. Compressive reconstruction might help

to improve the result. A rigorous study on the limit of axial localization im-

provement by using compressive reconstruction methods may be interesting for

future study.

• The effect of the partially coherent illumination on the TIE is treated as artifacts

which needs to be compensated in the current study. However, active control

over illumination could also create opportunities on obtaining phase information

with better contrast or making the inverse problem better conditioned. Coded

source and/or combination of measurements with different source figurations

are interesting directions for future work.
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• Phase space tomography takes projection measurements of the Wigner distri-

bution function while rotating the phase space. It may be possible to tailor the

sampling trajectories in the Wigner space beyond the tomographic approach.

To do that, optical elements, such as volume holograms, coded apertures or

nonlinear materials, may be introduced in the path between the unknown wave

and detector. Most light sources are not fully coherent; since partially coherent

waves contain many more degrees of freedom than coherent waves, they are

more difficult to deal with, yet they offer more opportunity for manipulation of

light in ways that coherent light cannot. This will lead to cases where infor-

mation is encoded in or retrieved from the wave, with applications in optical

information science, lithography, X-ray sciences, medical imaging, and biologi-

cal microscopy. It is also interesting to note that an analogous problem exists

in quantum mechanics for the recovery of quantum correlations (the density

matrix). The understanding of this problem might have further implications to

quantum information theory.
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Appendix A

Proof of Eq. (7.13)

Appendix A: Proof of Eq. (7.13)

Assume the mutual intensity of the incident field is

Ji(x1, x2) = 〈Ui(x1)U∗i (x2)〉 (A.1)

where 〈·〉 denotes the expectation value over a statistical ensemble of realizations of

the field ψi, x1 and x2 denote positions at the input plane immediately to the left

of the lenslet array. According to Equation (7.3), the WDF of the 1D input field is

related to the mutual intensity by

Wi(x, u) =

∫
Ji

(
x +

x′

2
,x− x′

2

)
exp(−i2πux′)dx′, (A.2)

where

x =
x1 + x2

2
, x′ = x1 − x2, (A.3)

are the center and difference coordinates; u is the local spatial frequency variable.

The mutual intensity immediately to the right of the lenslet array is [70]

J1(x1, x2) = Ji(x1, x2)T (x1)T ∗(x2), (A.4)
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where T is the transmittance function of the lenslet array

T (x) =
N∑

l=−N

rect

(
x− lw
w

)
exp

[
− iπ

λf
(x− lw)2

]
. (A.5)

The intensity at the output plane xo at one focal length to the right of the lenslet

array is related to J1 by double Fresnel integrals under the paraxial approximation,

I(xo) =
1

λf

x
J1(x1, x2) exp

{
iπ

λf

[
(xo − x1)2 − (xo − x2)2

]}
dx1dx2. (A.6)

Substitutions of Eqs. (A.5) and (A.4) into Eq. (A.6) shows that the calculation of

I(xo) requires in general carrying out double summations with respect to different

lenslet indices l1 and l2. After some simplification, the output intensity is rewritten

as

I(xo) =
1

λf

N∑
l1=−N

N∑
l2=−N

x
Ji(x1, x2)rect

(
x1 − l1w

w

)
rect

(
x2 − l2w

w

)
exp

{
−i

2π

λf

[
(l21 − l22)

w2

2
+ (x1 − x2)xo − l1wx1 + l2wx2

]}
dx1dx2. (A.7)

The double summations are simply due to the fact that the intensity at the region

directly behind a particular lenslet results from both the field passing through the

local lenslet and cross–talk from the field passing through neighboring lenslets. We

proceed with the derivation by the change of variables in Eq. (A.3) and

m = l1 + l2, n = l1 − l2. (A.8)

The consequence of the change of variables in Eq. (A.8) can be studied as follows.

a) When n is even, we can write

n = 2q, where q = −N,−N + 1, ..., N − 1, N ; (A.9)
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and since n = l1 − l2, we can assume

l1 = l + q, l2 = l − q, (A.10)

and

m = 2l, where l = −N + |q|,−N + |q|+ 1, ..., N − |q| − 1, N − |q|. (A.11)

b) When n is odd, we can again write

n = 2q, where q = −N +
1

2
,−N +

3

2
, ..., N − 3

2
, N − 1

2
, (A.12)

and

l1 = l + q, l2 = l − q, (A.13)

with

m = 2l, where l = −N + |q|,−N + |q|+ 1, ..., N − |q| − 1, N − |q|. (A.14)

The substitution of the change of variables leads

I(xo) =
1

λf

2N∑
n=−2N

even

N− |n|
2∑

l=−N+
|n|
2

x
rect

(
(x− lw) + (x′ − nw)/2

w

)
rect

(
(x− lw)− (x′ − nw)/2

w

)

Ji

(
x +

x′

2
,x− x′

2

)
exp

[
−i

2π

λf
(xo − lw)x′ + i

2π

λf
(x− lw)nw

]
dxdx′

+
1

λf

2N−1∑
n=−2N+1

odd

N− |n|
2∑

l=−N+
|n|
2

x
rect

(
(x− lw) + (x′ − nw)/2

w

)
rect

(
(x− lw)− (x′ − nw)/2

w

)

Ji

(
x +

x′

2
,x− x′

2

)
exp

[
−i

2π

λf
(xo − lw)x′ + i

2π

λf
(x− lw)nw

]
dxdx′. (A.15)

Notice that a term of fixed n contributes a non–zero value to I(xo) only if the two rect–

functions overlap. This implies that the separation x′ between the pair of correlating

points on the incident field can only take certain values, as determined by the following

125



inequalities

|x− lw| < w/4, (A.16)

(n− 1)w + 2|x− lw| < x′ < (n+ 1)w − 2|x− lw|. (A.17)

Eq. (A.17) implies that x′ is bounded to a region of width 2w − 4|x − lw| centered

at nw. Also recall that the magnitude of mutual intensity is significantly larger than

zero at large separation distance x′ only if the field is highly coherent. This implies

that more terms in the summation over n need to be considered if the field is more

coherent. To simplify Eq. (A.15), we relate I(xo) to the WDF of the incident field

and the WDF of a rectangular aperture of width w

Wr(x, u) =

∫
rect

(
x + x′/2

w

)
rect

(
x− x′/2

w

)
exp(−i2πu · x′)dx′, (A.18)

by completing the integration with respect to x′ to yield

I(xo) =

+
1

λf

2N−1∑
n=−2N+1

odd

N− |n|
2∑

l=−N+
|n|
2

x
Wi(x, u)Wr

(
x− lw, u− xo − lw

λf

)
exp

[
i2π

(
x− xo

λf
+ u

)
nw

]
dxdu

+
1

λf

2N∑
n=−2N

even

N− |n|
2∑

l=−N+
|n|
2

x
Wi(x, u)Wr

(
x− lw, u− xo − lw

λf

)
exp

[
i2π

(
x− xo

λf
+ u

)
nw

]
dxdu.

(A.19)
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Finally, by combining the complex conjugate terms in n, we arrive at Eq. (7.13)

I(xo) =
1

λf

N∑
l=−N

x
Wi(x, u)Wr

(
x− lw, u− xo − lw

λf

)
dxdu

+
2

λf

2N−1∑
n=1
odd

N−n
2∑

l=−N+ n
2

x
Wi(x, u)Wr

(
x− lw, u− xo − lw

λf

)
cos

[
2π

(
x− xo

λf
+ u

)
nw

]
dxdu

+
2

λf

2N∑
n=2
even

N−n
2∑

l=−N+ n
2

x
Wi(x, u)Wr

(
x− lw, u− xo − lw

λf

)
cos

[
2π

(
x− xo

λf
+ u

)
nw

]
dxdu.
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