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ABSTRACT 
Cylindrical flexures (CFs) are defined as systems composed of flexural elements whose 

length is defined by the product of their radius of curvature, R, and sweep angle, ϕ. CFs may be 

constructed out of a cylindrical stock which leads to geometry, manufacturability, and 

compatibility advantages over planar flexures. However, CFs present a challenge because their 

mechanics differ from those of straight beams, and although the modeling of curved beams has 

been researched in detail [1–4], it has yet to be distilled into compliant element and system 

creation rules. The lack of relevant design rules has inhibited the process of concept generation 

and optimization of CF systems, preventing these systems from becoming pervasive in 

engineering applications. The design guidelines and models developed in this work enable (i) the 

rapid generation of multiple concepts, (ii) the efficient analysis of different designs and selection 

of the best design, and (iii) the effective optimization of the chosen concept.  

The CF synthesis approach presented in this thesis has three components: (i) analysis of 

element mechanics models to reveal key parameters, (ii) understanding of how the key 

parameters affect the flexure performance and (iii) guidelines as to how to assemble and 

optimize CF systems. With the knowledge generated designers will be able to rapidly layout 

possible designs using the element building blocks and system creation rules, and then use the 

identified key parameters to optimize a design. The synthesis guidelines were established and 

tested through the development of two case study flexures: a CF linear guide and an x-y-θz stage. 

The case studies demonstrate the increased design space of CF systems, which makes it possible 

for these new flexure mechanisms to meet functional requirements that could not be met using 

traditional straight-beam flexures.  

 

Thesis Supervisor:  Martin L. Culpepper 

Title:   Professor of Mechanical Engineering  
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CHAPTER 

1 
INTRODUCTION 

 

1.1 Synopsis 

Compliant mechanisms, or flexures, guide motion through member compliance. They are 

powerful machine elements, because unlike rigid mechanisms they have no sliding joints 

therefore they do not experience stick and slip due to friction. Compliant mechanisms are 

prevalent in engineering because design guidelines have been developed that inform the engineer 

as to how to design the flexure to obtain the correct kinematics and ensure that the system 

achieves the desired range. No such rules exist for guiding the design of the curved-beam 

elements utilized in cylindrical flexures (CFs). The focus of this research is to develop the design 

rules and models necessary to enable to synthesis and optimization of CFs. These new flexures 

systems may be utilized to create more compact, lower cost solutions, which are particularly 

necessary for applications constrained to a cylindrical geometry. 

 

This thesis presents the four fundamental contributions required to enable the design 

process for CFs: (i) analysis of element mechanics models to reveal key parameters, (ii) 

development of an accurate stress model to predict element and system range, (iii) understanding 

of how the key parameters affect the flexure performance and (iv) guidelines as to how to 

assemble and optimize CF systems. The impact of this work is demonstrated through two case 

studies, shown in Figure 1.1. The need for design rules and models is most evident when one 

attempts to design a CF system using the available straight-beam models and finds that they are 

inadequate. Without design rules the engineer is forced to rely on FEA and blind iteration. The 

contributions of this thesis enabled the rapid design and optimization of these CF systems, 

reducing the design process timeline from months to weeks.  
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Figure 1.1: Two cylindrical flexure system examples: (A) linear guide and (B) x-y-θz stage. 

 

1.2 Cylindrical Flexures 

The resolution of sliding joints is limited to 100s of nanometers because of the stick-slip 

phenomenon, making friction bearings inadequate for precision motion applications. Flexures on 

the other hand can attain angstrom level resolution because they achieve motion through member 

compliance; therefore they do not suffer from friction. Compliant mechanisms must operate 

within their elastic deformation range to ensure the repeatability of the system. As a result, 

flexure elements must be operated below their yield stress which limits a flexure’s range and 

load capacity [5], [6]. Another advantage of compliant mechanisms is that they can preclude 

assembly and fabrication costs because they can be created from a single piece of stock. 

 

Current flexure systems are mostly planar; this limits their uses and their impact. 

Straight-beam flexures are common because design rules have been established which enable 

their effective design. However, no such rules exist for CFs, and therefore the design process is 

impeded. Cylindrical compliant mechanisms could fill the gaps that current planar flexures fail to 

meet. Some of the CF benefits include: (i) the availability of precision round stock, means 

reduced fabrication variations and (ii) reduced cost, (iii) compatibility with cylindrical 

applications, (iv) higher stability due to symmetry, (v) ease of assembly of concentric tubes, (vi) 

larger range to footprint ratio, and (vii) an increased design space which can lead to designs that 

meet currently unreachable functional requirements. 

A B
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1.2.1 Definition  

Herein I define CFs as systems with flexure elements that have only one finite radius of 

curvature, in other words, systems composed of flexure beams that are curved in a single plane. 

Figure 1.1 shows two examples of CF systems, a linear guide and an x-y-θz stage. Chapter 5 

presents how the design rules developed in this work were used to improve the performance of 

the CF linear guide. The conception of the curved-beam x-y-θz stage is covered in Chapter 6. 

Past works have given different names to flexures that fall under the CF description. The most 

applicable definition is Smith’s “hinges of rotational symmetry”, which he characterizes as 

flexures constructed from solids of revolution [6]. In this work Smith’s definition is expanded to 

allow CFs to be fractions of a solid of revolution. The thesis is scoped by constraining CFs to 

systems formed by elements with a single finite radius. Finally, the system must have well-

defined distortions for it to be classified as a CF. 

 

Two types of flexural blade elements may be constructed under the given CF definition. 

The element types, shown in Figure 1.2, are classified by their direction of least stiffness, (A) z-

compliance and (B) r-compliance. The coordinate system of the element is defined at its tip 

using cylindrical coordinates. The length of the flexure is given by Rϕ, where R is the radius of 

curvature and ϕ defines the sweep angle of the element. The flexure’s radial thickness is given by 

tr, and its z-axis thickness by tz. The two element types are differentiated by the relative 

magnitude of their two area moments of inertia, Ir and Iz. A z-compliance element is more 

compliant in the z-direction because Ir<<Iz; while an r-compliance CF is characterized by Iz<<Ir.  
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Figure 1.2: Cylindrical flexure elements are defined by their direction of greatest 

compliance. Their coordinate system is given in cylindrical coordinates at the tip of the 

flexure. The flexure blade element is described by its radius, R, sweep angle, ϕ, radial 

thickness, tr, and z-axis thickness, tz. Z-compliance elements are differentiated from r-

compliance elements by the relative magnitude of their area moments of inertia.    

 

1.3 Cylindrical Flexure Challenges 

1.3.1 Element Level Challenges 

This section presents a couple of examples of how CF elements behave differently than 

straight-beam flexures. These differences make current design guidelines inadequate for the 

effective creation of CF concepts. An example of how the behavior of a curved-beam diverges 

from that of a straight-beam is given in Figure 1.3 [7]. The image shows the motions of a z-

compliance cantilever curved beam loaded at its free-end. In this case, the desired motion is a 

displacement along the cylinder’s axis, Δz. All other displacements are defined as parasitic 

motions. The curvature of the beam leads to two parasitic rotations, αr and αθ, compared to one 

for a straight-beam flexure, αx. In addition, instead of the beam experiencing a single bending 

moment, mx, the curved blade is subjected to both a bending moment, mr, and a twisting moment, 

mθ. The straight-beam design rules give no information on the magnitude of αθ, or how the 

element’s curvature affects Δz and αr.  Furthermore, the straight-beam flexure stress-model needs 

to be supplemented to account for mθ.  
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Figure 1.3: Element level challenges. Straight-beam flexure elements (A) under a z-axis 

load, Fz, suffer from one parasitic rotation, αx, in addition to the desired displacement, 

Δz. The straight flexure experiences a single bending moment, mx. Cylindrical flexure z-

compliance elements (B) under a z-axis load, Fz, suffer from two parasitic rotations, αr 

and αθ, in addition to the desired displacement, Δz. The curved beam is subjected to a 

twisting moment, mθ, and a  bending moment, mr [7].    

 

  Planar flexure blades are characterized by having a single translational degree-of-

freedom (DOF).  Analysis of the kinematics of an r-compliance CF element provides another 

example of how the behavior of the curved-blade is different from its straight-beam counterpart. 

Figure 1.4 plots the ratio of Kr to Kθ stiffnesses vs. ϕ for an r-compliance element. The plot 

shows that for ϕ>123° the stiffness of the blade along the θ-axis is less than its r-stiffness. In 

fact, at ϕ=122.56° Kr=Kθ, which means that the CF blade has two translational DOF. In order to 

capture the kinematics of the r-compliance element using straight-beam models, the curved-

beam would have to be approximated as a series of two straight-blades attached at 90°. The 

analytical models in this thesis present a more accurate way to model the behavior of the r-

compliance curved blade. 
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Figure 1.4: Sweep angle effect, ϕ, on the ratio of r-axis stiffness, Kr, to θ-axis stiffness, Kθ, 

for an r-compliance element. The graph shows that the ratio is larger than 1 for ϕ>123°, 

indicating that beyond that sweep angle the flexure can no longer be considered a θ-axis 

constraint. 

1.3.2 System Level Challenges 

The curvature of the flexure beams also leads to challenges in the assembly of CF 

systems. The need for system creation rules is demonstrated by analyzing the behavior of a 

curved compound four-bar system [7]. A planar compound four-bar, shown in Figure 1.5a, is an 

example of a parallel and a serial flexure system. The mechanism utilizes two nested four-bar 

flexure systems to increase the range of the system and mitigate the parasitic displacement, Δy1, 

of the input stage as shown in Figure 1.5a. The Δy motion of the floating stage cancels the Δy of 

the input stage. The nesting of the four-bars also reduces the parasitic rotation, αx, of the input 

stage. In the curved compound four-bar system, shown in Figure 1.5b, the floating and input 

stages are located on different planes due to the curvature of the beams. As a result of the 

location of the stages the parasitic displacements, Δr1 and Δθ1, of the input stage are not directly 

cancelled by the Δr and Δθ of the floating stage.  
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Figure 1.5: A) A Straight-beam compound four-bar system nests two four-bars to remove 

the y-axis parasitic displacement of the input stage, Δy, while increasing the range of the 

system, Δz. The nesting also reduces the parasitic rotation of the each of the stages, αx. B) In 

a curved compound four-bar the input and floating stages are located on different planes, 

as a result the parasitic displacements of the input stage, Δr and Δθ, are not directly 

cancelled by the nesting. The parasitic rotations of the two stages, αr and αθ, are also 

affected by the nesting. The range of the system is increased [7]. 

 

The mitigation of the parasitic rotations of the input stage, αr1 and αθ1, is also not straight 

forward. For example, in the case where ϕ=90° the αr of the floating stage corresponds to a αθ of 

the input stage and vice versa. This leads to having to manage eight parasitic motions (four for 

each stage) on two different planes. The matter of mitigating these motions is no longer clear; the 

rules that have been established for straight-beam systems are inadequate for CFs. This work 

presents models and guidelines that enable the efficient design of curved parallel and serial CF 

systems like the curved compound four-bar.  

 

1.3.3 Stress Concentration 

In order to determine the range of a system both the displacement under a given load and 

the resulting stress must be considered. The curvature of a z-compliance element leads to a 
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twisting moment on the fixed end of the cantilever beam. This moment will affect the resulting 

stress calculation. Using energy conservation principles it can be identified that an added 

twisting moment requires that there be a decrease in the original resulting bending moment. Both 

of these effects will change the magnitude and distribution of the stress along the beam. Figure 

1.6 shows that a stress concentration is observed at the base on the inner radius of the z-

compliance curved element [7]. The stress model for the straight-beam flexure does not predict 

the stress concentration and therefore underestimates the stress level in the deflected beam. A 

stress model for the curved-beam flexure needs to be developed to ensure the accurate 

assessment of the range of the CF.  

 
Figure 1.6: A) Resulting VonMisses stress on a straight-beam flexure compared to the 

stress of a curved-beam flexure of the same dimensions under the same loading. The figure 

shows that the curved beam experiences a stress concentration at the inner radius. This 

stress concentration has to be captured by the stress model to ensure the designer 

calculates the maximum stress on the beam [7]. 

1.4 Design Process  

The main steps of the engineering design process are summarized in Figure 1.7. First the 

designer must establish the functional requirements for the system. Once the requirements have 

been formulated the next step is to generate possible concepts that would meet those needs. This 

step is often called preliminary design because the designer is generating abstract embodiments 

of a possible concept; at this point time should not be spent on figuring out all the details for the 

different ideas. The sketched concepts should then be analyzed and the most promising design 

selected. Now detailed engineering of the selected design may begin [8], [9]. The concept 

generation phase of the process is particularly important to ensure that the designer is 
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considering different solutions and continuing with the least limiting design. During the detailed 

design step the selected concept is optimized given a set of criteria. Finally, once the design is 

complete the system can be fabricated.   

 

 

Figure 1.7: Simplified design process flowchart followed by the research components 

necessary to enable the design process for cylindrical flexure systems.    

 

Design rules play a significant role in the compliant mechanism design process. In planar 

flexure design the generation of concepts is facilitated by using guidelines that establish the 

degrees-of-freedom (DOF) and constraints of a flexure element. This knowledge allows the 

designer to quickly layout different compliant elements to achieve the desired system motions. 

The straight-beam design rules are used in the concept analysis and selection phase to establish 

order of magnitude estimates of parasitic motions and range to footprint ratios. These 

assessments are used to efficiently compare the performance of a concept relative to the other 

ideas. Once the most promising concept has been selected the straight-beam models provide the 

engineer with the knowledge required for the effective optimization of the concept. Optimization 

can be a tedious process if the designer does not understand the effect of the different flexure 

parameters on the system performance metrics.  

 

Section 1.2 established that the current straight-beam flexure design rules and models are 

insufficient for the successful design of CFs. The lack of design guidelines restricts the CF 

design process. Figure 1.7 summarizes the research that must be conducted to enable the design 

process. Foremost, the kinematic behavior of a curved-beam element has to be understood and 

modeled. The analytical models may then be used to characterize the effect of different 

parameters on the behavior of the beam. The parameters that differentiate the behavior of the 

curved-beam from that of a straight-beam must be identified as key parameters. The concept 
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generation phase of the design process will be facilitated by establishing the stiffness ratios for a 

flexure. The stiffness ratios establish the DOF and constraints of a compliant element; therefore 

they enable the layout of the beam elements required to achieve the desired system motions. The 

layout of the elements also requires the use of system creation rules which establish how the 

elements behave in serial and parallel systems. Finally, fabrication guidelines need to be 

developed to ease the manufacturing of CF systems. This work establishes the pieces of 

knowledge required to enable the design process for CFs. Chapter 3 presents the curved-beam 

design rules and models, as well as an analysis of the stiffness ratios of the two types of CF 

elements. The system creation guidelines are given in Chapter 4. Two case studies were used to 

help guide the work; they are presented in Chapters 5 and 6. Helpful fabrication tips are 

presented in the context of the creation of the two CF system prototypes. 

 

1.5 Advantages of Cylindrical Flexures  

Cylindrical flexures present compatibility, geometry, and manufacturability advantages 

over planar flexure systems. CF’s most attractive quality is their compatibility with applications 

that benefit from a cylindrical geometry, for instance rotating systems, optical mechanisms, and 

laparoscopic tools. The axial symmetry of cylindrical systems may be used to achieve 

thermocentricity, and it serves to decrease the effects of manufacturing and load placement 

errors. Monolithic CF systems can be created out of a single piece of round stock reducing 

assembly cost and errors. The cylindrical geometry may also serve to reduce the footprint and 

therefore the volume of the system. Figure 1.8 compares the volume of a planar system (A) to 

the cylindrical version of the system (B). The wrapping of the beams reduces the footprint of the 

system and as a result its volume. Chapters 3 and 4 will demonstrate that CF systems may 

achieve a greater range to footprint ratio than its planar counterparts. Furthermore the use of 

concentric cylinders facilitates the assembly of the overall system into a compact design, as 

shown in Figure 1.9.  
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Figure 1.8: Comparison between the straight-beam version of a system (A) and its 

cylindrical flexure counterpart (B). Cylindrical flexures can lead to a more compact design. 

The wrapping of the beams leads to footprint and volume reductions. 

 

 

Figure 1.9: Assembly of concentric cylinders allows for a compact system design [10]. 

 

CF fabrication is facilitated by the availability of accurate round stock. CFs can be 

manufactured at low cost by using traditional machining methods such as a 4
th

 axis lathe, 5-axis 

mill, and a laser cutter or abrasive water-jet with a rotary axis. Figure 1.10 shows images of three 

manufacturing techniques that may be used to fabricate CFs. The first is the Mazak turning 
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center which was used to machine the CF linear guide in Figure 1.1a. Next is an abrasive water-

jet with a rotary axis. The rotary axis for a water-jet provides a low-cost, low-stress way of 

manufacturing the CF systems. Finally, the last image shows a cylindrical linear guide that was 

constructed using a 3D printer. 3D printers provide a way to assess different CF concepts; 

however, the printed flexures are unsuitable for precision applications because of creep. 

 

 

Figure 1.10: Cylindrical flexures can be fabricated using a variety of methods including: A) 

Lathe with actuated tool (Turning center), B) abrasive water-jet with a rotary axis [11], 

and C) 3Dprinter. 

 

Machining of precision flexure systems presents a challenge due to the vibrations induced 

by the tool on the thin flexure systems. The tradeoff is that flexure performance improves with 

reduced flexure thickness, but the ease of fabrication declines as the thickness decreases. This 

thesis presents ways on how to support the stock during machining to minimize vibrations [12], 

[13]. An exciting area of future research that new 5-axis machines enable is the contouring of the 

beams of the cylindrical flexure. Previous work has shown contouring to be a successful way to 

distribute stress along the length of a beam [14]. By contouring the CF’s beams at different 

locations, the stress concentrations on the beam may be reduced and as a result the range of the 

system may be increased.  

 

1.6 Compliant Mechanisms Synthesis Approaches 

The chief compliant mechanism synthesis approaches to this date are topology synthesis, 

pseudo-rigid-body modeling, and exact-constraint design. Figure 1.11 outlines the three schools 

of thought in compliant mechanism synthesis. Topology synthesis designs compliant 

mechanisms through computer iteration of the design parameters [15]. The software takes the 

A B C
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users designated design domain and breaks it up into a set of nodes, which are connected to form 

beam elements. The computer uses FEA to identify which nodes to add or remove to meet the 

user specified objective function, such as maximizing output deflection for a specified input load 

while minimizing the mean compliance under other loading conditions. Once the general layout 

of the beam elements has been identified the software iterates on the different beam parameters 

to maximize the objective function and/or meet a secondary constraint such as minimizing 

weight. The iterative loop is performed until the software is able to reach convergence and the 

result is a design that has been optimized to meet the user’s objective functions [15]. The 

challenge with topology synthesis is that the designer is unaware of the design trade-offs. As a 

result the user is unable to assess how different parameters affect the performance and will have 

to re-run the program if any functional requirement changes. Another difficulty is that all 

functional requirements need to be specified as objective functions and ranked such that the 

system can optimize to the most important requirement [16]. This synthesis approach limits the 

rapid concept generation of the design process, for an objective function the computer will find 

the optimal design.  

 

 

Figure 1.11: Common flexure synthesis approaches include: topology synthesis, pseudo-

rigid-body modeling, and exact constraint design. The building block approach and FACT 

are based on the exact constraint design methodology.  

 

Pseudo-rigid-body modeling creates a rigid-link representation of a compliant mechanism 

in order to utilize common rigid-linkage models to analyse the kinematics of the flexure system 
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[17]. In the pseudo-rigid-body model the flexure’s compliance is simulated by connecting two 

rigid links with a spring mechanism. The stiffness of the springs is set by the flexure’s 

compliance. Once the compliant mechanism has been modelled as a set of springs and links the 

designer can use rigid-link tools to analyse and optimize the performance of the system. The 

pseudo-rigid-body model is very powerful if the compliant mechanism is accurately represented 

as a rigid system, in order to do this the kinematics of the flexure need to be well-understood.  

 

The foundation for exact-constraint design is that the permitted motions or degrees-of-

freedom (DOF) of a rigid-body are dictated by the constraints placed on the body [18], [19]. A 

rigid-body without any constraints has six DOF: three translations and three rotations. Exact-

constraint dictates that the number of DOF of a body is equal to six minus the number of 

independent constraints. In using exact-constraint design in compliant mechanisms the designer 

must be able to identify the constraints imposed by a flexure linkage on the rigid-body. This 

process is facilitated by the use of building blocks. Building blocks are flexural elements or 

subsystems whose kinematics are well-understood. The designer can assemble these building 

blocks to create more complex systems relying on established series and parallel system rules 

[20][21]. 

 

The challenge with flexures is that all of their DOF have a finite stiffness; therefore the 

challenge becomes how to establish if the flexure acts as a constraint in a particular direction. 

One way to differentiate constraints from DOF is by looking at the ratio of their stiffnesses. For 

example in the beam shown in Figure 1.12 the Ky stiffness is orders of magnitude greater than 

the Kz stiffness, as a result the beam is considered a Δy-constraint.  Compliance or stiffness 

ellipsoids facilitate this analysis by providing a visual representation of the stiffness ratios [22], 

[23]. The stiffness ellipsoid in Figure 1.12 illustrates the relative magnitude of the stiffnesses 

allowing the designer to quickly identify Kz as the lowest stiffness; given Kx>>Kz the flexure 

blade element has Δz as a DOF. The ellipsoid is a characterization of the kinematics of the 

flexure element [23].   
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Figure 1.12: Stiffness Ellipses are a visual representation of stiffness ratios. The relative 

lengths of the ellipse axis are representative of the magnitude of the stiffness ratio.  

 

A new synthesis approach Freedom Actuation and Constraint Topologies (FACT) 

proposes using freedom, constraint, and actuation topologies to design any flexure system [24], 

[25]. FACT utilizes the principles of exact-constraint based design and the mathematics of screw 

theory to create visual spaces for where constraints should be placed to achieve the desired DOF. 

The design process is enhanced by FACT because it presents the designer with a quick way to 

consider all possible constraint locations.   

 

A building block approach derived from constraint based design principles is proposed as 

the most appropriate synthesis methodology for CFs at this stage. The plan is to first develop a 

full understanding of the parameters that affect the element’s behavior. This element then 

becomes a building block for CF systems. The next step is to develop rules for how these blocks 

interact when assembled together. The desired outcome of the research consists of (i) models that 

allow the designer to quickly understand how different parameters will affect the behavior of an 

element, and (ii) design guidelines for the assembly of CF systems. Figure 1.13 gives element 

and system examples for planar and CF systems.  
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Figure 1.13: Planar and CF element and system examples.  

 

A constraint based design approach has been chosen because it is intuitive for precision 

engineers. This synthesis approach presents a quick way to determine how a system created from 

a set of building blocks will behave. Building blocks make the rapid concept generation phase of 

the design process very efficient as the designer can use the stiffness representations and system 

rules to quickly lay out the elements required to achieve a desired performance, while being able 

to account for external constraints such as manufacturing. The knowledge gathered through the 

development of these building block rules can then be used to create arguments for the other 

synthesis methods.  

 

1.7 Thesis Overview 

The first step in the building block approach is to understand the flexure element 

mechanics. Chapter 3 begins by establishing the 6-DOF compliance (1/stiffness) matrix for a 

curved-beam element. Once the matrix has been established we identify the effect of different 

parameters on the performance on the flexure. Section 3.7 presents an analysis of the 

performance sensitivity to fabrication tolerances of key parameters. Chapter 3 continues on to 
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explore the effect of boundary conditions and input load location on the performance metrics. 

This analysis is important because the assembly of elements into systems will impose different 

end-conditions on the tips of the flexures and will affect the location of the load relative to the 

element. In order to calculate the curved-beam’s range an accurate stress model had to be 

developed. Chapter 3 concludes with a new stress model specific for z-compliance elements. The 

system creation guidelines describe the interaction between the element building blocks. These 

rules enable the designer to assemble the blocks together to achieve a desired system 

performance.  Chapter 4 utilizes two flexure systems to help establish the system creation 

guidelines. The chapter covers the effect of system parameters on the performance metrics of 

parallel and serial systems.  

 

1.7.1 Flexure Performance Metrics 

The challenge is to find a set of flexure performance metrics that characterize the CF and 

provide useful insight as to what parameters can be used to alter its kinematics. To this end, this 

thesis establishes the effect of different parameters on the CF’s (i) stiffness ratios, (ii) parasitic 

ratios, and (iii) the ratio of range to footprint. Stiffness ratios are used to differentiate the 

flexure’s DOF from its constraints. These ratios provide a quantitative measure of the stiffness 

ellipses introduced in section 1.5. A mechanism will have desired motions and undesired 

motions known as parasitics. Figure 1.14 shows the desired and parasitic motions for a straight-

beam four-bar. In precision mechanism design the goal is to minimize the ratio of parasitic to 

desired displacement. Precision engineering applications require high accuracy flexure systems, 

microns of parasitic motion can cause a design to fail. Finally, considering only the range of a 

flexure mechanism can be deceiving because it gives no information on the size of the system. A 

better measure of the CF’s performance is the ratio of its range to its radius. This ratio gives 

information on the range of the system relative to its footprint. 
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Figure 1.14: The arc displacement of a straight four-bar is the result of the sum of two 

parasitic displacements (purple), Δy and αx, in addition to the desired displacement (green), 

Δz. A parasitic displacement is an undesired displacement. 

 

1.7.2 Case Studies 

Two case studies were used to help guide the development of the design rules and to 

demonstrate their applicability. The first case involves the design of a precision linear guide 

flexure mechanism to be used to translate an optic in a Fourier Transform Spectrometer (FTS). 

The final design, shown in Figure 1.15, is fabricated out of a single aluminum tube and is 

composed of z-compliance curved-beam elements. Chapter 5 details the shortcomings of creating 

a CF linear guide using straight-beam flexure design rules. The CF rules and guidelines 

presented in this work were then used to redesign the linear guide. The redesign achieved an 

order of magnitude lower parasitic ratio compared to the original CF prototype.  

 

 

Figure 1.15: CAD model depicting the actuation of the final CF linear guide design.  
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 Chapter 6 presents the design of a CF x-y-θz stage. The goal of this case study was to 

demonstrate the usability of the design rules during the creation of a CF with r-compliance 

elements. To ensure that the guidelines developed in this thesis would be useful to other 

engineers the design of the x-y-θz stage was led by Laura Matloff, an undergraduate student 

working in the PCSL lab on her senior thesis [26]. The author worked with the student to create 

the final design shown in Figure 1.16. Chapter 6 details the use of the design guidelines during 

the design process. 

 

Figure 1.16: CAD model depicting the Δx actuation of the CF x-y-θz stage. 
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CHAPTER 

2 
PRIOR ART 

 

Past work that pertains to CFs has focused on two areas: (i) models for curved beams and 

(ii) the analysis of specific CF concepts. Detailed models for the design of structural curved-

beams have been developed since the early 1900s [1],[2]. These structural beam models are used 

as the foundation for the modeling of the kinematics of CF flexures. The design of compliant 

mechanisms differs in two major aspects from that of structural beams: (i) in flexures the design 

seeks to maximize the deflection of the element, and (ii) parasitic motions are significant in the 

performance of precision compliant mechanisms. As a result of these two differences, structural 

models do not provide a designer with guidelines as to how to use curved flexures to achieve a 

set of functional requirements. This work will extract, from these analytical models, clear rules 

for the design of CF elements and systems. 

 

2.1 Curved-Beam Models 

The kinematics of a curved-beam are usually calculated using Castigliano’s second 

theorem. Timoshenko utilizes the theorem to establish the deflection equations for curved-beams 

loaded in and out of the plane of curvature [1]. The in-plane loading condition corresponds to an 

r-compliance CF element, while a z-compliance element is actuated out-of-plane. Roark presents 

equations for both types of loading with different boundary conditions [27]. The formulas for the 

kinematics of curved elements can be compiled to create the stiffness or compliance matrix for 

the element. Martin presents the compliance matrix for the 3-DOF of a curved-beam loaded 

along its plane of curvature, while others have expanded the matrix to include all 6 DOF [2–4].  
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 A more recent compliant curved-beam model is Kim et al.’s curved beam building block 

(CBB) [23]. The CBB is introduced as a building block for the creation of flexure systems. The 

publication focuses on creating a systematic way of assembling compliant mechanisms 

composed of both straight and curved beams. The authors present the compliance ellipsoids as a 

way of capturing the behavior of the building blocks; however, little information is given on 

what determines the kinematics of the beam. In their work the analysis of the CBB compliance 

ellipsoid is limited to in-plane motions. This work seeks to expand on the analysis of the curved-

beam building block by capturing all 6-DOF, providing an in-depth examination of the effects of 

beam’s parameters, and extracting clear guidelines on the design and optimization of CF 

systems.  

 

2.2 Examples of Flexures with Curved Beams 

The other area of prior art pertains to the analysis of specific systems that fit within the 

CF definition. Smith presents a detailed analysis of the disk coupling and the rotationally 

symmetric hinge, shown in Figure 2.1 [6]. The examination of these two CF examples includes 

an exploration as to how different flexure parameters affect the behavior of these systems. Others 

have developed diaphragm flexures designs composed of curved-beams [28], [29], [30].  Figure 

2.2 shows Awtar and Slocum’s single-DOF linear bearing design. The difficulty with 

diaphragms is that they need to be assembled into systems; as a result, diaphragm flexures are 

burdened by assembly error and cost. The analysis of specific CF designs, such as these three 

examples, has produced useful flexure systems; however, there has been little overarching 

insight developed that could be used to create new CF concepts. In addition, in many cases the 

analysis of these systems has relied on FEA to determine the system’s range. In some cases CF 

systems with flexures with a small sweep angle have been successfully designed using straight-

beam models [31]. 
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Figure 2.1: Examples of Smith’s hinges of rotational symmetry: A) Disk coupling and B) 

Rotationally symmetric hinge [6]. 

 

 

Figure 2.2: Awtar and Slocum’s diaphragm single DOF linear bearing [28]. 

 

2.3 Technology Gap 

Figure 2.3 summarizes the prior art knowledge and highlights the work necessary to 

enable the design process for CF systems. The current lack of design guidelines has restricted the 

design process which is apparent in the limited use of cylindrical flexures. The detailed analysis 

of specific CF examples has resulted in useful systems; however, the knowledge generated has 

not been generalized to help guide the design of new mechanisms. This work takes a step back 

and begins by creating guidelines for the design and optimization of the CF elements. The 

A B
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system design rules presented in chapter 4 enable the use of these elements as building blocks for 

CF systems. 

 

Figure 2.3: Chart shows the current knowledge available on curved-beams and the 

technology required to enable the design process for cylindrical flexures. This thesis fills 

the technology gap which has prevented cylindrical flexures from becoming prevalent. 

 

An understanding of the effect of different parameters on the performance of a curved-

beam is necessary during the analysis, selection, and optimization of CF concepts. This work 

utilizes the available analytical models to quantify the effect of the element and system attributes 

on the flexure’s performance metrics. Furthermore, this thesis identifies the parameters that 

differentiate the kinematics of a curved-beam flexure from those of a straight flexure. The 

identification of the differentiating parameters allows for the compliance matrix of the CF 

element to be presented as a function of the straight-beam equations. This presentation of the 

matrix allows the engineer to utilize their straight-flexure knowledge during the design of 

curved-beam flexures. Throughout the analysis of the CF elements and systems this thesis 

highlights the advantages and drawbacks of utilizing curved-beams over straight-beams.  
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3 
ELEMENT RULES AND MODELS 

 

3.1 Element description 

The first step in the building block approach is to understand the flexure element 

mechanics. The goal is to identify what the effect of different parameters is on the element’s 

performance. The element’s mechanics are described by its compliance matrix. The compliance 

matrix, [C], relates the displacements and rotations, Δ and α, of the beam to the forces and 

moments, F and M, applied on the element, as shown in equation (3.1). In order to define the 

compliance matrix, it is necessary to establish the coordinate system for the matrix. The 

compliance matrix used in this thesis describes the six-DOF for the tip of a fixed-free curved-

beam element. Figure 3.1 shows the coordinate system for the two types of CF elements, and 

establishes the positive direction for all displacements, rotations, forces, and moments.  
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Figure 3.1: Flexure element coordinate systems. Figure defines the direction of positive 

displacements, rotations, as well as the direction of positive loads and moments. 

 

3.2 Compliance Matrix 

The foundation for the element analysis and optimization is the compliance matrix, [C], 

for a CF element, given in Equation (3.3). The matrix has been derived from previous works [1–

3], [27]. The compliance matrix of an element is established using Castigliano’s Second 

Theorem for displacements of a linearly elastic structure. The theorem states that a displacement, 

qi, in the direction of the generalized force, Qi, is given by the partial derivative of the strain 

energy, U, with respect to Qi. Equation (3.2) expresses Castigliano’s Second Theorem. The 

analysis consists of establishing the strain energy resulting from all possible loading conditions 

and then taking the partial derivative with respect to each load [3]. It is important to note that the 

matrix accounts for the curvature of the beam element when establishing the strain energy 

resulting from a loading condition; however, the analysis does not consider that the beam’s 

length is shorter at the inner radius compared to the length at the outer radius. The effect of this 

omission is analyzed in section 3.2.1. 

   
  

   
 (3.2) 

  

The presented compliance matrix, which is the inverse of the stiffness matrix, corrects 

errors in previous works. The last row of the matrix is erroneously reported in Martin [2]. The 
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matrix has been corrected so that each entry has the correct units. In the compliance matrix, Iz 

and Ir correspond to area moment of inertia about the z-axis and r-axis respectively. L 

corresponds to the length of the beam, which in curved beams is defined by the product of the R 

and ϕ as shown in Equation (3.4). β is the ratio of the bending to torsional properties of the beam 

as defined in Equation (3.5).  E is the modulus of elasticity and G is shear modulus. kt is the 

torsional stiffness constant for a given cross-section. Equation (3.6) gives kt for a rectangular 

beam, where a and b are the lengths of the two sides of the rectangle [27]. For a z-compliance 

element tr is greater than tz and therefore corresponds to a (tr=a), similarly for an r-compliance 

beam a corresponds to tz (tz=a). 
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In the past some authors have presented the 3x3 compliance matrices for curved elements 

separately because of the sparsity of the full 6x6 matrix [1], [2], [27]. The matrix in Equation 

(3.3) shows that there is essentially two separate matrices: one relates the loads Fθ, Fr, and Mz to 

the displacements Δθ, Δr, and αz, these loads have no effect on the other three displacements; the 

other matrix relates the loads Fz, Mθ, and Mr to the displacements Δz, αθ, αr, with no effect on the 

other three displacements. The full 6x6 compliance matrix is presented because it describes the 

loading conditions of both types of CFs. The full matrix also allows the designer to analyze the 

effect of all extraneous loads on the performance of the flexure element.  

 

3.2.1 Corroboration with FEA 

The compliance matrix for a CF element was corroborated using ADINA finite element 

analysis (FEA). The analytical results were compared to the results from (i) a FEA model 

consisting of 10 straight beam elements in series and (ii) a 3D solid FEA model. An example of 

each of the two FEA models is shown in Figure 3.2. The matrix was corroborated for each of the 

six loading conditions. Figure 3.3 shows the displacements due to Fz calculated by the two FEA 

models, and compares them to the predicted analytical values. The rest of the corroboration plots 

are given in Appendix A. The error between the analytical model and the FEA models was 

calculated for each sweep angle, Table 3.1 gives the maximum error and standard deviation of 

the errors for all sweep angles. The beam model does not account for the difference in beam 

length between the inner radius and the outer radius, while the 3D solid model does. A 3D solid 

model is more accurate but it would be too inefficient to use in the design process.      
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Figure 3.2: ADINA Finite Element Models used to corroborate the analytical compliance 

matrix. A) FEA model created using 10 straight beam elements in series to represent the 

curved beam element. B) 3D solid model. 

 

 

A. B.
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Figure 3.3: FEA corroboration of compliance matrix, predicted displacements under -0.2N 

Fz load vs. sweep angle, ϕ. The plot compares the curved beam model to an FEA Beam 

Element model and an FEA 3D solid model. (L=60mm, tr=6.35mm, tz=1mm, 

7075Aluminum). 

 

Table 3.1: Average model error and standard deviation for each displacement 

Load Motion Average Model Error (standard deviation) Notes 

  3D Solid Model FEA Beam Model FEA  

Fθ 

Δθ 11.0% (17.1%) 6.3% (18.3%)  

Δr 11.7% (26.8%) 5.0% (25.5%) Max error Δr→0 

αz 3.1% (1.2%) -0.3% (0.8%)  

Fr 

Δθ 10.9% (25.9%) 5.0% (25.5%) Max error Δθ→0 

Δr 3.9% (1.3%) -1.2% (1.5%)  

αz 8.3% (24.8%) -0.7% (2.3%) Max errors as αz→0 
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Fz 

Δz -3.7% (4.3%) -1.2% (1.5%)  

αr 4.5% (25.1%) -0.1% (2.3%) Max errors as αr→0 

αθ 0.2% (3.9%) -0.5% (0.7%)  

Mθ 

Δz 0.1% (3.9%) -0.4% (0.8%)  

αr -39.1% (207.3%) 10.0% (24.9%) Max errors as αr→0 

αθ -1.3% (1.3%) -0.5% (0.5%) Max errors as Δz→0 

Mr 

Δz 4.2% (25.7%) 5.8% (24.9%)  

αr -3.9% (1.7%) -0.5% (0.6%)  

αθ 35.7% (115%) 5.6% (27.8%) Max errors as αθ→0 

Mz 

Δθ 2.9% (1.3%) -0.3% (0.8%)  

Δr 2.7% (26.6%) -0.7% (2.3%) Max error Δr→0 

αz 4.6% (0.4%) -0.5% (0.6%)  

 

 

Once the compliance matrix for a CF element has been established and corroborated the 

next step is to extract useful information from the matrix to help establish design rules for CFs. 

The design rules need to provide the designer with tips on how different parameters will affect 

the flexure’s performance. The first thing that needs to be established is what differentiates the 

performance of a curved-beam from that of a straight-beam. Then, the effect of these parameters 

on the different flexure performance metrics can be studied.  

 

3.3 Curvature Adjustment Factor 

Each entry of the compliance matrix in Equation (3.3) is factored into two components: 

(i) the straight-beam equation and (ii) a curvature adjustment factor, ζ [7]. The matrix is 

presented in this manner because it allows the engineer to transfer their previous knowledge 
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pertaining to straight-beam flexures towards analyzing the performance of CFs. This 

factorization also reveals that the two parameters that cause the kinematics of the curved-beam to 

differ from those of a straight beam are ϕ, and β. This matrix allows the engineer to design a CF 

using his previous knowledge of straight-beam equations supplemented with an understanding of 

the effect of ϕ, and β. 

 

Figure 3.4 presents the effect of sweep angle on the curvature adjustment factors for a z-

compliance element. The plot shows that as ϕ approaches zero the curved beam behaves like a 

straight-beam: ζΔz and ζαr approach 1 and ζαθ approaches zero because straight flexures do not 

have a αθ parasitic motion. As the sweep angle increases the behavior of the CF deviates from 

the behavior of a straight-beam flexure. This analysis can be taken a step further to establish a 

maximum sweep angle, ϕs, for when the straight-beam approximation is good enough to model 

the behavior of the curved-beam. The value for ϕs can be established using a variety of 

performance metrics. For example, Figure 3.4 shows that for ϕ ≤ 34° the value of the desired 

displacement, Δz, and dominant parasitic rotation, αr, will be within 5% of the value calculated 

using the straight-beam model. If the designer is most concerned with the new parasitic motion, 

αθ, then the limit for ϕs can be set for 14° when αθ< 0.1αr.  
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Figure 3.4: Curvature adjustment factors, ζ, vs. Sweep Angle, ϕ, for a z-compliance flexure. 

The plot shows that as the sweep angle approaches zero the curved-beam behaves like a 

straight-beam. The curvature adjustment factor can be used to define the value of sweep 

angle below which a beam can be modeled as a straight beam, ϕs. Below ϕ=34° the value of 

the two dominant displacements, Δz and αr, are within 5% of the straight-beam value. 

While for ϕ<14° the additional parasitic rotation, αθ, is less that 1/10
th

 the value of the 

dominant parasitic motion, αr. 

 

Similarly, Figure 3.5 presents the effect of sweep angle on the curvature adjustment 

factors for an r-compliance element. In this case the desired displacement of the CF and straight 

flexure is Δr. As ϕ approaches zero, the two curvature adjustment factors for the two 

displacements associated with a straight-beam, ζΔr and ζαz, approach 1 and ζΔθ for the additional 

parasitic displacement goes to zero. The plot also shows that the straight-beam model may be 

used to calculate Δr and αz within 5% if ϕ ≤ 29°. If Δθ is a concern then below ϕ=15° the value of 

Δθ will be an order of magnitude smaller than the value of Δr. 
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Figure 3.5: Curvature adjustment factors, ζ, vs. Sweep Angle, ϕ, for an r-compliance 

flexure. The plot shows that as the sweep angle approaches zero the curved-beam 

behaves like a straight-beam. The curvature adjustment factor can be used to define the 

value of sweep angle below which a beam can be modeled as a straight beam, ϕs. Below 

ϕ=29° the value of the two dominant displacements, Δr and αz, are within 5% of the 

straight-beam value. While below ϕ=15° the additional parasitic displacement, Δθ, is less 

that 1/10
th

 the value of the dominant parasitic displacement, Δr. 

 

3.4 Sweep angle and beta parameter effect 

3.4.1 Sweep angle, ϕ 

The factorization of the compliance matrix revealed that the sweep angle of a CF element 

affects the kinematics of the beam. In analyzing the effect of the sweep angle, it is important to 

keep the length of the element constant so as to explore only the additional effect of ϕ. The 

length of the beam plays the same role in the curved element kinematics as it does in determining 

the behavior of a straight-flexure. Therefore, in the sweep angle analysis the length of the 

flexure, Rϕ, is held constant to allow us to analyze the additional effect of ϕ on the performance 

of the flexure. As ϕ is increased, R decreases to maintain the same length. Figure 3.6 visually 

compares fixed length beams with different sweep angles. The sweep angle gives an additional 

design tuning knob and as a result creates a larger design space for CF elements as compared to 

the design space for straight-beam flexures. This new tuning knob may be used to create a design 
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that meets a set of functional requirements that cannot be met using straight-beam compliant 

elements. 

 

Figure 3.6: Fixed length flexures with increasing sweep angle, ϕ. 

3.4.2 Beta parameter, β 

In a CF the ratio of elastic to shear properties of a beam, β, is important because the 

curvature of the element results in the application of both a bending, Mr, and twisting moment, 

Mθ, when Fz is applied. As shown in Equation (3.5), β depends on the geometry of the beam, Iz 

and kt, and the material properties of the beam, E and G. A material’s E and G are related by 

Poisson’s ratio, which is approximately 0.3 for most metals in their elastic regime. Given the 

majority flexures are constructed out of metal the analysis in this thesis focuses on the effect of 

the beam’s cross-section on β. Specifically, the effect of taper angle, Ψ, defined in Figure 3.7a, 

on the performance of the flexure. Taper angle may be a direct result of the manufacturing 

method, e.g. abrasive water-jet cutting, or may be imposed during machining. The formulas for Ir 

and Iz for a trapezoid in terms Ψ are given in Equations (3.7) and (3.8) [27]. Two different 

formulas are used for kt depending on whether the taper angle affects the cross-section’s longer 

side, typically z-compliance elements, or its shorter side, typically r-compliance flexures. Roark 

provides Equation (3.9) which gives the torsional stiffness constant for a z-compliance CF,        

kt-zcomp. The kt for an r-compliance trapezoid was calculated by taking the torsional stiffness 

constant of a rectangle, (3.6), and adding the torsional stiffness constant of two right triangles 

Increasing ϕ

Set Length
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using the parallel axis theorem. The resulting equation for kt-rcomp for an r-compliance flexure is 

given by (3.10). Appendix B gives the details on how (3.10) was calculated. 

 

 

Figure 3.7: A) Flexure beam cross-sectional area indicating the taper angle, Ψ, or deviation 

from the desired rectangular cross-section. B) Location of bend axis of the area moments of 

inertia, Iz and Ir, of a z-compliance element and an r-compliance element. The taper angle 

shifts the location of the bend axis of Iz.  

 

   
  

 

  
 
          

 

    
 

 

                   

(3.7) 

 

   
  

        
[     

        
    

                  
    

  

              
 ] 

 

 

(3.8) 

         
  
  

        
    

      
      

  

 

                                            

                                            

  
    

  
⁄  

(3.9) 

 

        =                           {          [(
  

 
 

 

 
)
 

 (
  

 
)
 

]} 
(3.10) 

 

Ir

Iz

Ψ
Ir

Iz

A B

z-compliance r-compliance

tz

tr



 67 

Figure 3.8 presents the normalized effect of the taper angle on the area moments of 

inertia and the torsional stiffness of a curved z-compliance element. The effect of Ψ is 

normalized using the value for Ψ=0°. The plot shows that Ψ has a smaller effect on Iz than on Ir 

or kt. The reason for the reduced effect is that the beam’s centroid will shift as the taper angle 

increases as shown in Figure 3.7b. As a result of the shift of the neutral z-axis, the effect of Ψ is 

decreased. 

 

Figure 3.8: Normalized taper angle effect on the area moments of inertia, Iz and Ir, and 

the torsional stiffness constant, kt, of a z-compliance CF with ϕ=120°.  Effect is 

normalized using the values for Ψ=0°. 

 

3.5 Stiffness ratios 

An important performance metric for a flexure element is the ratio of its stiffnesses. Good 

designs will decrease the stiffness in the desired DOF and maximize the stiffnesses in the other 

directions. For z-compliance element the goal is to minimize the ratio of Kz/Kr and Kz/Kθ. A low 

stiffness ratio reduces undesired displacements resulting from extraneous loads. For an r-

compliance flexure the design should minimize Kr/Kz and Kr/Kθ. In the following sections the 

effect of the sweep angle and the taper angle on the stiffness ratios is analyzed.  
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3.5.1 Sweep angle effect 

 

In the sweep angle analysis, the length of the flexure, L=Rϕ, is held constant to analyze 

the additional role ϕ plays in determining the stiffness ratios. Figure 3.9 shows how the z-

compliance element stiffness ratios change with ϕ; the stiffness ratios for the curved beam are 

compared to those of a straight-beam of the same length and cross-section. The figure shows that 

ϕ gives the designer an additional lever for developing a flexure with improved Fr load rejection 

capability. The two stiffness ratios are equal when ϕ=122.56° and lower than the straight beam 

Kz/Kr stiffness ratio. Increasing or decreasing ϕ from this point will increase one of the stiffness 

ratios.  

 

Figure 3.9: Sweep angle, ϕ, effect on the stiffness ratios for a z-compliance flexure with a 

radial-thickness, tr, to z-thickness, tz, ratio of 10. The stiffness ratios are equal when 

ϕ=122.56°. (L=60mm, tr=10mm, tz=1mm, 6061 Aluminum). 

 

The magnitude of the stiffness ratios depends on the cross-section of the beam, the beams 

in Figure 3.9 have a ratio of tr/tz=10. Figure 3.10 shows how the ratio of tr/tz affects the 

magnitude of the stiffness ratios for a z-compliance element with a ϕ=122.56°. The plot 

demonstrates that regardless of the cross-section dimensions the two stiffness ratios Kz/Kr and 

Kz/Kθ for a z-compliance element are always equal when ϕ=122.56°. The magnitude of the 

stiffness ratios decreases as the ratio of tr/tz increases. For ϕ=122.56° both curved-beam stiffness 

ratios are always less than the value for the straight-beam Kz/Kr ratio.  
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Figure 3.10: Effect of tr/tz ratio on the magnitude of the stiffness ratios for a z-compliance 

flexure (ϕ=122.56°). Plot shows that regardless of the value of tr/tz the stiffness ratios are 

equal when ϕ=122.56° and their magnitude is less than that the ratio of Kz/Kr for a 

straight-beam of the same dimensions. (L=60mm, 6061 Aluminum). 

 

When designing an r-compliance element the designer seeks to minimize the ratios of 

Kr/Kθ and Kr/Kz, so as to maximize the desired displacement Δr per unit load Fr, and minimize 

the displacements due to extraneous loads Fθ and Fz. Figure 3.11 shows how the sweep angle of 

an r-compliance element (tz/tr=10) affects its stiffness ratios. The value for Kr/Kθ is equal to 1 

when ϕ=122.56°. Once again ϕ=122.56° is an important angle but for a different reason. When 

Kr/Kθ>1 the flexure is more compliant in the θ-direction than in the r-direction, this means that 

when ϕ>122.56° the flexure should now be classified as a θ-compliance element.  Normally, 

flexure blades, such as the elements being analyzed in this work, are considered to have one 

linear DOF and two linear constraints, given that their stiffness ratios are much less than 1. In the 

case of r-compliance CF elements, the flexure blade cannot be considered a θ-constraint for the 

majority of the sweep angles. This phenomenon can be exploited when a designer requires that 

the element provide two linear DOF, for this case a curved beam may be used instead of two 

straight-flexures in series.  
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Figure 3.11: Sweep angle, ϕ, effect on the stiffness ratios for an r-compliance flexure with a 

z-thickness, tz to radial-thickness, tr, ratio of 10. The Kr/Kθ stiffness ratio is equal to 1 when 

ϕ =122.56°. When the Kr/Kθ is greater than 1 the flexure should be considered θ-compliant 

because this is its lowest stiffness. (L=60mm, tz=10mm, tr=1mm, 7075 Aluminum). 

 

Figure 3.12 shows the effect of the ratio of tz/tr on the magnitude of the stiffness ratios for 

the important sweep angle of 122.56°. At this ϕ, the magnitude of Kr/Kθ is always 1 for any tz/tr 

ratio. The relative magnitude of the dimensions of the cross-section of the beam has little effect 

on Kr/Kz because both Kz and Kr are functions of tr
3
. Kz is dictated by the sum of two components 

as highlighted in Equation (3.11). One component is a function of the torsional stiffness constant, 

kt, which is a cubic function of the cross-sectional area’s smallest dimension, tr in this case. The 

other component is a function of Ir, therefore, an increase of tz affects mainly this component. 

Figure 3.13 better illustrates the reduced effect of tz/tr on the Kr/Kz ratio by normalizing the 

straight-beam and curved-beam stiffness ratios using the corresponding stiffness ratio for tz/tr=5. 

The significant reduction in the effect of tz/tr is crucial because in straight-beam flexure design 

tz/tr is often used to decrease Kr/Kz.  
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Figure 3.12: Effect of tz/tr ratio on the magnitude of the stiffness ratios for an r-compliance 

flexure (ϕ =122.56°). Plot shows that regardless of the value of tz/tr the Kr/Kθ stiffness ratio is 

equal to 1 when ϕ =122.56°. (L=60mm, 7075 Aluminum). 

 

 

Figure 3.13: tz/tr effect on the stiffness ratios of an r-compliance flexure (ϕ =122.56°). Plot 

shows that tz/tr has a significantly greater effect on the Kr/Kz stiffness ratio of a straight-

beam flexure compared to a curved-beam r-compliance element. (L=60mm, 7075 

Aluminum). 
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3.5.2 Taper angle effect 

The taper angle, Ψ, of an element plays a role in determining the kinematics of the CF 

elements, because it affects Ir, Iz, and kt. For a z-compliance element the optimum sweep angle of 

ϕ=122.56° was used as the starting point for the taper angle analysis. Figure 3.14 shows the 

stiffness ratios for a z-compliance curved beam (ϕ=120°) vs. taper angle. The model indicates 

that as the taper angle increases so do the stiffness ratios, and therefore, the optimum taper angle 

choice is Ψ=0°. The plot shows that the straight-beam kinematics are also influenced by Ψ. The 

slope of the straight beam Kz/Kr is steeper than that of the curved beam indicating that a curved 

beam is less sensitive to the taper angle imposed by certain manufacturing methods. The 

sensitivity to taper angle manufacturing error is investigated in section 3.7.2. 

 

 

Figure 3.14 Taper angle effect on the stiffness ratios for a z-compliance flexure (ϕ=120°). 

Plot shows that increasing Ψ increases the value of the stiffness ratios. (L=60mm, tr=10mm, 

tz=1mm, 7075Aluminum). 

 

Figure 3.15 shows the effect of Ψ on the stiffness ratios for an r-compliance element with 

ϕ=60°. The plot indicates that the ratio of Kr/Kz will decrease with increasing taper angle. There 

is no effect on Kr/Kθ because they are both functions of Iz, and therefore the effect of Ψ on the 

stiffness ratio cancels. Kz on the other hand is a function of Ir and kt, both of which are affected 

by taper angle. In the case of an r-compliance beam, a taper angle along the r-axis may be used 

to improve the performance of the flexural element.   
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Figure 3.15 Taper angle effect on the stiffness ratios for an r-compliance flexure (ϕ=60°). 

Plot shows that increasing Ψ decreases the value of the Kr/Kz stiffness ratio but has no effect 

on Kr/Kθ. (L=60mm, tz=10mm, tr=1mm, 7075Aluminum). 

 

3.6 Parasitic Motion Ratios 

Another performance metric for a flexure element is the magnitude of the absolute value 

of its parasitic (undesired) displacements compared to the desired displacement along the 

direction of the applied force. A lower parasitic ratio indicates a better performance. Figure 3.16 

defines the desired and parasitic displacements and rotations for each of the types of CF elements 

when loaded along their direction of greatest compliance. For a z-compliance CF under Fz, the 

desired displacement is Δz and the parasitic rotations associated with this loading are αr and αθ. 

Therefore, the parasitic ratios of interest are αr/Δz and αθ/Δz. An r-compliance element loaded 

with Fr has a desired displacement of Δr and the parasitic displacement Δθ and rotation αz. In the 

previous section it was established that when ϕ is greater than 122.56° the r-compliance element 

should be considered a θ-compliance flexure. In the case of θ-compliance element loaded under 

Fθ, the desired displacement is Δθ and the undesired displacement and rotation are Δr and αz, 

respectively. 
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Figure 3.16 Definition of parasitic (purple) and desired (green) motions for the three types 

of cylindrical flexures: A) z-compliance, B) r-compliance, and C) θ-compliance. 

 

3.6.1 Sweep angle effect 

Figure 3.17 shows the effect of sweep angle, ϕ, on the parasitic ratios for a z-compliance 

element under Fz. The optimal sweep angle is found to be 118°, at which point the two parasitic 

ratios are equal. Deviation in either direction from this point results in the increase of one of the 

ratios. The plot indicates that at ϕ =118° both parasitic ratios are less than the αr/Δz ratio of the 

straight-beam counterpart. If the parasitics of the flexure are of concern, a CF element can be 

used instead of a straight-beam to achieve a better performance. It is important to note that the 

sum of the absolute value of the two parasitic ratios of the z-compliance CF beam is always 

greater than the value of the single parasitic ratio of the straight flexure.  
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Figure 3.17 Sweep angle, ϕ, effect on the parasitic ratios of a z-compliance flexure. The two 

parasitic ratios, αθ/Δz and αr/Δz, are equal when ϕ =118°. (L=60mm, tr=10mm, tz=1mm, 

6061 Aluminum) 

 

The effect of sweep angle on the parasitic ratios of an r-compliance element is shown in 

Figure 3.18. The chart reveals that the parasitic ratios for the r-compliance CF are greater than 

the corresponding values for a straight-beam regardless of ϕ. The value of Δθ/Δr is greater than 1 

for 215.5°>ϕ>132.5°. The shaded region highlights the sweep angles for which the parasitic 

displacement, Δθ, will be larger than the desired displacement, Δr. When designing an r-

compliance flexure the designer should be cognizant of this region and design the system such 

that the parasitic displacement is mitigated.  
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Figure 3.18 Sweep angle, ϕ, effect on the parasitic ratios of an r-compliance flexure. The 

shaded region highlights the sweep angles (215.5°>ϕ>132.5°) for which the desired motion, 

Δr, is less than the parasitic motion, Δθ. (L=60mm, tz=10mm, tr=1mm, 7075Aluminum) 

 

Similarly, Figure 3.19 displays the effect of sweep angle on the parasitic ratios of a θ-

compliance element. Once again the parasitic ratios for the CF element are greater than those of 

a straight-beam. The shaded region in the plot gives the sweep angles for which the parasitic 

motion, Δr, is greater than the desired displacement, Δθ. Above ϕ>115° the parasitic ratio Δr/Δθ 

is less than 1 and quickly decreases with increasing ϕ. The analysis indicates that a θ-compliance 

element will have a better performance for large sweep angles, above ϕ=115°. 
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Figure 3.19 Sweep angle, ϕ, effect on the parasitic ratios of a θ-compliance flexure. Above 

ϕ=115° the desired motion, Δθ, is less than the parasitic motion, Δr. (L=60mm, tz=10mm, 

tr=1mm, 7075Aluminum) 

 

3.6.2 Taper angle effect 

The taper angle effect on the parasitic ratios of a CF element is limited because the 

desired and parasitic motions depend on the same area moments of inertia. In the case of both an 

r-compliance and a θ-compliance beam, all displacements associated with an Fr or Fθ load are 

dictated by 1/Iz as shown in Equation (3.3). As a result, the effect of the taper angle on the 

parasitic ratios of these two types of elements cancels. The parasitic ratios of a z-compliance 

beam are given by 1/Ir and different functions of β. Figure 3.20 shows that the Ψ effect on the 

parasitic ratios of a z-compliance curved beam with ϕ=120° is less than 5% for a 10° taper angle 

increase. The effect of taper angle for different sweep angles will be explored in section 3.7.2. 
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Figure 3.20 Taper angle, Ψ, effect on the parasitic ratios of a z-compliance flexure with 

ϕ=120°. (L=60mm, tr=10mm, tz=1mm, 7075Aluminum) 

 

3.6.3 Eigenvalue Parasitic Ratios 

In the previous section the parasitic displacements were defined as a displacement or 

rotation occurring solely about one of the prescribed axes. However, as the analysis showed, 

there are often displacements or rotations about more than one axis. This brings up the idea that a 

parasitic displacement can be defined as any combination of undesired displacements. The 

largest parasitic ratio can be established using the eigenvalues and eigenvectors of the 

compliance matrix [23]. Kim et al. define the parasitic ratio of a beam element, n2, as ratio of the 

magnitude of the secondary compliance vector, |SCV|, to the magnitude of the primary 

compliance vector, |PCV|, as shown in Equation (3.12). This work calls this definition of the 

parasitic ratio of an element the eigenvalue parasitic ratio because the ratio is calculated using 

the eigenvalues of the compliance matrix.    
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unify the matrix characteristic lengths are used to convert rotations to displacements and 

moments to forces. Figure 3.21 shows the characteristic lengths that were selected to unify the 

compliance matrix. The lengths were selected such that for a given rotation the maximum 

displacement would be observed. The process used to change the rotations and moments into 

displacements and forces is shown in Equation (3.13). The characteristic length is given by l, 

while [Δ] indicates the vector of displacements and [F] the vector of applied forces. Equation 

(3.14) is used to transform the compliance matrix, [C], into the unified z-compliance matrix, [Ĉz]. 

Similarly Equation (3.15) gives the unified compliance matrix for an r-compliance or θ-

compliance element, [Ĉr]. 
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Figure 3.21 Linearization of tip rotations for a z-compliance flexure (A), and an r-

compliance flexure (B). 

 

Once the compliance matrix has been unified establishing the eigenvalue parasitic ratio of 

the element is as easy as finding the eigenvalues of the unified compliance matrix. The |PCV| 

corresponds to the highest eigenvalue and the |SCV| to the second highest eigenvalue. Figure 

3.22 compares the eigenvalue parasitic ratio for a set of z-compliance element of varying ϕ to 

that of a straight-beam element. An important part of the eigenvalue parasitic stiffness ratio 

analysis is to understand not only the effect of sweep angle on the magnitude of the ratio but also 

how the direction of the PCV and SCV changes with ϕ. Table 3.2 shows how the eigenvectors for 

a z-compliance element change with increasing ϕ. Figure 3.23 presents the effect of sweep angle 

on the eigenvalue parasitic ratio for an r-compliance element, while Table 3.3 lists the primary 

and secondary eigenvectors of the r-compliance matrix for several ϕ. 
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Figure 3.22 Sweep angle, ϕ, effect on the eigenvalue parasitic ratios of z-compliance flexure 

with tr/tz=10. (L=60mm, tr=5mm, tz=0.5mm, 7075Aluminum) 

 

Table 3.2: Primary (PCV) and secondary compliance vectors (SCV) for a z-compliance 

flexure. Vectors depend on the sweep angle, ϕ. (L=60mm, tr=5mm, tz=0.5mm, 7075 

Aluminum)  

 
ϕ=0° ϕ=60° ϕ=90° ϕ=180° ϕ=300° 

PCV SCV PCV SCV PCV SCV PCV SCV PCV SCV 

θ 0 0 0 0 0 0 0 0 0 0 

r 0 0 0 0 0 0 0 0 0 0 

z -0.999 0 -0.998 -0.054 -0.997 -0.079 -0.990 -0.141 -0.972 -0.236 

αθ" 0 1.000 0.054 -0.998 0.079 -0.996 0.142 -0.988 0.236 -0.972 

αr" -.0013 0 -0.012 -0.027 -0.011 -0.040 -0.007 -0.066 -0.002 -0.010 

αz" 0 0 0 0 0 0 0 0 0 0 
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Figure 3.23 Sweep angle, ϕ, effect on the eigenvalue parasitic ratios of an r-compliance 

flexure with tz/tr=10. (L=60mm, tz=5mm, tr=0.5mm, 7075Aluminum) 

 

Table 3.3: Primary (PCV) and secondary compliance vectors (SCV) for an r-compliance 

flexure. Vectors depend on the sweep angle, ϕ. (L=60mm, tz=5mm, tr=0.5mm, 7075 

Aluminum)  

 
ϕ=0° ϕ=60° ϕ=90° ϕ=180° ϕ=300° 

PCV SCV PCV SCV PCV SCV PCV SCV PCV SCV 

θ 0 0 0.3809 0 -0.554 0 0.899 0 -0.999 0 

r 0 0 -0.925 0 0.835 0 -0.437 0 0.019 0 

z -0.999 0 0 -0.965 0 -0.981 0 -0.990 0 0.988 

αθ" 0 1.000 0 -0.186 0 -0.076 0 0.087 0 -0.155 

αr" 0 0 0 -0.187 0 -0.179 0 -0.110 0 0.005 

αz" -0.013 0 0.013 0 -0.014 0 0.017 0 -0.028 0 
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3.7 Sensitivity Analysis 

Design for manufacturing requires that the engineer understand the effect that the 

tolerance on each dimension will have on the expected performance of the flexure element. This 

section presents the sensitivity of the flexure performance metrics to sweep angle and taper angle 

tolerance. A robust design will be less sensitive to tolerances.  

 

3.7.1 Sensitivity to sweep angle tolerance 

Like any other dimension the sweep angle of an element has an associated tolerance for a 

given manufacturing method. In the case of a machine with a rotary axis, the sweep angle 

tolerance is set by the resolution and repeatability of the rotary axis. Figure 3.24 shows the z-

compliance element stiffness ratio sensitivity to the sweep angle tolerance vs. ϕ. The vertical axis 

displays the percent error off of the desired value per degree of ϕ tolerance. For this analysis the 

radius of each beam, R, is set by the desired L and ϕ. The sweep angle is then increased by 1° 

while R is held constant. Figure 3.24 shows that for approximately ϕ>35° the percent error off 

the predicted stiffness ratio per degree of ϕ tolerance is less than ±2%. The same is true for r-

compliance element as shown in Figure 3.25. 

 

Figure 3.24 Stiffness ratios sensitivity to sweep angle, ϕ, tolerance for a z-compliance 

flexure vs. desired sweep angle. Plot shows the percent error from desired value per degree 

of sweep angle tolerance. (L=60mm, tr=10mm, tz=1mm, 6061 Aluminum) 
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Figure 3.25 Stiffness ratios sensitivity to sweep angle, ϕ, tolerance for an r-compliance 

flexure vs. desired sweep angle, ϕ. Plot shows the percent error from predicted value per 

degree of sweep angle tolerance. (L=60mm, tz=10mm, tr=1mm, 7075 Aluminum) 

 

The same analysis is performed to understand the effect of ϕ tolerance on the parasitic 

ratios for the CF elements. The parasitic ratios sensitivity to the sweep angle tolerance for a z-

compliance beam is plotted in Figure 3.26. The vertical axis gives the percent error off of the 

parasitic ratio for the desired ϕ per degree of ϕ-tolerance. The plot shows that for approximately 

15°<ϕ<330° the ϕ-sensitivity of the element is low with an error of less than ±2%. Figure 3.27 

shows that for an r-compliance element the ϕ-sensitivity is less than ±2% for approximately 

20°<ϕ<290°. This sensitivity analysis is particularly important if the functional requirements call 

for a robust design and/or the manufacturing method has low resolution or repeatability. 
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Figure 3.26 Parasitic ratios sensitivity to sweep angle, ϕ, tolerance for a z-compliance 

flexure vs. desired sweep angle. Plot shows the percent error from predicted value per 

degree of sweep angle tolerance. (L=60mm, tr=10mm, tz=1mm, 6061 Aluminum) 

 

 

Figure 3.27 Parasitic ratios sensitivity to sweep angle, ϕ, tolerance for an r-compliance 

flexure vs. desired sweep angle. Plot shows the percent error from predicted value per 

degree of sweep angle tolerance. (L=60mm, tz=10mm, tr=1mm, 7075 Aluminum) 
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3.7.2 Taper angle tolerance sensitivity 

The analysis of the stiffness and parasitic ratios showed that the Ψ-effect is different for a 

curved-beam than for a straight-beam. This observation indicates that the sensitivity of the beam 

to a taper angle depends on ϕ. The sensitivity of the beam to taper angle is important when 

dealing with a manufacturing method, such as abrasive water-jet, which results in a taper angle. 

Figure 3.28 plots the Ψ-sensitivity for a z-compliance element vs. ϕ. The vertical axis shows the 

percent off of the desired stiffness ratio for every degree of Ψ. The chart indicates that the Ψ-

sensitivity decreases with increasing ϕ. In section 3.5.1 the analysis revealed ϕ=122.56° to be the 

optimal sweep angle to minimize the stiffness ratios. Figure 3.28 highlights the Ψ-sensitivity of a 

ϕ=122.56° z-compliance element.  An r-compliance element’s taper angle sensitivity increases 

with ϕ, as shown in Figure 3.29. The Kr/Kθ ratio is insensitive to Ψ because the effect of Ψ on Kr 

is cancelled by its effect on Kθ.  

 

Figure 3.28 Stiffness ratios sensitivity to taper angle, Ψ, tolerance for a z-compliance 

flexure vs. sweep angle, ϕ. Plot shows that the percent error from predicted value depends 

on the sweep angle of the flexure. (L=60mm, tr=6.35mm, tz=1mm, 7075 Aluminum) 
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Figure 3.29 Stiffness ratios sensitivity to taper angle, Ψ, tolerance for an r-compliance 

flexure vs. sweep angle, ϕ. Plot shows that the percent error from predicted value depends 

on the sweep angle of the flexure. (L=60mm, tz=6.35mm, tr=1mm, 7075 Aluminum) 

 

Figure 3.20 shows that the parasitic ratios of a z-compliance element are sensitive to Ψ. 

The plot also demonstrates that Ψ has no effected on the parasitic ratios of a straight-beam 

flexure. Figure 3.30 plots the Ψ-sensitivity of z-compliance CF elements vs. the flexure’s ϕ. This 

analysis indicates that the parasitic ratios sensitivity per degree of Ψ varies with ϕ but is always 

less than 1%. In section 3.6.2 it was established that the taper angle has no effect on the parasitic 

ratios for an r-compliance element, therefore, there is no Ψ-sensitivity. 
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Figure 3.30 Parasitic ratios sensitivity to taper angle, Ψ, tolerance for a z-compliance 

flexure vs. sweep angle, ϕ. Plot shows that the percent error from predicted value depends 

on the sweep angle of the flexure. (L=60mm, tr=10mm, tz=1mm, 7075 Aluminum) 

 

3.7.3 Sensitivity to off-neutral position 

The stiffness ratios for a flexure are established at the flexure’s neutral position as 

defined in Figure 3.31a. Straight flexure elements are considered to be axial constraints because 

their Kθ is orders of magnitude greater than their Kz. When the beam is actuated along its desired 

displacement, Δz, it moves away from its neutral position. The definition of the off-neutral 

position is shown in Figure 3.31b. The concern arises as to how the stiffness ratios, in particular 

Kz/Kθ, change as the flexure is deflected away from its neutral position. Kz/Kθ is of most interest 

because in the off-neutral position the beam is more sensitive to buckling. This same concern 

holds for z-compliance CFs which are also vulnerable to buckling in the θ-direction as they are 

actuated along the z-direction. The off-neutral position analysis is not performed for r-

compliance blade elements because it has already been shown they do not act as a θ-constraint.    

0 60 120 180 240 300 360

-0.6

-0.4

-0.2

0

0.2

0.4

Sweep Angle  (degrees)

%
E

rr
o

r 
p

e
r 


 d
e

g
re

e
 (

%
)

Parasitic Ratios Sensitivity to Taper Angle  vs. Sweep Angle (z-compliance)

 

 

Curved /z

Curved r/z



 89 

 

Figure 3.31 ADINA FEA beam models used to determine Kθ. A) Neutral position and B) 

Off-neutral position Δz=1mm.  

 

Figure 3.32 compares the ratio of off-neutral to neutral position stiffnesses for a z-

compliance CF to those of a straight beam. In this analysis the off-neutral position is defined as 

Δz=1mm. The chart shows that the effect of the off-neutral position is most significant at large 

sweep angles. The study was performed using ADINA were the Δz displacement was first 

imposed and then the element was loaded with either an Fr or an Fθ load to establish Kr and Kθ 

respectively. For ϕ≤330° the off-neutral Kr and Kθ stiffnesses are within 90% of the neutral 

position corresponding stiffnesses.  
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Figure 3.32 Off-neutral position effect on the stiffness of a z-compliance flexure vs. sweep 

angle, ϕ. Plot shows the ratio of the off-neutral position (Δz=1mm) stiffness to the neutral 

position (Δz=0) stiffness. (L=60mm, tr=10mm, tz=1mm, 7075 Aluminum) 

 

3.8 Boundary Conditions 

So far all of the analysis has been conducted on fixed-free flexure blades; however, 

assembling flexure elements into systems imposes boundary conditions on the element’s tip. It 

is, therefore, important to consider the effect that different boundary conditions will have on the 

element’s performance metrics. A fixed-free element is described by a 6x6 compliance matrix; if 

a DOF is constrained then the compliance matrix becomes a 5x5 system. Gauss elimination can 

be used to remove a DOF from the compliance matrix, as shown in Figure 3.33. The boundary 

condition analysis presented in this section will be a key part of the system formation rules in 

Chapter 4. Element parasitic motions may be removed by laying out a system design such that 

the system imposes boundary conditions on the elements. However, one must be careful to 

account for the loads that are imposed on the system stages by the constraints applied on the 

element. This topic will be dealt with at length in Chapter 4.   
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Figure 3.33 Gauss elimination is used to eliminate degrees of freedom, creating the 

compliance matrices for elements under different boundary conditions. 

 

3.8.1 Effect on Stiffness Ratios 

Imposing a boundary condition on a flexure will transform its compliance matrix as 

shown in Figure 3.33. This section explores the effect of imposing boundary conditions on the 

stiffness ratios for a z-compliance and an r-compliance element. The impact of fixing one or all 

of the rotations of the elements is explored because these are the DOF that are often constrained 

by a system. Figure 3.34 gives the stiffness ratios for a z-compliance element for different 

boundary conditions vs. ϕ. The plot shows that constraining the parasitic rotations, αr and αθ, of 

the CF increases its stiffness ratios. The magnitude of the ratios will depend on the ratio of tr/tz as 

shown in Figure 3.10; however the boundary condition effect relative to the fixed-free element 

will be the same. The sweep angle for which the two stiffness ratios, Kz/Kr and Kz/Kθ, are equal is 

always ϕ=122.56° regardless of the boundary conditions.  
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Figure 3.34 Boundary conditions effect on stiffness ratios vs. sweep angle, ϕ, for a z-

compliance flexure. Plot shows that the stiffness ratios are always equal when ϕ=122.56°. 

(L=60mm, tr=10mm, tz=1mm, 7075 Aluminum) 

 

The effect of imposing a αz=0 boundary condition on an r-compliance element is shown 

in Figure 3.35. The plot shows that the constrained element has higher stiffness ratios than the 

fixed-free element. Due to this increase in the magnitude of the stiffness ratios, Kr/Kθ is now 

equal to 1 when ϕ=90°, and Kr/Kz=1 when ϕ =73°. In the case of a αz=0 constrained r-compliance 

CF the element cannot be considered a θ-constraint when ϕ is between approximately 90° and 

270°. For ϕ >73° the αz-constrained CF element does not act as a z-constraint. The effect of any 

boundary condition can be analyzed by using Gauss elimination to remove that particular DOF 

from the compliance matrix. When designing a flexure system the designer must recognize the 

boundary conditions imposed on each element and use Gauss elimination to remove those DOF 

that are constrained from the compliance matrix. The constrained compliance matrix should then 

be used in the system analysis. Appendix C presents the compliance matrices for CF elements 

with different tip constraints. 
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Figure 3.35 Boundary conditions effect on stiffness ratios vs. sweep angle, ϕ, for an r-

compliance flexure. Plot shows that when the parasitic rotation αz is constrained, the sweep 

angle at which the stiffness ratio Kr/Kθ=1 decreases from ϕ=122.6° to ϕ=90°. (L=60mm, 

tz=10mm, tr=1mm, 7075 Aluminum) 

 

3.8.2 Parasitic Ratios 

Imposing boundary conditions on a compliant element will also affect its parasitic ratios. 

The layout of the CF system can be constructed so that it constrains a parasitic motion; however, 

this constraint will also have an effect on the other parasitic ratios. Figure 3.36 gives the parasitic 

ratios vs. ϕ for a z-compliance element under two different boundary conditions. The plot shows 

that by constraining one of the parasitic rotations, αr or αθ, the parasitic ratio associated with the 

other undesired motion increases, αθ/Δz and αr/Δz respectively. Figure 3.37 presents the boundary 

conditions effect on the parasitic rations of an r-compliance element. Setting αz=0 increases the 

parasitic ratio of Δθ/Δr for ϕ less than approximately 150°. When 90°<ϕ<150° the value for 

Δθ/Δr ratio of a αz-constrained element is greater than 1, indicating a larger undesired than 

desired displacement.  

0 60 120 180 240 300 360
0

1

2

3

4

5

6

7

8

9

10

11

12

13

Sweep Angle  (degrees)

R
a
ti
o

Boundary Conditions Effect on Stiffness Ratios vs. Sweep Angle  (r-compliance tz/tr=10)

 

 

Kr/K (Free)

Kr/K (z=0)

Kr/Kz (Free)

Kr/Kz (z=0)ϕ =90 ϕ =73 



 94 

 

Figure 3.36 Boundary conditions effect on the parasitic ratios vs. sweep angle, ϕ, for a z-

compliance flexure. Plot shows the effect that constraining one parasitic rotation has on the 

other parasitic ratio. (L=60mm, tr=10mm, tz=1mm, 7075 Aluminum) 

 

 

Figure 3.37 Boundary conditions effect on the parasitic ratios vs. sweep angle, ϕ, for an r-

compliance flexure. Plot shows the effect that constraining the one parasitic motion, αz or 

Δθ, has on the other parasitic ratio. For a αz-constrained element the region for which 

Δr>Δθ is now limited by 96°>ϕ>150°. (L=60mm, tz=10mm, tr=1mm, 7075 Aluminum) 
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3.9 Load location effect 

Another way of removing a parasitic motion is through the location of the loading force. 

Essentially, if the load is applied using a lever arm both a moment and a force can be imposed on 

the flexure tip, as shown in Figure 3.38. The figure shows that a straight beam under an Fz will 

experience both the desired Δz and undesired αr motions. Figure 3.38b illustrates that a straight-

beam under Mx will also experience two motions, Δz and αr. Therefore, if both an Mx and Fz are 

applied on the flexure’s tip the αr-rotation can be removed. For a straight-beam, the Mx necessary 

to result in αr=0 can be exerted using a single Fz, by applying the load on a stage that is ½ the 

length of the flexure, as shown in Figure 3.38c. 

 

Figure 3.38  Load location can be used to remove parasitic rotations. A) A straight-beam 

loaded along the z-axis experiences a desired motion, Δz, and a parasitic rotation, αx. B) 

Loading the beam with a Moment about the x-axis, Mx, at the tip of the flexure, produces a 

rotation, αx, and a displacement, Δz. C) By applying an Fz load on a stage that measures 

half the length, L, of the beam, an Mx moment is exerted at the tip cancelling the αx 

rotation. The resulting motion is a pure Δz displacement.  

  

The equation dictating the parasitic rotation for a CF can be solved to find the moment 

necessary to remove a parasitic rotation in terms of the applied F. For example Equation (3.16) 

gives the equation for the parasitic rotation αz. To find the necessary Mz to have αz=0 the 

equation is set to equal zero and then solved for Mz. Equation (3.17) gives the required Mz,αz=0 as 

a function of the applied Fr and Fθ. In the equations Cij corresponds to the i
th

 row and j
th

 column 

entry of the fixed-free compliance matrix. To exert the necessary moments the load on the 

flexure must be applied a distance from the tip of the beam. Figure 3.39 shows that the location 

of the load relative to the free-end of the beam is given by the radius to the load location, RL, and 

the angle from the tip of the flexure to the loading point, γ.  

z

yx

Δz
αx

Mx

Fz

Δz

αx
L

Fz

½ L

Δz

A B C



 96 

  

                          (3.16) 

 

        
              

   
 

(3.17) 

 

 

Figure 3.39  Location of applied load on a z-compliance element. The loading point is 

defined by the radius to the load location, RL, and the angle between the tip of the flexure 

and the loading point, γ.  

 

In the case of a z-compliance CF there are two parasitic rotations to consider, αr and αθ. 

To remove these rotations the effect of both Mr and Mθ must be considered. Equations (3.18) and 

(3.19) give the Mr,αr=αθ=0 and Mθ,αr=αθ=0, that must be applied to the tip of the flexure to remove 

both αr and αθ. If the CF system in question is constructed out of cylindrical stock the load would 

have to be applied along R to have a monolithic system. For RL=R Figure 3.40 shows the γ at 

which the load would have to be exerted to remove the parasitic rotations of a z-compliance 

element vs. ϕ. The chart gives γ as the fraction of ϕ. It is observed that γ/ϕ for αr=0 approaches 

0.5 as ϕ→0, which is consistent with the straight-beam result presented in Figure 3.38. The plot 

demonstrates that there is no common γ that would remove both αr and αθ. Consequently, in 

order to remove both z-compliance parasitic rotations by load location RL cannot equal R.  Figure 

3.41 gives the Fz load location necessary to set αz=αθ=0. The location is given as the ratio of RL/R 

and γ/ϕ for different sweep angles.  
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Figure 3.40  Fz load location required to remove each parasitic rotation given RL=R. Plot 

shows the ratio of γ/ ϕ vs. sweep Angle, ϕ, for a z-compliance element. γ is measured from 

the tip of the flexure.  
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Figure 3.41  Fz load location required to remove the element’s parasitic rotations, αθ and αr. 

Plot gives the ratios of γ /ϕ and RL/R vs. Sweep Angle, ϕ, for a z-compliance element. γ is 

measured from the tip of the flexure.  

 

To establish the load location necessary to remove the parasitic rotation of an r-

compliance element, only Mz needs to be considered. Figure 3.42 gives the location γ of Fr 

necessary to result in αz=0 as a function of ϕ, for RL=R. Once again, the γ/ϕ tends to 0.5 as the 

curvature of the beam approaches zero. As ϕ increases γ/ϕ approaches zero because, as Figure 

3.18 shows, the parasitic ratio αz/Δθ tends to zero with increasing ϕ.  
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Figure 3.42  Fr load location required to remove the element’s parasitic rotation given 

RL=R. Plot gives the ratio of γ/ϕ vs. Sweep Angle, ϕ, for an r-compliance element. γ is 

measured from the tip of the flexure.  

 

3.10 Stress Model 

The range of a flexure is determined by the maximum stress imposed on a flexure due to 

a load, its displacement under that load, and the flexure material’s yield stress. Accurately 

calculating the stress on the beam is, therefore, critical in ensuring the element is not actuated 

past its elastic range. In the following sections the stress models for an r-compliance and a z-

compliance element are presented. The stress models for CF elements are complicated by the 

fact that the maximum stress does not always occur at the base of the beam as it does in straight-

beams. Other than that, the model for an r-compliance flexure is very similar to that of a straight-

beam. The z-compliance model is more complex because as Figure 1.6 shows a z-compliance 

beam suffers from a stress concentration at its inner radius. This stress concentration has to be 

accounted for in the z-compliance stress model. The stress models presented are based on Euler-

Bernoulli bending theory (thin-beams) and utilize the VonMises Yield criterion.   
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3.10.1 r-Compliance and θ-Compliance 

The first step in establishing the stress model for an r-compliance or θ-compliance beam 

is to identify the moments acting on the beam. Figure 3.43 presents the moments resulting from: 

A) an Fr load and B) an Fθ load. Both loading conditions produce a single bending moment, mz, 

on the flexure. Equation (3.21) gives mz as a function of the location, Rλ, along the length of 

beam and the applied Fr and Fθ. λ is measured from the free-end of the beam. The location of the 

maximum mz, λmax, can be found by taking the derivative of Equation (3.21) with respect to λ. 

The λ for which ∂mz/∂λ=0 gives the location of the maximum mz. If the λ calculated is greater 

than ϕ, then λmax=ϕ and the max mz is found at the base of the beam. Both r-compliance and θ-

compliance CF elements experience only one bending moment, therefore, the location of the 

max mz is the location of the maximum stress. Figure 3.44 gives λmax vs. ϕ for an r-compliance 

flexure under a pure Fr.  Similarly, Figure 3.45 shows λmax as a function of ϕ for a θ-compliance 

beam under a pure Fθ.  

 

 

Figure 3.43  Resulting moments on r-compliance and θ-compliance elements as a result of 

loading at the tip. Both elements experience a single bending moment, mz, when loaded 

under Fr and Fθ respectively. The bending moment varies along the length of the beam. 

The position of the resulting moments is given by Rλ, where λ is measured from the tip of 

the beam.  
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Figure 3.44  Maximum stress location, λmax, vs. sweep angle, ϕ, for an r-compliance element 

under a pure Fr load.  

 

Figure 3.45  Maximum stress location, λmax, vs. sweep angle, ϕ, for a θ-compliance element 

under a pure Fθ load.  

 

Equation (3.21) gives the stress model, σvon-r, for both an r-compliance and θ-compliance 

beam as a function of mz [27]. This model is compared to the FEA results for the maximum 

VonMises stress of an r-compliance in Figure 3.46 and a θ-compliance element in Figure 3.47. 
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normalized using the FEA-calculated stress for a straight-beam of the same dimensions subjected 

to the same load.  
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Figure 3.46  Normalized VonMises stress vs. sweep angle, ϕ, for an r-compliance element. 

Stress is normalized using the 3D-solid FEA stress value for a straight-beam of the same 

dimensions under the same load.  
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Figure 3.47  Normalized VonMises stress vs. sweep angle, ϕ, for a θ-compliance element. 

Stress is normalized using the 3D-solid FEA stress value for a straight-beam of the same 

dimensions under the same load.  

 

Now that the stress model has been corroborated using FEA, the range of the elements 

can be calculated using the beam’s compliance and the material’s yield strength. Figure 3.48 

gives the normalized range for an r-compliance flexure under an Fr load vs. ϕ. The range for the 

CF is normalized using the range of a straight-beam of the same dimensions and of the same 

material. The dotted line in the plot indicates when the normalized range is equal to 1, below this 

line the range of the curved-beam is less than that of its straight-beam counterpart. For ϕ ≤ 90° 

the r-compliance CF has a greater range than a straight beam.  Figure 3.49 shows the effect of ϕ 

on the normalized range of a θ-compliance element subjected to an Fθ load. In this plot the range 

is normalized using the range of the ϕ=5° θ-compliance element.  
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Figure 3.48  Normalized range vs. sweep angle, ϕ, for an r-compliance element under an Fr 

load. Range is normalized using the range value for a straight-beam of the same 

dimensions.  

 

Figure 3.49  Normalized range vs. sweep Angle, ϕ, for a θ-compliance element under an Fθ 

load. Stress is normalized using the range value for a ϕ=5° element.  
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CF elements provide a better solution when the designer faces footprint constraints. Figure 3.51 

presents the range/R for a θ-compliance flexure loaded with Fθ vs. ϕ, and indicates that a larger ϕ 

will result in a larger range/R ratio. 



 106 

 

Figure 3.50  Range/R vs. sweep angle, ϕ, for an r-compliance element under Fr. Dotted line 

shows the range/L for a straight-beam element of the same dimensions.  

 

Figure 3.51  Range/R vs. sweep angle, ϕ, for a θ-compliance element under Fθ.  

 

3.10.2  z-compliance 

The stress model for a z-compliance element is more complex because an Fz load results 

in both a bending moment, mr, and a shear moment, mθ, acting on the beam, as shown in Figure 

3.52. The magnitude of the resulting moments depends on where along the length of the beam, 

Rλ, the analysis is conducted. Equations (3.22) and (3.23) are used to calculate mr and mθ. 
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Finding the location of the maximum stress is not as simple in the z-compliance case as it was in 

the r-compliance case because there are two moments contributing to the stress on the beam. The 

bending moment, mr, results in an axial stress, σθθ-mr, given by Equation (3.24); while mθ 

produces a shearing moment σθr-mθ expressed in Equation (3.25) [32]. In the first stress model, 

σvon1-z, only these two stresses were considered, Equation (3.26) gives the equation for σvon1-z. The 

value of σvon1-z for different values of λ was calculated to find λmax. Figure 3.53 gives the value of 

λmax as a function of ϕ for a sample z-compliance beam. The plot shows that the maximum stress 

does not always occur at the base of the beam.  The value for λmax does not depend on the 

magnitude of Fz. 

  

 

Figure 3.52  Resulting moments on z-compliance element as a result of loading at the tip. 

Element experience a bending moment, mr, and a twisting moment, mθ, when loaded under 

Fz. The resulting moments vary along the length of the beam. The position of the resulting 

moments is given by Rλ, where λ is measured from the tip of the beam.  
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Figure 3.53  Maximum stress location, λmax, vs. sweep angle, ϕ, for a z-compliance element 

under a pure Fz load. (L=60mm, tr=6.4mm, tz=0.6mm 7075 Aluminum) 

 

Figure 3.54 shows the normalized FEA Von Mises stress vs. ϕ and compares it to the 

value calculated using σvon1 at λmax (Bending & Torsion λmax). The stress values are normalized 

using the FEA-stress for a straight-beam of the same dimensions under the same Fz loading. The 

plot also presents the σvon1 at the base of the beam (Bending & Torsion). The figure demonstrates 

the importance of calculating σvon1 at λmax as opposed to assuming the max stress occurs at the 

base of the flexure. The plot also shows that the FEA stress is up to 1.38x the σvon1. In other 

words, the stress model is incomplete because there is a stress that is not being accounted for by 

σvon1. 
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Figure 3.54  Normalized maximum VonMises stress vs. sweep angle, ϕ, for a z-compliance 

element. Stress is normalized using the 3D-solid FEA stress value for a straight-beam of the 

same dimensions under the same load. Plot compares the FEA stress values to the stress 

calculated by a stress model that considers the bending axial stress and the torsion shear 

stress on the beam at the base of the beam (Bending & Torsion) and a stress model that 

gives the stress at λmax (Bending & Torsion λmax).   

 

The missing stress component was discovered by analyzing the stress distribution of a 

straight beam under a bending moment and under a torsional moment. The major stress 

components under these two loading conditions are shown in Figure 3.55. Figure 3.55b shows 

that under a torsional moment the rectangular beam experiences both σθr-mθ and σθθ-mθ. This σθθ-mθ 

was not considered in σvon1-z. If all three stress distributions are summed together one can see that 

the σθθ-mθ adds to σθθ-mr at the inner radius of the beam leading to the stress concentration. 
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Figure 3.55  ADINA FEA images showing the major stress components on a straight-beam 

under a A) bending moment and B) a torsional moment. The axial stress, σθθ-mθ, due to 

twisting is highlighted because it is the missing component from the original stress model, 

σvon1-z.  

 

Once the missing component of the stress model had been identified the challenge 

became determining what could account for σθθ-mθ. Non-circular beams under torsional loading 

with a fixed-end experience additional bending stresses. These stresses are caused by the 

elongation of the outer fibers during twisting and because of the warping restraint at the fixed 

end [27]. For a rectangular beam of closed cross-section, these warping stresses are usually small 

compared to the torsional shear stresses. However, in a z-compliance CF element these 

longitudinal warping stresses are significant because they act in conjunction with the bending 

stresses on the beam. A parametric study was used to create a model for the warping stress of a z-

compliance element. The warping stress equations for beams with other cross-sections were used 

as the basis of the parametric study [27].  Table 3.4 lists the range of values of the parameters 

considered in the study.  
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Table 3.4: Range of values used for each of the components included in the stress model 

parametric study. 

 
L/w tr/tz F Materials E G 

Range of 

values 
3-150 3-100 .001-100 N 

7075 

Aluminum 
7.20e10 Pa 2.69e10 Pa 

Titanium- 

Grade 5 
1.05e11 Pa 3.80e10 Pa 

 

Equation (3.27) gives the stress model for σθθ-mθ at the inner radius of the beam; the 

model was developed through the parametric study. The original Von Mises stress model had to 

be updated to include the effect of the warping stress. The final model for the stress of a z-

compliance element, σvon2-z, is given by Equation (3.28). Figure 3.56 compares the normalized 

FEA-stress values to the final stress model, σvon2-z, which includes the warping stress correction. 

The stresses are normalized using the FEA-stress value for a straight-beam with the same 

dimensions under the same loading conditions as the z-compliance elements. The plot shows that 

for this particular beam the presented stress model is able to accurately predict the stress on the 

beam. Figure 3.57 demonstrates that the presented stress model is able to accurately predict the 

stress of z-compliance elements for reasonable values of tr/tz and L/tr. The plot compares FEA-

stress values of beams with ϕ=120° with different lengths and cross-sections, to the model 

predicted stress. 
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Figure 3.56  Normalized maximum Von Mises stress vs. sweep angle, ϕ, for a z-compliance 

element. Stress is normalized using the 3D-solid FEA stress value for a straight-beam of the 

same dimensions under the same load. Plot compares the FEA stress values to the stress 

calculated by the three stress models: (i) the bending axial and the torsion shear stress on 

the beam at the base of the flexure (Bending & Torsion), (ii) the bending and shear stress at 

λmax, σvon1-z (Bending & Torsion λmax), and (iii) bending and shear stress at λmax with the 

presented warping correction, σvon2-z (Warping Correction λmax). 

 

 

Figure 3.57  VonMises stress for a ϕ=120° z-compliance element. The FEA values for 

different length to radial-thickness, L/tr, and radial to z-axis thickness, tr/tz, are plotted 

along the presented warping corrected stress model. 
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Once an accurate stress model has been established the range of the flexure can be 

calculated. Figure 3.58 plots the normalized range of a z-compliance element vs. ϕ. The range is 

normalized using the range of a straight-beam of the same dimensions. The plot shows that the 

range for a z-compliance CF of any ϕ is always less than that of a straight-beam. However, when 

the footprint of the flexure element is taken into consideration the CF element outperforms the 

straight flexure for ϕ ≥ 90°, as shown in Figure 3.59. The chart shows how ϕ affects the range/R 

ratio for a z-compliance element. The dashed line gives the range/L value for a straight-beam.  

 

Figure 3.58  Normalized range vs. sweep angle, ϕ, for a z-compliance element. Stress is 

normalized using the range value for a straight-beam element of the same dimensions 

under the same loading.  

 

0 60 120 180 240 300 360
0

0.2

0.4

0.6

0.8

1

Sweep Angle (degrees)

R
a

n
g

e
/R

a
n

g
e

-s
tr

a
ig

h
t

Normalized Range vs. Sweep Angle  (z-compliance)



 114 

 

Figure 3.59  Range/R vs. sweep angle, ϕ, for a z-compliance element. Dotted line shows the 

range/L for a straight-beam element of the same dimensions.  

 

3.11 Summary of Element Design Rules 

1) The presented compliance matrix allows the designer to use all previous knowledge 

pertaining to straight-beam flexures when designing CF elements. Leaving only the effect 

of sweep angle, ϕ, and the ratio of bending to torsional properties of the cross-section, β, 

to be considered. 

2) The curvature adjustment factors, ζ, facilitate the analysis of the ϕ and β effect on the 

flexure performance. Different performance metrics can be used in conjunction with ζ to 

establish sweep angles, ϕs, below which the CF can be modeled as a straight-beam. In 

general for ϕ ≤ 15° the beam can be modeled as a straight-beam. 

3) ϕ and β serve as two additional tuning knobs in the design of CFs. As a result of the 

increased design space, a CF may be able to meet functional requirements that cannot be 

met using a straight flexure. 

4) A z-compliance CF can achieve better performance through with a lower Kz/Kr ratio than 

a straight-beam flexure. Increasing ϕ decreases Kz/Kr as shown in Figure 3.9. The optimal 

ϕ for minimizing both stiffness ratios is 122.56° regardless of tr/tz. 

5) An r-compliance flexure acts as a θ-compliance element for ϕ >122.56°. For the majority 

of sweep angles, the r-compliance flexure has two linear DOF, Δr and Δθ. This property 
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can be exploited in systems were two DOF are necessary. In straight-beam flexures the 

design would require two flexures in series. The designer must be aware that the Kr/Kz 

ratio also increases rapidly making large ϕ r-compliance flexures poor z-constraints. 

6) A taper angle along the r-axis of a z-compliance flexure will increase its stiffness ratios, 

therefore, Ψ=0° is preferable. 

7) A Ψ along the r-axis of an r-compliance element may be used to decrease the element’s 

Kr/Kz ratio.  

8) The αr/Δz parasitic ratio for a z-compliance CF decreases with increasing ϕ. This property 

allows the designer to create a CF with a lower αr/Δz than a straight-beam flexure. The 

optimal sweep angle for minimizing both parasitic ratios is ϕ =118°. 

9) The parasitic ratio analyses for an r-compliance and θ-compliance elements show that for 

certain ϕ their parasitic displacements will be larger than their desired displacements. 

This property can be exploited if the designer is designing a transmission element. For 

example, the transmission can be used to transform an Fθ force into a Δr displacement.  

10) Taper angle has a small effect on the parasitic ratios of a z-compliance flexure and no 

effect on the parasitic performance of an r-compliance CF. 

11) Eigenvalue and Eigenvector analysis can be used to establish the primary and secondary 

compliance vectors of a CF, PCV and SCV respectively. The maximum parasitic ratio of 

a CF will be given by the ratio |SCV|/|PCV|. 

12) The CF’s sensitivity to a taper angle depends on ϕ. A z-compliance CF has a lower 

sensitivity to taper angle than its straight-beam counterpart.  

13) A deflected flexure blade has a higher susceptibility to buckling under an axial load. The 

off-neutral position Kθ for a CF is within 90% of its neutral position Kθ, except for ϕ 

>330°. 

14) Boundary conditions increase the magnitude of the stiffness ratios for a z-compliance 

beam. However, Kz/Kr will always equal Kz/Kθ when ϕ =122.56°.  

15) An αz constraint increases the stiffness ratios for an r-compliance blade. For an αz-guided 

element Kr/Kθ=1 when ϕ= 90°, compared to ϕ=122.56° for a fixed-free element. A 

challenge of αz-constrained elements is that their Kr/Kz is equal to 1 when ϕ= 73°. 

16) For all CF elements, constraining a parasitic motion increases the other parasitic ratio. 
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17) Load location may be used to remove undesired motions. A stage may be used to exert a 

moment on the flexure tip in addition to the applied force. The applied moment may be 

used to cancel the parasitic motion. The load placement necessary to remove the parasitic 

rotations of the two types of CFs is given in section 3.9. 

18) Range calculations require an accurate stress model. Loading a flexure past its elastic 

range will destroy the performance of the element. Unlike straight-beams the maximum 

stress location for a CF is not always at its base. 

19) r- and θ-compliance elements experience only one bending moment, mz, under Fr and Fθ 

loading. The location of the maximum mz is the location of the max stress, λmax. λmax 

depends on ϕ and the ratio of Fr/Fθ. 

20) The range of an r-compliance CF is greater than that of straight beam for ϕ ≤ 90°. 

21) The range to footprint ratio (range/R) of an r-compliance CF is greater than that of 

straight-beam flexure for ϕ ≥ 60°. If footprint is a constraint the designer may want to 

consider using a curved flexure. 

22) An Fz load on a z-compliance element results in a bending moment, mr, and a twisting 

moment, mθ, on the beam. The location of the max stress depends on ϕ as well as the 

geometry and material of the beam and is given by λmax. 

23) An accurate stress model for a z-compliance blade must include a warping stress. The 

warping stress is due to the beam being non-circular and constrained on one end. The 

presented σwarp model was developed through a parametric study, using the warping 

functions of other cross-sections as a starting point. The resulting model, σvon2, is a vast 

improvement over the model based solely on bending and torsion. 

24)  The range of a z-compliance flexure is less than that of straight-beam for all ϕ. However, 

the range/R of the CF can be up to twice that of a straight flexure. 
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4 
SYSTEM RULES AND MODELS 

 

Once the designer understands how to design the CF element building blocks, the next 

step in the design process is to establish rules for assembling the flexural elements into systems. 

A compliant system consists of one or more flexures and the stages used to connect the flexures 

to each other or to the moving object. There are two main types of systems:  parallel and serial 

mechanisms. This chapter will establish the rules for system creation through the development of 

two CF mechanism examples: a four-bar which is a parallel system, and a serial mechanism 

known as the compound four-bar which utilizes two four-bars in series [6]. Figure 4.1 compares 

the two systems and illustrates the two examples that will be analyzed. 

 

 

Figure 4.1: Flexure system types: A) In a parallel system the load is split between the 

flexural elements. The total stiffness of the system is given by the sum of the element 

stiffnesses. A four-bar is an example of a parallel system. B) Serial systems are 

characterized by a shared load path. The compliance of the system (1/Ksys) is equal to the 

sum of the element compliances. A compound four-bar is created by nesting two four-bars 

in series. 
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In a parallel system the load is split between the flexural elements, therefore the stiffness 

of the system is the sum of the element’s stiffnesses. The system’s DOF are those DOF that are 

common to all the flexural elements [20]. In other words, the constraints of the system are the 

sum of the constraints of each of the elements. On the other hand, in a series system the elements 

share a load path, such that the compliance of the system (1/Ksystem) is given by the sum of the 

compliances of the elements. To establish the system’s DOF one should add the DOF of the 

elements in series. Therefore, the constraints of the mechanism are those constraints that are 

common to all the serial elements [20]. The influence of different parameters on the two sample 

mechanisms will be evaluated by analyzing their effect on the flexure performance metrics. 

 

4.1 Parallel System Rules  

The design rules for a parallel system are presented through the analysis of the four-bar 

mechanism. In planar compliant mechanisms a four-bar is commonly used to attain an 

approximate rectilinear motion [6]. The four-bar’s stage is used to constrain the tip of each 

flexure, the motion of the four-bar is illustrated in Figure 1.14. A z-compliance CF four-bar 

system may be used to constrain the two tip rotations of the elements. Figure 4.2 shows the 

straight four-bar system parameters and motions, and compares them to those of a CF four-bar. 

This section will analyze how the different element and system parameters affect the 

performance of a curved four-bar. 
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Figure 4.2: Four-bar system parameters and motions. Fz indicates load along the z-axis 

and Δz is the desired displacement. A) Straight four-bar system: The parasitic motions 

are given by αx and Δy. a indicates the location of Fz relative to ground, and b is the 

distance between the two flexures. B) The curved four-bar has four undesired motions, 

αr, αθ, Δr, Δθ. The location of Fz is specified using RL and γ. 

 

4.1.1 Stiffness Ratios 

The stiffness analysis of the curved four-bar is simple because the coordinate systems for 

the flexures have the same orientation, as shown in Figure 4.3. As a result, the coordinate system 

for the mechanism is the same as that of the elements and the stiffnesses of the flexures can be 

added together to calculate the system stiffness. The stiffness ratios of the four-bar are the same 

as the stiffness ratios of the z-compliance elements that compose the four-bar. The Kz, Kr, and Kθ 

stiffnesses of the four-bar are twice the element’s respective stiffnesses. Therefore, the effect of 

the different parameters on the stiffness ratios of the four-bar is given by the effect on the 

element’s stiffness ratios described in section 3.5.  
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Figure 4.3: Curved compliant four-bar mechanisms. Image shows the coordinate systems 

for the two flexures.  

4.1.2 Parasitic Rotation Ratios 

The analysis of the parasitic rotation ratios of a four-bar requires an understanding of the 

loads and moments on both the stage and the flexures. Figure 4.4 shows the force and moment 

diagram for a straight four-bar. The four-bar stage constrains the parasitic rotation, αx-element, of its 

elements. However, this constraint leads to an unbalanced moment, Mx, acting on the stage. This 

moment has to be balanced by axial forces, Fy, on the flexures. The axial force acts in tension in 

one flexure and in compression on the other element, resulting in a corresponding positive or 

negative y-displacement, Δy, of the flexure tips. These axial displacements translate to a rotation 

of the stage, αx. The parasitic ratio of a straight four-bar is dictated by the ratio of this αx rotation 

to the desired displacement Δz. This brief analysis highlights that the parasitic ratio of the four-

bar will be dictated by Mx, the distance between the flexures, b, and Ky of the elements.  

r1

r2

z1

z2
θ1

θ2



 121 

 

Figure 4.4: Straight four-bar force and moment diagram. Loads and moments on the 

flexures and input stage are shown. Fz is the applied load, while Mx is the moment 

resulting from constraining the flexure tip. The axial forces, Fy, balance the Mx moments 

on the input stage.  

  

Similarly, the rotation parasitics of the curved four-bar can be established by analyzing 

the force and moment diagram shown in Figure 4.5. In the case of the CF mechanism the model 

is more complex because the stage constrains two element parasitic rotations, αr-element and αθ-

element, resulting in two unbalanced moments on the stage, Mr and Mθ. The moments on the stage 

are given by Mθ,αr=αθ=0 and Mr,αr=αθ=0 which are defined in (3.18) and (3.19), respectively. These 

moments are balanced by forces on the flexures, Fθ and Fr. The forces lead to displacements 

along the direction of the force; the displacements are dictated by the element’s Kθ and Kr. The 

model for the parasitic rotations of the curved four-bar’s input stage must include the effect of 

both the element and system parameters. 
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Figure 4.5: Curved four-bar force and moment diagram. Loads and moments on one end 

of the flexures and input stage are shown. Fz is the applied load, while Mr and Mθ are the 

moments resulting from constraining each flexure tip. The radial forces, Fr, balance the 

Mθ and the axial forces, Fθ, balance the Mr moment on the input stage.  

 

 The curved four-bar force and moment diagram can be used alongside the force and 

moment balance equations to create a model for the parasitic rotations of the four-bar. The first 

step is to establish the moments acting on the stage; these moments are equal and opposite to the 

moments acting on the tip of the flexures to achieve the zero-rotation boundary conditions. These 

element moments are given in Equations (3.18) and (3.19). There are two flexures in the four-bar 

system; therefore, the net moment on the stage is twice the moment on each flexure. The stage 

rotations resulting from having to balance the stage moments are given by Equations (4.1) and 

(4.2). This model was used to establish how the parasitic rotations of the CF four-bar are affected 

by the sweep angle of the system, ϕ, as shown in Figure 4.6. The ϕ of the four-bar will affect the 

magnitude of the moments acting on the stage, as well as the compliance of the flexures. The 

plot shows that the values calculated by the model do not match the FEA results for low ϕ. The 

discrepancy between the results suggests that the initial model for the αr and αθ of a CF four-bar 

is incomplete.     
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 (4.2) 

 

 

Figure 4.6: Curved four-bar parasitics vs. sweep angle, ϕ. The FEA values were 

calculated using a 3D-solid model. The two rotations are normalized using the FEA 

calculated value for ϕ =30°. The plot shows that the beam-based model is inaccurate for 

low ϕ. (L=60mm, tr=6mm, tz=0.6mm, Lstage=6mm, 7075 Aluminum). 

 

 The system FEA results presented in Figure 4.6 were calculated using a 3D-solid model. 

In section 3.2.1 it was shown that a beam FEA model differs from a 3D-solid model. The 

divergence of the models is significant in the system analysis; hence, the beam-based analytical 

model needs to be supplement with adjustment factors. The first step in this rectification is to 

analyze which parameters result in a deviation from the beam analytical model. Previously it was 

established that the 3D solid model accounts for the difference in length between the inner and 

outer radiuses of the flexure. The analytical beam model does not account for this difference in 

length and therefore must be supplemented. This difference in length will increase as the ratio of 

L/tr decreases. FEA analysis revealed that the length of the stage also affects the αr and αθ 

rotations for the four-bar, as shown in Figure 4.7.   
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Figure 4.7: Stage length effect on the curved four-bar parasitics vs. ϕ. Values were 

calculated using an FEA 3D-solid model. The parasitics are normalized using the value 

for the ϕ =30° four-bar with a 2mm stage. 

 

 In the previous analysis of the four-bar parasitic rotations it was assumed that the axis of 

rotation of the stage is dictated by the flexure tip axes. However, the FEA analysis revealed that 

both the stage length, Lstage, and the L/tr ratio of the flexure elements rotate the stage’s r-axis 

away from the axis dictated by the flexure. Figure 4.8 illustrates the rotation of the r-axis. The 

angle between the element’s r-axis and the system’s is given by ω. ω is specified by an 

adjustment factor, p, and the sweep angle of the flexure, ϕ. The effect of L/tr and Lstage on ω is 

shown in Figure 4.9. A preliminary model for ω, given in Equation (4.3), was developed using 

the FEA results. The ω-model is compared to the FEA values in Figure 4.9. The expression for ω 

is complex; however, for large L/tr ω approaches 0.035ϕ, as shown in Figure 4.9. Further work 

should be conducted to achieve a more robust model for ω. 
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Figure 4.8: The curvature of the beam leads to a difference in length between the inner 

and outer radiuses. This effect in addition to the length of the stage leads to the rotation 

of the r-axis of the four-bar away from the r-axis of the elements. The rotation angle is 

given by ω. 

 

 

Figure 4.9: ω adjustment vs. L/tr for three different stage sizes. The plot gives the fitted 

values for p and the model values. ω is given by pϕ. 
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 The Fr and Fθ forces on the elements are dictated by the location of the stage’s r-axis. 

Therefore, the CF four-bar’s αr and αθ will depend on ω. Equations (4.4) and (4.5) give the 

adjusted four-bar rotations, αr' and αθ', as a function of ω. The corrected equations for the 

parasitic rotations of the stage are incorporated into the compliance matrix of the CF four-bar 

presented in Appendix D. Figure 4.10 shows the FEA calculated rotations vs. ϕ and compares 

them to corrected model. The dotted lines indicate the results given by the initial model with no 

ω correction. Figure 4.11and Figure 4.12 demonstrate that the ω-model is valid for a range of 

L/tr ratios. For L/tr<6 the flexure would have to be modeled as a plate and the presented beam 

model would no longer apply. Similarly, Figure 4.13 and Figure 4.14 are evidence of the effect 

of Lstage on ω. The plots show that the ω=0° model does a poor job in predicting the rotations of a 

four-bar with different stage lengths. The ω-corrected model is able to accurately capture the 

effect of Lstage for stages larger than 2mm. In general larger stages are preferable because a four-

bar with a small Lstage relative to L is vulnerable to stage deformation; this vulnerability will be 

discussed in section 4.1.2.2   
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Figure 4.10: Corrected curved four-bar parasitics vs. ϕ. The rotations are normalized 

using the FEA values for ϕ=30°. The dotted lines show the ω=0° model values for αr and 

αθ. (L=60mm, tr=6mm, tz=0.6mm Lstage=6mm7075 Aluminum). 

 

 

Figure 4.11: Corrected curved four-bar αθ vs. ϕ for different L/tr ratios. αθ is normalized 

using the FEA value for ϕ=30°. (Lstage = 6mm) 
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Figure 4.12: Corrected curved four-bar αr vs. ϕ for different L/tr ratios. αr is normalized 

using the FEA value for ϕ=30°. (Lstage = 6mm) 

 

 

 

Figure 4.13: Corrected curved four-bar αθ vs. ϕ for different stage lengths. αθ is normalized 

using the FEA value for ϕ=30° with a 2mm stage. The dotted line shows the ω=0° predicted 

values. (L/tr =10) 
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Figure 4.14: Corrected curved four-bar αr vs. ϕ for different stage lengths. αr is 

normalized using the FEA value for ϕ=30° with a 2mm stage. The dotted line shows the 

ω=0° predicted values. (L/tr =10) 
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parasitic motions of the stage. To remove the parasitic rotations of the curved four-bar, the stage 

must be loaded with Mr and Mθ that cancel the moments on the stage due to the flexure-tip 

constraint. Figure 4.2b illustrates how a four-bar system may be designed such that a single Fz 
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Figure 4.15: Load location effect on the curved four-bar parasitics. Plot gives the 

normalized rotations vs. the ratio of RL to R (γ=0°). Rotations are normalized using the 

FEA values for RL/R=1/6.   

 

 

Figure 4.16: Load location effect on curved four-bar parasitics. Plot gives the normalized 

rotations vs. the ratio of γ /ϕ. Rotations are normalized using the FEA values for γ=0°.   
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analysis was to understand if load location is a feasible way of removing the parasitic rotations of 

the curved four-bar given that the rotations are coupled because they both depend on Fz, Mr, and 

Mθ. Figure 4.17 gives the result of the sensitivity analysis, were the applied moments were varied 

by ±10%. The plot shows that for a 10% error in the applied moment the αθ rotation of the stage 

can be nearly 3.5 times the desired value. The αr rotation is even more sensitive to applied 

moment error as shown in Figure 4.18. In the case of αr a 10% error in either Mr or Mθ results in 

almost 5 times the predicted αr value. The plot highlights that the sensitivity of a planar four-bar 

is at least an order of magnitude lower than the CF’s sensitivity. Considering the high sensitivity 

to load location error, a superior way to remove the parasitics of a CF four-bar system is to use 

symmetry to cancel the rotations. A CF can be designed using two four-bars, such that the 

rotations of the four-bar stages cancel, as illustrated in Figure 4.19.  

 

 

Figure 4.17: Applied-moment error effect on αθ. Plot gives the ratio of αθ-resulting/αθ-

desired vs. the ratio of the M-applied to M-desired. 
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Figure 4.18: Applied-moment error effect on αr. Plot gives the ratio of αr-resulting/αr-

desired vs. the ratio of the M-applied to M-desired. The dotted line gives the straight 

four-bar sensitivity to applied-moment error. 

 

 

Figure 4.19: Symmetry may be used to cancel the curved four-bar parasitic rotations. 
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spacing. The plot gives both the FEA calculated values and the ω-corrected model results. 

Separating the flexures increases the moment arm from the center of the stage to the element tip, 

as a result the flexure experiences a lower force for a given moment, and similarly a 

displacement of the tip translates to a smaller rotation angle. The caveat to using b to decrease 

the rotations of the four-bar is that the stage must be able to withstand the applied moments. If 

the stage is not stiff enough, the stage will deform under the loads as shown in the FEA image in 

Figure 4.21. In CF four-bar design the engineer only has 360° in which to fit the flexures and the 

stages. This constraint limits the sweep angle that can be dedicated to the stages. Taking this into 

consideration the design should not rely only on flexure spacing as the only way to reduce αr and 

αθ, the parasitics should be addressed in both the element and system design.  

 

Figure 4.20: Flexure spacing, b, effect on curved four-bar parasitic motions. Rotations 

are normalized using the FEA values for b=10mm. (ϕ=60°) 
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Figure 4.21: Input stage Δy displacement for a straight four-bar under Fz. The four-bar’s 

input stage can deform during operation when the spacing between the flexures is too 

large and the stage is not stiff enough.  

 

4.1.3 Parasitic Displacement Ratios 
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Figure 4.22: A straight-beam flexure suffers from a Δy displacement when loaded along 

z. The schematic shows the relationship between Δy, Δz, L and αx.  

 

 

Figure 4.23: The Δr and Δθ parasitic motions of a curved four-bar can be estimated by 

modeling the curved flexure as a series of straight beams.   
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Figure 4.24: Curved four-bar input stage parasitic displacement ratios vs. sweep angle, ϕ. 

The plot also compares the FEA calculated parasitic ratios to the model approximations.  
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element are summarized in Figure 4.25. Under a negative Fz the element will experience a 

positive Mr and a negative Mθ. The resulting mr and mθ for a CF element under Fz, Mr, and Mθ, 

are given by equations (4.7) and (4.8). The location of the maximum stress of the four-bar is 

given by λmax. Figure 4.26 shows the effect of ϕ on the Von Mises stress of a CF four-bar. The 

plot compares the FEA calculated values to the results of both stress models: with warping, σvon1-

z, and without the warping consideration, σvon2-z. The stress values are normalized using the stress 

value for a planar four-bar of the same dimensions under the same load. The chart demonstrates 

the importance of including warping in the stress model. The four-bar stress model allows the 

designer to accurately calculate the elastic range of the system. 
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Figure 4.25: Loading conditions on a CF four-bar flexural element. Mr and Mθ are the 

moments applied by the stage constraint on the flexure tip. Fz is the half the load applied 

on the four-bar. Fz, Mr, and Mθ, produce a bending moment, mr, and a twisting moment, 

mθ, on the beam. The resulting moments vary along the length of the beam. The position 

of the resulting moments is given by Rλ, where λ is measured from the tip of the beam.  

 

 

Figure 4.26: Curved four-bar Von Mises stress vs. ϕ. Stress is normalized using the stress 

of a straight four-bar of the same dimensions under the same load. Plot shows the FEA 

calculated values, the stress given by a no-warp model and the values given by the full 

model which includes the warping correction.  
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4.2 Serial System Rules 

The challenge with CF serial systems is that the curvature of the flexures leads to the 

translation and rotation of the elements’ coordinate systems. The compound four-bar is used as 

the guiding example because in planar flexures it is a well-understood parallel-serial system. 

Compound four-bars are widely used because they double the range and decrease the parasitics 

of the four-bar. Figure 1.5b shows how the four-bars in a CF compound four-bar have different 

coordinates. The first step in assembling the serial system’s compliance matrix is to establish a 

system coordinate matrix and transform the element compliance matrices to the system 

coordinates. In the case of the CF compound four-bar we choose to use the input four-bar’s 

coordinates as the system coordinates, consequently the floating four-bar’s compliance matrix 

needs to be transformed to the new coordinate system, as illustrated in Figure 4.27. Equation 

(4.9) presents the transformation matrix, [Ct], which is used to translate the compliance matrix of 

the floating four-bar to the system’s coordinates. [Ct] is valid for small values of αz, when sin(αz) 

≈ αz. The transformed compliance matrix for a CF four-bar, [C'four-bar], is calculated using 

Equation (4.10).  
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Figure 4.27: A CF compound four-bar is assembled by nesting two four-bars. The input 

and floating four-bars have different coordinate systems. If the coordinates of the input 

four-bar are chosen as the system coordinates, the compliance matrix of the floating 

four-bar must be transformed to match the system’s new coordinate system (r'2, θ'2, z'2).  

 

[  ]   

                             

(4.9) 

                       

             

                    

                   

             

 

 

[  
        

]  [  ][         ][  
 ] 

(4.10) 
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from the floating stage’s rotations. The transformation matrix given in (4.9) captures the effects 

of the floating stage’s αz by taking into account the distance between the stages.  Equations 

(4.11)-(4.12) give the input stages displacements as a function of the floating stage’s rotations.  

 

                            
(4.11) 

 

 

                       
(4.12) 

 

The effect of ϕ on the CF compound four-bar’s stiffness ratios is shown in Figure 4.29 

and Figure 4.30. The stiffness ratios for a planar compound four-bar of the same dimensions are 

shown for comparison. Just like in the element design, the sweep angle of the compound four-bar 

can be used to improve the Kz/Kr ratio in exchange for a higher Kz/Kθ ratio. Once again, the ratios 

are approximately equal when ϕ =122°. The difference between the model and the FEA values 

may be partially attributed to the four-bar parasitic rotations of the floating stage which are 

manifested as a Δz displacement of the input stage.  

 

Figure 4.28: In a compound four-bar each four-bar has a different coordinate system; 

therefore, an applied radial force, Fr1, on the input four-bar results in radial and axial 

forces, fr2 and fθ2, and a moment about z, mz, on the floating four-bar. 
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Figure 4.29: Sweep angle, ϕ, effect on the CF compound four-bar’s Kz/Kr stiffness ratio. 

Plot shows that the ratio decreases with increasing ϕ. The CF’s ratio is compared to the 

Kz/Kr of a straight compound four-bar of the same dimensions. The graph demonstrates the 

importance of accounting for the effect of the αz rotation of the floating stage. 

 

 

Figure 4.30: Sweep angle, ϕ, effect on the curved compound four-bar’s Kz/Kθ stiffness 

ratio. Plot shows that the ratio increases with increasing ϕ. The CF’s ratio is compared to 

the Kz/Kθ of a straight compound four-bar of the same dimensions. The graph 

demonstrates the importance of accounting for the effect of the αz rotation of the floating 

stage. 
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4.2.2 Parasitic Rotation Ratios 

The planar compound four-bar is commonly used because not only does it have twice the 

range of a four-bar, but in addition the nesting of the four-bars decreases the input stages 

parasitic rotations, as shown in Figure 1.5b. The analysis of the CF compound four-bar parasitic 

motions is more complex because the input and floating stages are located on two different 

planes. The easiest way to establish the parasitic rotation ratios of the compound four-bar is 

through three steps: (i) first calculate the rotations of each four-bar, as shown in section 4.1.2, (ii) 

then transform the αr2 and αθ2 of the floating stage to the coordinates of the input stage, (iii) 

finally add the corresponding parasitics to establish αr and αθ for the system’s input stage.  This 

technique was used to investigate the effect of ϕ on the compound’s αr and αθ, shown in Figure 

4.31.  

 

Figure 4.31: Curved compound four-bar parasitic ratios vs. ϕ. Plot compares the 

parasitic ratios for a compound four-bar to those of a single four-bar.  

 

4.2.3 Parasitic Displacement Ratios 

In planar systems the nesting of the four-bar cancels the parasitic displacement, Δy, of the 

input stage. For CF compound four-bars there are is no direct cancellation of the input stage’s Δr 

and Δθ. The compound four-bar’s Δr and Δθ is estimated by transforming the floating four-bar’s 

translations to the system’s coordinate system and adding them to the input four-bar’s 

displacements.  Figure 4.32 compares the parasitic displacement ratios of the compound four-

0 60 120 180 240

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

Sweep Angle (degrees)

R
a

d
ia

n
s
/m

Input Stage Parasitic Ratios vs Sweep Angle 

 

 

Compound /z

Compound r/z

Compound FEA /z

Compound FEA r/z

Four-bar /z

Four-bar r/z

Four-bar FEA /z

Four-bar FEA r/z



 143 

bar’s input stage to those of a single four-bar. The data shows that the nesting of the four-bars 

does reduce the parasitics of the input stage, but does not completely cancel them for all ϕ. A 

symmetric system design may be used to further reduce the undesired translations of the input 

stages. Two examples of symmetric CF compound four-bar designs are shown in Figure 4.33. In 

example (A) the input stage will experience an αz rotation due to the Δθ movement of the 

compound four-bars.  

 

Figure 4.32: Curved compound four-bar parasitic ratios vs. ϕ. Plot compares the parasitic 

ratios for a compound four-bar to those of a single four-bar.  
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Figure 4.33: A symmetric system design may be used to reduce or remove the parasitic 

displacements, Δr and Δθ, of a compound four-bar. A) In a design with two compound 

four-bars separated by 180°, the Δr displacements cancel out and the Δθ motions result in 

an αz-rotation. B) Using two double-compound four-bars leads to the cancellation of all 

the parasitic displacements.   

 

4.3 Summary of System Design Rules 

The previous sections demonstrated how to analyze two CF systems. The basis for the 

creation of any CF system is the element compliance matrix. The system creation process 
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Figure 4.34: Steps used to establish a CF system’s compliance matrix. 
+
For serial systems it 

may be necessary to account for the compliance due to rotations of the secondary stages.  
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result, it is best to remove system parasitic rotations through a symmetric design.  

5) In serial systems the element’s or subsystem’s compliance matrices must be transformed 

to the system’s coordinates.   

6) The r- and θ-compliance of a curved compound four-bar is affected by the αz rotation of 

the floating stage. 
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7) A CF compound four-bar may be used to extend the range of the system and reduce its 

parasitics. However, the nesting of the four-bars does not directly cancel the undesired 

displacements.  
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5 
CF LINEAR GUIDE 

 

 A Fourier Transform Spectrometer (FTS) measures spectral components of incident 

radiation. One of the applications of long-wave infrared FTS is hyperspectral imaging of 

chemical plumes for early warning of accidental or deliberate toxic gas releases. This application 

requires the constant velocity translation of a mirror. The moving mirror must translate without 

any out-of-plane rotations to ensure the accurate reading of the spectral data [10]. MIT Lincoln 

Laboratory approached our lab looking for a new design to guide the moving mirror. The 

engineers at Lincoln had already developed a design for the guide, shown in Figure 5.1a, 

however the design required the assembly of 15 precision pieces making it cost prohibitive for 

the project. The goal of our project was to come up with a lower cost design that still met all the 

functional requirements. A cylindrical geometry design was first contemplated because it is (i) 

symmetric and therefore thermally insensitive, (ii) easily assembled with other cylinder-shaped 

elements (dampers, actuators, etc…), which is useful for co-axial assemblies that are common to 

optics, and (iii) easily made in volume with low-cost tube stock via conventional machining 

processes. The first CF linear guide prototype, Figure 5.1b, was designed using straight-beam 

guidelines and FEA. The development of the first guide highlighted the need for design rules 

specific to curved-flexures. The second prototype shown in Figure 5.1c was conceived using the 

models and guidelines presented in Chapters 3 and 4. The redesign of the linear guide using the 

CF design rules led to an order of magnitude improvement in system performance.  
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Figure 5.1: Linear guide prototypes: A) MIT Lincoln Lab’s FTS linear guide, B)First CF 

linear guide, C) Second CF prototype designed using CF guidelines. 

 

5.1 Application 

Lincoln’s FTS design utilizes a Michelson interferometer to capture the spectral 

components of the incident radiation.  The operation of a Michelson interferometer is illustrated 

in Figure 5.2. In the FTS system one of the arms of the interferometer has a moving mirror, 

whose translational motion modulates the incident IR radiation.  Demodulation via a Fourier 

transform provides the spectral information content of the incident radiation [33].  Applications 

of FTS include atmospheric sounding to aid numerical weather prediction, hyperspectral imaging 

of chemical plumes for early warning of accidental or deliberate releases, and other civilian and 

defense missions. In order to make accurate measurements, the mirror must translate at a 

constant velocity in forward and reverse linear-motion sweeps when data is collected.  The optic 

reverses course at each end of the sweep (when no data is collected).  A linear motion is required 

over several centimeters and this must occur with tip and tilt errors of tens of microradians or 

less [33]. The functional requirements for the linear guide that translates the moving mirror are 

given in Table 5.1. 

 

A B C

10mm 10mm
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Figure 5.2: Michelson Interferometer illustration. A linear guide is used to translate the 

moving mirror.  

 

Table 5.1: FTS linear guide functional requirements. 

 Value Notes 

Mechanism Envelope 12x10x7 cm
3
  

Range 10-50 mm FTS resolution increases with range 

Tip/Tilt error ±10 μrad Tip/Tilt error results in signal error 

Cost <$15,000  

 

5.2 First Prototype 

The original design was based on adapting the common planar compound four-bar to a 

cylindrical geometry. Two double compound four-bars were wrapped around to create a single 

cylinder as shown in Figure 5.3. A double compound four-bar is created by joining to compound 

four-bars at their input stages [6]. This design limits the sweep angle of the flexure blades to less 

than 90°. The limited sweep angle requires the use of a larger R to increase the element’s length. 

In the presented design the flexure ϕ was limited to 70° to allow space for the connecting stages.  

Radiation
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Moving Mirror

Fixed 
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Figure 5.3: The first CF linear guide prototype was conceived by wrapping two double 

compound four-bars. The floating stages of the compound four-bars were joined to create a 

single cylinder. The CF image highlights the four compound four-bars. 

 

The prototype was fabricated using a Mazak turning center shown in Figure 1.10a. The 

machine had never been used to cut a CF and therefore its limitations were unknown. To ease 

fabrication the tz of the blades was set to 1mm. The tr for the element was set to 6.35mm (0.25”) 

to match a common cylinder wall thickness. Initially the stress and range were calculated using 

straight-beam equations; however, FEA revealed that the calculations were inaccurate. In order 

to approach the volume functional requirement the CF was made out of 7075 Aluminum which 

has approximately an order of magnitude better yield stress to elastic modulus ratio than 6061 

Aluminum. Even with this material choice, and given the chosen tr, tz, and limited ϕ, FEA 

revealed that the prototype had to have an outer diameter of 89mm to meet the desired 20mm 

range (each flexure blade in the compound four-bar has a range of 5mm in either direction). 

Table 5.2 gives the dimensions of the first prototype.  
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Table 5.2: First CF linear guide prototype dimensions. 

Parameter Value 

Mid-radius (R) 41.3 mm
 

Sweep Angle (ϕ) 70° 

Element radial thickness (tr) 6.35 mm 

Element z-thickness (tz) 1 mm 

Cylinder length 76.2 mm 

Number of compound four-bars 4 

Material 7075 Aluminum 

 

One of the goals of the first prototype was to demonstrate that CFs could be fabricated 

using conventional machining methods. The use of a standard lathe/mill reduces the cost of 

manufacturing the linear guides. The Mazak turning center is essentially a lathe with an actuated 

tool. Figure 5.4 shows the mechanism used to hold the cylindrical stock in place during 

machining. The cylindrical stock is slipped on a cylinder with an outer diameter nearly equal to 

the inner diameter of the flexure stock. The support stock is attached to a base which is then held 

in the lathe’s spindle. The support cylinder is slightly shorter than the flexure stock so that when 

the cap is attached to the base the work-piece is constrained axially. The first CF linear guide 

prototype was successfully machined using this setup. 
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Figure 5.4: Mechanism used to hold cylindrical stock in place during the machining 

process used to create the CF. The future flexure (1) is slipped onto a piece of cylindrical 

stock (2) which radially supports the work piece. The support stock is attached to a base (3) 

which is held by the lathe’s spindle. The flexure stock is constrained axially with a cap (4) 

which is connected to the base using a bolt.    

 

The next step was to measure the performance of the prototype and compare the results to 

the functional requirements. The tip and tilt parasitic motions of the linear guide were measured 

using three linear optical encoders. The measurement setup is shown in Figure 5.5. The CF is 

held using a grounding cylinder which is attached to the optical table. The actuation load was 

exerted on one end of the guide using a depth micrometer. On the other end a cap with a u-

channel with three scales was attached. The scales measured the displacements at: (i) the center 

of the flexure, (ii) the top and (iii) the side of the flexure. The distance between the center scale 

and the top and side scales was 50.8mm. Renishaw optical linear encoders were used to read the 

scales. The tip and tilt angles were calculated by computing the difference between the center 

and the top and side stages, respectively. Figure 5.6 and Figure 5.7 show both the unfiltered and 

filtered tilt and tip angles of the linear guide as it transverses 5mm. The plots indicate that the 

first prototype is unable to meet the functional requirement of ±10μradians of tip/tilt over the 

minimum 10mm range. The unfiltered measurements display a cyclic trend approximately every 

0.6mm, this trend is caused by to the rotation of the micrometer tip. The micrometer used to 

actuate the CF travels .025” per rotation (0.635mm). A moving average filter was used to remove 

the cyclic behavior imposed by the rotation of the micrometer head, the filtered data is overlaid 

1 2
3

4
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onto the unfiltered measurements in Figure 5.6 and Figure 5.7. For a given ∆z position the filter 

averages the angles measured for all ∆z ± 0.3175mm.   The cyclic error is not the dominant error 

for the first prototype, however, it became significant for the second prototype and was removed 

using a different setup described in section 5.3.  

 

 

Figure 5.5: First prototype measurement setup. A) The CF (4) is attached to a grounding 

cylinder (3) which is then attached to the optical table. The flexure is actuated using a 

depth micrometer (1) which pushes on a stage attached to the two input stages of the CF. 

The inset shows the tip of the micrometer (2) and the actuation stage. B) A cap with scales 

was attached to the flexure.  The displacements of the CF were measured using optical 

linear encoders: (5) top, (6) center, (7) side.   
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Figure 5.6: Tilt angle vs. axial displacement (Δz) for the first CF linear guide prototype. 

The dotted lines indicate the functional requirement of ±10μradians. A moving average 

filter (∆z ± 0.3175mm) was used to remove the cyclic behavior imposed by the rotation of 

the micrometer head.  

 

 

 

Figure 5.7: Tip angle vs. axial displacement (Δz) for the first CF linear guide prototype. 

The dotted line indicates the functional requirement of 10μradians. A moving average filter 

(∆z ± 0.3175mm) was used to remove the cyclic behavior imposed by the rotation of the 

micrometer head. 
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As mentioned earlier the first CF prototype was designed without the design rules 

presented in this work, as a result a lot of problems with the design were overlooked. Foremost, 

the presented design is over-constrained. In a planar double compound four-bar the input stage 

has no parasitic displacements [6], however the floating stages will move along the flexure axis 

due to geometric constraints, as described in section 4.1.3. In the CF version the floating stages 

of the two double compound four-bars were connected together to create a single cylinder, and as 

a result their motion was constrained. Another issue with the design was that the stages were 

made rather small to maximize the sweep angle of the flexures. In section 4.1.2.2 it was shown 

that if the four-bar spacing is large enough and the connecting stage is not stiff enough the stage 

will deform as it attempts to constrain the parasitic rotations of the four-bar. FEA analysis of the 

first CF design revealed that the input stages were deforming during actuation, this is illustrated 

in Figure 5.8. The deformation of the stages may help explain why the performance of the linear 

guide was poor.  

 

Figure 5.8: FEA analysis of one of the compound four-bars of the first CF linear guide 

design shows that the input stage deforms during actuation. 

 

Table 5.3 compares the performance of the first CF linear guide design to the FTS 

functional requirements. Working through the design, fabrication, and measurement of the first 

prototype emphasized the need for the development of design rules and guidelines. The design of 

this prototype was inefficient and limited because it relied heavily on FEA. The FEA 
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optimization was tedious because there was little understanding as to how the CF factors affected 

the performance of the CF.  

 

Table 5.3: First CF linear guide prototype performance. 
+
Error over 5mm range. 

 Required First prototype 

Mechanism Envelope 12x10x7 cm
3
 8.9x7.6x7.6 cm

3 

Range 10-50 mm 20 mm 

Tip error ±10 μrad 700 μrad
+
 

Tilt error ±10 μrad 600 μrad
+
 

Cost <$15,000 <$500 

 

5.3 Second Prototype 

The design and fabrication of the first cylindrical linear guide demonstrated the need for 

design rules for CFs. The second prototype was developed once the element and system 

guidelines had been established. The analytical models presented in this work enabled the 

efficient design of an improved linear guide design. The first step in the redesign was to remove 

the over-constraint of the floating stages. Figure 4.33 showed that a symmetric design of two 

compound four-bars spaced 180° apart theoretically has only one parasitic rotation, αz. This is a 

feasible design for the linear guide because the rotation about the CF’s z-axis does not affect the 

performance of the FTS system. The next step was to reduce the design volume to meet the space 

constraints while still achieving the desired range. Ideally the design would also be able to be 

constructed out of 6061 Aluminum stock because it is more widely available in different stock 

sizes. The substitution from 7075 to 6061 Aluminum meant an order of magnitude decrease in 

σy/E and therefore in the range of the system. To offset this loss in range, the tz of the flexures 

was reduced to 0.5mm. Testing of the capabilities of the Mazak turning center had revealed that 

the machine would be able to fabricate flexures of that thickness.  
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Once the material and tz of the CF’s elements had been established the challenge was to 

meet the desired range while staying within the design volume. The chosen concept is composed 

of only two compound four-bars, this design allows for ϕ to be greater than 90°. The stress and 

displacement models for a four-bar developed in this work were used to find the minimum ϕ 

required to meet the desired range (5mm per four-bar) given the volume, material, tz and tr 

constraints. The FTS functional requirements set the minimum system dimension at 70mm. In 

chapter 4 it was established that the four-bar’s parasitics decrease with the square of the flexure 

spacing. In order to benefit from the maximum flexure spacing the longest dimension (120mm) 

was chosen as the constraint for the length of the cylinder. As a result the limit for the diameter 

of the CF was set at 70mm. The range vs. ϕ is presented in Figure 5.9. The plot shows that for ϕ 

>91° the four-bars are able to achieve the minimum 5mm range. A safety factor of 1.55 was 

applied to the range requirement to ensure that the CF system will not fail due to fabrication 

tolerances. The safety factor brings the minimum ϕ to 115°.   

 

Figure 5.9: Range vs. sweep angle, ϕ, for a 6061 Aluminum four-bar with R=32mm, 

tr=6.35mm, and tz=0.5mm. The minimum range required for the FTS system is 5mm per 

four-bar which is achieved for ϕ >91°. An R of 31.75mm corresponds to an outer diameter 

of 69.85mm (2.75”). 

 

Once the minimum sweep angle required to meet the volume and range constraints was 

established, the next step was to analyze the design parameters effect on the CF’s parasitic tip/tilt 

rotations. In chapter 3 it was established that the optimal ϕ for reducing αr and αθ of a z-
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compliance element is ϕ=118°. Meanwhile chapter 4 presented models to calculate the parasitic 

rotations of a compound four-bar. Figure 5.10 shows how ϕ affects αr and αθ of a 6061 Al 

compound four-bar with the chosen tr and tz. In the plot the sweep angles below ϕ=91° have been 

shaded because these do not meet the minimum range requirement. The model predicts that the 

parasitic rotations increase with ϕ and therefore a sweep angle as small as possible should be 

chosen for the design. Considering the range safety factor the element’s ϕ was set to 115°. A 

single compound four-bar will not meet the required parasitic ratio; however, a system composed 

of two compound four-bars spaced 180° apart will lead to a cancellation of the αr and αθ. The 

challenge of joining the subsystems to create a single cylinder was solved by using two 

connecting rings to link the two input stages as shown in Figure 5.11. Table 5.4 lists the 

dimensions of the second CF linear guide prototype.  

 

Figure 5.10: Input stage parasitic rotation ratios vs. sweep angle, ϕ, for a 6061 Aluminum 

compound four-bar with R=32mm, tr=6.35mm, and tz=0.5mm. Angles below 91° are shaded 

because they do not meet the minimum 5mm range constraint. The dotted line indicates the 

FTS 5e-4 rad/m parasitic ratio requirement. 
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Figure 5.11: CAD model of the second CF linear guide design. The concept is composed of 

two compound four-bars which are labeled in the picture. The design allows for the 

floating stages to translate and rotate freely. The two compound four-bars’ input stages are 

joined using connecting rings at the front and back of the cylinder.  

 

Table 5.4: Second CF linear guide prototype 

dimensions. 

Parameter Value 

Mid-radius (R) 31.75 mm
 

Sweep Angle (ϕ) 115° 

Element radial thickness (tr) 6.35 mm 

Element z-thickness (tz) 0.5 mm 

Cylinder length 100 mm 

Number of compound four-bars 2 

Material 6061 Aluminum 

 

Floating Stage

1

2

Connecting Rings
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5.4 Fabrication and Testing 

The second prototype was fabricated using the same Mazak turning center and fabrication 

setup. Once a pocket was milled it was filled with putty before the next pocket was cut. The 

putty helps reduce vibrations of the flexure elements during cutting. Figure 5.12 shows the 

partially machined prototype filled with putty. The pockets were also not cut all the way through; 

instead a 100μm web was left to keep the flexures attached and help reduce the vibrations. The 

web was removed using an exacto knife post machining. The performance of the second 

prototype was measured using the same setup that was used for the initial linear guide. The 

redesigned linear guide is shown in the measurement setup in Figure 5.13. The image shows the 

depth micrometer that was used to actuate the flexure, as well as the optical linear encoders used 

to measure the displacements at the top, side, and center of the CF.  

  

 

Figure 5.12: Each pocket of the second prototype was filled with putty before the next one 

was cut. The putty helps reduce the vibrations of the flexure elements during cutting.  
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Figure 5.13: Second prototype measurement setup. A) The CF (4) is attached to a 

grounding cylinder (3) which is then attached to the optical table. The flexure is actuated 

using a depth micrometer (1) which pushes on a cap attached to the connecting ring of the 

CF. The inset shows the tip of the micrometer (2) and the actuation cap. B) Another cap 

with scales was attached to the front of the flexure.  The displacements of the CF were 

measured using optical linear encoders: (5) top, (6) center, (7) side.   

 

Figure 5.14 and Figure 5.15 plot both the unfiltered and filtered tilt and tip angle of the 

CF stage as a function of its z-axis displacement. The charts show that the tip and tilt error 

measured using the micrometer setup is an order of magnitude lower for the second concept 

compared to the initial CF design. Once again the data has a cyclic trend approximately every 

0.6mm, which is associated with the rotation of the micrometer head. The cyclic error was 

removed using a moving average filter. For every ∆z position the filter calculates the mean of all 

tip or tilt measurements at ∆z ± 0.3175mm. In the case of the performance of the second 

prototype the error associated with the micrometer rotation is significant, particularly in the 

measurement of the tip angle. In view of this observation it was decided that the prototype 

performance should be measured using a better setup.  
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Figure 5.14: Tilt angle, αtilt, vs. axial displacement (Δz) for the second CF linear guide 

prototype. The dotted lines indicate the functional requirement of ±10μradians. The flexure 

was actuated using a micrometer. A moving average filter (∆z ± 0.3175mm) was used to 

remove the cyclic behavior imposed by the rotation of the micrometer head. 

 

 

Figure 5.15: Tip angle, αtip, vs. axial displacement (Δz) for the second CF linear guide 

prototype. The dotted lines indicate the functional requirement of ±10μradians. The flexure 

was actuated using a micrometer. A moving average filter (Δz ± 0.3175mm) was used to 

remove the cyclic behavior imposed by the rotation of the micrometer head. 

 

The solution to the micrometer error was to load the CF using masses on a low-friction 

pulley as shown in Figure 5.16. The flexure was loaded using increments of 50g, which resulted 
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in discreet data points for the tip/tilt error of the system. Figure 5.17 and Figure 5.18 present the 

measured tilt and tip error for the second prototype using the new measurement setup. The tilt 

plot shows that the tilt error is nearly within the required ±10μradians for the measured 5mm 

range. The tip error is higher but of the same order of magnitude. 

 

 

Figure 5.16: Weight loading measurement setup. The flexure (2) is attached to the table 

using a grounding cylinder (1). The CF is loaded using a mass (5) on a low-friction pulley 

(4). The displacements are measured using the same three optical linear encoders (3).  
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Figure 5.17: Tilt angle, αtilt, vs. axial displacement (Δz) for the second CF linear guide 

prototype. The dotted lines indicate the functional requirement of ±10μradians from the 

average tilt error. The flexure was actuated by hanging masses. 

 

 

 

Figure 5.18: Tip angle, αtip, vs. axial displacement (Δz) for the second CF linear guide 

prototype. The dotted lines indicate the functional requirement of ±10μradians from the 

average tip error. The flexure was actuated by hanging masses. 

 

Table 5.5 compares the measured performance of the second prototype to the FTS 

functional requirements as well as the FEA projections. The FEA of the CF predicts a lower 
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tip/tilt error for the design, which suggests that there may be some external sources of error. A 

mistake was made when machining the prototype which resulted in certain flexures being thinner 

at their base as shown in Figure 5.19a. The travel limits of the machine also resulted in one 

connecting ring being larger than the other as highlighted in Figure 5.19b. These machining 

oversights resulted in the design no longer being symmetric. Another source of error is the 

location of the load; FEA shows a tip/tilt error of 9.5μradians over the 5mm range when the load 

is applied 1mm from the center.  Finally, the measurement setup is also asymmetric, the weight 

of the u-channel that holds the encoder scales applies a moment on the front of the flexure. This 

moment may explain why the tip error is larger than the tilt error. FEA predicts a 10μradian tip 

angle for a 10 gram (0.1N) mass placed on one of the connecting rings. Table 5.6 summarizes the 

possible sources of error.   

 

Table 5.5: Second CF linear guide prototype performance. 
+
Error over 5mm range. 

 Required Measured FEA 

Mechanism Envelope 12x10x7 cm
3
 10x7x7 cm

3 
10x7x7 cm

3
 

Range 10-50 mm 20 mm 20 mm 

Tip error ±10 μrad 45 μrad
+
 <2 μrad

+ 

Tilt error ±10 μrad 19 μrad
+
 <1 μrad

+
 

Cost <$15,000 <$500 - 
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Figure 5.19: Machining errors: A) Tool lead-in error resulted in some of the flexure 

elements being thinner at their base. B) The back connecting ring is larger than the front 

because of the machine’s travel limit. 

 

Table 5.6: Possible sources of tip/tilt error. 
+
Error over 5mm range. 

Source Notes 

Machining error Unsymmetric design 

Load misalignment 9.5 μrad
+
 error per 1mm misalignment 

Weight imbalance 10 μrad error per 0.1N imbalance 

 

The guidelines and rules presented in this work were used to create a design with an order 

of magnitude lower tip/tilt error than the concept created using straight-beam rules and FEA. The 

CF linear guide performance may be further improved by reducing the sources of error or 

making the design less sensitive to these errors. The current design should be able to meet the 

FTS requirements according to FEA if the machining oversights are eliminated, the accuracy of 

the load location is improved, and the measurement setup is made symmetric such that there is 

no weight imbalance. A better way to fix the actuator to the system would be to attach it to the 

grounding cylinder as opposed to the table. One way to decrease the sensitivity of the design is 

through Saint-Venant’s principle [34]. If two linear bearings are used instead of a single linear 

guide, then the spacing of the guides may be used to decrease the tip/tilt error of the moving 

A B
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mirror. Figure 5.20 shows a monolithic design for a two bearing CF linear guide. The actuator 

may be placed between the two bearings to reduce the overall length of the system.  

 

Figure 5.20: Linear guide constructed using two CF bearings. 
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6 
CF X-Y-ΘZ STAGE 

 

Dip Pen Nanolithography (DPN) utilizes atomic force microscope cantilevered tips as 

pens to write nano-patterns. The scale of the tips allows for feature sizes ranging from 50nm to 

10μm. DPN’s resolution enables it to print user-defined organic, inorganic, and biological 

materials. The challenge with DPN is that the disposable cantilever tips have to be aligned to the 

machine. The alignment requires 1μm accuracy and 0.1μm repeatability [35]. Last year Marcel 

Thomas, a student in the PCSL lab, designed an x-y-θz stage to align the tips to the DPN 

machine; his design is shown in Figure 61a. The primary goal of the second case study was to 

demonstrate the usability of the presented design rules and guidelines during the design process 

for a CF r-compliance stage that met the DPN requirements. To this end the stage was designed 

in collaboration with an undergraduate senior thesis student. The student was introduced to the 

rules and models presented in this work and guided throughout the design process. The result of 

this collaboration is the system shown in Figure 61b. The CF design presents an alternative x-y-

θz stage design with comparable performance but it has the advantage that it can be fabricated 

out of a single piece of stock. 
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Figure 61: A) Thomas’ current straight-beam x-y-θz stage [35]. B) Proposed CF r-

compliance x-y-θz stage. 

 

6.1 Application 

The state of the art NanoInk DPN machine requires manual alignment of the tip to the 

machine. Manually aligning the tip to the machine is time and labor intensive; in some cases the 

time to set-up the machine is greater than the print time. In his thesis Thomas proposes a system, 

shown in Figure 6.2, to automate the alignment process using his x-y-θz stage, three voice coils, 

and a camera. The camera is used to establish the position of the DPN tip. The camera image is 

analyzed using Matlab to determine the Δx, Δy, and θz stage displacements required to move the 

tip to the desired location. The voice coils are then used to control the position of the stage. Once 

the actuation is complete, the camera takes another picture to evaluate the new position of the tip. 

The feedback loop is repeated until the DPN tip has been aligned correctly [35]. Table 6.1 

summarizes the current alignment system attributes. The CF stage will be actuated using the 

same voice coils, therefore its in-plane stiffnesses need to similar to those of the current stage. 

The performance of the CF x-y-θz stage will be evaluated relative to the performance of the 

straight-beam stage. 
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Figure 6.2: DPN alignment mechanism with the straight-beam x-y-θz-stage [35]. The 

camera is used to determine the position of the DPN tip, while the voice coil actuators are 

used to position the tip.  

 

 

Table 6.1: DPN x-y-θz-stage attributes. 

Attribute (required) 
Straight-beam Flexure Stage 

(FEA results) 

Kx 1.7 N/mm 

Ky 2.3 N/mm 

Kθz 2 Nm/rad 

Ky/Kz 1.4x10
-3

 

Kθz/Kθx 9.1x10
-3 

Δx-range (±272μm) ± 5.99 mm 

Δy-range (±272μm) ± 4.18 mm 

θz-range (±0.2 rad) ±0.37 rad 

Volume 5.1x5.3x7.6 cm (205cm
3
) 

 

Voice Coil Actuators

Camera

Alignment Stage
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6.2 CF Design Process 

6.2.1 Concept Generation 

The idea to design a CF x-y-θz stage was driven by the observation that for certain sweep 

angles r-compliance elements can behave as having 2-DOF, Δr and Δθ. This property makes it 

possible to use a single flexure blade to guide the x-y motions. The challenge with using r-

compliance flexures to create an x-y-θz stage is that both their Kr/Kθ and Kr/Kz stiffness ratios rise 

quickly with increasing ϕ, as shown in Figure 3.11. As a result the sweep angle must be carefully 

chosen to ensure that the elements provide a z-constraint but allow for x-y travel.  

 

Figure 6.3 presents the preliminary concept layouts conceived during the concept 

generation phase. The rules and guidelines presented in this thesis made it possible to quickly 

sketch these concepts and to analyze their performance. The concepts were evaluated on their 

ability to guide the required translations, Δx and Δy, and rotation, θz. In all of the designs it is 

assumed that the stage constrains all the rotations of the flexure tips. Figure 6.3 summarizes the 

resulting displacements for each flexure tip under two loading conditions Fy and Mz. The desired 

translations are presented in green and the parasitics are given in purple. Table 6.2 summarizes 

the advantages and disadvantages of each of the layouts.   
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Figure 6.3: Preliminary CF x-y-θz stage concepts. The table compares the motions of the 

three layouts under Fy and Mz loads. The desired displacements are indicated in green, 

while the parasitic motions are given in purple.     

 

Table 6.2: Advantages and disadvantages of the preliminary CF x-y-θz stage concepts. 

2 Flexure Concept 3 Flexure Concept 4 Flexure Concept 

Advantages Advantages Advantages 

 Lowest Kθz 

 Large ϕ possible 

 ϕmax =120°  Highest Kθx and Kθy 

 Balanced parasitics 

Disadvantages Disadvantages Disadvantages 

 Lowest Kθx and Kθy 

 Unbalanced Parasitics 

 Unbalanced Parasitics  ϕmax =90° 

 Highest Kθz 

 

A design with balanced parasitic motions is preferred because it simplifies the control of 

the stage. The four-flexure concept was selected as the most promising layout because of the 

cancellation of the parasitic displacements. The drawback of the four-flexure concept is its high 

Kθz stiffness. In order to create a four-flexure design with a θz-DOF the flexure layout has to be 
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rearranged. Figure 6.4 presents the rearranged four-flexure spider concept. The diagrams show 

that the spider layout enables the required θz rotation and has balanced parasitic motions. 

Another advantage of the spider design is that the flexure elements are not concentric, which 

allows for ϕ>90°.  

 

Figure 6.4: 4-Flexure spider concept. Axi-symmetric layout of the flexures reduces Kθz. In 

this design the flexures are not concentric which allows for ϕ>90°.       

 

6.2.2 Concept Analysis and Optimization 

Once the most promising concept has been selected the next step in the design process is 

to analyze the effect of the different design parameters on the performance of the system. Figure 

6.5 defines the 4-flexure spider design system and element parameters. Equation (6.1) defines the 

radius of the flexures, R, which is set by the system radius, Rsys, the stage radius, Rstage, and the 

flexure span. The span of the flexure is defined in equation (6.2). Equation (6.1) slightly 

underestimates the maximum R allowable for a set Rsys. 

 

  
           

    
 (6.1) 
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(6.2) 

 

 

Figure 6.5: 4-flexure spider concept system and element parameters. Rsys and Rstage define 

the radius of the system and stage respectively. The element span gives the maximum 

distance between the tip of flexure and any point along the beam. The element parameters 

are the sweep angle of the flexure, ϕ, the radial thickness, tr, and the z-axis thickness, tz. The 

figure also shows the system and element coordinate systems.  

 

The 4-flexure spider concept system stiffness matrix was established following the flow 

chart presented in Figure 4.34. The first step was to identify the boundary conditions placed on 

the elements. In the case of the spider design the stage constrains all three flexure tip rotations 

(αr, αθ, and αz), resulting in a 3DOF stiffness matrix. Appendix C gives the element compliance 

matrix for these boundary conditions. Next, we can use parallel system rules to determine the 

system’s stiffnesses which are given in Equations (6.3)-(6.6). The symmetric design results in 

Kx=Ky and Kθx=Kθy. Once the system stiffness matrix has been established we can analyze the 

effect of the different element and system parameters on the performance of the spider flexure 

concept. The three main concerns for this design were to minimize the in-plane to out-of-plane 

stiffness ratios, Kx/Kz and Kθz/Kθx, minimize the in-plane stiffnesses, Kx and Kθz, and achieve the 

required range, Δx and θz. The following limits set the design space: (i) the tr of the elements 
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must be at least .02” so that the system could be fabricated using an abrasive waterjet, (ii) Rstage ≥ 

0.5” to allow room for the DPN tip holding mechanism. The first performance analysis was 

performed with Rsys=3” and tz=0.5” which would result in a system of roughly the same volume 

as the current DPN straight-beam x-y-θz stage.  

                              (6.3) 

               (6.4) 

                      
  (6.5) 

                          
  (6.6) 

  

The sweep angle, ϕ, of the spider concept elements is not limited by volume or 

manufacturing constraints. Therefore, the performance of the spider concept design was analyzed 

to determine the optimal ϕ. Figure 6.6 gives the stiffness ratios for the spider concept system vs. 

the element sweep angle. The plot shows that the system’s stiffness ratios are equal when ϕ =60°. 

The stiffness ratios rise quickly with ϕ; when ϕ ≥135° Kθz > Kθx which indicates that for an x-y-θz 

stage the spider concept element’s ϕ must be less than 135°. The other performance metric that 

must be considered is the magnitude of the system’s in-plane stiffnesses. The plot in Figure 6.7 

shows how the in-plane system stiffnesses vary with ϕ. The chart shows that for a system with 

Rsys=3”, Rstage=0.5”, tz=0.5”, tr=0.03”, made out of 6061-T6 Aluminum the sweep angle must be 

greater than 285° in order to have a Kx stiffness less than or equal to the desired 1700Nm 

stiffness. The analysis of the spider concept has demonstrated that the current design cannot meet 

the functional requirements for the x-y-θz DPN stage. 
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Figure 6.6: Spider concept stiffness ratios vs. element sweep angle, ϕ. Plot shows that Kx/Kz 

= Kθz/Kθx when ϕ =60°. (Rsys=3”, Rstage=0.5”, tz=0.5”, tr=0.03”, 6061-T6 Al).  

 

 

Figure 6.7: Spider concept in-plane stiffnesses vs. element sweep angle, ϕ. The stiffnesses 

are normalized using the desired stiffness value, Kx-desired=1700N/m, Kθz-

desired=2Nm/rad. (Rsys=3”, Rstage=0.5”, tz=0.5”, tr=0.03”, 6061-T6 Al). 

 

Figure 6.6 shows that the spider system stiffness ratios are minimized when ϕ=60°; 

however, the resulting in-plane stiffnesses are too high for the DPN application. In straight-beam 

applications this conflict could be addressed by increasing tz to decrease Kx/Kz. The same is not 

true for CFs where tz has a reduced effect on Kx/Kz because Kz is dictated not only by bending but 
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by twisting. Section 3.5.1 provides a detailed analysis of the effect of tz on the stiffness ratios of 

an r-compliance CF. The in-plane stiffnesses of the spider design can be reduced by increasing 

Rsys, but this is not very efficient in terms of system volume. The best approach to reducing the 

stiffness of the design is through a serial design. Figure 6.8 shows the serial spider concept, each 

leg of the system is composed of two 60° flexures connected in series. In the serial design the 

bottom stage is grounded while the upper stage is actuated.  

 

 

Figure 6.8: Serial spider concept design. System is composed of two spider designs 

connected in series. The top stage is actuated while the bottom stage is grounded. Each leg 

of the system is composed of two r-compliance elements connected in series.  

 

The volume of the serial spider design can be reduced by changing the angle between the 

two flexures, ν, so that the two flexures may be located in a single plane, as illustrated in Figure 

6.9. A single plane design eliminates the need for assembly as the system can now be cut out of a 

single piece of aluminum stock.  The analysis of the serial system is simplified by examining the 

performance of the subsystem identified in Figure 6.9. The subsystem analysis identifies the 

relative effect of the system and element parameters on the performance of the system.   
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Figure 6.9: Single plane serial spider design. The attachment angle between the serial 

flexures is given by ν. The coordinate system for the input-flexure is given by ri-θi-zi, while 

rg-θg-zg designate the coordinate system for the ground-flexure. The dotted lines delineate 

the subsystem for which the analysis and optimization was performed.   

 

The analysis of the serial design requires that the compliance matrix of the ground-

flexure be transformed to the input-flexure’s coordinate system. In the serial design it is assumed 

that the connection between the flexures does not impose any boundary conditions on the 

ground-flexure. Therefore, the ground-flexure is modeled as having 6-DOF. Equation (6.7) gives 

the rotation matrix used to transform the ground-flexure compliance matrix to the input flexure’s 

coordinates. The distance between the flexure tips dictates the moments on the ground-flexure 

resulting from forces on the stage. The moment arm also determines the displacements of the 

stage due to the rotation of the ground-flexure’s tip. The rotation matrix, [Cs], in equation (6.7) 

captures these effects. [Cs] is valid for small flexure tip rotations when sin(α)≈α. The 

transformed compliance matrix is calculated using (6.8). 

 

[Cs]= 

                                      

(6.7) 
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[  
              

]  [  ][               ][  ]
  (6.8) 

 

The serial spider flexure leg compliance is calculated by adding the transformed ground-

flexure compliance to the input-flexure compliance. The compliances of the elements are added 

because the flexures are connected in series. The subsystem’s stiffnesses are calculated using 

equations (6.9)-(6.12), where C corresponds to the element compliance. Once the subsystem’s 

stiffnesses have been established the next step is to analyze the effect of the flexure attachment 

angle, ν, on the subsystem’s performance. Figure 6.10 shows the effect of ν on the in-plane 

stiffnesses. The stiffnesses are normalized to the stiffness value for ν =0°. The plot indicates that 

both Kx and Kθz decrease with ν. The flexure attachment angle must be less than or equal to 60° 

for both flexures to fit within Rsys. Similarly Figure 6.11 gives the effect of ν on the subsystem’s 

stiffness ratios. Finally, Figure 6.12 plots the in-plane ranges for the subsystem as a function of 

ν. 

                      
           

     (6.9) 

          
     (6.10) 

                     
           

  (6.11) 

              
           

  (6.12) 
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Figure 6.10: Flexure attachment angle, ν, effect on the serial spider concept subsystem in-

plane stiffnesses. The stiffnesses are normalized using the corresponding stiffness value for 

ν =0°. ν must be less than or equal to 60° for both flexures to fit within Rsys. The plot 

corresponds to a design with ϕ=60°. 

 

 

 

Figure 6.11: Flexure attachment angle, ν, effect on the serial spider concept subsystem 

stiffness ratios. The ratios are normalized using the corresponding ratio value for ν =0°. ν 

must be less than or equal to 60° for both flexures to fit within Rsys. The plot corresponds to 

a design with ϕ=60°. 
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Figure 6.12: Flexure attachment angle, ν, effect on the serial spider concept subsystem in-

plane range. The ranges are normalized using the corresponding range value for ν =0°. ν 

must be less than or equal to 60° for both flexures to fit within Rsys. The plot corresponds to 

a design with ϕ=60°. 

 

Figure 6.10 indicates that increasing ν will decrease the x-y-θz in-plane stiffnesses. On 

the other hand the analysis shows that the stiffness ratios of the subsystem increase with ν. These 

effects would mandate that the designer trade-off decreasing in-plane stiffness for increasing 

stiffness ratios. However, it is important to remember that the analysis presented pertains to the 

subsystem. The Kz stiffness of the system will be more than twice that of the subsystem because 

the θx and θz rotations of the stage will be constrained by the symmetry of the system. Figure 

6.13 compares the FEA displacements of the subsystem under an Fz load, to those of the full 

system under the same loading. The image shows the θx and θy rotations of the subsystem stage. 

FEA analysis of the complete system shows that the stiffness ratios decrease with increasing ν. 

The flexure attachment angle was set to 60° to minimize the in-plane stiffnesses and ensure that 

the ground-flexures fit within Rsys. 
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Figure 6.13: A) Subsystem Δz displacement under an Fz load. FEA image shows the θx and 

θy rotations of the subsystem’s stage. B) Full system Δz displacement under an Fz load. The 

system’s stage does not experience a θx or θy rotation.    

 

The foot print of the serial plane spider design can be reduced by changing the 

attachment angle between the input-flexures and the stage. The stage attachment angle, η, is 

defined in Figure 6.14. Increasing η allows for either a larger R for a given Rsys or a smaller Rsys 

for a given R. In the subsystem analysis Rsys is held constant and R increases with η. Equation 

(6.13) gives R as a function of Rsys, span, Rstage, and η. The flexure span is calculated using 

equation (6.2). Figure 6.15 looks at the effect of the attachment angle on the performance of the 

ν=60° serial spider design. The η effect on the subsystem stiffness ratios is shown in Figure 6.16. 

For the final design an stage attachment angle of 0° was chosen to avoid the large increase in Kθz 

associated with η>0°. 
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Figure 6.14: Stage attachment angle definition. The attachment angle between the stage 

and the input-flexure is given by η.  

 

 

 

Figure 6.15: Stage attachment angle, η, effect on the serial spider concept subsystem in-

plane stiffnesses. The stiffnesses are normalized using the corresponding stiffness value for 

η =0°. The plot corresponds to a design with ϕ=60° and ν =60°.  
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Figure 6.16: Stage attachment angle, η, effect on the serial spider concept subsystem 

stiffness ratios. The ratios are normalized using the corresponding ratio value for η =0°. 

The plot corresponds to a design with ϕ=60° and ν =60°. 

 

The analysis of the spider concept design and the serial subsystem was used to optimize 

the performance of the CF x-y-θz stage. In section 3.5 it was shown that the stiffness ratios of an 

r-compliance flexure may be decreased by applying a taper angle, Ψ, along the r-axis of the 

element. Unfortunately, fabricating the spider design using a water-jet results in a Ψ along the 

element’s z-axis. As a result, the performance of the stage cannot be improved using the taper 

angle. Table 6.3 summarizes the system and element parameters of the final design. The final 

design was analyzed using FEA to check the performance of the entire system. Table 6.4 

summarizes the FEA results and compares them to the FEA values for the original DPN stage 

design.  

Table 6.3: Final CF x-y-θz-stage element and system parameters. 

Element radial thickness, tr 0.024 inches 

System z-thickness, tz 0.5 inches 

System radius, Rsys 4 inches 

Stage radius, Rstage 0.5 inches 

Element sweep angle, ϕ 60° 

Stage attachment angle, η 0° 

Flexure attachment angle, ν 60° 

Material 6061-T6 Aluminum 
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Table 6.4: Performance comparison for the straight-beam and CF x-y-θz-stages. 

Attribute (required) 
Straight-beam flexure  

(FEA results) 

CF Design  

(FEA results) 

Kx 1.7 N/mm .612 N/mm 

Ky 2.3 N/mm .612 N/mm 

Kθz 2 Nm/rad 2.85 Nm/rad 

Ky/Kz 1.4 x10
-3

 1.7 x10
-1

 

Kx/Kz 1.0 x10
-3

 1.7 x10
-1

 

Kθz/Kθx 9.1 x10
-3 1.3 x10

-1
 

Kθz/Kθy 1.8 x10
-3

 1.3 x10
-1

 

Δx-range (±272μm) ± 5.99 mm ±17.53 mm 

Δy-range (±272μm) ± 4.18 mm ±17.53 mm 

θz-range (±0.2 rad) ±0.37 rad ±0.26 rad 

Volume 
5.1x5.3x7.6 cm 

(205cm
3
) 

22.6x22.6x1.27cm 

(666cm
3
) 

Δx-range/L 0.079 0.078 

 

A modal analysis of the design reveals that the first three frequency modes of the CF x-y-

θz stage are its three translations. Figure 6.17a presents the first four FEA calculated modes. 

These results indicate that the CF stage should be classified as an x-y-z stage in accordance with 

its three lowest modes. The mode shapes of a system are set by its stiffness and mass 

distribution. Since the system and element parameters were optimized to decrease the stiffness 

ratios of the CF stage, we utilize mass distribution to decrease the frequency of the θz-mode. 

Figure 6.17b shows how adding four radial arms to the stage lowers the frequency of all the 

modes, but more importantly results in the θz-mode having the third lowest frequency. The ratio 

between the third and fourth frequency modes can be improved by adding masses at the end of 

the arms as shown in Figure 6.17c. Overall it is important to note that the third and fourth 

frequency modes are close together even after adding the overhanging masses. These results 

indicate that the CF design acts as a poor out-of-plane constraint, which suggests that radial 

compliance CF elements may be best suited for 6-DOF applications.  
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Figure 6.17: CF stage first four frequency modes: A) Original design, B) Design with four 

radial arms, and C) Design with four arms with masses.  

 

6.3 Fabrication and Testing 

The CF DPN stage was fabricated using an abrasive water-jet. Figure 6.18 shows an 

image of the final prototype. The stage has four radial arms which serve to decrease the θz 

frequency mode and were used to ground the stage during cutting. The radial arms were 

separated from the grounding ring after the water-jet operation was completed. The final 

prototype has an average flexure radial thickness, tr, of .029 inches compared to the designed 

.024 inches, therefore we expect the flexure to be stiffer than what was predicted by the models 
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and the FEA. The error in tr was due to limitations of the water-jet kerf size and positioning 

resolution. The flexures also had an average taper angle of 0.36° on either side of the flexure.  

The performance of the system was measured using the measurement setup shown in Figure 

6.19. The system was actuated by hanging masses off of the stage and the displacements were 

measured off the attached block using capacitance probes. Probe 1 was used to measure the Δz 

displacement, the out of plane rotation θx was calculated by taking the difference between the 

probe 1 and probe 2 measurements and the distance between the probes. Similarly, θy was 

measured by taking the difference between the probe 1 and probe 3 measurements. The in-plane 

displacements Δx and Δy are given by probes 4 and 5 respectively. Finally, θz is measured by 

taking the difference between the probe 5 and 6 measurements and the distance between the 

measurement points. The performance of the prototype is summarized in Table 6.5.  

 

 

Figure 6.18: Final CF x-y-θz DPN stage prototype. System was fabricated using an abrasive 

water-jet.  
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Figure 6.19: CF x-y-θz DPN stage measurement setup. Six capacitance probes (1-6) are 

used to measure the three displacements, Δx, Δy, and Δz, and three rotations, θx, θy, and θz, 

of the stage. The system is actuated by hanging masses off the stage. 

 

Table 6.5: CF DPN x-y-θz stage performance.  

Attribute Measured values 

Kx .735 N/mm 

Ky .880 N/mm 

Kθz 4.69 Nm/rad 

Kx/Kz 1.49 x10
-1

 

Kx/Kz 1.79 x10
-1

 

Kθz/Kθx 1.68 x10
-1

 

Kθz/Kθy 1.60 x10
-1

 

 

The guidelines and models developed in this thesis enabled the efficient design of the CF 

x-y-θz stage; without them, the designer would have had to rely solely on FEA and straight-beam 

design rules. An example of the significant limitations of this approach is the effect that tz has on 
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the performance of the system. The straight-beam analysis would indicate that tz has a significant 

effect on the stiffness ratios, when in reality for r-compliance CF elements tz plays only a minor 

role. The undergraduate student was able to quickly analyze the 3 original concepts and identify 

the most promising design. The models then allowed the designer to realize that the spider 

concept would not be able to meet the DPN functional requirements. The student and the author 

used the rules in Chapter 4 to create the serial spider design. The element and system models 

allowed us to explore the effect of ϕ, ν, η, and other parameters, without FEA. 

 

The DPN case study highlights that the main challenge with r-compliance CFs is their 

high Kx/Kz ratios. The rules developed in this thesis made it possible to overcome this hurdle and 

design a system with acceptable performance. Even after optimization the CF x-y-θz stage has 

significantly lower stiffness ratios than its straight-beam counter-part, which may be problematic 

for applications that rely on the out-of-plane motions being constrained. The r-compliance 

elements may be better suited for 6-DOF stages. The CF DPN stage design does present some 

advantages over the straight-beam design, for example the curved beam stage’s Kx=Ky and these 

are a little over a quarter of the straight-beam Ky. Another benefit could be the reduction in z-axis 

depth that the CF provides; the CF is only 0.5” thick compared to the 3” of the Thomas stage. 
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7 
CONCLUSIONS 

 

Straight-beam flexures are common in precision engineering applications because design 

rules have been established which enable their effective design. These guidelines inform the 

designer on how to design the straight-beam flexure to obtain the correct kinematics and ensure 

that the element achieves the desired range. Up until now no such rules existed for the curved-

beam elements utilized in cylindrical flexures (CFs), and therefore the design process was 

impeded. CFs present a challenge because their mechanics differ from those of straight beams, 

and although the modeling of curved beams has been researched in detail [1–4], it has yet to be 

distilled into compliant element and system creation rules. The lack of relevant design rules has 

inhibited the design and optimization of CF systems, preventing these systems from becoming 

pervasive in engineering applications. The design guidelines developed in this work enable (i) 

the rapid generation of multiple concepts, (ii) more efficient analysis of different designs, (iii) the 

selection of the best design, and (iv) more effective optimization of the chosen concept.  

 

The first step in developing the design guidelines was to establish the compliance matrix 

for a curved-beam. This analytical model was used to characterize the effect of different 

parameters on the behavior of the CF elements. The flexure’s sweep angle, ϕ, and ratio of 

bending to torsional properties, β, where established as the only two parameters that differentiate 

the kinematics of a curved-beam from those of a straight-beam. Chapter 3 characterizes the 

effect of these two parameters on the element performance metrics.  In the following chapter, the 

system creation guidelines are established through the analysis of two CF subsystems. Finally, 

helpful fabrication tips were presented in the context of the creation of the two CF system 

prototypes. 
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The importance of this work is demonstrated in the two case studies. The CF guidelines 

and rules made it possible to create a linear guide with an order of magnitude lower tip/tilt error 

than the concept created using straight-beam rules and FEA. The CF design rules and models 

also enabled the efficient design of the CF x-y-θz stage. A great example of the significant 

limitations of using straight-beam guidelines to model CFs is the misrepresentation of the effect 

of tz on the performance of the x-y-θz stage. The straight-beam analysis would indicate that tz 

would have a significant effect on the system’s stiffness ratios, when in reality for an r-

compliance CF system tz plays only a minor role. For both of the case studies the CF element and 

system rules made it possible to quickly analyze the original concepts and identify the most 

promising design. The analytical models allowed us to explore the effect of different parameters 

efficiently without having to rely on FEA. 

 

Now that design guidelines and models have been created for curved-beam flexure 

systems, the design of new CF systems will be facilitated. These new mechanisms could fill the 

gaps that current planar flexures fail to meet. Some of the CF benefits include: (i) the availability 

of precision round stock, means reduced fabrication variations and (ii) reduced cost, (iii) 

compatibility with cylindrical applications, (iv) higher stability due to symmetry, (v) ease of 

assembly of concentric tubes, (vi) larger range to footprint ratio, and (vii) an increased design 

space which can lead to designs that meet currently unreachable functional requirements. CF’s 

most attractive quality is their compatibility with applications that benefit from a cylindrical 

geometry, for instance rotating systems, optical mechanisms, and laparoscopic tools. The use of 

cylindrical flexures in these applications will result in more compact systems with higher 

precision and lower cost. The axial symmetry of cylindrical systems may be used to achieve 

thermocentricity, and it serves to decrease the effects of manufacturing and load placement 

errors. Monolithic CF systems can be created out of a single piece of round stock reducing 

assembly cost and errors. The cylindrical geometry may also serve to reduce the footprint and 

therefore the volume of the system.  

 

This thesis demonstrated that CF systems may achieve a greater range to footprint ratio 

than its planar counterparts. The configuration of the compliance matrix of the CF element 

enables the designer to use all previous knowledge pertaining to straight-beam flexures when 
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designing CF elements. The element analysis demonstrated that ϕ and β serve as two additional 

tuning knobs in the design of CFs. As a result of the increased design space, a CF may be able to 

meet functional requirements that cannot be met using a straight flexure. Some of the other 

advantages that CFs have over straight-beam flexures are: (i) a z-compliance CF can achieve 

better performance through with a lower Kz/Kr ratio than a straight-beam flexure, (ii) certain 

curved-beams have a lower αr/Δz parasitic ratio than a straight-beam flexure, and (iii) CFs also 

have a lower sensitivity to taper angle.  

 

7.1 Future Work 

This thesis presented the detailed analysis of the different curved-beam elements as well 

as two CF subsystems: (i) the curved four-bar, and (ii) the compound four-bar. The detailed 

characterization of different building blocks allows the engineer to quickly create more 

complicated systems using these blocks as subsystems. The analysis of the larger system is 

facilitated because the kinematics and stress distribution of the blocks is well-known. The CF x-

y-θz stage in chapter 6 was designed using two r-compliance elements in series. This flexure 

layout should be further characterized to create a new building block. The models and guidelines 

presented in chapters 3 and 4 will serve as the foundation for the development of new CF 

subsystems.  

 

During the analysis of the parasitic rotations of a curved four-bar it was discovered that 

the r-axis of the system rotates away from the axis defined by the element. This rotation is due to 

the fact that the length of the beam varies between the inner and outer radiuses of the beam, and 

the added length of the four-bar stage. Chapter 4 presented a preliminary model for the rotation 

of a curved four-bar’s r-axis, ω. This model should be further developed using solid mechanics 

analysis, which is out of the scope of this thesis.  

 

Over the last few years the FACT synthesis approach for compliant mechanism design 

has proven itself to be efficient and powerful. FACT proposes using freedom, constraint, and 

actuation topologies to design any flexure system [24], [25]. FACT utilizes the principles of 

exact-constraint based design and the mathematics of screw theory to create visual spaces for 
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where constraints should be placed to achieve the desired DOF. The design process is enhanced 

by FACT because it presents the designer with a quick way to consider all possible constraint 

locations.  In order to design CF systems using FACT we need to establish the constraints that 

each CF element imposes such that the engineer may quickly layout curved-beam elements in the 

constraint spaces. The FACT analysis tool also needs to be augmented to include the compliance 

matrices for curved-beams elements so that the CF element does not need to be modelled as a 

series of straight-beams. The use of the curved flexure compliance matrix instead of a system of 

straight-beams increases the accuracy of the kinematic calculations and reduces the required 

computational power. By enhancing FACT with the CF knowledge generated in this thesis we 

will enable the engineer to consider both straight and curved beam flexures simultaneously 

during the design process.  
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APPENDIX 

A 
FEA CORROBORATION OF CF 

COMPLIANCE MATRIX 
 

 

Figure A.1: FEA corroboration of compliance matrix, predicted displacements under -0.2N 

Fθ load vs. sweep angle, ϕ. The plot compares the curved beam model to an FEA Beam 

Element model and an FEA 3D solid model. (L=60mm, tr=6.35mm, tz=1mm, 

7075Aluminum). 
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Figure A.2: FEA corroboration of compliance matrix, predicted displacements under -0.2N 

Fr load vs. sweep angle, ϕ. The plot compares the curved beam model to an FEA Beam 

Element model and an FEA 3D solid model. (L=60mm, tr=6.35mm, tz=1mm, 

7075Aluminum). 

 

Motions due to Fr= -0.2N vs. Sweep Angle ϕ

0 60 120 180 240 300 360
0
1
2
3

x 10
-6 

M
e
te

rs

 

 

Beam Element FEA 3D Solid FEA Curved Beam Model

0 60 120 180 240 300 360

-8
-6
-4
-2

x 10
-6 r

M
e
te

rs

0 60 120 180 240 300 360

0.5
1

1.5
2

x 10
-4 z

Sweep Angle  (degrees)

R
a

d
ia

n
s



 201 

 

Figure A.3: FEA corroboration of compliance matrix, predicted displacements under          

-3.175Nmm Mz vs. sweep angle, ϕ. The plot compares the curved beam model to an FEA 

Beam Element model and an FEA 3D solid model. (L=60mm, tr=6.35mm, tz=1mm, 

7075Aluminum). 
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Figure A.4: FEA corroboration of compliance matrix, predicted displacements under 

10Nmm Mr vs. sweep angle, ϕ. The plot compares the curved beam model to an FEA Beam 

Element model and an FEA 3D solid model. (L=60mm, tr=6.35mm, tz=1mm, 

7075Aluminum). 
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Figure A.5: FEA corroboration of compliance matrix, predicted displacements under 

10Nmm Mθ vs. sweep angle, ϕ. The plot compares the curved beam model to an FEA Beam 

Element model and an FEA 3D solid model. (L=60mm, tr=6.35mm, tz=1mm, 

7075Aluminum). 
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APPENDIX 

B 
TORSIONAL STIFFNESS CONSTANT FOR 

AN r-COMPLIANCE ELEMENT 
 

 

Figure B.1: r-compliance element cross-section parameter definitions. The taper angle is 

given by Ψ. 
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Equations (B.3) and (B.4) are given in Roark [27]. Equation (B.4) is valid for right triangles. 

 

r-compliance

Ψ

kt-rectangle

kt-triangle Centroid

tr

tz

c



 206 

  



 207 

 

APPENDIX 

C 
ELEMENT COMPLIANCE MATRICES FOR 

DIFFERENT BOUNDARY CONDITIONS 
 

The matrices below correspond to the compliance matrices for a curved beam element under 

different boundary conditions. Cij corresponds to the i
th

 row and j
th

 column of the fixed-free 6-

DOF compliance matrix [C]. The constrained matrices are calculated using Gauss elimination. 

 

1) Constrained αz 

[A]= 

       

   

   
        

   

   
 0 0 0 

       

   

   
        

   

   
 0 0 0 

0 0             

0 0             

0 0             

 

2) Constrained αθ 

[B]= 

        0 0     

        0 0     

0 0        

   

   
        

   

   
 0 

0 0        

   

   
        

   

   
 0 

        0 0     
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3) Constrained αr 

[D]= 

        0 0     

        0 0     

0 0        

   

   
        

   

   
 0 

0 0        

   

   
        

   

   
 0 

        0 0     

 

4) Constrained αr and αθ 

[E]= 

        0     

        0     

0 0        

   

   
 0 

        0     

 

5) All α constrained (αz=αr=αθ=0) 

[F]= 

       

   

   
        

   

   
 0 

       

   

   
        

   

   
 0 

0 0        
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D 
CF FOUR-BAR COMPLIANCE MATRIX 

 

The stage of the CF four-bar constrains the αr and αθ rotations of the flexural elements. As a 

result, the compliance matrix of the four-bar, [Cfour-bar], is dictated by the αr-αθ-constrained 

element matrix [E]. [Cfour-bar] calculates the resulting displacements and rotations of the stage due 

to the forces and moments on the four-bar. The matrix is valid for small rotations when sin(αr) ≈ 

αr. 

[Cfour-bar]= 
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