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Abstract 
 

Fluorinated surfactants are an important class of surfactants because they possess 
properties that are far superior than those of their hydrocarbon analogs. As a result, they are 
used in a wide variety of applications including in paints, polishes, fire-fighting foams, and 
emulsion polymerization processes. However, concerns regarding the non-biodegradability 
and toxicity of fluorinated surfactants have prompted the search for new, benign alternative 
surfactant formulations that possess micellization properties comparable to those of traditional 
fluorinated surfactants.  

With this need in mind, this thesis focuses on gaining a molecular-level understanding 
of the micellization behavior of traditional fluorinated surfactants, and then using the acquired 
knowledge to design novel surfactant formulations that can reduce the use of fluorinated 
surfactants. Molecular-thermodynamic (MT) models were developed to calculate the various 
contributions to the free energy of micellization for discoidal and biaxial ellipsoidal micelles; 
two important micelle shapes in the context of fluorocarbon-based surfactants. These models 
explicitly incorporate the effect of the position-dependent curvature associated with discs and 
biaxial ellipsoids. Comparison between the models developed here with those that do not 
explicitly account for the varying curvature shows that accounting for the position-dependent 
curvature is extremely important in modeling these two micelle shapes. The new MT model 
for the free energy of micellization is also used to demonstrate the feasibility of realizing 
biaxial ellipsoidal micelles, a result refuted in the past in many theoretical studies on the basis 
of average geometrical properties of the micelle.  

A new computer-simulation-molecular-thermodynamic (CSMT) framework was 
developed to predict the micellization behavior of mixtures of fluorocarbon-based surfactants. 
To facilitate the practical implementation of the mixture CSMT framework, which involves 
the computationally intensive task of simulating several mixed micelles, an approximation to 
the mixture CSMT model was developed. In this approximation, relevant properties for a 
mixed micelle are estimated using a micelle-composition based weighted average of the 
analogous properties obtained from simulations of the single-component surfactant micelles 
for each of the surfactants comprising the mixture. Therefore, in this approximation, the need 
for simulating mixed micelles is eliminated. The approximation was found to compare well 



4 

with the mixture CSMT model for various binary surfactant mixtures considered, except for 
those containing alkyl ethoxylate surfactants. A rationalization of this finding is presented. 
CMC predictions made using the mixture CSMT model were found to compare very well with 
the experimental CMCs for several binary mixtures of linear surfactants, thereby laying the 
foundation for using the CSMT model to predict micellization properties of mixtures of 
surfactants that have a more complex chemical architecture.  

Finally, an MT framework was also developed to predict the micellization properties 
of mixtures of fluorocarbon-based and hydrocarbon-based surfactants. This mixing reduces 
the use of fluorinated surfactants in the surfactant formulation, thereby addressing the non-
biodegradability and toxicity concerns associated with fluorinated surfactants. An enthalpy of 
mixing contribution resulting from the interactions between the fluorocarbon tails and the 
hydrocarbon tails, estimated using the Regular Solution Theory, was included in the MT 
framework. The ability of the MT framework to predict the coexistence of two types of mixed 
micelles in solution was demonstrated. The MT framework predictions of micelle population 
distributions, CMCs, and optimal micelle compositions were compared with the experimental 
values for various mixtures of fluorocarbon-based and hydrocarbon-based surfactants.  

The models developed in this thesis provide a molecular level understanding of the 
micellization behavior of fluorocarbon-based surfactants and their mixtures. The models are 
able to predict several important micellization properties of surfactants and their mixtures that 
can guide surfactant formulators in the synthesis, characterization, design, and optimization of 
surfactant formulations that exhibit desirable properties.  

 

Thesis Supervisor: Daniel Blankschtein 

Title: Herman P. Meissner '29 Professor of Chemical Engineering 
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Chapter 1 

1 Introduction 

1.1 Fluorocarbon-Based Surfactants and their Applications 

Surfactants are a unique class of chemicals that consist of a hydrophobic, traditionally 

alkyl, tail attached to a hydrophilic head.1, 2 When added to water, surfactants partition between 

an available interface and the bulk water phase. At the interface, the surfactant’s hydrophilic 

heads remain in contact with water, while the surfactant’s hydrophobic tails stay away from 

water. Adsorption of surfactant molecules at the interface reduces the surface tension of water.2 

In the bulk water phase, at low surfactant concentrations, the surfactant molecules remain singly 

dispersed as surfactant monomers. Beyond a threshold surfactant concentration, known as the 

Critical Micelle Concentration (CMC), where there are sufficient singly-dispersed surfactant 

monomers, the surfactant molecules in the bulk water phase spontaneously self-assemble into 

aggregates called micelles.2 In a micellar aggregate, the hydrophobic tails form the internal core 

and the hydrophilic heads shield it from the unfavorable contact with water. 

Fluorinated surfactants are an important class of surfactant molecules in which the 

hydrogen atoms in the traditional alkyl tail are partially, or completely, replaced by fluorine 

atoms. Owing to its position in the periodic table, the fluorine atom exhibits many extreme 
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properties. It is the most electronegative element, making fluorinated molecules difficult to 

polarize.3 This low polarizability leads to weak intermolecular interactions between 

perfluorocarbons (fully-fluorinated carbon backbones),3 and makes fluorinated surfactants very 

efficient surface active agents. For example, the addition of 5 mM of perfluorooctanoic acid 

(CF3(CF2)6COOH), a common fluorocarbon-based surfactant, to water reduces the surface 

tension of water from 73 mN/m to 15.3 mN/m at 250C.3 In contrast, at the same temperature, the 

addition of 30 mM of sodium octanoate (CH3(CH2)6COOH), a common hydrocarbon-based 

surfactant, to water reduces the surface tension of water from 73 mN/m to only 40 mN/m.4  

The low polarizability of perfluorocarbons also implies that they do not exhibit strong 

attractions towards many other compounds, including hydrocarbons, making them both 

hydrophobic and lipophobic.5 Another salient characteristic of fluorinated surfactants is the high 

strength of the C-F bond. A large amount of energy is required to break a C-F bond, making 

fluorocarbons thermally inert.5 In addition, the fluorine atom is just big enough to effectively 

cover the carbon skeleton in perfluorocarbons. This results in very high activation energies for 

any reaction involving the formation of any new bonds with the carbon backbone.6 As a result, 

perfluorocarbons are thermally stable and chemically inert, and therefore, widely used in 

applications where the environment is not conducive to utilizing hydrocarbon-based surfactants, 

for example, in environments with high temperatures and corrosive conditions.5   

The ability of fluorinated surfactants to significantly reduce the surface tension of water 

makes them powerful wetting agents. This facilitates even spreading of different materials on 

surfaces, and results in uniform coatings. Therefore, fluorinated surfactants are used extensively 

in paints, polishes, and floor waxes to obtain a smoother finish. The special wetting properties of 

fluorinated surfactants find use in adhesives, where they improve contact between two surfaces.5 
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The lipophobicity of fluorinated surfactants is used in the paper industry to manufacture paper 

cartons used in fast food carry outs. Fluorinated surfactants make the cartons oil repellent, 

thereby preventing oil and grease from wetting the carton.5 The chemical stability of fluorinated 

surfactants makes them useful in electroplating baths, where hydrocarbon surfactants would not 

work because of the acidic environment. The surfactant prevents mist formation by reducing the 

surface tension of the solution which decreases the size of the gas bubbles.5 Use of fluorinated 

surfactants in fire fighting foams is an excellent example of an application where most of the 

special properties mentioned above are put to use. Indeed, owing to the low surface tension, the 

foam, with fluorinated surfactants as a constituent, is able to quickly spread over the hydrocarbon 

fuel surface, while its oil repelling property enhances the foam’s fire extinguishing capability 

because the surfactant coat does not allow oil fumes to escape and spread.5  

In all the above mentioned applications, fluorinated surfactants have been used to 

enhance the surface properties of materials. In addition, fluorinated surfactants find ample use in 

applications where there is a need to modify bulk solution properties. They are used as 

emulsifiers to synthesize fluoropolymers via emulsion polymerization. The advantage of 

utilizing emulsion polymerization is that it prevents coagulation of polymer particles and 

provides better control of particle size compared to polymerization in the bulk.5 The cosmetic 

industry uses fluorinated surfactants as emulsifiers, lubricants, or lipophobic agents in hair 

products to modify their consistency, lubricity, and oil repelling character.5 Fluorinated 

surfactants can also be utilized in environmental remediation processes in which surfactant 

micelles are used to solubilize hydrophobic contaminants which are later destroyed chemically 

(oxidation/reduction) or thermally. Here, the advantage of using fluorinated surfactants over their 

hydrocarbon counterparts is that due to their chemical and thermal inertness, they do not degrade 
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when the solubilized contaminants are destroyed, and can therefore be reused.7. Undoubtedly, the 

most publicized application of fluorinated surfactants is their potential use in blood substitutes. 

They are an attractive option for synthetic oxygen carriers because they are chemically inert and 

solubilize gases like oxygen and carbon dioxide. Currently, there are a few blood substitutes 

based on perfluorocarbon emulsions, for example, Oxycyte, which are undergoing clinical 

trials.7,8  

1.2 Motivation 

In most applications involving surfactant solutions, both the surface and the bulk 

properties of the solution are affected by the surfactant micellization behavior. For example, it is 

well-known that the surface tension of water decreases upon addition of a single surfactant type, 

varying linearly with the logarithm of the surfactant concentration until the CMC is reached, and 

becoming approximately constant beyond the CMC.8 Accordingly, the maximum reduction of 

surface tension is achieved by adding sufficient surfactant such that the resulting solution 

concentration is approximately equal to the CMC. Adding more surfactant to the solution does 

not result in any further significant reduction of the surface tension and is therefore unwarranted. 

To predict the CMC, one needs to model surfactant micellization, because the CMC is the 

surfactant concentration that marks the onset of micelle formation in the bulk solution. Note that 

in the case of mixed surfactant systems, the surface tension of the solution continues to vary even 

after the onset of micellization. Beyond the CMC, surfactant molecules present in micelles, as 

monomers, and at the interface are in thermodynamic equilibrium with each other. This three-

way equilibrium needs to be modeled in order to predict the surfactant adsorption behavior and 

associated surface tension reduction as a function of bulk surfactant concentration.  
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As another example, in the case of emulsion polymerization reactions in water, the role of 

the surfactant micelles is to solubilize monomers, which undergo polymerization and act as 

polymer nucleation sites.9 As a result, an increase in the number of micelles leads to an increase 

in the number of polymer nucleation sites, resulting in higher polymerization rates. In addition, 

the larger the number of polymer nucleation sites, the smaller the size of the polymer particles 

formed, because the same amount of monomer is distributed among a larger number of particles. 

Furthermore, it is expected that the shape and size of the micelles should play a key role in 

determining the shape and size of the resulting polymer particles. Clearly, a fundamental 

understanding of the micellization behavior of fluorinated surfactants in aqueous solution will 

allow prediction of important solution properties, including CMCs, micelle shapes, micelle 

aggregation numbers, micelle compositions in the case of mixed micelles, and degrees of 

counterion binding in the case of ionic surfactant micelles, which are all key properties for the 

practical use of fluorinated surfactants.  

The downside of using fluorinated surfactants is that they are not biodegradable due to 

their chemical and thermal inertness.5 Most organic fluorinated compounds of industrial 

relevance degrade to either perfluoro carboxylic acids (CF3(CF2)n-2COOH) or perfluoro 

sulfonates (CF3(CF2)n-1SO3-).10 Therefore, the majority of toxicology studies involving organic 

fluorinated compounds have focused on the toxicity of these two compounds. Perfluoro 

carboxylic acids and perfluoro sulfonates have been detected in the environment and in living 

beings including humans. The concentrations of these compounds are high among those who are 

occupationally exposed to these chemicals. These chemicals are retained in their blood even 

years after they stopped working. Both perfluoro carboxylic acids and perfluoro sulfonates have 

long retention rates in the human body.10,11 In tests with rodents, perfluorooctanoic acid 
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(CF3(CF2)6COOH, PFOA) was found to be mildly carcinogenic,10 and can also lead to 

malfunctioning of the liver.11 Perfluorooctyl sulfonate (CF3(CF2)7SO3-, PFOS) has also been 

shown to be toxic to aquatic animals. However, these compounds are toxic only if their 

concentration exceeds a threshold value. Hekster et al.10 derived an indicative maximum 

permissible concentration for PFOA and PFOS based on the available toxicity data.  They 

calculated a value of 300µg/l for PFOA and 5µg/l for PFOS. Except in cases of accidental fire-

fighting foam spills, the contamination is within this safety threshold, and therefore, should not 

affect the well being of animals. However, in the absence of biochemical degradation, these 

chemicals can accumulate over time, resulting in sufficiently high concentrations capable of 

inducing toxicity.10  

The potential toxic effects of PFOA, due to its non biodegradable nature, have prompted 

the need to find new alternative surfactant formulations that possess properties similar to those of 

traditional fluorinated surfactant formulations. However, before exploring potential alternatives, 

it is beneficial to gain a molecular-level understanding of the micellization behavior of 

traditional fluorinated surfactants. Indeed, the knowledge acquired by understanding the 

micellization behavior of traditional fluorinated surfactants will better equip us to design novel 

surfactants that have the potential to replace or reduce the use of fluorinated ones. Potential 

replacements for fluorocarbon-based surfactants include: (i) surfactants with one head and two 

tails – one fluorocarbon and one hydrocarbon, and (ii) surfactants with a partially-fluorinated 

tail.12 The use of fluorinated surfactants can also be reduced by mixing fluorocarbon-based 

surfactants with other benign surfactants like hydrocarbon-based surfactants.  
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1.3 Research Objectives  

With the background and motivation presented in Sections 1.1 and 1.2 in mind, the 

central goal of this thesis is to develop a theoretical framework to predict the micellization 

behavior of fluorinated surfactants at the molecular level. The fundamental and practical insights 

gained from the modeling presented here can be used to evaluate potential substitutes for 

fluorinated surfactant formulations that possess the desired properties, but use a minimal amount 

of fluorocarbon material. These insights can also be used to model and evaluate the micellization 

behavior of mixtures of surfactants having minimal amount of fluorinated material obtained by 

mixing fluorocarbon-based surfactants with other benign surfactants. This ability to predict 

micellization properties will greatly reduce the number of carefully-executed experiments 

required to synthesize substitute formulations for fluorinated surfactants, including 

characterizing their properties. In addition, this will also contribute to the overall fundamental 

understanding of the micellization behavior of fluorinated surfactants in aqueous solution.  

In order to accomplish the broad goal of my thesis, the following three research 

objectives will be pursued:  

1. Modeling the micellization behavior of single fluorocarbon-based surfactants.  

2. Modeling the micellization behavior of binary mixtures of two fluorocarbon-based 

surfactants. 

3. Modeling the micellization behavior of binary mixtures of a hydrocarbon-based and a 

fluorocarbon-based surfactant. 
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1.4 Thesis Overview  

Before discussing the model developments associated with aims 1, 2, and 3 above, a brief 

overview of the Molecular-Thermodynamic (MT) framework, which constitutes the foundation 

of this thesis, is presented in Chapter 2. This chapter also includes a brief description of the 

recently developed Computer-Simulation-Molecular-Thermodynamic (CSMT) framework, 

which blends microstructural information, derived from all-atomistic molecular dynamics 

simulations of surfactant monomers and micelles, with the well-established MT framework, to 

model complex surfactants that are not amenable to traditional MT modeling. Subsequently, 

Chapters 3, 4, and 5 address specific issues associated with research aims 1, 2, and 3 above. 

Specifically, Chapter 3 discusses the development of the MT framework for discoidal micelles 

(an important micelle shape for fluorocarbon-based surfactants) and biaxial ellipsoidal micelles 

(an importance transition shape between spherical and cylindrical or discoidal micelles). The MT 

framework for these micelle shapes is significantly more complex that the previous MT models 

developed for spherical, cylindrical, and bilayer-like micelles due to the varying curvature 

associated with discs and ellipsoids. The importance of the new curvature-corrected model 

developed for discoidal micelles is highlighted by comparing it with an approximate model for 

discoidal micelles, where the effect of curvature is not accounted for rigorously. In the final 

section of Chapter 3, the model developed for biaxial ellipsoidal micelles is used to predict the 

micelle shape distribution for several single nonionic fluorocarbon-based surfactants to shed 

light on the feasibility of forming biaxial ellipsoidal micelles, a topic of great controversy in the 

literature on micelle shapes.  

In Chapter 4, a CSMT framework for mixtures of surfactants is developed. Recognizing 

the computational costs associated with the implementation of the mixture CSMT framework, an 
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approximate method based on a composition-weighted average is also developed. The 

applicability of the approximate model is evaluated by comparing its results with the mixture 

CSMT results for a variety of binary mixtures of surfactants. Due to the scarcity of experimental 

micellization data for binary mixtures of fluorocarbon-based surfactants, the mixture CSMT 

framework is used to predict CMCs of binary mixtures of hydrocarbon-based surfactants, 

including comparing the CMC predictions with the experimental CMC values. The model is also 

used to predict the CMC of a binary mixture of fluorocarbon-based surfactants for which 

experimental CMC data is available.  

In Chapter 5, an MT model for binary mixtures of fluorocarbon-based surfactants and 

hydrocarbon-based surfactants is developed. These mixtures are different from mixtures of 

fluorocarbon-based surfactants because of the antagonistic enthalpic interactions between the 

hydrocarbon tails and the fluorocarbon tails, which can lead to the formation of two types of 

micelles in solution: one rich in the fluorocarbon-based surfactant and the other rich in the 

hydrocarbon-based surfactant. The new model is used to predict micellization properties, 

including CMCs and micelle population distributions, for binary mixtures of fluorocarbon-based 

and hydrocarbon-based surfactants for which the relevant experimental data is available.  

In Chapter 6, a summary of the key findings in the thesis are presented. Ideas for further 

research based on the findings presented in Chapters 3, 4, and 5 are also presented. Finally, the 

Appendix at the end of the thesis in Chapter 7 contains valuable information that supplements 

the material presented throughout this thesis.  
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Chapter 2 

2 Molecular-Thermodynamic Theory of 

Micellization 

2.1 Introduction 

Surfactant micellization has been modeled using various theories, including cell and 

lattice theories,13 self-consistent field theories,14 quantitative structure-property relationships,15,16 

and more recently, simulation-based techniques.15 Most of these theories require experimental 

data, or values of parameters quantifying interactions between the surfactant heads and tails. This 

limitation is mitigated in the molecular-thermodynamic (MT) theories of micellization.16, 17 

Indeed, in the MT approach, the bulk thermodynamics of the micellization phenomenon is 

combined with a molecular-level description of the surfactant to predict micellization properties. 

Consequently, no experimental micellization data is required to make predictions of 

micellization properties of single surfactants and their mixtures using the MT framework. In 

addition, due to the inclusion of a molecular-level description, the MT framework sheds light on 

the roles of the surfactant chemical structure, including its hydrophilic head and hydrophobic 

tail, as well as of the surfactant solution conditions, including temperature,18 salt concentration,19 
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pH,20 surfactant concentration18 and composition,21 in the micellization process. A brief 

background on the current state of the MT framework, which constitutes the foundation of this 

thesis, is presented in this chapter. Specifically, Section 2.2 and Section 2.3 discuss the 

thermodynamics of micellization and the molecular model for the free energy of micellization, 

respectively. Subsequently, Section 2.4 provides a brief overview of the recently developed 

Computer-Simulation-Molecular-Thermodynamic (CSMT) framework, which blends 

information from molecular dynamics simulations of surfactant monomers and micelles with the 

MT framework discussed in Sections 2.2 and 2.3. Finally, Section 2.5 discusses the methods 

used to calculate micellization properties, including critical micelle concentrations, micelle 

shapes, sizes, compositions and degrees of counterion binding.  

2.2 Thermodynamics of Micellization 

The molecular-thermodynamic (MT) framework blends a thermodynamic description of 

a micellar solution with a molecular-level description of the free energy of micellization. The 

free energy of micellization is a quantitative measure of the tendency of a surfactant molecule to 

micellize, that is, to transfer from the monomeric state to the micellar state. Given the chemical 

structure of a surfactant and the solution conditions, the MT framework can predict several 

micellization properties, including the critical micelle concentration, and the micelle shape and 

size in solution, without using any experimental micellization data.17  

Using concepts from thermodynamics, the free energy, G, of an aqueous surfactant 

solution at temperature, T, and pressure, P, containing NS,i molecules of surfactant i, dispersed in 

NW water molecules, can be written as the sum of: (i) the free energy of the constituents of the 

surfactant solution, (ii) the free energy associated with forming micelles from surfactant 
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monomers, and (iii) the free energy associated with the mixing of the different constituents of the 

surfactant solution. This is illustrated pictorially in Figure 2-1 for the case of an aqueous solution 

of a single nonionic surfactant. For the more general case of mixtures of surfactants with a single 

associated counterion, the free energy of the micellar solution, G, can be written as follows:22 
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where ,0Wμ , , ,0S iμ , and ,0cμ  are the chemical potentials of pure water, of monomers of surfactant 

i at infinite dilution, and of the surfactant counterions at infinite dilution, Nc is the number of 

surfactant counterions added to the surfactant solution, Nn is the number of surfactant micelles 

with an aggregation number n, gmic is the free energy of micellization per surfactant molecule (a 

 

Figure 2-1: Conceived hypothetical process for the formation of a surfactant solution consisting of 
nonionic surfactants. 
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function of the characteristics of the micelle, including its shape, size, composition, and degree 

of counterion binding), k is the Boltzmann constant, T is the absolute temperature, N1,i and N1,c 

are the number of free monomers of surfactant i and free surfactant counterions, respectively, 

and XW, X1,i, X1c, and Xn denote the mole fractions of water, monomer of surfactant i, free 

surfactant counterion, and micelle of aggregation number n, respectively. Note that the mole 

fraction Xj is defined as ( )j j W SX N N N= + .23 The first three terms in Eq. (2-1) represent the 

free energy of the constituents of the surfactant solution in their corresponding standard states, 

the fourth term represents the free energy of forming the micelles from the surfactant monomers, 

and the last term represents the free energy of mixing the different constituents of the surfactant 

solution. Note that the free energy model in Eq. (2-1) is valid only for dilute surfactant solutions, 

where intermicellar interactions may be neglected and the free energy of mixing may be by 

modeled as being ideal. In addition, Eq. (2-1) assumes that there is only one counterion type 

associated with the ionic surfactants comprising the mixture. Note, however, that Eq. (2-1) can 

be readily extended to systems having multiple counterions. 

Surfactant micellization is modeled by accounting for the equilibrium that exists between 

the singly-dispersed surfactant monomers and the micellar aggregates present in the micellar 

solution above the CMC.16, 24 Thermodynamically, this equilibrium is attained when the Gibbs 

free energy of the micellar solution attains its minimum value. Note that in Eq. (2-1), G = G(T, 

P, Nw, Ns,i, Nc, N1,i, N1,c, Nn), and is subject to the following mass balance constraints24 on each of 

the constituent species: 

constantwN =  (2-2) 
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where αn,i is the micelle composition of surfactant i, and βn is the degree of counterion binding 

and is defined as the number of counterions, per surfactant molecule, bound to the micelle. 

Equations (2-2) - (2-4) show that, at constant T and P, G is only a function of Nn. Minimizing G 

in Eq. (2-1) with respect to Nn, at constant T and P, subject to the constraints on Nw, Ns,i, Nc, N1,i, 

and N1,c in Eqs. (2-2) - (2-4), yields:  
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 is the monomer composition. Equation (2-5) indeed yields the 

minimum value of G because ( ) ( )
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concentration of micelles of aggregation number n, Xn, given in Eq. (2-5), depends on the micelle 

shape, size, composition, degree of counterion binding, surfactant monomer concentration, and 

free counterion concentration, and not just on the aggregation number, n, as the subscript 

suggests. The concentration of every micelle type can be calculated by substituting the free 
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energy of micellization associated with that micelle type in Eq. (2-5). The molecular model to 

calculate the free energy of micellization is presented in the following section. 

2.3 Free Energy of Micellization 

The free energy of micellization is the free-energy change experienced by a surfactant 

molecule as it transfers from the monomeric state to the micellar state. Since free energy is a 

state function, we can construct a convenient hypothetical path to calculate the free energy of 

micellization, gmic. This hypothetical path for a cationic surfactant with an associated negative 

counterion is illustrated in Figure 2-2. For the general case of a mixture of surfactants, gmic can 

be decomposed as shown below, where each free-energy contribution listed is on a per surfactant 

molecule basis:17, 25  

mic tr int pack st elec mixg g g g g g g= + + + + +  (2-6) 

 

Figure 2-2: Hypothetical process for the formation of a micelle from surfactant monomers.  
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In Eq. (2-6), gtr is the transfer free energy, gint is the interfacial free energy, gpack is the packing 

free energy, gst is the steric free energy, gelec is the electrostatic free energy, and gmix is the mixing 

contribution to the micellization free energy. As indicated in Section 2.2, Eq. (2-6) can be 

obtained by conceiving a hypothetical path in which one first breaks the bonds between the 

surfactant heads and tails to separate the heads from the tails, and also discharges all the ionic 

species. Subsequently, one transfers the tails from an aqueous environment to a bulk tail-like 

(oil) phase. The free-energy change associated with this step is referred to as the transfer free 

energy, gtr, and can be expressed in terms of the aqueous solubility of the tail of surfactant i, Si, 

as follows:17, 25 

, lntr n i i
i

g kT Sα= ∑  (2-7) 

The transfer free energy of a hydrocarbon surfactant tail, gtr,H, having ntail carbon atoms is 

calculated based on the aqueous solubility of the hydrocarbon tail and is given by:17, 25 

, 905 313 5.06 0.44tr H
tail tail

g
n n

kT T T
= − − −  (2-8) 

where T is the absolute temperature. Note that Eq. (2-8) was obtained by fitting the temperature 

variation of the experimental solubility of alkanes having different number of carbon atoms to 

obtain the transfer free energy contributions of a CH2 and a CH3 group. Equation (2-8) shows 

that, at 25 0C, the contributions of a CH3 and a CH2 group to the transfer free energy are -3.51 kT 

and -1.49 kT, respectively. Therefore, at 25 0C gtr,H is given by: 

( ), 3.51 1.49 1tr H
tail

g
n

kT
= − − −  (2-9) 

Similarly, at 25 0C, the contributions of a CF3 and a CF2 group to the transfer free energy of a 

fluorocarbon surfactant tail, calculated based on the solubility data reported by Kabalnov et al.,25, 
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26 are -4.85 kT and -2.30 kT, respectively. Therefore, at 25 0C, the transfer free energy of a linear 

fluorocarbon surfactant tail, gtr,F, having ntail carbon atoms is given by:  

( ), 4.85 2.30 1tr F
tail

g
n

kT
= − − −  (2-10) 

Following the transfer process, one re-establishes the contact between the tail phase and 

water by forming a drop from the tail phase. The free-energy change associated with this step is 

known as the interfacial free energy, gint, and is modeled as follows:17 
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where σmix is the curvature-corrected interfacial tension between water and the oil drop, σi is the 

curvature-corrected interfacial tension between water and the oil drop formed by surfactant i,27 a 

is the surface area per molecule, and a0,i is the surface area per molecule of the oil drop that is 

shielded from contact with water due to the physical connection between the head and tail of 

surfactant i. Note that a0 is equal to 21.0 Å2 and 29.8 Å2 for linear hydrocarbon-based surfactants 

and linear fluorocarbon-based surfactants, respectively.17, 28 We believe that it is necessary to 

incorporate the effect of curvature on the interfacial tension because micelles are small in size, 

thus resulting in high curvatures, for which the interfacial tension is known to deviate from its 

value for flat interfaces.27, 29 Consequently, in Eq. (2-11), we use Tolman’s correction to estimate 

the interfacial tension of a curved interface, σ, using the mean curvature of the interface, c, the 

Tolman distance, δ, and the interfacial tension across a flat interface, σ0.27 Specifically, 

( )0 1 2cσ σ δ≈ −  (2-12) 

The mean curvature of the interface, c, depends on the shape of the micelle. For example, for the 

three regular shapes, spheres, infinite cylinders, and infinite bilayers, c = 1/r, 1/2r and 0, 
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respectively, where r is the radius of the sphere or infinite cylinder. To obtain agreement with 

experimental results, the value of the Tolman distance for a 11-carbon hydrocarbon tail was set 

at 2.0 Å. The same value was also used for an 11-carbon fluorocarbon tail. The values of δ for all 

the other linear tails having ntail carbons in the tail were calculated using the equation below:30, 31 

( ) ( ) ( )
( )

max

max

11
11

tail
tail

l n
n

l
δ δ

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (2-13) 

where lmax is the maximum length of the surfactant tail. Note that lmax is calculated based on the 

bond lengths, bond angles, and van der Waals radii characterizing the tail. For hydrocarbon tails, 

the maximum tail length is given by:1 

( )max, 1.54 1.265 in ÅH taill n= +  (2-14) 

For fluorocarbon tails, the maximum tail length is given by:28 

( )max, 2.04 1.30 in ÅF taill n= +  (2-15) 

The interfacial tension, in dyne/cm, between the micelle core and water for a 

hydrocarbon-based surfactant having ntail carbon atoms in the tail, obtained by fitting the 

experimental interfacial tension data reported by Aveyard et al., is given by:31, 32 

( )( )
0,

1.381 57.868 117.99 0.059 0.1768
2.4

tail tail
H

tail

n T n
n

σ
+ − +

=
+

 (2-16) 

where T is the absolute temperature. Based on the interfacial tensions between perfluorocarbons 

and water reported by Kabalnov et al.,25 a value of 55.0 dyne/cm (independent of the surfactant 

tail length) was chosen for the interfacial tension between the micelle core and water for all the 

fluorocarbon-based surfactants considered.28  
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Finally, the surface area per molecule, a, is calculated using knowledge of the total 

surface area of the micelle core, A, which depends on the micelle shape and size, and the 

volumes of the surfactant tails, vtail, residing in the micelle core. Specifically, 

( )tail

A Aa
n V v

= =  (2-17) 

where V is the volume of the micelle core. The tail volumes of a hydrocarbon tail, vtail,H, and a 

fluorocarbon tail, vtail,F, were estimated based on the densities of alkanes1 and 

perfluorocarbons,25, 28, 33 respectively. Specifically, 

( ) ( )3
, 54.3 26.9 1 in Åtail H tailv n= + −  (2-18) 

( ) ( )3
, 84.0 41.6 1 in Åtail F tailv n= + −  (2-19) 

Following the formation of the oil drop, one needs to recognize that it does not mimic the 

micelle core precisely because the surfactant tails are subject to stricter conformational 

constraints in the micelle core than in the oil drop. The free-energy change associated with 

constraining the surfactant tails to mimic the micelle core is referred to as the packing free 

energy, gpack. It is calculated based on a mean-field, statistical-mechanical method pioneered by 

Ben-Shaul et al.34 In this approach, the free energy of the packed state, gmic core, and the free 

energy of the free oil drop, goil drop, are calculated using the following equation:28  

( ) ( ) ( ) ( )lng P kT P P
α α

α ε α α α= +∑ ∑  (2-20) 

where α denotes the surfactant tail conformation, ε(α) is the energy associated with conformation 

α, P(α) is the probability of finding the surfactant tail in conformation α, k is the Boltzmann 

constant, and T is the absolute temperature. For linear hydrocarbon or fluorocarbon chains, ε(α) 
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is calculated using the Rotational Isomeric State (RIS) model developed for alkanes35, 36 and 

fluoroalkanes,37 respectively.  

The free energy of packing, gpack, is the difference between the gs computed using Eq. 

(2-20) for the packed state and for the free oil drop state. To use Eq. (2-20), one needs an 

expression for P(α). Typically, P(α) would only be a function of the energy of the surfactant tail 

conformation α. However, due to the constraints imposed on the micelle core, P(α) is governed 

not only by the energy of the conformation, but also by these constraints. The three constraints 

imposed on the micelle core are: (i) no part of the surfactant tail can be on the water side of the 

micelle core-water interface, (ii) the end of the tail which is connected to the head is tethered at 

the interface, and (iii) the entire micelle core volume is occupied by the surfactant tails. The first 

two constraints limit the type of conformation that the surfactant tail can adopt, that is, any 

conformation which violates the first two constraints has zero probability of being realized. The 

third constraint can be stated mathematically as follows: 

( ) ( ) ( ),P x V x
α

α φ α =∑  (2-21) 

where x is the direction perpendicular to the micelle core surface, ( ),x αφ  is the volume 

occupied by a surfactant tail in conformation α between surfaces positioned at x and at x+dx, and 

V(x) is the volume available per surfactant molecule between the surfaces at x and at x+dx. An 

expression for P(α) can be obtained by minimizing g subject to the constraint given in Eq. 

(2-21). The resulting expression for P(α) is given by:34, 38  

( )

( ) ( ) ( )

( ) ( ) ( )

exp

exp

1 ,

1 ,

x

x

P
x x dxkT kT

x x dxkT kT
α

α

ε α π φ α

ε α π φ α

− −
=

− −

⎡ ⎤
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥⎣ ⎦

∑

∑

∑
 (2-22) 
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where π(x) is the Lagrange multiplier associated with the constraint given in Eq. (2-21). Note 

that π(x) may be interpreted as the pressure that has to be exerted to force the surfactant tails to 

occupy the entire micelle core volume. Equations (2-21) and (2-22) can be solved self 

consistently for π(x), and subsequently, Eq. (2-20) can be used to compute the free energy of the 

packed state.  

To solve Eqs. (2-21) and (2-22), the surfactant head-tail connection is pinned at a location 

on the micelle core-water interface [constraint (ii)], and all the internal conformations of the 

surfactant tail are enumerated using the appropriate RIS model. For each internal conformation, 

500 external conformations are sampled, which involves changing the orientation of the 

surfactant tail with respect to the micelle core-water interface, as well as the position of the 

surfactant head-tail connection with respect to the micelle core-water interface. For each 

combination of internal and external conformations, constraint (i) is used to determine if the 

conformation is a valid one. For all valid conformations, ε(α) and ( ),x αφ  are computed and then 

used to solve Eqs. (2-21) and (2-22) self consistently.28  

As mentioned before, the packing free energy, gpack, is the difference between the free 

energy in the packed state and the free energy of the initial oil-drop state calculated using Eq. 

(2-20). Note that in the initial oil-drop state, the surfactant tails can move freely anywhere inside 

the micelle. Intuitively, for an oil drop, one expects that there is no need to exert an artificial 

pressure to ensure that the entire micelle volume in the core is occupied by surfactant tails, that 

is, in Eq. (2-22), π(x) is equal to 0. Accordingly, the probability P(α) is simply a function of the 

energy of the conformations and is given by: 
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( )

( )

( )

exp

exp
P

kT

kT
α

α

ε α

ε α

−
=

−

⎡ ⎤
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥⎣ ⎦

∑
 (2-23) 

In this manner, one can compute the free energies corresponding to the initial free oil-drop state, 

goil drop and the final packed state, gmic core, from which gpack can be calculated.28  

The packing step completes the formation of the micelle core. Next, one rejoins the 

surfactant heads and tails, and places the discharged counterions in the micelle head region. 

Since this process involves the localization of several finite-sized surfactant heads and 

counterions in a finite region, there is a free-energy penalty associated with it, which is referred 

to as the steric free energy, gst. This is calculated by estimating the free-energy change associated 

with the excluded-volume interactions between the surfactant heads and the counterions. 

Specifically,17, 39  

( )
, , ,

1 ln 1
n i h i n h c

i
st n

a a
g kT

a

α β
β

⎛ ⎞+
⎜ ⎟= − + −⎜ ⎟⎜ ⎟
⎝ ⎠

∑
 (2-24) 

where ah,i is the cross-sectional area of the head of surfactant i, and ah,c is the cross-sectional area 

of the counterion. These areas are calculated based on the structure of the surfactant head and the 

counterion, and bond lengths, bong angles, and van der Waals radii information. 

Finally, one restores the charge of all the charged species, which contributes to the 

electrostatic free energy, gelec. The electrostatic free energy is the sum of the free energies 

associated with discharging the charged species at the beginning of the thought process, and with 

charging the micelle at the end of the thought process. The discharge free energy, gdisch, is 
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calculated using the Debye-Hückel expression for the self energy of ionic species,40 and is given 

by: 

( )
2 2

0

8 1disch
r h h

z eg
r rπε κ

= −
+

 (2-25) 

where z is the valence of the ionic species, e0 is the electronic charge, εr is the electrical 

permittivity of the dielectric medium (water for aqueous systems), rh is the hydrated radius of the 

ionic species, and κ is the inverse of the Debye Hückel screening length. Note that κ will be 

defined later in Eq. (3-90) in Section 3.6.   

The extensive charging free energy, Gch, is equal to the electric work required to charge 

the micelle from an initial charge of 0Q =  to its final charge of fQ Q=  in the presence of an 

ionic solution. This electric work is calculated using the equation shown below:41 

0

fQ Q

ch ch
Q

G dQψ
=

=

= ∫  (2-26) 

where chψ  is the electrostatic potential of the charged micelle surface. For the purpose of model 

calculations, it is assumed that the charge on the micelle is smeared uniformly on the micelle 

surface. In addition, because of the finite size of the ions, a Stern surface is defined such that no 

free ions are present in the region bounded by the charged surface and the Stern surface.21 

Therefore, to calculate the potential of the charged surface, we define two regions. In the first 

region, located between the charged surface and the Stern surface, the electrostatic potential is 

governed by the Laplace equation due to the absence of any charged species. Beyond the Stern 

surface, the governing equation is the Poisson-Boltzmann (PB) equation.21 Figure 2-3 shows a 

schematic of a section of a model charged micelle. The charged surface is characterized by  
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Figure 2-3: Schematic of a section of the head region of a charged micelle.  

Rcharge and the Stern surface is characterized by RStern. For a spherical and cylindrical micelle, 

Rcharge corresponds to the radius of the charged surface, while for a bilayer, it corresponds to the 

distance of the charged surface from the center of the bilayer.  

As stated above, the charge density in the region between the charged surface and the 

Stern surface is 0. Therefore, the governing equation for the electrostatic potential is given by the 

Laplace equation as shown below:  

2 0ψ∇ =  (2-27) 

The region beyond the Stern surface contains all the free ions. As a result, the electric potential 

in this region satisfies the PB equation. Specifically, 

2 0
,0 0

1 exp i
i i

ir B

z eI z e
k T
ψψ

ε
⎛ ⎞

∇ = − −⎜ ⎟
⎝ ⎠

∑  (2-28) 

Ionic Surfactant Head

Counterion
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RStern

Stern Layer

-
+

+

-

Rcore
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where Ii,0 is the number density of species i in the bulk solution, and zi is the valence of species i. 

Since Eqs. (2-27) and (2-28) are second-order differential equations, two boundary conditions 

are required for each of the differential equations to complete the problem definition. These are 

given below: 

1. The micellar charged surface is assumed to be a constant potential surface with an 

unknown electrostatic potential. However, the total charge on the charged surface is known to be 

equal to Qf. To relate Qf to ψ, we apply Gauss’ law to the micellar charged surface,41 and 

integrate it over the surface area of the micellar charged surface to obtain the following equation:  

chargecharge charge

f
charge charge

R Stern SternA A

Q
dA dA

n
ψ σ

ε ε

⎛ ⎞∂
⎜− ⎟ = =
⎜ ⎟∂⎝ ⎠

∫ ∫)  (2-29) 

where $n  is the unit vector normal to the micellar charged surface, (for example, for a sphere, $n  

would be a unit vector in the radial direction), εStern is the electrical permittivity of the region 

between the Stern surface and the micellar charged surface, and Acharge is the surface area of the 

charged surface. Note that due to the high degree of structuring of water in the Stern layer, the 

electrical permittivity in the Stern layer, εStern, is assumed to be half of that of bulk water, εbulk.28  

2. The electrostatic potential at the Stern surface is continuous. In other words, approaching 

the Stern surface from the Stern layer side or from the bulk solution side results in the same 

electrostatic potential.  

3. The gradient of the electrostatic potential in a direction normal to the Stern surface is 

discontinuous due to the abrupt change in the electric permittivity. Since the Stern surface has no 

surface charge associated with it, the normal derivatives of ψ on both sides of the Stern surface 

are related as follows:41 
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,bulk soln side , tern layer sideStern Stern S

bulk Stern
R Rn n

ψ ψε ε∂ ∂
− = −

∂ ∂) )  (2-30) 

4. Far away from the micellar charged surface, the electrostatic potential ψ attains a finite 

constant value (assumed to be 0 here).  

While analytical solutions to Eq. (2-27) are available for spheres, cylinders, and bilayers, 

analytical solutions to the PB equation are more difficult to come by due to the nonlinearity of 

the equation. Therefore, it is convenient to rewrite Eq. (2-26) as follows: 

( )( ) ( )
0 0 0

f f fQ Q Q Q Q Q

ch Stern ch Stern Stern ch Stern
Q Q Q

G dQ dQ dQψ ψ ψ ψ ψ ψ
= = =

= = =

= + − = + −∫ ∫ ∫  (2-31) 

where the second integral can be computed by solving the Laplace equation in Eq. (2-27) which, 

as stated before, has an analytical solution. Specifically,21 

( )

( )

( )

2

2

0

2

, for a bilayer
2

ln , for a cylinder
2

, for a sphere
2

f

f
Stern charge

Stern charge

Q Q
f Stern

ch Stern
chargeStern chargeQ

f Stern
Stern charge

Stern charge charge

q
R R

a

q RdQ Ra

q RR R
a R

ε

ψ ψ
ε

ε

=

=

⎧
⎪ −
⎪
⎪
⎪ ⎛ ⎞− = ⎨ ⎜ ⎟

⎝ ⎠⎪
⎪ ⎛ ⎞⎪ − ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎩

∫ (2-32) 

where qf is the final charge on the micelle on a per surfactant molecule basis, and acharge is the 

surface area of the charged surface on a per surfactant molecule basis.  

The first integral in Eq. (2-31) has an analytical solution only for planar surfaces. 

Therefore, for spheres and cylinders, we use the Ohshima, Healy, and White (OHW) 

approximation to evaluate ψStern. Specifically,21, 42 
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( )0 0

0

2 1
2sinh tanh

2 4
Sy ys
x
−⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (2-33) 

where s is a dimensionless charge defined as ( )0 Stern bulks qe kT aκ ε= [aStern is the surface area of 

the Stern surface on a per surfactant molecule basis], y0 is the dimensionless electric potential 

defined as 0 0 Sterny e kTψ= , S is the shape factor which takes values of 1, 2, and 3 for bilayers, 

cylinders, and spheres, respectively, and x0 is a dimensionless length defined as 0 Sternx Rκ= . 

Since Eq. (2-33) is an implicit equation in ψStern, the first integral in Eq. (2-31) is rewritten in 

dimensionless form and modified as follows:43 

( )

( )

0 0

0 0

1

f f

f

q q

Stern Stern f f Stern

y

f f
f

dq q q qd

kT q y s y dy
e s

ψ ψ ψ= −

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠

∫ ∫

∫
 

( )
0 0

8 11 4cosh 4 ln cosh
2 4

f f
f f

f

y ySkT q y
e s x

⎛ ⎞⎛ ⎞⎛ ⎞−⎛ ⎞ ⎛ ⎞
= − − +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

 (2-34) 

where yf and sf denote y0 and s evaluated for q = qf, respectively. Note that evaluation of Eq. 

(2-34) requires knowledge of yf, which can be calculated by solving the implicit Eq. (2-33).  

 The contributions associated with mixing the different surfactant tails forming the mixed 

micelle, as well as with mixing the surfactant heads with the counterions, are not included in any 

of the free-energy contributions. Therefore, an additional mixing contribution, gmix, is added. 

Specifically,28 

,

, ,

ln lnn i n
mix n

i n i n n i n
i i

g kT
α ββ
α β α β

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟= +⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑ ∑
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,ln ln
1 1

n i n
n

i n n

kT
α ββ
β β

⎛ ⎞⎛ ⎞ ⎛ ⎞
= +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎝ ⎠

∑  (2-35) 

Note that Eq. (2-35) used to calculate the mixing free energy neglects the enthalpic 

contribution, and accounts solely for the entropic contribution. This is reasonable for mixtures of 

hydrocarbon-based surfactants because they are expected to behave ideally, that is, their enthalpy 

of mixing is expected to be 0. In addition, the non idealities associated with mixing charged 

counterions with oppositely-charged, or uncharged, surfactant heads are accounted for in the 

electrostatic free energy, gelec. In Chapter 5, gmix will be redefined for mixtures of fluorocarbon-

based and hydrocarbon-based surfactants, where the surfactant tails have a non-zero enthalpy of 

mixing. Adding all the free-energy contributions, namely, gtr, gint, gpack, gst, gelec, and gent, yields 

gmic as shown in Eq. (2-6). 

2.4 Computer-Simulation-Molecular-Thermodynamic (CSMT) Framework 

to Model Surfactant Micellization 

The MT framework is based on several simplifying assumptions about the hydration 

states of a surfactant molecule in the monomeric and the micellar states. For example, in the MT 

framework, the surfactant head is considered to be fully hydrated in both the monomeric and the 

micellar states. The surfactant tail is assumed to be partially hydrated, and the degree of 

hydration depends only on the shape and size of the micelle core. To relax these assumptions, 

recently, Stephenson et al. developed a Computer-Simulation-Molecular-Thermodynamic 

(CSMT) framework to model single-surfactant systems. In the CSMT approach structural details 

obtained using all-atomistic MD simulations of micelles and monomers are incorporated into the 

well-established MT framework for surfactant micellization to obtain a better quantification of 

the hydrophobic effect.44-46  
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In the MT framework, the hydrophobic effect is quantified by the sum of gtr and gint. To 

improve upon this, in the CSMT framework, Stephenson et al. proposed the following 

replacement for (gtr + gint):45  

inttr dehydr hydrg g g g+ → +  (2-36) 

where gdehydr is the dehydration free energy and ghydr is the hydration free energy. These two new 

free-energy contributions are calculated using information obtained from MD simulations of the 

surfactant in two different states: (1) the monomeric state in water, and (2) the micellar state in 

water. The dehydration free energy per molecule is a measure of the free-energy change 

associated with the dehydration of the surfactant molecule when it is incorporated in the micelle 

core and is given by:45 

( ) ,1dehydr i tr i
i

g f g= −∑  (2-37) 

where i denotes the constituent groups (typically a heavy atom and any associated hydrogen 

atoms) of a surfactant, gtr,i denotes the contribution of group i to the transfer free energy, and fi 

denotes the degree of hydration of group i which is defined as follows: 

number of hydrating contacts of group  in the micelle simulation
number of hydrating contacts of group  in the monomer simulationi

if
i

=  (2-38) 

Equation (2-38) shows that: (i) fi is 1 when the hydration state of group i remains unchanged as it 

moves from the monomer state to the micelle state, and (ii) fi is 0 when group i undergoes 

complete dehydration when it is incorporated in the micelle. In Eq. (2-38), a hydrating contact is 

defined as ‘contact’ with any atomic group that is capable of participating in hydrogen bonding 

(for example, water; oxygen and hydrogen in carboxylic acid; oxygen in ether and ketone; and 

oxygen and hydrogen in alcohol), or in coordinate bonding.44, 46 Quantitatively, ‘contact’ with 
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group i means the presence of an atomic group within a threshold distance of group i. Here, the 

threshold distance for ‘contact’ is set at 0.50 nm. This cutoff distance is based on the distance of 

the first hydration shell about each group of interest, and typically varies between 0.45 – 0.55 

nm.47  

The second free-energy contribution is the hydration free energy per molecule, ghydr, 

which is the change in free energy due to the change in the hydrogen-bonding network of water 

around a surfactant molecule in the micelle state relative to that in the monomer state. It is 

known that the water structure around a hydrophobic entity depends on the size of the cavity 

created by the hydrophobic entity.48 In the micellization process, a surfactant molecule transfers 

from a small cavity state (monomer) to a large cavity state (micelle), and this transfer is 

responsible for the hydration free energy per molecule. This free energy can be quantified as 

follows:45, 46 

( )
( )

,0

0

tr mcore
hydr m m

m core m

gA A
g f SASA

SASA A SASA
σ⎛ ⎞−−

= ⋅ −⎜ ⎟⎜ ⎟−⎝ ⎠
∑  (2-39) 

where m denotes surfactant groups that form the micelle core, SASAm is the solvent accessible 

surface area of group m, σ is the curvature-corrected interfacial tension between the micelle core 

and water, Acore is the surface area of the micelle core if it was assumed that the surfactant tails 

form a spherical micelle core, A0 is the surface area of the micelle core that is shielded from 

contact with water due to the physical bond between the surfactant head and tail, and SASAcore is 

the solvent accessible surface area of the micelle core. Conceptually, the solvent accessible 

surface area is the area of the surface formed by the center of a probe as it is rolled over the 

molecules of interest. Here, we have used a probe radius of 0.14 nm, which is equal to the van 

der Waals radius of water.49 In Eq. (2-39), the first term is a measure of the free energy 
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associated with the interactions between the surfactant molecules and water in the micellar state, 

while the second term is a measure of the free energy associated with the interactions between 

the surfactant molecule and water in the monomeric state.  

Equations (2-37) and (2-39) clearly show that the dehydration and the hydration free 

energies per molecule depend on the size of the simulated micelle. The size dependence of these 

two new free-energy contributions makes it difficult to blend them with the MT framework. This 

follows because one does not know a priori the shape and size of the micelle that will exist in the 

surfactant solution, and therefore, one does not know the shape and size of the micelle that 

should be simulated. To address this challenge, Stephenson et al. rearranged Eq. (2-36) as 

follows:45 

, ˆtr CSMT dehydr hydr intg g g g= + −  (2-40) 

where ĝint is the interfacial free energy per molecule calculated for the simulated micelle using 

Eq. (2-11). The rearrangement in Eq. (2-36) was motivated by the observation that, in the MT 

framework, the transfer free energy, gtr, is independent of the micelle characteristics, as can be 

seen from Eq. (2-7). Through calculations of gtr,CSMT for simulated micelles of different sizes, we 

have confirmed that gtr,CSMT is quite insensitive to the size of the simulated micelle.45, 47 This 

gtr,CSMT is used to replace gtr in Eq. (2-6) in order to incorporate the information obtained from 

the molecular dynamics simulations into the MT framework, giving rise to the CSMT 

framework.  

It is noteworthy that the CSMT framework improves on the traditional MT framework 

because it: (1) provides a better quantification of the hydration state of the surfactant molecules 

in the monomeric and the micellar states,45 (2) can be used to systematically identify the polar 
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head and the non polar tail groups in a surfactant molecule, which are both important inputs to 

the MT framework,47 and (3) can be used to model surfactants possessing a complex chemical 

architecture that are not amenable to traditional MT modeling.45, 47 Due to (2) and (3) above, the 

range of applicability of the CSMT framework is significantly broader than that of the MT 

framework.  

2.5 Predicting Micellization Properties 

Having discussed the model for the free energy of micellization, the next step is to use it 

to predict micellar solution properties of practical significance, including critical micelle 

concentrations (CMCs), micelle shapes, and micelle aggregation numbers. Recall that the CMC 

is the surfactant concentration that marks the onset of micellization. Therefore, below the CMC, 

one expects that the concentration of micellar aggregates is negligible, while above the CMC, 

one expects it to be of the order of the added surfactant concentration. In other words, Xn~0 for 

Xs<<Xcmc, while Xn~Xs for Xs>Xcmc, where Xs denotes the surfactant concentration in mole 

fraction units, and Xcmc denotes the CMC in mole fraction units. To define the CMC, it is 

insightful to analyze Eq. (2-5) which relates Xn and X1. Typically, the aggregation number, n, is a 

large number, and therefore, Eq. (2-5) shows that: (i) Xn is negligible when X1 is significantly 

smaller than the denominator of Eq. (2-5), (ii) Xn~Xs when X1 is of the order of the denominator 

in Eq. (2-5), and (iii) X1 cannot exceed the denominator of Eq. (2-5), because this would result in 

unphysical values of Xn. These three considerations prompted the definition of the CMC as the 

denominator of Eq. (2-5). Specifically,17 

, 1, 1,exp 1 ln lnmic
cmc n n i i n c

i

gX n X
kT

β α α β⎛ ⎞= − − − −⎜ ⎟
⎝ ⎠

∑  (2-41) 



52 

To define a unique CMC, one needs a unique set of micelle attributes, which include the 

shape, S, of the micelle, the core-minor radius of the micelle, lc, (which is equal to the radius for 

spheres and cylinders, and to half the thickness for bilayers), the degree of counterion binding, 

βn, in the case of charged surfactants, and the micelle composition, αn,i, in the case of a mixture 

of surfactants, at which Eq. (2-41) is evaluated. These micelle attributes are chosen such that 

they correspond to the smallest value of Xcmc. This follows because each set of micelle attributes 

is associated with a specific free energy of micellization and a corresponding value of Xn. The set 

of micelle attributes that yields the smallest value of Xcmc corresponds to the micelle that has the 

lowest free energy of micellization and the highest value of Xn. This way, the characteristics of 

the micelle that forms in the surfactant solution, namely, the optimal micelle shape, size, 

composition, and degree of counterion binding, are obtained by finding the set of micelle 

characteristics that yields the minimum value for Xcmc, as defined in Eq. (2-41).28  

The MT and the CSMT frameworks discussed in this chapter constitute the foundation of 

this thesis. The following three chapters discuss the work carried out as part of this thesis 

towards research aims 1, 2, and 3 presented in Section 1.3. Specifically, in Chapter 3, the MT 

framework, discussed in Sections 2.2 and 2.3, is generalized to model discoidal and ellipsoidal 

micelle shapes, which are important micelle shapes in the context of fluorocarbon-based 

surfactants. The CSMT framework, discussed in Section 2.4, is generalized for mixtures of 

surfactants in Chapter 4. Finally, in Chapter 5, the MT framework discussed in this chapter is 

generalized to predict the micellization properties of mixtures of fluorocarbon-based and 

hydrocarbon-based surfactants.  

  



53 

 

Chapter 3 

3 Modeling the Micellization Behavior of 

Single Fluorocarbon-Based Surfactants 

3.1 Introduction 

At a fundamental level, molecularly modeling the micellization behavior of fluorinated 

surfactants presents several new challenges. Structurally, the main difference between a 

fluorocarbon chain and a hydrocarbon chain is that a fluorine atom occupies more space than a 

hydrogen atom.26 As a result, fluorocarbon chains favor forming micellar aggregates having 

shapes with lower curvature.26 To better understand this tendency, let us consider a micellar 

aggregate of a predetermined shape and size made of a hydrocarbon-based surfactant. Then, if 

we replace the hydrocarbon tails with fluorocarbon ones, we will be able to accommodate fewer 

surfactant tails in the aggregate core because fluorocarbons occupy more volume. However, the 

surface area of the micellar aggregate remains the same. This implies that the surface area per 

surfactant molecule increases, which in turn, increases the interfacial free-energy penalty, gint, 

introduced in Section 2.3. As a result, the fluorocarbon tails of fluorinated surfactants prefer to 

aggregate in a micelle shape that has a lower surface area for the same volume, which is a 
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characteristic of low-curvature shapes.26 A similar reasoning also explains why phospholipids 

(double-tailed zwitterionic surfactants) form bilayers. In the case of phospholipids, the increase 

in volume is due to the presence of two tails in these surfactants. 

The second important difference between fluorocarbon-based and hydrocarbon-based 

surfactants is that the energies associated with the different conformations of a fluorocarbon 

chain are higher than those of a hydrocarbon chain. This makes a fluorocarbon chain stiffer, and 

is another reason why fluorocarbon-based surfactants prefer to form aggregates with low-

curvature shapes.26 To understand how rigidity affects the packing of surfactant tails, let us 

compare packing a collection of sticks to packing pieces of rope in both a sphere and a bilayer. 

The rope can bend and occupy any available volume, thereby easily packing in a sphere. On the 

other hand, because of the inability of sticks to bend, they cannot pack in the sphere without 

leaving empty spaces near the periphery of the sphere. Instead, the stick packing would be 

similar to the arrangement of spokes on a bicycle wheel, with denser packing at the center which 

becomes increasingly sparse towards the periphery of the wheel. Such an arrangement violates 

the constraint that the micelle core should be completely occupied by the surfactant tails (see Eq. 

(2-21) in Section 2.3). On the other hand, in the case of packing in a bilayer, the sticks pack very 

efficiently because they can stack next to each other between the two flat surfaces to fill the 

entire volume. However, in the case of the rope, although all the pieces can stretch out and fill 

the entire volume like in the stick case, the probability of that occurring is low. Indeed, unlike the 

sticks, the rope has an equal probability of taking any conformation, and therefore, the 

probability that all the rope pieces assume the same fully-stretched out conformation is very low. 

Accordingly, based on this analogy, one can conclude that fluorocarbon chains, similar to sticks, 

owing to their rigidity, prefer to pack in low-curvature shapes, like disks, over high-curvature 
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shapes, like spheres. Although unlike sticks the fluorocarbon tails can bend, this analogy sheds 

light on how the rigidity of the surfactant tail affects the preferred micelle shape.  

The results discussed above are also supported by experimental studies which have 

shown that some fluorinated surfactants, for example, cesium perfluorooctanoate, form discoidal 

micelles.50, 51 Therefore, it appears beneficial to develop a model for discoidal aggregates in 

order to model the micellization behavior of fluorocarbon-based surfactants.  

The main challenge in modeling discoidal micelles is that, unlike the three basic micelle 

shapes that are commonly modeled, namely, spheres, infinite cylinders, and infinite bilayers, 

discs have a varying curvature. In an earlier attempt to model discoidal micelles, Srinivasan and 

Blankschtein modeled the micelle as bilayers with a semi-toroidal rims wrapped around the 

bilayers.26 The semi-toroidal rim was modeled as a semi-cylinder with an increased surface area 

to account for bending. Of the various free-energy contributions presented in Section 2.3, those 

that depend on the surface area per molecule, namely, the interfacial free energy, gint, the steric 

free energy, gst, and the electrostatic free energy, gelec, were modified by replacing the surface 

area per molecule with an increased surface area per molecule to account for the bending of the 

semi-cylinder. Since the packing free energy, gpack is not directly related to the surface area per 

molecule, gpack for the semi-toroidal rim was approximated using the gpack of a cylinder. This 

way, an explicit dependence of the free energy of micellization, gmic, on the position-dependent 

curvature of the semi-toroidal rim was avoided.26 Although the model by Srinivasan and 

Blankschtein was able to qualitatively predict various experimentally observed trends, the 

predictions did not always agree quantitatively.28 A possible reason for the discrepancy may be 

that the curvature dependence of the different free-energy contributions was not accounted for 

with sufficient accuracy. With this in mind, in this chapter, I have developed a model that 
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explicitly incorporates the effect of curvature on the various free-energy contributions to gmic. In 

addition to discoidal micelles, in this chapter, I have extended the model to describe a biaxial 

ellipsoidal micelle, which is a commonly reported micelle shape.52-54 For fluorosurfactants, the 

biaxial ellipsoidal micelle shape may be particularly important when the fluorosurfactant has a 

large head group. This follows because while the bulky head group prefers to micellize in high-

curvature micelle shapes due to their higher surface area-to-volume ratios, the bulky 

fluorocarbon tail prefers to micellize in low-curvature micelle shapes as discussed earlier in this 

section. Since the ellipsoidal shape, on average, has a curvature which is smaller than that of a 

sphere, but higher than that of a disc, it can be the optimal micelle shape. Moreover, biaxial 

ellipsoids can also represent a realistic transition shape between a sphere and a cylinder or a disc. 

Consequently, the biaxial ellipsoidal shape will also be modeled in this Chapter.   

Before developing the micellization models for discoidal and biaxial ellipsoidal micelles, 

Section 3.2 introduces concepts of differential geometry which are essential to model the effect 

of curvature on the different free-energy contributions to gmic. Sections 3.3, 3.4, 3.5, and 3.6 

present the development of the model equations for the interfacial free energy, the packing free 

energy, the steric free energy, and the electrostatic free energy for discoidal and ellipsoidal 

micelles, respectively. Following the model development, Section 3.7 compares the curvature-

corrected model with the previous model for discs developed by Srinivasan and Blankschtein.28 

Finally, Section 3.8 utilizes the new model to shed some light on the feasibility of biaxial 

ellipsoids as micelle shapes.  
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3.2 Geometrical Properties  

To incorporate the effect of curvature in the various free-energy contributions, it is 

necessary to derive expressions for geometrical properties, including the mean curvature, the 

differential area, and the differential volume, for the different shapes to be modeled. These can 

be derived using concepts of differential geometry. Note that the methods described in this 

section are adopted from the book on differential geometry by Milliman and Parker.55 

In differential geometry, properties related to a surface are derived in terms of the first 

and second fundamental forms of the surface. A surface, S , in three dimensions, can be 

parameterized using two independent variables. Let x  denote the parameterization of S  in terms 

of the variables u1 and u2, that is, S  is given by ( ) ( ) ( )( )1 1 2 2 1 2 3 1 2, , , , ,x f u u f u u f u u= . In 

addition, let x1 and x2 denote the partial derivatives of x  with respect to u1 and u2, that is: 

1, 2i
i

xx i
u
∂

= =
∂

 (3-1) 

It can be shown that at any point on the surface, the vectors x1 and x2 form a basis (not 

necessarily orthonormal) for the tangent space (the plane created by the all tangents to the 

surface at a point). Therefore, any two tangents, X and Y, at a point on the surface can be written 

as a linear combination of x1 and x2. In other words, 

1,2

i
i

i
X X x

=

= ∑  (3-2) 

and  

1,2

i
i

i

Y Y x
=

= ∑  (3-3) 
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where Xi and Yi denote coefficients. The first fundamental form, I(X,Y), of a surface is the rule 

that gives the inner product between any two vectors, X and Y, belonging to the tangent space of 

the surface at a point: 

( )
1,2, 1,2 1,2, 1,2

, , ,i j i j
i j ij

i j i j

I X Y X Y X Y x x X Y g
= = = =

= = =∑ ∑  (3-4) 

where gij is the inner product of xi with xj. The first fundamental form is mostly used to derive 

properties that are intrinsic to the surface, that is, properties that depend only on the surface and 

not on the space in which it is embedded. The surface area is one such property and is given by:  

1 2A g du du= ∫∫  (3-5) 

Here, |g| denotes the determinant of the matrix g which is formed by the elements gij.  

The mean curvature of a surface, on the other hand, depends on the embedment of the 

surface in 3-dimensional space. As a result, expressions for the mean curvature cannot be written 

in terms of just the first fundamental form of the surface, and requires the second fundamental 

form as well. The second fundamental form, II(X,Y), for two vectors, X and Y, which belong to 

the tangent space of the surface at a point is given by: 

( )
1,2, 1,2

, i j
ij

i j
II X Y L X Y

= =

= ∑  (3-6) 

The following equations are used to define Lij: 

$ 1 2

1 2

x xn
x x
×

=
×

 (3-7) 

2

ij
j i

xx
u u
∂

=
∂ ∂

 (3-8) 
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,ij ijL x n=  (3-9) 

Using the parameters Lij and gij from the second and the first fundamental forms, respectively, 

another set of parameters, l
kL , is obtained which is used to calculate the mean curvature: 

1,2

l il
k ik

i
L L g

=

= ∑  (3-10) 

where gil is the element in the ith row and lth column in the g1 matrix. The mean curvature, c, is 

then given by half the trace of the matrix which has l
kL  as a matrix element in the lth row and kth 

column:  

( )1 2
1 2

1
2

c L L= +  (3-11) 

To calculate the differential volume, let us first consider a body parameterized in the 

Cartesian coordinates. The differential volume in this case is given by dxdydz. In many cases it is 

more convenient to parameterize the body in terms of different coordinates. The differential 

volumes in two different coordinate systems are related to each other via the Jacobian, J. For 

example, let a body be parameterized in two different sets of coordinates: (x,y,z) and (p,q,r). The 

differential volume element in the (x,y,z) coordinate system, (dV)(x,y,z), is related to that in the 

(p,q,r) coordinate system, (dV)(p,q,r), as follows: 

( )( ) ( )( ), , , ,x y z p q r
dV dxdydz J dV J dpdqdr= = ⋅ =  (3-12) 

where |J| is the determinant of the Jacobian matrix, J, which is defined as follows:  
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x x x
p q r
y y yJ
p q r
z z z
p q r

⎡ ⎤∂ ∂ ∂
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂

= ⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂
⎢ ⎥∂ ∂ ∂ ⎦⎣

 (3-13) 

Using expressions for the surface area, the mean curvature, and the differential volume in Eqs. 

(3-5), (3-11), and (3-12), appropriate equations for discs and ellipsoids are derived in the next 

two sections.  

3.2.1 Geometrical Properties of a Discoidal Micelle 

Figure 3-1 shows a schematic of a discoidal micelle which is modeled as a central bilayer 

with a semi-toroidal rim wrapped around the bilayer. Model equations for the central bilayer 

were derived and presented in Section 2.3. To calculate the geometrical properties of the semi-

toroidal rim, it is first parameterized as follows: 

( )
( )

cos cos

cos sin , 0 ' , 0 2 , and 2 2
sin

x b r v u

y b r v u r b u v

z r v

π ππ

= +

−= + ≤ ≤ ≤ < ≤ <

=

 (3-14) 

where the various geometric variables are shown in Figure 3-1.  

The differential volume of the semi-toroidal rim can be calculated by computing the 

Jacobian matrix for the parameterization in (3-14), and then substituting it in Eq. (3-12) (for 

details of the calculation see Section 7.1.1 of the Appendix). This yields:  

( )cosdV dxdydz r b r v drdudv= = +  (3-15) 

For a discoidal micelle, the surface at r = b’ would represent the micelle core-water  
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Figure 3-1: Schematic of a model discoidal micelle. 

interface. Therefore, the parameterization of the surface for which the differential area and mean 

curvature needs to be determined is obtained by setting r equal to 1 in Eq. (3-14). This yields: 

( ) ( ) ( )( ), , 'cos cos , 'cos sin , 'sin , 0 2 and 2 2x x y z b b v u b b v u b v u vπ ππ −= + + ≤ < ≤ < (3-16) 

Using the first fundamental form, the differential area associated with the surface 

parameterization in Eq. (3-16) is given by: 

( )' 'cosdA b b b v dudv= +  (3-17) 

Similarly, using the second fundamental form, the mean curvature is given by: 

1 2 'cos
2 ' 'cos

b b vc
b b b v

+⎛ ⎞= − ⎜ ⎟+⎝ ⎠
 (3-18) 

Note that the negative sign in c is due to the sign of the normal, n. At each point on a surface, 

there are two normals that differ from each other by a negative sign. As a result, the sign of the 

+

=

v
x

y

2b'

2b

u

z r
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mean curvature depends on the choice of the normal. The value of the mean curvature of the 

surface is required only in the evaluation of the interfacial tension to determine the interfacial 

free energy introduced in Section 2.3. For the case of a spherical micelle, the mean curvature is 

taken to be positive. Since the orientation of the semi-toroidal surface is similar to that of a 

sphere (the torus is curved in a similar manner), the sign of the mean curvature for the torus is 

taken to be equal to that for a sphere, that is, positive. Therefore, c, is defined as follows: 

( )
( )

2 'cos
2 ' 'cos

b b v
c

b b b v
+

=
+

 (3-19) 

Note that evaluations of the first and second fundamental forms that yield Eqs. (3-15), (3-17), 

and (3-19) are presented in Section 7.1.2 of the Appendix. 

3.2.2 Geometrical Properties of a Biaxial Ellipsoidal Micelle 

A schematic illustrating the various geometric variables characterizing a biaxial 

ellipsoidal micelle is shown in Figure 3-2. A convenient parameterization for a biaxial ellipsoid 

is given by:  

cos sin
sin sin , 0 1, 0 2 , 0
cos

x pr u v
pr u v r u and v

z qr v
π π

=
≤ ≤ ≤ < ≤ ≤

=
y =  (3-20) 

The angle u  is equivalent to the azimuthal angle in spherical coordinates, while the angle v  is 

similar, but not identical, to the polar angle used in spherical coordinates. Note that the 

parameterization of the biaxial ellipsoid reduces to that of a sphere when p q= . 

The differential volume of the biaxial ellipsoid parameterized in Eq. (3-20) can be 

calculated by computing the Jacobian matrix, and then substituting it in Eq. (3-12). Specifically,  
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Figure 3-2: Schematic of model prolate ellipsoidal and oblate ellipsoidal micelles. 

2 2 sindV dxdydz p qr vdrdudv= =  (3-21) 

To calculate the mean curvature and the differential area, the parameterization of the 

micelle core-water interface is derived by setting r equal to 1 in Eq. (3-20). This yields: 

( ) ( ), , cos sin , sin sin , cos , 0 2 0x x y z p u v p u v q v u and vπ π= ≤ < ≤ ≤  (3-22) 

Using the first fundamental form, the differential area associated with the surface 

parameterization in Eq. (3-22)is given by: 

2 2 2 2sin cos sindA g dudv p v p v q vdudv= = +  (3-23) 

Similarly, using the second fundamental form, the mean curvature is given by: 

( )
( )

2 2 2 2 2

3
2 2 2 2 2

cos sin
2 cos sin

p p v q vqc
p p v q v

+ +
=

+
 (3-24) 

Note that, similar to Section 3.2.1, the details of the derivation of Eqs. (3-21), (3-23), and (3-24) 

are presented in Sections7.1.3 and 7.1.4 of the Appendix.  
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3.3 Interfacial Free Energy 

As discussed in Section 2.3, the interfacial free energy per surfactant molecule, gint, is the 

product of the interfacial tension between water and the micelle core, σ, and the surface area per 

surfactant molecule of the micelle core that is exposed to water. A change in curvature changes 

the surface area of the micelle core, and therefore, affects gint, an effect that is accounted for in 

the previous discoidal model developed by Srinivasan and Blankschtein.26 In addition, the 

curvature of the micelle also affects the interfacial tension between water and the micelle core, 

an effect which is not accounted for in the model by Srinivasan and Blankschtein.26  

To incorporate the effect of the position-dependent curvature on the interfacial tension, 

let us consider the micelle core-water interface. The interface between two phases is, in fact, a 

thin, highly inhomogeneous transition region which separates the two homogeneous phases. This 

non-homogeneity complicates the analysis of the transition region, and therefore, to simplify the 

treatment of such a system, Gibbs proposed a model system in which the two phases are assumed 

to meet at an imaginary dividing surface, known as the Gibbs dividing surface, which precisely 

separates two distinct homogeneous phases.56 The properties of the entire transition layer can 

then be modeled in terms of the properties of the dividing surface. The Gibbs dividing surface 

exhibits various excess properties to make all extensive properties of the model system equal to 

those of the real system. The surface on which the surface tension acts is referred to as the 

surface of tension. The surface of tension has a superficial mass density to account for the 

difference between the total mass in the real system and the sum of the masses in the two 

homogeneous phases in the model system that are separated by this imaginary surface of 

tension.29 Based on the Gibbs adsorption equation and the Young-Laplace equation, Tolman 
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derived an equation relating the surface tension, σ, to the mean curvature of the surface of 

tension, c:29 

( )2
' "

d d cσ σ
ρ ρ
Γ

= −
−

 (3-25) 

where Γ is the superficial mass density at the surface of tension which is a measure of the 

number of particles adsorbed on the surface of tension per unit area, ρ' and ρ" are the mass 

densities of the two homogeneous phases separated by the surface of tension, and c is the 

position dependent mean curvature characterizing the surface of tension. Let x be a measure of 

the distance from any point on the surface of tension, in a direction perpendicular to the surface. 

Therefore, if x = 0 denotes the surface of tension (shown as the solid curve in Figure 3-3), then x 

= x' (shown as the dashed curve in Figure 3-3) is a surface concentric to the surface of tension 

such that a line drawn perpendicular to the surface of tension will intersect the dashed surface at 

a distance of x'. If r (=1/c) is the mean radius of curvature of the surface of tension, then, the 

local surface area at the surface of tension, A(x = 0), is equal to r2dw where dw is the solid angle 

subtended by the surface of tension. The surface area, A(x), of a surface concentric to the surface 

of tension, at a perpendicular distance x from it, is A(0)(r + x)2/r2 = A(0)(1 + cx)2 Therefore, the 

volume between the surfaces x and x+dx is A(0)(1 + cx)2dx. Using these expressions, a mass 

balance for the entire two-phase system yields: 

 

Figure 3-3: Diagram showing the surface of tension and other relevant parameters. 

x
xx'
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( ) ( ) ( ) ( )( ) ( ) ( )( )
0

2 2

0

0 0 ' 0 1 '' 0 1x A A cx dx A cx dxρ ρ ρ ρ
∞

−∞

Γ = = − + + − +∫ ∫  (3-26) 

where ρ is the local mass density which is a function of x, and ±∞ represents a large x beyond 

which the phase is homogeneous, that is, ρ = ρ' and ρ = ρ" and the integrands are equal to 0. If x 

= δ denotes the position of a dividing surface that has a zero superficial mass density associated 

with it, that is, Γ(x = δ) = 0, then: 

( ) ( ) ( ) ( )( ) ( ) ( )( )2 2' 0 1 '' 0 1 0x A A cx dx A cx dx
δ

δ

δ δ ρ ρ ρ ρ
∞

−∞

Γ = = − + + − + =∫ ∫  (3-27) 

Combining Eqs. (3-26) and (3-27) yields:  

( ) ( )( ) ( )( )2 2 2 3

0

10 ' '' 1 ' '' 3x cx dx c c
δ

ρ ρ ρ ρ δ δ δΓ = = − + = − + +∫  (3-28) 

which can be used in Eq. (3-25) to eliminate Γ to obtain an expression for σ in terms of the local 

curvature and the distance between the surface of tension and the surface with zero superficial 

mass density, δ, known at the Tolman distance.29 Specifically, 

( ) ( )212 1
3

d c c d cσ δ δ σ δ⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

 (3-29) 

In the limit when cδ << 1, Eq. (3-29) reduces to:  

( )( ) ( ) ( )

( )

2 1 2 2

2

d d c c d c d d c

d d c

σ σ δ δ σ δ σ σ δ

σ δ
σ

= − + ⇒ + = −

⇒ = −
 (3-30) 

which can be integrated from (σ = σ0, cδ = 0δ) [flat interface] to (σ, cδ) and simplified in the limit 

when σ - σ0 << σ0 to yield a relation between the interfacial tension and the mean curvature of the 

interface: 



67 

( )

0 0

0 0 0

0

ln ln 1 2

1 2

c

c

σ σ σ σσ δ
σ σ σ

σ σ δ

⎛ ⎞⎛ ⎞ ⎛ ⎞− −
= + ≈ = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⇒ = −

 (3-31) 

Equation (3-31) incorporates the effect of curvature on σ. Additionally, the effect of 

curvature on the surface area has to be incorporated to obtain a curvature-corrected interfacial 

free energy per molecule, gint. This is done by deriving an expression for the local interfacial free 

energy penalty as a function of position, followed by integrating this expression over the entire 

micelle core-water interface. To this end, an expression for the local differential extensive 

interfacial free energy, dGint,local, is given by: 

( )0int,localdG dA a dnσ= −  (3-32) 

where dn denotes the differential number of molecules and a0 dn denotes the differential 

shielding area. Using the constraint that the micelle core has a uniform density, dn can be written 

as follows: 

( )ndn dVV=  (3-33) 

where dV and V are the differential volume and the total volume, respectively. Using Eq. (3-32), 

one can calculate the interfacial free energy per molecule, gint, as follows: 

( )0int,local
int

dG dA a dn
g

ndn

σ −
= =∫ ∫

∫
 (3-34) 

3.3.1 gint of the Semi-Toroidal Rim of a Discoidal Micelle 

To calculate gint for the semi-toroidal rim associated with a discoidal micelle, first, the 

differential volume, dV, is calculated using Eq. (3-15). Specifically,  
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( )( )
' 2 3

0

' 'cos cos
2 3

r b

r

bb bdV r b r v dudv dr v dudv
=

=

⎛ ⎞
= + = +⎜ ⎟

⎝ ⎠
∫  (3-35) 

It should be noted that the purpose of defining the differential volume as shown in Eq. (3-35) is 

to obtain an expression for the differential shielding area which is meaningful only at the surface 

and not in the interior of the torus. Using Eqs. (3-17), (3-19), (3-31), (3-33), (3-34), and (3-35), 

dGint,local for a semi-toroidal rim can be written as follows: 

( )

( ) ( )

( )

0 0

2 3

0 0

2 3

0 0

' '1 2 ' 'cos cos
2 3

2 'cos ' '1 ' 'cos cos
' 'cos 2 3

int,local
ndG dA a dn dA a dV
V

n bb bc b b b v dudv a v dudv
V

b b v n bb bb b b v a v dudv
b b b v V

σ σ

σ δ

δσ

⎛ ⎞= − ⋅ = −⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞
= − + − +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞⎛ + ⎞⎛ ⎞⎛ ⎞= − + − +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 (3-36) 

and 

int,local
int,local

dG
g

dn
=  

( )
2 3

0 0

2 3

2 'cos ' '1 ' 'cos cos
' 'cos 2 3

' ' cos
2 3

b b v n bb bb b b v a v
b b b v V

n bb b v
V

δσ
⎛ ⎞⎛ ⎞⎛ + ⎞⎛ ⎞⎛ ⎞− + − +⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠=
⎛ ⎞

+⎜ ⎟
⎝ ⎠

 (3-37) 

For the example case of a discoidal micelle formed by a 6-carbon fluorocarbon tail at 

298.15 K, Figure 3-4 shows the variation of the local interfacial free energy per molecule of the 

semi-toroidal rim, gint,local, as a function of the angle v when b = 3b' and b' is equal to the 

maximum surfactant tail length given by Eq. (2-15). Figure 3-4 shows that gint,local attains its 

maximum value at v = 0, corresponding to the central plane of the semi-toroidal rim. This 

follows because the semi-toroidal rim has the highest curvature at v = 0 which also corresponds 

to the largest surface area per molecule. Since the interfacial free energy per molecule is 
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Figure 3-4: Variation of the local interfacial free energy per molecule, gint,local, as a function of the angle v. 

proportional to the surface area per molecule, gint,local attains its maximum value at the highest 

curvature region. 

After obtaining gint,local, one can calculate the average interfacial free energy per molecule 

for the semi-toroidal rim, gint, by integrating Eq. (3-36), which requires expressions for the total 

surface area, A, and the total volume, V, of the semi-toroidal rim. These are given by: 
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The following equations show the various steps involved in integrating Eq. (3-36) to obtain gint: 
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 (3-40) 

The integral in Eq. (3-40) attains different forms depending on whether b > b', b = b', or b < b'. A 

more complete derivation of Eq. (3-40) is given in Section 7.1.5 of the Appendix. The final 

expressions for the average interfacial free energy per molecule, gint, are given by: 
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Note that in the limiting case when b = 0 and A = 4πb'2, the above expression for gint in Eq. 

(3-42) becomes equal to that for a sphere. Similarly, for the limiting case when b → ∞, A = 

(1/2)2πb'(2πb) and V = (1/2)πb'2(2πb), the above expression for gint in Eq. (3-41) becomes equal 

to that for a cylinder. The proofs are presented in Section 7.1.6 of the Appendix.  

The variation of the average interfacial free energy per molecule, intg , as a function of 

the torus parameters, b and b', for a 6-carbon fluorocarbon tail having b' equal to the maximum 

surfactant tail length, is shown in Figure 3-5. For comparison, the interfacial free energy for the 

same surfactant tail for a spherical and a cylindrical micelle core having their radii equal to b' are 

plotted in red and blue, respectively. Additionally, the interfacial free energy calculated using the 

model developed by Srinivasan and Blankschtein is plotted in purple.28 Figure 3-5 shows that gint 

for the semi-toroidal rim, in green, has a value equal to that for a sphere at b/b' = 0 and then 

approaches the value for a cylinder as b/b' → 0. Note that gint decreases with increasing b/b' 

because as b/b' increases, it results in a reduction in curvature which brings about a reduction in 

the surface area per molecule, thereby decreasing gint. Finally, gint calculated using the curvature-

corrected model (green curve) is always lower than gint calculated using the model developed by  
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Figure 3-5: Variation of the interfacial free energy per molecule, gint, of a semi-toroidal rim as a function 
of b/b'. Also shown for comparison are gint for a sphere and a cylinder of radius b', and an average torus 
(see text).  

Srinivasan and Blankschtein (purple curve) where the effect of curvature was only accounted for 

in the calculation of the area per molecule.28 This follows because for the purpose of calculating 

the interfacial tension, the model of Srinivasan and Blankschtein assumes that the curvature of 

the rim is equal to that of a cylinder, which is lower than the curvature of the semi-toroidal rim. 

This results in an overestimation of the interfacial tension leading to a higher value of gint.  

3.3.2 gint of a Biaxial Ellipsoidal Micelle 

Similar to Section 3.3.1, here, expressions for gint of a biaxial ellipsoid are derived. First, 

the differential volume is calculated using Eq. (3-21) to obtain an expression for the differential 

shielding area at the surface of the biaxial ellipsoid. Specifically, 
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Then, using Eqs. (3-23) (3-33) and (3-44), dGint,local can be derived as follows: 
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and 

( )
( )

( )
( )

2 2 2 2 2
2 2 2 2

0 03
2 2 2 2 2

2

2 2 2 2 2
2 2 2

0 3
2 2 2 2 2

cos sin
sin 1 cos sin

3cos sin

sin
3

cos sin
1 cos si

cos sin

int,local
int,local

dG
g

dn

p p v q vq n pqp v p v q v a dudv
p Vp v q v

n p q vdudv
V

p p v q vq p v q
p p v q v

σ δ

σ δ

=

⎛ ⎞+ + ⎛ ⎞⎜ ⎟− + −⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟+⎝ ⎠=
⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞+ +⎜ ⎟− +⎜ ⎟⎜ ⎟+⎝ ⎠=

2
0n

3

3

n pqv a
V

n pq
V

⎛ ⎞−⎜ ⎟
⎝ ⎠

 (3-46) 

To understand the variation of the local interfacial free energy per molecule, gint,local, along the 

surface of a prolate ellipsoidal micelle core, a plot of gint,local for a 6-carbon fluorocarbon tail at 

298.15 K forming a prolate ellipsoidal core having p equal to the maximum surfactant tail length, 

calculated using Eq. (2-15), is shown in Figure 3-6. Figure 3-6 shows that gint,local is highest at ν = 

π/2 (90 degrees), and decreases close to the poles of the prolate ellipsoid located at v = 0 and π 

(180 degrees). This is somewhat counter intuitive, because one would have expected that the 

local interfacial free energy per molecule would attain its maximum value when the curvature is 

highest, which corresponds to v = 0 or π (180 degrees) in this case. However, upon further 

reflection, this result can be explained based on the shielding term [a0 in (a – a0)]. Specifically,  
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Figure 3-6: Variation of the local interfacial free energy per molecule, gint,local, as a function of the angle v  
of a prolate ellipsoidal micelle. 

with an increase in curvature, as the surface area per molecule increases, the local volume also 

increases, resulting in accommodation of a larger number of surfactant molecules. This, in turn, 

increases the shielding of the micelle core, and results in the observed decrease of gint,local close to 

the poles.  

Another interesting feature of the plot in Figure 3-6 is that at the higher aspect ratio 

considered (q/p = 4.0), gint,local becomes negative near the poles (see the zoomed in view of the 

blue curve corresponding to q/p = 4.0 in Figure 3-6). This follows because at high aspect ratios, 

the amount of shielding in the polar region exceeds the available surface area. Because this is not 

physically realizable, it indicates that a prolate ellipsoid with such a high aspect ratio is not a 

feasible micelle shape. This feasibility criterion can be derived using Eq. (3-45) as follows: 
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where vtail is the volume of the surfactant tail. Note that dGint,local can also be negative if 1>2cδ 

(which corresponds to negative values of the curvature corrected interfacial tension). However, 

for typical sizes of surfactant micelles, such a scenario is not encountered.  

Based on Eq. (3-47), it follows that knowledge of the structure of the surfactant tail is 

sufficient to establish a theoretical limit on the size of feasible ellipsoidal micelles using the 

curvature-corrected model presented here. Note that this result is consistent with the qualitative 

claims made in a few theoretical studies on ellipsoidal micelles that highly-elongated ellipsoidal 

micelles are not feasible micelle shapes.57, 58 

A plot similar to that in Figure 3-6 for an oblate ellipsoidal micelle core formed a by 6-

carbon fluorocarbon tail at 298.15 K having q equal to the maximum surfactant tail length is 

shown in Figure 3-7. Figure 3-7 shows that gint,local is highest at ν = 0 and π (180 degrees) and 

decreases close to the equatorial region located at v = π/2 (90 degrees). At higher aspect ratios, 

results similar to those obtained for prolate ellipsoids are obtained for oblate ellipsoids as well. 

All these observations can be explained based on the same reasons given above for the prolate 

ellipsoidal case. 



76 

 

Figure 3-7: Variation of the local interfacial free energy per molecule, gint,local, as a function of the angle v  
of an oblate ellipsoidal micelle. 

To obtain the average interfacial free energy per molecule, gint, expressions for the total 

surface area, A, and the total volume, V, of the biaxial ellipsoid are derived as follows: 
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Note that details of the integration process involved in Eq. (3-48) are presented in Section 7.1.7 

of the Appendix.  

Using Eqs. (3-34), (3-45), (3-48), and (3-49), the following equations show the various 

steps involved in obtaining an expression for gint. To be able to write the equations in a 

manageable form, let p2cos2v + q2sin2v be written as w. It then follows that: 
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 (3-50) 

A more complete derivation of Eq. (3-50) is presented in Section 7.1.8 of the Appendix. Note 

that in the limiting case when p = q, the expression for gint in Eq. (3-50) becomes equal to that for 

a sphere. The proof is presented in Section 7.1.9 of the Appendix.  

Finally, Figure 3-8 shows the variation of gint for prolate and oblate ellipsoidal micelles, 

and compares these with the gint for spherical and cylindrical micelle. All the curves in Figure 

3-8 correspond to micelles formed by a 6-carbon fluorocarbon tail having the semi-minor axis 

length (for ellipsoidal micelles) and radii (for spherical and cylindrical micelles) equal to the 

maximum surfactant tail length. gint for a spherical and a cylindrical micelle core are plotted in 

red and blue, respectively. Note that gint for a bilayer micelle core formed by the same surfactant 

and having a bilayer thickness equal to the minor axis length of the biaxial ellipsoid micelle is 

negative. In other words, such a bilayer micelle core is not feasible. Consequently, a curve for  
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Figure 3-8: Variation of the interfacial free energy per molecule, gint, for biaxial ellipsoidal micelles as a 
function of the aspect ratio. Also shown for comparison are gint for a sphere and a cylinder of radius equal 
to the semi-minor axis length.  

the bilayer shape is not shown in Figure 3-8. In addition, Figure 3-8 shows that for both 

ellipsoidal shapes, gint decreases as the aspect ratio increases. This follows because the average 

surface area per molecule decreases as the aspect ratio increases. Additionally, Figure 3-8 shows 

that gint corresponding to an oblate ellipsoid (purple curve), having the same semi-minor axis 

length and aspect ratio as a prolate ellipsoid (green curve), is significantly lower than gint 

corresponding to a prolate ellipsoidal micelle. This difference follows because, for the same 

semi-minor axis length and aspect ratio, an oblate ellipsoid has a lower average surface area per 

molecule than a prolate ellipsoid. 
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3.4 Packing Free Energy 

To generalize the method to calculate the packing free energy introduced in Section 2.3 

to micelles of varying curvature, the free energy of the packed state, g, in Eq. (2-20) is modified 

as follows: 

( ) ( ) ( ) ( )
, ,

, , ln ,
surface surface

surface surface surface
v v

g P v kT P v P v
α α

α ε α α α= +∑ ∑  (3-51) 

where vsurface denotes the location on the micelle surface where the surfactant tail is tethered and 

P(α,vsurface) is the probability of finding the surfactant tail in conformation α tethered at the 

location vsurface on the micelle surface. Note that vsurface in Eq. (3-51) does not appear in Eq. 

(2-20) because the later equation applies to micelles of constant curvature. Indeed, this follows 

because for regular shapes, including spheres, infinite cylinders and infinite bilayers, all 

locations on the micelle surface are identical. Consequently, the probability of finding a 

surfactant tail in a particular conformation is the same everywhere on the micelle surface. 

However, since the curvatures of a disc and a biaxial ellipsoid vary with position, this 

simplification is no longer valid. Therefore, the next two sections discuss the calculations of 

P(α,vsurface) and of the packing free energy, first for a discoidal micelle (Section 3.4.1) and then 

for a biaxial ellipsoidal micelle (Section 3.4.2). 

3.4.1 gpack of a Discoidal Micelle 

From a geometric viewpoint, the semi-toroidal rim of a disc is a surface of revolution 

generated by revolving a semi-circle of radius b' about the z-axis at a distance, b, from it, where 

the angle u is a measure of the angle of revolution. This is shown in Figure 3-1. It then follows 

that the curvature of the rim is a function of v, but independent of u [see Eq. (3-19)]. Therefore, 

the equations related to the packing of a surfactant tail have to be modified to incorporate the 
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functional dependence on the angle v. For example, Eq. (3-33) is modified as follows to 

incorporate the v dependence: 

( ) ( ) ( )

( )( ) ( )( ) ( ) ( )( )

,

2 32 3

, , , , ,

2 1 sin sin
2 3
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b r dr r dv r dr r v dv v
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α φ α

π

=

⎛ ⎞= + − + + − + −⎜ ⎟
⎝ ⎠

∑
 (3-52) 

where, as before, r is the direction perpendicular to the surface as defined in Eq. (3-14) and 

shown in Figure 3-1, v is the angle defined in Eq. (3-14) and shown in Figure 3-1, 

( ), , ,surfacer v vφ α  is the volume occupied by a surfactant tail in conformation, α, tethered at v = 

vsurface, between the surfaces at r and r+dr and at v and v+dv, and V(r,v) is the volume available 

per surfactant molecule between the same four surfaces. Note that the equation for V(r, v) in Eq. 

(3-52) in terms of b, r, and v is calculated by integrating Eq. (3-15), and is valid only for the 

semi-toroidal portion of the disc. Using Eq. (3-52) and Eq.(2-22), the modified equation for P(α, 

vsurface) is given by: 
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 (3-53) 

To carry out the summations in Eqs. (3-51) - (3-53), the discoidal micelle surface is divided into 

a grid to sample all the surfactant tail conformations at all the grid points. Furthermore, the 

interior of the discoidal micelle is divided into cells to correctly capture the v dependence of the 

πs in Eq. (3-53). The disc shape has an axis of symmetry and a plane of symmetry that is 

perpendicular to the axis of symmetry, as shown using the blue dashed line and the red plane in 

Figure 3-9. As a result, the curve marked in green in Figure 3-9 is representative of the entire 

disc surface, and all the surfactant tail conformations have to be sampled only for surfactant tails 
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tethered along the green curve instead of along the entire surface of the disc. Note that not all 

locations on this curve are equally probable. Indeed, consider the top view of the disc, as shown 

in Figure 3-10. The inner solid circle in black corresponds to the bilayer portion of the disc, 

while the outer solid circle in black corresponds to the top view of the rim of the disc. The green 

solid line is the projection of the green curve shown in Figure 3-9. Consider the location on the 

green line marked an. All locations on the circle associated with this marker are identical to the 

location of the marker itself. This circle associated with an has a higher circumference compared 

 

Figure 3-9: Schematic showing the plane of symmetry and the axis of symmetry for a disc. 

 

Figure 3-10: Schematic illustrating the need for different weights at different locations on the disc surface. 

an

an-1
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to the circle associated with an-1. As a result, it is more likely to find a surfactant tail tethered at 

the circle associated with an than at the circle associated with an-1. Therefore, each location on 

the solid green line, where all the surfactant tail conformations are sampled, is given a weight 

corresponding to the relative probability of finding a surfactant tail tethered at that location, 

which is proportional to the circumference of the circle associated with that location.  

To determine the exact locations where the surfactant tail conformations will be sampled, 

we divide the solid green line in Figure 3-9 such that the distance between two consecutive 

points is equal to the length scale used to determine the thickness of a layer in a spherical 

micelle, which is equal to the length of a C-C bond. In other words, the distance between an-1 and 

an in Figure 3-10 is approximately equal to the length of a C-C bond. Note that the length of the 

solid green line is equal to: 

'
2

bb π+  (3-54) 

The number of cells into which the interior of the disc is divided is also reduced by taking 

advantage of the symmetry of the disc. Two dimensional cells are created, as shown in Figure 

3-11, and these two dimensional cells are rotated about the axis of symmetry of the disc (blue 

axis in Figure 3-11) to obtain three dimensional cells. It is further noted that the cells below the 

plane of symmetry (shown in red in Figure 3-11) are merely reflections of the cells above the 

plane of symmetry, and are not different from them. All the cells shown in the green shaded 

region are part of the cells in the unshaded region. For example, the cell colored red above and 

below the plane of symmetry, as well as on the right and left of the axis of symmetry, are parts of 

the same cell rather than four different cells. 



84 

 

Figure 3-11: Schematic showing the cells created in a discoidal micelle to calculate the packing free 
energy.  

The validity of the method presented above, including its implementation, was verified 

by using it to calculate the packing free energy of a 6-carbon fluorocarbon tail packed in a 

sphere. This was done by setting b equal to 0. The gpack obtained using the new method compared 

very well with the gpack calculated for spheres. Subsequently, to understand the variation of gpack 

as a function of the discoidal size parameters, b and b', Figure 3-12 plots gpack for a 6-carbon 

fluorocarbon tail as a function of b/b' for two different values of b'. Note that it is difficult to 

pack a tail in a bilayer having b' equal to the maximum surfactant tail length which is equal to 

9.84 Å using Eq. (2-15). Consequently, the chosen values of b' are less than 9.84 Å.  

Figure 3-12 was generated by calculating gpack for five replicates. The symbols represent 

the average value, while the error bars represent the standard deviation. Figure 3-12 shows that 

for a smaller value of b' gpack decreases as b increases (red symbols). This follows because, when 

both b and b' are small, the rim of the disc has a very high curvature. Consequently, the  

Top ViewSide View

Axis of Symmetry

Plane of Symmetry
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Figure 3-12: Plot of the variation of gpack as a function of b/b'. 

surfactant tail has to twist quite a bit to remain completely in the interior of the disc. However, as 

b increases, the curvature of the rim of the disc decreases, and it becomes easier to keep the 

surfactant tails within the disc, thereby resulting in a lower gpack. This trend gets reversed for the 

case of a high value of b' (blue symbols). This follows because, as b' increases, the two surfaces 

of the bilayer in the bilayer portion of the disc move apart, making it difficult for the surfactant 

tails to completely fill up the volume in the center of the bilayer (to maintain dry core). In other 

words, to completely fill up the volume in the centre of the bilayer, almost all the surfactant tails 

have to stretch until the center which decreases the conformational degrees of freedom, thereby 

increasing the value of gpack. When b is small, the contribution of the bilayer part of the disc to 

gpack is small, and therefore, the net value of gpack is small. However, as b increases, the 

contribution of the bilayer portion starts to dominate, and therefore, gpack increases. 
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The gpack values calculated using the above approach are fitted to polynomial equations in 

terms of b' and b/b' for each surfactant tail to facilitate the calculation of gmic. The packing 

polynomials corresponding to the surfactants considered in this thesis are presented in Section 

7.2 of the Appendix. 

3.4.2 gpack of a Biaxial Ellipsoidal Micelle 

The method used to calculate gpack for a biaxial ellipsoid is identical to the one described 

in Section 3.4.1, because like the discoidal shape, the biaxial ellipsoidal shape is also a surface of 

revolution. Consequently, its curvature is only a function of the angle v, and does not depend on 

the angle u defined in Eq. (3-20). One of the differences between the equations for a disc and a 

biaxial ellipsoid is the expression for V(r, v) in Eq. (3-52). Similar to the discoidal micelle case, 

first, the ellipsoidal interior is divided into layers by dividing the semi-minor axis length such 

that the distance between two consecutive points is equal to the length of a C-C bond. This is 

illustrated in Figure 3-13 for the case of a prolate ellipsoid, where pn-1 and pn denote two 

divisions along the semi-minor axis length. The layer bound by these two divisions is shown in 

yellow. Unlike the discoidal case, to maintain the thickness of the layer almost constant, the two 

biaxial ellipsoids associated with pn-1 and pn have to be separately parameterized as follows: 

cos sin
sin sin , 0 1, 0 2 , 0
cos

n

n

n

x p r u v
p r u v r u and v

z q r v
π π
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=
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y =  (3-56) 

where pn-1 = pn – δC-C, qn-1 = qn – δC-C, and δC-C is the C-C bond length. 
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Figure 3-13: Schematic illustrating the choice of layers and cells to calculate gpack for a biaxial ellipsoidal 
micelle. 

To determine the number of cells in each layer, the circumference of the outer ellipse 

enclosing the layer, that is, the ellipsoid associated with pn shown in Figure 3-13 and 

parameterized in Eq. (3-55), is divided such that the arc length between two consecutive points is 

equal to the C-C bond length. This is also illustrated in Figure 3-13, where θn, k-1 and θn, k denote 

two such divisions. It should be noted that there is no simple equation describing the 

circumference of an ellipse. Instead, the first few terms of the Gauss-Kummer series gives a 

reasonable approximation for the circumference of the ellipse.59 Specifically, 

( )
4 8

1 11
4 64

q p q pp q
q p q p

π
⎛ ⎞⎛ ⎞ ⎛ ⎞− −
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 (3-57) 

Finally, to calculate the volume of a cell, V(r, v), consider the cell shown in red in Figure 3-13. 

Since points 3 and 4 lie on the ellipsoid associated with pn, their coordinates are obtained from 

pnpn-1

θn, k

θn, k-1

1
2

3

4
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Eq. (3-55) with r = 1 and v = θn,k-1 for point 3, and with r = 1 and v = θn,k for point 4. 

Specifically, 

( ) ( )3 3 3 , 1 , 1 , 1, , sin cos , sin sin , cosn n k n n k n n kx y z p u p u qθ θ θ− − −=  (3-58) 

and 

( ) ( )4 4 4 , , ,, , sin cos , sin sin , cosn n k n n k n n kx y z p u p u qθ θ θ=  (3-59) 

Points 1 and 2 are chosen such that when they are represented using the parameterization 

in Eq. (3-55), the angle v is given by θn,k and θn,k-1, respectively. Therefore, the coordinates of 

points 1 and 2 in the two parameterizations given in Eqs. (3-55) and (3-56) are given by: 
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Using Eqs. (3-60) and (3-61), θn,k and θn,k-1 can be related to 1v′  and 2v′  as follows: 
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Similarly, using Eqs. (3-60) and (3-61), r1 and r2 can be related to θn,k and θn,k-1 as follows: 
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Substituting Eqs. (3-62) and (3-63) in Eq. (3-64) yields: 
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and 
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Finally, using Eqs. (3-65), (3-66), and (3-21), the volume of the cell shown in red in Figure 3-13 

can be calculated as follows: 
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Note that Eq. (3-67) is valid for 0 < θn,k, θn,k-1 < π/2, which corresponds to the range that we are 

interested in. Details of the integration process are provided in Section 7.1.10 of the Appendix. 

Using Eq. (3-67), the ellipsoid equivalent of the volume filling packing constraint in Eq. (3-52) 

can be evaluated.  

 Similar to the disc case, the validity of the approach presented above was verified by 

using it to calculate the packing free energy of a 6-carbon fluorocarbon tail packed in a sphere. 
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This was done by setting the aspect ratio to 1. The gpack calculated using the new approach 

compared very well with the gpack calculated for spheres. Subsequently, to understand the 

variation of gpack as a function of the biaxial ellipsoid size parameters, p and q, Figure 3-14 plots 

gpack for a 6-carbon fluorocarbon tail as a function of the aspect ratio which is equal to p/q for an 

oblate ellipsoid, and to q/p for a prolate ellipsoid. Note that it is difficult to pack a tail in an 

elongated oblate ellipsoid with q equal to the maximum tail length which is equal to 9.84 Å in 

this case. Consequently, the chosen values of p and q for the prolate and oblate ellipsoids, 

respectively, are less than 9.84 Å. 

 

Figure 3-14: Variations of gpack as a function of p/q and q/p for an oblate and a prolate ellipsoid, 
respectively.  

The red and blue curves in Figure 3-14 correspond to gpack for prolate and oblate 

ellipsoidal micelle cores, respectively, while the dashed and solid curves correspond to semi-

minor axis lengths equal to 5.45 Å and 8.81 Å, respectively. An examination of the dashed 
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curves shows that, for small semi-minor axis lengths, gpack decreases as the aspect ratio increases 

and plateaus off at higher aspect ratios similar to our findings for discoidal micelles (see Figure 

3-12). This follows because when both semi-axis lengths are small, the ellipsoidal surface has a 

very high curvature. Consequently, the surfactant tails have to twist considerably to remain 

completely in the interior of the ellipsoid, leading to many gauche defects, and therefore, to 

higher gpack values. However, as the aspect ratio increases, more volume is available to the 

surfactant tails in the ellipsoid. This allows them to adopt several other chain conformations 

which were not allowed at smaller aspect ratios, thereby resulting in a lower value of gpack. This 

trend is observed for both prolate and oblate ellipsoidal micelles, as reflected in the dashed 

curves in Figure 3-14. At higher aspect ratios, the decrease in gpack due to the increase in the 

volume of the ellipsoidal core and the increase in gpack due to the increase in curvature at the 

equatorial region (for oblate ellipsoids), or at the polar region (for prolate ellipsoids), seem to 

offset each other, resulting in the flattening of the dashed curves.  

At low aspect ratios, an increase in the semi-minor axis length (the solid curves) leads to 

a decrease in gpack for both prolate and oblate ellipsoidal micelles. This follows because an 

increase in the semi-minor axis length leads to a decrease in the curvature, which in turn leads to 

less stringent restrictions on the types of conformations that a surfactant tail can adopt, and 

therefore, to a lower gpack. However, at large semi-minor axis lengths, the trend for gpack as a 

function of the aspect ratio for a prolate ellipsoidal micelle (the solid red curve) differs from that 

for an oblate ellipsoidal micelle (the solid blue curve). Specifically, for a prolate ellipsoid, gpack 

does not change significantly with an increase in the aspect ratio in spite of the increase in 

curvature at the poles of the prolate ellipsoid. This follows because not many molecules occupy 

the poles of the prolate ellipsoid, and therefore, the polar region does not contribute greatly to the 
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value of gpack. In contrast, for an oblate ellipsoid, gpack increases with the aspect ratio. As the 

aspect ratio of an oblate ellipsoid increases, the curvature at the equatorial region also increases. 

Therefore, molecules occupying the equatorial region are not only subjected to stringent 

conformational constraints due to the high curvature, but also need to stretch out (adopt almost 

an all-trans conformation) to fill out the volume in the center of the ellipsoid. Since many 

molecules occupy the equatorial region, their loss of conformational degrees of freedom due to 

these two requirements leads to an increase in gpack. 

 Similar to the disc case, the gpack values calculated using the approach discussed above 

for biaxial ellipsoids are fitted to polynomial functions in terms of the semi-minor axis length (p 

or q) and the aspect ratio (q/p or p/q) to facilitate the calculation of gmic. The packing 

polynomials for the surfactants considered in this thesis are presented in Section 7.2 of the 

Appendix  

3.5 Steric Free Energy 

The method used to calculate the steric free energy for a discoidal or a biaxial ellipsoidal 

micelle is very similar to the method used to compute the interfacial free energy. In short, first, 

using concepts from differential geometry, expressions for the local geometric features are 

derived. Using these expressions, and Eq. (2-24) in Section 2.3, an equation for the differential 

steric free energy, dGst,local, is subsequently derived which is then integrated over the micelle 

surface and divided by the aggregation number of the micelle to yield the average steric free 

energy per molecule, gst. Specifically, 
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The key equations and results for discoidal and biaxial ellipsoidal micelles are presented 

next in Section 3.5.1 and Section 3.5.2, respectively.  

3.5.1 gst of the Semi-Toroidal Rim of a Discoidal Micelle 

dGst,local is calculated by substituting the differential geometric properties derived in Eqs. 

(3-17) and (3-35) in Eq. (3-68). Specifically, 
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Figure 3-15 shows the variation of the local steric free energy per molecule of the semi-

toroidal rim, gst,local, as a function of the angle v for a discoidal micelle formed by a surfactant 

having a 6-carbon fluorocarbon tail and a head area, ah, of 50.0 Å2 at 298.15 K. The discs have b 

= 3b' and b' is equal to the maximum surfactant tail length calculated using Eq. (2-15). Figure 

3-15 shows that gst,local attains its maximum value at v = ±π/2 and its minimum value at v = 0. 

This follows because the semi-toroidal rim has the highest curvature at v = 0, which corresponds  
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Figure 3-15: Variation of the local steric free energy, gst,local, as a function of the angle v . 

to the highest surface area per molecule, and the lowest curvature at ±π/2 which corresponds to 

the lowest surface are per molecule. Since the steric free energy per molecule has an inverse 

dependence on the surface area per molecule, gst,local attains its maximum value at the lowest 

curvature region.  

Using Eq. (3-70), the average steric free energy per molecule, gst, can be calculated by 

substituting it in Eq. (3-69) as follows: 

( )
( )

( ) ( )

22

2

2

2

2 ' 3 2 'cos 'ln 1 3 2 'cos
' 3 4 ' 'cos 33 4 '

3

2 ' 3 2 'cosln 1 3 2 'cos
3 4 ' 3 4 ' 'cos

v

h
st

v

v

h

v

akT b b b b v bg b b v dv
b a b b b b vb b

akT b b b b v b b v dv
b b a b b b b v

π

π

π

π π
π ππ

π
π π

=

−=

=

−=

⎛ ⎞+ +⎛ ⎞⎛ ⎞⎛ ⎞= − − +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ + +⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠+

⎛ ⎞+ +⎛ ⎞⎛ ⎞⎛ ⎞= − − +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ + +⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

∫

2
π

∫

(3-72) 

1.4

1.5

1.6

1.7

1.8

1.9

2.0

-90 -45 0 45 90

g s
t,l

oc
al

(k
T)

v (degrees)



95 

Because the integral in Eq. (3-72) cannot be evaluated analytically, the Gaussian quadrature 

numerical integration technique was used to calculate gst of the semi-toroidal rim of a discoidal 

micelle.  

Figure 3-16 shows the variation of gst as a function of b/b' of the semi-toroidal rims of 

discoidal micelles formed by the same surfactant considered in Figure 3-15. All the discoidal 

micelles considered in Figure 3-16 have b' equal to the maximum surfactant tail length. For 

comparison, the steric free energies for the same surfactant forming spherical and cylindrical 

micelles having their radii equal to the semi-minor axis length are plotted in red and blue, 

respectively. Additionally, the steric free energy calculated using the model developed by 

Srinivasan and Blankschtein is plotted in purple.28 Figure 3-16 shows that gst for the semi- 

 

Figure 3-16: Variation of the steric free energy per molecule, gst, of the semi-toroidal rim of a discoidal 
micelle as a function b/b'. Also shown for comparison are gst for a sphere and a cylinder of radius b', and 
an average torus (see text).  
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toroidal rim, in yellow, starts at the value equal to that for a sphere at b/b' = 0 and then 

approaches the value for a cylinder as b/b' → ∞. gst increases with increasing b/b' because an 

increase in b/b' results in a reduction in the average curvature, which in turn reduces the average 

surface area per molecule, thereby increasing gst. It is also interesting to note that the gst 

calculated using the curvature-corrected model (yellow curve) is very close to the gst calculated 

using the model developed by Srinivasan and Blankschtein (purple dashed curve) in which the 

effect of curvature was accounted for approximately by calculating an average area per 

molecule.28 This finding may be because, for semi-toroidal rims of discoidal micelles, the 

curvature does not show extreme deviations from the average mean curvature. Therefore, the 

model developed by Srinivasan and Blankschtein, which is simpler and does not require 

numerical integration, may be utilized to calculate gst for discs without introducing significant 

error. 

3.5.2 gst of a Biaxial Ellipsoidal Micelle 

dGst,local for a biaxial ellipsoid is calculated by substituting the differential geometric 

properties derived in Eqs. (3-23) and (3-44) in Eq. (3-68). Specifically, 

2
2

, 2 2 2 2

4 sin
3 3ln 1

sin cos sin

h

st local B

p qa n p q vdudv
dG dn k T

p v p v q vdudv

π
⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎜ ⎟= − ⋅ −
⎜ ⎟+
⎜ ⎟
⎝ ⎠

 

2 2 2 2
ln 1

4 cos sin
h
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p p v q vπ

⎛ ⎞
⎜ ⎟= − ⋅ −
⎜ ⎟+⎝ ⎠

 (3-73) 
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⎜ ⎟+⎝ ⎠

 (3-74) 
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Similar to Figure 3-15, Figure 3-17 shows a plot of the variation of the local steric free 

energy per molecule, gint,local, at 298.15 K of a surfactant having a 6-carbon fluorocarbon tail and 

a head area of 50.0 Å2 forming a prolate ellipsoidal micelle. The prolate ellipsoidal micelle has p 

equal to the maximum surfactant tail length. Figure 3-17 shows that gint,local is smallest at ν = π/2 

(90 degrees), and increases close to the poles of the prolate ellipsoid located at v = 0 and π (180 

degrees). This result can be explained based on the same reasoning provided in Section 3.3.2 to 

explain Figure 3-6.  

 

Figure 3-17: Variation of the local steric free energy per molecule, gst,local, as a function of the angle v  for 
a prolate ellipsoidal micelle. 

Note that at higher aspect ratios, gst,local for a prolate ellipsoidal micelle diverges near v = 

π/2 (90 degrees). This follows because the available surface area is not sufficient to 

accommodate the surfactant heads. This is similar to the observation made in Figure 

3-6regarding gint,local. Consequently, an equation similar to Eq. (3-47) regarding the threshold size 
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of ellipsoidal micelles can be derived using the local steric free energy. From the expression for 

dGst,local in Eq. (3-68), it follows that the steric free energy will diverge if: 

2 2 2 21 0 cos sin 0, 0
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3 ,

3 ,

h h
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⎪⎩
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⎪ < >
⎪⎩

 (3-75) 

Based on Eqs. (3-47) and (3-75), it follows that there are two theoretical limits on the size 

of feasible ellipsoidal micelles using the curvature-corrected model presented here. As a result, 

the limit on the size of the ellipsoidal micelle is determined by the stricter of the two conditions.  

A plot similar to the one in Figure 3-17 for an oblate ellipsoidal micelle core formed by the same 

surfactant and having the same semi-minor axis length is shown in Figure 3-18. Figure 3-18 

shows that gst,local is highest at v = π/2 (90 degrees), and decreases close to ν = 0 and π (180 

degrees). At higher aspect ratios, similar to the result obtained for prolate ellipsoids, gst,local tends 

to infinity for oblate ellipsoids. All these observations can be explained based on the reasons 

presented earlier in the case of prolate ellipsoidal micelles.  

Using Eq. (3-73) in Eq. (3-69), the average steric free energy per molecule, gst, for 

ellipsoidal micelles can be calculated as follows: 

2 2 2 2
0

ln 1 sin
2 4 cos sin

v
h

st
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nakTg vdv
p p v q v

π

π

=

=

⎛ ⎞
⎜ ⎟= − −
⎜ ⎟+⎝ ⎠

∫  (3-76) 
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Figure 3-18: Variation of the local steric free energy, gst,local, as a function of the angle v  for an oblate 
ellipsoidal micelle. 

Similar to Eq. (3-72), the integral in Eq. (3-76) is evaluated using the Gaussian quadrature 

numerical integration technique. Figure 3-19 shows the variation of gst as a function of the aspect 

ratio of a biaxial ellipsoidal micelle formed by the same surfactant considered in Figures 2-20 

and 2-21. All the ellipsoidal micelles considered in Figure 3-19 have a semi-minor axis length 

equal to the maximum surfactant tail length. For comparison, the steric free energies for the same 

surfactant forming spherical and cylindrical micelles having their radii equal to the semi-minor 

axis length are plotted in red and blue, respectively. Additionally, the steric free energy per 

molecule calculated by substituting the average surface area per molecule in place of a in Eq. 

(2-24) for prolate and oblate ellipsoidal micelles are plotted as dashed curves in green and 

purple, respectively. Figure 3-19 shows that gst for biaxial ellipsoidal micelles, in green and 

purple, start at the value equal to that for a sphere at an aspect ratio of 1, and then increases as 
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Figure 3-19: Variation of the steric free energy per molecule, gst, for biaxial ellipsoidal micelles as a 
function of the aspect ratio. Also shown for comparison are gst for a sphere and a cylinder of radius equal 
to the semi-minor axis length.  

the aspect ratio increases. This follows because an increase in the aspect ratio, while keeping the 

semi-minor axis length constant, results in a smaller average surface area per molecule, which in 

turn leads to a higher steric free energy per molecule. Additionally, gst for a prolate ellipsoid is 

lower than gst for an oblate ellipsoid having the same semi-minor axis length and aspect ratio. 

This follows because, for the same semi-minor axis length and aspect ratio, the prolate 

ellipsoidal shape has a higher average surface area per molecule than the oblate ellipsoidal shape.  

Finally, Figure 3-19 indicates that gst calculated using the average surface area per 

molecule (green and purple dashed curves) shows significant deviation from gst calculated using 

the curvature-corrected model (green and purple solid curves). This follows because the 

extremes in the local curvature are unaccounted for if one simply uses the average area per 
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molecule in Eq. (2-24), instead of explicitly accounting for the curvature. This clearly shows that 

it is necessary to use the curvature-corrected model to accurately quantify the steric free energy 

per molecule in the case of biaxial ellipsoidal micelles. 

3.6 Electrostatic Free Energy 

The electrostatic free energy consists of two free-energy contributions, namely, the 

discharging free energy, gdisch, and the charging free energy, gch, as was discussed in Section 2.3. 

The discharging free energy is not a function of the micelle shape, and therefore, is calculated 

using Eq. (2-25) for discs and ellipsoids as well. However, the charging free energy depends 

strongly on the shape of the micelle.  

The development of a model to calculate gch for discs and biaxial ellipsoids is quite 

challenging. This follows because while in the case of spheres, infinite cylinders, and infinite 

bilayers the governing equations in (2-27) - (2-30) are one dimensional, thus yielding ordinary 

differential equations, in the case of discs and biaxial ellipsoids, the governing equations are two 

dimensional, thus yielding partial differential equations. This reflects the varying curvature of 

these micelle shapes. Moreover, no analytical or approximate solutions are available to solve the 

resulting set of partial differential equations. As a result, the set of equations in (2-27) - (2-30) 

needs to be solved numerically in the case of discs and biaxial ellipsoids.  

Incorporating a model that numerically solves a set of nonlinear partial differential 

equations (recall that the Poisson-Boltzmann equation is nonlinear) into our molecular-

thermodynamic framework to predict micellization properties, including the critical micelle 

concentration and other micelle characteristics, is computationally very challenging. This follows 

because in order to determine these micellization characteristics, it is necessary to determine the 
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optimal free energy of micellization, as discussed in Section 2.5. This optimization process 

requires the evaluation of the free energy of micellization, gmic, at several solution conditions and 

micelle properties (such as the dimensions of the micelle and the degree of counterion binding). 

From a computational viewpoint, numerically solving a nonlinear partial differential equation 

every time that gmic needs to be evaluated is very inefficient. Therefore, to overcome this 

problem, the required solution to the set of partial differential equations to calculate gch, which is 

the surface electric potential ψch in this case, was calculated for a large data set that spans all the 

variables that affect ψch. These variables include micelle sizes (designated by two size variables, 

b and b' for discs, and p and q for biaxial ellipsoids), Stern-layer thicknesses, ionic strengths, and 

surface charges, based on the typical surfactant tail lengths, tail volumes, head lengths, and 

counterion radii that are expected. These values of the inputs and the corresponding outputs were 

stored in a database. The surface electric potential at any point that is not in the database was 

calculated using an interpolation-based method.  

To facilitate the implementation of the interpolation scheme, the data set was sorted and 

then stored using pointers. For any given point for which the value of the surface electric 

potential is sought, the interpolation scheme first finds the 32 (=25) nearest neighbors. Note that 

25 nearest neighbors are found because the surface electric potential depends on five variables 

(two micelle size variables, the Stern-layer thickness, the ionic strength, and the micelle charge), 

and along each variable the given point is bound by two neighbors, one above and one below it. 

These points form a polyhedron enclosing the given point. This is illustrated in Figure 3-20 for 

the three- dimensional equivalent of the actual five-dimensional problem. The red point in Figure 

3-20 represents the point for which the nearest neighbors are sought. Subsequently, the surface 

electric potential at the given point is calculated by using a weighted-average of the surface  
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Figure 3-20: Schematic showing the polyhedron formed by the eight nearest neighbors of the red point.  

electric potential of the 32 nearest neighbors. The weights for the different neighbor points are 

proportional to the inverse of the product of the projected distance along each variable axis 

between the given point and the nearest neighbor. Note that the commonly used Euclidean-

distance based weighting scheme performs poorly in this case because the ranges of values 

spanned by the five independent variables are very different. For example, the surface charge is 

on the order of 10-19 - 10-18 C, while the ionic strength is on the order of 1024 – 1026 

molecules/m3. This results in the Euclidean distance being a measure of the distance along the 

axis with the largest order of magnitude. The weighting scheme described above does not exhibit 

this problem. In fact, for a regular grid, it can be shown that this scheme is equivalent to the 

multilinear interpolation scheme (see Section 7.1.11 in the Appendix), which is a reasonable 

interpolation scheme for a function that is monotonic. 

Using the interpolation database, gch is finally calculated by numerically integrating the 

surface electric potential as a function of the surface charge using the Gauss quadrature 

technique. This method of interpolation and numerical integration was applied to a simplified 

model of the Poisson-Boltzmann equation for a spherical particle for which an approximate 
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analytical solution is available,43 and it was found that the root-mean square error between the 

analytical value and the numerical value of the charging free energy is 0.3 kT, which is less than 

10% of the typical values of gch. 

The method outlined above to calculate the charging free energy was applied to both 

discs and biaxial ellipsoids. The difference in the geometry of the two shapes is captured by the 

differences in the form of the governing equations, (2-27) - (2-30), when represented in the 

appropriate coordinate system. For any general 3-D coordinate system characterized by the 

variables x1, x2, and x3, the Laplace operator used in Eqs. (2-27) and (2-28) is given by:  

2 2 3 3 1 1 2

1 2 3 1 1 1 2 2 2 3 3 3

1 h h h h h h
h h h x h x x h x x h x

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
∇ = + +⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (3-77) 

where ih  is defined as follows: 

i
i

rh
x
∂

=
∂

 (3-78) 

Similarly, the gradient operator acting on ψ  is defined as follows: 

1 ˆi
i i i

x
h x

ψψ
⎛ ⎞∂

∇ = ⎜ ⎟∂⎝ ⎠
∑  (3-79) 

where ˆix  is the unit vector along the ix  direction. The governing equations and boundary 

conditions specific for discs and biaxial ellipsoids are presented next in Section 3.6.1 and Section 

3.6.2, respectively.  
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3.6.1 gch of the Semi-Toroidal Rim of a Discoidal Micelle 

gch of a disc is approximated as the sum of gch of the central bilayer and gch of the semi-

toroidal rim. Calculation of gch of a bilayer was discussed in Section 2.3. The parameterization 

introduced in Eq. (3-14) is sufficient to calculate gch for the semi-toroidal rim. The only 

difference is that, for the purpose of calculating gch, r takes values corresponding to the bulk 

solution instead of between 0 and b', which corresponds to the micelle core. For the 

parameterization in Eq. (3-14), the Laplace operator calculated using Eqs. (3-77) and (3-78) is 

given by: 

( ) ( )2 1 coscos
cos cos

b r v rr b r v
r b r v r r v r v u b r v u

ψ ψ ψψ ⎛ ∂ ∂ ∂ + ∂ ∂ ∂ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞∇ = + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟+ ∂ ∂ ∂ ∂ ∂ + ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
 (3-80) 

The details of deriving the Laplace operator are provided in Section 7.1.12 of the Appendix. 

Note that because the z axis is an axis of symmetry, we do not expect ψ to depend on the angle u. 

Consequently, the third term on the right-hand side of Eq. (3-80) is equal to 0. Using Eqs. (2-27), 

(2-28), and (3-80), the governing equations inside the Stern layer and beyond the Stern surface 

are given by: 
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∑ (3-82) 

where /
Sternb  and /

chargeb  represent the Stern surface and the charged surface, respectively. To 

generalize the four boundary conditions provided in Section 2.3 on pages 44 and 45 in the semi-

torus coordinate system, the gradient operator is given by:  
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∂ ∂ ∂∇ = + +
∂ ∂ +

 (3-83) 

where similar to Eq. (3-80), the last term is equal to 0 because ψ does not dependent on u. Using 

Eq. (3-83), the four boundary conditions introduced in Section 2.3 can be written in the semi-

torus coordinate system as follows: 

1. The micellar charged surface is at a constant unknown electric potential with a total 

charge of Qf. Specifically,  
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1ˆ ˆ . 2 cos
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2. The potential at the Stern surface is continuous. Specifically, 

( ) ( )/ /
Stern Sternr b r b

ψ ψ+ −
→ →

=  (3-85) 

3. Since the Stern surface has no surface charge associated with it, the normal derivatives of 

ψ on both sides of the Stern surface are related as follows:41 

( ) ( )/ /
charge charge

bulk stern
r b r br r

ψ ψε ε
+ −

→ →

∂ ∂
=

∂ ∂
 (3-86) 

4. The potential is 0 at ∞, that is,  

( ) 0rψ →∞ =  (3-87) 

It should be noted that the differential equations shown in (3-81) and (3-82) are second 

order in both r and v, and therefore, require two boundary conditions for v as well. Since the 

semi-toroidal rim is symmetric about the z axis, and the electric potential due to the central 

bilayer has no angular dependence, the gradient of the electric potential with respect to v be 0 
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near the axis, for the potential to be smooth near the axis. This gives rise to the following two 

boundary conditions:  

2

0
vv π

ψ

=±

∂
=

∂
 (3-88) 

To develop a robust method to numerically solve a differential equation, it is often 

essential to scale the problem correctly. The exponential nonlinear term on the right-hand side of 

Eq. (3-82) shows that there is a natural scale for the electric potential in the form of kT/e0. The 

other scale for ψ  can be obtained from Eq. (3-84) as ( )/2f charge SternQ bπ ε . Here, we have chosen 

0kT e  as the scale for ψ  because Eq. (3-82) is applicable over a larger portion of the r domain 

compared to Eq. (3-84), and the exponential is more likely to behave erratically if Eq. (3-82) is 

improperly scaled. Therefore, the electric potential is non-dimensionalised as ( )0e kTψ ψ= .  

We note that the coordinate r does not have a finite domain ( /
chargeb r≤ < ∞ ). An infinite 

domain is not easy to implement in a numerical scheme because it is difficult to define ∞ 

numerically. To overcome this problem, we define a new coordinate, ξ, which is like a non-

dimensional distance and is proportional to 1 r . This would force ξ to tend to 0  when r tends to 

∞, thereby making the domain of the independent variable finite. ξ is defined as follows: 

( ) ( )

/

/ 2 2 /1
charge

charge charge

b r

d b r dr b dr

ξ

ξ ξ

=

= − = −
 (3-89) 

Next, we non-dimensionalise the system of equations, (3-81) - (3-88), by introducing ψ , 

ξ, and κ, where κ is the inverse of the Debye Hückel screening length, and is defined as follows:  
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This yields: 
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( ) ,1 charge unknownψ ξ ψ= =  (3-93) 
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( ) ( )/ / / /
charge Stern charge Stern

bulk Stern
b b b bξ ξ

ψ ψε ε
ξ ξ− +

→ →

∂ ∂
=

∂ ∂
 (3-96) 

( )0 0ψ ξ → =  (3-97) 

2

0
v

v
π

ψ

=±

∂
=

∂
 (3-98) 

Equations (3-91) - (3-98) are solved numerically using the finite difference technique. Let the 

number of grid points along the v axis be denoted by Nv, and the number of grid points along the 

ξ axis in the Stern layer and the bulk solution be denoted by NStern and Nbulk, respectively. Let the 

indices j  and k  denote grid points along the ξ and v axes, respectively. As a result, j = 1, j = 
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Nbulk and j = Nξ = Nbulk + NStern – 1 correspond to ξ = 0, / /
charge Sternb bξ = , and ξ = 1, respectively, 

while k = 1 and k = Nv correspond to v = -π/2 and v = π/2, respectively.  

Using a second-order central difference approach, the derivatives that appear in Eqs. 

(3-91) and (3-92) can be approximated as follows: 

( )

2
1, 1, , 1, 1,

22
, ,

2
;

2
j k j k j k j k j k

j k j k

ψ ψ ψ ψ ψψ ψ
ξ ξ ξξ

+ − + −+ − −∂ ∂
= =

∂ ∂ ΔΔ
 (3-99) 

( )

2
, 1 , 1 , , 1 , 1

22
, ,

2
;

2
j k j k j k j k j k

j k j k
v v vv

ψ ψ ψ ψ ψψ ψ+ − + −+ − −∂ ∂
= =

∂ ∂ ΔΔ
 (3-100) 

The boundary condition in Eq. (3-93) can be written as follows:  

[ ], , 1, 2,N k N k vk N
ξ ξ

ψ ψ −= ∈  (3-101) 

Using the trapezoidal rule, the integral boundary condition in Eq. (3-94) can be approximated as 

follows: 

( )( ) ( )

( )( )

1
/ /

1
2,1 ,

0/

,

cos cos2

cos 2 2

v

v

v

N

charge charge k
kN N k

f
charge N

SternN N

vb b v b b v v

Q evb b v
kT

ξ ξ

ξ

ψ ψ
ξ ξ

ψ
ξ πε

−

=

⎛ ⎞ ⎛ ⎞∂ ∂Δ+ + + Δ⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞∂Δ+ + =⎜ ⎟∂⎝ ⎠

∑
 (3-102) 

This can be further simplified by approximating the derivatives using the backward-difference 

approach. This yields: 

( )( ) ( )

( )( )

1
,1 1,1 2,1 , 1, 2,/ /

1
2

, 1, 2, 0/
/

3 4 3 4
cos cos22 2

3 4
cos 22 2

v

v v v

v

N
N N N N k N k N k

charge charge k
k

N N N N N N f
charge N

Stern charge

vb b v b b v v

Q evb b v
kT b

ξ ξ ξ ξ ξ ξ

ξ ξ ξ

ψ ψ ψ ψ ψ ψ

ξ ξ

ψ ψ ψ

ξ π ε

−
− − − −

=

− −

⎛ ⎞ ⎛ ⎞− + − +Δ⎜ ⎟ ⎜ ⎟+ + + Δ
⎜ ⎟ ⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠
⎛ ⎞− + Δ⎜ ⎟+ + =
⎜ ⎟Δ⎝ ⎠

∑

 (3-103) 
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The boundary condition in Eq. (3-95) is automatically satisfied since the Stern surface is 

characterized by a single value of j (Nbulk), and consequently, the electric potential satisfies the 

continuity condition. The boundary condition in Eq. (3-96) involves derivatives at the boundary. 

Since the central-difference approach is not applicable at the boundary, the backward-difference 

and the forward-difference approach are used to approximate the derivatives in Eq. (3-96). 

Specifically, 

[ ], 1, 2, , 1, 2,3 4 3 4
, 2, 1

2 2
bulk bulk bulk bulk bulk bulkN k N k N k N k N k N k

bulk Stern vk N
ψ ψ ψ ψ ψ ψ

ε ε
ξ ξ
− − + +

⎛ ⎞ ⎛ ⎞− + − + −
= ∈ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠

 (3-104) 

The boundary condition given in Eq. (3-97) can be written as follows:  

[ ]1, 0, 1,k vk Nψ = ∈  (3-105) 

Finally, the two boundary conditions in v given in Eq. (3-98) are approximated as follows:  

,1 ,2 ,33 4
0 2, 1

2
j j j j N

v ξ

ψ ψ ψ⎛ ⎞− + −
⎡ ⎤= ∈ −⎜ ⎟ ⎣ ⎦⎜ ⎟Δ⎝ ⎠

 (3-106) 

, , 1 , 23 4
0 2, 1

2
v v vj N j N j N j N

v ξ

ψ ψ ψ− −⎛ ⎞− +
⎡ ⎤= ∈ −⎜ ⎟ ⎣ ⎦⎜ ⎟Δ⎝ ⎠

 (3-107) 

The corner points, corresponding to (1, 1), (1, Nv), (Nξ, 1), and (Nξ, Nv) are forced to satisfy Eq. 

(3-101) or Eq. (3-105), instead of Eq. (3-106) or Eq. (3-107) , whichever is applicable.  

To solve for the electric potential, one needs to determine a set of ,j kψ  such that the 

system of non-linear equations presented above is satisfied. To solve a system of non-linear 

equations, an initial guess for the values of ,j kψ  needs to be provided, which in this case is done 

by solving the linearised version of the non-linear set of equations. The non-linearity in this 
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system of equations stems from the exponential on the right-hand side of Eq. (3-92). Upon 

linearising it, one obtains:  

( ) ( )
4 2 /2 2 24 2 /

,2 2 //
, , , ,

sin
coscos

j j charge
j kj j charge

j charge kj charge kj k j k j k j k

b b v
b

v b b v vb b v
ξ ξψ ψ ψ ψξ ξ κ ψ

ξ ξ ξξ

⎛ ⎞∂ ∂ ∂ ∂⎜ ⎟+ + − =
⎜ ⎟∂ ∂ ∂ + ∂+⎝ ⎠

 (3-108) 

The details of the linearization are presented in Section 7.1.13 of the Appendix. The linearised 

version of the equation is a lot simpler to solve. However, the initial guess is not the best if 1ψ >

, because the linearization becomes inaccurate. Using this initial guess, the system of nonlinear 

algebraic equations created by using the finite different technique is solved to obtain the surface 

electric potential, which is then stored in the interpolation database.  

3.6.2 gch of a Biaxial Ellipsoidal Micelle 

To calculate gch for a prolate ellipsoid, the following convenient parameterization was 

used: 

( )sinh sin cos , sinh sin sin , cosh cos
,0 ,  and 0 2charge

x f v u f v u f v
v u

ξ ξ ξ
ξ ξ π π≤ < ∞ ≤ ≤ ≤ <

 =  
 (3-109) 

where surfaces of constant ξ are confocal ellipsoids centered at the origin and having a focal 

length equal to f. Note that ξ and f can be expressed in terms of the variables introduced in the 

ellipsoidal parameterization described in Eq. (3-20), namely, p, q, and r. Specifically, ξ and f are 

equal to tanh-1(p/q) and r.(q2 – p2)1/2, respectively. The size and the shape of a prolate ellipsoid 

described by Eq. (3-109) are jointly determined by f and ξ. For a fixed value of f, a small value of 

ξ results in a smaller and elongated ellipsoid. On the other hand, for a given value of ξ, a smaller 

value of f results in a smaller ellipsoid. However, it should be noted that f is not a variable here. 
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Indeed once the ellipsoidal surface is defined as the micellar charged surface, f and ξcharge are 

fixed, and only ξ (in addition to v and u) varies from ξcharge to ∞ to span the entire space.  

Note that unlike the parameterization in Eq. (3-20), the parameterization in Eq. (3-109) is 

valid only for prolate ellipsoids and not for oblate ellipsoids because the hyperbolic cosine of ξ is 

always greater than the hyperbolic sine of ξ. Instead, for an oblate ellipsoid, the parameterization 

is given by: 

( )'cosh 'sin cos , 'cosh 'sin sin , 'sinh 'cos
0 ' ,0 ,  and 0 2

x f v u f v u f v
v u

ξ ξ ξ
ξ π π≤ < ∞ ≤ ≤ ≤ <

 =  
 (3-110) 

where ξ' is equal to tanh-1(q/p) and f' is equal to r.(p2 – q2)1/2. Because the two parameterizations 

for prolate ellipsoids and oblate ellipsoids shown in Eqs. (3-109) and (3-110) are similar in form, 

most of the derivations and analyses presented in this section are for prolate ellipsoids unless 

otherwise stated. Note that similar equations can be derived for oblate ellipsoids.  

Using Eqs. (3-77) - (3-79) for the parameterization in Eq. (3-109), the Laplace and the 

gradient operators are given by: 

( )

( )

2 2

2
3 2 2

sin sinh
sinh sin sinh sin

sinh sin

sinh sin sin sinh

f v
f v f v

v v u v u

f v v

ξψ ψ ψξ ξ
ξ ξ ξ

ψ
ξ ξ

⎛ ⎞+⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎜ ⎟+ +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠∇ =
+

 (3-111) 

( )
1

2 2 2

ˆ ˆ
ˆ

sinh sinsin sinh

v
v u u

f vf v

ψ ψ ψξ
ξψ

ξξ

∂ ∂ ∂+
∂ ∂ ∂∇ = +

+
 (3-112) 
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Details of the derivations of Eq. (3-111) and Eq. (3-112) are provided in Section 7.1.14 of the 

Appendix. Note that because the z axis is an axis of symmetry, we do not expect ψ to depend on 

the angle u. Consequently, all the derivatives of ψ with respect to u are 0.  

Before using the Laplace operator to derive the governing equations in the Stern layer 

and the bulk region for a prolate ellipsoid, it is necessary to define the Stern surface. Based on 

the properties of the Stern layer, the Stern surface is defined by the shortest distance between any 

mobile charged species and the charged micelle surface. This enforces the condition that the 

Stern layer, that is, the region between the Stern surface and the charged surface is devoid of any 

charged species. In the case of a regular shape, for example, in the case of a sphere, the Stern 

surface is defined as a sphere concentric to the charged surface with a separation equal to the 

sum of the radii of the ion (assuming that they are spherical with the charge located at the center 

of the sphere) and the distance of the charge on the surfactant head from the top of the 

surfactant.43 However, in the case of an ellipsoidal charged surface, a Stern surface defined such 

that, at all points, the separation between the Stern surface and the charged surface is equal to the 

sum of the radii of the ion and the surfactant head leads to a surface which is no longer an 

ellipsoid. Defining such a surface would lead to a complicated analysis to determine the 

electrostatic free energy. Therefore, to simplify the analysis, the Stern surface is approximated to 

be an ellipsoidal surface which is confocal to the micellar charged surface so that it can be 

characterized by a single value of ξ, denoted as Sternξ . This approximation is shown pictorially in 

Figure 3-21, where the solid lines are confocal ellipsoids, the inner one representing the micellar 

charged surface and the outer one representing the approximated Stern surface. The dashed line 

is the exact Stern surface. Out of the infinitely many ellipsoids that are confocal to the micellar 

charged surface, the Stern surface is chosen to be the one which coincides with the exact Stern 
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surface at the low curvature points (the x and y axes in this case). Due to this approximation, a 

small region of the Stern layer is modeled as being part of the bulk solution (see Figure 3-21).  

 

Figure 3-21: Schematic showing the difference between the approximated Stern surface and the actual 
Stern surface. 

Using the above definition of the Stern surface and Eqs. (2-27), (2-28), and (3-111), the 

governing equations inside the Stern layer and in the bulk solution are given by: 

( )
2

3 2 2

sinh sin sinh sin
0,

sinh sin sin sinh

 and 0charge Stern

f v f v
v v

f v v

v

ψ ψξ ξ
ξ ξ

ψ
ξ ξ

ξ ξ ξ π
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≤ < ≤ ≤

 (3-113) 
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ξ ξ ψψ

εξ ξ
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where ξStern and ξcharge denote the Stern surface and the charged surface, respectively. 

The following equations generalize the boundary conditions for the partial differential 

equations in the case of the prolate ellipsoidal coordinate system:  

1. The micellar charged surface is at a constant unknown potential with a total charge of Qf. 

Specifically, 

( ) ,charge charge unknownψ ξ ξ ψ= =  (3-115) 

( )
1

2 2 2sin sinh

charge f

SternA charge

dA
Q

f v

ψ
ξ

εξ

⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

− =
+

∫  (3-116) 

The differential area element, dA, in the above equation is calculated using the method described 

in Section 3.2 to yield:  

( )
1

2 2 2 2sinh sin sin sinhdA f v v dvduξ ξ= +  (3-117) 

Substituting Eq. (3-117) in Eq. (3-116) yields: 

( )
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2 2 2 2
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2 2 20 0
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2 sinh sin
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ψ ξ ξ
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=
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= =

⎛ ⎞∂
+⎜ ⎟∂⎝ ⎠− =

+

⎛ ⎞∂
⇒ − =⎜ ⎟∂⎝ ⎠

∫ ∫

∫

 (3-118) 

2. The electric potential at the Stern surface is continuous, that is,  

( ) ( )Stern Sternξ ξ ξ ξ
ψ ψ+ −→ →

=  (3-119) 
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3. Since the Stern surface has no surface charge associated with it, the normal derivatives of 

ψ on both sides of the Stern surface are related as follows:41 

( ) ( )Stern Stern

bulk Stern
ξ ξ ξ ξ

ψ ψε ε
ξ ξ+ −→ →

∂ ∂
=

∂ ∂
 (3-120) 

4. The electric potential is 0 at ∞, that is, 

( ) 0ψ ξ →∞ =  (3-121) 

5. The gradient of the electric potential with respect to v is 0 near the axis of revolution that 

is,: 

0

0
vv

ψ

=

∂
=

∂
 (3-122) 

0
vv π

ψ

=

∂
=

∂
 (3-123) 

Similar to the equations for the semi-toroidal rim, ψ in the above governing equations is 

scaled to yield ( )0e kTψ ψ= . Additionally, the size variable ξ is scaled as follows: 

( )
2

2

2

sinh sinh
sinh sinh

sinh
cosh 1 sinh

sinh sinh

charge charge

charge
charge

charge

f
f

d d d

ξ ξ
ξ

ξ ξ

ξ ξξ ξ ξ ξ ξ ξ
ξ ξ

= =

⎛ ⎞⎛ ⎞
⎜ ⎟= − = − +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (3-124) 

Non-dimensionalising the system of equations (3-113) - (3-115) and (3-118) - (3-123) by 

introducing ψ , ξ , and κ yields: 



117 

( )
( )

2 22 4 2 32 2
2 2

2 2 2

cosech cosech cot

0,
sin sinh

1 sinh sinh

charge charge

charge

charge Stern

v
v v

v

ψ ψ ψ ψξ ξ ξ ξ ξ ξ
ξξ

ξ ξ

ξ ξ ξ
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+
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 (3-125) 
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 (3-126) 

( ) ,1 charge unknownψ ξ ψ= =  (3-127) 
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Q e
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∫  (3-128) 

( ) ( )sinh sinh sinh sinhcharge Stern charge Sternξ ξ ξ ξ ξ ξ
ψ ψ− +

→ →
=  (3-129) 

( ) ( )sinh sinh sinh sinhcharge Stern charge Stern

bulk Stern
ξ ξ ξ ξ ξ ξ

ψ ψε ε
ξ ξ− +

→ →

∂ ∂
=

∂ ∂
 (3-130) 

( )0 0ψ ξ → =  (3-131) 

0
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∂
=
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0
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π

ψ

=

∂
=

∂
 (3-133) 

Equations (3-125) - (3-133) are solved numerically using the finite-difference technique 

introduced in Section 3.6.1 to calculate ψch, which is then stored in an interpolation table for the 

calculation of gch.  

All the governing equations [analogous to Eqs. (3-125) - (3-133)] for an oblate ellipsoid 

are listed below: 
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 (3-135) 

( ) ,' 1 charge unknownψ ξ ψ= =  (3-136) 
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∫  (3-137) 

( ) ( )/ / / /' cosh cosh ' cosh coshcharge Stern charge Sternξ ξ ξ ξ ξ ξ
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→ →
=  (3-138) 
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ξ ξ ξ ξ ξ ξ
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( )' 0 0ψ ξ → =  (3-140) 
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0
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π

ψ

=

∂
=

∂
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The method used to solve the system of equations generated using the finite-difference scheme 

described above is identical to those discussed in Section 3.6.1. The interpolation table created 

by the solution to the above set of equations can then be used to calculated gch.  

The charging free energy is the final free-energy contribution that is affected by the 

varying curvature of the discoidal and ellipsoidal shapes. The curvature-corrected model for the 
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free energy of micellization can be obtained by adding the curvature-corrected expressions for 

the various free energies presented in Sections 3.3 - 3.6. Following the model development of the 

different free-energy contributions, the curvature-corrected model for discoidal micelles is 

compared with the model developed by Srinivasan and Blankschtein in Section 3.7. Finally, in 

the final section of Chapter 3, the curvature-corrected model for biaxial ellipsoidal micelles is 

used to evaluate their feasibility as micelle shapes, a topic of controversy in the literature of 

micelle shapes.  

3.7 Curvature-Corrected Model for Discoidal Micelles 

The free energy of micellization, gmic, consists of various free-energy contributions 

discussed in Chapter 2 (see Eq. (2-6)). These include the transfer free energy, gtr, the interfacial 

free energy, gint, the packing free energy, gpack, the steric free energy, gst, the electrostatic free 

energy, gelec, and the mixing free energy, gmix. Of these free energies, gint, gpack, gst, and gelec 

depend on the curvature of the micelle shape. Curvature-corrected models for these free-energy 

contributions were presented in Sections 3.3 - 3.6 for the discoidal micelle shape. These models 

are significantly more complicated, and therefore, more difficult to implement than the molecular 

model developed by Srinivasan and Blankschtein.28 Therefore, in this section, the free-energy 

contributions calculated using the two models are compared to ascertain in which cases it is 

essential to model discoidal micelles using the curvature-corrected model.  

3.7.1 Interfacial Free Energy 

Figure 3-22 compares gint for discoidal micelles with aggregation numbers varying 

between 6 and 60 formed by cesium perfluorooctanoate, calculated based on the curvature- 

corrected (CC) model and the Srinivasan and Blankschtein (SB) model.28 Note that an upper 
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limit of 60 was chosen on the aggregation number because the predicted concentration of 

aggregates having an aggregation number higher than 60 was found to be negligible. Moreover, 

the weight-average aggregation number reported by Iijima et al. is about 50 at a surfactant 

concentration of 65 mM.50 Note that for the purpose of generating the plots presented in this 

section, the surfactant monomer concentration was fixed at 25 mM, which is close to the CMC of 

cesium perfluorooctanoate.60 In addition, note that the monomer concentration affects solely the 

calculation of gelec, and not of gint, gpack, and gst. 

 

Figure 3-22: Comparison of gint for cesium perfluorooctanoate calculated using the curvature-corrected 
(CC) model and the Srinivasan and Blankschtein (SB) model  

All the points shown in Figure 3-22 lie above the 45o line, indicating that gint calculated 

using the SB model is systematically higher than gint calculated using the CC model. In both 

models, gint is high when b or b' take small values. This follows because small values of b and b' 

result in high values of the curvature, which increases gint. This point was also discussed in 
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Section 3.3.1. The higher values of gint are also associated with higher discrepancies between the 

two models, with the average difference between the gint values calculated using the two models 

being about 0.7 kT.  

The key difference between the CC model and the SB model,28 in the context of the 

interfacial free energy, gint, is that the effect of the position-dependent curvature on the interfacial 

tension is incorporated in the former while not in the latter. Indeed, in the discoidal model 

developed by Srinivasan and Blankschtein,28 the curvature for the semi-toroidal rim, for the 

purpose of calculating the curvature-corrected interfacial tension, is assumed to be equal to that 

of a cylinder having a radius equal to b' of the semi-toroidal rim. However, the actual curvature 

of the semi-toroidal rim is higher than that of the cylinder because a semi-toroidal rim is a bent 

cylinder, and the curvature of that shape increases due to the bending action. Accordingly, the 

curvature-corrected interfacial tension of a semi-toroidal rim is lower than that of the associated 

cylinder, as follows from Eq. (2-12). This results in the overprediction of gint based on the SB 

model relative to that predicted by the CC model. The difference between the two models 

becomes smaller as the bilayer portion of the discoidal micelle becomes larger, that is, as b 

increases. This follows because the semi-toroidal rim behaves more like a hemi-cylinder as b 

increases. 

3.7.2 Packing Free Energy 

Figure 3-23 compares gpack for discoidal micelles with aggregation numbers varying 

between 6 and 60 formed by cesium perfluorooctanoate, calculated based on the CC model and 

the SB model.28 The points shown in Figure 3-23 lie predominantly below the 45o line, 

indicating that gpack calculated using the SB model is typically lower than gpack calculated using 

the CC model. 
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Figure 3-23: Comparison of gpack for cesium perfluorooctanoate calculated using the CC model and the 
SB model  

In both models, gpack is high when b' takes on very small, or very large, values. When b' is 

very small, the high curvature of the disc results in high values of the packing free energy, while 

when b' is very high, the inability to pack the center of the bilayer portion of the disc results in 

high values of gpack. This was discussed in more detail in Section 3.4.1. On average, the 

difference between the gpack values calculated using the two models is 0.09 kT, which is about 

atenth of the average difference found in the case of gint. Note that Srinivasan and Blankschtein 

approximated the packing of the semi-toroidal rim of a disc as that corresponding to the packing 

of a cylinder.28 Since this approximation does not account for the increase in volume or for the 

change in curvature due to the bending of the cylinder, it cannot be compared with the disc 
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3.7.3 Steric Free Energy 

Figure 3-24 compares gst for discoidal micelles with aggregation numbers varying 

between 6 and 60 formed by cesium perfluorooctanoate, calculated based on the CC model and 

the SB model.28 All the points shown in Figure 3-24 lie systematically below the 45o line, which 

indicates that gst calculated using the SB model is systematically lower than gst calculated using 

the CC model. In both models, gst is low when b' is small. This follows because small values of 

b' result in high values of the curvature, which reduces gst. This point was also discussed in 

Section 3.5.1. The average difference between the gst values calculated using the two models is 

about 0.02 kT, which is an order of magnitude lower than the average difference found in the 

calculation of gint. The magnitude of the difference is smaller because gst is typically lower than 

gint, as can be seen by comparing Figure 3-22 and Figure 3-24. 

 

Figure 3-24: Comparison of gst for cesium perfluorooctanoate calculated using the CC Model and the SB 
model  
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 The systematic difference between the CC model and the SB model, in the context of gst, 

may result because of the different averaging techniques used to calculate the average steric free 

energy per molecule in both models. Indeed, in the SB model, the area per molecule is averaged, 

and then it is used in Eq. (2-24) to yield the average steric free energy per molecule.28 This 

corresponds to taking the negative logarithm of an average quantity. On the other hand, in the 

CC model, the local steric free energy per molecule is averaged to yield the average steric free 

energy per molecule. This corresponds to taking an average of negative logarithmic terms. One 

can show that the average of logarithmic terms is smaller than the logarithm of the average of the 

terms. Specifically (see Section 7.1.15 of the Appendix),  

( ) ( )ln ln ln lni i i ix x x x≤ ⇒ − ≥ −  (3-143) 

Equation (3-143) explains the systematic discrepancy between the SB model and the CC model 

for discs. 

3.7.4 Charging Free Energy 

Figure 3-25 compares gch for discoidal micelles with aggregation numbers varying 

between 6 and 60 formed by cesium perfluorooctanoate, calculated based on the CC model and 

the SB model.28 Note that gch depends on the shape of the micelle, as described in Section 2.3 

and Section 3.6. Note also that the surfactant monomer concentration is about 25 mM, which is 

close to the CMC of cesium perfluorooctanoate. The points shown in Figure 3-25 lie 

predominantly above the 45o line, which indicates that gch calculated using the SB model is 

typically higher than gch calculated using the CC model. In both models, gch is higher when the 

degree of counterion binding, βn, is lower, because a small βn implies a higher effective charge 

on the micelle, thereby leading to a high value of gch. On average, the difference between the gch  



125 

 

Figure 3-25: Comparison of gch for cesium perfluorooctanoate calculated using the CC model and the SB 
model  
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Figure 3-26: Comparison of gmic for cesium perfluorooctanoate calculated using the CC model and the SB 
model  

an order of magnitude lower than those in gint and gelec. Moreover, since the SB model yields a 

higher value than the CC model for both gint and gelec, it follows that gmic calculated using the SB 

model is higher than gmic calculated using the CC model. This finding is clearly shown in Figure 

3-26, which compares gmic for discoidal micelles with aggregation numbers varying between 6 

and 60 formed by cesium perfluorooctanoate, calculated based on the CC model and the SB 

model. Figure 3-26 shows that all the points lie above the 45o line, indicating that gmic calculated 

using the SB model is higher than gmic calculated using the CC model. On average, the difference 

between the gmic values calculated using the two models is 2.1 kT, which represents a significant 

deviation. This clearly shows that the approximations underlying the SB model severely affect 

the calculation of gmic. In addition, because gmic predicted by the CC model is lower than gmic 

predicted by the SB model, the CR model favors the formation of discs more than the SB model. 

-10.0

-8.0

-6.0

-4.0

-2.0

0.0

-10.0 -8.0 -6.0 -4.0 -2.0 0.0

g m
ic

/k
T

(S
B

 M
od

el
)

gmic/kT (CC Model)



127 

3.8 Feasibility of Biaxial Ellipsoidal Micelles 

In the literature on micelle shapes, there has been some controversy about the shape of 

globular micelles. Many experimental studies claim that some surfactants under certain solution 

conditions form ellipsoidal micelles. For example, for an aqueous solution of the nonionic 

surfactant n-dodecyl octaethylene glycol monoether, Tanford et al. compared the experimental 

viscosities and the experimental Stokes radii obtained from sedimentation velocity measurements 

to their respective theoretical predictions, and concluded that the micelles are oblate ellipsoidal 

(disk like) in shape.61 Kawaguchi et al. utilized X-ray scattering to show that nonionic short-

chain fatty acid sucrose monoester surfactants (CnSE; n = 10, 12, and 14) form oblate ellipsoidal 

micelles in aqueous solution.52 Recently, experimental techniques like small-angle X-ray 

scattering and small-angle neutron scattering have been widely used to probe the structure of 

micelles.62 For example, using small-angle X-ray scattering, Caetano et al. showed that the 

anionic surfactant sodium dodecyl sulfate in the presence of small amounts of chlorpromazine (a 

clinical antipsychotic drug) forms prolate ellipsoidal micelles in aqueous solution.53 Sarkar et al. 

showed that nonionic alkyl-propoxy-ethoxylate surfactants in the presence of alcohol cosolvents 

form oblate ellipsoidal micelles in aqueous solution.54 However, contrary to these experimental 

studies, several theoretical studies have refuted the premise that ellipsoids can be feasible micelle 

shapes. The most noteworthy of these studies is the seminal work of Israelachvili et al.63 In 

response to the theoretical work of Tartar64 and Tanford65 where they studied the formation of 

ellipsoidal micelles once the surfactant molecules can no longer pack into spherical micelles, 

Israelachvili et al. invoked their packing criterion to claim that an ellipsoid cannot be an 

optimum micelle shape. They showed that, for an ellipsoidal micelle, the surface area per 

surfactant molecule varies throughout the micelle surface, and is therefore different from the 
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optimal surface area per surfactant molecule almost everywhere. As a result, from a free-energy 

viewpoint, an ellipsoidal shape can never be the optimal shape.63 Subsequently, other authors 

also rejected the ellipsoid as a feasible micelle shape. In particular, Leibner and Jacobus claimed 

that ionic surfactants prefer to micellize in shapes with higher surface area per molecule in the 

head region. As a result, the spherocylinder shape is superior to the ellipsoid shape because 

spherocylinders have a higher surface area per molecule than those of prolate or oblate 

ellipsoids.66 In another study, Taddei rejected the ellipsoidal shape based on the fact that 

ellipsoids have regions with high curvature (the polar region in a prolate ellipsoid and the 

equatorial region in an oblate ellipsoid), which will prevent the surfactant molecules from 

packing efficiently.57, 58  

Among the few studies on the theoretical modeling of the formation of ellipsoidal 

micelles, the most comprehensive one was undertaken by Halle et al. These authors calculated 

the free-energy change associated with the shape fluctuations of a spherical micelle that leads to 

the formation of an ellipsoidal micelle. Specifically, they accounted for the effect of the position-

dependent curvature of the ellipsoidal shape on the free energy of micelle formation.67 While 

their theoretical development of the electrostatic free energy of deformation was very thorough, 

Halle et al. did not account for the free-energy contributions arising from: (i) the loss of 

conformational degrees of freedom of the surfactant tails in the micelle core, (ii) the steric 

interactions between the head groups of the surfactants, and (iii) the curvature dependence of the 

interfacial tension associated with the interfacial free energy of deformation.67 Using their model, 

Halle et al. showed that under certain conditions, both prolate and oblate ellipsoidal micelles can 

exist in aqueous solution. However, in their analysis, the authors only considered prolate 

ellipsoids, oblate ellipsoids, and spheres, as possible shapes, leaving out cylinders and bilayers.  
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A few other studies on the structure of micelles include a molecular-thermodynamic 

model by Nagarajan and Ruckenstein16, and a model based on shape fluctuations by Borkovec.68 

In both of these studies, the position-dependent curvature was not explicitly accounted for in the 

free-energy calculations. Instead, average geometrical properties of the ellipsoidal shape were 

used. As it has been shown in Sections 3.3.2 and 3.5.2, as well as for discs in Section 3.7, not 

explicitly accounting for the position-dependent curvature of micelle shapes can result in 

significant discrepancies in the calculation of the free energy of micellization. Based on the 

limitations of past modeling work on ellipsoidal micelles, it is clear that a rigorous theoretical 

study on ellipsoidal micelles that incorporates the effect of the position-dependent curvature on 

the free energy of micelle formation has not been undertaken to evaluate the feasibility of 

forming ellipsoidal micelles relative to other commonly-formed micelle shapes, including 

spheres, spherocylinders, and discs. Therefore, using the curvature-corrected model developed 

for biaxial ellipsoidal micelles (see Sections 3.3.2, 3.4.2, 3.5.2, and 3.6.2), we next evaluate the 

feasibility of biaxial ellipsoids as a micelle shape.  

3.8.1 Shape Distribution of Micelles for Different Nonionic Surfactants 

To evaluate the feasibility of forming biaxial ellipsoidal micelles, the shape distribution 

of micelles formed by a 6-carbon fluorocarbon-based nonionic surfactant having a head area of 

60 Å2, at its CMC, was predicted under two different scenarios. In the first scenario, it was 

assumed that micelles can exist in only three shapes, namely, spheres, spherocylinders (finite 

cylinders with hemi-spherical end caps having the same radius as the cylinder), and discs (finite 

bilayers with semi-toroidal rims modeled using the Srinivasan and Blankschtein model26). In the 

second scenario, it was assumed that micelles can exist in five shapes, namely, spheres, 

spherocylinders, discs, prolate ellipsoids, and oblate ellipsoids. The shape distribution 
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corresponding to each of the scenarios was predicted by calculating the total number of 

surfactant molecules forming micelles of a particular shape using Eq. (2-5). The number of 

surfactant molecules forming a particular micelle of aggregation number, n, is given by 

nXn(NW+NS). Note that the curvature-corrected model is only used for the biaxial ellipsoids and 

not for discs to clearly differentiate between models in which the effect of curvature has been 

explicitly incorporated (the CC model) and those in which it has not (the SB model). 

The shape distributions corresponding to the two scenarios are shown in Figure 3-27 and 

Figure 3-28. In the first scenario shown in Figure 3-27, 69% of the surfactant molecules in the 

micellar state form spherocylindrical micelles, while the remaining 31% form spherical micelles. 

The weight-average aspect ratio 
W

AR  of the cylindrical micelles is 4.3, while that of the entire 

micellar solution (including cylindrical and spherical micelles) is 3.2. Here, the aspect ratio of a 

 

Figure 3-27: Shape distribution of micelles corresponding to the scenario where they can adopt spherical, 
spherocylindrical, and discoidal shapes. 
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cylinder is defined as (h+2r)/2r, where h is the height of the cylinder and r is the radius of the 

cylinder. The aspect ratio for a sphere is 1. The weight average of the aspect ratio is calculated 

using the following expression: 

1

1

n
n

W
n

n

AR nX
AR

nX
>

>

⋅
=
∑
∑

 (3-144) 

In the second scenario (Figure 3-28), in which the formation of ellipsoidal micelles was 

allowed, 84% of the surfactant molecules in the micellar state form oblate ellipsoidal micelles, 

15% form prolate ellipsoidal micelles, and only 1% of the surfactant molecules in the micellar 

state form spherical, spherocylindrical, and discoidal micelles. Contrary to claims made in 

several theoretical studies,57, 58, 63, 66 this result clearly suggests that, in the context of our 

theoretical framework, ellipsoidal micelles are indeed feasible micelle shapes when compared  

 

Figure 3-28: Shape distribution of micelles corresponding to the scenario where they can adopt spherical, 
spherocylindrical, discoidal, prolate ellipsoidal, and oblate ellipsoidal shapes. 
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with spheres, spherocylinders, and discs. The average aspect ratio of the micelles is 1.23, 

which suggests that the micelles are globular and not very elongated. 

Of all the five shapes considered, we found that an infinite cylinder of radius 8.54 Å has 

the lowest free energy of micellization (-8.81 kT). The next lowest free energy of micellization 

of (-8.54 kT) corresponds to an oblate ellipsoidal micelle of aggregation number 21 having a 

semi minor axis-length equal to 9.14 Å. This observation, along with the results shown in Figure 

3-28, indicates that in spite of having a higher micellization free energy, the oblate ellipsoidal 

shape is the preferred one. This can be attributed to two factors. First, in practice, only finite-size 

micelles can exist in solution, and in this case, the free energy associated with forming the 

spherical end caps of a spherocylindrical micelle is significantly higher than that associated with 

forming the cylindrical portion. As a result, shorter spherocylinders have a much higher 

micellization free energy than longer spherocylinders. Second, the entropic penalty associated 

with localizing n surfactant monomers to form a surfactant micelle of aggregation number n is 

not included in the definition of the free energy of micellization introduced in Eq. (2-6). Instead, 

it is included when calculating the concentration of micelles using Eq. (2-5). This entropic 

penalty is smallest for small micelles, and increases as the micelle aggregation number increases. 

As a result, at low concentrations, when fewer surfactant molecules are available to form 

micelles, smaller micelles are preferred. Due to these two reasons, in the case considered above, 

oblate ellipsoids are the preferred shape in spite of having a higher free energy of micellization 

relative to an infinite cylindrical micelle. However, it should be noted that it is not impossible for 

an ellipsoidal micelle to have a free energy of micellization which is lower than those 

corresponding to the three regular shapes. In fact, for certain surfactants, it has been observed 

that an oblate ellipsoidal shape has a lower free energy of micellization that that of a spherical, 
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infinite cylindrical, or infinite bilayer micelle. Therefore, although the free energy of 

micellization per molecule varies with position for ellipsoidal micelles, its average value can still 

be sufficiently low to make it the preferred micelle shape.  

Next, the shape distribution of micelles was compared when the various molecular 

descriptors of the surfactant are changed by varying: (i) the tail length of the surfactant (by 

changing the number of carbon atoms in the surfactant tail), (ii) the surfactant head area, and (iii) 

the chemistry of the surfactant tail. Figure 3-29 shows the shape distribution of micelles at the 

CMC for a series of fluorocarbon-based surfactants having a head area of 60.0 Å2, and 5, 6, and 

7 carbon atoms in the tail. The figure shows no discernible difference between the shape 

distributions of micelles for the three different surfactants considered. The weight-average aspect 

ratio does not show a lot of variation either, with values between 1.23 and 1.27 for the three  

 

Figure 3-29: Shape distribution of micelles at the CMC for a series of fluorocarbon-based surfactants 
having different numbers of carbon atoms in the tail. Color Code: Green – 5-carbon fluorocarbon tail, 
Blue – 6-carbon fluorocarbon tail, and Red – 7-carbon fluorocarbon tail.  
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surfactants considered. This follows because with an increase in the number of carbon atoms in 

the tail of the fluorocarbon-based surfactant, not only does the volume of the surfactant tail 

increase, but also the length of the semi-minor axis of the ellipsoidal micelle increases. These 

two factors offset each other’s effect, leading to shape distributions that are very similar for the 

three different surfactants considered. 

Figure 3-30 shows the effect of the head area on the shape distribution of micelles at the 

surfactant CMC. Specifically, the figure shows the shape distribution of micelles at the CMC for 

three fluorocarbon-based surfactants with a 6-carbon fluorocarbon tail having head areas of 50.0 

Å2, 60.0 Å2, and 70.0 Å2. Figure 3-30 shows that as the head area increases, the fraction of 

surfactant molecules in the micellar state that form oblate ellipsoidal micelles decreases from 

95% to 72%, while that for prolate ellipsoidal micelles increases from 4% to 27%. In addition, 

the calculated weight-average aspect ratio decreases from 1.42 to 1.15, i.e., the micelles become 

 

Figure 3-30: Shape distribution of micelles at the CMC for a series of 6-carbon fluorocarbon-based 
surfactants having different head areas. Color Code: Green – 50.0 Å2, Blue – 60.0 Å2, and Red – 70.0 Å2. 
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increasingly globular. For this set of surfactants, the length of the surfactant tail remains the 

same. As a result, the semi-minor axis length of the micelle also remains the same (at about 90-

100% of the surfactant tail length). However, the head area increases. Consequently, the steric 

repulsions between the heads increase, leading to a more globular-shaped micelle which has a 

higher surface area-to-volume ratio. Note that the increase in the contribution of the prolate 

ellipsoidal shape is also due to the same reason, since for the same semi-minor axis length and 

aspect ratio, a prolate ellipsoid has a higher surface area per molecule than an oblate ellipsoid.  

Finally, Figure 3-31 compares the shape distribution of micelles formed by a 6-carbon 

fluorocarbon-based surfactant and a 6-carbon hydrocarbon-based surfactant having the same 

head area of 50 Å2. For the fluorocarbon-based surfactant, 95% of the surfactant molecules in the 

micellar state form oblate ellipsoidal micelles. On the other hand, for the hydrocarbon-based 

surfactant, about 63%, 17%, and 20% of the surfactant molecules in the micellar state form  

 

Figure 3-31: Shape distribution of micelles at the CMC for a 6-carbon fluorocarbon-based surfactant 
(Green), and a 6-carbon hydrocarbon-based surfactant (Blue), both having a head area of 50.0 Å2. 
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oblate ellipsoidal, prolate ellipsoidal, and spherical micelles, respectively. The calculated weight-

average aspect ratio for the fluorocarbon-based surfactant micelles is 1.42, while that for the 

hydrocarbon-based surfactant micelles is 1.12. These results can be explained on the basis of the 

volume of the two surfactant tails. Since the fluorocarbon tail is bulkier than the hydrocarbon tail 

(see Section (2-18) and (2-19)), the fluorocarbon-based surfactant prefers to micellize in a shape 

having a higher volume-to-surface area ratio. Since an oblate ellipsoidal shape has a higher 

volume-to-surface area ratio, the fluorocarbon-based surfactant prefers to micellize in this shape 

more than its hydrocarbon counterpart. In addition, for the same semi-minor axis length, an 

elongated ellipsoidal shape has a higher volume-to-surface area ratio. Therefore, the 

fluorocarbon-based surfactant prefers to form elongated micelles relative to the hydrocarbon-

based surfactant. 

Finally, based on the results presented in Figures 3-28 – 3-31, it follows that for the set of 

surfactants considered here, out of the two biaxial ellipsoidal shapes, oblate ellipsoids are 

preferred over prolate ellipsoids. This follows because at a semi-minor axis length of 95% of the 

surfactant tail length (which is the preferred value), the oblate ellipsoidal shape is the preferred 

shape from an interfacial free-energy viewpoint, while the prolate ellipsoidal shape is the 

preferred shape from the steric free-energy viewpoint (the packing free energies are not very 

different for the two shapes). However, the difference in the interfacial free energies of the two 

shapes is much higher than the difference in the steric free energies. As a result, the shape with 

the lower interfacial free energy, the oblate ellipsoidal shape in this case, becomes the preferred 

micelle shape. Note that with an increase in the head area, the difference in the steric free 

energies of the two ellipsoidal shapes becomes increasingly significant, and this can lead to a 

change in the preferred shape from an oblate ellipsoidal to a sphere/prolate ellipsoidal shape. 
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Furthermore, if the surfactants are ionic, there would be an additional electrostatic free-energy 

penalty, which may have a larger effect on the micelle shape distribution than that of the steric 

free energy.  

3.9 Conclusions 

In summary, in this chapter, an MT model was developed for discoidal and biaxial 

ellipsoidal micelles, which are both important micelle shapes in the context of fluorocarbon-

based surfactants. The model incorporated the effect of the position-dependent curvature on the 

various free-energy contributions to the free energy of micellization. The model for discoidal 

micelles was compared with a previous model for discoidal micelles that did not incorporate the 

effect of the position-dependent curvature on the free energy of micellization.28 The comparison 

showed that it is imperative to explicitly incorporate the effect of the varying curvature, 

especially in the case of the interfacial free energy and the electrostatic free energy, to yield 

accurate results. In the context of biaxial ellipsoidal micelles, the model was used to show that 

the biaxial ellipsoidal shape is indeed a feasible micelle shape, a conclusion that was previously 

challenged in several theoretical studies.57, 58, 63, 66  

In the next chapter, I discuss modeling the micellization behavior of mixtures of 

surfactants, where a new Computer-Simulation-Molecular-Thermodynamic (CSMT) framework 

is presented to model such mixtures. The CSMT framework is particularly useful for mixtures of 

surfactants having a complex chemical structure, which are therefore, not amenable to traditional 

MT modeling.   
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Chapter 4 

4 Modeling the Micellization Behavior of 

Binary Mixtures of Fluorocarbon-Based 

Surfactants 

4.1 Introduction 

In most industrial applications, a surfactant formulation consists of several surfactants 

mixed together. These mixtures can form as a result of the synthesis process in which various, 

difficult to separate, homologous surfactants are produced, and therefore, yield an impure end 

product.5 However, multiple surfactants are often deliberately mixed to improve the performance 

characteristics of a surfactant formulation.69, 70 For example, nonionic alkyl ethoxylate 

surfactants are often added in surfactant formulations because they have better tolerance towards 

hard water and have a low foaming tendency.69 

The choice of a particular surfactant mixture formulation is made based on the desired 

solution properties, including the mixture critical micelle concentration (CMC), and the mixed-
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micelle shape, size, and composition. As a result, the formulator is faced with the challenging 

task of choosing the most appropriate mixture of surfactants from a broad class of available 

surfactants that range from simple linear surfactants to complex branched or aromatic 

surfactants. Several models have been developed to gain a theoretical understanding of the 

behavior of the CMCs of mixtures of surfactants. Most of these models are based on the 

pseudophase approximation, and include Clint’s ideal solution model,71 Holland and Rubingh’s 

regular solution model,72 Hao et al.’s two-parameter Margules model,73 and Georgiev’s two-

parameter Markov chain model.74 Use of all these models require knowledge of the CMCs of the 

constituent surfactants, as well as of other experimental results to estimate the values of the 

various parameters used in the models. Recently, models based on Monte Carlo simulations have 

also been developed to describe mixed micellization.75-79  However, these models also require 

knowledge of parameters that quantify the interactions between the different heads and tails of 

the surfactants comprising the mixture. This limitation is mitigated in the molecular-

thermodynamic (MT) approaches developed to model the micellization of surfactant mixtures.80-

84  

Due to recent advances in computational capabilities, molecular dynamics (MD) 

simulations have become an attractive tool to study micellar properties.15 Although MD 

simulations can certainly be utilized to obtain molecular-level details about the micellization 

process,85-88 their use is currently limited by constraints on the system size (of the order of 

nanometers) and on the time scales (of the order of nanoseconds). Micellization properties like 

CMCs are not easy to calculate using all-atomistic simulations alone, and therefore, several 

indirect methods have been used to calculate such micellization properties.15, 46, 89-94  
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Notably, in spite of the extensive practical use of mixtures of surfactants, a very small 

fraction of the simulation studies available in the literature focus on mixed micellization. For 

example, Yakovlev et al. used MD simulations to determine the change in micelle shape as a 

function of the composition of a mixed micelle containing an anionic and a cationic surfactant.95 

More recently, Ferreira et al. published a study in which they probed the interactions between the 

tails of homologous surfactants forming a mixed micelle.96 Stephenson et al. used an alchemical 

computer simulation method to calculate the free-energy change associated with varying the 

composition of a mixed micelle, which can in turn be correlated to the change in the mixture 

CMC.97 The major limitation of the method developed by Stephenson et al.97 is that it does not 

yield realistic predictions for binary surfactant mixtures in which the two surfactant components 

possess very different chemical structures.98  

In this chapter, we develop a model that may be used to predict micellization properties 

of mixtures of surfactants by incorporating structural details obtained using all-atomistic MD 

simulations of micelles and monomers into the well-established molecular-thermodynamic 

framework introduced in Chapter 2 for mixed surfactant micellization.21, 99 The model is based 

on the computer simulation–molecular-thermodynamic (CSMT) framework developed by 

Stephenson et al. for single surfactants which was discussed in Section 2.4.44-46 The theoretical 

basis of the mixture CSMT framework is presented in Section 4.2. Additionally, the challenges 

associated with the practical implementation of the mixture CSMT framework are addressed by 

formulating a simpler mixture CSMT model based on a composition-weighted average approach 

involving single-component micelle simulations of the mixture constituents. The molecular 

dynamics simulation protocol followed in the study is discussed in Section 4.3 followed by a 

discussion of results in Sections 4.4 and 4.5. Specifically, a comparison between the mixture 
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CSMT model and the simpler mixture CSMT model is presented in Sections 4.4 and a 

comparison between the CMCs predicted using the mixture CSMT model and the experimental 

CMC values is presented in Section 4.5.  

4.2 CSMT Framework for Surfactant Mixtures 

In order to extend the CSMT framework to surfactant mixtures, expressions analogous to 

Eqs. (2-37) and (2-39) for a simulated mixed micelle containing jN  molecules of surfactant j 

need to be derived. To this end, we first derive expressions for the extensive free energies of 

dehydration and hydration, Gdehydr and Ghydr, respectively, to include the contributions from all 

the constituents of the simulated mixed micelle. This is done by adding up the free-energy 

contributions of the various surfactant molecules comprising the simulated mixed micelle. The 

resulting expressions for Gdehydr and Ghydr are subsequently divided by the total aggregation 

number of the mixed micelle to obtain gdehydr and ghydr for the simulated mixed micelle. 

Specifically, 

( ), ,1
j j

j

dehydr j dehydr j j i tr i
j j i

G N g N f g= = −∑ ∑ ∑  (4-1) 
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α

−

= = −
∑ ∑

∑ ∑∑
 (4-2) 

where αj is the composition of surfactant j in the simulated mixed micelle, and the index, ij, 

denotes group i in surfactant j. Note that αn,j introduced in Eq. (2-5) is identical to αj introduced 

in Eq. (4-2) where the subscript n, denoting the aggregation number, has been omitted for clarity.  

Analogous expressions can be derived for Ghydr and ghydr. Specifically,  
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where cj denotes the groups in surfactant j that reside in the micelle core. Substituting Eqs. (4-2) 

and (4-4) in Eq. (2-40) yields gtr,CSMT for a mixed micelle. 

Equations (4-2) and (4-4) clearly show that gtr,CSMT for a mixed micelle depends on the 

composition of the simulated mixed micelle. Because one has no a priori knowledge of the 

composition of the mixed micelle that exists in solution, one does not know the composition at 

which the mixed micelle should be simulated. As a result, the implementation of the above 

model for gtr,CSMT would require knowledge of gtr,CSMT as a function of the micelle composition. 

This, in turn, would require carrying out mixed-micelle simulations at compositions spanning the 

entire composition range, which is computationally very expensive. To facilitate implementation 

of the CSMT model for mixtures of surfactants, a simplified mixture CSMT model is proposed 

in which gtr,CSMT of a simulated mixed micelle is estimated using a composition-weighted 

average of the gtr,CSMT values of the individual surfactants comprising the mixture, which can be 

calculated from the single-component micelle simulations. The composition-weighted average 

model for gtr,CSMT is referred to hereafter as ,
avg

tr CSMTgα − , and for a binary mixture of surfactants, is 

given by: 

, , , , ,
avg

tr CSMT A tr CSMT A B tr CSMT Bg g gα α α− = +  (4-5) 
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where the mixed micelle consists of surfactants A and B, αA and αB are the compositions of A and 

B in the micelle, respectively, and gtr,CSMT,A and gtr,CSMT,B are the gtr,CSMT values calculated using 

single-component micelle simulations of surfactants A and B, respectively, using the method 

described in Section 2.4. Clearly, if this approximation is valid, it would greatly simplify the 

estimation of gtr,CSMT for mixed micelles. Indeed, such an approximate gtr,CSMT model would only 

require carrying out micelle simulations of the individual surfactant components. Therefore, if 

the approximate model is valid, once one generates such a library of single surfactant micelle and 

monomer simulations, one can then predict the micellization behavior of mixtures of any number 

of surfactants available in the library.  

To test the range of applicability of the above composition-weighted average model for 

gtr,CSMT, comparison between ,
avg

tr CSMTgα −  and gtr,CSMT calculated from the mixed-micelle simulation 

was carried out for various binary surfactant mixtures. The following binary surfactant mixtures 

were considered: (i) a set of surfactants having the same head but different tails, (ii) a set of 

surfactants having the same tail but different heads, and (iii) a set of ionic and nonionic 

surfactants. Note that the binary surfactant mixtures in (i), (ii), and (iii) above were selected to 

enable testing the validity of the above approximation by systematically varying the head and tail 

regions of the surfactants. This selection allows for the identification of those surfactant mixtures 

for which the approximation is valid, including drawing general conclusions about the 

applicability of the approximation. Note that the most important difference between the two 

models is that a mixed-micelle simulation is required to calculate gtr,CSMT for the mixed micelle. 

On the other hand, only single-component micelle simulations are required to calculate ,
avg

tr CSMTgα −  

for the mixed micelle.  
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4.3 Molecular Dynamics Simulations Protocol 

All the simulations reported in this thesis are all-atomistic, explicit solvent simulations 

carried out using GROMACS version 4.5.1.100, 101 The OPLS-AA force field was used for all 

parameterizations.102, 103 Custom parameters from the literature were used in cases for which the 

OPLS-AA parameters were missing. Usually, the OPLS-AA parameters were missing for the 

head groups of surfactants (for example sulfate head in alkyl sulfates), and for these cases, 

parameters available in the literature were used. For the alkyl sulfates and alkyl sulfonates 

considered here, the parameters developed by Lopes et al.104 were used. For the alkyl ethoxylate 

heads, parameters developed by Anderson and Wilson were used.105 Finally, parameters 

developed by Stephenson et al. were used for the alkyl glucosides.46 Water was modeled using 

the SPC/E model for water.106 The van der Waals interactions were modeled using a 12-6 

Lennard-Jones potential with a short cut-off distance of 0.9 nm, and a long-range dispersion 

correction to the energy and the pressure.45, 107 The Coulombic interactions were modeled using a 

three-dimensional particle-mesh Ewald summation.47, 107-110 The temperature of the simulation 

was maintained at 298.15 K using a velocity-rescaling thermostat,107, 111 and the pressure was 

maintained at 1 bar using a Berendsen coupling algorithm.107, 112  

Note that two types of molecular dynamics (MD) simulations need to be carried out to 

calculate gtr,CSMT of a mixed micelle.46 These include an MD simulation for monomers of each of 

the surfactants forming the mixed micelle, which are referred to as the monomer simulations, and 

an MD simulation of the mixed-micellar aggregate, referred to as the micelle simulation. The 

same simulation protocol described above is implemented for both the monomer simulation, in 

which a surfactant molecule is simulated in a box of water, and the micelle simulation, in which 

a preformed surfactant aggregate is allowed to equilibrate in a box of water. The size of the 
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simulation box is chosen such that there would be at least a 2 nm separation between the 

surfactant monomer, or micelle, and its periodic image.46 This is done to avoid any interactions 

between the surfactant monomer, or micelle, and its periodic image. Note that to ensure this, 

results obtained from a micelle simulation of sodium dodecyl sulfate simulated in a cubic box 

having an edge length of 5.75 nm were compared with the results obtained from a micelle 

simulation in a cubic box having an edge length of 11.50 nm. It was found that the results show 

no significant difference.  

Instead of allowing the surfactant molecules to self-aggregate, a preformed surfactant 

aggregate was used for the micelle simulation because the aggregation process in a fully-

dispersed surfactant solution would require significant computational time to reach equilibrium. 

The various steps required to preform the surfactant aggregate include:47 (1) carrying out 

separate MD simulations in vacuum of a single molecule of each of the surfactant species to 

build up a library of surfactant configurations,86 (2) randomly placing surfactant molecules from 

the library created in step (1), in accordance with the aggregation number of the different 

surfactant species, at equidistant locations on a sphere with the surfactant tails pointing towards 

the center of the sphere, (3) increasing the size of the sphere in step (2) until there are no 

overlaps between the different surfactant molecules, and (4) reducing the size of the sphere by 

pushing the surfactant molecules towards the center of the sphere by means of a fictitious force. 

This is done until the resulting micellar structure has a sufficiently low void fraction that a 

solvent molecule (water in this case) fails an insertion test at some threshold level (typically 90% 

yields a dry micelle core). This preformed micelle is then introduced into a box which is 

subsequently completely filled with water molecules. The box of water with the preformed 

micelle is then simulated sufficiently long (~25 ns), such that rearrangement of the surfactant 
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molecules is allowed and equilibration is attained. The simulation is considered to have 

equilibrated when the solvent accessible surface area (SASA) has equilibrated, since SASA is 

proportional to the degree of hydration, which is the quantity that one is primarily interested in 

when utilizing the CSMT framework.46 A representative plot of the variation of SASA during the 

course of the simulation of an equimolar mixed micelle of sodium dodecyl sulfate and sodium 

dodecyl sulfonate is shown in Figure 4-1 below. The mean value of SASA in the last 20 ns is 

42.2 nm2, with a block averaged error of 0.2 nm2 which is about 0.5 % of the mean value.  

 

Figure 4-1: Variation of the normalized SASA of the mixed micelle as a function of time.  
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4.4 Comparison between the Mixture CSMT Model and the Composition-

Weighted Average Based Approximate Mixture CSMT Model 

To evaluate the applicability of using ,
avg

tr CSMTgα−  calculated using the composition-weighted 

average based mixture CSMT model in lieu of gtr,CSMT calculated using the mixture CSMT 

model, ,
avg

tr CSMTgα − was compared with gtr,CSMT for various binary mixtures of surfactants. The 

mixtures of surfactants were chosen such that they satisfy the criteria presented in (i), (ii), and 

(iii) towards the end of Section 4.2, and that there is available experimental critical micelle 

concentration (CMC) data for these mixtures to allow comparison with the predicted CMCs. 

Because, there is not much experimental CMC data for binary mixtures of fluorocarbon-based 

surfactants (to the best of my knowledge, experimental data CMC is available solely for the 

binary mixture of lithium perfluorooctanoate and lithium perfluorooctyl sulfonate),113 binary 

mixtures of hydrocarbon-based surfactants were used for this study. The specific binary mixtures 

studied include: (1) a set of mixtures of sodium alkyl sulfates (anionic surfactants) having 

different number of carbon atoms in the alkyl tail, (2) a set of mixtures of alkyl ammonium 

chlorides (cationic surfactants) having different number of carbon atoms in the alkyl tail, (3) a 

mixture of sodium dodecyl sulfate (anionic surfactant) with sodium dodecyl sulfonate (anionic 

surfactant), (4) a set of mixtures of dodecyl ethoxylates (nonionic surfactants) with different 

number of ethoxylate units in the surfactant head, (5) a set of mixtures of dodecyl glucoside 

(nonionic surfactant) and dodecyl ethoxylates (nonionic surfactants) with different number of 

ethoxylate units in the surfactant head, (6) a set of mixtures of sodium dodecyl sulfate (anionic 

surfactant) with alkyl ethoxylates (nonionic surfactants) and alkyl glucosides (nonionic 

surfactants), and (7) a set of mixtures of dodecyl ammonium chlorides (cationic surfactants) with 
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alkyl ethoxylates (nonionic surfactants) and alkyl glucosides (nonionic surfactants). Surfactant 

mixtures (1) – (7) above were selected to isolate the effects of the surfactant head, the surfactant 

tail, and the surfactant charge on gtr,CSMT. Specifically, sets (1) and (2) are binary mixtures of 

surfactants having the same head but different tails, sets (3), (4), and (5) are binary mixtures of 

surfactants having the same tail but different heads, and sets (6) and (7) are binary mixtures of 

ionic and nonionic surfactants 

For all the binary ionic surfactant mixtures considered in (1), (2), and (3) above, ,
avg

tr CSMTgα −  

was found to agree very well with gtr,CSMT. As an illustration, results for binary mixtures 

belonging to set (1) above are shown in Figure 4-2. This set includes binary mixtures of sodium 

decyl sulfate (C10SUL) and: (a) sodium dodecyl sulfate (C12SUL, red), (b) sodium tetradecyl  

 

Figure 4-2: Variations of ,
avg

tr CSMTgα −  (lines) and gtr,CSMT (filled circles) as a function of micelle composition 
for a set of binary mixtures of sodium alkyl sulfates.  
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sulfate (C14SUL, blue), and (c) sodium hexadecyl sulfate (C16SUL, green). Figure 4-2 shows 

the variation of ,
avg

tr CSMTgα −  and gtr,CSMT of mixed micelles as a function of the micelle composition. 

For the three binary mixtures considered, the filled circles correspond to gtr,CSMT, and the solid 

lines correspond to ,
avg

tr CSMTgα − . Note that the error bars shown in Figure 4-2 and the other figures 

included in this chapter were calculated using a procedure discussed in Section 7.1.16 of the 

Appendix. 

Figure 4-2 shows that the agreement between ,
avg

tr CSMTgα −  and gtr,CSMT for the binary mixtures 

considered is excellent. A similar conclusion can be drawn from Figure 4-3, which shows the 

variations of ,
avg

tr CSMTgα−  and gtr,CSMT as a function of micelle composition in a mixed micelle of 

C12SUL and sodium dodecyl sulfonate (C12SFN). Note that, relative to Figure 4-2:, the error 

 

Figure 4-3: Variations of ,
avg

tr CSMTgα −  (lines) and gtr,CSMT (filled circles) as a function of micelle composition 
for a binary mixture of sodium dodecyl sulfate (C12SUL) and sodium dodecyl sulfonate (C12SFN). 
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bars in Figure 4-3 appear to be very large. However, this is not the case, because the range of the 

y-axis in Figure 4-3 is only 0.6 kT, while that of the y-axis in Figure 4-2: is 9 kT. Accordingly, 

the errors in both figures are actually of the same order of magnitude. 

Figure 4-4 shows the variations of ,
avg

tr CSMTgα −  and gtr,CSMT as a function of micelle 

composition for a set of binary mixtures of dodecyl ethoxylates (set (4) above). This set includes 

binary mixtures of tetraethylene glycol monododecyl ether (C12E4) and: (a) hexaethylene glycol 

monododecyl ether (C12E6, red), (b) octaethylene glycol monododecyl ether (C12E8, blue), and 

(c) decaethylene glycol monododecyl ether (C12E10, green). Figure 4-4 shows that, unlike the 

ionic surfactant mixtures considered in Figures 4-2 and 4-3, for the binary mixtures of the alkyl  

 

Figure 4-4: Variations of ,
avg

tr CSMTgα −  (lines) and gtr,CSMT (filled circles) as a function of micelle composition 
for a set of binary mixtures of dodecyl ethoxylates. 
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ethoxylates considered, ,
avg

tr CSMTgα −  and gtr,CSMT do not agree well with each other. Instead, ,
avg

tr CSMTgα −  is 

systematically higher than gtr,CSMT. 

Another important conclusion that can be drawn from Figure 4-4 is that although the four 

alkyl ethoxylates considered here (C12E4, C12E6, C12E8, and C12E10) have the same dodecyl 

tail, their gtr,CSMT values are not the same. This can be seen from the points corresponding to a 

micelle composition of 0 and 1 in Figure 4-4. Specifically, gtr,CSMT of the four surfactants 

decreases as the number of ethoxylate units in the surfactant head increases. The increase in the 

number of ethoxylate units makes the surfactant head increasingly flexible which, in turn, allows 

the ethoxylate head to more effectively shield the micelle core from contact with water. Since the 

micelle core is hydrophobic, its contact with water is not favorable from a free-energy viewpoint. 

As a result, better shielding of the micelle core from water leads to a lower gtr,CSMT value. This 

interesting finding is also reflected in the variation of the degree of hydration, fi, defined in Eq. 

(2-38), of the 12-carbon surfactant tails for the four dodecyl ethoxylate surfactants considered 

(see Figure 4-5). Note that group 1 corresponds to the terminal methyl group in the 12-carbon 

surfactant tail, and group 12 corresponds to the methylene group adjacent to the ethoxylate head. 

Examination of Figure 4-5 reveals that as the number of ethoxylate units in the head region 

increases, the micelle core becomes more dehydrated, as reflected by the lower fi values. This 

reduction in hydration of the micelle core in turn results in the observed decrease of gtr,CSMT with 

increasing ethoxylate head length reported in Figure 4-4. Continuing with the binary mixtures of 

dodecyl ethoxylates, consider the binary mixture of C12E4 and C12E10. Because C12E10 has a 

more flexible head than C12E4, the E10 head can shield the micelle core more effectively than 

the E4 head. Due to the presence of the E10 head in the mixed micelle, the fi values of the groups 

in the dodecyl tail of C12E4 are lower in the (C12E4+C12E10) mixed micelle than those in the 
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Figure 4-5: Variation of the fractional degree of hydration, fi, as a function of group number in the 12-
carbon tails for the four dodecyl ethoxylates considered (the aggregation numbers of the four simulated 
dodecyl ethoxylate micelles were the same). 

single-component C12E4 micelle. This is reflected in Figure 4-6, which shows the variation of fi 

of the 12-carbon tail of C12E4 in the single-component micelle (purple) and in the mixed micelle 
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dodecyl tail of C12E10 are higher in the (C12E4+C12E10) mixed micelle than in the single-

component C12E10 micelle, due to the presence of the less flexible E4 head. This is also 

reflected in Figure 4-6. This results in an increase in the gtr,CSMT value of the mixed micelle 
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Figure 4-6: Variations of the fractional degree of hydration, fi, as a function of group number in the 12-
carbon tail of C12E4 and C12E10 in a single-component micelle (purple) and in an equimolar 
(C12E4+C12E10) mixed micelle (red).  

E4 head with the more flexible E10 head is a better shielding of the micelle core, thereby leading 

to a lowering of gtr,CSMT. Because ,
avg

tr CSMTgα −  does not incorporate any interactions between the 

surfactants comprising the mixed micelle, it is unable to reproduce the gtr,CSMT values obtained 

using the mixed-micelle simulation, where these interactions are accounted for. Therefore, the 

composition-weighted average method does not work well for binary mixtures of ethoxylate 

surfactants. 

Figure 4-7 shows the variations of ,
avg

tr CSMTgα−  and gtr,CSMT as a function of micelle 

composition for binary mixtures in set (5) above. This set includes binary mixtures of dodecyl 

glucoside and: (a) tetraethylene glycol monododecyl ether (C12E4, purple), and (b) octaethylene 

glycol monododecyl ether (C12E8, blue). Similar to the results in Figure 4-4, Figure 4-7 shows 

that ,
avg

tr CSMTgα −  (lines) overpredicts gtr,CSMT (filled circles). This can again be attributed to the better 

shielding of the micelle core by the more flexible ethoxylate heads.  
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Figure 4-7: Variations of ,
avg

tr CSMTgα −  (lines) and gtr,CSMT (filled circles) as a function of micelle composition 
for a set of binary mixtures of dodecyl ethoxylates and dodecyl glucoside. 
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Figure 4-8: Variations of ,
avg

tr CSMTgα −  (lines) and gtr,CSMT (filled circles) as a function of micelle composition 
for a set of binary mixtures of alkyl ethoxylates and sodium dodecyl sulfate. 

 

Figure 4-9: Variations of ,
approx
tr CSMTg  (lines) and gtr,CSMT (filled circles) as a function of micelle composition 

for a set of binary mixtures of alkyl glucosides and sodium dodecyl sulfate. 
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Figure 4-9 shows the variations of ,
avg

tr CSMTgα −  and gtr,CSMT as a function of micelle 

composition for a set of binary mixtures containing C12SUL and alkyl glucosides, including: (1) 

decyl glucoside (C10GLU, blue), and (2) dodecyl glucoside (C12GLU, red). Unlike the results in 

Figure 4-8, for the binary mixtures of sodium dodecyl sulfate and alkyl glucosides considered 

here, ,
avg

tr CSMTgα −  and gtr,CSMT agree well with each other. This may reflect the fact that although the 

glucoside head is relatively big compared to the ionic surfactant head, it is not as flexible as the 

ethoxylate head to improve the overall shielding of the micelle core. This is also reflected in 

Figure 4-10 which shows the variations of fi of the 12-carbon hydrocarbon chains of C12SUL 

and C12GLU in the single-component micelle (purple) and in the mixed micelle (red). Note that 

based on the Tanford definition of surfactant head and tail for ionic surfactants, the methylene 

group connected to the oxygen in C12SUL is considered to be part of the surfactant head. A 

comparison of Figures 4-6 and 4-10 shows that unlike the case in Figure 4-6, in Figure 4-10, 

there is no systematic shift in fi of the surfactant tails in the single-component micelle relative to 

the mixed micelle. This suggests that the glucoside head does not provide any extra shielding of  

 

Figure 4-10: Variations of the fractional degree of hydration, fi, as a function of group number in the 12-
carbon hydrocarbon chain of C12SUL and C12GLU in a single-component micelle (purple) and in an 
equimolar (C12SUL+C12GLU) mixed micelle (red).  
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the micelle core, which was the case for the ethoxylate head. As a result, ,
avg

tr CSMTgα −  and gtr,CSMT 

agree well with each other in the glucoside case. Note that results which are similar to those 

presented in Figure 4-8 and Figure 4-9 are obtained when C12SUL is replaced with dodecyl 

ammonium chloride (results not presented here). 

To summarize, based on the comparisons of ,
avg

tr CSMTgα −  and gtr,CSMT presented above, one 

can conclude that ,
avg

tr CSMTgα −  works as well as gtr,CSMT for binary mixtures of surfactants where the 

surfactant heads are small and/or rigid. On the other hand, for binary mixtures containing 

surfactants with long and flexible heads, like the alkyl ethoxylates, ,
avg

tr CSMTgα−  systematically 

overpredicts gtr,CSMT. The observed difference is related to the fact that in a mixed micelle 

containing alkyl ethoxylates, the long and flexible ethoxylate head is able to interact with the 

constituent surfactants in a way that improves the shielding of the micelle core from contact with 

water. While these interactions between the various surfactant species in a mixed micelle are 

accounted for in calculating gtr,CSMT, they are not accounted for in calculating ,
avg

tr CSMTgα − . As a 

result, based on the above findings, caution should be exercised when using ,
avg

tr CSMTgα −  in the case 

of surfactants with long flexible head groups. In the cases where ,
avg

tr CSMTgα −  does not mimic gtr,CSMT, 

a quadratic or cubic polynomial fit can be obtained for gtr,CSMT as a function of the micelle 

composition which can be used in place of gtr in Eq. (2-6).  

4.5 Prediction of Micellization Propertied of Various Binary Surfactant 

Mixtures 

To evaluate the predictive ability of the new mixture CSMT model, it was used to predict 

critical micelle concentrations (CMCs) of various binary mixtures of surfactants and the 
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predicted CMCs were compared with the experimental ones. Figure 4-11: shows predicted 

CMCs as a function of solution composition using the CSMT and the MT models for a binary 

mixture of sodium dodecyl sulfate (C12SUL) and sodium decyl sulfate (C10SUL). Note that 

,
avg

tr CSMTgα −  was used to make the mixture CSMT CMC predictions. This was done because Figure 

4-2 clearly shows that ,
avg

tr CSMTgα −  is as good as gtr,CSMT for this particular binary surfactant mixture.  

Figure 4-11: shows that the CMCs predicted using the CSMT and the MT models  

 

Figure 4-11: Predicted and experimental CMCs vs. solution composition for a binary mixture of sodium 
decyl sulfate and sodium dodecyl sulfate.  

compare very well with the experimental CMCs.114 All the predicted CMCs are within a factor of 

1.7 of the experimental CMCs. The CSMT model does marginally better than the MT model 

because it better predicts the CMC of sodium decyl sulfate when compared to the MT model.  
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CSMT and the MT models for a binary mixture of sodium dodecyl sulfate (C12SUL) and decyl 

glucoside (C10GLU). The experimental CMCs115 are also shown for comparison. Similar to the 

predictions in Figure 4-11:, ,
avg

tr CSMTgα −  was used to predict the CMCs because Figure 4-9 shows that 

for this binary surfactant mixture, ,
avg

tr CSMTgα −  is as good as gtr,CSMT. Note that for this binary 

surfactant mixture, the MT model yields marginally better predictions than the CSMT model. 

This follows because the CMC of decyl glucoside predicted by the MT model is lower than the  

 

Figure 4-12: Predicted and experimental CMCs vs. solution composition for a binary mixture of sodium 
dodecyl sulfate and decyl glucoside. 
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compositions are systematically lower than the experimental CMCs. Note that both the MT and 

the CSMT models predict a minimum in the CMC at a solution composition of 10% C12SUL 

and 90% C10GLU, while the experimentally observed minimum in the CMC occurs at a solution 

composition of 20% C12SUL and 80% C10GLU,115 which is quite close.  

In the following three figures, the CMCs predicted using the CSMT and the MT models 

are compared with experimental CMCs for three binary surfactant mixtures where at least one of 

the surfactants is an alkyl ethoxylate. Specifically, the three binary mixtures include: (1) a 

mixture of sodium dodecyl sulfate (C12SUL) and tetraethylene glycol monooctyl ether 

(C8E4)116 (see Figure 4-13), (2) a mixture of sodium dodecyl sulfate (C12SUL) and octaethylene 

glycol monododecyl ether (C12E8) in the presence of 500 mM of NaCl117 (see Figure 4-14), and 

(3) a mixture of hexaethylene glycol monododecyl ether(C12E6) and tetraethylene glycol  

 

Figure 4-13: Predicted and experimental CMCs vs. solution composition for a binary mixture of sodium 
dodecyl sulfate and tetraethylene glycol monooctyl ether. 
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Figure 4-14: Predicted and experimental CMCs vs. solution composition for a binary mixture of sodium 
dodecyl sulfate and octaethylene glycol monododecyl ether with 500 mM NaCl. 

 

Figure 4-15: Predicted and experimental CMCs vs. solution composition for a binary mixture of 
tetraethylene glycol monodecyl ether and hexaethylene glycol monododecyl ether. 
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monodecyl ether (C10E4)18 (see Figure 4-15). Based on the findings in Section 4.4, it is known 

that, for binary mixtures containing alkyl ethoxylates, ,
avg

tr CSMTgα −  overpredicts relative to gtr,CSMT 

(see Figure 4-4, Figure 4-7, and Figure 4-8). As a result, gtr,CSMT is utilized to predict the CMCs 

shown in Figure 4-13, Figure 4-14, and Figure 4-15. To this end, the simulation results were first 

fitted to analytical polynomials to capture the variation of gtr,CSMT as a function of the micelle 

composition. Subsequently, these polynomials were used to predict the CMCs. It is noteworthy 

that for the alkyl ethoxylates considered, different head areas were used for the MT and the 

CSMT models. The reasons behind this choice, including related calculations, are discussed in 

Section 7.3 in the Appendix, where values of the molecular descriptors of the various surfactants 

considered in this thesis are summarized. 

Figures 4-13, 4-14, and 4-15 show that, for these three binary surfactant mixtures, the 

CSMT and the MT models yield very good CMC predictions. At certain compositions, the 

CMCs predicted by the MT model are better than those predicted by the CSMT model, while for 

other compositions, the reverse is true. CMCs predicted using both models are, on average, 

within a factor of 1.5 from the experimental CMC values. 

Note that the computational cost associated with making the predictions shown in Figures 

4-13, 4-14, and 4-15 (using gtr,CSMT) is significantly higher than that associated with making the 

predictions shown in Figures 4-11 and 4-12 (using ,
avg

tr CSMTgα − ). To understand the errors in the 

predicted CMCs resulting from the use of ,
avg

tr CSMTgα −  instead of gtr,CSMT for binary mixtures 

containing surfactants having flexible head groups like those shown in Figures 4-13, 4-14, and 

4-15, the CMCs predicted using ,
avg

tr CSMTgα −  are compared with the CMCs predicted using gtr,CSMT 

for a representative case of the binary mixture of sodium dodecyl sulfate and octaethylene glycol  
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Figure 4-16: Predicted CMC using ,
avg

tr CSMTgα −  and gtr,CSMT for a mixture of sodium dodecyl sulfate and 
octaethylene glycol monododecyl ether 

monododecyl ether. The results are presented in Figure 4-16, which shows that the predicted 

CMC using gtr,CSMT is lower than the predicted CMC using ,
avg

tr CSMTgα − . This is due to the fact that 

,
avg
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avg

tr CSMTgα −  and gtr,CSMT. An examination of Figure 4-16 shows that, on average, the 

CMCs predicted using ,
avg

tr CSMTgα −  are a factor of 2 higher than the CMCs predicted using gtr,CSMT. 

Note that in free-energy units, a factor of 2 is equal to ln(2) = 0.7 kT (free energy ~ ln(CMC)), 
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avg

tr CSMTgα −  and gtr,CSMT (0.8 kT). Therefore, by 

quantifying the difference between ,
avg

tr CSMTgα −  and gtr,CSMT, one can quantify the expected error in 

the predicted CMCs if one used ,
avg

tr CSMTgα− , which is computationally cheaper than using gtr,CSMT. 
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To decide between using the mixture CSMT model or the composition-weighted average based 

mixture CSMT model, one can perform an equimolar mixed-micelle simulation and evaluate the 

difference between ,
avg

tr CSMTgα −  and gtr,CSMT. Based on this difference, one can quantify the expected 

error in the predicted CMC if ,
avg

tr CSMTgα −  is used instead of gtr,CSMT, and decide accordingly which 

model to use. 

Finally, the mixture CSMT model was used to predict the CMCs of the only binary 

mixture of fluorocarbon-based surfactants for which experimental data is available in the 

literature, namely, a binary mixture of lithium perfluorooctyl sulfonate (LiPFOS) and lithium 

perfluorooctanoate (LiPFO).113 First, Figure 4-17 compares gtr,CSMT and ,
avg

tr CSMTgα −  for the binary 

mixture of lithium perfluorooctyl sulfonate (LiPFOS) and lithium perfluorooctanoate (LiPFO).  

 

Figure 4-17: Variations of ,
approx
tr CSMTg  (lines) and gtr,CSMT (filled circles) as a function of micelle composition 

for a binary mixture of lithium perfluorooctyl sulfonate (LiPFOS) and lithium perfluorooctanoate 
(LiPFO). 
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The figure clearly suggests that ,
avg

tr CSMTgα −  (red solid line) compares very well with gtr,CSMT 

calculated from the mixed-micelle simulation (red filled circles). Subsequently, the mixture 

CSMT and MT models were used to predict the mixture CMC. A comparison of the predicted 

and the experimental CMC values is presented in Figure 4-18. Similar to the predictions for the 

other binary mixtures presented in this section, the CMCs predicted using the CSMT and the MT 

models shown in Figure 4-18 compare very well with the experimental CMCs.113 All the 

predicted CMCs are within a factor of 1.5 of the experimental CMCs. This is considered 

excellent agreement in the context of the MT and the CSMT models because the critical micelle 

concentration has an exponential dependence on the free energy of micellization (see Eq. (2-41)), 

which is the quantity that is actually modeled.39 Therefore, even a small error in the predicted 

free energy of micellization can lead to a significant error in the predicted critical micelle concentration.  

 

Figure 4-18: Predicted and experimental CMCs vs. solution composition for a binary mixture of lithium 
perfluorooctyl sulfonate (LiPFOS) and lithium perfluorooctanoate (LiPFO). 
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Moreover, it is important to recognize that the main motivation behind developing the mixture CSMT 

framework is not only to predict the micellization behavior of mixtures of simple surfactants, but also to 

predict the micellization behavior of mixtures of surfactants possessing complex chemical architectures, 

including branched and aromatic surfactants, which cannot be modeled using the traditional MT 

framework. The work presented here aims at building the foundation for the mixture CSMT framework, 

while ensuring that it predicts the micellization behavior of relatively simple surfactant mixtures 

accurately. Now that this has been established, the new mixture CSMT framework can be used to predict 

the micellization behavior of surfactant mixtures that cannot be modeled using the traditional MT 

framework. 

4.6 Conclusions 

In summary, in this chapter, a computer-simulation-molecular-thermodynamic (CSMT) 

framework was developed to predict the micellization behavior of surfactant mixtures. To 

overcome the difficulty in implementing the CSMT framework due to the computational costs 

associated with simulating mixed micelles at several compositions, an approximation to calculate 

gtr,CSMT, referred to as ,
avg

tr CSMTgα − , was implemented. This approximation uses only information from 

the simulated single-component surfactant micelles for each of the constituent surfactants 

comprising the mixture. The approximation was tested for a variety of binary surfactant 

mixtures, and it was found to work very well for all the binary surfactant mixtures considered, 

except for those containing alkyl ethoxylate surfactants. The difference between ,
avg

tr CSMTgα −  and 

gtr,CSMT in the context of mixtures containing alky ethoxylate surfactants was attributed to the 

interactions between the surfactant molecules resulting from the flexible nature of the ethoxylate 

heads. CMC predictions made using the mixture CSMT model and the MT model were 

compared with the experimental CMCs for various binary mixtures of linear surfactants. The 
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predictions made using the MT model were found to be as good as the predictions made using 

the CSMT model for the binary mixtures of linear surfactants considered here. By demonstrating 

the applicability of the mixture CSMT model in the case of mixtures of simple surfactants, I have 

laid the foundation for the use of the mixture CSMT framework to model mixtures of surfactants 

that have a complex chemical architecture (for example, branched and aromatic surfactants), and 

are therefore not amenable to traditional MT modeling.  

 In the next chapter, I develop an MT model for binary mixtures of fluorocarbon-based 

and hydrocarbon-based surfactants. These surfactant mixtures are very different from those 

considered in this chapter because the fluorocarbon surfactant tails and the hydrocarbon 

surfactant tails mix nonideally. This nonideal mixing can lead to unconventional micellization 

behavior, including the coexistence of fluorocarbon-rich and fluorocarbon-poor mixed micelles.  
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Chapter 5 

5 Modeling the Micellization Behavior of 

Binary Mixtures of Fluorocarbon-Based and 

Hydrocarbon-Based Surfactants 

5.1 Introduction 

The special properties of fluorocarbon-based surfactants, discussed in Section 1.1, make 

them far superior than their hydrocarbon counterparts, resulting in their widespread use in paints, 

polishes, floor waxes, adhesives, fire-fighting foams,5 and emulsion polymerization.5 However, 

as discussed in Section 1.2, the downside of using fluorinated surfactants is that due to their 

chemical inertness and thermal stability, they are not biodegradable,5 and hence, are potentially 

toxic.10, 118 Concerns about the bioaccumulation and toxicity of fluorinated surfactants have 

prompted a search for alternative surfactant formulations which minimize the use of 

fluorocarbon-based surfactants. To this end, an interesting strategy involves mixing 

fluorocarbon-based surfactants with other environmentally-benign surfactants, such as, 

hydrocarbon-based surfactants. In addition to reducing the fluorocarbon content of the surfactant 
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formulation, mixing fluorocarbon-based and hydrocarbon-based surfactants also reduces the cost 

of the surfactant formulation because fluorocarbon-based surfactants are much more expensive 

than their hydrocarbon counterparts.5  

It is well known that fluorocarbons and hydrocarbons interact non-ideally, with their 

mixtures exhibiting positive enthalpies of mixing.119 As a result, mixtures of fluorocarbon-based 

and hydrocarbon-based surfactants have received considerable academic attention, because they 

can exhibit significant deviations from the ideal-solution behavior. For example, for the binary 

mixture of sodium perfluorooctanoate (SPFO) and sodium decyl sulfate (SDeS), Mukerjee and 

Yang found that the experimental CMCs, measured using electrical conductance, were not very 

different from the CMCs calculated by assuming complete demixing of micelles. This led them 

to suggest that mixing of SPFO with SDeS leads to the coexistence SPFO micelles and SDeS 

micelles.120 Aratono et al. concluded that, for certain solution compositions, mixing SPFO and 

SDeS leads to the coexistence of two types of mixed micelles: one rich in SPFO and the other 

rich in SDeS.121 Aratono et al. arrived at this conclusion based on a thermodynamic treatment of 

their experimentally-measured surface tension data.121 For the same system, Shinoda and 

Nomura122 used the Regular Solution Theory (RST) to model the experimental data reported by 

Mukerjee and Yang,120 and found that the RST interaction parameter was less than 2.0. Similar 

to the case of mixing in a binary solution, Shinoda and Nomura showed that for a binary mixture 

of surfactants, an interaction parameter that is smaller than 2.0 implies no demixing of micelles, 

that is, the existence of only one type of mixed micelle in solution.122 Therefore, they concluded 

that the SPFO-SDeS binary mixture resulted in only one type of SPFO-SDeS mixed micelle. 

Kamogawa and Tajima also arrived at the same conclusion by measuring the electron-spin 

resonance (ESR) correlation times for certain spin probes in the mixed-micellar system 
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consisting of SPFO and SDeS at 250C in the absence of salt.123 Interestingly, using nuclear-

magnetic resonance spectroscopy, Nordstierna et al. concluded that the experimental 

measurements can be explained by assuming demixing within the mixed micelle.124 In other 

words, the experimental data can be rationalized by assuming that only one type of mixed 

micelle exists with a fluorocarbon compartment and a hydrocarbon compartment within the 

micelle. In view of the above, it is clear that, for the same binary surfactant mixture, use of 

different methods has led to very different conclusions, with some studies suggesting the 

existence of one type of mixed micelle, and others suggesting the coexistence of two types of 

micelles. This follows because there is no direct experimental method to verify the existence of 

two types of mixed micelles, and all the conclusions were reached based on indirect evidence.  

While there have been many experimental studies on the micellization behavior of 

mixtures of fluorocarbon-based and hydrocarbon-based surfactants, relatively little effort has 

been devoted to theoretically understand the micellization behavior of these interesting surfactant 

mixtures. To the best of my knowledge, Nagarajan’s molecular-thermodynamic (MT) model is 

the only one that was developed to predict the micellization properties of mixtures of 

fluorocarbon-based and hydrocarbon-based surfactants.83 With this in mind, in this chapter, I 

present a theoretical framework to model the micellization behavior of mixtures of fluorocarbon-

based and hydrocarbon-based surfactants. Like Nagarajan’s model, the model presented here is 

also based on a MT description of the micellization process, because as explained in Chapter 2, 

the MT framework provides useful insight on the roles played by the constituent surfactants in 

the mixture, including the surfactant head and tail, as well as on the effect of the solvent, the 

ions, and other solution conditions, on the micellization process.  
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In this chapter, the MT framework, originally developed by Puvvada and Blankschtein,17 

and subsequently advanced by several others18, 19, 26, 39, 82, 99 (as discussed in Chapter 2), is 

generalized to allow predictions of micellization properties of mixtures of fluorocarbon-based 

and hydrocarbon-based surfactants. In particular, the new MT framework allows predictions of 

the coexistence of two types of micelles in solution, as has been observed experimentally. In 

addition, the new MT framework can be used to predict CMCs, micelle shapes, sizes, 

aggregation numbers, compositions, and degrees of counterion binding. Most importantly, the 

new MT framework provides a theoretical basis to identify the conditions for which mixing 

fluorocarbon-based and hydrocarbon-based surfactants leads to the coexistence of two types of 

mixed micelles. In addition to the clear fundamental relevance, the coexistence of two types of 

micelles can be very useful practically. Indeed, one can design surfactant formulations to 

generate materials with hierarchical or multimodal pore architectures for optimized transport and 

size selectivity.125, 126 Note that the MT framework presented here does not model 

inhomogeneous micelles with compartmentalization within the micelle. This will be briefly 

discussed in the next chapter (see Section 6.2.3).  

Theoretical details of the MT framework as they pertain to mixtures of fluorocarbon-

based and hydrocarbon-based surfactants are presented in Section 5.2. These include 

modifications to the packing free energy, gpack, to the mixing free energy, gmix, as well as 

modifications in the method discussed in Section 2.5 to calculate micellization properties. The 

main improvements in the new MT framework, as compared to that developed by Nagarajan,83 

are also discussed in Section 5.2. Following the theoretical details, Section 5.3 demonstrates the 

model’s ability to predict the coexistence of two types of mixed micelles in solution. This is done 

by predicting the micelle population distributions for three hypothetical binary mixtures of 
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surfactants. Finally in Section 5.4, the new framework is used to predict various micellization 

properties, including mixture CMCs, micelle population distributions, and optimal micelle 

compositions, for various mixtures of fluorocarbon-based and hydrocarbon-based surfactants. 

These predictions are also compared with the corresponding experimental measurements.  

5.2 MT Framework for Mixtures of Fluorocarbon-Based and Hydrocarbon-

Based Surfactants 

5.2.1 Packing Free Energy of Mixtures of Fluorocarbon and Hydrocarbon Tails 

The packing free energy per molecule, gpack, is the free-energy penalty associated with the 

restructuring of an oil drop such that it mimics the micelle core (with the surfactant’s head tail 

connection tethered at the interface). As discussed in Section 2.3, gpack for a micelle of a given 

shape and size is calculated based on the mean-field, statistical-mechanical method pioneered by 

Ben-Shaul et al.34 For the case of binary mixtures of surfactants, gpack is a function of both the 

micelle composition and the micelle shape and size. Therefore, for each micelle shape and size, 

gpack is calculated for all micelle compositions using the method described in Section 2.3.21 For 

every micelle shape, size, and composition, this is done by sampling all the chain conformations 

for both surfactants. The generated packing data for each shape is then converted into 

polynomials that relate the packing free energy to the micelle size and the micelle composition. 

These polynomial functions are subsequently used to calculate the free energy of micellization, 

gmic, the CMC, and other micellization properties.21 The packing polynomials for various 

mixtures of fluorocarbon and hydrocarbon tails considered in this thesis are reported in Section 

7.2 in the Appendix.  
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In the context of the packing free energy, the size of the micelle core (that is, the radius 

for spheres and infinite cylinders, and the half thickness for infinite bilayers) is limited by the 

maximum extension length of the surfactant tail, because the micelle core cannot have voids. 

However, in the case of a mixed-micelle core formed by surfactants having different tail lengths, 

the maximum size of the micelle core becomes a function of the micelle composition. Nagarajan, 

in his MT framework, assumed that the maximum size of the mixed-micelle core, rmax, is equal 

to a volume-fraction based weighted average of the maximum lengths of the constituent 

surfactant tails. Specifically, he assumed that:83  

1 ,1 2 ,2max tail tailr l lφ φ= +  (5-1) 

where 1φ  and 2φ  are the volume fractions of components 1 and 2, and ltail,1 and ltail,2 are the tail 

lengths of surfactants 1 and 2, respectively. Because our method to calculate gpack (see Section 

2.3) explicitly involves calculating the packing free energy at different micelle compositions, 

shapes, and sizes, one can actually infer the functional dependence of the maximum micelle-core 

size on the micelle composition without making the simplifying assumption made by Nagarajan. 

As an illustration, Figure 5-1 shows plots of the variation of rmax as a function of the composition 

of the longer-tail in binary mixtures of C6F13 and C10H21 packed in infinite bilayers, infinite 

cylinders, and spheres. To understand the effect of the surfactant tail lengths, Figure 5-2 shows 

plots of the variation of rmax as a function of the composition of the longer-tail surfactant, for 

spherical micelles formed by three binary mixtures: (i) C7F15 and C8H17, (ii) C6F13 and C9H19, 

and (iii) C6F13 and C10H21. The reported rmax values (shown as red circles in Figures 5-1 and 5-2) 

correspond to the maximum size of the micelle core for which gpack could be calculated without 

violating the uniform density packing constraint (see Eq. (2-21) in Section 2.3). Note that for 

every shape, gpack is calculated for discrete values of size (typically at intervals of 0.5 Å) and  
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Figure 5-1: Plots showing the variation of rmax of a mixed-micelle core formed by C6F13 and C10H21 
surfactant tails, as a function of the composition of the longer-tailed surfactant for infinite bilayer-like, 
infinite cylindrical, and spherical micelle cores. The red circles represent the actual rmax values, the dashed 
green line represents rmax calculated using Eq. (5-1), and the solid blue line represents rmax calculated 
using Eq. (5-2).  
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Figure 5-2: Plots showing the variation of rmax of a spherical mixed-micelle core as a function of the 
composition of the longer-tailed surfactant for three binary mixtures of fluorocarbon-based and 
hydrocarbon-based surfactants. The red filled circles represent the actual rmax values, the dashed green line 
represents rmax calculated using Eq. (5-1), and the solid blue line represents rmax calculated using Eq. (5-2). 
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composition (typically at intervals of 0.1). Therefore, the red circles shown in Figures 5-1 and 

5-2 do not vary continuously. To obtain a continuous curve, gpack would have to be calculated at 

smaller intervals of sizes and compositions. 

Figure 5-1 shows that, for cylindrical and spherical micelle cores, rmax starts at rmax,short, 

the maximum tail length of the shorter tail, when the composition of the longer tail is 0.0, and 

rapidly increases to rmax,long, the maximum tail length of the longer tail, well before the 

composition of the longer tail is 1.0. Similarly, Figure 5-2 shows that when the difference 

between rmax,short and rmax,long is large, rmax starts at rmax,short, when the composition of the longer 

tail is 0.0, and rapidly increases to rmax,long well before the composition of the longer tail is 1.0. 

Based on these observations, the following functional form can be used to relate rmax to αlong, the 

composition of the longer tail: 

( ) 0
, , , 1

long

max max short max long max shortr r r r e
α

α
−⎛ ⎞

= + − −⎜ ⎟
⎝ ⎠

 (5-2) 

where α0 is a parameter used to fit the data. Values of the fitting parameter, α0, for various binary 

surfactant mixtures are tabulated in the packing polynomial tables in Section 7.2 in the 

Appendix. Figures 5-1 and 5-2 also compare the rmax values, calculated using Eq. (5-1) [green 

dashed line] and Eq. (5-2) [blue solid curve], with the actual rmax values, calculated using the 

actual packing data (red circles). As expected, the functional form in Eq. (5-2) works best for 

cylindrical and spherical micelle cores, and for cases when the difference between rmax,short and 

rmax,long is large. On the other hand, Eq. (5-1)83 systematically underpredicts the maximum 

micelle-core size for these cases. For bilayers, as well as for cases when the difference between 

rmax,short and rmax,long is small, Eq. (5-2) does not work as well, while Eq. (5-1) works better. This 

difference in the behavior of rmax for the different micelle-core shapes is due to the difference in 
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the volume distribution in the three micelle-core shapes. Indeed, bilayers have a uniform 

distribution of volume, while cylinders and spheres have more volume near the periphery than in 

the center. Compared to cylindrical and spherical micelles, bilayer-like micelles are not that 

commonly encountered micelle shapes. Therefore, Eq. (5-2) was used to determine the 

maximum micelle-core size. 

5.2.2 Enthalpy of Mixing 

The primary reason for the coexistence of two types of micelles in mixtures of 

fluorocarbon-based and hydrocarbon-based surfactants is the positive enthalpy of mixing 

exhibited by mixtures of fluorocarbons and hydrocarbons. As discussed in Eq. (2-35) in Section 

2.3, the enthalpic contribution to the free energy of mixing was neglected because the surfactant 

tails in mixtures of hydrocarbon-based surfactants are expected to behave ideally. However, the 

same cannot be assumed for the surfactant tails in mixtures of fluorocarbon-based and 

hydrocarbon-based surfactants.  

In any model aimed at predicting the micellization properties of binary mixtures of 

fluorocarbon-based and hydrocarbon-based surfactants, it is imperative to accurately model the 

enthalpy of mixing between the fluorocarbon-tails and the hydrocarbon-tails. Early attempts to 

model mixtures of fluorocarbons and hydrocarbons utilized the Regular Solution Theory (RST), 

along with the commonly used mixing rules, to model the interaction parameter quantifying the 

interactions between two different types of molecules. Unfortunately, this did not yield 

satisfactory results.119 Specifically, it was found that the geometric-mean mixing rule to estimate 

the unlike interaction parameter yielded values which are higher than those required to 

accurately predict the mixture properties.119 More sophisticated models, based on the Statistical 
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Associating Fluid Theory (SAFT),127 were also utilized to predict the phase behavior of mixtures 

of fluorocarbons and hydrocarbons.128-130 These models confirmed the findings by other 

researchers that the unlike interaction energy has to be about 10% smaller than that predicted by 

the geometric-mean mixing rule for the model to accurately predict the experimental data. It then 

follows that the departure from the geometric-mean mixing rule needs to be accounted for in any 

model used to properly quantify the enthalpic interactions between fluorocarbons and 

hydrocarbons.  

With the above in mind, we have used the RST to model the non-ideal interactions 

between the fluorocarbon and the hydrocarbon tails, because of its simple mathematical form and 

broad applicability to non-polar mixtures. However, because of the challenge associated with the 

estimation of the interaction parameter discussed above, we estimated this parameter based on 

experimental phase equilibrium data for mixtures of fluorocarbons and hydrocarbons, instead of 

implementing commonly-used mixing rules. Recall that, in the RST, the enthalpy of mixing, 

ΔHmix, of a binary solution is given by: 

1 2mix mixH A VφφΔ =  (5-3) 

where Amix is the interaction parameter between component 1 and 2, 1φ  and 2φ  are the volume 

fractions of components 1 and 2, respectively, and V is the solution volume. Using Eq. (5-3) and 

Eq. (2-35), the free energy of mixing per molecule, gmix, for mixtures of fluorocarbon-based and 

hydrocarbon-based surfactants can be written as follows: 

,
1 2 , ,ln ln

1 1
n i n

mix n mix n i tail i
i in n

g kT A v
α ββ φφ α
β β

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟+ + ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑  (5-4) 
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where the extensive solution volume, V, in Eq. (5-3) is replaced by the intensive average tail 

volume, which is the volume of the micelle core on a per molecule basis, to obtain the mixing 

free energy per molecule. The value of Amix was calculated based on the values reported in 

several experimental studies involving mixtures of fluorocarbons and hydrocarbons.119, 131-135 In 

these studies, the values of Amix for mixtures of fluorocarbons and hydrocarbons having 5-8 

carbon atoms were calculated based on measurements of vapor-liquid equilibiurm,133 liquid-

liquid equilibrium,131, 133 calorimetry data,132 consolute temperatures,131 and infinite-dilution 

activity coefficients.135 The value of Amix was found to vary as a function of temperature and of 

the number of carbon atoms in the fluorocarbon and the hydrocarbon constituents. Specifically, 

the Amix values were found to vary between 6.6 cal/cm3 and 9.8 cal/cm3, for temperatures varying 

between 100C and 500C and number of carbon atoms in the fluorocarbon and the hydrocarbon 

chains varying between 5 and 8. Note that this variation in Amix is indeed significant. However, in 

the absence of quality data characterizing the effect of the hydrocarbon chain length, the 

fluorocarbon chain length, and the temperature, an average, constant value of Amix = 7.16 cal/cm3 

was used in the calculations reported here.  

5.2.3 Prediction of Micellization Properties 

In Section 2.5, I presented a method to calculate micellization properties, such as the 

critical micelle concentration (CMC), the micelle shape, the micelle size, the micelle 

composition, and the degree of counterion binding. This method was based on calculating the set 

of micelle characteristics that correspond to the lowest free energy of micellization, and 

consequently, to the highest concentration of micelles in the surfactant solution. The method 

presented in Section 2.5 to calculate micellization properties assumes that the micelle population 

distribution is unimodal. However, in the case of mixtures of fluorocarbon-based and 
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hydrocarbon-based surfactants, the micelle population distribution can be bimodal, yielding two 

local maxima. As a result, the method presented in Section 2.5 needs to be modified to 

accurately predict CMCs and other micelle characteristics.  

Recall that the CMC is defined as the surfactant concentration that marks the onset of 

aggregate formation (see Section 2.5). In addition to the definition proposed in Section 2.5, 

which involves calculating the minimum value of the free energy of micellization, other CMC 

definitions have been proposed to predict CMCs. For example, Tanford defined the CMC as the 

surfactant concentration at which 5% of the surfactant molecules are in micellar form and the 

remaining 95 % are in monomeric form.1 Ruckenstein and Nagarajan defined the CMC as the 

concentration of surfactant at which the micelle population distribution, defined in Eq. (2-5) as a 

function of the aggregation number, shows a point of inflection.136 In the context of the MT 

model for mixtures of fluorocarbon-based and hydrocarbon-based surfactants, implementing the 

method introduced by Ruckenstein and Nagarajan to determine the CMCs is much more 

complicated than implementing the CMC definition introduced by Tanford. This follows because 

the Tanford method does not require derivatives of the micelle population distribution for its 

implementation. Therefore, to simplify calculations, we adopted Tanford’s definition to predict 

CMCs for the systems considered. Note that other micelle characteristics, including micelle 

shapes, sizes, compositions, and degrees of counterion binding, can be predicted by first 

determining whether the micelle population distribution is unimodal or bimodal. Specifically, if 

the micelle population distribution is found to be unimodal, then, the optimal micelle 

corresponds to the micelle with the highest population. On the other hand, if the micelle 

population distribution is found to be bimodal, then, the characteristics of the two types of 

micelles correspond to the two peaks in the micelle population distribution.  
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The micelle population distribution is computed by calculating the concentration of each 

type of micelle that can exist in solution. For each aggregation number, the concentrations of 

various micelles spanning micelle compositions between 0.0 and 1.0 and degrees of counterion 

binding between 0.0 and 1.0 are calculated. In the case of spherical micelles, the aggregation 

number uniquely determines the size of the micelle. However, in the case of spherocylindrical 

and discoidal micelles, the aggregation number alone is not sufficient to determine the size of 

these micelles. For example, in the case of a spherocylindrical micelle, each micelle aggregation 

number corresponds to a set of infinitely many combinations of the cylinder radii and lengths.  

The population of all possible types of micelles is calculated to evaluate what fraction of 

the added surfactant remains in micellar form. This information is needed in order to solve the 

mass balance equations, Eqs. (2-3) and (2-4). Specifically, for each aggregation number, the 

population of micelles is integrated over three independent variables: (i) the micelle composition, 

(ii) the degree of counterion binding, and (iii) the micelle radius or width for spherocylinders and 

discs, respectively. The integration is carried out numerically using the trapezoidal rule. Note 

that the integrals over all three variables are finite, because the micelle composition and the 

degree of counterion binding vary between 0.0 and 1.0, and the micelle radius and thickness in 

the case of spherocylinders and discs, respectively, is limited by rmax [see Eq. (5-2)].  

Another important consideration in calculating the micelle population distribution 

involves determining the upper limit on the aggregation number. For spherical micelles, the 

aggregation number is limited by rmax [see Eq. (5-2)]. However, spherocylindrical and discoidal 

micelles can theoretically grow indefinitely in one and two dimensions, respectively. 

Nevertheless, from an entropic standpoint, the micelles cannot grow indefinitely. As a result, the 

population of micelles will eventually become negligible beyond some threshold aggregation 
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number. Because there is no theoretical way to a priori estimate this threshold aggregation 

number, it is estimated in the process of calculating the population of micelles of different 

aggregation numbers. Specifically, starting from the lowest aggregation number, set at 6 here 

(this choice does not significantly affect the model predictions), the contribution of micelles of 

each aggregation number, in increasing order, is calculated and added to compute the 

concentration of surfactant molecules in micellar form. This addition is concluded when the 

following criterion is met: the contribution of micelles of the ten largest aggregation numbers, 

towards the population of micelles, is less than 1% of the maximum contribution by any 

aggregation number. In other words, if the sum of the population of micelles with aggregation 

numbers n, n+1, n+2, …., n+9 is less than 1% of the population of micelles with aggregation 

number m, where m is the aggregation number with the largest population of micelles, then, the 

population of micelles with an aggregation number higher than n+9 is ignored. Note that the idea 

behind choosing the ten largest aggregation numbers is to select a sufficiently large number such 

that no significant portion of the micelle population distribution is neglected.  

5.2.4 Salient New Features 

In addition to the difference in the calculation of the maximum micelle-core size for 

mixtures of surfactants presented in Section 5.2.1, there are several other differences between the 

MT framework for mixtures of fluorocarbon-based and hydrocarbon-based surfactants presented 

here and the MT framework developed by Nagarajan.83 For example, the method used to 

calculate the packing free energy, gpack, in the MT framework presented here, is very different 

from that used by Nagarajan,83 which is based on the model developed by Nagarajan and 

Ruckenstein.16 The equivalent of gpack in the MT framework developed by Nagarajan and 

Ruckenstein (NR) is referred to as the deformation free energy of the surfactant tail. In the NR 
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model, the method to calculate the deformation free energy utilizes an approach which is similar 

to the theory developed by Semenov137 for block copolymers by using a lattice representation. 

This approach yields convenient analytical expressions in terms of various parameters, including 

the lattice size and the chain length.16, 83 Consequently, the NR model is much easier to 

implement than the model for gpack presented in Sections 2.3 and 5.2.1. However, it is not clear if 

the theory for polymeric chains is applicable for the shorter surfactant tails considered. In 

addition, this model does not account for the different energies associated with the different 

conformations of the surfactant tail. In other words, information about the difference in rigidity 

of the fluorocarbon tails compared to that of the hydrocarbon tails is neglected in calculating the 

deformation free energy. Similarly, the difference in the geometrical properties of the 

fluorocarbon tail and the hydrocarbon tail, including the volume of the tail, is not accounted for. 

As a result, the behavior of the deformation free energy as a function of the micelle size and 

composition is very different from the behavior of the packing free energy discussed in Sections 

2.3 and 5.2.1.  

Other new features in the MT framework presented here include: (i) accounting for 

counterion binding, and (ii) incorporating the effect of curvature on the interfacial tension. The 

NR model16, 83 does not account for counterion binding. As a result, it severely affects the 

calculation of the electrostatic free energy and the steric free energy presented in Section 2.3. In 

addition, the NR model does not account for the effect of curvature on the calculation of 

interfacial tensions. This, in turn, can have a significant effect on the calculation of the interfacial 

free energy, because the micelle cores are small in size. As a result, they have a high curvature, 

for which the interfacial tension is known to deviate from its value for a flat (zero curvature) 

interface.27, 29  
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5.3 Model Predictions for Hypothetical Binary Surfactant Mixtures  

The MT framework for mixtures of fluorocarbon-based and hydrocarbon-based 

surfactants presented in this chapter was used to predict the critical micelle concentrations 

(CMCs) and micelle population distributions of three hypothetical binary surfactant mixtures. In 

particular, the model’s ability to predict bimodal micelle population distributions was tested. The 

three hypothetical surfactant mixtures include:  

1. A binary mixture consisting of two identical 7-carbon fluorocarbon-based nonionic 

surfactants having a head area of 60 Å2 (typical of a glucamide head). 

2. The binary mixture in 1 above with added hypothetical antagonistic enthalpic 

interactions between the surfactant tails. The enthalpic interactions are calculated 

using Eq. (5-3) with Amix = 7.16 cal/cm3. 

3. The binary mixture in 2 above, but with the nonionic head of one of the two 

surfactants replaced by an ionic sulfonate head.  

The resulting micelle population distributions at different solution compositions, α, 

(shown at the top of each plot), for mixtures 1, 2, and 3 above are shown in Figure 5-3, Figure 

5-4, and Figure 5-5, respectively. Specifically, for each solution composition, the relative micelle 

population distribution is plotted as a function of the aggregation number, n, and the micelle 

composition, αmic. The relative micelle population is calculated by dividing the micelle 

concentration calculated using Eq. (2-5) by the highest micelle concentration. As a result, the 

micelle with the highest concentration has a relative population of 1. Note that all the surface 

plots presented in this chapter are smoothened surface plots, and do not represent the raw data 

obtained from Eq. (2-5).  
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Figure 5-3: Relative micelle population distribution for the hypothetical binary mixture 1 consisting of 
two identical 7-carbon fluorocarbon-based nonionic surfactants having a head area of 60 Å2. 
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Figure 5-4: Relative micelle population distribution for the hypothetical binary mixture 2 consisting of 
two identical 7-carbon fluorocarbon-based nonionic surfactants having a head area of 60 Å2, and a 
hypothetical enthalpy of mixing given by Eq. (5-3) with Amix = 7.16 cal/cm3. 
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Figure 5-5: Relative micelle population distribution for the hypothetical binary mixture 3 consisting of 
two 7-carbon fluorocarbon-based surfactants with a hypothetical enthalpy of mixing given by Eq. (5-3) 
with Amix = 7.16 cal/cm3. One of the surfactants has a sulfonate head and the other has an uncharged head 
with a head area of 60 Å2. Note that α and αmic correspond to the composition of the nonionic surfactant. 
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The micelle population distribution for mixture 1 is presented in Figure 5-3. Figure 5-3 

shows that as the solution composition increases, the peak of the micelle population distribution 

moves along the micelle composition axis, such that the composition of the micelle with the 

highest population, αmic,peak, is equal to the solution composition, α (this will be quantified more 

clearly in Figure 5-9). This follows because for this particular hypothetical binary surfactant 

mixture, both surfactants have identical tendencies to micellize. In addition, the micelle 

population distribution remains unimodal for the entire solution composition range. This follows 

because there are no antagonistic interactions between the two surfactants considered. As a 

result, the entropic contribution to mixing dominates, and there is no enthalpic driving force to 

form two types of micelles.  

By artificially imposing a positive enthalpy of mixing on binary mixture 1, the micelle 

population distribution for binary mixture 2, shown in Figure 5-4, is very different from that 

corresponding to binary mixture 1, shown in Figure 5-3. Indeed, unlike the micelle population 

distribution in Figure 5-3, the micelle population distribution in Figure 5-4 shows bimodality at α 

= 0.5. This follows because when the micelle composition approaches 0.5, from a free-energy 

viewpoint, it is beneficial to form two types of micelles: one rich in surfactant 1 and the other 

rich in surfactant 2, instead of forming a single type of a well-mixed micelle which would result 

in an increased enthalpy of mixing, and hence, in a larger free energy of micellization. Note that 

the peaks associated with the bimodal micelle population distribution shown in Figure 5-4 are 

not very sharp. This indicates that the chosen magnitude of the enthalpy of mixing is quite weak. 

In Figure 5-6, gmix for mixture 2 is plotted as a function of the volume fraction of one of the 

surfactants. The red curve corresponds to Amix = 7.16 cal/cm3, as discussed in Section 5.2.2. The 

difference between the local maximum and the local minima for the red curve is only 0.03 kT,  
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Figure 5-6: Variation of the free energy of mixing of a binary mixture of 7-carbon fluorocarbon-based 
nonionic surfactants with an enthalpy of mixing given by Eq. (5-3), for different values of Amix.  

which indicates that the two minima are quite shallow. Upon increasing Amix by 20% to 8.59 

cal/cm3, which is close to the maximum value of Amix reported in Section 5.2.2, the difference 

between the local maximum and the local minima for the dark blue curve increases by more than 

a factor of two, which indicates an increase in the depth of the minima.  

The effect of increasing Amix on the micelle population distribution formed by the 

hypothetical binary mixture 2 is shown in Figure 5-7. Both plots in Figure 5-7 correspond to a 

solution composition of 0.5. Figure 5-7 clearly shows that an increase in Amix results in: (i) a 

narrowing of the peaks in the micelle population distribution and (ii) an increase in the difference 

between the micelle compositions corresponding to the two peaks of the micelle population 

distribution. This is a direct consequence of the change in gmix due to the change in Amix.  
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Figure 5-7: Relative micelle population distribution for the hypothetical binary mixture consisting of two 
identical 7-carbon fluorocarbon-based nonionic surfactants having a head area of 60 Å2, and a 
hypothetical enthalpy of mixing given by Eq. (5-3). The plot on the left corresponds to Amix = 7.16 cal/cm3 
and the plot on the right corresponds to Amix = 8.19 cal/cm3.  

The micelle population distribution of the final hypothetical binary mixture 3 is shown in 

Figure 5-5. Recall that, in mixture 3, one of the surfactants has a charged sulfonate head and the 

other has an uncharged head with a head area of 60 Å2. In addition, mixture 3 has a hypothetical 

enthalpy of mixing given by Eq. (5-3) with Amix = 7.16 cal/cm3. Figure 5-5 shows that, similar to 

Figure 5-3, as the solution composition increases, the peak of the micelle population distribution 

moves along the micelle composition axis, and remains unimodal over the entire solution 

composition range, in spite of the positive enthalpy of mixing between the surfactant tails. This 

follows because although the surfactant tails do not like to mix with each other, the ionic 

surfactant heads prefer to mix with the nonionic surfactant heads to reduce the net charge on the 

micelle in order to reduce the charging free energy discussed in Section 2.3. In this case, the 

synergy resulting from mixing of the surfactant heads is greater than the antagonism resulting 

from mixing of the surfactant tails. This, in turn, produces a micelle population distribution that 

remains unimodal over the entire solution composition range. Another important aspect of Figure 

5-5 is that, unlike Figure 5-3, the micelle composition corresponding to the peak of the micelle 
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population distribution does not coincide with the solution composition (this is more clearly 

shown in Figure 5-9). This follows because the two surfactants comprising binary mixture 3 are 

not identical, as was the case for the two surfactants comprising binary mixture 1. In the case of 

binary mixture 3, the nonionic surfactant has a higher tendency to micellize than the ionic 

surfactant. Therefore, the resulting micelle typically contains more of the nonionic surfactant, 

while the monomers contain more of the ionic surfactant. Note that, in Figure 5-5, α and αmic 

correspond to the composition of the nonionic surfactant.  

 The predicted CMCs as a function of α for the three hypothetical mixtures considered 

here are shown in Figure 5-8. Figure 5-8 shows that the CMC of binary mixture 1 (the red 

circles) remains constant throughout the solution composition range. This follows because the 

two surfactants comprising the binary mixture have the same tendency to micellize. For mixture 

2 (the blue circles), the CMC exhibits a maximum at α = 0.5. This is a direct result of the positive  

 

Figure 5-8: Predicted mixture CMCs as a function of solution composition, α, for the three hypothetical 
binary mixtures considered here.  
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enthalpy of mixing associated with binary mixture 2. The CMC shows a maximum at α = 0.5 

because the two surfactants are identical and the enthalpy of mixing in Eq. (5-3) is symmetric 

This behavior is absent in the case of mixture 3 (the green circles) because the antagonistic effect 

of the enthalpy of mixing is overcome by the synergism in the head region due to mixing of the 

ionic and the nonionic surfactant heads. Note that the CMC of the ionic surfactant 

(corresponding to α = 0.0 in the green curve in Figure 5-8) is higher than that of the nonionic 

surfactant (at α = 1.0) due to the additional electrostatic free-energy contribution to the 

micellization free energy in the case of ionic surfactants (see Section 2.3). Figure 5-9 shows the 

variation of the composition of the micelle with the highest population, referred to as the optimal 

micelle composition, αmic,peak, as a function of the solution composition, α, for the three 

hypothetical binary surfactant mixtures considered here. Note that the various points in Figure 

5-9 do not vary smoothly because the micelle population was calculated for micelle  

 

Figure 5-9: Variation of the optimal micelle composition, αmic,peak, as a function of the solution 
composition, α, for the three hypothetical binary mixtures considered here. Note that the various dashed 
curves are drawn to guide the eye.   
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compositions at intervals of 0.1. To obtain a smoother plot, the micelle population distribution 

has to be calculated for micelle compositions at intervals which are smaller than 0.1. 

As expected, the optimal micelle composition for binary mixture 1 perfectly tracks the 

solution composition, as was shown in Figure 5-3, as well as by the red circles in Figure 5-9. For 

mixture 2, Figure 5-9 only shows the composition of the optimal micelle in the unimodal region 

of the micelle population distribution. As a result, no points are shown for 0.4 ≤ α ≤ 0.6, for 

which the micelle population distribution is bimodal (see Figure 5-4). For mixture 2, the optimal 

micelle composition remains smaller than, or equal to, 0.1 for 0 ≤ α ≤ 0.4. When α ≥ 0.6, the 

optimal micelle composition increases dramatically to values higher than, or equal to, 0.9. This 

results from the positive enthalpy of mixing between the surfactant tails which discourages 

mixing of the tails. For mixture 3, the optimal micelle composition varies smoothly between α = 

0 and α = 1 (see the green circles in Figure 5-9). Note that the green circles in Figure 5-9 

consistently lie above the red circles. This indicates that, for all α values, the micelles are richer 

in the nonionic surfactant, while the monomers are richer in the ionic surfactant. This is because 

the nonionic surfactant has a higher tendency to micellize due to its lower CMC (see Figure 5-8). 

5.4 Model Predictions for Mixtures of Fluorocarbon-Based and 

Hydrocarbon-Based Surfactants 

The results in Section 5.3 clearly demonstrate that the MT framework presented in this 

chapter is capable of predicting the coexistence of two types of micelles in solution. Next, to 

demonstrate the applicability of this framework to mixtures of fluorocarbon-based and 

hydrocarbon-based surfactants, in this section, the MT model predictions of CMCs, micelle 

compositions, and micelle population distributions are compared with available experimental 

data for various mixtures of fluorocarbon-based and hydrocarbon-based surfactants.  
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5.4.1 Binary Mixture of Lithium Perfluorooctyl Sulfonate (LiPFOS) and Octyl Glucoside 

(OG) 

Figure 5-10 shows the micelle population distribution for the binary mixture of lithium 

perfluorooctyl sulfonate (LiPFOS) and octyl glucoside (OG) at various solution compositions. 

Note that all the micelle population distribution plots shown in this section correspond to Amix = 

7.16 cal/cm3, unless otherwise specified (see Section 5.2.2). Figure 5-10 shows that the micelle 

population distribution remains unimodal over the entire solution composition range. This 

indicates that the synergism resulting from mixing of the ionic sulfonate heads and the nonionic 

glucoside heads is greater than the antagonism resulting from the positive enthalpy of mixing 

between the heptyl fluorocarbon tails (note that for an ionic surfactant, the carbon connected to 

the surfactant head is considered to be part of the surfactant head1) and the octyl hydrocarbon 

tails [see Eq. (5-3)].  

Figures 5-11 and 5-12 compare the predicted CMCs and the predicted micelle 

compositions for the binary mixture of LiPFOS and OG with the available experimental values, 

respectively.138 The MT framework accurately predicts the qualitative trends for both the mixture 

CMC and the micelle composition. Quantitatively, the predicted CMCs are within a factor of 1.5 

of the experimental CMCs, which is viewed as excellent agreement, because the CMC has an 

exponential dependence on the free energy of micellization, gmic, which is the quantity that is 

actually modeled in the MT framework. As a result, a small error in gmic can result in a 

significant error in the CMC. This important point has been emphasized in Section 4.5.  
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Figure 5-10: Relative micelle population distribution for the binary mixture of lithium perfluorooctyl 
sulfonate (LiPFOS) and octyl glucoside (OG). Note that the micelle composition, αmic, and the solution 
composition, α, correspond to the composition of LiPFOS. 
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Figure 5-11: Predicted and experimental CMCs vs. solution composition for a binary mixture of lithium 
perfluorooctyl sulfonate (LiPFOS) and octyl glucoside (OG).  

 

Figure 5-12: Predicted and experimental micelle compositions vs. solution composition for a binary 
mixture of lithium perfluorooctyl sulfonate (LiPFOS) and octyl glucoside (OG). 
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The MT framework predictions of the composition of LiPFOS in the micelle are 

systematically lower than the experimental values (see Figure 5-12). To understand this trend, 

consider Figure 5-11 which shows that the CMC of LiPFOS (at α = 1.0) is lower than that of OG 

(at α = 0.0). This indicates that LiPFOS has a higher tendency to micellize relative to that of OG. 

As a result, the micelles are richer in LiPFOS, while the monomers are richer in OG. This 

behavior is reflected in both the experimental and the predicted values of the optimal micelle 

composition of LiPFOS, which is always higher than, or equal to, the solution composition of 

LiPFOS (see Figure 5-12). In Figure 5-11, the MT framework underpredicts the CMC of OG (at 

α = 0.0), while it overpredicts the CMC of LiPFOS (at α = 1.0). As a result, the difference 

between the predicted CMCs of OG and LiPFOS is lower than the difference between the 

experimental CMCs of OG and LiPFOS. Accordingly, the tendency of LiPFOS to micellize 

relative to that of OG predicted by the MT framework is not as high as that based on the 

experimental data. This is the reason behind the systematic underprediction of the micelle 

composition of LiPFOS shown in Figure 5-12. 

5.4.2 Binary Mixture of Sodium Perfluorooctanoate (SPFO) and Sodium Decyl Sulfate 

(SDeS) 

Figure 5-13 shows the micelle population distribution for the binary mixture of sodium 

perfluorooctanoate (SPFO) and sodium decyl sulfate (SDeS) at various solution compositions, α. 

Figure 5-13 shows that the micelle population distribution remains unimodal over the entire 

solution composition range, but becomes very broad for 0.4 ≤ α ≤ 0.5. This indicates that the 

enthalpic antagonism between the surfactant tails characterized by Amix = 7.16 cal/cm3 is not 

sufficiently strong to lead to the formation of two distinct types of micelles. This conclusion 

agrees with the conclusions reached by Shinoda and Nomura122 and by Kamogawa and  
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Figure 5-13: Relative micelle population distribution for the binary mixture of sodium perfluorooctanoate 
(SPFO) and sodium decyl sulfate (SDeS). Note that the micelle composition, αmic, and the solution 
composition, α, correspond to the composition of SPFO. 
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Tajima.123 However, it does not agree with the conclusions reached by Mukerjee and Yang120 

and by Aratono et al.121 who concluded that this binary surfactant mixture resulted in the 

coexistence of two types of micelles. It is interesting to note that by increasing the enthalpic 

interaction parameter Amix by 20 %, from 7.16 cal/cm3 to 8.59 cal/cm3, which is close to the 

maximum value of Amix observed for mixtures of hydrocarbons and fluorocarbons, as described 

in Section 5.2.2, two peaks clearly emerge in the micelle population distribution, as illustrated in 

Figure 5-14, and as suggested by Aratono et al.121 

Figures 5-14 and 5-7 indicate that the predicted micelle population distribution strongly 

depends on the magnitude of the enthalpic interaction parameter used. In the predictions shown, 

the value of Amix used is an average calculated based on the available experimental data for 

mixtures of fluoroalkanes and alkanes of various lengths and measured at various temperatures, 

as discussed in Section 5.2.2. Based on the results in Figure 5-14, it is clear that the ability of the 

MT framework to predict micelle population distributions will benefit greatly from a more 

accurate estimation of the enthalpic interaction parameter, Amix. 

 

Figure 5-14: Relative micelle population distribution for the binary mixture of sodium perfluorooctanoate 
(SPFO) and sodium decyl sulfate (SDeS). The plot on the left corresponds to Amix = 7.16 cal/cm3 and the 
plot on the right corresponds to Amix = 8.59 cal/cm3 
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Figure 5-15 compares the predicted and the experimental CMCs as a function of the solution 

composition of SPFO, αSPFO, for the binary mixture of SPFO and SDeS.121 The MT framework 

accurately predicts the qualitative trends in the mixture CMC. Quantitatively, the predicted 

CMCs are within a factor of 1.3 of the experimental CMCs, which is viewed as excellent 

agreement, as discussed in Sections 4.5 and 5.4.1. The MT framework predicts a maximum in 

the CMC at αSPFO = 0.40, while the experimental maximum is observed at αSPFO = 0.50. Note 

that the experimental CMCs of SPFO (31.2 mM) and SDeS (31.3 mM) are very close to each 

other, which results in the experimentally observed maximum at 0.50. On the other hand, the MT 

framework predicts that the CMC of SPFO (25.7 mM) is lower than that of SDeS (32.8 mM). As 

a result, the predicted maximum in the CMC occurs at a solution composition that is richer in 

SPFO, rather than at an equimolar solution composition. 

 

Figure 5-15: Predicted and experimental CMCs vs. solution composition of SPFO, αSPFO, for a binary 
mixture of sodium perfluorooctanoate (SPFO) and sodium decyl sulfate (SDeS). 
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5.4.3 Binary Mixture of Sodium Perfluorooctanoate (SPFO) and Sodium Dodecyl Sulfate 

(SDS) 

Figure 5-16 shows the micelle population distribution for the binary mixture of sodium 

perfluorooctanoate (SPFO) and sodium dodecyl sulfate (SDS) for various solution compositions, 

α. The micelle population distribution in Figure 5-16 shows some indication of bimodality at α = 

0.845. Upon increasing the value of Amix by 20%, from 7.16 cal/cm3 to 8.59 cal/cm3, the micelle 

population distribution does indeed become bimodal for 0.83 ≤ α ≤ 0.89. This again indicates 

that Amix = 7.16 cal/cm3 is not sufficiently high to clearly observe two distinct types of micelles, 

as was the case for the binary mixture of SPFO and SDeS discussed in Section 5.4.2 

Figure 5-17 compares the predicted and the experimental CMCs as a function of αSPFO for 

the binary mixture of SPFO and SDS.139 Quantitatively, the predicted CMCs are within a factor 

of 2.0 of the experimental CMCs which is viewed as very good agreement, as explained in 

Sections 4.5 and 5.4.1. However, Figure 5-17 shows that qualitatively, the MT framework does 

not predict the maximum observed in the experimental CMC data at αSPFO = 0.91. Instead, the 

CMC is predicted to plateau at 0.84 ≤ α ≤ 0.96, and then increase again. The maximum in the 

CMC observed by Sugihara et al.139 is absent in the mixture CMCs calculated by Kamrath and 

Franses140 using the differential conductance data of Mukerjee and Yang.120 However, the 

absence of the maximum may be attributed to fewer number of solution compositions at which 

the CMC was calculated. Note that although the MT framework predicts bimodality in the 

micelle population distribution, the predicted mixture CMC does not show a maximum even 

when Amix is increased by 20%, from 7.16 cal/cm3 to 8.59 cal/cm3. This indicates that Amix would 

have to be increased significantly to predict a maximum in the CMC for this mixture. This is 

probably because SDS has a CMC that is much lower than that of SPFO due to a lower transfer  



202 

 

Figure 5-16: Relative micelle population distribution for the binary mixture of sodium perfluorooctanoate 
(SPFO) and sodium dodecyl sulfate (SDS). Note that the micelle composition, αmic, and the solution 
composition, α, correspond to the composition of SPFO. 
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Figure 5-17: Predicted and experimental CMCs vs. solution composition of SPFO, αSPFO, for a binary 
mixture of sodium perfluorooctanoate (SPFO) and sodium dodecyl sulfate (SDS).  

free energy [refer to Eqs. (2-8) and (2-10)]. Upon adding a small amount of SDS to SPFO, while 

the mixing free energy goes up, the transfer free energy goes down thereby reducing the CMC. 

5.4.4 Binary Mixture of Sodium Perfluorooctanoate (SPFO) and Sodium Dodecanoate 

(SDO) 

Figure 5-18 shows the micelle population distribution for the binary mixture of sodium 

perfluorooctanoate (SPFO) and sodium dodecanoate (SDO) at various solution compositions, α. 

The micelle population distribution in Figure 5-18 remains unimodal over the entire solution 

composition range, but becomes very broad at α = 0.70. This indicates that the antagonism 

between the surfactant tails is not sufficiently high to result in the coexistence of two types of 

micelles. This conclusion agrees with the conclusions reached by Pedone et al.141 and Caponetti 

et al.142 that the binary mixture of SPFO and SDO does not demix. However, it does not agree   
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Figure 5-18: Relative micelle population distribution for the binary mixture of sodium perfluorooctanoate 
(SPFO) and sodium dodecanoate (SDO). Note that the micelle composition, αmic, and the solution 
composition, α, correspond to the composition of SPFO. 
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Figure 5-19: Predicted and experimental CMCs vs. solution composition of SPFO, αSPFO, for a binary 
mixture of sodium perfluorooctanoate (SPFO) and sodium dodecanoate (SDO). 

with the conclusions reached by Mukerjee and Yang,120 who claimed that the binary mixture of 

SPFO and SDO results in the coexistence of two types of micelles. Figure 5-19 compares the 

predicted and the experimental CMCs143 for the binary mixture of SPFO and SDO. 

Quantitatively, the predicted CMCs are within a factor of 2.2 of the experimental CMCs, which 

is viewed as very good agreement, as discussed in Sections 4.5 and 5.4.1. However, 

qualitatively, the MT framework does not predict the maximum in the CMC observed in the 

experimental data at αSPFO = 0.5 (see Figure 5-19). The primary reason behind the absence of the 

maximum in the predicted CMC is the underprediction of the CMC of SDO by the MT 

framework.143 Based on the experimental CMC data shown in Figure 5-19, SPFO and SDO have 

similar CMCs, and therefore, exhibit similar tendencies to micellize. However, in the context of 

the MT framework predictions, SDO exhibits a higher tendency to micellize relative to that of 
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SPFO. To better understand this observation, consider the experimental and predicted CMC 

values for a set of fluorocarbon-based and hydrocarbon-based surfactants shown in Table 5-1. 

The table compares the CMCs of two carboxylate surfactants (C11H23COONa and C8F17COONa) 

with those of analogous sulfonate surfactants (C11H23SO3Na and C8F17SO3Na) having the same 

tails. The MT framework predicts that the CMCs of the carboxylate surfactants are lower than 

those of the corresponding sulfonate surfactants because the carboxylate head has a smaller head 

area than the sulfonate head (see Table 7-1). However, the experimental trends are opposite, that 

is, the experimental CMCs of the carboxylate surfactants are higher than those of the 

corresponding sulfonate surfactants. This result suggests that the carboxylate head is not 

accurately modeled in the MT framework. The discrepancy is more severe in the case of 

hydrocarbon-based carboxylate surfactants, because the difference between the experimental 

CMCs of C11H23COONa (28.1 mM)143 and C11H23SO3Na (17 mM)144 is 11.1 mM, while that 

between C11H23SO3Na (17 mM)144 and C11H23SO4Na (16 mM),145 an analogous surfactant with a 

sulfate head, is only 1 mM. Note that although the predicted CMC of SDO is within a factor of 

1.75 of the experimental value, which is viewed as very good agreement (see Sections 4.5 and 

5.4.1), to accurately predict qualitative trends of surfactant mixtures, it is necessary to accurately 

predict the qualitative behavior of the CMCs of the individual surfactant components.  

Table 5-1: Predicted and Experimental CMCs for fluorocarbon-based and hydrocarbon-based surfactants. 

Name C11H23COONa C11H23SO3Na  C8F17COONa C8F17SO3Na 
Tail Type Hydrocarbon Hydrocarbon  Fluorocarbon Fluorocarbon
ntail 10 10  7 7 
Head COO+CH2 SO3+CH2  COO+CF2 SO3+CF2 
Predicted CMC 16.1 mM 21.3 mM  6.6 mM 7.6 mM 
Experimental CMC 28.1 mM143 17.0 mM144  11.0 mM146 8.0 mM5 
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The precise cause behind the discrepancy in the predicted and experimental CMCs of 

SDO is unclear. The nature of hydrogen bonding associated with the alkyl carboxylate can be 

one reason, because the hydrogen bonds formed with the sulfonate head can be different than 

those formed with the carboxylate heads.147 In addition, the nature of the group connected to the 

carboxylic acid plays an important role in its protonation properties, which may help explain the 

difference in behavior of the CMCs of the hydrocarbon-based carboxylate surfactants relative to 

the fluorocarbon-based carboxylate surfactants. 

5.5 Conclusions 

In summary, in this chapter, I presented a molecular-thermodynamic framework to 

predict the micellization properties of mixtures of fluorocarbon-based and hydrocarbon-based 

surfactants. The framework includes modifications to the packing free energy, gpack, as well the 

inclusion of an enthalpy of mixing contribution in the mixing free energy, gmix, using the Regular 

Solution Theory. The framework presented here is able to predict the coexistence of two types of 

mixed micelles in solution, including the resulting micelle population distributions, CMCs, and 

optimal micelle compositions, which compare well with the experimental values for various 

binary mixtures of fluorocarbon-based and hydrocarbon-based surfactants. Prediction of the 

micelle population distribution is affected greatly by the value of the enthalpic interaction 

parameter, Amix, used. As a result, the model predictions would become much more reliable if an 

accurate estimate of Amix could be obtained. The CMCs predicted by the MT framework 

developed in this chapter compare well with the experimental CMCs for the binary mixtures of 

LiPFOS and OG and of SPFO and SDeS. On the other hand, the MT framework was unable to 

fully predict some aspects of the experimental mixture CMC data for the binary mixtures of 
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SPFO and SDS and of SPFO and SDO. Possible reasons for these results were discussed in 

Sections 5.4.3 and 5.4.4.  

The work presented in Chapters 3, 4, and 5 can be extended in a number of interesting 

directions to further advance our understanding of the micellization behavior of fluorocarbon-

based surfactants and associated surfactant formulations. A discussion of some of the interesting 

topics that were not addressed in this thesis is presented in the next Chapter.  
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Chapter 6 

6 Thesis Summary and Future Research 

Directions 

6.1 Thesis Summary 

The goal of this thesis was to theoretically model, at the molecular level, various aspects 

associated with the micellization behavior of fluorocarbon-based surfactants and their mixtures 

in order to gain an understanding of the roles played by the surfactant chemical structure (polar 

head and nonpolar tail) in the micellization process. This understanding, in turn, aids in the 

rational design of surfactant formulations for various applications. To meet the thesis goal, 

several important challenges associated with modeling the micellization behavior of 

fluorocarbon-based surfactants were addressed. The knowledge gained is generally applicable to 

the theoretical modeling of surfactant micellization. 

In Chapter 3, models to calculate the free energy of micellization of discoidal and biaxial 

ellipsoidal micelles (which are both important micelle shapes in the context of fluorocarbon-

based surfactants) were developed. These models are significantly more complex than the 

corresponding models for spheres, cylinders, and bilayers. Indeed, unlike these regular shapes, 
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discs and biaxial ellipsoids have a position-dependent curvature. Consequently, the effect of 

curvature on the interfacial free energy, the packing free energy, the steric free energy, and the 

electrostatic free energy was explicitly incorporated in order to develop models for the free 

energy of micellization of discoidal and biaxial ellipsoidal micelles (referred to in this thesis as 

the curvature-corrected model). The importance of incorporating the position-dependent 

curvature in the free-energy models was demonstrated by comparing the Curvature-Corrected 

(CC) model with a model developed by Srinivasan and Blankschtein (SB), in which the effect of 

curvature was not explicitly accounted for. The comparison between the CC and SB models 

presented in Section 3.7 shows that the SB model significantly overpredicts the free energy of 

micellization relative to the CC model, clearly demonstrating the importance of the CC model.  

The CC model was also used to evaluate the feasibility of forming biaxial ellipsoidal 

micelles. In the literature on micelle shapes, there has been some controversy about the shape of 

globular micelles. While many experimental studies claim that some surfactants under certain 

solution conditions form ellipsoidal micelles,52-54, 61 several theoretical studies have refuted this 

premise based on arguments related to the packing criterion,63 the surface area per molecule,66 

and the high curvature57, 58 associated with the ellipsoidal micelle shape. However, none of these 

conclusions were based on a rigorous theoretical study of ellipsoidal micelles that incorporates 

the effect of the position-dependent curvature on the free energy of micelle formation. Using the 

CC model developed in Chapter 3, in Section 3.8, I showed that contrary to the conclusions 

reached in previous theoretical studies, the biaxial ellipsoidal shape is indeed a feasible micelle 

shape.  

In Chapter 4, I developed a computer-simulation-molecular-thermodynamic (CSMT) 

framework to predict the micellization behavior of surfactant mixtures. This framework blends 
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microstructural details obtained from molecular-dynamics simulations of surfactant micelles and 

monomers with the well-established MT framework, and allows better quantification of the 

hydrophobic effect through gtr,CSMT. However, using the CSMT framework to predict 

micellization properties of surfactant mixtures is computationally very expensive, because it 

requires carrying out multiple mixed-micelle simulations at various micelle compositions. To 

overcome this difficulty, an approximation to calculate gtr,CSMT, referred to as ,
avg

tr CSMTgα − , was 

developed. Specifically, ,
avg

tr CSMTgα −  is calculated as a micelle-composition based weighted average 

of the transfer free energies calculated from the simulated single-component surfactant micelles 

for each of the surfactants comprising the mixture. ,
avg

tr CSMTgα −  was compared with gtr,CSMT for 

several binary surfactant mixtures, and was found to work very well for all the binary surfactant 

mixtures considered, except for those containing alkyl ethoxylate surfactants. The observed 

discrepancy in the context of mixtures containing alky ethoxylate surfactants was attributed to 

the interactions between the surfactant molecules resulting from the flexible nature of the 

ethoxylate heads. This flexibility allows the ethoxylate heads to shield the micelle core from 

water better than other surfactant heads. CMC predictions made using the mixture CSMT model 

and the MT model compared very well with the experimental CMCs for various binary mixtures 

of linear surfactants. By demonstrating the applicability of the mixture CSMT model in the case 

of binary mixtures of simple surfactants, I have laid the foundation for the use of the mixture 

CSMT framework to model mixtures of surfactants that have a more complex chemical 

architecture (for example, branched and aromatic surfactants), and are therefore not amenable to 

traditional MT modeling.  

In Chapter 5, a molecular-thermodynamic framework to predict the micellization 

properties of mixtures of fluorocarbon-based and hydrocarbon-based surfactants was developed. 
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Due to the enthalpic interactions between the fluorocarbon tails and the hydrocarbon tails, these 

surfactant mixtures can result in the coexistence of two types of mixed micelles in solution: one 

rich in the fluorocarbon-based surfactants and the other rich in the hydrocarbon-based surfactant. 

Accordingly, the MT framework was modified to include an enthalpy of mixing contribution, 

which was modeled using the Regular Solution Theory. The ability of the MT framework to 

predict the coexistence of two types of mixed micelles in solution was demonstrated in Section 

5.3. In addition, the MT framework predictions of micelle population distributions, CMCs, and 

optimal micelle compositions were compared with the corresponding experimental values for 

various mixtures of fluorocarbon-based and hydrocarbon-based surfactants. It was found that the 

predictions of the population distribution of micelles are significantly affected by the value of the 

interaction parameter, Amix, used to calculate the enthalpy of mixing. Therefore, it was concluded 

that the MT framework predictions would become more reliable if a better estimate of Amix can 

be obtained. 

6.2 Future Research Directions 

6.2.1 Improving the Modeling of Discoidal and Biaxial Ellipsoidal Micelles 

In Chapter 3, curvature-corrected models for the interfacial free energy, the packing free 

energy, the steric free energy, and the electrostatic free energy were discussed. Of the four free 

energies, only the interfacial free energy can be evaluated using analytical expressions [see Eqs. 

(3-41), (3-42), (3-43), and (3-50)]. The steric free energy can be calculated using numerical 

integration, as described in Eqs. (3-72) and (3-76). Numerical integration of Eqs. (3-72) and 

(3-76) using the Gauss quadrature technique is also not very computationally intensive, because 

it only requires evaluating the integrand for several values of the variable of integration. On the 

other hand, calculating the packing free energy, gpack, and the charging component of the 
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electrostatic free energy, gch, is computationally very expensive. As discussed in Section 3.4, to 

calculate gpack, all internal conformations of the surfactant tail have to be evaluated for 500 

different external conformations at various locations on the discoidal or the ellipsoidal micelle 

surface (see Figure 3-9). The total number of internal tail conformations, even for a short 6-

carbon fluorocarbon tail, is 34 = 81 (there are a total of 4 rotatable bonds and each rotatable bond 

can take three states). Based on the recipe given in Section 3.4.1 to calculate the packing free 

energy of the 6-carbon fluorocarbon tail packed in a discoidal micelle with b = b' = 8.0 Å, all the 

81 tail conformations have to be evaluated at 16 different locations on the discoidal surface. 

Accounting for the 500 external conformations for each internal tail conformation pinned at each 

of the 16 locations, the total number of terms in the summation in Eq. (3-52) equals 81x16x500 = 

648000! Additionally, the uniform density constraint in Eq. (3-52) has to be satisfied for a total 

of 54 cells (see Figure 3-11). Based on these numbers, it is clear that evaluating gpack for a single-

surfactant tail packed in discs or biaxial ellipsoids of a variety of sizes represents a 

computationally intensive task. Therefore, it would be beneficial if a simpler method of 

calculating gpack can be developed. While the method developed in Section 3.4 is based on a 

mean-field statistical mechanical method, other approaches, like Monte Carlo-based methods47, 

148, can also be considered, because they may be computationally less expensive. A faster 

method would be particularly important for surfactants having a larger number of carbon atoms 

in the tail (for example, commercial hydrocarbon-based surfactants). This follows because an 

increase in the number of carbons in the surfactant tail by 1, increases the total number of 

internal tail conformations by a factor of 3. In addition, it increases the size of the micelle, which 

in turn increases the number of cells and the number of locations at which all the tail 

conformations need to be sampled.  



214 

Similar to gpack, the calculation of gch using the method discussed in Section 3.6 is also 

computationally very intensive. This follows because the method involves numerically solving a 

set of partial differential equations for a variety of micelle sizes, micelle surface charges, and 

solution ionic strengths. The interpolation table used to generate the results presented in Section 

3.7 has close to 1400 points, and is applicable only for single monovalent surfactants having an 

associated monovalent counterion. For other surfactant systems, including divalent surfactants 

such as phosphate surfactants,149, 150 divalent counterions, or mixtures of surfactants, the 

interpolation table would have to be regenerated, which represents a very expensive task. 

Therefore, developing a simpler method to calculate gelec will prove very useful. In this regard, 

several authors have presented solutions to the Poisson-Boltzmann equation which are valid 

under a variety of simplifying conditions. These include: (i) Aoi’s study of the properties of the 

solution to the linearized Poisson-Boltzmann equation (valid for low electric potentials) for 

biaxial ellipsoids using spheroidal functions,151 (ii) Yoon and Kim’s152 and Hsu and Liu’s153, 154 

derivations of the exact solution to the linearized Poisson-Boltzmann equation valid for low 

electric potentials for biaxial ellipsoids using spheroidal wavefunctions, and (iii) Hsu and Liu’s 

derivation of a perturbation-method based solution to the Poisson-Boltzmann equation for biaxial 

ellipsoids valid for moderately thick double layers.155 In the case of a torus, Cade used a 

perturbation method to solve problems in electrostatics,156 while Andrews introduced a method 

based on separation of variables to solve the Laplace equation in toroidal coordinates.157 

Simplifying the calculations of gpack and gch will allow use of the CC model to predict the micelle 

shapes of several longer-tailed hydrocarbon-based surfactants for which experimental data is 

available.52-54  
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6.2.2 Modeling of Surfactant Mixtures using the Mixture CSMT Framework  

In Section 4.5, I showed that the mixture CSMT framework discussed in Chapter 4 is 

able to predict CMCs of binary mixtures of linear surfactants. However, the main motivation for 

developing the mixture CSMT framework is to use it to model surfactant mixtures that are not 

amenable to traditional MT modeling. Such mixtures may contain aromatic surfactants, branched 

surfactants, or gemini surfactants.  

The mixture CSMT framework is essential to model these more complex surfactant 

mixtures, because it is challenging to identify the head and tails groups in these surfactants by 

visual inspection. For example, in the case of linear alkyl benzene sulfonates, it is not clear what 

part of the benzene ring, if any, is part of the surfactant head. Recently, the CSMT framework for 

single surfactant systems was used to identify the heads and tails of various linear, branched, and 

aromatic surfactants.47 It is possible that for surfactant mixtures, the head and tail identifications 

of the various surfactants comprising the micelle is a function of the micelle composition. 

Therefore, the next steps in the development of the mixture CSMT framework include: (i) 

Identifying the heads and the tails for mixtures of linear surfactants, and then evaluating how the 

identification behaves for various types of surfactant mixtures, similar to the study presented in 

Section 4.4. (ii) Comparing ,
avg

tr CSMTgα −  with gtr,CSMT for binary mixtures of more complex 

surfactants. If one can show that ,
avg

tr CSMTgα −  compares well with gtr,CSMT for a particular set of 

surfactant mixtures, then, mixed-micelle simulations would not be needed to predict the 

micellization properties of these mixtures. (iii) Predicting the micellization properties of mixtures 

of more complex surfactants, including comparing these with experimental data. In the absence 

of experimental data, a design of experiments can be carried out to measure micellization 

properties, including CMCs, of a well-chosen set of binary surfactant mixtures (similar to the set 
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considered in Section 4.4) that would aid in identifying the reasons behind any discrepancy 

observed between the model predictions and the experimental data.  

6.2.3 Modeling Inhomogeneous Mixed Micelles 

Experimental studies of mixtures of fluorocarbon-based and hydrocarbon-based 

surfactants have shown that while certain mixtures yield a single type of mixed micelle in 

solution, other mixtures result in the coexistence of two types of micelles in solution: one rich in 

fluorocarbon-based surfactant and the other rich in hydrocarbon-based surfactant. Based on these 

observations, in Chapter 5, an MT framework capable of modeling the coexistence of different 

types of micelles was developed. This MT framework is not able to predict inhomogeneity 

within a micelle, that is, a mixed micelle consisting of a fluorocarbon compartment and a 

hydrocarbon compartment. The existence of such an inhomogeneous micelle was hypothesized 

by Nordstierna et al. to explain their nuclear-magnetic resonance spectroscopy data.124 It would 

indeed be interesting to theoretically evaluate the feasibility of forming inhomogeneous micelles 

by comparing its free energy relative to the free energies associated with forming a well-mixed 

micelle or with the coexistence of a fluorocarbon-rich and a hydrocarbon-rich micelle.  

Modeling inhomogeneous micelles will involve the appropriate calculations of the 

interfacial free energy, the packing free energy, the steric free energy, and the electrostatic free 

energy. The interfacial, the packing, and the steric free energies can be calculated by modifying 

the calculations discussed in Section 3.3, 3.4, and 3.5, respectively. However, instead of the 

curvature varying with position, the surfactant properties, including the tail volume, the tail 

length, and the head area will vary with position. Therefore, position-dependent surfactant 

properties would have to be incorporated in the free-energy models in a manner similar to the 

incorporation of the position-dependent curvature. An additional interfacial free-energy 
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contribution associated with the interface between the hydrocarbon compartment and the 

fluorocarbon compartment within the micelle core would have to be added to the model (if there 

are only two compartments. If there are more than two compartments, then, free energies 

associated with forming all the interfaces, as well as with the mixing of the different 

compartments, would need to be accounted for). This contribution would depend on the 

interfacial tension between the hydrocarbon and the fluorocarbon tails, as well as on the surface 

area of the internal interface. By formulating a model for the free energy of micellization of an 

inhomogeneous micelle, the feasibility of forming such a micelle can be theoretically evaluated 

by comparing the predicted populations of inhomogeneous micelles, homogeneous mixed 

micelles, and fluorocarbon-rich and hydrocarbon-rich mixed micelles calculated using Eq. (2-5).  

6.2.4 Potential Replacements for Traditional Fluorocarbon-Based Surfactants  

One of the goals of this thesis was to gain a molecular-level understanding of the 

micellization behavior of traditional fluorocarbon-based surfactants, as well as to exploit this 

understanding to model surfactant mixtures where the use of traditional fluorocarbon-based 

surfactants is reduced. While mixing fluorocarbon-based surfactants with hydrocarbon-based 

surfactants represents an interesting strategy to reduce the fluorine content of the surfactant 

formulation, it does not eliminate the use of the traditional fluorocarbon-based surfactants. Some 

of the potential replacements for traditional fluorocarbon-based surfactants include: (i) hybrid 

surfactants with a fluorocarbon chain and a hydrocarbon chain linked together by a common 

hydrophilic head,158-162 (ii) partially-fluorinated surfactants,163-166 and (iii) fluorinated surfactants 

with intermittent ether linkages along the fluorocarbon chain.159, 160  

There are several challenges associated with modeling the surfactants listed in (i), (ii), 

and (iii) above. The biggest challenge is the lack of experimental solubility and interfacial 
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tension data for the surfactant tails. For example, in the case of the hybrid surfactants in (i) 

above, it is not clear whether the solubility of the hybrid tail is equal to the sum of the solubilities 

of the individual fluorocarbon and hydrocarbon tails. Experimental solubility data for 

fluorocarbon chains with intermittent ether linkages is not available. Accurate experimental 

solubility data is essential to predict CMCs, because the solubility is a quantitative measure of 

the hydrophobic effect, which is the main contribution to the free energy of micellization. With 

this in mind, a systematic experimental study of the solubility of these novel surfactant tails 

would be extremely beneficial in the context of modeling their micellization behavior. 

Development of theories capable of predicting the solubilities of such complex surfactant tails 

will also be useful. The other serious challenge in modeling these novel surfactants is associated 

with the evaluation of the packing free energy. Indeed, the packing free energy will have to be 

generalized to account for two tails in the case of the hybrid surfactants in (i) above. In addition, 

new RIS models, associated with the heterogeneous surfactant tails in (ii) and (iii) above, would 

have to be included to calculate the corresponding packing free energies. Development of a 

micellization framework capable of predicting the micellization properties of such novel 

surfactants and their mixtures would be very useful, because the framework predictions can 

guide surfactant formulators in synthesizing and characterizing those surfactants which exhibit 

optimal properties.  

6.2.5 Experimental Measurements for Validating Theoretical Predictions  

Experimental measurements of micellization properties, including CMCs, micelle 

population distributions, micelle aggregations numbers, micelle shapes, micelle sizes, and 

micelle compositions are extremely important to validate theoretical predictions. Often, the 

experimental data available in the literature reports measurements for a wide variety of 
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surfactants having different head and tail groups. To gain a better understanding of any 

shortcomings of the theoretical modeling, including the effect of the surfactant structure on 

micellization behavior, it is beneficial to have experimental data for a carefully-chosen set of 

surfactants (similar to the set considered in Section 4.4). This should aid in identifying the 

reasons behind any discrepancy observed between the model predictions and the experimental 

data. 

In the context of the theoretical modeling of biaxial ellipsoidal micelle shapes, 

experimental measurements of the micelle shapes and sizes of a variety of surfactants including: 

(i) a set of nonionic surfactants having the same head (for example a glucoside head) and 

different number of carbon atoms in the tail, (ii) a set of nonionic surfactants having the same tail 

but different heads (glucoside and maltoside heads, or ethoxylated heads with different number 

of ethoxylate units), and (iii) a set of ionic surfactants having the same tail but different heads 

(carboxylate head, sulfate head, trimethyl ammonium head, etc.), would be useful to understand 

the effect of the surfactant head and tail on the micellization behavior and validate the model 

predictions made in Section 3.8.1. Experimental measurements that are useful in the context of 

the mixture CSMT framework were discussed in Section 6.2.2. Finally, in the context of the 

theoretical modeling of mixtures of fluorocarbon-based and hydrocarbon-based surfactants, it is 

essential to obtain a reliable estimate of the interaction parameter, Amix, as a function of 

temperature and the fluorocarbon and hydrocarbon chain lengths, to further improve the 

predictions of micelle population distributions. Phase equilibrium measurements for several 

binary mixtures of fluorocarbons and hydrocarbons having different number of carbon atoms 

will aid in obtaining a reliable estimate of Amix. In addition, as discussed in Section 5.1, 

conclusions about the unimodality or the bimodality of the micelle population distributions are 
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based on indirect evidence. The development of experimental methods to reliably determine the 

unimodality and bimodality of micelle population distributions would improve our understating 

of the micellization behavior of mixtures of fluorocarbon-based and hydrocarbon-based 

surfactants. 
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Chapter 7 

7 Appendix 

7.1 Mathematical Derivations and Proofs 

7.1.1 Differential Volume of a Discoidal Micelle 

The Jacobian matrix for the parameterization of the semi-toroidal rim of a discoidal 

micelle shown in Eq. (3-14) is given by: 

( )
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Substituting Eq. (7-2) in Eq. (3-12) yields: 

( )cosdV dxdydz r b r v drdudv= = ⋅ +  (7-3)  

which is the result obtained in Eq. (3-15) 
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7.1.2 Differential Area and Mean Curvature of a Discoidal Micelle using the First and 

Second Fundamental Forms 

To evaluate the first fundamental form for a discoidal micelle, we first evaluate x1 and x2, 

defined in Eq. (3-1), and their inner product, gij, defined in Eq. (3-4), for the surface 

parameterization given in Eq. (3-16) as follows: 

( )( ) ( )( )1 'cos sin , 'cos cos ,0xx b b v u b b v u
u
∂

= = + − +
∂

 (7-4) 
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22 2 2, ' sin cos sin sin cos 'g x x b v u v u v b= = + + =  (7-8) 

( )2
11 12

2
21 22

'cos 0
0 '

g g b b vg
g g b

⎡ ⎤⎡ ⎤ += = ⎢ ⎥⎢ ⎥
⎥⎦ ⎢⎣ ⎦⎣

 (7-9) 

Substituting Eq. (7-9) in Eq. (3-5) yields: 

( )' 'cosdA g dudv b b b v dudv= = +  (7-10) 

The following equations show the steps needed to obtain an expression for the mean 

curvature of the surface of the semi-toroidal rim based on the recipe introduced in Section 3.2. 

1 2

1 2

x xn
x x
×

=
×
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( ) ( ) ( ) ( ) ( ) ( )( )
( )( )

( )

22 2 2 2 2 2

ˆ ˆˆ ˆsin sin sin sin cos cos sin cos cos cos

cos cos sin cos sin cos sin sin

cos cos ,cos sin ,sin

u v u k u v j u v u k u v i

u v u v v u v u

v u v u v

− ⋅ − ⋅ + − ⋅ ⋅ − + ⋅ − ⋅ − + ⋅ ⋅
=

+ + +

=

 (7-11)  

( ) ( )( )
2

11 2 'cos cos , 'cos sin ,0xx b b v u b b v u
u
∂

= = − + − +
∂

 (7-12) 

( )
2

12 21 'sin sin , 'sin cos ,0xx x b v u b v u
u v
∂

= = = −
∂ ∂

 (7-13) 

( )
2

22 2 'cos cos , 'cos sin , 'sinxx b v u b v u b v
v
∂

= = − − −
∂

 (7-14) 

( )( )
( )

11 11, 'cos cos cos cos sin cos sin 0

'cos cos

L x n b b v u v u u v u

b b v v

= =− + ⋅ + ⋅ +

= − +
 (7-15) 

( )12 21 12 , ' sin sin cos cos sin cos cos sin 0

0

L L x n b v u v u v u v u= = = ⋅ − ⋅ +

=
 (7-16) 

( )22 22 , ' cos cos cos cos cos sin cos sin sin sin

'

L x n b v u v u v u v u v v

b

= = − ⋅ + ⋅ + ⋅

= −
 (7-17) 

( ) ( )

2
1
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' 01
0 'cos' 'cos

b
g

b b vb b b v
−

⎡ ⎤
⎢= ⎥

++ ⎢ ⎥⎦⎣
 (7-18) 

( )
( ) ( )

1 11 21
1 11 21 1

1 coscos 'cos 0
'cos'cos

vL L g L g v b b v
b b vb b v
−

= + = − + ⋅ + =
++

 (7-19) 

2 12 22
2 12 22 1

1 10 '
' '

L L g L g b
b b

= + = − ⋅ = −  (7-20) 

( )1 2
1 2

1 1 cos 1 1 2 'cos
2 2 'cos ' 2 ' 'cos

v b b vc L L
b b v b b b b v
− +⎛ ⎞ ⎛ ⎞= + = − = −⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 (7-21) 

7.1.3 Differential Volume of a Biaxial Ellipsoidal Micelle 

The Jacobian matrix for the parameterization of the biaxial ellipsoid shown in Eq. (3-20) 

is given by: 
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cos sin sin sin cos cos
sin sin cos sin sin cos

cos 0 sin

x x x
r u v p u v pr u v pr u v
y y yJ p u v pr u v pr u v
r u v

q v qr vz z z
r u v

⎡∂ ∂ ∂ ⎤
⎢ ⎥∂ ∂ ∂ ⎡ − ⎤⎢ ⎥
∂ ∂ ∂ ⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥∂ ∂ ∂ ⎢ ⎥⎢ −⎥ ⎦⎣∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂ ⎦⎣

 (7-22) 

( )( )
( )( )

( )
2 2

cos sin cos sin sin 0

sin sin sin sin sin sin cos cos

cos cos 0 cos sin cos

sin

J p u v pr u v qr v

pr u v p u v qr v pr u v q v

pr u v pr u v q v

p qr v

= ⋅ ⋅ − −

+ ⋅ ⋅ − − ⋅

+ ⋅ − ⋅

= −

 (7-23) 

Substituting Eq. (7-23) in (3-12) yields: 

2 2 sindV dxdydz p qr vdrdudv= =  (7-24) 

It should be noted that the absolute value of the determinant of the Jacobian is used to calculate 

the differential volume.  

7.1.4 Differential Area and Mean Curvature of a Biaxial Ellipsoidal Micelle using the 

First and Second Fundamental Forms 

To evaluate the first fundamental form, we first evaluate x1 and x2, defined in Eq. (3-1), 

and their inner product, gij, defined in Eq. (3-4), for the surface parameterization given in Eq. 

(3-20) as follows: 

( )1 sin sin , cos sin ,0xx p u v p u v
u
∂

= = −
∂

 (7-25) 

( )2 cos cos , sin cos , sinxx p u v p u v q v
v
∂

= = −
∂

 (7-26) 

2 2 2 2 2 2 2 2
11 1 1, sin sin cos sin sing x x p u v p u v p v= = + =  (7-27) 

( )12 21 1 2, sin sin cos cos cos sin sin cos 0 0g g x x p u v p u v p u v p u v= = = − ⋅ + ⋅ + =  (7-28) 
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2 2 2 2 2 2 2 2 2 2 2 2
22 2 2, cos cos sin cos sin cos sing x x p u v p u v q v p v q v= = + + = +  (7-29) 

2 2
11 12

2 2 2 2
21 22

sin 0
0 cos sin

g g p v
g

g g p v q v
⎡⎡ ⎤⎤

= = ⎢⎢ ⎥⎥ +⎢⎦ ⎦⎣ ⎣
 (7-30) 

Substituting Eq. (7-30) in Eq. (3-5) yields: 

2 2 2 2sin cos sindA g dudv p v p v q vdudv= = +  (7-31) 

The following equations show the steps required to obtain an expression for the mean 

curvature of a biaxial ellipsoidal surface based on the recipe introduced in Section 3.2. 

( )1 2
2 2 2 2

1 2

sin cos , sin sin , cos

cos sin

q v u q v u p vx xn
x x p v q v

−×
= =

× +
 (7-32)  

( )
2

11 2 sin cos , sin sin ,0xx p v u p v u
u
∂

= = − −
∂

 (7-33) 

( )
2

12 21 cos sin , cos cos ,0xx x p v u p v u
u v
∂

= = = −
∂ ∂

 (7-34) 

( )
2

22 2 sin cos , sin sin , cosxx p v u p v u q v
v
∂

= = − − −
∂

 (7-35) 

2 2

11 11 2 2 2 2

2

2 2 2 2

sin cos sin cos sin sin sin sin 0,
sin cos sin

sin
cos sin

p v u pq v u p v u pq v uL x n
p v p v q v

pq v
p v q v

⋅ + ⋅ +
= =

+

=
+

 (7-36) 

2 2

12 21 12 2 2 2 2

cos sin sin cos cos cos sin sin 0,
sin cos sin

0

p v u pq v u p v u pq v uL L x n
p v p v q v

⋅ − ⋅ +
= = =

+

=

 (7-37) 

2 2 2

22 22 2 2 2 2

2 2 2 2

sin cos sin cos sin sin sin sin sin cos cos,
sin cos sin

cos sin

p v u pq v u p v u pq v u p v v q vL x n
p v p v q v

pq
p v q v

⋅ + ⋅ + ⋅
= =

+

=
+

 (7-38) 
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( )
2 2 2 2

1
2 22 2 2 2 2 2

cos sin 01
0 sinsin cos sin

p v q v
g

p vp v p v q v
− ⎡ ⎤+
= ⎢ ⎥+ ⎢ ⎦⎣

 (7-39) 

2
1 11 21
1 11 21 2 22 2 2 2 2 2 2 2

sin 1 1
sincos sin cos sin

pq v qL L g L g
p v pp v q v p v q v

= + = ⋅ = ⋅
+ +

 (7-40) 

( )

2 12 22
2 12 22 2 2 2 22 2 2 2

3
2 2 2 2 2

10
cos sincos sin

cos sin

pqL L g L g
p v q vp v q v

pq

p v q v

= + = + ⋅
++

=
+

 (7-41) 

( )
( ) ( )

( )
( )

1 2
1 2 1 3

2 2 2 2 2 2 2 22 2

2 2 2 2 2

3
2 2 2 2 2

1 1
2 2 cos sin cos sin

cos sin1
2 cos sin

q pqc L L
p p v q v p v q v

q p v q v p q

p p v q v

⎛ ⎞
⎜ ⎟= + = +⎜ ⎟⎜ ⎟+ +⎝ ⎠

⎛ ⎞+ +⎜ ⎟= ⎜ ⎟⎜ ⎟+⎝ ⎠

 (7-42) 

7.1.5 Interfacial Free Energy of a Discoidal Micelle 

The mathematical details of the evaluation of the integral in Eq. (3-40) are given below: 

2 3 2 32 2

2 2

2 3 2 32

2

3
2

2 'cos ' ' 2 2 'cos 3 ' 2 ' coscos
'cos 2 3 'cos 6

3 ' 2 ' cos 3 ' 2 ' cos
3 'cos 6

4 ''
3

v v

v v

v

v

b b v bb b b b v b bb b vv dv dv
b b v b b v

bb b v b bb b v dv
b b v

b bbb

π π

π π

π

π

π

= =

=− =−

=

=−

⎛ ⎞ ⎛ ⎞+ + − +⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞+ +⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠ ⎝ ⎠

= + −

∫ ∫

∫

( )

( ) ( )

2 3 22

2

3 2 2 22
2

2

3 2 2 2 2 2 22
2

2

2 ' 2 ' cos '
'cos 6

4 ' ' ''
3 3 6 'cos

4 ' ' ' ' ''
3 3 6 'cos 3 6 'cos

v

v

v

v

v

v

bb b v bb dv
b b v

b bb b bbb dv
b b v

b bb b b V bb b bbb dv
b b v b b v

π

π

π

π

π

π

π

π ππ
π

=

=−

=

=−

=

=−

⎛ ⎞+ +⎛ ⎞
⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

⎡ ⎤⎛ ⎞⎛ ⎞
= + − +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛
= + − − = − −⎜ ⎟⎜ ⎟+ +⎝ ⎠ ⎝

∫

∫

∫
2

2

v

v

dv
π

π

=

=−

⎞
⎜ ⎟⎜ ⎟

⎠
∫

(7-43) 

The integral in (7-43) is evaluated as follows: 
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( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

( ) ( )
( )

2 2

2 2 2 2
2 2

22 2

2 2 2
2 2

22

22

1 1
'cos sin cos ' cos sin2 2 2 2

sec1 2
' sin ' cos ' tan '2 2 2

sec 2
'

' tan 12'

dv dv
b b v v v v vb b

v
dv dv

v v vb b b b b b b b

v
dv

b b vb b
b b

π π

π π

π π

π π

π

π

− −

− −

−

=
+ + + −

= =
− + + − + +

=
⎛ ⎞−

+ +⎜ ⎟+⎝ ⎠

∫ ∫

∫ ∫

∫

 (7-44) 

For b > b', the integral in Eq. (7-44) is readily evaluated by making the following 

substitutions: 

' tan
' 2

b b vp
b b
−

=
+

 (7-45) 

and 

( )2' 1sec 2
' 2

b bdp v dv
b b
−

= ⋅
+

 (7-46) 

Substituting Eqs. (7-45) and (7-46) in Eq. (7-44) yields: 

 
( ) ( )

( ) ( ) ( )
( )

( )( ) ( )

( ) ( )

( ) ( )
( )

( )
( )

( )
( )

( ) ( )
( )

( )
( )

2 ' '2

2
2 ' '2

1 1 1

sec1 22
' 1' 'tan 1 '2' '

' ' '2 4tan tan tan
' ' '' '

' '
' '

b b b b

b b b b

v dpdv
b b pb b b bv b b

b b b b

b b b b b b
b b b b b bb b b b

b b b b
b b b b

π

π

− +

− − − +

− − −

=
+ ⎛ ⎞ +− −

+ +⎜ ⎟+ +⎝ ⎠

⎛ ⎞⎛ ⎞− − −
⎜ ⎟⎜ ⎟= − − =

⎜ ⎟⎜ ⎟+ + +− −⎝ ⎠⎝ ⎠+ +
+ +

∫ ∫
 (7-47) 

Substituting Eq. (7-47) in Eq. (7-44) and subsequently in the integral in Eq. (3-40) yields: 
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( )
( )
( )

( ) ( )
( )

( )

( )
( )

2

10
0 0 2 2

1

0 0
0 0

'
3

'
4 tan2 4 ' 2 '''

6 '
'

'

'
2 tan

'2 2 '2 4 '
' 3

int

int

V bb

b bng A b b a n a b bb bn V b
b b

b b
b b

b b
b

b ba a bbag a a b b
A b V

b

π
π

σ δπδ π π

δ π δσ πδ π π

−

−

⎛ ⎞⎛ ⎞
−⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎛ ⎞−⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟= − + − + ⎜ ⎟ +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ −⎜ ⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠⎝ ⎠

−
+⎛ ⎞= − − + + − +⎜ ⎟

⎝ ⎠ ( ) ( )
( )

'
'

'
b b

b
b b

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠⎝ ⎠

(7-48) 

which is the result obtained in Eq. (3-41). 

For 'b b< , a new variable q  can be defined as follows:  

' tan
' 2

b b vq
b b
−

=
+

 (7-49) 

and 

( )2' 1sec 2
' 2

b bdq v dv
b b
−

= ⋅
+

 (7-50) 

Substituting Eqs.(7-49) and (7-50) in Eq. (7-44) yields: 

( ) ( )
( ) ( ) ( )

( )
( )( ) ( )

( ) ( )

( ) ( )
( ) ( ) ( )

( )

2 ' '2

2
2 ' '2

sec1 22
' 1' 'tan 1 '2' '

' ' '1 1 11 2' ' 'ln ln ln
' '' '1 1' '' '' '

b b b b

b b b b

v dqdv
b b qb b b bv b b

b b b b

b b b b b b
b b b b b b
b b b bb b b b

b b b bb b b bb b b b

π

π

− +

− − − +

=
+ ⎛ ⎞ −− −

+ +⎜ ⎟
+ +⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞− − −
+ − +⎜ ⎟⎜ ⎟ ⎜ ⎟+ + +⎜ ⎟⎜ ⎟ ⎜ ⎟= − =

⎜ ⎟⎜ ⎟ ⎜ ⎟− −− −− ++ +⎜ ⎟ ⎜ ⎟⎜ ⎟+ +⎝ ⎠ ⎝ ⎠+ +⎝ ⎠

∫ ∫

'1
'

b b
b b

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−
−⎜ ⎟+⎝ ⎠

(7-51) 

Substituting Eq. (7-51) in Eq. (7-44) and subsequently in the integral in Eq. (3-40) yields: 
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( )

( ) ( )
( )

( )

2

0
0 0 2 2

0
0 0

'
3

' '2 ln 1 ln 12 4 ' 2 ' '''
6 '

'
'

2 22 4 '
'

int

int

V bb

b b b bng A b b a n a b b b bb bn V b
b b

b b
b b

aag a a b b
A b

π
π

σ δπδ π π

δ πσ πδ π

⎛ ⎞⎛ ⎞
−⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎛ ⎞⎜ ⎟⎜ ⎟+ − −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟= − + − + ⎜ ⎟ ⎜ ⎟+ +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠−⎜ ⎟⎜ ⎟⎜ ⎟

−⎜ ⎟⎜ ⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠⎝ ⎠

= − − + + −

( ) ( )
( )

0

' 'ln 1 ln 1
' ''

3 '
'

'

b b b bb
b b b ba bb

V b b
b b

b b

δ π

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎜ ⎟⎜ ⎟+ − −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ +⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎝ ⎠+⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ −⎜ ⎟⎜ ⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎜ ⎟+⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

(7-52) 

which is identical to Eq. (3-42). 

If 'b b= , the integral in Eq. (7-44) reduces to: 

( ) ( ) ( )( ) ( )

22

2

sec 2 42 tan tan4 4' ' '

v
dv

b b b b b b

π

π

π π
−

= − − =
+ + +∫  (7-53) 

Substituting Eq. (7-53) in Eq. (7-44) and subsequently in the integral in Eq. (3-40) yields: 

( ) ( )
( )0 0 0 0

2 4 ' 2 2 ' 2'
' 3 'int

b b bb bg b b a a a a a
A b V b b

πδ π δ π δσ π
⎛ ⎞⎛ ⎞+ ⎛ ⎞= = − − + − +⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+⎝ ⎠ ⎝ ⎠⎝ ⎠  (7-54) 

which is identical to Eq. (3-43) 

7.1.6 Limiting Cases for the Interfacial Free Energy of a Discoidal Micelle 

To verify the validity of the intg  expressions in Eqs. (3-41) - (3-43), consider the 

following limiting cases: 

1. The torus becomes a sphere. This corresponds to the case b = 0 and A = 4πb'2. Taking 

these limits in Eq. (3-42) yields: 
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( )

( ) ( )
( )

( )
( )
( )
( )

( )

0 0 0 02 0

0 0 0 0 0

' 0
1

' 02 0 4 ' 2 0 lim ln
4 ' ' ' 0 '

0 ' 1
' 0 '

2 2 1 2
' ' '

int b

b
bb bg a a a a a

b b b b b
b

b b b

a a a a a a
b b b

πδ δσ π
π

δ δ δσ σ

→

⎛ ⎞⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟⎜ + ⎟
+⎜ ⎟+ ⎜ ⎟⎜ ⎟⎛ ⎞= − − + − ⋅ +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ − −⎜ ⎟⎜ ⎟⎜ ⎟+ −⎜ ⎟⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞= − − + = − −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 (7-55) 

which is identical to the intg expression utilized for a spherical micelle of radius b'.  

2. The torus is a cylinder. This corresponds to the case when b→∞, A = (1/2)2πb'(2πb), and 

V = (1/2)πb'2(2πb). Note that the factor of one half in the expressions for A and V account for the 

fact that the cylinder is actually a hemi-cylinder because the rim is a semi-toroidal rim and the 

height of the cylinder is equal to the inner circumference of the semi-toroidal rim which is equal 

to 2πb. Using the expressions for A and V and taking the limit b→∞ in Eq. (3-41) yields: 

( )

( ) ( )
( )

( )
( )

( )

1
0 0 0 02 2 2

0 0 0 0 0 0

2 2 2 ' 2 tan
2 ' ' 3 '

2 2 11 1
' ' 3 ' 2 '

int

b bbb bg a a a a a
bb b bb bb

b
b

a a a a a a a
b b b b

πδ π δ π δσ π
π π

δ δ δ δσ σ

−

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎛ ⎞= − − + − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − + − + = − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (7-56) 

which is identical to the intg  expression utilized for a cylindrical micelle of radius b'.  

7.1.7 Total Surface Area of a Biaxial Ellipsoidal Micelle  

The integral in Eq. (3-48) is evaluated separately for p > q and p < q. For p > q, the 

following substitutions are made:  

2 2 cost p q v= −  (7-57) 
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and 

2 2 sindt p q vdv= − −  (7-58) 

Substituting Eqs. (7-57) and (7-58) in the integral in Eq. (3-48) yields: 

( )
( ) ( )

( )

( ) ( )

( )

2 2

2 2

2 2

2 2

2 2 2 2 2 2

2 2
0

2 2

2 2

22 sin cos

2

 

t p qv

v t p q

t p q

t p q

pA p v p q v q dv t q dt
p q

pA t q dt
p q

π ππ

π

=− −=

= = −

= −

=− −

−
= − + = +

−

= +
−

∫ ∫

∫  (7-59) 

The integral in Eq. (7-59) is evaluated using integration by parts as follows: 

2 2 2
2 2 2 2 2 2

2 2 2 2 2 2

2
2 2 2 2

2 2

2
2 2 2 2

2 2
2

t t q qt q dt t t q tdt t t q dt
t q t q t q

qt t q t q dt dt
t q

qt q dt t t q dt
t q

⎛ ⎞+⎜ ⎟+ = ⋅ + − ⋅ = + − −
⎜ ⎟+ + +⎝ ⎠

= + − + +
+

⇒ + = + +
+

∫ ∫ ∫

∫ ∫

∫ ∫

 (7-60) 

To evaluate the integral on the right-hand side of Eq. (7-60), the following substitutions are 

made:  

tant q θ=  (7-61) 

and 

2secdt q dθ θ=  (7-62) 

Substituting Eqs. (7-61) and (7-62) in the integral in Eq. (7-60) yields: 
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( )

2 2 2 3 2

2 2 2 2 2

2
2 2 2

sec sec
sectan

sec ln sec tan ln 1

q q q qdt d d
qt q q q

t tq d q q q q

θ θθ θ
θθ

θ θ θ θ

⋅
= =

+ +

= = + = + +

∫ ∫ ∫

∫
 (7-63) 

One can verify that in the interval of integration, 2 2 2 2tanp q q p qθ− − < < − , secθ  is 

always positive, and as a result, secθ  can be replaced by secθ . Substituting Eq. (7-63) in Eq. 

(7-60), and the subsequent result in Eq. (7-59) yields: 

( ) ( )

( )

( ) ( )

( ) ( )

( )

( )
( ) ( )

( )

2 2

2 2

2 2

2 2

2 2

2
2 2 2 2 2 2

2 22 2

22
2 2 1

2
2 2

2 22 2

22
2 2

2 2

2 1
2 2

ln 12 2 2

2 1
2 2

2 ln 12 2

t p q

t p q

t p q

t p q

t

t p q

p t qA t q dt t q dt t q dt
t qp q

Cqt t tt q q q

p t qt q dt
t qp q

p qt t tt q q qp q

π

π

π

= −

=− −

= −

=− −

=

=− −

= + + = + +
+−

⎛ ⎞= + + + + +⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟= + +
⎜ ⎟+− ⎝ ⎠

⎛ ⎞⎛ ⎞⎜ ⎟= + + + +⎜ ⎟⎜ ⎟⎝ ⎠− ⎝ ⎠

∫ ∫ ∫

∫

( )

( )
( )

( )

( )

( )
( )

( )
( )

( )
( )

2 2

2 2 2 2

22
2 2

2 2 2 2 2 2

2

2 2

2
2 2

2 22 2

1
2 ln2

1

1 12 ln2
1 1

p q

p q p q
q qp qp p q

p q p q p q
q q

p p p p
q q q qp qp p q

p q p p p p
q q q q

π

π

−

⎛ ⎞− −⎜ ⎟+ +⎜ ⎟⎛ ⎞⎜ ⎟= − + ⎜ ⎟
⎝ ⎠⎜ ⎟− − −⎜ ⎟− + +⎜ ⎟

⎝ ⎠
⎛ ⎞
⎜ ⎟+ − + −

⎛ ⎞⎜ ⎟= − + ⋅⎜ ⎟⎜ ⎟⎝ ⎠− ⎜ ⎟− − + −⎜ ⎟
⎝ ⎠
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( )
( ) ( )

( )
( )

2
2 2 2

2 2

2

2

2 ln 1

ln 1

2
1

p p pp p q q q qp q

p p
q q

ppq q p
q

π

π

⎛ ⎞
⎜ ⎟= − + + −
⎜ ⎟− ⎝ ⎠

⎛ ⎞
⎜ ⎟+ −
⎜ ⎟

= +⎜ ⎟
⎜ ⎟−⎜ ⎟⎜ ⎟
⎝ ⎠

 (7-64) 

which is identical to the expression in Eq. (3-48).  

For p < q, the integral in Eq. (3-48) is evaluated by following a procedure similar to that 

followed for p > q. The variable of integration, v, in Eq. (3-48) is replaced by t defined below:  

2 2 cost q p v= −  (7-65) 

and 

2 2 sindt q p vdv= − −  (7-66) 

Substituting Eqs. (7-65) and (7-66) in the integral in Eq. (3-48) yields: 

( )
( ) ( )

( )

( ) ( )

( )

2 2

2 2

2 2

2 2

2 2 2 2 2 2

2 2
0

2 2

2 2

22 sin cos

2

 

t q pv

v t q p

t q p

t q p

pA p v p q v q dv q t dt
q p

p q t dt
q p

π ππ

π

=− −=

= = −

= −

=− −

−
= − + = −

−

= −
−

∫ ∫

∫  (7-67) 

The integral in Eq. (7-67) is evaluated using integration by parts as follows: 

2 2 2
2 2 2 2 2 2

2 2 2 2 2 2

2
2 2 2 2

2 2

t q t qq t dt t q t tdt t q t dt
q t q t q t

qt q t q t dt dt
q t

⎛ ⎞− −⎜ ⎟− = ⋅ − − ⋅ = − − −
⎜ ⎟− − −⎝ ⎠

= − − − +
−

∫ ∫ ∫

∫ ∫
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2
2 2 2 2

2 2
2 qq t dt t q t dt

q t
⇒ − = − +

−
∫ ∫  (7-68) 

To evaluate the integral on the right-hand side of Eq. (7-68), the following substitutions are 

made: 

sint q θ=  (7-69) 

and 

cosdt q dθ θ=  (7-70) 

Substituting Eqs. (7-69) and (7-70) in the integral in Eq. (7-68) yields: 

( )

2 2 3
2 2

2 2 2 2 2

2 1

cos cos
cossin

sin

q q q qdt d d q d q
qq t q q

tq q

θ θθ θ θ θ
θθ

−

⋅
= = = =

− −

=

∫ ∫ ∫ ∫
 (7-71) 

One can verify that in the interval of integration, 2 2 2 2sinq p q q pθ− − < < − , cosθ  is 

always positive, and as a result, cos cosθ θ  can be replaced by 1. Substituting Eq. (7-71) in Eq. 

(7-68), and the subsequent result in Eq. (7-67) yields: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 2

2 2

2 2

2 2

2 2

2 2

2
2 2 2 2 2 2

2 2 2 2

2
2 2 1

2
2 2

2 2 2 2

2
2 2 1

2 2

2 1
2 2

sin '2 2

2 1
2 2

2 sin2 2

t q p

t q p

t q p

t q p

t q p

t q p

p qtA q t dt q t dt q t dt
q p q t

qt tq t Cq

p qt q t dt
q p q t

p qt tq t qq p

π

π

π

= −

=− −

−

= −

=− −

= −

−

=− −

= − − = − +
− −

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟= − +
⎜ ⎟− −⎝ ⎠

⎛ ⎞⎛ ⎞= − + ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠−

∫ ∫ ∫

∫
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( ) ( )
( )

2 2
2 2 2 1

2 2

2
1

2

2 sin

sin 1
2

1

q pp p q p q
qq p

p
qppq q p

q

π

π

−

−

⎛ ⎞−
⎜ ⎟= − +
⎜ ⎟− ⎝ ⎠

⎛ ⎞
−⎜ ⎟

⎜ ⎟= +
⎜ ⎟

−⎜ ⎟
⎝ ⎠

 (7-72) 

which is identical to the expression in Eq. (3-48).  

7.1.8 Interfacial Free Energy of a Biaxial Ellipsoidal Micelle 

The first and second integrals in Eq. (3-50) are similar to the integrals used to evaluate 

the area and the volume of an ellipsoid presented in Eqs. (3-48) and (3-49). Therefore, in this 

section, mathematical details regarding the evaluation of the remaining integrals are discussed. 

The following equations present the evaluation of the remaining four integrals for p > q:  

1.  

( )

2 2 2 2
0 0

2 2 2 2
0

sin sin
cos sin

sin
cos

v v

v v
v

v

qp qpvdv vdv
w p v q v

qp vdv
p q v q

π π

π

δ δ

δ

= =

= =

=

=

=
+

=
− +

∫ ∫

∫
 (7-73) 

Substituting Eqs. (7-57) and (7-58) in Eq. (7-73) yields: 

( ) ( ) ( )

( )

( ) ( )
( )

( )

( )
( )

2 2

2 2

2 2

2 2

2 22 2 2 2 2 2
0

2 2
1 1

2 2 2 2

1sin
cos

1 2tan tan

 

t p qv

v t p q

t p q

t p q

qp qpvdv dt
t qp q v q p q

p qqp pt
qq qp q p q

π δ δ

δ δ

=− −=

= = −

= −

− −

=− −

−
=

+− + −

⎛ ⎞−⎜ ⎟= ⋅ = ⎜ ⎟⎜ ⎟− − ⎝ ⎠

∫ ∫

 (7-74) 

2.  
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0

2sin
v

v

q qvdv
p p

π δ δ=

=

=∫  (7-75) 

3.  

( )

( )( )

2 2 2 2

0 03 3
2 2 2 22 20 0

2 2

0 3
22 2 2 20

sin sin
3 3 cos sin

sin
3 cos

v v

v v

v

v

n q p n q pa vdv a vdv
V Vw p v q v

n q pa vdv
V p q v q

π π

π

δ δ

δ

= =

= =

=

=

=
+

=
− +

∫ ∫

∫
 (7-76) 

Substituting Eqs. (7-57) and (7-58) in Eq. (7-76) yields: 

( )( ) ( ) ( )( )

( )2 2

2 2

2 2 2 2

0 03 32 2 2 22 22 2 2 20

1sin
33 cos

t p qv

v t p q

n q p nq pa vdv a dt
V V p q t qp q v q

π δ δ
= −=

= =− −

=
− +− +

∫ ∫  (7-77) 

To evaluate the integral in Eq. (7-77), the following substitutions are made: 

tant q θ=  (7-78) 

and 

2secdt q dθ θ=  (7-79) 

Substituting Eqs. (7-78) and (7-79) in the integral in Eq. (7-77) yields: 

( ) ( )

( )

2 2

3 3 2 23 32 2 2 2 22 2

1 1
2 2 2 32 2 2 2 2

cos1 sec sec cos
sectan

sin 1 1 1sin tan sin sin

 

q qdt d d d d
q qqt q q q

t tt Cqq q qq t q t q

θθ θ θθ θ θ θ
θθ

θ − −

= = = =
+ +

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟= = = = +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠+ +⎝ ⎠⎝ ⎠

∫ ∫ ∫ ∫ ∫

 (7-80) 
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One can verify that in the interval of integration, 2 2 2 2sinp q q p qθ− − < < − , cosθ  is 

always positive. This allows one to replace cosθ  by cosθ . Substituting Eq. (7-80) in Eq. 

(7-77), and the subsequent result in Eq. (7-76) yields: 

( )( ) ( ) ( )( )

( )

( ) ( )

( )

( )
( )

2 2

2 2

2 2

2 2

2 2 2 2

0 03 32 2 2 22 22 2 2 20

2 22 2 2

0 02 2 22 2 2 2

0

1sin
33 cos

21

3 3

2
3

 

t p qv

v t p q

t p q

t p q

n q p nq pa vdv a dt
V V p q t qp q v q

p qnq p t npa a
q pt qV p q V p q

npa
V

π δ δ

δ δ

δ

= −=

= =− −

= −

=− −

=
− +− +

−
= ⋅ ⋅ =

+− −

=

∫ ∫

 (7-81) 

4.  

( )

( )( )

2 2

0 01 1
2 2 2 22 20 0

2

0 1
22 2 2 20

sin sin
3 3 cos sin

sin
3 cos

 

v v

v v

v

v

n q n qa vdv a vdv
V Vw p v q v

n qa vdv
V p q v q

π π

π

δ δ

δ

= =

= =

=

=

=
+

=
− +

∫ ∫

∫  (7-82) 

Substituting Eqs. (7-57) and (7-58) in Eq. (7-82) yields: 

( )( ) ( ) ( )( )

( )2 2

2 2

2 2

0 01 12 2 2 22 22 2 2 20

1sin
33 cos

 

t p qv

v t p q

n q nqa vdv a dt
V V p q t qp q v q

π δ δ
= −=

= =− −

=
− +− +

∫ ∫  (7-83) 

Using the result in Eq. (7-63), the integral in Eq. (7-83) can be evaluated as follows: 
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( ) ( )( )

( )

( ) ( ) ( )
( )

( )

( ) ( )

2 2
2 2

2 2
2 2

2 2 2

0 012 2 2 22 2 2

2 2

0 2 2

1 ln 1
3 3

2 ln 1
3

t p q
t p q

t p q
t p q

nq nq t ta dt a q qV p q V p qt q

nq p pa q qV p q

δ δ

δ

= −
= −

=− −
=− −

= + +
− −+

= + −
−

∫

 (7-84) 

Substituting Eqs. (3-48), (3-49), (7-74), (7-75), (7-81), and (7-84) in Eq. (3-50) yields: 

1
2

0
0 0 0 00

2 2 2

0 03 1
220 0

2 22
1

0 2 2

0

0

sin sin sin sin
32

sin sin
33

4 tan 4

4

v v v v

v v v v
int v v

v v

n pq qp qw vdv a vdv vdv vdv
V w ppg

n n q p n qa vdv a vdv
V V ww

p qpA a n q
qp q

n npa

π π π π

π π

δ δ
πσ

δ δ

π δ π δ
σ

π

= = = =

= = = =

= =

= =

−

⎛ ⎞
− − −⎜ ⎟

⎜ ⎟= ⎜ ⎟
⎜ ⎟+ +⎜ ⎟
⎝ ⎠

⎛ ⎞−
⎜ ⎟− − −
⎜ ⎟− ⎝ ⎠=

+

∫ ∫ ∫ ∫

∫ ∫

( )

( )
( )

( )
( )

( )

( )
( )

( )

2 2 2

0 2 2

2
2

2
10

0 02 2

2

2
10

0 2

4 ln 1
3 3

ln 1
44 tan 1 1

3
1 1

4 tan 1 1
1

nq p p pa q qV V p q

p pp q qq npq ppA na q aqn V qp p
q q

p
q pA na q qn p

q

δ π δ

σ π δπ δ

σ π δ

−

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

+ + −⎜ ⎟
⎜ ⎟−⎝ ⎠
⎛ ⎞⎛ ⎞

⎛ ⎞⎜ ⎟⎜ ⎟+ −⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟= − − − + + +⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟− −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟= − − − +
⎜ ⎟

−⎜ ⎟
⎝ ⎠

0
4

3 2
npq Aa
V pq

π δ
π

+

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

( )
( )

( )
2

2
1

0 0 02

4 2tan 1 1
3

1
int

p
qq Apg a a aqn Vp

q

π δ δσ −

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟= − − − + +
⎜ ⎟⎜ ⎟

−⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (7-85) 

which is identical to the expression in Eq. (3-50).  
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A similar analysis is carried out to evaluate the integral in Eq. (3-50) for p < q. In Eq. 

(3-50), the first two integrals, like in the case of p > q, are similar to the integrals shown in Eqs. 

(3-48) and (3-49), respectively. The remaining four integrals are evaluated as follows:  

1. Substituting Eqs. (7-65) and (7-66) in Eq. (7-73) yields: 

( ) ( ) ( )

( )

( ) ( )( )( )

( )

( ) ( ) ( )( )

( )

( )
( )

( )

( )
( )
( )

2 2

2 2

2 2 2 2

2 2 2 2

2 2

2 2

2 22 2 2 2 2 2
0

2 2 2 2

2 2

2 2 2 2 2 2

1sin
cos

1 1 1
2 2

2ln ln
2 2

t q pv

v t q p

t q p t q p

t q p t q p

q p

q p

qp qpvdv dt
q tp q v q q p

qp q t q t pdt dt
q q t q t q t q tq p q p

q q p q qp q t p
q tq p q p q q p

π δ δ

δ δ

δ δ

=− −=

= = −

= − = −

=− − =− −

−

− −

−
=

−− + −

− + +
= = +

− + + −− −

+ − ++
= = ⋅

−− − − −

∫ ∫

∫ ∫

( )
( )

( )
( )( )
( ) ( ) ( )

2 2

2 2

2
2 2

2

22 2 2 22 2 2

2ln ln 1

 

p

q q p

q q pp p q q
p pq p q pq q p

δ δ

−

+ −

+ −
= = + −

− −− −

(7-86) 

2.  

0

2sin
v

v

q qvdv
p p

π δ δ=

=

=∫  (7-87) 

3. Substituting Eqs. (7-65) and (7-66) in Eq. (7-76) yields: 

( )( ) ( ) ( )( )

( )2 2

2 2

2 2 2 2

0 03 32 2 2 22 22 2 2 20

1sin
33 cos

t q pv

v t q p

n q p nq pa vdv a dt
V V q p q tp q v q

π δ δ
= −=

= =− −

=
− −− +

∫ ∫  (7-88) 

To evaluate the integral in Eq. (7-88), the following substitutions are made: 

sint q θ=  (7-89) 
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and 

cosdt q θ=  (7-90) 

Substituting Eqs. (7-89) and (7-90) in the integral in Eq. (7-88) yields: 

( ) ( )
2

3 3 2 23 32 2 2 2 22 2

2 2 2

1 cos cos 1 1sec tan
cossin

1

 

q qdt d d d
q qqq t q q

t
q q t

θ θθ θ θ θ θ
θθ

= = = =
− −

=
−

∫ ∫ ∫ ∫

 (7-91) 

In the interval of integration, 2 2 2 2sinq p q q pθ− − < < − , cosθ  is always positive. 

Therefore, cos cosθ θ  is replaced by 1. Substituting Eq. (7-91) in Eq. (7-88) yields: 

( ) ( )( )

( )

( ) ( )

( )

( )
( )

2 22 2

2 2 2 2

2 2 2 2

0 03 2 2 22 2 2 22 2 2

2 22

0 02 2

1 1

3 3

2 2
33

t q pt q p

t q p t q p

nq p nq p ta dt a
q q tV q p V q pq t

q pnp npa a
p VV q p

δ δ

δ δ

= −= −

=− − =− −

= ⋅ ⋅
−− −−

−
= =

−

∫

 (7-92) 

4. Substituting Eqs. (7-65) and (7-66) in Eq. (7-82) yields: 

( )( ) ( ) ( )( )

( )2 2

2 2

2 2

0 01 12 2 2 22 22 2 2 20

1sin
33 cos

 

t q pv

v t q p

n q nqa vdv a dt
V V q p q tp q v q

π δ δ
= −=

= =− −

=
− −− +

∫ ∫  (7-93) 

Using the result in Eq. (7-71), the integral in Eq. (7-93) can be evaluated as follows: 
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( ) ( )( )

( )

( )
( )

( )

( )
( )

2 2
2 2

2 2
2 2

2 2
1

0 012 2 2 22 2 2

2 22
1

0 2 2

1 sin
3 3

2 sin
3

t q p
t q p

t q p
t q p

nq nq ta dt a
qV q p V q pq t

q pnqa
qV q p

δ δ

δ

= −
= −

−

=− −
=− −

−

=
− −−

−
=

−

∫
 (7-94) 

Substituting Eqs. (3-48), (3-49), (7-86), (7-87), (7-92), and (7-94) in Eq. (3-50) yields: 

2 2 10 2
03

20 0

1
2

0
0 0 0 00

2 2 2

0 03 1
220 0

sin 1
3

sin sin sin sin
32

sin sin
33

v u

int
v u

v v v v

v v v v

v v

v v

p v q p w n pqg w a dudv
n p Vw

n pq qp qw vdv a vdv vdv vdv
V w pp

n n q p n qa vdv a vdv
V V ww

π π

π π π π

π π

σ δ

δ δ
πσ

δ δ

= =

= =

= = = =

= = = =

= =

= =

⎛ ⎞+ ⎛ ⎞= − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛
− − −

=

+ +
⎝

∫ ∫

∫ ∫ ∫ ∫

∫ ∫

( ) ( )

( ) ( )

( )
( )

( ) ( )
( )

2 2

0 2 2

0

2 2 2
1

0 0 2 2

22
1

2
0

0 02 2

4 ln 1 4

4 4 sin 1
3 3

sin 144 ln 1 1
3

1 1

p q qA a n qp pq p

n np nq p pa a qV V q p

pp
qq npq pq qA na q ap pn V qp p

q q

π δ π δ
σ

π δ π δ

σ π δπ δ

−

−

⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟

⎠
⎛ ⎞
⎜ ⎟− − + − −
⎜ ⎟−
⎜ ⎟=
⎜ ⎟
⎜ ⎟+ + −
⎜ ⎟−⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟−⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟= − − + − + + +
⎜ ⎟⎜ ⎟ ⎜ ⎟

− −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

( )
( )

( )

( )
( )

( )

2

2

0 0 02

2

2

0 0 02

4 4ln 1 1
3 2

1

4 2ln 1 1
3

1

p
qq pq Aq qa a ap pn V pqp

q

p
qq Aq qa a ap pn Vp

q

π δ π δσ
π

π δ δσ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟= − − + − + +
⎜ ⎟⎜ ⎟

−⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟= − − + − + +
⎜ ⎟⎜ ⎟

−⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (7-95) 

which is identical to the expression in Eq. (3-50).  
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7.1.9 Limiting Cases for the Interfacial Free Energy of a Biaxial Ellipsoidal Micelle 

To verify the validity of the gint expressions in Eq. (3-50), consider the limiting case p = q 

when the ellipsoid becomes a sphere. Taking this limit for the equation corresponding to the 

oblate ellipsoidal micelle in Eq. (3-50) yields: 

( ) ( )
( )

( )

( ) ( ) ( )
( ) ( ) ( )

2
1

22

0 0 02 3

0 0 0 0 0 0

0 0 0 0 02

tan 1 2 44 lim 1
431 3

4 82 21 1

8 2 1 2
4

int q p

p
pqp pg a a apn p p

q

p p Aa a a a a ap pn n A

pa a a a a ap pp

δ ππ δσ
π

π δ π δδ δσ σ

π δ δ δσ σ
π

−

→

⎛ ⎞⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟⎜ ⎟= − − + +
⎜ ⎟⎜ ⎟ ⎛ ⎞

⎜ ⎟−⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞= − − + + = − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞= − − + = − −⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 (7-96) 

which is identical to the intg expression utilized for a spherical micelle of radius p.  

Taking the limit p = q, for the equation corresponding to the oblate ellipsoidal micelle in 

Eq. (3-50) yields: 

( )
( )
( )

( )
2

22

0 0 02 3

ln 1
2 44 lim 1

431 3

int q p

q q
p p pp pg a a apn p p

q

δ ππ δσ
π

→

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟+ −
⎜ ⎟⎜ ⎟
⎜ ⎟= − − + +⎜ ⎟

⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟−⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (7-97) 

The limit in Eq. (7-97) is evaluated using L’Hôpital’s rule as follows: 

( )
( )

( ) ( )

( ) ( )

22

21 1 2

ln 1ln 1

lim lim
1 1

q p q p

d q qq q
p pp p d q p

dp p
q qd q p

→ →

⎛ ⎞
⎜ ⎟+ −+ −
⎜ ⎟
⎝ ⎠=

⎛ ⎞
− −⎜ ⎟⎜ ⎟

⎝ ⎠
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( )
( )

( ) ( )
( )

1
2

2

2

1 1

22

1 1
1

lim lim 1
1

1

q p q p

q
pq q

p p q
p q

pp
q

qp
pq

−

→ →

⎛ ⎞
⎜ ⎟⎛ ⎞
⎜ ⎟+ − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ −⎜ ⎟
⎝ ⎠= = =

− −
⋅

−

 (7-98) 

Substituting the limit obtained in Eq. (7-98) in Eq. (7-97) yields:  

( ) ( )
( ) ( )

0 0 0 0 0 0

0 0

4 2 81 1 2

1 2

int
p p Ag a a a a a a pn p n A

a a p

π δ δ π δ δσ σ

δσ

⎛ ⎞ ⎛ ⎞= − − + + = − − ⋅ +⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

  (7-99) 

which is again identical to the intg expression utilized for a spherical micelle of radius p. 

7.1.10 Volume of a Cell to Calculate gpack of a Biaxial Ellipsoidal Micelle 

The integral in Eq. (3-67) can be evaluated as follows: 

,

, 1

3
2 2 2

1 1
2

2 1
2

21

1

2 2 2
21 1 1

2

, 1 ,

12 1 sin
3

tan 1

tan
2 cos cos

3

n k

n k

n n

n nn
n n

n n n

n n

n n n

n n nn n
n k n k

p q
p qpp q vdv

p p q v
q p

q p qv
q p qp q

θ

θ

π

π θ θ

−

− −

−

−

−

− − −

−

⎛ ⎞
⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟
⎜ ⎟−⎜ ⎟ ⎜ ⎟⎜ ⎟⎛ ⎞⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟− +⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞⎝ ⎠⎜ ⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠= − −

∫

,

, 1

,

, 1

3
2 2

1

2
21

1

3
3 2 22

3 21 1
, 1 ,

1

sin

tan 1

2 cos cos sec tan 1 sin
3

n k

n k

n k

n k

n

n

n n

n n

n n n n n
n k n k

n n n

p
p

vdv
p q v
q p

p q q p qv v vdv
q q p

θ

θ

θ

θ

π θ θ

−

−

−

−

−

−

− −
−

−

⎛ ⎞
⎛ ⎞⎛ ⎞⎜ ⎟
⎜ ⎟− ⎜ ⎟⎜ ⎟
⎜ ⎟⎝ ⎠⎜ ⎟
⎜ ⎟⎜ ⎟⎛ ⎞⎜ ⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎝ ⎠
⎛ ⎞

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟
⎜ ⎟= − − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟⎝ ⎠

⎝ ⎠

∫

∫
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,

, 1

3
3 2 22

2 21 1
, 1 ,

1

2 cos cos sec tan tan 1
3

n k

n k

n n n n n
n k n k

n n n

p q q p qv v v dv
q q p

θ

θ

π θ θ
−

−

− −
−

−

⎛ ⎞
⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟
⎜ ⎟= − − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟⎝ ⎠

⎝ ⎠

∫ (7-100) 

The integral in Eq. (7-100) can be evaluated by making the following substitutions: 

2
21

1

1 tann n

n n

p qt v
q p

−

−

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
 (7-101) 

and 

2
21

1

2 tan secn n

n n

p qdt v v
q p

−

−

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

 (7-102) 

Substituting Eqs. (7-101) and (7-102) in Eq. (7-100) yields: 

2
21

,
1

2
21

, 1
1

1 tan 32 3 2
1

, 1 , 2

11 tan

1

2 cos cos
3

2

n n
n k

n n

n n
n k

n n

p q
q p

n n n
n k n k

np q n n
q p

n n

p q q t dt
q p q

q p

θ

θ

π θ θ

−

−

−
−

−

⎛ ⎞
+⎜ ⎟
⎝ ⎠ −

−
−

⎛ ⎞ −+⎜ ⎟
⎝ ⎠

−

⎛ ⎞
⎜ ⎟

⎛ ⎞⎜ ⎟− − ⎜ ⎟⎜ ⎟⎛ ⎞⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∫  

1 2 1 22 2 22
2 21 1 1 1

, 1 , , , 1
1 1

2 cos cos 1 tan 1 tan
3

n n n n n n n n
n k n k n k n k

n n n n n n

p q q p p q p q
q p q p q p

π θ θ θ θ

− −

− − − −
− −

− −

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟= − + + − +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

(7-103) 

which is identical to Eq. (3-67) 

7.1.11 Interpolation Scheme to Calculate the Charging Free Energy 

For a regular grid, the interpolation scheme introduced in Section 3.6 is equivalent to the 

multilinear interpolation scheme. Consider the application of the interpolation scheme presented 

in Section 3.6 using an interpolation table which is a regular grid. Specifically, when all the 

points in the interpolation table are arranged in a five-dimensional space, they form a regular 5-D 

rectangular grid with no missing points. In such a grid, the 32 nearest neighbors for any given 
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point will form a regular polyhedron, where each face is perpendicular to every other face with 

which it has a common edge (that is, the 4-dimensional version of a 2 dimensional edge). This is 

easily visualized in a three-dimensional analog of the five-dimensional regular grid as shown in 

Figure 7-1. In such a case, each vertex of the regular polyhedron formed by the nearest neighbors 

is characterized by the values of the five variables, where each variable can take one of only two 

values (3 and 7 for variable 1 in the example shown in Figure 7-1). Note that for an irregular 

grid, this need not be true.  

Let ( ), , , ,a b c d e  denote the 5-dimensional point at which one desires to find the surface 

electric potential using the interpolation scheme. In addition, let the 32 nearest-neighbor grid 

points be denoted by ( )3 51 2 4, , , ,X XX X Xa b c d e , where superscripts X1, X2, X3, X4, and X5 are equal 

to either +1 or -1. A superscript of +1 denotes the high value of the variable, while a superscript 

of -1 denotes the low value. For example, for variable 1 in Figure 7-1, a superscript of +1 

corresponds to 7, and a superscript of -1 corresponds to 3. For such a grid, the weights 

corresponding to the point ( )3 51 2 4, , , ,X XX X Xa b c d e  in the multilinear interpolation scheme is 

given by: 

( ) ( ) ( ) ( ) ( ) ( )
3 51 2 4

3 51 2 4 1 1 1 1 1 1 1 1 1 1, , , ,X XX X X

X XX X X

a b c d e

a a b b c c d d e e
wt

a a b b c c d d e e

− −− − −

+ − + − + − + − + −

− ⋅ − ⋅ − ⋅ − ⋅ −
=

− ⋅ − ⋅ − ⋅ − ⋅ −
 (7-104) 

For the interpolation scheme described in Section 3.6, the weight corresponding to the 

point ( )3 51 2 4, , , ,X XX X Xa b c d e  is given by: 
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( )

3 51 2 4

3 51 2 4

3 51 2 4

1 2 3 4 5

1 11 1 1

1, 1, , , , 1 11 1 1

, , , ,

X XX X X

X XX X X

a b c d e
X XX X X

X X X X X

a a b b c c d d e e
wt

a a b b c c d d e e

− −− − −

− + − −− − −

− ⋅ − ⋅ − ⋅ − ⋅ −
=

− ⋅ − ⋅ − ⋅ − ⋅ −∑
(7-105) 

 

Figure 7-1: A schematic of the regular polyhedron formed by the 8 nearest neighbors of the point shown 
in red.  

where the denominator is introduced so that all the weights add up to 1. To prove the equivalence 

of the two weighting schemes shown in Eqs. (7-104) and (7-105), we simplify Eq. (7-105) as 

follows: 

( )

( ) ( )( )

3 51 2 4

3 51 2 4

3 51 2 4

1 2 3 4 5

3 51 2 4

31 2

1 11 1 1

1, 1, , , , 1 11 1 1

, , , ,

1 11 1 1

1 1

11 1

1 1

.

X XX X X

X XX X X

a b c d e
X XX X X

X X X X X

X XX X X

XX X

a a b b c c d d e e
wt

a a b b c c d d e e

a a b b c c d d e e

e e e e

a a b b c c d

− −− − −

− + − −− − −

− −− − −

− +

−− −

− ⋅ − ⋅ − ⋅ − ⋅ −
=

− ⋅ − ⋅ − ⋅ − ⋅ −

− ⋅ − ⋅ − ⋅ − ⋅ −
=

− + −

− ⋅ − ⋅ − ⋅ −

∑

( ) ( ) ( )

4

1 2 3 4

3 51 2 4

31 2 4

1 2 3 4

1, 1 1

, , ,

1 11 1 1

1 11 1 1 1

1, 1 11 1 1

, , ,
.

X

X X X X

X XX X X

XX X X

X X X X

d

a a b b c c d d e e

e e e e e e

a a b b c c d d

− + −

− −− − −

− −+ − + −

− + −− − −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

− ⋅ − ⋅ − ⋅ − ⋅ −
=
⎛ ⎞− − −⎜ ⎟
⎜ ⎟

− ⋅ − ⋅ − ⋅ −⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑  

(3,15,0) (7,15,0)

(7,21,0)

(3,21,0)
(3,15,1)

(7,15,1)

(7,21,1)(3,21,1)

(5,18,0.7)
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( ) ( ) ( )

( ) ( )( )

( ) ( ) ( ) ( )

3 51 2 4

31 2

1 2 3

3 51 2 4

1 11 1 1

1 11 1 1 1

1, 1 11 1 1 1

, ,

1 11 1 1

1 1 11 1 1 1 1

1 1

X XX X X

XX X

X X X

X XX X X

a a b b c c d d e e

e e e e e e

a a b b c c d d d d

a a b b c c d d e e

e e e e e e d d d d

− −− − −

− −+ − + −

− + −− − − +

− −− − −

− − −+ − + − +

− ⋅ − ⋅ − ⋅ − ⋅ −
=
⎛ ⎞− ⋅ − −⎜ ⎟
⎜ ⎟
⋅ − ⋅ − ⋅ − ⋅ − + −⎜ ⎟⎜ ⎟
⎝ ⎠

− ⋅ − ⋅ − ⋅ − ⋅ −
=

− ⋅ − − ⋅ − ⋅ −

∑

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( )

31 2

1 2 3

3 51 2 4

11 1 1

1, 1 11 1

, ,

1 11 1 1

1 1 1 11 1 1 1 1 1 1 1

1 1 1 11 1 1 1 1 1 1 1

11

XX X

X X X

X XX X X

d d

a a b b c c

a a b b c c d d e e

e e e e e e d d d d d d

c c c c c c b b b b b b

a a

−− + −

− + −− −

− −− − −

− − − −+ − + − + − + −

− − − −+ − + − + − + −

−+

⎛ ⎞−⎜ ⎟
⎜ ⎟
⋅ − ⋅ − ⋅ −⎜ ⎟⎜ ⎟
⎝ ⎠

− ⋅ − ⋅ − ⋅ − ⋅ −
=

− ⋅ − − ⋅ − ⋅ − −

− ⋅ − − ⋅ − ⋅ − −

⋅ − ⋅

∑

( ) ( )
1

11 1 1

1X

a a a a

a a

−− + −

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

− −⎜ ⎟
⎝ ⎠

−
=

2
1Xb b
−

⋅ − 3
1Xc c
−

⋅ − 4
1Xd d
−

⋅ − 5
1Xe e
−

⋅ −

5
1Xe e
−

− ( )5 4
1 11 1X Xe e e e d d
− −− + −⋅ − ⋅ − ⋅ − ( )4

3

1 1 1

1

X

X

d d d d

c c

−− + −

−

⋅ − ⋅ −

⋅ − ( )3 2
1 11 1X Xc c c c b b
− −− + −⋅ − ⋅ − ⋅ − ( )2

1

1 1 1

1

X

X

b b b b

a a

−− + −

−

⋅ − ⋅ −

⋅ − ( )

( ) ( ) ( ) ( ) ( )

1

3 51 2 4

1 1 1

1 1 1 1 1 1 1 1 1 1

X

X XX X X

a a a a

a a b b c c d d e e

e e d d c c b b a a

−− + −

− −− − −

+ − + − + − + − + −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

⋅ − ⋅ −⎜ ⎟
⎝ ⎠

− ⋅ − ⋅ − ⋅ − ⋅ −
=

− ⋅ − ⋅ − ⋅ − ⋅ −

 (7-106) 

Equation (7-106) is identical to Eq. (7-104). Hence, we have proved that the weighting scheme 

presented in Section 3.6 is identical to that for a multilinear interpolation scheme, if the 

interpolation table forms a regular grid with no missing entries. 

7.1.12 Laplace and Gradient Operators for the Discoidal Coordinate System 

The Laplace operator for the parameterization introduced in Eq. (3-14) can be calculated 

by substituting Eq. (3-14) in Eq. (3-78) as follows: 
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( ) ( )
1

2 2 2 2 2 2cos cos ,cos sin ,sin cos cos cos sin sin

1
rh v u v u v v u v u v= = + +

=
 (7-107) 

( ) ( )
1

2 2 2 2 2 2sin cos , sin sin , cos sin cos sin sin cosvh r v u r v u r v r v u v u v

r

= − − = + +

=
 (7-108) 

( ) ( )( ) ( )( )
( )

1
2 2 2cos sin , cos cos ,0 cos sin cos

cos

uh b r v u b r v u b r v u u

b r v

= − + + = + +

= +
 (7-109) 

Substituting Eqs. (7-107) - (7-109) in Eq. (3-77) and (3-79) yields: 

( )
( ) ( )2 cos cos 11 1

1 cos cos
r b r v b r v r

r b r v r b r v r v u b r v u
ψ ψ ψψ

⎛ ⎞+ + ×⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ × ∂⎛ ⎞∇ = + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟× × + ∂ ∂ ∂ ∂ ∂ + ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 (7-110) 

and 

1ˆ ˆ ˆ
cos
ur v u

r r v b r v

ψ
ψ ψψ

∂
∂ ∂ ∂∇ = + +
∂ ∂ +

 (7-111) 

which are identical to Eqs. (3-80) and (3-83), respectively. 

7.1.13 Linearization of the Poisson-Boltzmann Equation 

The nonlinear Poisson-Boltzmann equation in Eq. (3-92) can be linearized as follows: 

( ) ( )
( ) ( ) ( ) ( )

( )

2 /2 4 2
4 2

2 2/ /

2 2/ /
,0 ,0

2 2
,0 ,0

2/ 2
,0 ,0

sin
cos cos

exp 1

charge

charge charge

charge i i i charge i i i
i i

i i i i
i i

charge i i i i
i i

b vb
v vb b v b b v

b I z z b I z z

I z I z

b I z I z

ξψ ξ ψ ψ ψξ ξ
ξ ξξ ξ

κ ψ κ ψ

κ ψ

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎜ ⎟⎜ ⎟ ⎜ ⎟+ + −
⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂+ +⎝ ⎠ ⎝ ⎠⎝ ⎠

− −
= − = −

⎛ −
= −

∑ ∑
∑ ∑

∑ ∑ ( )2/ 2
,0

2 2
,0 ,0

0charge i i
i

i i i i
i i

b I z

I z I z

κ ψ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= −

∑
∑ ∑
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( )2/
chargebκ ψ=  (7-112) 

which is identical to Eq. (3-108). 

7.1.14 Laplace and Gradient Operators for the Prolate Ellipsoidal Coordinate System 

The Laplace operator for the parameterization introduced in Eq. (3-109) can be calculated 

by substituting Eq. (3-109) in Eq. (3-78) as follows: 

( )

( )
( ) ( ) ( )( )
( )

1
2 2 2 2 2 2 2 2 2

11 22 2 2 2 2 2 2 22

1
2 2 2

cosh sin cos , cosh sin sin , sinh cos

cosh sin cos cosh sin sin sinh cos

cosh sin sinh cos 1 sinh sin sinh 1 sin

sin sinh

h f v u f v u f v

f v u v u v
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Substituting Eqs. (7-113) - (7-115) in Eq. (3-77) and (3-79) yields: 
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v v
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and 
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∂
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which are identical to Eqs. (3-111) and (3-112), respectively. 

7.1.15 CC Model vs SB Model for the Steric Free Energy of Discoidal Micelles 

In Section 3.7.3, the systematic difference between the CC model and the SB model, in 

the context of the steric free energy, was attributed to the fact that the average of logarithmic 

terms is smaller than the logarithm of the average of the terms. The proof, which builds on the 

fact that arithmetic mean is greater than the geometric mean, is shown below: 

1 1
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7.1.16 Calculation of the Error in Modeling gtr,CSMT 

The errors associated with counting the number of hydrating contacts and with 

calculating the solvent accessible surface area were obtained using the block-averaging 

technique.46, 105 The block-averaging technique yields errors in the fractional degree of hydration, 

fi, and in the solvent accessible surface areas, SASAi and SASAcore, which are used to calculate the 

root-mean square error in gtr,CSMT. Substituting Eqs. (4-2) and (4-4) in Eq. (2-40) yields: 
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Let the error in the variable x be denoted by Δx. Accounting solely for the errors from the 

simulations, that is, for errors arising from the calculation of fi, SASAi, and SASAcore, the error in 

the calculated gtr,CSMT is given by: 
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Substituting Eq. (7-121) in Eq. (7-120) yields the error in gtr,CSMT.  
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7.2 Packing Polynomials 

The packing polynomials used to calculate the packing free energy for the surfactants 

considered in this thesis are listed in this section. The polynomial function is specific to the 

surfactant tail, or to be surfactant tail mixture, as well as to the micelle shape. For a single 

surfactant system packed in one of the three regular shapes, namely, spheres, infinite cylinders, 

or infinite bilayers, the polynomial is of the form: 

( )
6

0

n
pack n rel

n

g a r r
=

= ∑  (7-122) 

where r is the half-thickness in the case of an infinite bilayer, and is the radius in the case of an 

infinite cylinder or a sphere, rrel is a length parameter, and an are the polynomial coefficients. 

The upper and lower limits on r are rmax and rmin, respectively.  

For the biaxial ellipsoidal case or for the discoidal case, the polynomial is a function of 

two size variables, since two parameters are required to uniquely define their size. Therefore, the 

polynomial is of the form: 

( ) ( )
4 4

,
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j i

g a p p q p
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( ) ( )
6 6

,
0 0

' i j
pack disc ij rel rel

j i

g a b r b q
= =

= ∑∑  (7-125) 

where p and q are the two semi-axis lengths as shown in Figure 3-2, b and b' are the size 

variables associated with a discoidal micelle as shown in Figure 3-1 prel, qrel, and rrel are length 
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parameters, and aij are the polynomial coefficients. In the case of a prolate ellipsoid, an oblate 

ellipsoid, and a disc, the upper limits on p, q, and b' are pmax, qmax, and b'max, respectively, and the 

lower limits on p, q, and b' are pmin, qmin, and b'min, respectively. In addition, the polynomial has 

been fitted using data for aspect ratios varying between (q/p)min and (q/p)max, for prolate 

ellipsoids, (p/q)min and (p/q)max, for oblate ellipsoids, and (b/b')min and (b/b')max, for discs. All the 

polynomial coefficients, parameters, and limits introduced above are listed in the parameter 

table.  

For the case of binary mixtures of surfactants forming spherical, cylindrical, and bilayer-

like micelles, the polynomial is a function of r and the micelle composition of the surfactant with 

the shorter tail, α. Therefore, the polynomial is of the form: 

( )
2 4

0 0

i j
pack ij rel

j i

g a r r α
= =

=∑∑  (7-126) 

where aij are the polynomial coefficients. In addition, the parameter α0, and the limits rmax,short 

and rmax,long introduced in Section 5.2.1, are also tabulated along with the coefficient table. Note 

that to minimize the number of parameters, rrel in Eq. (7-126) is chosen to be rmax,short.  

7.2.1 Packing Polynomials for Single Fluorocarbon Tails in Spheres, Cylinders, and 

Bilayers 
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nc Shape rmin 
(Å) 

rmax 
(Å) 

rrel 
(Å) 

a0 a1 a2 a3 a4 a5 a6 

5 Bilayer 2.6 7.4 6.5 24.86 -186.7 611.9 -1046 982.4 -482.9 98.22 
5 Cylinder 2.6 7.9 6.5 39.90 -267.0 790.7 -1252 1112 -525.2 103.3 
5 Sphere 2.6 7.9 6.5 132.8 -893.2 2568 -3937 3379 -1537 288.9 
6 Bilayer 3.1 9.1 7.8 6.955 -31.75 71.31 -72.36 28.21 0.0 0.0 
6 Cylinder 3.1 9.1 7.8 44.44 -295.8 861.5 -1331 1145 -520.7 98.10 
6 Sphere 3.1 9.1 7.8 115.6 -737.4 2009 -2908 2346 -998.3 175.1 
7 Bilayer 3.2 10.1 9.1 31.83 -264.0 959.9 -1857 2012 -1159 278.2 
7 Cylinder 3.2 10.5 9.1 20.48 -99.77 214.8 -227.3 115.3 -21.72 0.0 
7 Sphere 3.2 10.5 9.1 160.1 -1130 3416 -5520 4993 -2390 472.1 
nc is the number of carbon atoms in the fluorocarbon tail 

7.2.2 Packing Polynomials for Single Hydrocarbon Tails in Spheres, Cylinders, and 

Bilayers 

nc Shape rmin 
(Å) 

rmax 
(Å) 

rrel 
(Å) 

a0 a1 a2 a3 a4 a5 a6 

6 Bilayer 2.7 8.2 7.7 7.667 -37.53 89.98 -94.78 38.68 0.0 0.0 
6 Cylinder 2.7 9.1 7.7 20.32 -111.0 274.8 -338.6 204.1 -47.53 0.0 
6 Sphere 2.7 9.1 7.7 117.1 -846.8 2616 -4279 3887 -1856 364.1 
8 Bilayer 3.6 10.5 9.7 6.653 -29.46 68.48 -73.36 31.08 0.0 0.0 
8 Cylinder 3.6 10.5 9.7 15.40 -66.26 128.6 -113.1 37.60 0.0 0.0 
8 Sphere 3.6 11.3 9.7 165.9 -1310 4420 -7927 7932 -4191 912.9 
9 Bilayer 4.0 11.4 10.9 6.479 -28.57 67.58 -74.29 32.59 0.0 0.0 
9 Cylinder 4.0 12.3 10.9 12.35 -47.55 87.47 -74.49 24.47 0.0 0.0 
9 Sphere 4.0 12.3 10.9 62.39 -367.4 917.3 -1143 703.2 -170.4 0.0 
10 Bilayer 4.5 12.1 11.1 7.313 -31.45 69.26 -70.16 28.09 0.0 0.0 
10 Cylinder 4.5 13.2 11.1 12.86 -47.03 82.10 -66.40 20.67 0.0 0.0 
10 Sphere 4.5 13.7 11.1 88.300 -574.5 1635 -2482 2106 -942.6 173.9 
11 Bilayer 4.9 13.4 12.8 7.381 -33.23 76.95 -82.43 35.17 0.0 0.0 
11 Cylinder 4.9 13.9 12.8 13.80 -54.54 101.3 -86.71 28.50 0.0 0.0 
11 Sphere 4.9 14.5 12.8 110.9 -814.8 2593 -4391 4140 -2056 420.0 
12 Bilayer 5.4 13.9 13.3 7.071 -29.96 66.93 -69.61 29.07 0.0 0.0 
12 Cylinder 5.4 15.2 13.3 12.73 -46.36 81.62 -67.04 21.36 0.0 0.0 
12 Sphere 5.4 15.8 13.3 48.95 -259.6 600.9 -699.4 403.9 -91.95 0.0 
nc is the number of carbon atoms in the hydrocarbon tail. 

  



255 

7.2.3 Packing Polynomials for Surfactant Tails in Biaxial Ellipsoidal Micelles and 

Discoidal Micelles 

a. 5-Carbon Fluorocarbon Tail 

Shape: Prolate Ellipsoid 

Parameter Table 
pmin 2.6152 Å 
pmax 7.6822 Å 
prel 6.5380 Å 

(q/p)min 1.0 
(q/p)max 3.0 

Coefficient Table 
 1 q/prel (q/prel)2 (q/prel)3 (q/prel)4 

1 89.72 -174.75 131.18 -32.67 0.0 
p/prel -380.56 752.49 -555.73 137.12 0.0 

(p/prel)2 623.67 -1214.52 880.30 -214.69 0.0 
(p/prel)3 -452.59 865.63 -615.97 148.39 0.0 
(p/prel)4 122.06 -229.27 160.41 -38.18 0.0 

 

Shape: Oblate Ellipsoid 
 
Parameter Table 

qmin 2.6152 Å 
qmax 7.6822 Å 
qrel 6.5380 Å 

(p/q)min 1.0 
(p/q)max 3.0 

 

 
Coefficient Table 

 1 p/qrel (p/qrel)2 (p/qrel)3 (p/qrel)4 
1 75.6089 -286.36 389.62 -218.18 43.21 

q/qrel -213.37 949.83 -1379.95 804.65 -164.25 
(q/qrel)2 197.42 -1126.90 1795.54 -1099.75 232.25 
(q/qrel)3 -41.73 538.55 -1004.59 657.60 -144.61 
(q/qrel)4 -14.98 -76.84 200.43 -144.59 33.42 

b. 6-Carbon Fluorocarbon Tail 

Shape: Prolate Ellipsoid 
 
Parameter Table 

pmin 3.1140 Å 
pmax 8.8069 Å 
prel 7.7851 Å 

(q/p)min 1.0 
(q/p)max 4.0 

 
Coefficient Table 

 1 q/prel (q/prel)2 (q/prel)3 (q/prel)4 
1 81.18 -122.77 80.97 -18.65 0.0 

p/prel -354.69 529.76 -339.43 78.21 0.0 
(p/prel)2 610.28 -869.89 536.69 -122.88 0.0 
(p/prel)3 -470.11 638.66 -377.90 85.59 0.0 
(p/prel)4 135.53 -175.99 99.766 -22.28 0.0 
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Shape: Oblate Ellipsoid 
 
Parameter Table 

qmin 3.1140 Å 
qmax 9.1475 Å 
qrel 7.7851 Å 

(p/q)min 1.0 
(p/q)max 4.0 

 

 
Coefficient Table 

 1 p/qrel (p/qrel)2 (p/qrel)3 (p/qrel)4 
1 92.38 -233.27 237.37 -106.58 17.60 

q/qrel -362.89 896.24 -888.73 397.97 -66.62 
(q/qrel)2 577.51 -1343.28 1275.46 -562.17 94.74 
(q/qrel)3 -418.01 915.66 -826.37 355.19 -59.93 
(q/qrel)4 113.57 -236.27 202.79 -84.52 14.22 

Shape: Disc 
 
Parameter Table 

b'min 3.1140 Å 
b'max 8.4463 Å 
rrel 7.7851 Å 

(b/b')min 1.0 
(b/b')max 5.0 

 

 
Coefficient Table 

 1 b/rrel (b/rrel)2 (b/rrel)3 (b/rrel)4 (b/rrel)5 (b/rrel)6 
1 75.9 -481.4 1205 -1434 924.8 -315 44.0 

b'/rrel -395 2804 -7085 8314 -5350 1851 -267 
(b'/rrel)2 795 -6542 16946 -19666 12643 -4469 670 
(b'/rrel)3 -643 7562 -20792 24044 -15514 5646 -886 
(b'/rrel)4 6.28 -4257 13484 -15784 10321 -3918 651 
(b'/rrel)5 270 863.4 -4175 5128 -3469 1406 -252 
(b'/rrel)6 -107 51.94 418.6 -602.8 444.3 -201 40.0 

 

c. 7-Carbon Fluorocarbon Tail 

Shape: Prolate Ellipsoid 
 
Parameter Table 

pmin 3.1915 Å 
pmax 10.4865 Å 
prel 9.1187 Å 

(q/p)min 1.0 
(q/p)max 3.0 

 
Coefficient Table 

 1 q/prel (q/prel)2 (q/prel)3 (q/prel)4 
1 115.73 -257.14 221.73 -65.10 0.0 

p/prel -501.98 1106.46 -932.18 272.74 0.0 
(p/prel)2 855.72 -1814.32 1478.33 -428.00 0.0 
(p/prel)3 -657.89 1335.06 -1045.8 297.93 0.0 
(p/prel)4 190.48 -370.12 277.98 -77.59 0.0 

 
Shape: Oblate Ellipsoid 
 
Parameter Table 

qmin 3.1915 Å 
qmax 10.4865 Å 
qrel 9.1187 Å 

(p/q)min 1.0 
(p/q)max 3.0 

 
Coefficient Table 

 1 p/qrel (p/qrel)2 (p/qrel)3 (p/qrel)4 
1 141.44 -499.73 698.15 -430.48 96.49 

q/qrel -531.42 1833.84 -2538.34 1591.38 -366.55 
(q/qrel)2 832.83 -2664.73 3541.67 -2220.97 522.41 
(q/qrel)3 -619.05 1811.20 -2254.12 1389.31 -331.30 
(q/qrel)4 178.55 -481.09 552.87 -329.25 78.95 
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d. 6-Carbon Hydrocarbon Tail 

Shape: Prolate Ellipsoid 
 
Parameter Table 

pmin 2.6811 Å 
pmax 9.1158 Å 
prel 7.6603 Å 

(q/p)min 1.0 
(q/p)max 4.0 

 
Coefficient Table 

 1 q/prel (q/prel)2 (q/prel)3 (q/prel)4 
1 62.44 -97.64 62.33 -13.63 0.0 

p/prel -282.64 444.97 -270.49 57.66 0.0 
(p/prel)2 508.77 -771.82 444.59 -91.63 0.0 
(p/prel)3 -406.28 594.37 -325.35 64.64 0.0 
(p/prel)4 119.90 -169.86 88.91 -17.03 0.0 

 

Shape: Oblate Ellipsoid 
 
Parameter Table 

qmin 2.6811 Å 
qmax 9.1158 Å 
qrel 7.6603 Å 

(p/q)min 1.0 
(p/q)max 4.0 

 

 
Coefficient Table 

 1 p/qrel (p/qrel)2 (p/qrel)3 (p/qrel)4 
1 59.36 -168.30 186.33 -87.85 14.83 

q/qrel -223.12 647.48 -705.9 332.52 -56.69 
(q/qrel)2 349.43 -975.67 1027.00 -476.70 81.45 
(q/qrel)3 -247.99 666.40 -673.77 305.69 -52.05 
(q/qrel)4 64.615 -170.13 166.54 -73.70 12.468 

 

7.2.4 Packing Polynomials for Binary Mixtures of Surfactants in Spheres, Cylinders, and 

Bilayers 

a. Packing Polynomial for a Binary Mixture of Octyl and Undecyl Hydrocarbon Tails 

Shape: Bilayer 
 
Parameter Table 
nc,short 8 
nc,long 11 
rmin 4.9 Å 

rmax,short 10.6 Å 
rmax,long 13.4 Å 
α0 0.333 

 
Coefficient Table 

 1 α α 2

1 0.4312 -5.984 -0.4666 
r/rrel 8.970 22.96 8.185 

(r/rrel)2 -16.34 -28.41 -23.58 
(r/rrel)3 9.328 11.01 18.62 
(r/rrel)4 0.0 0.0 0.0 
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Shape: Cylinder 
 
Parameter Table 

nc,short 8 
nc,long 11 
rmin 4.9 Å 

rmax,short 11.1 Å 
rmax,long 13.9 Å 
α0 0.101 

 

 
Coefficient Table 

 1 α α 2

1 6.214 -1.094 0.0 
r/rrel -8.207 0.2906 0.0 

(r/rrel)2 4.124 1.031 0.0 
(r/rrel)3 0.0 0.0 0.0 
(r/rrel)4 0.0 0.0 0.0 

Shape: Sphere 
 
Parameter Table 

nc,short 8 
nc,long 11 
rmin 4.9 Å 

rmax,short 11.1 Å 
rmax,long 14.5 Å 
α0 0.150 

 
Coefficient Table 

 1 α α 2

1 30.64 -19.21 0.0 
r/rrel -110.7 79.15 0.0 

(r/rrel)2 169.6 -126.7 0.0 
(r/rrel)3 -117.0 89.87 0.0 
(r/rrel)4 30.21 -23.48 0.0 

b. Packing Polynomials for a Binary Mixture of Nonyl and Undecyl Hydrocarbon 

Tails 

Shape: Bilayer 
 
Parameter Table 
nc,short 9 
nc,long 11 
rmin 4.9 Å 

rmax,short 11.1 Å 
rmax,long 13.4 Å 
α0 0.242 

 
Coefficient Table 

 1 α α 2

1 0.2712 -6.620 3.250 
r/rrel 10.16 28.55 -12.27 

(r/rrel)2 -19.07 -40.51 12.88 
(r/rrel)3 11.25 18.90 -2.736 
(r/rrel)4 0.0 0.0 0.0 

 

Shape: Cylinder 
 
Parameter Table 

nc,short 9 
nc,long 11 
rmin 4.9 Å 

rmax,short 12.2 Å 
rmax,long 13.9 Å 
α0 0.116 

 

 
Coefficient Table 

 1 α α 2

1 6.224 -0.7810 0.0 
r/rrel -9.114 0.3210 0.0 

(r/rrel)2 5.122 0.7168 0.0 
(r/rrel)3 0.0 0.0 0.0 
(r/rrel)4 0.0 0.0 0.0 
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Shape: Sphere 
 
Parameter Table 

nc,short 9 
nc,long 11 
rmin 4.9 Å 

rmax,short 12.2 Å 
rmax,long 14.5 Å 
α0 0.131 

 

 
Coefficient Table 

 1 α α 2

1 30.66 -13.32 0.0 
r/rrel -122.1 59.01 0.0 

(r/rrel)2 206.1 -100.7 0.0 
(r/rrel)3 -156.5 75.52 0.0 
(r/rrel)4 44.48 -20.69 0.0 

 

c. Packing Polynomials for a Binary Mixture of Decyl and Undecyl Hydrocarbon Tails 

Shape: Bilayer 
 
Parameter Table 
nc,short 10 
nc,long 11 
rmin 4.9 Å 

rmax,short 12.2 Å 
rmax,long 13.4 Å 
α0 0.355 

 
Coefficient Table 

 1 α α 2

1 -0.2644 -0.9448 0.0 
r/rrel 13.70 4.880 0.0 

(r/rrel)2 -26.81 -9.433 0.0 
(r/rrel)3 16.69 6.415 0.0 
(r/rrel)4 0.0 0.0 0.0 

 

Shape: Cylinder 
 
Parameter Table 

nc,short 10 
nc,long 11 
rmin 4.9 Å 

rmax,short 13.4 Å 
rmax,long 13.9 Å 
α0 0.267 

 

 
Coefficient Table 

 1 α α 2

1 6.243 -0.3587 0.0 
r/rrel -10.06 0.0217 0.0 

(r/rrel)2 6.240 0.5340 0.0 
(r/rrel)3 0.0 0.0 0.0 
(r/rrel)4 0.0 0.0 0.0 

Shape: Sphere 
 
Parameter Table 

nc,short 10 
nc,long 11 
rmin 4.9 Å 

rmax,short 13.4 Å 
rmax,long 14.5 Å 
α0 0.278 

 
Coefficient Table 

 1 α α 2

1 30.48 -6.374 0.0 
r/rrel -131.9 28.38 0.0 

(r/rrel)2 241.7 -47.47 0.0 
(r/rrel)3 -199.4 33.70 0.0 
(r/rrel)4 61.52 -8.254 0.0 
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d. Packing Polynomials for a Binary Mixture of Decyl and Dodecyl Hydrocarbon Tails 

Shape: Bilayer 
 
Parameter Table 
nc,short 10 
nc,long 12 
rmin 5.4 Å 

rmax,short 12.1 Å 
rmax,long 13.9 Å 
α0 0.262 

 
Coefficient Table 

 1 α α 2

1 -0.4975 -0.1822 0.0 
r/rrel 13.59 1.695 0.0 

(r/rrel)2 -23.82 -6.122 0.0 
(r/rrel)3 13.32 5.914 0.0 
(r/rrel)4 0.0 0.0 0.0 

 

Shape: Cylinder 
 
Parameter Table 

nc,short 10 
nc,long 12 
rmin 5.4 Å 

rmax,short 13.3 Å 
rmax,long 15.2 Å 
α0 0.262 

 

 
Coefficient Table 

 1 α α 2

1 6.315 -0.7817 0.0 
r/rrel -9.407 0.5029 0.0 

(r/rrel)2 5.390 0.5075 0.0 
(r/rrel)3 0.0 0.0 0.0 
(r/rrel)4 0.0 0.0 0.0 

Shape: Sphere 
 
Parameter Table 

nc,short 10 
nc,long 12 
rmin 5.4 Å 

rmax,short 13.3 Å 
rmax,long 15.8 Å 
α0 0.231 

 

 
Coefficient Table 

 1 α α 2

1 28.13 -11.03 0.0 
r/rrel -109.5 49.96 0.0 

(r/rrel)2 183.3 -80.45 0.0 
(r/rrel)3 -139.0 59.15 0.0 
(r/rrel)4 39.54 -15.79 0.0 

e. Packing Polynomials for a Binary Mixture of Undecyl and Dodecyl Hydrocarbon 

Tails 
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Shape: Bilayer 
 
Parameter Table 
nc,short 11 
nc,long 12 
rmin 5.4 Å 

rmax,short 13.3 Å 
rmax,long 13.9 Å 
α0 0.268 

 
Coefficient Table 

 1 α α 2

1 0.4684 -1.440 0.0 
r/rrel 10.40 7.290 0.0 

(r/rrel)2 -22.15 -13.09 0.0 
(r/rrel)3 14.75 8.166 0.0 
(r/rrel)4 0.0 0.0 0.0 

 

Shape: Cylinder 
 
Parameter Table 

nc,short 11 
nc,long 12 
rmin 5.4 Å 

rmax,short 13.9 Å 
rmax,long 15.2 Å 
α0 0.280 

 

 
Coefficient Table 

 1 α α 2

1 6.329 -0.3745 0.0 
r/rrel -9.913 0.2019 0.0 

(r/rrel)2 5.990 0.3006 0.0 
(r/rrel)3 0.0 0.0 0.0 
(r/rrel)4 0.0 0.0 0.0 

Shape: Sphere 
 
Parameter Table 

nc,short 11 
nc,long 12 
rmin 5.4 Å 

rmax,short 14.6 Å 
rmax,long 15.2 Å 
α0 0.159 

 
Coefficient Table 

 1 α α 2

1 29.69 -7.189 0.0 
r/rrel -129.7 36.16 0.0 

(r/rrel)2 242.5 -69.09 0.0 
(r/rrel)3 -205.1 58.06 0.0 
(r/rrel)4 65.06 -17.81 0.0 

 

f. Packing Polynomials for a Binary Mixture of Perfluorohexyl Fluorocarbon Tail and 

Nonyl Hydrocarbon Tail 

Shape: Bilayer 
 
Parameter Table 
nc,short 6 
nc,long 9 
rmin 4.0 Å 

rmax,short 8.6 Å 
rmax,long 11.4 Å 
α0 0.615 

 
Coefficient Table 

 1 α α 2

1 -0.6454 -0.3282 0.0 
r/rrel 12.76 2.686 0.0 

(r/rrel)2 -20.22 -9.547 0.0 
(r/rrel)3 10.11 8.512 0.0 
(r/rrel)4 0.0 0.0 0.0 
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Shape: Cylinder 
 
Parameter Table 

nc,short 6 
nc,long 9 
rmin 4.0 Å 

rmax,short 9.1 Å 
rmax,long 12.3 Å 
α0 0.330 

 

 
Coefficient Table 

 1 α α 2

1 6.098 -1.593 0.0 
r/rrel -8.035 1.044 0.0 

(r/rrel)2 4.008 0.5285 0.0 
(r/rrel)3 0.0 0.0 0.0 
(r/rrel)4 0.0 0.0 0.0 

Shape: Sphere 
 
Parameter Table 

nc,short 6 
nc,long 9 
rmin 4.0 Å 

rmax,short 9.1 Å 
rmax,long 12.8 Å 
α0 0.145 

 
Coefficient Table 

 1 α α 2

1 32.84 -16.19 0.0 
r/rrel -116.9 60.56 0.0 

(r/rrel)2 172.6 -85.77 0.0 
(r/rrel)3 -113.8 53.00 0.0 
(r/rrel)4 27.93 -11.74 0.0 

 

g. Packing Polynomials for a Binary Mixture of Perfluorohexyl Fluorocarbon Tail and 

Decyl Hydrocarbon Tail 

Shape: Bilayer 
 
Parameter Table 
nc,short 6 
nc,long 10 
rmin 4.5 Å 

rmax,short 9.1 Å 
rmax,long 12.1 Å 
α0 0.645 

 
Coefficient Table 

 1 α α 2

1 0.5987 -11.27 0.3035 
r/rrel 7.404 43.54 7.541 

(r/rrel)2 -12.67 -55.89 -26.07 
(r/rrel)3 6.759 23.30 20.93 
(r/rrel)4 0.0 0.0 0.0 

 

Shape: Cylinder 
 
Parameter Table 

nc,short 6 
nc,long 10 
rmin 4.5 Å 

rmax,short 9.1 Å 
rmax,long 13.2 Å 
α0 0.230 

 

 
Coefficient Table 

 1 α α 2

1 6.117 -2.168 1.286 
r/rrel -7.300 2.496 -4.177 

(r/rrel)2 3.383 -1.106 3.579 
(r/rrel)3 0.0 0.0 0.0 
(r/rrel)4 0.0 0.0 0.0 
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Shape: Sphere 
 
Parameter Table 

nc,short 6 
nc,long 10 
rmin 4.5 Å 

rmax,short 9.1 Å 
rmax,long 13.7 Å 
α0 0.160 

 
Coefficient Table 

 1 α α 2

1 17.71 -9.689 0.0 
r/rrel -37.28 21.49 0.0 

(r/rrel)2 30.75 -17.25 0.0 
(r/rrel)3 -8.518 4.758 0.0 
(r/rrel)4 0.0 0.0 0.0 

 

h. Packing Polynomials for a Binary Mixture of Perfluorohexyl Fluorocarbon Tail and 

Undecyl Hydrocarbon Tail 

Shape: Bilayer 
 
Parameter Table 
nc,short 6 
nc,long 11 
rmin 4.9 Å 

rmax,short 8.9 Å 
rmax,long 13.4 Å 
α0 0.725 

 
Coefficient Table 

 1 α α 2

1 0.1159 -9.854 4.153 
r/rrel 8.390 35.53 -8.045 

(r/rrel)2 -12.16 -42.80 -4.666 
(r/rrel)3 5.634 16.40 11.14 
(r/rrel)4 0.0 0.0 0.0 

 

Shape: Cylinder 
 
Parameter Table 

nc,short 6 
nc,long 11 
rmin 4.9 Å 

rmax,short 8.9 Å 
rmax,long 13.9 Å 
α0 0.194 

 

 
Coefficient Table 

 1 α α 2

1 6.201 -2.215 1.157 
r/rrel -6.628 2.139 -3.740 

(r/rrel)2 2.761 -0.9304 3.265 
(r/rrel)3 0.0 0.0 0.0 
(r/rrel)4 0.0 0.0 0.0 

Shape: Sphere 
 
Parameter Table 

nc,short 6 
nc,long 11 
rmin 4.9 Å 

rmax,short 8.9 Å 
rmax,long 14.5 Å 
α0 0.091 

 
Coefficient Table 

 1 α α 2

1 17.06 -9.155 0.0 
r/rrel -31.58 17.14 0.0 

(r/rrel)2 23.18 -11.95 0.0 
(r/rrel)3 -5.745 2.981 0.0 
(r/rrel)4 0.0 0.0 0.0 

 



264 

i. Packing Polynomials for a Binary Mixture of Perfluoroheptyl Fluorocarbon Tail 

and Octyl Hydrocarbon Tail 

Shape: Bilayer 
 
Parameter Table 
nc,short 7 
nc,long 8 
rmin 3.6 Å 

rmax,short 10.1 Å 
rmax,long 10.1 Å 
α0 1.000 

 
Coefficient Table 

 1 α α 2

1 6.313 8.964 0.0 
r/rrel -28.38 -65.38 0.0 

(r/rrel)2 68.62 168.7 0.0 
(r/rrel)3 -76.91 -186.7 0.0 
(r/rrel)4 34.28 74.84 0.0 

 

Shape: Cylinder 
 
Parameter Table 

nc,short 7 
nc,long 8 
rmin 3.6 Å 

rmax,short 10.5 Å 
rmax,long 10.9 Å 
α0 0.890 

 

 
Coefficient Table 

 1 α α 2

1 5.984 -0.1165 0.0 
r/rrel -10.11 -0.6915 0.0 

(r/rrel)2 6.524 0.5994 0.0 
(r/rrel)3 0.0 0.0 0.0 
(r/rrel)4 0.0 0.0 0.0 

Shape: Sphere 
 
Parameter Table 

nc,short 7 
nc,long 8 
rmin 3.6 Å 

rmax,short 10.5 Å 
rmax,long 11.3 Å 
α0 0.200 

 

 
Coefficient Table 

 1 α α 2

1 69.69 27.78 0.0 
r/rrel -442.5 -203.0 0.0 

(r/rrel)2 1177 585.9 0.0 
(r/rrel)3 -1555 -843.8 0.0 
(r/rrel)4 1012 603.9 0.0 
(r/rrel)5 -258.9 -171.1 0.0 
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7.3 Molecular Descriptors of Surfactants 

The molecular descriptors associated with the MT modeling of a surfactant includes: (i) 

the surfactant tail volume, vtail, (ii) the surfactant tail length, ltail, (iii) the shielding area, a0, (iv) 

the interfacial tension between the tail phase and water, σo, (v) the tolman length, δ, (vi) the head 

area, ah, (vii) the head length, hl, (viii) the distance of the charge from the head-tail junction, 

dcharge, and (ix) the radius of the counterion, rion. Equations to calculate the values of descriptors 

(i) – (v) are presented in Section 2.3. The values of the remaining descriptors are listed in Table 

7-1.  

Note that the head areas, ah, for the alkyl ethoxylates in Table 7-1 are only used in the 

MT framework. All the other molecular descriptors are used in both the MT and the CSMT 

frameworks. Note that the head areas of the alkyl ethoxylates in Table 7-1 are not used with the 

CSMT model because these were specifically derived for the MT model.17 The head area was 

calculated as the ratio of the head volume and the head length. The head volume, vhead, is 

proportional to the number of ethoxylate units, j. The head length was calculated using concepts 

from scaling theories of polymers which yielded ah,j = ah,0 (j)0.8. The parameter ah,0 was fitted to 

yield reasonable agreement between the predicted and the experimental CMC of C12E6.17 Since 

the transfer free energy of the alkyl ethoxylates in the MT framework is significantly different 

from that in the CSMT framework (for example, the transfer free energy of C12E6 is -19.95 kT 

in the MT framework and -22.52 kT in the CSMT framework), the ah values were recalculated 

for the CSMT framework.  

To calculate ah for alkyl ethoxylates, a procedure similar to the one described above was 

followed. In our approach, the head volume, vhead, is proportional to j, similar to what was used 
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by Puvvada and Blankschtein in deriving their equation for ah,j shown above.17 However, the 

length of the ethoxylate head was calculated based on the study by Sarmoria and 

Blankschtein.167. Using the data presented by Sarmoria and Blankschtein,167 one can show that 

the head length of PEO chains is proportional to j0.53, for j varying between 4 and 10. Therefore, 

the head area of the ethoxylate head, ah,j, is proportional to j1/j0.53 = j0.47, i.e., ah,j = ah,i (j/i)0.47. By 

varying ah,6, the CMC predicted using the CSMT framework can be matched to the experimental 

CMC for C12E6. This yields a value of ah,6 = 65.3 Å2, which was subsequently used to make 

predictions using the CSMT framework.  

Table 7-1: Molecular Descriptors of the Surfactants Considered. 
 ah

(Å2) 
hl 

(Å) 
dcharge 
(Å) 

rion 
(Å) 

C10SUL 24.9 4.29 2.89 2.18 
C12SUL 24.9 4.29 2.89 2.18 
C10GLU 40.0 - - - 
C8E4 28.3 - - - 
C12E8 52.9 - - - 
C12E6 42.0 - - - 
C10E4 28.3 - - - 
LiPFOS 29.8 3.55 2.15 2.43 
OG 40.0 - - - 
SPFO 29.8 4.31 2.91 2.18 
SDO 21.0 4.31 2.91 2.18 
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