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Abstract 
   

Connectivity restricts and defines the information that a network can process. It is the substance 

of information processing that underlies the patterns of functional activity in the brain.  By 

combining diffusion-weighted imaging or DWI, with fMRI, we are able to non-invasively 

measure connectivity and neural responses in the same individuals and directly relate these two 

measures to one another. In Chapter 2, I first establish the proof-of-principle that anatomical 

connectivity alone can predict neural responses in cortex, specifically of face-selectivity in the 

fusiform gyrus. I then extend this novel approach to the rest of the brain and test whether 

connectivity can accurately predict neural responses to various visual categories in Chapter 3.  

Finally, in Chapter 4, I compare and contrast the resulting models, which are essentially 

networks of connectivity that are functionally-relevant to each visual category, and demonstrate 

the type of knowledge that can be uncovered by directly integrating structure and function.  
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Chapter 1 

Introduction. 

 

Connectivity is among the most important of structural elements, since it restricts and 

defines the sort of information that a network can process; it is the substance of information 

processing that links functional activity to the physical mechanics that generate it. To explain 

brain function, it is consequently of great priority that neuroscientific research discover the 

relationship between neural response patterns and the connections that produce and relay them.  

Since the 19
th

 century, neuroanatomists have been passionate about the study of 

connectivity. Fiber bundles were painstakingly characterized, and after the advent of the Golgi 

stain, individual neuronal processes were scrupulously mapped.  In the early 1960s, Hubel & 

Wiesel laid the groundwork for some of the most fundamental concepts of cortical processing of 

vision (Hubel and Wiesel, 1962).  Their legacy as experimentalists casts a shadow over their 

impact on computational neuroscience: they suggested connectionist models that offered 

explanatory accounts of their findings. While they certainly were not the first to do this, their 

models remain influential and continue to inspire and sculpt new generations of neuroscientists. 

Most explanatory accounts of brain function have almost always been purely theoretical, 

rather than directly data driven, in that they combine reports from disparate anatomical and 

functional studies. To fully realize the relationship between structure and function, it is important 

to assess both measures within the same brain, such that the functional characteristics of neural 
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units (e.g. neuroimaging voxels or electrophysiological units) can be precisely aligned to their 

connective relationships.  

The first attempts to directly link structure to function came about after the development 

and refinement of approaches that allowed intracellular recordings of single units followed by 

injections of horseradish peroxidase (HRP) into those neurons to trace their connections and by 

this, explain their function. Gilbert and Wiesel, after describing the horizontal connections of 

primary visual cortex (V1) pyramidal cells (Gilbert and Wiesel, 1979), went on to use such a 

technique to demonstrate that these connections specifically innervate columns with similar 

orientation preferences (Gilbert and Wiesel 1983, 1989).  This result has been shown using 

various approaches in several species, such as optical imaging and axonal tracing in the tree 

shrew (Bosking et al. 1997; also see Martin et al. 2002; Lee and Reid 2011 for reviews).  

Furthermore, by linking receptive field information with connectivity, Mooser et al. were able to 

demonstrate how axonal targeting of non-orientation selective units (V1 cells that receive LGN 

input) are able to generate orientation-selective units in superficial layers of V1 by means of their 

connectivity patterns (Mooser et al. 2004).  More recently, impressive combinations of two-

photon microscopy (for assessing function) and serial electron microscopy (for visualizing 

connectivity) have helped delineate the functional roles of inhibitory and excitatory connectivity 

patterns in V1 and the retina that generate direction-selectivity (Bock et al. 2011; Briggman et al. 

2011).  

These approaches have mainly focused on intra-areal connectivity patterns due to 

technical limitations. A very recent study used two-photon imaging of V1 axons arriving at 

higher-level visual cortices to show that V1 projections specifically innervate cells with similar 

visual preferences (Glickfeld et al. 2013).  These studies are amazing technological feats and 
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provide the foundation of our current understanding of how structure determines function in the 

brain.  However, these techniques can measure only a portion of the connectivity of a region and 

for simplicity reasons, have focused mainly on feed-forward transformations, which must be 

only a part of the whole picture. Much of the brain is massively interconnected, and so in order 

to have a more complete understanding of structure-function relationships, we need to look at the 

structure and function of the whole brain, with techniques such as magnetic resonance imaging 

(MRI).    

Functional MRI (fMRI) is noninvasive and captures function across the whole brain, and 

has thus greatly enhanced the field’s understanding of human brain function. However, the 

overwhelming majority of fMRI research is descriptive, yielding results that essentially localize 

activity patterns to brain regions under specific circumstances (e.g. stimuli, task, populations). In 

order to advance fMRI research towards mechanistic principles, investigators will need to adopt 

new approaches that explain neural activity as a function of the underlying neural structures that 

process information.  

 Diffusion-weighted imaging (DWI) is a noninvasive neuroimaging technique that 

measures the propensity of water to travel along myelinated axons. Since the diffusion of water 

is restricted via myelination, DWI can be used to measure the direction of water diffusion along 

the length of fiber bundles and thus estimate brain connectivity in vivo (Behrens et al. 2003a,b). 

DWI can be analyzed alongside fMRI data in the same individual. By combining these modern 

neuroimaging tools and analyzing DWI alongside fMRI data, researchers now have a unique 

opportunity to link structure and function in the same individual, and move toward establishing 

anatomical underlying principles of human brain function. In this thesis, I show evidence that 

structural connectivity as measured with DWI can predict visual representations voxel-wise 
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across the brain and investigate the structural networks that underlie visual representations in 

cortex. 

Given the assumption that brain structure determines function, functionally distinct 

regions of cortex should be structurally distinct in their connections to other areas.  In Chapter 2, 

I first test this hypothesis in relation to face selectivity in the fusiform gyrus.  By using only 

structural connectivity, as measured through diffusion weighted imaging, or DWI, one can 

predict functional activation to faces in the fusiform gyrus.  By showing that the neural response 

of each voxel (e.g. its face-selectivity) can be predicted from the extrinsic structural connectivity 

between that voxel and each of the other brain regions, we demonstrated that unique voxel-wise 

connectivity fingerprints determine face-selectivity in the fusiform. These predictions 

outperformed two control models and a standard group-average benchmark.  The structure-

function relationship discovered from these participants was highly robust in predicting 

activation in a second group of participants, despite differences in acquisition parameters and 

stimuli.  This approach can thus reliably estimate activation in participants who cannot perform 

functional imaging tasks, and is an alternative to group-activation maps.  Additionally, we 

identified cortical regions whose connectivity is highly influential in predicting face-selectivity 

within the fusiform, suggesting a possible mechanistic architecture underlying face processing in 

humans.   

In Chapter 3, I extend this method to the whole brain and ask whether connectivity 

fingerprints are present throughout the cortex for high-level visual categories. We used 

anatomical connectivity to predict functional activity in each gray matter voxel of the brain. 

Diffusion-weighted images and fMRI images were acquired from two groups of healthy subjects.  

Probabilistic diffusion tractography was performed from each anatomically-defined parcel to all 
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other anatomical parcels.  For each parcel, we modeled the fMRI data as a function of connection 

probability using linear regressions. The models surpassed performance distributions generated 

from randomly permuted data, indicating that the connectivity data are structured sufficiently for 

prediction. The models also accurately predicted fMRI activation in new participants in (two 

different groups) using only their DWI data.  Further, connectivity-based predictions also 

outperformed a group-average benchmark model, both across the whole brain and within each 

functionally-specific region of interest (fROI), in the two groups of participants. Overall, we 

found that connectivity patterns account for individual variability and are unique for different 

functions. These results support the hypothesis that connectivity is predictive of functional 

specialization at a voxel-wise grain across the cortex, thus confirming and extending a 

fundamental assumption in neuroscience. 

A region’s connections are not equally influential for a particular mental function. For 

example, less than 5% of the inputs to macaque V1 arrive from the optic radiations, which are 

undeniably critical agents to visual responses in V1 (Peters and Payne 1993; Peters, Payne, and 

Rudd 1994). Testing whether unique connectivity fingerprints exist and determine function will 

only be the first step in identifying the critical connections that underlie function. Thus, after 

discovering which of the tasks/stimulus categories possess a meaningful relationship linking 

connective structure with function, I next investigated what the functionally-relevant connections 

are and what makes a voxel’s pattern of connections unique for one particular function, or 

general for all visual functions.  

In Chapter 4, I explored the functional connectomics for different visual categorical 

representations.  Diffusion-weighted images and fMRI images were acquired from two groups of 

healthy subjects, and modeled as before (see above). Connectivity models of functional 
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activation to visual categories were used to identify the subset of connections that best predicted 

voxel-wise functional activation, or the functionally relevant network (FRN), for each functional 

contrast for each anatomical parcel. By comparing the FRNs across visual categorical domains, 

we found that there are unique sets of connections for predicting different functions. We also 

discovered that object and scene representations shared some aspects of the FRNs with one 

another, while body and face FRNs were similar to one another yet dissimilar to object and scene 

FRNs.  These results extend previous findings and demonstrate the utility of using anatomical 

connectivity to predict functional responses to a variety of stimuli, encouraging the assembly of a 

database of model coefficients for numerous other conditions. Such a database would enable a 

researcher to estimate functional responses to a range of experimental conditions from a single 

diffusion scan that lasts only about 10 minutes. Furthermore, amassing information about the 

relationship between structure and various functional responses will build a “functional 

connectome”, a comprehensive resource of the connectivity patterns that underlie the gamut of 

brain function.   
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Chapter 2 

Anatomical connectivity patterns predict face-selectivity in 

the fusiform gyrus. 

 

Parts published as: 

Saygin Z.M.*, Osher D.E*, Koldewyn K., Reynolds G., Gabrieli J.D.E., Saxe R.R. Anatomical 

connectivity patterns predict face-selectivity in the fusiform gyrus. (Nature Neuroscience 2012).   

 

 

Abstract: A fundamental assumption in neuroscience is that brain structure determines function.  

Accordingly, functionally distinct regions of cortex should be structurally distinct in their 

connections to other areas.  We tested this hypothesis in relation to face selectivity in the 

fusiform gyrus.  By using only structural connectivity, as measured through diffusion weighted 

imaging, we are able to predict functional activation to faces in the fusiform gyrus.  These 

predictions outperformed two control models and a standard group-average benchmark.  The 

structure-function relationship discovered from these participants was highly robust in predicting 

activation in a second group of participants, despite differences in acquisition parameters and 

stimuli.  This approach can thus reliably estimate activation in participants who cannot perform 

functional imaging tasks, and is an alternative to group-activation maps.  Additionally, we 

identified cortical regions whose connectivity is highly influential in predicting face-selectivity 

within the fusiform, suggesting a possible mechanistic architecture underlying face processing in 

humans.   
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Introduction 

 

 A fundamental assumption in neuroscience is that function is deeply-rooted in anatomical 

structure, such as extrinsic connectivity.  A region’s connectivity pattern determines both the 

information available as inputs from other regions, and its output and influence on other areas.  

Indeed, changes in connectivity have been shown to occur at the boundaries of functionally-

defined regions that can be identified through cytoarchitectonics (supplementary motor area 

(SMA) vs. pre-SMA)
1
.  If anatomical connectivity is important for functional operations, then 

variation in connectivity should correspond with and predict variation in function, even in 

regions that are currently not anatomically definable or spatially consistent across the population.  

This intuitive claim has not yet been formally explored, though various frameworks for such an 

analysis have been suggested
2
.   

In the absence of any additional information, can structural connectivity accurately 

predict the location and degree of the functional response in the brain?  The extrinsic 

connectivity pattern of a structure may contain sufficient information to predict the extent to 

which each voxel will respond to a given functional contrast.  This hypothesis could be tested 

using a functional contrast that consistently elicits robust responses, and constrained to an 

anatomical structure that reliably encapsulates such responses across participants, even if they 

vary spatially within the region. 

Regions involved in face-processing may be well-suited for directly testing this 

conjecture, given their posited specificity of function and replicability across brain imaging 

techniques, participants, and species.  A dedicated network of brain regions has been consistently 

reported to selectively respond to faces, as revealed by fMRI
3, 4

, single-unit recordings
5, 6

, and 

microstimulation
7
.  The most robust and selective component of this network is within the 
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fusiform gyrus
8
, in a functionally defined region that is selectively activated in response to faces 

relative to objects
9
 or scenes

10
.  This region is typically larger and more reliably observed in the 

right fusiform, and is known as the fusiform face area (FFA).  This is consistent with a wide 

range of evidence that most aspects of face perception are right-hemisphere dominant in the 

human brain
8, 11, 12

.  Further, damage to the right fusiform disproportionately impairs face 

recognition, sometimes even without disturbing other stimulus categories
13, 14

.  Given that it is 

the right fusiform that best responds to faces across participants (e.g.
8, 15

), we chose this region as 

a testing ground for modeling brain activity as a function of structural connectivity.   

A purely structural substrate of face-selective cortices has not yet been established, 

possibly due to complications in relating classic approaches of connectivity (such as histological 

tract-tracing) with functional localization in the same individual.  However, diffusion weighted 

imaging (DWI), an MRI technique that measures the propensity of water to travel along 

myelinated axons, can be used to estimate brain connectivity in vivo
16, 17

, which can be analyzed 

alongside fMRI data in the same individual.  Using a probabilistic tractography algorithm, we 

defined the connection probability of each right fusiform voxel (seeds) to all other anatomically 

parcellated regions (targets) (see Supplementary Fig. 1,2 for exemplar pathways
18-20

).  For the 

same participants, the functional activation of faces relative to scenes for each voxel in the 

fusiform was calculated.  We then analyzed the relationship between functional activation in the 

fusiform and its connection probabilities with the rest of the brain, through a multivariate, voxel-

by-voxel approach.  This approach allowed us to directly test the conjecture that while the 

locations of face-selective voxels are variable across the population, their extrinsic connections 

vary systematically with function in each individual, such that the connection patterns alone can 

predict functional activation.   
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Supplementary Figure 1. Probabilistic tracts for an example subject, overlaid on the same 

subject’s low-b diffusion images.  These depict all possible tracts that the tractography algorithm 

used to connect the fusiform directly or indirectly with other brain regions.  These tracts are 

naïve to functional selectivity in the fusiform.  a. Right sagittal section showing the inferior 

longitudinal fasiculus (ILF), which travels inferiorly to the uncinate, as well as the superior 

longitudinal fasiculus (SLF), and short/U-fibers.  It also displays the slice locations for coronal 

slices (green boxes; b and c) and axial slices (blue boxes; d through h).  The fibers of the inferior 

longitudinal fasiculus (ILF; purple arrows in d through h) run anteriorly, connecting the lateral 

occipital cortex, lingual and fusiform gyri.  The ILF then projects laterally to superior, middle, 

and inferior temporal gyri, and medially to the parahippocampal gyrus (green arrows in b and d).  

The forceps major connects the left and right medial cortices (white arrow in f) while the U-

shaped fibers (blue arrows in coronal sections b and c; axial sections d and e) are lateral to the 

ILF and connect adjacent gyri of the lateral occipito-temporal cortex.   
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Supplementary Figure 2.  Probabilistic tracts overlaid on the subject’s anatomical image that 

was registered to the diffusion images.  The sagittal sections on the right hemisphere show 

possible multisynaptic pathways that the probabilistic algorithm takes from extrastriate cortex, 

through the pons, and to the cerebellar pathways.   
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Specifically, a least-squares linear regression was used to model the relationship between 

each fusiform voxel’s connection probabilities and its functional activation by using a leave-one-

subject-out cross-validation approach, or LOOCV (Fig. 1a).  The resulting model was then 

applied to the remaining participants’ connectivity data, and prediction accuracies were tested 

against two control models and a benchmark model built from a functional group-average.  The 

group-average is commonly used as a way to build face-selective ROIs in fMRI studies
21

, and 

thus provides a standard that a connectivity-based method should meet.  The control models, 

designed from random permutations and Euclidian distance (see Methods), were implemented to 

evaluate against potential confounds.   

In order to assure that the model is not overly fit to the population it was built from, it is 

good practice to design a model built from all the participants in the LOOCV, and apply it to a 

separate pool of observations naïve to the model-building procedure
22

.  We applied such a model 

to an independent group of participants from a separate study.   This second group provided 

further examination of the generalizability of the models, since their data were acquired with 

different DWI scan parameters and a different functional task from the first group of participants.  
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Figure 1 Schematic model design.   

(a) Linear regression models were trained on all but one participant’s data in Group 1.  The 22 

participants’ fMRI data for each voxel in the fusiform gyrus are depicted by circles that are 

color-coded from red to blue, representing their responses to the contrast of Faces >Scenes).  

Each voxel’s corresponding connection probabilities (for the connectivity model) or Euclidian 

distances (for the distance model) to each target brain region are depicted by the grayscale 
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circles.  The fMRI data and connectivity or distance data from each fusiform voxel for the 22 

participants are used to train the model, and the resulting model, f(x), is applied to the remaining 

participant’s connectivity or distance data, resulting in predicted fMRI values for each fusiform 

voxel.  The predicted values are then compared to that participant’s observed fMRI values and 

the mean absolute error (MAE) is calculated for each participant.  The LOOCV is done 

iteratively through all the participants, such that each participant has a predicted fMRI image 

based on a regression from all the other participants.  (b) Similarly, a LOOCV procedure was 

also performed for the group-average model, but rather than training a linear regression, each 

participant’s whole-brain fMRI data was spatially normalized into MNI space, superimposed to 

create composite maps, and a t-static image was generated for the random-effects analysis.  This 

image was registered to the remaining participant’s native-space, and only the fusiform gyrus 

was extracted.  This predicted activation based on a group analysis was then compared to that 

participant’s observed activation, and an MAE was computed per voxel.  
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Methods  

 

 Participants 

 For Group 1, twenty-three participants were recruited from the greater Boston area 

between the ages of 19 and 42 (mean age = 27.9 ± 1.06, 12 female).  Group 2 included twenty-

one participants between the ages of 19 and 44 (mean age = 26.9 ± 1.45, 13 female) and were 

similarly recruited.  Both groups of participants were screened for history of mental illness and 

were compensated at $30/hr. The studies were approved by the Massachusetts Institute of 

Technology and Massachusetts General Hospital ethics committees.  

 

Acquisition parameters for Group 1 

 DWI data were acquired using echo planar imaging (64 slices, voxel size 2×2×2mm, 

128×128 base resolution, diffusion weighting isotropically distributed along 60 directions, b-

value 700s/mm
2
) on a 3T Siemens scanner with a 32 channel head-coil

42
.  A high resolution 

(1mm
3
) 3D magnetization-prepared rapid acquisition with gradient echo (MPRAGE) scan was 

acquired on these participants.   

We acquired event-related fMRI data (gradient echo sequence TR/TE/flip/volumes/voxel 

size = 2000ms/30ms/90º/324/3.1×3.1×4mm) while the same participants viewed color images of 

faces or scenes while performing a 1-back task by responding each time a stimulus repeated. 

 Face stimuli
43

 consisted of neutral and emotional faces (angry, disgusted, and happy).  Scene 

stimuli were all neutral outdoor and indoor scenes
44

 (http://cvcl.mit.edu/database.htm).   Face and 

scene stimuli were ordered using optseq2
45

 (http://surfer.nmr.mgh.harvard.edu/optseq), an 

optimization program for jittering trials in event-related experiments.   

http://cvcl.mit.edu/database.htm
http://surfer.nmr.mgh.harvard.edu/optseq
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Acquisition parameters for Group 2 

  DWI acquisition parameters for Group 2 were different, with 30 directions of diffusion, 

64 slices, voxel size 2×2×2mm, 128×128 base resolution, b-value 700s/mm
2
, but were acquired 

on the same scanner with the same 32 channel head-coil as Group 1.  A high-resolution (1mm
3
) 

3D magnetization-prepared rapid acquisition with gradient echo (MPRAGE) scan was also 

acquired on these participants.   

Stimuli for the functional MRI consisted of 3-second movie clips of faces, bodies, scenes, 

objects, and scrambled objects.  Movies of faces and bodies were filmed against a black 

background, and framed to reveal just the faces or bodies of seven children, shown one at a time.  

Scenes consisted primarily of pastoral scenes filmed through a car window while driving slowly 

through the countryside or suburb.  Objects were selected specifically to minimize any 

suggestion of animacy of the object itself or of an invisible actor pushing the object.  Scrambled 

object clips were constructed by dividing each object movie clip into a 15×15 box grid and 

spatially rearranging the location of each of the resulting boxes.  Pilot testing indicated that a 

contrast of the response for moving faces versus moving objects identified the same FFA as that 

identified in a standard static localizer.  Further studies in adults show that the FFA responds 

similarly to movies of faces as to static snapshots of faces
46

.  

Functional data were acquired over four block-design functional runs (gradient echo 

sequence TR/TE/flip/volumes/voxel size = 2000ms/30ms/90º/234/3×3×3mm).  Each functional 

run contained three 18-second fixation blocks at the beginning, middle, and end of the run.  

During these blocks, a series of six uniform color fields were presented for three seconds each.  

Each run additionally contained two sets of five consecutive stimulus blocks (faces, bodies, 

scenes, objects, or scrambled objects) sandwiched between these rest blocks, resulting in two 
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blocks per stimulus category per run.  Each block lasted 18 seconds and contained six 3-second 

movies clips from each of the five stimulus categories.  The order of stimulus category blocks in 

each run was palindromic and specific movie clips were chosen randomly to be presented during 

the block.   Participants were asked to passively view the stimuli.  

 

fMRI analysis 

For Group 1, functional neuroimaging data were analyzed using Statistical Parametric 

Mapping software (SPM8, Wellcome Department of Cognitive Neurology, London, UK). 

Preprocessing included slice timing correction, motion correction and linear trend, and temporal 

filtering with a 128s cutoff.  The images were not spatially normalized.  Statistical parametric 

maps (SPMs) of BOLD activation were created using a multiple regression analysis, with 

regressors defined for the five stimulus categories (neutral, angry, disgusted, happy faces, and 

scenes).  Boxcar functions for each trial type were convolved with a canonical double-γ 

hemodynamic function (SPM8, www.fil.ion.ucl.ac.uk/spm) to generate each regressor.  The 

resulting maps were spatially smoothed with a 6-mm Gaussian kernel (FWHM), and the t-

statistic image was generated per participant for the contrast of Faces>Scenes.   

Group 2‘s data were analyzed with FSL software (www.fmrib.ox.ac.uk/fsl/).  Image 

preprocessing was similar to Group 1: images were motion corrected, smoothed (5mm FWHM 

Gaussian kernel), detrended, and were fit using a γ function (δ = 2.25 and τ = 1.25).  Data were 

not spatially normalized.  Statistical modeling was then performed using a GLM on the 

preprocessed functional images.  Next, t-maps corresponding to the contrast of interest for 

Faces>Scenes was overlaid on each participant’s high-resolution anatomical image.   

http://www.fil.ion.ucl.ac.uk/spm
http://www.fmrib.ox.ac.uk/fsl/
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For both groups, each participant’s functional image for the Faces>Scenes contrast was 

registered to his/her diffusion-weighted image.  Because we were interested in predicting relative 

activation values which were independent of task-specific parameters such as the degrees of 

freedom, we standardized the T-statistic values (x) across the fusiform gyrus per participant.  

This detrending was performed for each participant j, such that the mean value in the fusiform 

was subtracted from each voxel’s fMRI value (   ) and divided by the standard deviation:  

     
            

       
 

The standardized value per fusiform voxel (     ) of participant j was then used for the 

subsequent regression models. 

 

Tractography 

 Automated cortical and subcortical parcellation was performed with FreeSurfer
47, 48

 to 

define specific cortical and subcortical regions in each individual’s T1 scan, based on the 

Desikan-Killiany atlas
49

.  Automated segmentation results were reviewed for quality control, and 

were then registered to each individual’s diffusion images, and used as the seed and target 

regions for fiber tracking.  The resulting cortical and subcortical targets were then checked, and 

corrected for automatic parcellation/segmentation errors if necessary.  There was one seed region 

per participant, and the 85 target regions were defined as all other automatic parcels, not 

including the seed.  The principal diffusion directions were calculated per voxel, and 

probabilistic diffusion tractography was carried out using FSL-FDT
17, 50

 with 25,000 streamline 

samples in each seed voxel to create a connectivity distribution to each of the target regions, 

while avoiding a mask consisting of the ventricles.   
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Regressions 

 All analyses were performed on subject-specific anatomy, rather than extrapolation from 

a template brain, except for the group-average models.  It is important to note that for the 

regression models, each observation was an individual voxel in native-space and there was no 

identifying or matching of spatial location of voxels across participants.  Further, the model was 

blind to the participant each voxel belonged to.   

 On Group 1, we built a regression model using a leave-one-subject-out cross-validation 

(LOOCV): the model was trained to predict the standardized fMRI value for each native-space 

fusiform voxel based on connectivity data concatenated across 22/23 participants, and tested 

using the remaining participant’s data (Fig. 1a).  This was performed iteratively for all 

participants.  For Group 2, the analyses were performed in a similar manner, except that the 

regressions were performed on all the participants in Group 1 (23/23), and simply applied to each 

participant in Group 2’s connectivity data to produce an fMRI image of predicted activation.  

This was then compared to the participants’ own observed fMRI images, and MAE’s were 

calculated.  

Using the same LOOCV method, we trained a regression model to predict T-values of 

fusiform voxels based on each voxels’ physical Euclidian distance to each other target region’s 

center-of-mass, rather than each voxel’s connection probability to each target region. In this way, 

both the connectivity and distance models had the same number of dimensions, and were 

generated identically except for the information present in each model.  We also considered other 

85-dimensional spatial metrics, such as distance to the nearest voxel of each target, and found 

that these measures were highly similar to the present one.  We applied the regression 
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coefficients from the distance model generated from all Group 1 participants to each participant 

in Group 2, as described for the connectivity model.   

We created random distributions by training models using the observed fMRI images and 

connection probabilities, but by randomizing the voxel data.  We permuted across 5000 random 

combinations of connection probability to fMRI activation values per participant, and thus 

obtained a distribution of random MAE per participant.  We then performed a one-tailed t-test to 

determine if the mean of the participant’s random distribution was significantly greater than the 

same participant’s MAE for connectivity-based predictions.   

 Each participant’s functional data were spatially normalized into MNI space with FSL 

and FreeSurfer, checked and corrected for registration errors, and superimposed to create 

composite maps.  For Group 1 cross-validation, we performed LOOCV: a random effects test on 

whole-brain fMRI data was performed with SPM8 on the contrast images for Faces>Scenes from 

all but one participant.  The resulting t-statistic image, which was based on all the other 

participants in normalized space, was applied to the participant left out of the group analysis, and 

registered back into his/her native-space.  We analyzed only the right fusiform gyrus in 

comparing what the group-average predicted to that participant’s actual fMRI image using 

measures of MAE (Fig. 1b).   

For Group 2, we created the group-average fMRI image using the same method above, 

but from all Group 1 participants’ observed (actual) fMRI images.  This fMRI image was 

mapped on to each participant in Group 2’s native-space coordinates, and compared to that 

participant’s observed fMRI pattern.   
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Accuracy and benchmark comparisons  

 As a measure of accuracy, we measured the absolute error per voxel (AE, reported in 

standardized units, s.u.) per participant, by calculating the absolute difference between the 

predicted and actual values.  To statistically compare the performance of the connectivity model 

to the random and benchmark models, we performed a pairwise t-test per participant across all 

their fusiform voxels.   A criterion threshold of P < 0.001 was used to report the number of 

participants whose activation pattern was better predicted by one model versus another.  Mean 

absolute error (MAE) was also calculated per participant for each model by averaging the AE 

across the fusiform voxels.  A two-tailed Student’s t-test of the MAE’s per participant was then 

used to compare models, with the same threshold (P < 0.001) to decide which model’s 

predictions were significantly better.  

 

Spatial relationship of function and connectivity  

           We registered the connectivity data for the right inferotemporal and lingual targets to the 

native-space anatomical image of each participant in Groups 1 and 2, and projected these data to 

each participant’s native surface vertices using FreeSurfer.  The functional data were similarly 

projected to the surface.  We calculated the center-of-mass for the targets with respect to a 

reference frame fixed at the center-of-mass for each participant’s fusiform gyrus (also on the 

surface).  After partitioning the functionals into positive and negative values, we similarly 

calculated their centers of mass with respect to the fusiform.  We observed more subject 

variability in the medial-lateral dimension for the positive, and anterior-posterior variability for 

the negative functionals, and therefore calculated correlations between functional values and 

connectivity strengths along those dimensions respectively.  Since both functional and 
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connectivity centers of mass were calculated with respect to the subject’s own fusiform, the 

correlations were not biased by cross-subject variability in the boundaries between the seed 

region and the predictive regions.   

 For the direct analyses of individual subject variation, we registered each Group 2 

participant’s connectivity data to MNI space, and subsequently onto each other participant’s 

brain, using FreeSurfer and FSL registration tools.  We then applied the final model designed 

from Group 1 to both the original participant’s and registered participant’s connectivity values.  

This was done for all combinations of participant pairs (420).  We then compared the MAE’s 

from predictions built from each participant’s own connectivity with those built from another 

participant’s connectivity across all participants in Group 2.  All of the above predictions were 

restricted to those voxels that overlapped between the original and registered participants. 
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Results 

Comparisons between connectivity and control models 

 After an initial analysis determined that the data possessed sufficient structure for its use 

in prediction (Supplementary Table 1), we proceeded to build the connectivity models and their 

controls.  A linear regression was trained on the connectivity and fMRI data (faces>scenes) for 

all participants but one, and the model was applied to the remaining participant’s connectivity 

data to make predictions of this participant’s fMRI data in the right fusiform gyrus; this was done 

iteratively across all participants.  We calculated the absolute error (AE) per voxel as the 

difference between the predicted and actual fMRI images, and mean absolute error (MAE) as a 

measure of accuracy.  Table 1 summarizes the MAE’s for each model.  
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Supplementary Table 1. Face-selective fusiform voxels have different connectivity patterns 

than scene-selective voxels.  Thirty-four out of eighty-five targets were significantly different 

across subjects, Bonferonni corrected at P < 0.05/85. 

 
Target p F 

  R Inferiortemporal  
ε 1194.29 

  R Lingual  
ε 633.70 

  R Parahippocampal  
ε 231.07 

  R Middletemporal  
ε 146.25 

  R Cerebellum  
ε 111.97 

  R Isthmuscingulate  
ε 99.37 

  R Lateraloccipital  
1.22×10–15 65.56 

  L Inferiortemporal  
3.00×10–15 63.64 

  L Isthmuscingulate  
6.41×10–13 52.66 

  R Hippocampus  
9.50×10–13 51.85 

  R Superiortemporal  
1.46×10–12 50.98 

  R Amygdala  
4.44×10–12 48.73 

  R Precuneus  
8.50×10–11 42.76 

  L Cerebellum  
1.25×10–10 41.99 

  L Hippocampus  
2.89×10–09 35.69 

  L Pericalcarine  
1.71×10–08 32.15 

  L Precuneus  
3.52×10–08 30.72 

  L Cuneus  
7.95×10–08 29.11 

  R Pallidum  
1.11×10–07 28.45 

  R Thalamus  
1.69×10–07 27.62 

  R Cuneus  
7.80×10–07 24.62 

  R Supramarginal  
9.95×10–07 24.14 

  R Parsorbitalis  
3.82×10–06 21.52 

  R Pericalcarine  
6.80×10–06 20.40 

  L Posteriorcingulate  
1.12×10–04 15.00 

  R Ventral diencephalon  
1.21×10–04 14.86 

  R Entorhinal  
1.31×10–04 14.70 

  R Inferiorparietal  
1.36×10–04 14.64 

R Superiortemporal bank 
1.65×10–04 14.27 

  L Parahippocampal  
2.19×10–04 13.73 

  L Fusiform  
2.45×10–04 13.51 

  R Posteriorcingulate  
3.30×10–04 12.95 

  L Superiorparietal  
3.73×10–04 12.72 

  R Postcentral  
4.82×10–04 12.24 

 * ε indicates double floating point precision, approximately 2.22×10
–16
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Table 1. Mean absolute error ± s.e. in standard units for voxels in the fusiform gyrus across 

subjects for models based on connectivity, distance, their mean permutations, and group-average. 

 
 Group 1 Group 2 

Connectivity 0.65±0.013 0.68±0.019 

Permutation  0.77±0.008 N/A 

Distance 1.06±0.066 1.05±0.051 

Group-average 0.78±0.031 0.82±0.039 

 

 Next, we performed random permutation tests
23

 to statistically assess the performance of 

the connectivity model.  We built models designed from the same data but with shuffled pairings 

between connectivity and functional responses, and by repeating this process 5000 times, we 

generated a distribution of accuracies from random models for each individual.  Relative to this 

distribution, the connectivity models successfully predicted functional selectivity across voxels 

in 22 out of 23 participants’ fusiform gyri at a threshold of P < 0.001.  

 The distance from a seed voxel to a target region may potentially bias the connection 

estimates, since local connections are believed to be more probable than distant ones
24,

 
25

.  In 

addition, the lateral wall of the fusiform gyrus tends to be face-selective while the medial wall 

more scene-selective.  The connectivity model could therefore rely on the relative distance of 

each voxel to each target, which is basically a high-dimensional spatial coordinate frame.  To 

ensure that the results of the connectivity model were not driven by such unintended 

relationships, we generated distance control models using the same LOOCV method.  These 

models were designed identically to the connectivity model, with the exception that they used 

Euclidian distance of the fusiform voxels to other brain regions’ center-of-mass, rather than their 
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connectivity.  The distance models thus use the same number of predictors as the connectivity 

models and serve as controls for possible overfitting.   

 We directly compared the performance of the connectivity and distance models, both 

across participants (based on MAE) and within participants (based on AE).  Across participants, 

the connectivity model was significantly more accurate than the distance model (two-tailed t-test 

of connectivity MAE vs. distance MAE, T(22) = –6.44, P = 1.75×10
–6

).  A direct comparison of 

the error per voxel at the individual-subject level revealed that the connectivity-based predictions 

were significantly different from distance in 21/23 participants at a threshold of P < 0.001, all of 

which were better predicted by connectivity (Fig. 2a).  
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Figure 2 Benchmark comparisons per participant.  MAE’s from the connectivity-based predictions are 

plotted against distance or group-average MAE’s for each participant.  Participants above the unity line 

thus have higher (worse) MAE’s for the benchmark than for the connectivity-based model.  Colors 

reflect the difference between the connectivity-based model and the benchmark; hotter colors indicate 

better performance of the connectivity-based model.  (a) For 21/23 participants in group 1, the distance-

based predictions had higher (worse) MAE’s than connectivity-based predictions, and no participants’ 

functional activation was better predicted by distance than by connectivity.  (b) The connectivity-based 

model predicted actual fMRI activation with fewer errors than the group-average for 17/23 participants, 

while 2 participants’ functional activation was better predicted by the group-average than by connectivity.  
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(c)  For 18/21 participants in group 2, connectivity-based predictions better predicted actual activations 

than distance-based predictions, while no participants’ functional activation was better predicted by 

distance than by connectivity.  (d) 16/21 participants from group 2 had lower MAE’s with the 

connectivity model, while 1 participant had lower MAE’s with the group-average model. 
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Comparisons to group-average models 

 A group analysis was also performed on the whole-brain fMRI data in an iterative 

LOOCV fashion: a random effects test was performed on the contrast images for Faces>Scenes 

for all but one participant (Fig. 1b).  We registered the resulting group-average to the native 

anatomical coordinates of the participant left out of the group analysis, and calculated prediction 

errors for the right fusiform.  Since group-analyses are standard in neuroimaging, they were 

chosen as benchmark models that connectivity-based predictions should meet or exceed in order 

to be considered useful.   

 We compared model performance and found that the connectivity-based predictions were 

statistically better than the group-average, across participants (two-tailed t-test of connectivity 

MAE vs. group-average MAE, T(22) = –4.01, P = 5.94×10
–4

).  The connectivity model was 

significantly more accurate than the group-average for 17/23 participants at P < 0.001, whereas 

the converse was true for only 2 participants (Fig. 2b and Fig. 3).  For the remaining 4 

participants, the models were not significantly different.  
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Figure 3 Actual and predicted fMRI activation to Faces>Scenes in the fusiform gyrus of five 

example participants.   For each participant, actual and predicted activation images (t-statistic 

values for Faces>Scenes) were up-sampled from the DWI structural image (where all the 

analyses were performed) to the same participant’s structural scan, and projected onto the 

participant’s inflated brain surface.  Each row is a single participant; the leftmost column 

displays the actual fMRI activation pattern in the right fusiform gyrus.  The remaining columns 

illustrate, from left to right, predicted fMRI images from: connectivity, group-average, and 

distance.    
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Final connectivity models 

 The connectivity and distance models generated by Group 1 were then applied to a 

separate group of twenty-one participants, whose connectivity and functional data were naïve to 

the models.  These analyses were performed in a similar manner, except that the regressions 

were trained on all the participants in Group 1 (23/23), and applied to each participant in Group 

2’s connectivity data to produce images of predicted activation.  We compared these predictions 

to each participant’s observed fMRI image (Table 1; Fig. 3).  The connectivity model was 

significantly more accurate across participants than the distance model (T(20) = –6.72, two-tailed 

t-test, P = 1.53×10
–6

).  The connectivity-based predictions were significantly better than 

distance-based predictions in 18/21 participants at P < 0.001 (Fig. 2c).  The models were not 

significantly different for the remaining 3 participants.  

 A group-average was generated from all participants’ contrast images to Faces>Scenes in 

Group 1 and registered to each participant’s own anatomy in Group 2.  Across participants, the 

group-average predictions were significantly less accurate than the connectivity-based 

predictions (T(20) = –4.80, two-tailed t-test, P = 1.08×10
–4

).  Comparing the AE within each 

participant, we found that functional activation was better predicted by connectivity than by the 

group-average-based model in 16/21 participants at P < 0.001.  Only one participant’s fusiform 

profile was more accurately predicted by the group-average than by the connectivity model, and 

the models were not significantly different for the remaining 4 participants (Fig. 2d).  The 

analyses above were repeated for face and scene selectivity in the left fusiform with the same 

results (Supplementary Materials).   

 In order to investigate which targets made a significant contribution to the final model 

(Table 2), a model built from only those significant predictors (with all other targets’ beta 
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weights set to 0) was applied to the structural connectivity data of Group 2.  The MAE across 

participants was significantly better than the original connectivity model’s MAE (new model’s 

MAE = 0.683 ± 0.02; P = 0.038), demonstrating the predictive impact of these regions.  Some of 

the highest positive-predicting regions were right inferotemporal, lateral occipital, and superior 

temporal, while right lingual and parahippocampal cortices were among the highest negative-

predicting regions (Fig. 4).   
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Table 2.  List of target regions, along with their coefficients and confidence intervals, which 

make a statistically significant contribution to the final connectivity model.  Positive predictors 

are listed on the left, negative predictors on the right. 

Target Coefficient    C.I.  Target Coefficient C.I.   

      R  inferiortemporal 0.149 0.137 0.161       R  lingual -0.3868 -0.399 -0.375 

      R  lateraloccipital 0.0978 0.085 0.111       R  parahippocampal -0.1373 -0.149 -0.125 

    R cerebellum 0.0883 0.076 0.1       L fusiform -0.0638 -0.086 -0.041 

      R  superiortemporal 0.0809 0.062 0.1       R  inferiorparietal -0.0636 -0.081 -0.046 

 L cerebellum 0.0714 0.05 0.093       L lingual -0.0634 -0.077 -0.05 

      L inferiortemporal 0.0635 0.049 0.078       L parahippocampal -0.0425 -0.058 -0.027 

      R  entorhinal 0.0466 0.036 0.058       L isthmuscingulate -0.0417 -0.055 -0.028 

      R  middletemporal 0.0293 0.015 0.043       R  postcentral -0.0396 -0.059 -0.02 

      R  parsopercularis 0.0271 0.007 0.048       R  isthmuscingulate -0.0378 -0.051 -0.025 

    R thalamus  0.0249 0.007 0.043       R  lateralorbitofrontal -0.034 -0.052 -0.016 

      L pericalcarine 0.0215 0.002 0.041       R  parstriangularis -0.0289 -0.055 -0.002 

      L middletemporal 0.0199 0.003 0.036     R Hippocampus -0.0266 -0.041 -0.012 

      L temporalpole 0.0145 0.002 0.027     L Hippocampus -0.024 -0.039 -0.009 

      L lateralorbitofrontal 0.013 0.001 0.025 R  caudal anteriorcingulate -0.0234 -0.043 -0.004 

          L superiortemporal -0.0232 -0.042 -0.004 

        R Amygdala -0.0219 -0.033 -0.01 

          L paracentral -0.0206 -0.033 -0.008 

     Brain Stem -0.02 -0.035 -0.005 

        L Amygdala -0.0152 -0.027 -0.004 
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Figure 4 Beta weights for each target region from the final connectivity model.  Target regions 

are color-coded from hot-to-cold to reflect positive or negative beta weight values, and projected 

to the pial surface of an example participant, with the lateral view on the top row, medial view on 

the second row, and ventral view on the bottom.  The highest predictors of face-selective voxels 

are regions labeled from red-to-yellow, while the highest predictors of scene-selective voxels are 

those labeled from blue-to-light blue.  The seed region is highlighted in purple.  See Results for 

the anatomical nomenclature of the target regions. 
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Spatial relationship of function and connectivity  

 We calculated the center-of-mass to the best face (inferotemporal) and scene (lingual) 

predictors in each participant to visualize the spatial relationship between connectivity and 

function (Fig. 5a).  More subject variability was observed in the medial-lateral dimension for the 

positive, and in the anterior-posterior dimension for the negative functional activation; we 

therefore calculated correlations between functional values and connectivity strengths along 

those dimensions respectively.  Across participants, centroid locations for face-responses 

significantly correlated with the centroid locations of connectivity to inferotemporal cortex along 

the medial-lateral dimension (Fig. 5b, r = 0.46, P = 0.002).  That is, individual participants who 

had a more medial center of functional activation to faces relative to other individuals, also had a 

more medial center of connectivity to the inferotemporal target region.  Similarly, lingual 

centroids significantly correlated with scene-centroids along the anterior-posterior dimension 

(Fig. 5c, r = 0.41, P = 0.005).   
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Figure 5 Spatial relationship of function with connection strength to the highest predictors.    

(a) Functional activation of an example participant, with the thresholded boundaries of 

inferotemporal connectivity overlaid in dark red, and boundaries of lingual connectivity overlaid 

in dark blue.  (b) Each participant’s center-of-mass of connectivity to inferotemporal is plotted 

against their center-of-mass of positively-responding voxels, along the medial-lateral dimension, 

along which each participant’s connectivity varies alongside face-selectivity.  (c) Centroids of 

lingual connectivity, plotted against centroids of negatively-responding voxels, along the 

anterior-posterior dimension.  Solid lines in b and c are the least-square fits of these data, and 

dashed lines are their 99% confidence intervals. 
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 To better establish how individual subject variability in connectivity profiles can be 

sensitive to individual subject variability in functional responses, we tested whether connectivity 

patterns of one participant can do better at predicting that participant’s functional activation than 

another participant’s connectivity patterns.  Unlike any of the analyses above, this relied on 

identifying the same voxel spatially across participants, so each participant in Group 2 was 

registered to MNI space, and subsequently onto each other participant’s native anatomical 

space.   Functional predictions for each participant were then made based on each other 

participant’s connectivity pattern.  A participant’s own connectivity values were better at 

predicting their own functional activation than other participants’ connectivity values (T(419) = 

11.67, paired t-test, P = 0).  Thus, the connectivity model is picking up on relationships between 

functional responses and connectivity patterns that capture individual variation.   
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Discussion  

 The present study provides evidence of a direct relationship between structural 

connectivity and function in the human brain.  Specifically, we demonstrate that the responses to 

faces within an individual’s right fusiform gyrus can be predicted from that individual’s patterns 

of structural connectivity alone.  This approach further reveals which targets are most influential 

in predicting function.  Voxels with higher responses to faces had characteristic patterns of 

connectivity to other brain regions that distinguished them from neighboring voxels with lower 

responses to faces, or higher responses to scenes.   

 The connectivity model outperformed the random permutation control, indicating that 

there exists a strong relationship between connectivity and function.  Moreover, it outperformed 

the distance control, suggesting that spatial information alone is insufficient for predicting 

functional activity and that connectivity offers information above and beyond the topographic 

information inherently embedded within it (due to the posited small-world organization of 

cortical connectivity
24,25

).  The relationship between function and spatial information was highly 

variable across participants, while the connectivity data was consistent across participants in its 

relationship with the functional responses.  When compared to the group-average benchmark, a 

standard method of defining face-selective ROIs in fMRI studies, connectivity was a 

significantly better predictor of the individual’s actual activation pattern in over seventy-percent 

of the participants.  One reason that the group-average did not successfully predict the activation 

pattern could be due to the high variability of activation loci, relative to the standard template 

(e.g.
26

).   

 While we have treated spatial metrics as potential confounds and controlled for them by 

using distance and group activation models as controls, future studies may build other geometric 
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models which do predict inter-subject variability in functional activation.  For example, detailed 

models of cortical folding patterns
27

, myelination
28

, and/or cortical thickness
29

 may be detectable 

with MRI and predictive of functional regions.  Connectivity can provide a complementary 

source of evidence in some cases, whereas in others it may be the only gross morphological 

marker available.   

Despite spatial variability in functional responses, the connectivity model was highly 

accurate across participants.  We found that the spatial distribution of face- and scene-selectivity 

varies in tandem with connection strength to their most predictive targets.  A direct analysis of 

subject-to-subject variability revealed that while each participant’s connectivity profile does well 

at predicting their own functional response, it predicts another participant’s functional responses 

relatively poorly.  Overall, the connectivity patterns appeared highly sensitive to individual 

variation in function.    

 While the results from Group 1 are striking, they could be specific to one dataset
22

.  The 

findings from Group 2 demonstrate that this is not the case: the connectivity model’s predictions 

from Group 1 were much more accurate than both the distance and group-average models in over 

seventy percent of the new group of participants.  This result was especially remarkable, because 

the participants in Group 2 had been scanned while performing a different functional task.  The 

two tasks differed in the type of stimuli presented (1s static images versus 3s movie-clips), type 

of design (event-related versus block), number of runs (1 versus 3), and scan parameters (also 

see Methods for other differences).  Further, the structural connectivity measures in this second 

group were acquired using a DWI sequence with half as many gradient directions (30 versus 60), 

indicating the generalizability of the connectivity model across functional tasks and diffusion 

sequences. 
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 This analysis also reveals the target brain regions for which connectivity with the 

fusiform is most predictive of face- or scene-selective activity in the fusiform.  Face-selective 

fusiform voxels were predicted by connectivity with regions that have been previously reported 

to have a role in face processing, such as the inferior and superior temporal cortices (e.g.
30, 31

).  

Scene-selective voxels, on the other hand, were best predicted by their connectivity to key brain 

areas involved with scene recognition, such as the isthmuscingulate (containing the retrosplenial 

cortex) and the parahippocampal cortex
10, 32, 33

.   Unlike functional connectivity, structural 

connectivity models are naïve to the functional responses of the target regions.  Therefore, a 

region need not be category selective to be connected (and predictive of) selective voxels in the 

fusiform.  For example, unexpected predictors of face selectivity were also discovered, such as 

the cerebellar cortices.  Even though the cerebellum is not commonly considered as part of the 

“core” or “extended” face processing network
3, 30, 34

, tracer
35-37

 studies have revealed disynaptic 

connections with extrastriate visual cortices via pons, which tractography is able to reconstruct 

(see Supplementary Fig. 1,2), and is corroborated by functional connectivity
38

.  Future studies 

may explore these relationships to further expand on the role of functional responses in 

components of a structural network.   Novel structure-function relationships could be 

investigated in macaques with functional and connectivity data, and subsequently validated more 

directly through more invasive techniques involving tracer injections (e.g.
39

 
,40

).   

 The final connectivity model also provides a framework with which to evaluate the 

impact of the most predictive targets and their spatial distribution.  The model built from only the 

significantly predictive targets resulted in more accurate predictions than the predictions based 

on all of the target regions.  While some of the best predictors from this model were nearby 

regions, most of them were distant to the fusiform; additional analyses excluding the fusiform’s 
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neighbors (Supplementary Materials) revealed that while proximal targets are part of the 

fusiform’s network, they do not fully account for the connectivity model’s performance.  

Altogether, a distributed network of brain regions characterizes category-specific visual 

processing in the fusiform gyrus.   

 The connectivity fingerprint has practical applications, both for defining ROIs 

independently of a task, and also for exploring group differences in structural connectivity 

signatures.  Researchers or clinicians can apply the relationships discovered here to predict 

functional activation at the single-subject level in populations who do not or cannot have a 

functional localizer, and should expect that this will be a more accurate prediction than group-

based methods.  The connectivity model provided here can also be directly compared to a 

connectivity model built from specific patient populations.  For instance, compromised structural 

connectivity in congenital prosopagnosics has previously been suggested to play a role in their 

deficits of face-recognition, in light of their surprisingly normal functional activation in the 

fusiform
41

.  This type of analysis can shed light on which components (if any) of the fusiform 

connectional fingerprint are altered or compromised in individuals with congenital 

prosopagnosia.  A similar analysis can be used to explore possible substrates of face-processing 

differences in autism, normal development, and aging.    

 Future studies can also extend the present methods to other brain regions and contrasts 

that are commonly used as functional localizers, such as retinotopy in visual cortices, scene-

selectivity in the parahippocampal place area
10

, or expression-specificity in the superior temporal 

sulcus.  In some cases, more complex or nonlinear approaches might better capture the 

relationship of connectivity and function.  We implemented a linear fit in order to provide more 

parsimonious interpretations and to establish the feasibility of modeling structure-function 
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relationships.  Since these relationships are probably not strictly linear in a complex system such 

as the brain (Supplementary Fig. 3), future work can expand these findings, creating better 

models, and elucidating a more detailed relationship between connectivity and function.  

Additionally, voxel-to-voxel tractography may help to more finely characterize the structure-

function relationships identified here.   

 These findings open a window into the coupling between structural and functional 

organization in the brain.  The operations of a brain region are determined by both its intrinsic 

properties (i.e., cytoarchitecture) that likely determine the operations that it can perform, and the 

extrinsic connectivity that defines the input/output relations of that brain region.  Neuroimaging 

can relate localized functions (via fMRI) to input/output patterns of cortical connectivity (via 

probabilistic tractography) in an individual.  The present findings demonstrate that brain 

structure/function relations can be defined for category-selective functional activation.  
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Supplementary Figure 3.  Relationship between connectivity and selectivity. 

Mean connectivity weights for the significantly predictive targets (a positive, b negative) are 

plotted for groups of voxels binned by their functional selectivity, sliding across each fifth 

percentile.  Shaded regions represent standard error.  
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Supplementary Results and Discussion 

Initial parametric tests 

 An initial analysis was performed to determine whether there were connectivity 

differences between the most face- and scene-selective voxels in the fusiform.  We categorized 

voxels as highly face or scene selective if they responded at least two standard deviations above 

or below the mean, respectively, in the contrast of faces > scenes.  A random effects ANOVA 

comparing positive and negative voxels (with participants treated as random effects) was 

performed per target region.  Among the 85 target regions, 34 of them were significantly 

different between face-selective and scene-selective voxels in their fusiform connectivity, at P < 

0.05, Bonferroni corrected (Supplementary Table 1).  This initial finding suggested that the 

data possessed sufficient structure for its use in prediction.  All further analyses were performed 

on all voxels and targets (regardless of their significance in these initial tests), treating both 

connectivity and functional activation as continuous variables. 

 

Regression models excluding neighboring regions (Group 1 & 2) 

 As a further test of the influence of immediate spatial influence on the connectivity 

analysis, we included additional control models for connectivity and distance by excluding the 

regions neighboring the right fusiform, and compared their prediction errors.  A regression 

model was built on Group 1 using LOOCV procedure, and tested on Group 2, as described in 

Methods.  This time, however, connectivity patterns to the five regions immediately neighboring 

the right fusiform were excluded from the regression model.  Distance models were also 

constructed in a similar fashion, but by training a model to predict T-values of fusiform voxels 

based on Euclidian distance to each target region, rather than connection probability to each 
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target.  For this analysis, distances to the neighboring cortices were also excluded from the 

model.  As before, the model was built from Group 1 using LOOCV, and tested on Group 2.  

MAE and AE were calculated as described in Methods, and were used to compare average and 

absolute prediction errors between the models with paired t-tests.   

 Connectivity models in the cross-validation group predicted actual fusiform activation 

with an MAE of 0.73 ± 0.008; this was higher than the previous model’s MAE which did include 

connectivity to all the neighboring regions (T(22) = 8.36, P = 2.81×10
–8

).  However, as was true 

for the original connectivity model, MAE comparisons between these control connectivity 

models and corresponding distance models (also built by excluding the neighbors) revealed 

better performance by connectivity (T(22) = –3.73, P = 1.17×10
–3

).  The group-average model, 

which was identical to the model described in Methods, since it was constructed from whole-

brain contrast maps using typical analysis methods, did not perform any better than the new 

connectivity models (T(22) = 1.58, P = 0.13). 

 We applied the connectivity model (excluding the neighbors) derived from all the 

subjects from Group 1, to the connectivity data of subjects in Group 2.  While the MAEs of this 

new model (0.75 ± 0.009) were higher than those of the previous connectivity model (T(20) = 

4.37, P = 2.97×10
–4

), they still outperformed the corresponding distance models by MAE (T(20) 

= –8.17, P = 8.43×10
–8

).
 
 Further, these MAEs were better than the previous group-average 

model, although this did not reach significance (group MAE = 0.82 ± 0.039; T(20) = –2.01, P = 

0.06).  
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Regression models on the left fusiform gyrus 

 We replicated our main analyses for models of connectivity, distance, and group-average, 

in exactly the same manner but on the left fusiform gyrus.  Comparisons of prediction errors 

between right and left fusiform models were performed by two-tailed t-tests (due to an unequal 

number of voxels in native-space left & right fusiform) while comparisons of models within the 

left fusiform were subject to paired t-tests as before.  In Group 1, connectivity models of the left 

fusiform predicted the left fusiform’s actual activation with an MAE of 0.67 ± 0.02; this was not 

worse than the prediction errors of the right fusiform models (T(22) = 1.14, P = 0.27).  Just as 

was reported for the right fusiform, the MAE comparisons between the left fusiform’s 

connectivity models and their corresponding distance models (MAE = 1.07 ± 0.105) revealed 

better performance by connectivity (T(22) = – 3.78, P = 1.03×10
–3

).  The group-average model 

was built identically to the procedure described in Methods, but the values were extracted from 

the left, not right fusiform.  This model performed worse (MAE = 0.74 ± 0.034) than the left 

fusiform’s connectivity model at near significance (T(22) = 2, P = 0.057). 

 We applied the final connectivity model for the left fusiform from Group 1 to the left 

fusiform connectivity data of subjects in Group 2.  The MAEs of this new model (0.69 ± 0.02) 

were no different than those of the right fusiform connectivity model (T(20) = 0.74, P =  0.47).   

The left fusiform connectivity models outperformed the corresponding distance models (MAE = 

0.73 ± 0.006; T(20) =  –3.09, P  = 5.80×10
–3

).
 
 Further, these MAEs were better than the 

corresponding group-average model (MAE = 0.82 ± 0.039; T(20) =  –3.86, P =  9.28 ×10
–4

).  

Given previous research on the differences between the right and left fusiform’s functional 

selectivity profiles (for faces and words respectively), a future extension of this study would be 
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to examine the specificity of connectivity-based models in predicting those selective responses 

and compare their predictive networks. 
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Chapter 3 

Anatomical connectivity predicts whole-brain functional 

responses to visual categories. 

 

Work in collaboration with:  

Saygin Z.M., Koldewyn K., Saxe, R.R., Gabrieli J.D.E., Kanwisher N. 

 

Structural connectivity is among the most important constraints on a network since it restricts 

and defines the sort of information that can be processed. The functional responses of a voxel 

should therefore be strongly influenced by its pattern of connectivity; correspondingly, patterns 

of connectivity should be highly predictive of function. We present the use of anatomical 

connectivity to predict functional activity in each gray matter voxel of the brain. Diffusion-

weighted images and fMRI images were acquired from two groups of healthy subjects.  

Probabilistic diffusion tractography was performed from each anatomically-defined parcel to all 

other anatomical parcels.  For each parcel, we modeled the fMRI data as a function of connection 

probability using linear regressions. The models surpassed performance distributions generated 

from randomly permuted data, indicating that the connectivity data are structured sufficiently for 

prediction. The models also accurately predicted fMRI activation in new participants in (two 

different groups) using only their DWI data.  Further, connectivity-based predictions also 

outperformed a group-average benchmark model, both across the whole brain and within each 

functionally-specific region of interest (fROI), in the two groups of participants. Overall, we 
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found that connectivity patterns account for individual variability and are unique for different 

functions. These results support the hypothesis that connectivity is predictive of functional 

specialization at a voxel-wise grain across the cortex, thus confirming and extending a 

fundamental assumption in neuroscience.  
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Introduction 

A deep-rooted assumption in neuroscience holds that a region’s functional capabilities 

are primarily determined by its physical structure.  In other words, there should exist a causal 

relationship between the brain’s anatomical features and its functional responses, which should 

lead towards explanatory, rather than descriptive accounts of brain function. Among these 

anatomical features, connectivity is especially important since it sculpts a network’s 

computational landscape. Thus, it should strongly influence a voxel’s functional responses, and 

likewise, a voxel’s connectivity pattern should be highly predictive of function. 

By measuring both structural connectivity and neural responses in the same individual, 

recent neuroimaging studies have shown that changes in DWI connectivity occur at the 

boundaries of low-level functionally defined regions (e.g. Johansenberg et al. 2004 for 

supplementary motor area, or SMA and pre-SMA). However, it is unknown whether 

connectivity patterns can also define the boundaries for higher-level regions or those that cannot 

yet be identified via anatomy/cytoarchitectonics and are highly variable across individuals (e.g. 

Frost & Goebel 2012; Saxe, Brett, & Kanwisher 2006).  

We have developed a new method of testing the hypothesis that structural connectivity 

determines functional specificity, and previously tested this method in the fusiform gyrus 

(Saygin, Osher et al. 2012). Specifically, it was shown that the face selectivity of each voxel in 

the fusiform could be predicted from the strength of connection of that voxel to each of 85 

anatomically defined regions of the rest of the brain (its unique connectivity profile, or 

fingerprint, CF), as measured through DWI (Figure 1). The fMRI response of each fusiform 

voxel to faces > scenes (red to blue circles) was paired with that voxel’s 85-dimensional CF 

vector (rows of grayscale circles). The fMRI - CF pairings were concatenated across all fusiform 
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voxels and all subjects, and a linear regression was trained to learn the systematic relationship 

(f(x) Fig.1) between fMRI responses and CFs. This relationship was then applied to each 

fusiform voxel’s CF in a new subject, resulting in a predicted fMRI value for each voxel (Figure 

1).  

 

 

Figure 1: Overall methodology of predicting fMRI responses from DWI connectivity.  

a. Reprint from Saygin, Osher et al. 2012. Face selectivity of each voxel in the fusiform is 

predicted from the strength of connection of that voxel to each of 85 anatomically defined 

regions of the rest of the brain (its unique CF), as measured through DWI. The fMRI response of 

each fusiform voxel to faces > scenes (red to blue circles) was paired with that voxel’s 85-
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dimensional CF vector (rows of grayscale circles). The fMRI - CF pairings were concatenated 

across all fusiform voxels and all subjects, and a linear regression was trained to learn the 

systematic relationship (f(x)) between fMRI responses and CFs. This relationship was then 

applied to each fusiform voxel’s CF in a new subject, resulting in a predicted fMRI value for 

each voxel. b. The fusiform methodology was performed separately for each anatomically 

parcel, then combined and interpolated to produce predicted fMRI value for each gray matter 

voxel of the brain. 
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However, these connectivity-based predictions of fMRI activation were restricted to face 

responses, and only in the fusiform gyrus. We now extend this method to the whole brain (and 

other visual categories that evoke robust fMRI responses) to ask: are connectivity patterns 

predictive of fMRI responses during visual categorical perception of faces, bodies, objects, and 

scenes?  

Previous studies in macaques would suggest that the extrinsic connectivity pattern of 

each visual cortical region is indeed unique and perhaps predictive of each region's broad role 

within the visual-processing hierarchies (e.g. Ungerleider & Mishkin 1982; Felleman & Van 

Essen 1991). However, there is great functional diversity within these cortical regions, whereby 

different neural clusters within an area preferentially respond to different categories or object 

features (e.g. Tsao et al. 2006; Colby & Goldberg 1999; Kanwisher & Dilks, in press). The 

relationship between this fine-grained pattern of functional responses and extrinsic connections 

remains unknown. By testing fMRI responses to a variety of functional domains, we will 

ascertain whether the relationship between connectivity and function is generally true across the 

cortex and across diverse visual domains.  
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Methods 

Participants. 

The study included 28 participants (mean age=25.6, 12M:16F) who were recruited from 

the greater Boston area. Participants were screened for history of mental illness, gave written 

informed consent, and were compensated at $30 per hour. The study was approved by the 

Massachusetts Institute of Technology and Massachusetts General Hospital ethics committees. 

DWI acquisition parameters and tractography. 

DWI data were acquired using echo planar imaging (64 slices, voxel size 2 × 2 × 2 mm, 

128 × 128 base resolution, diffusion weighting isotropically distributed along 30 directions, b-

value 700 s mm
–2

) on a 3-T Siemens scanner with a 32-channel head-coil (Reese et al. 2003). A 

high resolution (1 mm
3
) three-dimensional magnetization-prepared rapid acquisition with 

gradient echo (MPRAGE) scan was acquired on these participants.  

Automated cortical and subcortical parcellation was performed in each participant’s T1 

scan, using the Destrieux atlas (Desikan et al. 2006) from Freesurfer 5.1 (Fischl et al. 2002, 

2004) to define 167 cortical and subcortical regions. Automated segmentation results were 

reviewed for quality control and were then registered to each individual’s diffusion images and 

used as the seed and target regions for fiber tracking. The resulting cortical and subcortical 

targets were then checked and corrected for automatic parcellation or segmentation errors if 

necessary. The principal diffusion directions were calculated per voxel, and probabilistic 

diffusion tractography was carried out using FSL-FDT (Behrens et al. 2007) with 5,000 

streamline samples in each seed voxel to create a connectivity distribution to each of the target 

regions, while avoiding a mask consisting of the ventricles. Each of the 167 regions was used as 

a seed region and tractography was carried out to all 166 remaining regions, or targets. Thus, 
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every voxel within each parcel is described by a vector of connection probabilities to each other 

brain region.   

fMRI acquisition parameters and analysis. 

Stimuli for the fMRI consisted of 3-s movie clips of faces, bodies, scenes, objects and 

scrambled objects. Movies of faces and bodies were filmed against a black background and 

framed to reveal just the faces or bodies of seven individuals, shown one at a time. Scenes 

consisted primarily of pastoral scenes filmed through a car window while driving slowly through 

the countryside or suburb. Objects were selected specifically to minimize any suggestion of 

animacy of the object itself or of an invisible actor pushing the object. Scrambled object clips 

were constructed by dividing each object movie clip into a 15 × 15 box grid and spatially 

rearranging the location of each of the resulting boxes. Pilot testing indicated that a contrast of 

the response for moving faces versus moving objects identified the same FFA as that identified 

in a standard static localizer. Further studies show that the FFA responds similarly to movies of 

faces as to static snapshots of faces (Pitcher et al. 2011).  

Functional data were acquired over four block-design functional runs (gradient echo 

sequence 2,000 ms TR, 30 ms TE, 90° flip, 234 volumes, 3 × 3 × 3 mm voxel size). Each 

functional run contained three 18-s fixation blocks at the beginning, middle and end of the run. 

During these blocks, a series of six uniform color fields were presented for 3 s each. Each run 

also contained two sets of five consecutive stimulus blocks (faces, bodies, scenes, objects or 

scrambled objects) sandwiched between these rest blocks, resulting in two blocks per stimulus 

category per run. Each block lasted 18 s and contained six 3-s movies clips from each of the five 

stimulus categories. The order of stimulus category blocks in each run was palindromic, and 
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specific movie clips were chosen randomly to be presented during the block. Participants were 

asked to passively view the stimuli. 

Functional data were analyzed with FSL software (http://www.fmrib.ox.ac.uk/fsl/). 

Images were motion corrected, smoothed (5 mm Gaussian kernel, full width at half maximum) 

and detrended, and were fit using a standard gamma function ( = 2.25 and   = 1.25). Data were 

not spatially normalized. Statistical modeling was then performed using a general linear model 

on the preprocessed functional images. Next, t-maps corresponding to each contrast of interest 

were overlaid on each participant’s high-resolution anatomical image.  The contrasts were as 

follows: Faces > Objects, Bodies > Objects, Scenes > Objects, Objects > Scrambled objects.   

Each participant’s functional image for each contrast was registered to his or her 

diffusion-weighted image. Because we were interested in predicting relative activation values 

that were independent of task-specific parameters such as the degrees of freedom, we 

standardized the t-statistic values across all gray matter parcels per participant. For each 

anatomical parcel, the mean functional value across the brain was subtracted from each voxel 

and divided by the standard deviation. The standardized value per voxel was then used for the 

subsequent regression models, which were built per region. Thus, every voxel is now also 

described by a vector of t-statistics for each functional contrast. 

Regressions. 

All analyses were performed on subject-specific anatomy, rather than extrapolation from 

a template brain, except for the group-average models. For the regression models, each 

observation was an individual voxel in native space, and there was no identifying or matching of 

http://www.fmrib.ox.ac.uk/fsl/
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spatial location of voxels across participants. Further, the model was blind to the participant each 

voxel belonged to.   

Subjects were divided into two groups (group 1 for leave-one-out cross-validation and 

group 2 for replication); this procedure ensures that any relationship learned from one set of data 

is separate from the data that is used to assess the accuracy of that learnt relationship.  

Group 1: To predict function from connectivity, we used a leave-one-subject-out cross validation 

(LOOCV) routine, in which we excluded a single subject whose data we wish to predict, trained 

a model with all of the remaining subjects, and then applied the model to the left out subject. 

This routine was repeated for all subjects, generating independent predictions for all subjects.  

The model was designed as follows: every voxel of the modeled region has a neural response to 

a given functional contrast.  Every voxel also has a vector of connection probabilities to each 

other brain region, illustrated in Figure 1 across columns of the gray-scale circles. The predictive 

relationship between connectivity and neural activity was inferred via linear regression, resulting 

in a set of predictive coefficients. We then predicted the neural response for the left out subject, 

using only their connectivity data, and the model coefficients, resulting in a predicted value for 

every voxel of the modeled region.   

In order to generate predictions for the entire brain, this procedure, from tractography to 

prediction, was repeated for every parcel, and concatenated.  This was then compared to the 

participants’ own observed fMRI images for that contrast, and absolute errors (AEs) were 

calculated (absolute value of actual – predicted per voxel). We also calculated the mean absolute 

error (MAE) and mean squared error (MSE) per anatomical parcel for each individual.  Group 2: 

For each anatomical parcel, we generated a final linear regression model from all of the group 1 

subjects’ connectivity and fMRI data. We applied this final model of the relationship between 



 

Page 74 of 129 

connectivity and function, to each group 2 subjects’ connectivity data, to produce predicted 

fMRI maps per subject. Prediction accuracies were calculated by comparing these predictions to 

each participant's actual fMRI values (AE, MAE, and MSE were calculated in the same way as 

for group 1).  The accuracies were tested against random permutations and other benchmarks 

(below). We also performed a one-way ANOVA on the mean absolute error across all gray 

matter voxels per subject for all of the functional contrasts to discover whether any contrasts 

were better predicted by connectivity than the others; post-hoc t-tests were used to identify the 

contrasts that were significantly better predicted than others (at p < 0.05 Bonferroni corrected for 

six pairwise comparisons).  

Performance accuracy. 

As a measure of accuracy, we measured the absolute error per voxel (reported in 

standardized units) per participant, by calculating the absolute difference between the predicted 

and actual values (AE, also see above).  We used permutation tests to evaluate whether the 

connectivity-based prediction accuracies are significantly better than chance by using random 

permutation models (Golland & Fischl 2003). We shuffled the actual fMRI values and 

connection probability vectors, and permute across 5,000 of these random combinations. Thus 

each actual fMRI value was assigned to a different, randomly chosen, voxel’s connection 

probability vector. This will generate a distribution of random prediction errors per participant 

and allow us to determine whether connectivity-based predictions are significantly more accurate 

than random noise generated from the same data (Bonferroni corrected at p < .05 for total 

number of comparisons). This gave us an empirical distribution of random MAE per participant 

which we can be used to assess the probability that the connectivity-based MAE is part of said 

distribution (see Saygin et al. 2012). 
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For each functional contrast, we produced a final connectivity model from all the subjects 

in group 1 and evaluated each anatomical parcel’s model R
2
.  The R

2
 is a standard metric of 

goodness-of-fit, and for these data, it reflects the proportion of the variance in fMRI activity 

across all of the voxels in the region and across all subjects that was accounted for by 

connectivity (the model is agnostic to which voxels belong to which subject; the voxels are 

merely concatenated across subjects per anatomical parcel).  We separately correlated each 

parcel’s R
2
 with 2 metrics of functional selectivity: 1) the absolute value of the mean extremum 

across subjects, and 2) accuracy of multivoxel pattern analysis (MVPA; see Haxby et al. 2001), 

which reflect how well the response patterns across voxels within a parcel are able to 

differentiate between each functional condition.  

Benchmark group-average models. 

We also compared the prediction accuracies to a benchmark model to further test whether 

connectivity can predict function beyond what is possible beyond what can be predicted from a 

group analysis (see Saygin et al. 2012 for details). Group analyses are the current alternative for 

predicting functional activity based on other subjects’ data.  These were also made through 

LOOCV.  Each participant’s functional data were spatially normalized into MNI space with FSL 

and FreeSurfer, checked and corrected for registration errors, and superimposed to create 

composite maps. We performed a random-effects test on whole-brain fMRI data with SPM8 on 

each contrast image from all but one participant. The resulting t-statistic image, which was based 

on all the other participants in normalized space, was applied to the participant left out of the 

group analysis and was registered back into his or her native space. This resulted in a predicted 

value for each voxel.  A final group-average t-statistic was also generated from all of the group 1 

participants, and this group-average map was applied to each of the group 2 subjects to evaluate 
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group-based prediction accuracies of function.  We performed a pair-wise t-test of mean absolute 

and squared prediction errors of all gray-matter voxels across the participants in groups 1 and 2 

separately. 

We then registered each subject’s actual and predicted fMRI maps (based on the group-

average and connectivity analyses separately) to a common Freesurfer CVS atlas (Postelnicu et 

al. 2009; Zollei et al. 2010). We also evaluated prediction accuracies in this space because it 

offers a common framework across participants (with minimum warping of anatomical data, 

Postelnicu et al. 2009; Zollei et al. 2010) and it is not the template we used for the group-average 

analysis, thus avoiding any potential confounds of using the same template space for accuracy 

evaluations.  Further, probabilistic parcels of fROIs (based on a large independent sample of 

adults, Julian et al. 2012) were created in this CVS space, and we could therefore assess 

prediction accuracies for connectivity vs. group-average across the whole-brain, but also within 

each of these larger fROIs. We followed the procedure above for each of the four functional 

contrasts.  

We performed a pair-wise t-test per participant across all gray-matter voxels within each 

of the fROI parcels. A criterion threshold of P < 0.05/28 (total number of subjects in group 1 and 

group 2) was used to report the number of participants whose activation pattern was better 

predicted by one model versus another. 

To create binarized fROIs of the predicted and actual fMRI maps, we registered the 

probabilistic parcels of fROIs (Julian et al. 2012) from CVS space to each subject’s diffusion 

images.  For both the actual and predicted fMRI maps, we then binarized the top 10% of voxels 

within each of these parcels to create 7 face-specific fROIs, 3 object-specific, 6 scene-specific, 

and four object-specific regions (see Table 1).  We used the modified Hausdorff distance (e.g. 
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Yendiki et al. 2011) to assess the accuracy of the predicted fROIs.  We measured the distance 

from each point in the predicted fROI to the nearest voxel in the actual fROI and averaged across 

them to calculate the modified Hausdorff distance.   
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Results 

For each region, we trained a linear regression on the voxel-wise fMRI and connection 

probabilities across subjects, applied the resulting model of the learned relationship between 

connectivity and function to a new participants’ connectivity data, and calculated prediction 

accuracies by comparing these predictions to each participant's actual fMRI values (absolute 

error). We tested these accuracies against random permutation models (Section 1), evaluated the 

voxel-wise fMRI variance accounted for by the final connectivity models (Section 2), and 

compared the connectivity-based prediction accuracies to benchmark models (Section 3). We 

also compared predicted functional regions of interest (fROIs) to each individual’s actual fROIs 

for each high-level visual domain (Section 4).  

 

1. Connectivity-based predictions of functional contrasts closely match actual activation 

maps in individual subjects. 

We evaluated the accuracy of the connectivity-based predictions of fMRI activity for each of the 

functional contrasts by comparing errors to random permutation models.  For each subject, we 

calculated the prediction accuracies across all gray-matter voxels and in each cortical parcel 

separately.  The contrast of Faces > Objects typically elicits activation in the posterior superior 

temporal sulcus, and in ventral temporal and occipital regions known as the fusiform face area 

(FFA) and occipital face area (OFA; Table 1).  
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Table 1.Functional domains and corresponding fMRI contrast and specialized brain regions 

(fROIs). 

 

Function Contrast fROIs 

face perception faces > objects fusiform face area, FFA 

occipital face area, OFA 

superior temporal sulcus, STS 

post. superior temporal sulcus, pcSTS 

body perc. bodies > objects extrastriate body area, EBA 

fusiform body area, FBA 

scene perc. scenes > objects parahippocampal place area, PPA 

transverse occipital sulcus, TOS 

retrosplenial cortex, RSC 

object perc. objects > scrambled lateral occipital, LOC 

posterior fusiform sulcus, PFS 
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Figure 2: Visualization of prediction results on an example subject. Representative subject’s 

actual and predicted activation images are up-sampled from the DWI structural image to the 

same participant’s structural scan, and projected onto the participant’s inflated brain surface. 

Predicted fMRI activation values (right column of each panel) for each visual category contrast 

closely match the actual fMRI values (left columns) for that contrast, especially in regions 

commonly identified as being functionally selective for that particular visual category (i.e. 

fROIs; see Table 1). (a) Faces > Objects (b) Bodies > Objects (c) Scenes > Objects (d) Objects 

> Scrambled Objects. 
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Figure 2a illustrates the results for a representative subject. The predicted response 

(Figure 2a), built solely from the same subject’s connectivity data, is strikingly similar to the 

actual response.  This qualitatively demonstrates how an individual’s response pattern to Faces > 

Objects can be well predicted by that individual’s connectivity pattern.  The contrast of Bodies > 

Objects localizes the functionally defined regions known as the extrastriate body area (EBA) and 

the fusiform body area (FBA).  Again, a subject’s own connectivity patterns are capable of 

predicting these regions (Figure 2b). Scenes > Objects typically evokes activity along the ventral 

medial surface (Sewards et al. 2011).  Some of the functional regions often associated with scene 

specificity are the parahippocampal place area (PPA) and retrosplenial cortex (RSC), and yet 

again we see that, a subject’s connectivity pattern alone is highly predictive of their pattern of 

functional response (Figure 2c). Objects > Scrambled results in a distributed set of functional 

regions collectively known as the lateral occipital complex.  Not only can connectivity capture 

this robust neural response, but it also accounts for the somewhat less characterized dorsal 

activity patterns, for example in the intraparietal sulcus (Figure 2d).  

We calculated the absolute error (AE) per voxel as the difference between the predicted 

and actual fMRI images, and mean absolute error (MAE) as a measure of accuracy for each 

contrast (Table 2).   
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Table 2. Mean prediction errors and benchmark comparisons. Mean prediction errors (± 

standard error across participants) across all anatomical parcels for predicted fMRI activation to 

each functional contrast by connectivity models and group-average benchmarks. T-statistic and 

p-values are also reported for each contrast for the comparison of connectivity vs. group-average 

models. Negative t-values indicate lower prediction error (higher accuracy) for connectivity than 

group-average. 

 Faces-

Objects 

Bodies-

Objects 

Scenes-

Objects 

Objects-

Scrambled 

MAE     

Group 1     

Connectivity 0.657±0.014 0.771±0.006 0.649±0.021 0.708±0.014 

Group 0.775±0.019 0.977±0.012 0.764±0.028 0.847±0.025 

Connectivity-Group t  -14.368 -26.488 -12.859 -10.118 

Connectivity-Group p  6.12E-11 2.91E-15 3.47E-10 1.30E-08 

Group 2     

Connectivity 0.680±0.017 0.784±0.009 0.662±0.019 0.718±0.020 

Group 0.797±0.030 1.004±0.017 0.783±0.023 0.858±0.033 

Connectivity-Group t  -6.687 -22.274 -7.915 -7.495 

Connectivity-Group p  8.99E-05 3.51E-09 2.41E-05 3.71E-05 

MSE     

Group 1     

Connectivity 0.789±0.025 1.005±0.010 0.769±0.048 0.877±0.028 

Group 1.012±0.050 1.549±0.037 0.979±0.079 1.174±0.070 

Connectivity-Group t  -8.172 -19.33 -6.357 -6.798 

Connectivity-Group p  2.73E-07 5.22E-13 7.16E-06 3.11E-06 

Group 2     

Connectivity 0.816±0.039 1.034±0.020 0.780±0.039 0.863±0.041 

Group 1.062±0.085 1.644±0.056 1.025±0.065 1.180±0.091 

Connectivity-Group t  -4.69 -16.071 -5.884 -5.669 

Connectivity-Group p  1.14E-03 6.19E-08 2.34E-04 3.06E-04 
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Figure 3. Prediction accuracies across cortical regions. For each perceptual category, cortical 

regions that passed random permutation testing in over 60% of subjects are colored yellow 

(projected on an inflated surface). Regions with connectivity patterns that accurately predict 

activation patterns equally well across all categories are labeled in orange. 

 

We also performed random permutation tests
23

 to statistically assess the performance of 

the connectivity model by generating a distribution of accuracies per subject from random 

models built from shuffled pairings between connectivity and functional responses.  We 

identified the regions that passed permutation testing (at p < 0.05 Bonferroni corrected) in more 

than sixty percent of group 1 subjects.  The regions whose connectivity patterns successfully 

predicted functional activity to each contrast were mainly ventral visual regions that are typically 

associated with each contrast (Figure 3).  Certain regions had connectivity patterns that 

accurately predicted activation patterns equally well across all categories, such as right and left 
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inferior occipital gyri and sulci, while others were only accurate for a particular functional 

contrast (Supplementary Table 1).   

 

Supplementary Table 1. List of cortical regions that accurately predicted activation patterns for 

all four functional contrasts in over sixty percent of subjects, and regions that were accurate only 

for one particular contrast. Note that this list does not include all the regions that were significant 

in each contrast, only those that were uniquely accurate for that contrast. G=gyrus, S=sulcus.  

All contrasts Faces-Objects Bodies-Objects Scenes-Objects Objects-Scrambled 

Left G and S 

occipital inf 

Left G and S cingul 

Mid Post 

Left S front middle Left G temp sup Plan 

tempo 

Left S circular insula 

ant 

Left G cingul Post 

ventral 

Left G and S 

frontomargin 

Right G cingul Post 

dorsal 

Right G and S 

subcentral 

Right G and S cingul 

Mid Ant 

Left G oc temp med 

Lingual 

Left G and S 

paracentral 

Right G subcallosal Right G precentral Right S parieto 

occipital 

Left G temporal inf Left G pariet inf 

Supramar 

 Right G temporal 

middle 

 

Left Lat Fis ant 

Horizont 

Left G precuneus  Right Pole temporal  

Left S collat transv 

post 

Left G rectus  Right S calcarine  

Left S interm prim 

Jensen 

Left Pole temporal    

Left S oc temp med 

and Lingual 

Left S central    

Left S temporal 

transverse 

Left S circular insula 

sup 

   

Right G and S 

occipital inf 

Right G and S 

frontomargin 

   

Right G cingul Post 

ventral 

Right G and S 

paracentral 

   

Right G oc temp 

med Lingual 

Right G postcentral    

Right Lat Fis ant 

Vertical 

Right G rectus    

Right S collat transv 

post 

Right S orbital 

lateral 

   

Right S interm prim 

Jensen 

    

Right S temporal 

transverse 
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The number of subjects for which connectivity accurately predicted functional activation 

correlated positively with the response selectivity for that anatomical region (Figure 4). Regions 

with higher responses to the contrast, or greater selectivity for one visual category over another, 

were those regions that were better predicted by connectivity.   

 

Figure 4. Prediction accuracies positively correlate with the functional selectivity of each 

region. Extremum absolute response values per region are averaged across subjects (x-axis) and 

plotted by the percentage of subjects that pass the random permutation benchmark for that region 

(y-axis). Regions with higher responses to the contrast, or greater selectivity for one visual 

category over another, tend to be the regions that are better predicted by connectivity. 
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A one-way ANOVA revealed that certain contrasts had significantly lower prediction 

errors across all gray matter voxels than other contrasts (F(3)=14.47, p=2.18x10
-7

).  The 

connectivity-based predictions for Bodies > Objects had significantly higher errors than each of 

the other contrasts (Bodies > Objects vs. each of: Faces > Objects t=10.00, p=1.54E-08; Scenes 

> Objects t=5.85, p=1.93E-05; Objects > Scrambled t=4.61, p=2.52E-04).  Additionally, Faces > 

Objects and Scenes > Objects were significantly more accurate than Objects > Scrambled 

(t=3.88, p=1.21E-03; t=3.86, p=1.26E-03). Faces > Objects and Scenes > Objects prediction 

errors were not significantly different from one another.  These results were replicated in group 2 

(F(3)=10.463; p=4.31E-05; Supplementary Table 2 for pair-wise post-hoc tests).  

 

 

Supplementary Table 2. Group 2 post-hoc t-tests to identify which contrasts were better 

predicted by connectivity than others. 

contrast 1 vs. contrast 2 p t 

Faces-Objects Bodies-Objects 1.30E-04 -6.37 

Faces-Objects Scenes-Objects 2.30E-01 1.289 

Faces-Objects Objects-Scrambled 1.02E-01 -1.822 

Scenes-Objects Bodies-Objects 6.98E-06 -9.223 

Objects-Scrambled Bodies-Objects 9.44E-04 -4.822 

Scenes-Objects Objects-Scrambled 5.70E-03 -3.606 
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2. Final connectivity models account for much of the fMRI variance in each functional 

contrast.  

Final models were built from the connectivity and functional data of all of the group 1 

participants and the model fits (R
2
) were calculated per anatomical region. These R

2
 values 

reflect the proportion of fMRI variance that connectivity can account for across all of the voxels 

per parcel and across all of the subjects in group 1.  Across the contrasts, the R
2
 values ranged 

from nearly zero to more than 0.4.  For each parcel and for each contrast, we calculated the 

absolute value of the mean extremum across subjects, and correlated these values with each 

parcel’s R
2
.  Each contrast correlated positively and significantly (Figure 5a): Faces > Objects 

r=0.42, p=1.2x10
-8

; Bodies > Objects r=0.27, p=4.4x10
-4

; Objects > Scrambled r=0.55, 

p=1.3x10
-14;

 Scenes > Objects r=0.65, p=2.6x10
-21

.  We also related the R
2
 values with a second 

metric of functional selectivity: multivoxel pattern analysis accuracy (MVPA; see Haxby et al. 

2001), which reflects the degree to which all voxels of a parcel are collectively able to 

differentiate each functional contrast.  The R
2
 values were positively and significantly correlated 

with MVPA accuracy (Figure 5b): Faces > Objects r=0.34, p=5.7x10
-6

; Bodies > Objects 

r=0.38, p=5.7x10
-7

; Objects > Scrambled r=0.56, p=6.1x10
-15;

 Scenes > Objects r=0.56, 

p=5.0x10
-15

.  Thus, parcels with greater functional selectivity for a given functional contrast were 

better fit by models of connectivity. 
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Figure 5. Final model fits also positively correlate with MVPA functional selectivity per 

anatomical parcel. The fits or R
2 

values for the final models per anatomical region that were 

built from the connectivity and functional data of all group 1 participants, positively correlated 

with MVPA pairwise accuracies, which reflect the response selectivity of each parcel to each 

functional contrast (a. Faces > Objects, b. Bodies> Objects, c. Scenes>Objects, d. 

Objects>Scrambled).  Parcels with better model fits of fMRI activity with connectivity were 

those parcels with greater functional selectivity for that functional contrast. 
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3. Connectivity-based predictions of functional contrasts are more accurate than group-

average predictions of fMRI activity. 

Since group-analyses are standard in neuroimaging, they were chosen as benchmark models that 

connectivity-based predictions should meet or exceed in order to be considered useful. We first 

evaluated prediction errors in each individual’s native anatomy (in diffusion space).  For each 

contrast, connectivity significantly outperformed the benchmark across all of the gray matter 

voxels of group 1 participants (MAE: Faces > Objects: T(17)=-14.368, p=6.12E-11; Bodies > 

Objects: T(17)=-26.488; p=2.91E-15; Scenes > Objects: T(17)=-12.859; p=3.47E-10; Objects > 

Scrambled: T(17)=-10.118; p=1.30E-08; see Table 2 for MSE). The benchmark models also 

offered a way to evaluate the replicability of the results in a separate group of participants (group 

2).  We found that connectivity outperformed benchmark models across all gray matter voxels 

for all contrasts (Faces > Objects: T(9)=-6.687, p=8.99E-05; Bodies > Objects: T(9)=-22.274; 

p=3.51E-09; Scenes > Objects: T(9)=-7.915; p=2.41E-05; Objects > Scrambled: T(9)=-7.495; 

p=3.71E-05; see Table 2 for MSE comparisons which yielded similar results).     
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Table 2. Mean prediction errors and benchmark comparisons. Mean prediction errors (± 

standard error across participants) across all anatomical parcels for predicted fMRI activation to 

each functional contrast by connectivity models and group-average benchmarks. T-statistic and 

p-values are also reported for each contrast for the comparison of connectivity vs. group-average 

models. Negative t-values indicate lower prediction error (higher accuracy) for connectivity than 

group-average. 

 Faces-

Objects 

Bodies-

Objects 

Scenes-

Objects 

Objects-

Scrambled 

MAE     

Group 1     

Connectivity 0.657±0.014 0.771±0.006 0.649±0.021 0.708±0.014 

Group 0.775±0.019 0.977±0.012 0.764±0.028 0.847±0.025 

Connectivity-Group t  -14.368 -26.488 -12.859 -10.118 

Connectivity-Group p  6.12E-11 2.91E-15 3.47E-10 1.30E-08 

Group 2     

Connectivity 0.680±0.017 0.784±0.009 0.662±0.019 0.718±0.020 

Group 0.797±0.030 1.004±0.017 0.783±0.023 0.858±0.033 

Connectivity-Group t  -6.687 -22.274 -7.915 -7.495 

Connectivity-Group p  8.99E-05 3.51E-09 2.41E-05 3.71E-05 

MSE     

Group 1     

Connectivity 0.789±0.025 1.005±0.010 0.769±0.048 0.877±0.028 

Group 1.012±0.050 1.549±0.037 0.979±0.079 1.174±0.070 

Connectivity-Group t  -8.172 -19.33 -6.357 -6.798 

Connectivity-Group p  2.73E-07 5.22E-13 7.16E-06 3.11E-06 

Group 2     

Connectivity 0.816±0.039 1.034±0.020 0.780±0.039 0.863±0.041 

Group 1.062±0.085 1.644±0.056 1.025±0.065 1.180±0.091 

Connectivity-Group t  -4.69 -16.071 -5.884 -5.669 

Connectivity-Group p  1.14E-03 6.19E-08 2.34E-04 3.06E-04 
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We also evaluated the performance of the connectivity models vs. group-average models 

within each of the fROIs typically associated with each functional contrast.  These fROIs were 

independently-defined in another study and reflected the most probable locations of fROIs 

defined in each individual from a separate (large) group of subjects (see Julian et al. 2012).  We 

calculated the percentage of subjects whose connectivity patterns significantly better predicted 

fMRI activation per voxel within each of these fROIs than a group-average prediction (within-

subject voxel-wise comparisons within each fROI and thus p > 0.05 Bonferroni corrected for 

total number of fROIs by total subjects in both groups, i.e. 20x28).  Almost all of the fROIs were 

significantly better predicted by connectivity patterns than a group-average in over 90% of 

subjects, with the exception of rFBA (Figure 6a). The results were replicated in group 2, with 

100% of the subjects’ fMRI activation better predicted by connectivity than by group in the 

rFFA, l and rOFA, rpcSTS, rSTS, l and rEBA, l and rPFS, l and rPPA, l and rRSC, l and rTOS, l 

and rLOC (Figure 6b).   
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Figure 6. Predictive accuracy across subjects for connectivity vs. group-analysis 

benchmark. Within each of the fROIs, the percentage of subjects whose connectivity patterns 

better predict their activation patterns than a group-based prediction (p < 0.05 Bonferroni 

corrected for total number of fROIs by total number of subjects across both groups; i.e. 20x28) in 

a. the cross-validation group and b. replication test group. Lighter colors indicate left-

hemisphere fROIs (some fROIs did not have a left-hemisphere counterpart). 

 



 

Page 93 of 129 

4. Binarized maps of each individual’s actual fROIs closely matched the prediction-based 

fROIs. 

We binarized the connectivity-based fMRI predictions to create each of the fROIs per functional 

contrast and compared these predicted fROIs to each subject’s actual fROI (created from the 

subject’s actual fMRI image). The fROIs were created in each subjects’ diffusion native space. 

Overall, predicted voxels were extremely close to the actual fROI. For example, each point in the 

predicted right FFA was on average less than 2 voxels away from the actual fROI, for both 

groups 1 and 2 (Figure 7a, b). Bilateral LO fROIs were some of the best predicted regions and 

right pcSTS and left STS were some of least accurate, but were still lower than 2.5 voxels away 

from the actual fROIs (Figure 7a,b).  On average, face-selective fROIs were 1.98 voxels away, 

body-selective fROIs 1.56 voxels, scene-selective fROIs 1.70 voxels, and object-selective fROIs 

1.64 voxels away from the actual fROIs.  In group 2, which was the replication group that was 

naïve to building the connectivity-based models of fMRI, face-selective fROIs were 1.88 voxels 

away, body-selective fROIs 1.69 voxels, scene-selective fROIs 1.68 voxels, and object-selective 

fROIs 1.62 voxels away from the actual fROIs. 
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Figure 7. Bar plots of binarized actual and predicted fROIs.  The mean and ste of accuracy is 

plotted for each fROI for both the cross-validation and replication groups.  a. Accuracy 

measurements were constrained to the probabilistic fROI parcels (generated independently, see 

text).  b. The mean Hausdorff distance was also calculated as the average distance from each 

point in the predicted fROI to the actual fROI.  Lighter colors indicate left-hemisphere fROIs. 
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Discussion 

 

We hypothesized that the anatomical connectivity of cortical voxels should be tightly 

coupled with that voxel’s specialized neural responses to various visual stimulus categories.  We 

tested this hypothesis by using a novel method of directly linking DWI and fMRI in the same 

individuals; this method had previously been used to predict voxel-wise face-selectivity in the 

fusiform from connectivity patterns alone. For each anatomically-defined parcel, we built 

connectivity models of function from a group of participants, applied the models to a new 

participant’s DWI data to generate voxel-wise predictions of fMRI activity, and compared these 

predictions to the individual’s actual fMRI activity.   

We found that connectivity-based models of function were able to accurately predict 

fMRI activity to faces, objects, bodies, and scenes in new individuals using only their DWI 

connectivity patterns.  For each of the four functional contrasts, the prediction accuracies were 

higher for cortical regions that had highly selective patterns of activation for that function.  The 

final models of connectivity and function that were built from all the participants of group 1 

accounted for more than twenty percent of the functional variance across all voxels of all 

subjects.  The variance accounted for by connectivity per region was also significantly correlated 

with both the peak response per region and the MVPA accuracy for the region. Thus, voxels that 

make up a functionally-selective cortical region have distinct connectivity fingerprints that are 

predictive of functional selectivity; regions that are not functionally-selective do not have such 

unique voxel-wise connectivity fingerprints, at least for the functions tested here.  

In addition, we compared the models to group averages, as a benchmark standard. For 

each function, connectivity outperformed the benchmark, both voxelwise across the whole brain, 

and within functionally-defined fROIs.  We also found that all of the predicted fROIs were on 
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average less than two voxels to each individual’s actual fROIs. We also replicated the findings in 

a separate group of participants (group 2) whose data were independent of the connectivity 

models.  

These results refute alternatives to the hypothesis that unique connectivity patterns are 

coupled with functional selectivity.  If all regions were equally well-predicted by connectivity 

(i.e. all regions pass random permutation testing) or there was no relationship between selectivity 

and predictability (i.e. no significant correlation between accuracy or R
2
 with functional 

selectivity), then it would suggest that, as a rule, the principle predictor of selectivity (or lack 

thereof) is determined by patterns of connectivity.  On the other hand, if we had found an inverse 

relationship with function (i.e. regions that are non-selective are best predicted, regions that are 

selective are worst predicted) it would suggest that the response of a functionally-selective 

region is determined mainly by intra-areal connectivity (intrinsic connections) and/or that the 

input or output of a region (its extrinsic connections) do not reflect the specialization of that 

region. While intra-areal connectivity is undoubtedly a large component of determining a 

region’s functional responses, our analyses are specifically testing the role of extrinsic 

connections in determining cortical function. Although we cannot distinguish between input and 

output with DWI, we can conclude that functionally-specialized cortical regions are receiving or 

outputting specialized projections for function, at least with respect to high-level visual function.   

It will be interesting to identify the limits of this approach across functional domains.  

The stimulus categories used in the present experiment represent some of the most robust and 

replicable of perceptual domains and thus it remains possible that this approach is best-suited for 

such robust domains. It may be unable to account for functional and inter-subject variability in 

more cognitive and perhaps less-robust tasks such as decision-making or emotional reappraisal.  
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Further, amassing a large database of functional tasks and their predictability through 

connectivity may be useful for predicting a variety of tasks in a single subject, all with a ten-

minute diffusion scan. 

These results suggest that functionally-selective brain regions are fundamentally 

specialized due to their characteristic patterns of connectivity. Further, the results demonstrate 

the use of DWI to delineate boundaries of regions that are specialized for particular behavioral or 

neural functions, and suggest that a ten-minute DWI scan can predict function more accurately 

than current benchmark methods and within two voxels of the individual’s actual fROIs. In 

addition to fundamentally enhancing our current understanding of structure-function 

relationships in the brain, the method we used here has useful clinical applications; for example, 

it can be used to characterize neural responses in patient populations who cannot be awake 

during an fMRI scan (i.e. low-functioning autism, comatose patients) or for guiding pre-surgical 

planning.  
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Chapter 4 

Functionally relevant networks for predicting visual 

categorical responses. 

 

We used a novel method of predicting function from DWI connectivity to explore the functional 

connectomics for different visual categorical representations.  Diffusion-weighted images and 

fMRI images were acquired from two groups of healthy subjects.  Probabilistic diffusion 

tractography was performed from each anatomically-defined parcel to all other anatomical 

parcels.  For each parcel, we modeled the fMRI data as a function of connection probability 

using linear regressions. Connectivity models of functional activation to visual categories were 

used to identify the subset of connections that best predicted voxel-wise functional activation, or 

the functionally relevant network (FRN), for each functional contrast for each anatomically-

defined parcel. By comparing the FRNs across visual categorical domains, we found that there 

are unique sets of connections for predicting different functions. Object and scene 

representations shared some aspects of the FRNs with one another, while body and face FRNs 

were similar to one another and dissimilar to object and scene FRNs.  This approach 

demonstrates the prospect of using anatomical connectivity to predict functional responses to a 

variety of stimuli, encouraging the assembly of a database of model coefficients for numerous 

other conditions. Such a database would enable a researcher to estimate functional responses to a 

range of experimental conditions from a single diffusion scan that lasts only about 10 minutes.  
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Introduction 

Structural connectivity is among the most important constraints on a neural network since 

it restricts and defines the sort of information that can be processed. The functional responses of 

a voxel should therefore be strongly influenced by its pattern of connectivity; correspondingly, 

patterns of connectivity should be highly predictive of function.   

Not all the connections are equally influential for a particular mental, however.  The 

relevant input/output patterns are probably unique for small variations in function. For example, 

less than 5% of the inputs to macaque primary visual cortex, V1, arrive from the optic radiations, 

which are undeniably critical agents to visual responses in V1. In order to better understand the 

mechanisms underlying brain function, we need to identify the critical connections that underlie 

function, and which connections ‘weigh in’ more for a particular function.  

By testing fMRI responses to a variety of functional domains, we have discovered that 

there exists a tight relationship between connectivity and function across diverse visual domains, 

such that a voxel’s unique connectivity patterns (its connectivity fingerprint) can predict that 

voxel’s functional selectivity to visual representations of faces, scenes, objects, and bodies.  

However, each connection has a different relative weight in producing a given function of that 

region, which is in a way, the functionally-relevant network of that region, or functional 

connectomics in general.  We now explore these networks across the different visual categorical 

domains and investigate what the functionally-relevant connections are, and what makes a 

voxel’s pattern of connections unique for a particular function, or general for all visual functions.  
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Methods 

Participants. 

The study included 18 participants (mean age=26.4, 7M:11F) who were recruited from 

the greater Boston area. Participants were screened for history of mental illness, gave written 

informed consent, and were compensated at $30 per hour. The study was approved by the 

Massachusetts Institute of Technology and Massachusetts General Hospital ethics committees. 

DWI acquisition parameters and tractography. 

DWI data were acquired using echo planar imaging (64 slices, voxel size 2 × 2 × 2 mm, 

128 × 128 base resolution, diffusion weighting isotropically distributed along 30 directions, b-

value 700 s mm
–2

) on a 3-T Siemens scanner with a 32-channel head-coil (Reese et al. 2003). A 

high resolution (1 mm
3
) three-dimensional magnetization-prepared rapid acquisition with 

gradient echo (MPRAGE) scan was acquired on these participants.  

Automated cortical and subcortical parcellation was performed in each participant’s T1 

scan, using the Desikan-Killiany atlas (Desikan et al. 2006) from Freesurfer 5.1 (Fischl et al. 

2002, 2004) to define 86 cortical and subcortical regions. Automated segmentation results were 

reviewed for quality control and were then registered to each individual’s diffusion images and 

used as the seed and target regions for fiber tracking. The resulting cortical and subcortical 

targets were then checked and corrected for automatic parcellation or segmentation errors if 

necessary. The principal diffusion directions were calculated per voxel, and probabilistic 

diffusion tractography was carried out using FSL-FDT (Behrens et al. 2008) with 5,000 

streamline samples in each seed voxel to create a connectivity distribution to each of the target 

regions, while avoiding a mask consisting of the ventricles. Each of the 86 regions was used as a 

seed region and tractography was carried out to all 85 remaining regions, or targets. Thus, every 
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voxel within each parcel is described by a vector of connection probabilities to each other brain 

region.  Note that the anatomical parcels used here were larger than the ones used in Chapter 3, 

but since they produced the same results as the 169 regions, they were used for evaluating the 

predictive networks since there are fewer regions and the parcel-naming conventions are more 

parsimonious. 

fMRI acquisition parameters and analysis. 

Stimuli for the fMRI consisted of 3-s movie clips of faces, bodies, scenes, objects and 

scrambled objects. Movies of faces and bodies were filmed against a black background and 

framed to reveal just the faces or bodies of seven individuals, shown one at a time. Scenes 

consisted primarily of pastoral scenes filmed through a car window while driving slowly through 

the countryside or suburb. Objects were selected specifically to minimize any suggestion of 

animacy of the object itself or of an invisible actor pushing the object. Scrambled object clips 

were constructed by dividing each object movie clip into a 15 × 15 box grid and spatially 

rearranging the location of each of the resulting boxes. Pilot testing indicated that a contrast of 

the response for moving faces versus moving objects identified the same FFA as that identified 

in a standard static localizer. Further studies show that the FFA responds similarly to movies of 

faces as to static snapshots of faces (Pitcher et al. 2011). 

Functional data were acquired over four block-design functional runs (gradient echo 

sequence 2,000 ms TR, 30 ms TE, 90° flip, 234 volumes, 3 × 3 × 3 mm voxel size). Each 

functional run contained three 18-s fixation blocks at the beginning, middle and end of the run. 

During these blocks, a series of six uniform color fields were presented for 3 s each. Each run 

also contained two sets of five consecutive stimulus blocks (faces, bodies, scenes, objects or 

scrambled objects) sandwiched between these rest blocks, resulting in two blocks per stimulus 
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category per run. Each block lasted 18 s and contained six 3-s movies clips from each of the five 

stimulus categories. The order of stimulus category blocks in each run was palindromic, and 

specific movie clips were chosen randomly to be presented during the block. Participants were 

asked to passively view the stimuli. 

Functional data were analyzed with FSL software (http://www.fmrib.ox.ac.uk/fsl/). 

Images were motion corrected, smoothed (5 mm Gaussian kernel, full width at half maximum) 

and detrended, and were fit using a standard gamma function (  = 2.25 and   = 1.25). Data 

were not spatially normalized. Statistical modeling was then performed using a general linear 

model on the preprocessed functional images. Next, t-maps corresponding to each contrast of 

interest were overlaid on each participant’s high-resolution anatomical image.  The contrasts 

were as follows: Faces > Objects, Bodies > Objects, Scenes > Objects, Objects > Scrambled 

objects.   

Each participant’s functional image for each contrast was registered to his or her 

diffusion-weighted image. Because we were interested in predicting relative activation values 

that were independent of task-specific parameters such as the degrees of freedom, we 

standardized the t-statistic values across all gray matter parcels per participant. For each 

anatomical parcel, the mean functional value across the brain was subtracted from each voxel 

and divided by the standard deviation. The standardized value per voxel was then used for the 

subsequent regression models, which were built per region. Thus, every voxel is now also 

described by a vector of t-statistics for each functional contrast. 

http://www.fmrib.ox.ac.uk/fsl/
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Regressions. 

Analyses were performed on subject-specific anatomy, rather than extrapolation from a 

template brain. For the regression models, each observation was an individual voxel in native 

space, and there was no identifying or matching of spatial location of voxels across participants. 

Further, the model was blind to the participant each voxel belonged to.   

The model was designed as follows: every voxel of the modeled region has a neural 

response to a given functional contrast, which collectively make up a response vector.  Every 

voxel also has a vector of connection probabilities to each other brain region, which collectively 

make up a matrix of regressors. The predictive relationship between connectivity and neural 

activity was inferred via linear regression from all of the subjects resulting in a set of predictive 

coefficients.  For each anatomical parcel and each functional contrast, we generated a final linear 

regression model from all subjects’ connectivity and fMRI data (from group 1 of Chapter 3).  

 

Predictive networks between contrasts 

The model coefficients of each parcel represent the predictive relationship between 

connectivity and neural activity.  Since we modeled all parcels, we can assess not only which 

regions are predictive of a particular parcel, but also which regions that parcel predicts.  For each 

functional contrast, we determined which regions were significant predictors for each other 

region, preserving the sign of the original coefficient, in order to produce an 86x86 square 

affinity matrix.  To illustrate, a row of this matrix represents a single parcel, and its columns 

reflect whether each other region significantly predicts this parcel’s neural activity: significant 

positive predictors are represented by ones, significant negative predictors are represented by 

negative ones, and nonsignificant predictors are represented by zeroes.  We depict this matrix as 
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a network, with predictors as sources and the regions that they predict as sinks (i.e. arrows 

originate from predictors and point towards the regions that they predict). 

Due to the massive complexity of such a depiction, we also generated simpler 

subnetworks that more clearly demonstrate key features of the full network.  Since each of the 

functional contrasts involves visual perception, we eliminated all nodes that are not part of the 

ventral visual stream, leaving only occipital and temporal targets.  The resulting network is still 

quite complex and difficult to visually parse, and so we focused our analyses to only the 

bidirectional and positive edges. 
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Results 

For each region, we trained a linear regression on the voxel-wise fMRI and connection 

probabilities across subjects, and identified the predictive networks of function for each 

anatomical parcel.  We started by first focusing on those parcels that encapsulated the relevant 

functional regions of interest (fROIs) for each functional domain. Then we evaluated all 

occipitotemporal connections that were predictive of each of the four functional domains and 

compared them across different functions. 
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Figure 8. Functionally-relevant networks (FRNs) for anatomically-defined regions. 

Significant predictors of fMRI activity to faces, bodies, or objects are plotted by their relative 

contributions to predicting each category (ipsilateral connections only). a. The right fusiform has 

a general FRN for responses to objects, but much more specific FRN for bodies and faces. b. The 

right superior temporal sulcus also has a specific FRN for responses to faces, but the FRNs for 

bodies and objects include more targets, suggesting that they may be more general. c. In contrast, 

right lateral occipital has FRNs that are specific for all categories. Some aspects of the FRN are 

shared between categories (i.e. connectivity with inferiortemporal, middletemporal, 

parahippocampal for bodies and objects) while others are unique to a particular category, such as 

fusiform connectivity for predicting face responses in lateral occipital. d. The right 
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parahippocampus has a more selective FRN for scenes than for faces and bodies, which in turn 

share many of the same targets with one another but not with the scene FRN.  
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Predictive networks of function were different for each functional contrast. 

We explored the regions that significantly contributed to predicting fMRI activity for 

each contrast, or the functionally-relevant networks (FRNs) per anatomical region.  The Desikan-

Killiany atlas (Desikan et al. 2006) was used for these analyses for simpler interpretation of the 

results (see Methods).  We identified the FRNs for four occipitotemporal anatomical parcels that 

are most commonly reported to encapsulate the functionally-selective fROIs: fusiform, superior 

temporal sulcus, parahippocampal gyrus, and lateral occipital cortex. We compared the FRNs 

across the different functional contrasts to determine their relative sparsity (i.e. only a few 

regions make a significant contribution to predicting function in that region) vs. generality (i.e. 

many brain regions contribute to functional predictions). The fusiform reliably encapsulates the 

FFA and FBA fROIs, selective for faces and bodies respectively, so we compared the FRNs for 

faces and bodies to those of objects and scenes in this region. We found that the right fusiform 

was quite sparse in its FRN for faces and bodies but distributed for objects (Figure 8a).  We also 

found that the right fusiform’s responses to faces can be predicted from its connections with 

inferior temporal, superior temporal, and other temporal targets, and the lateral occipital cortex 

(which houses the face-selective OFA).  Functional responses to bodies in this region can be 

predicted via a similar fingerprint, with a few exceptions. The FRNs for faces and bodies in the 

fusiform seem to be sparser and generally constrained to the occipitotemporal targets, while the 

FRNs for objects and scenes seem to be more distributed across the cortex. Similarly, the right 

superior temporal sulcus, which encapsulates the STS fROI, had sparse FRNs for faces which 

were also constrained to occipitotemporal regions. However, the FRN for bodies was not 

constrained only to occipitotemporal cortex, but rather, was distributed across the cortex much 

like the FRNs for objects and scenes (Figure 8b).  
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In contrast, right lateral occipital cortex, which usually houses the object-selective LOC, 

face-selective OFA, and body-selective EBA, was generally quite distributed in its FRN, 

regardless of the visual category (Figure 8c). Some aspects of the FRN were shared between 

categories (i.e. connectivity with inferiortemporal, middletemporal, parahippocampal for bodies 

and objects). Other aspects of the FRN were unique to a particular category, such as fusiform 

connectivity for predicting face responses in this parcel. The parahippocampus usually houses 

the PPA and its FRN for scenes was more unique than the other categories and did not share 

many targets with faces and bodies, while faces and bodies shared many of the same components 

of the FRNs with one another (Figure 8d).  
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 Supplementary Figure 2. Functionally-relevant networks for left-hemisphere 

anatomically-defined regions. a. The left-hemispheric fusiform was selective in its FRNs to 

faces and bodies, but still shared some of the same targets as the FRNs to objects. b. The left 

superior temporal sulcus had selective face FRNs, but shared many components with body and 

object FRNs, and was less selective than its right-hemisphere counterpart (see Figure 9).  c. Left 

lateral occipital cortex had few FRN components shared between the functional contrasts, which 

were different than the right-sided parcel (see Figure 9). d. The left parahippocampal cortex was 

selective and shared few components of the scene FRN with the other contrasts.   
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The left hemisphere anatomical parcels exhibited similarly selective FRNs as their right 

counterparts, with some small differences.  The left-hemispheric fusiform and superior temporal 

sulcus anatomical parcels were less sparse in their FRNs to faces and bodies, and faces 

respectively, which may reflect the observation that the functionally-selective fROIs are usually 

right-lateralized (Supplementary Figure 2a,b).  Left lateral occipital cortex showed a slightly 

different pattern than its right counterpart, with fewer FRN components shared between the 

functional contrasts (Supplementary Figure 2c). The left parahippocampal cortex displayed a 

broader FRN for scenes than the right hemisphere but also shared few common targets with the 

other functional contrasts, thus reflecting the FRN’s sparseness (Supplementary Figure 2d).   
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Figure 9. Reverse FRNs for anatomically-defined regions. Four occipitotemporal anatomical 

parcels are plotted by their relative contributions in predicting each category in each of the other 

anatomical parcels across the cortex (ipsilateral connections only). a. Fusiform is predictive of 

function for many different cortical parcels, which are in turn significant predictors of function in 

the fusiform.  For face and body-selectivity, however, these regions are not only constrained to 

occipitotemporal regions, as they were for the “forward” FRNs.  b. Superior temporal sulcus is 

quite distributed in which regions it was predictive for, especially for face-selectivity, which is 

again in contrast to its forward FRN.  c. Lateral occipital cortex is predictive of face-, object-, 

body-, and scene-selectivity in many of the same regions that composed lateral occipital’s 

forward FRN. d. The parahippocampus’ reverse FRN for scenes shares many of the same regions 

as the other categories, and does not only include the same targets as its forward FRN.  
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We also analyzed the “reverse” FRNs, which depict the degree to which a particular 

region predicts all other regions, again comparing fusiform, STS, LO, and PHG (Figure 9).  

Fusiform was predictive of function across many different parts of cortex, including 

occipitotemporal, parietal, and frontal regions (see Figure 8a vs. Figure 9a). For face and body-

selectivity, however, these regions were not only constrained to occipitotemporal regions, as they 

were for the “forward” FRNs. In other words, fusiform face- and body-selectivity was predicted 

by a more local network of occipitotemporal regions, which were in turn reciprocally predicted 

by their fusiform connectivity. The superior temporal sulcus was even more distributed than the 

fusiform in its predictiveness of functional selectivity across the brain; this was especially 

evident for face-selectivity (Figure 9b), suggesting that this region’s role in the extended face-

network may be to inform higher-order processing related to face representations. Lateral 

occipital cortex was predictive of face-, object-, body-, and scene-selectivity for the same regions 

that were predictive of lateral occipital’s forward FRN (Figure 9c). In conjunction with the face-

selectivity findings in the other two regions (LO, STS), these results suggest a hierarchical 

network of regions whereby lateral occipital is most local in its network (i.e. the same 

connections that predict its function are the regions for which it is predictive), fusiform is 

somewhat less local (most but not all of the connections are with the same regions), and superior 

temporal sulcus is predictive of face-selectivity in a multitude of regions while only getting 

predictive ‘input’ from a local network.  
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 Supplementary Figure 3. Reverse FRNs for left-hemisphere anatomically-defined regions. 

a. The left-hemispheric fusiform was selective in its reverse FRNs to faces and bodies, but still 

shared some of the same targets as the FRNs to scenes. b. The left superior temporal sulcus had 

distributed reverse FRNs for face and shared some components with body, object, and scene 

FRNs.  c. Left lateral occipital cortex had few reverse FRN components shared between the 

functional contrasts, but these were many of the same regions that composed its forward FRNs 

(regions that lateral occipital is predictive of function for are the same regions that predict its 

function). d. The left parahippocampal cortex was quite sparse in its reverse FRNs and each 

category shared few components of the reverse FRNs of other contrasts.  
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The right parahippocampus’ reverse FRN for scenes shared many of the same regions as 

the other categories, and included many of the targets in its forward FRN as well as several 

others (Figure 9d). By contrast, the left parahippocampal cortex was quite sparse in its reverse 

FRNs and each category shared few components of the reverse FRNs of other contrasts 

(Supplementary Figure 3). The other left-hemisphere reverse FRNs were distributed across the 

cortex and shared many of the same components across contrasts, thus exhibiting less sparse 

reverse FRNs than their right-hemisphere counterparts.  
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 Figure 10. FRNs for occipitotemporal regions.  The nodes of these subnetworks are the 

occipitotemporal parcels, and the edges include the bidirectional and positive significant 

predictors.  Regions that lack any edges to these nodes are omitted.  FRNs are depicted for a. 

faces, b. bodies, c. objects, and d. scenes.  
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We next analyzed the FRNs across regions and within contrasts, which can be depicted as 

a network, with predictors as sources and the regions that they predict as sinks (i.e. arrows 

originate from predictors and point towards the regions that they predict, Figure 10).  Since each 

of the functional contrasts involves visual perception, we limited this analysis to occipital and 

temporal targets, which produced a much more parsimonious subnetwork.  For this analysis, we 

focused on bidirectional and positive edges, because when connectivity between two regions is 

mutually positively predictive, it follows that the most functionally selective voxels are 

particularly connected to one another compared to the rest of the region. 

The face FRN (Figure 10a) reveals that the voxels of lateral occipital that are connected 

to fusiform voxels are specifically face-selective; non-face-selective voxels are not connected 

between these regions, and furthermore, connectivity between the regions are not mutually 

influential for any of the other contrasts.  This is especially intriguing since fusiform houses the 

FFA while lateral occipital houses the OFA.  Further, the bank of STS (pSTS) has a similar 

relationship with superior temporal (STS).  These interactions are also independent, which 

suggests parallel face-processing pathways.  Both lateral occipital and bank of STS are 

connected to cuneus, which is composed of early visual areas such as V1, V2, and some other 

early extrastriate cortex. 

The primary body-responsive fROIs include EBA in lateral occipital and FBA in 

fusiform.  Although these are the same regions which house the face-selective OFA and FFA, the 

body FRN (Figure 10b) demonstrates that the body-selective voxels in these regions are not 

especially connected compared to connectivity between voxels of the rest of the regions.  

However, this does not imply that these regions are not directly connected; it merely indicates 

that their connections are not special for body-selective voxels and thus suggests that these 
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connections may not specifically carry information related to the processing of body perception.  

However, the body-selective voxels of these regions are indirectly connected through inferior 

temporal and inferior parietal cortices. 

The object FRN (Figure 10c) contains the same motif as the body FRN: the functionally-

selective connectivity between lateral occipital and fusiform is indirect and connects through 

inferior temporal and inferior parietal cortices.  The scene FRN (Figure 10d) reveals two parallel 

subnetworks.  The first includes inferior parietal, which contains the occipital place area (OPA, 

sometimes referred to as the transverse occipital sulcus or TOS), whose scene-selective voxels 

are connected with scene-selective voxels in lingual, which in turn connect with 

parahippocampal (PPA).  The second subnetwork includes precuneus, which contains the 

retrosplenial complex (RSC), lateral occipital and superior temporal cortices. 
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Discussion 

 

We previously demonstrated that connectivity as measured by DWI is a powerful 

predictor of functional selectivity in the brain (Saygin et al. 2012; Osher et al. in prep).  Here we 

assess the model coefficients from Osher et al. in prep, comparing the functionally-relevant 

networks (FRNs) across each of the four functional contrasts (faces, bodies, scenes, objects) for 

several key anatomical parcels that contain functionally-selective components (functional 

regions of interest, fROIs) across the contrasts.  

We assessed both forward and reverse FRNs, the set of parcels that a particular region is 

predicted by or in turn predicts respectively.  We observed there are unique connectivity patterns 

for the main occipitotemporal parcels that encapsulate the fROIs. Within the fusiform 

(containing FFA-faces; FBA-bodies; pFS-objects), the FRNs are highly similar between faces 

and bodies, while for objects they are vastly different.  Face responses in fusiform and lateral 

occipital (OFA-faces; EBA-bodies; LOC-objects) are restricted to occipitotemporal predictors, 

and are in turn predictive of primarily occipitotemporal regions. Face-selectivity in the superior 

temporal sulcus (STS-faces) is also predicted by occipitotemporal regions but in turn predicts 

face-selectivity all across the cortex, including frontal regions.  This may suggest that the STS is 

separate from the other components of the face network and is especially ‘chatty’ with the rest of 

the brain, and perhaps is responsible for projecting face information to more abstract association 

cortices. It will be interesting to compare these fingerprints to the representation of higher-order 

cognitive functions, such as language, memory, and theory-of mind. 

 

Next, rather than comparing the FRNs across contrasts and within a region, we assessed 

the network of FRNs across regions for each contrast separately.  Specifically, we analyzed the 
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subnetwork of occipitotemporal cortices, and focused our analyses to only the bidirectional and 

positive edges.  The subnetworks of bidirectional positive edges are especially informative 

because they reflect a very specialized connectivity pattern: the voxels that most strongly 

connect these nodes are those that selectively respond to the given functional contrast.  In other 

words, if connectivity between two regions is mutually positively predictive, it follows that the 

most functionally selective voxels are particularly connected to one another.  By contrast, 

unidirectional positive edges reflect a connectivity pattern wherein functionally selective voxels 

of one region are diffusely connected to the other, regardless of that region’s selectivity.   

Negative edges are the most vague and difficult to interpret because they reflect 

connectivity patterns involving nonselective voxels, and although these voxels may be 

functionally similar in other domains, all we can deduce from this situation is that the connected 

voxels are not selective to the given contrast.  Again, the subnetworks that we depict include 

only bidirectional positive edges as they are the most parsimonious components of the full 

network, and at present they are the easiest to interpret; it is important to keep in mind that these 

are subnetworks and that certainly other informative facets lay hiding in the complexity of the 

full network. 

We found that there are parallel and interconnected pathways of information flow that are 

specific for certain functional categories. Face-selective voxels in the fusiform and lateral 

occipital were specifically connected to one another, as were bank of STS and superior temporal 

sulcus. However, face-selective voxels across these pairs were not specifically connected with 

one another.  It is important to note that this result does not imply that these regions are not 

connected to one another (i.e. fusiform to superior temporal sulcus) or even that the face-

selective voxels within these regions are not connected to one another. Rather this demonstrates 
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that FFA, OFA are not preferentially connected with banks STS and superior temporal sulcus, 

compared to the surrounding non-face-selective cortex.  If one were to assess direct connectivity 

between the functional ROIs (rather than the anatomical ROIs as we do here), they may conclude 

that they are connected but this would ignore the specialization of these connections with respect 

to face-selectivity. In other words, fusiform and superior temporal sulcus may be heavily 

connected to one another as a whole, and so a limited fROI connectivity analysis would miss that 

this connectivity is not specialized for face-processing.  Nonetheless, these results suggest that 

there are two face-processing streams, which was recently also proposed by Yovel and Friewald 

due to mounting comparative evidence from monkey and human studies alike (Yovel and 

Friewald 2013; Gschwind et al 2012). 

For body and object processing, we observed a unique motif common to both FRN 

subnetworks, wherein selective voxels in lateral occipital are connected to fusiform via a three-

way interaction through inferior temporal and inferior parietal cortex. This is especially 

intriguing because lateral occipital houses both EBA and LOC, while fusiform contains FBA and 

pFS.  This result suggests that the information between these two regions is not necessarily 

directly relayed to one another but rather may undergo intermediate transformations through 

additional extrastriate cortices. Finally, we found that the FRN for scenes exists as two parallel 

subnetworks, one containing OPA and PPA and the other contains RSC.  This is consistent with 

reports that RSC differs from other components of the scene-processing network in its 

representation of contextual information or gist (e.g. Park and Chun 2009).   

Overall we show that specific connectivity patterns exist between functionally-selective 

voxels all the way from early visual areas through areas specialized in high-level vision. It will 

be important to expand this approach to retinotopic as well as higher-cognitive in order to 
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characterize the networks from early visual areas to higher-level cognitive regions.  
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Conclusions. 

This research can encourage the assembly of a database of similar structure-function 

relationships (i.e. FRNs) for numerous other domains, in addition to the ones studied here. This 

would allow researchers to bridge the fingerprints across different brain regions and test 

mechanistic models of human brain function within and across different systems/networks.  

Also, this method will enable researchers to estimate the functional responses to a range 

of experimental conditions in individual subjects with only a 10-minute diffusion scan. The more 

FRNs that can be accumulated in a shared database, the more a diffusion scan can tell us about 

an individual. In this thesis I showed that DWI connectivity can accurately predict activation 

across the brain and for various different functions in two different groups of participants and 

can thus be an alternative to group activation maps of function. The methodology used in this 

thesis will thus have important clinical applications, especially for pre-surgical planning. The 

identification of connectivity fingerprints for critical functions such as language could potentially 

empower surgeons to estimate relevant brain regions without the use of an fMRI scan and while 

the patient is asleep, or anesthetized. Finally, I intend to amass these datasets into a single 

Bayesian generative model, under which the probability of a particular functional response is 

conditioned on the set of probabilities of connecting to each parcel and the functional response of 

the connected voxels themselves. By doing so, we can take into account multiple functional 

domains, the responses of both connected components, and potentially individual differences 

into a single model. This would also allow us to discover what the optimal set of functional 

localizers to acquire on an individual subject, which will explain as much additional information 

as possible.  


