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ABSTRACT 
 
The hippocampus is required for the formation, but not storage, of long-term 
episodic memories. During memory formation, however, the hippocampus is not a 
lone actor; rather it works in concert with various structures across the brain. The 
mechanisms by which diverse populations of cells are coordinated for the formation 
of a single, coherent memory remain unknown. This thesis is an investigation of the 
temporal and hemispheric structure of replay events. The timing of replay is 
investigated at the levels of hippocampal sharp-wave ripples and multi-unit 
activity. We found that, during sleep, ripples generation is modulated by a 10-15Hz 
rhythm. We also observed this rhythm in the multi-unit firing rate of hippocampal 
neurons. Next we investigated and quantified the level of coordination between the 
hippocampi during replay events. Using bilateral hippocampal recordings from 
several rats during spatial navigation and subsequent sleep epochs, we directly 
compared the activity of these two spatially isolated networks at the level of the 
local field potential and the information encoded by the two neuronal populations. 
We found that the neural activity of the two hippocampi was highly correlated in 
some aspects but not others. As previously reported in the mouse, we found that, in 
the rat, sharp-wave ripples were simultaneously generated spontaneously in both 
hippocampi and that, although the intrinsic frequencies of ripple oscillations were 
correlated bilaterally, the phases of the individual ripple wavelets were not. Finally, 
we found that information encoded by both hippocampal ensembles is highly 
correlated during replay events.  
 
 
Thesis Advisor: Matthew A. Wilson 
Title: Sherman Fairchild Professor of Neuroscience 
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THE HIPPOCAMPUS AND EPISODIC MEMORY  
 

Historically, the functional role of the hippocampus was poorly understood. Early 

hypotheses of hippocampal function suggested it played a variety of roles ranging 

from olfaction to emotion (Andersen, Morris, Amaral, Bliss, & O'Keefe, 2006). 

However, it wasn’t until doctors surgically removed the hippocampi of Henry 

Molaison that the hippocampus’ central role in memory formation was 

demonstrated (Schmolck, Kensinger, Corkin, & Squire, 2002). This tragic discovery 

spawned decades of work intended to characterize hippocampal physiology and 

connect the physiology to memory formation. 

 

The hippocampus is located in the medial temporal lobe of the mammalian brain. A 

close examination of the hippocampus reveals a highly structured feed-forward 

network. The perforant path, which arises from the entorhinal cortex (EC) and 

terminates in the dentate gyrus (DG), is the major input in the hippocampus. DG 

then sends projections to the CA3 sub-region, which in turn then projects to CA1. 

The projections from CA1 are the major hippocampal outputs; they terminate in EC 

and the subiculum. There are a few notable exceptions to this circuitry; the first is 

that EC sends projections directly to CA1. The second is that, in addition to 

projecting to CA1, CA3 pyramidal cells project to other pyramidal cells within CA3. 

Hippocampal circuitry is almost completely unilateral with the exception of which 

projects bilaterally.  
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The local field potential (LFP) of the hippocampus is dominated by two major states 

(Buzsáki, Lai-Wo S, & Vanderwolf, 1983). The first is the theta state, which is 

characterized by a strong 4-12 Hz oscillation in the LFP. This oscillation, commonly 

called the theta rhythm, is strongest during periods of navigation, attention, and 

REM sleep (Andersen et al., 2006; Buzsáki et al., 1983). During the theta state 

individual units are synchronized to the theta oscillation wit different cell types 

preferring different phases of the oscillation (Csicsvari, Hirase, Czurkó, Mamiya, & 

Buzsáki, 1999a; Klausberger et al., 2003). 

 

The second major state in the HPC LFP is referred to as the LIA state. This state is 

thought to occur when the HPC is “off-line” or disconnected from its cortical inputs; 

such as during pauses in navigation, quiet wakefulness, and slow wave sleep 

(Buzsáki et al., 1983). During LIA state, the hippocampal LFP is random and 

contains a broad spectrum of frequencies; however, the most notable feature is the 

large irregular fluctuations in the LFP called sharp-waves. Individual sharp-waves 

are short lived (<50 ms), and are accompanied by a high-frequency (100-250Hz) 

oscillation called ripples (Csicsvari, Hirase, Czurkó, Mamiya, & Buzsáki, 1999b). 

Together these events are called sharp-wave ripples (SWR). Although individual 

SWR events are quite short they are frequently generated in sets with some sets 

containing more than 5 individual SWR and lasting more than 500ms (Csicsvari, 

Hirase, Czurkó, Mamiya, & Buzsáki, 1999b; Davidson, Kloosterman, & Wilson, 

2009). HPC unit-activity is dramatically different during the LIA state; the majority 
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of the time HPC units have low irregular firing rates. However, during SWR HPC 

units become highly synchronized and dramatically increase their firing rate 

(Csicsvari, Hirase, Mamiya, & Buzsáki, 2000). 

 

In rodents, the principle cells of the hippocampus exhibit place-specific tuning, 

meaning that their firing rate is a function of the animal’s location in space (O'Keefe 

& Dostrovsky, 1971; Wilson & McNaughton, 1993). The interesting tuning 

properties are the source of the name place-cells. The connection between the 

physiology of place-cells and memory formation becomes apparent during 

navigation. As a rodent moves in space, neurons in its HPC are sequentially 

activated, with individual sequences representing very specific trajectories. Later 

during pauses in navigation, HPC place-cells will spontaneously reactivate in the 

same sequences that were observed during navigation (Diba & Buzsáki, 2007; 

Foster & Wilson, 2006; Lee & Wilson, 2002). The expression of these sequences 

demonstrates that at some level the HPC actively maintains an internal 

representation of recent experience. 

 

These findings fit well with a popular model of hippocampal memory formation. The 

model proposes two stages in the process of memory formation and suggests 

different functions for each stage (Buzsáki, 1989). During the first, or learning 

stage, the HPC receives and stores information from cortex. Later, during breaks in 

the learning stage, information stored temporarily by the HPC is transferred to 
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cortex for permanent storage. The described physiology of the hippocampus fits this 

model well.  

 

Several groups have found evidence that HPC reactivation is involved in the 

formation of long-term memories. These groups independently demonstrated that 

the disrupting HPC reactivation had a negative impact on the behavioral correlates 

of learning (Ego-Stengel & Wilson, 2010; Girardeau, Benchenane, Wiener, Buzsáki, 

& Zugaro, 2009; Jadhav, Kemere, German, & Frank, 2012). These groups also 

demonstrated that the disruption of learning was specific to the task at hand and 

did not reflect a decreased ability to learn in general.  
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CHAPTER OVERVIEW 
 

The focus of this thesis is divided across three distinct but inter-related chapters, a 

brief overview of each chapter follows: 

 

Chapter 2: Bilateral synchrony of the hippocampi during replay events is directly 

studied. Hippocampal replay is of scientific interest because it’s a candidate 

mechanism for the hippocampal dependent of consolidation long-term episodic 

memories. Using electrophysiological recordings from both hippocampi we directly 

investigate the synchrony between the structures at the level of single units and at 

the level of the local field potential. We observe that many features of both the local 

field potentials are highly correlated between the hemispheres; particularly the 

timing of sharp-wave ripple generation and the frequency of ripple oscillations. The 

most impactful result is the discovery that information encoded in the spiking 

activity of both hippocampal populations is strongly correlated. These results 

provide a detailed characterization of the bilateral interactions between the 

hippocampi and lay the groundwork for further bilateral hippocampal experiments. 

 

Chapter 3:  This chapter focuses on the timing of ripple event-generation by the 

hippocampus. Ripples are frequently observed as pairs, triplets, or longer sets; 

however, the within-set timing of ripple events remains unknown. This chapter 

presents results that demonstrate that ripple generation is modulated by a 10-15 

Hz rhythm. Furthermore, a 10-15hz rhythm is observed in the firing rates of 
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hippocampal neurons during ripple events. Next, we demonstrate that unit activity 

in retro-splenial cortex is correlated with unit activity in the hippocampus and 

modulated by ripple events in CA1. Lastly we provide preliminary results 

demonstrating that activity in retro-splenial cortex synchronizes better with slower 

ripple events. 

 

Chapter 4: In this chapter we propose a novel algorithm for decoding neuronal 

spiking activity. Neuronal decoding is a useful technique for both medical and 

scientific reasons. This method has potential applications in both realms due to its 

simple nature and ability to produce highly accurate estimates. Briefly, this method 

can operate unsorted multi-unit activity, circumventing the spike-sorting process. 

This is done by decoding information from the spike-waveform features directly, 

rather than clustering. The accuracy of our new method is tested and the accuracy 

of other commonly used methods are provided as a benchmark. Finally, we 

demonstrate that our method can be used for real-time on-line decoding by directly 

assessing its accuracy under simulated on-line conditions. 
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ABSTRACT 
 

The hippocampus is required for the formation, but not storage, of long-term 

episodic memories. During memory formation, however, the hippocampus is not a 

lone actor; rather it works in concert with various structures across the brain. The 

mechanisms by which diverse populations of cells are coordinated for the formation 

of a single, coherent memory remain unknown. To investigate how neural activity 

across the brain is coordinated for episodic memory formation we examined the 

bilateral coordination of activity between the two hippocampi. Using bilateral 

hippocampal recordings from 3 rats during spatial navigation and subsequent sleep 

epochs, we directly compared the activity of these two spatially isolated networks at 

the level of the local field potential and the information encoded by the two 

neuronal populations. We found that the neural activity of the two hippocampi was 

highly correlated in some aspects but not others. As previously reported in the 

mouse, we found that, in the rat, sharp-wave ripples were simultaneously generated 

spontaneously in both hippocampi and that, although the intrinsic frequencies of 

ripple oscillations were correlated bilaterally, the phases of the individual ripple 

wavelets were not. Finally, we found that information encoded by both hippocampal 

ensembles is highly correlated during replay events.  
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INTRODUCTION 
 

The hippocampus is essential for the formation of long-term episodic memories 

(Tauber, 1992), though the neural mechanisms of episodic memory formation are 

still unknown. Attempts to elucidate this mechanism have focused on the spiking 

activity of neurons in the hippocampal formation. In rodents, the principal neurons 

in the hippocampus, often referred to as place-cells, are tuned to the animal’s 

current location in space (O'Keefe and Dostrovsky, 1971; Wilson and McNaughton, 

1993), and navigation sequentially activates groups of neurons within the 

hippocampus. These sequences form during the initial exposure to novel 

environments and are robust across time. Interestingly, during stops in exploration 

and during sleep, neurons in the hippocampus spontaneously express sequences 

corresponding to behaviorally relevant trajectories (Nádasdy et al., 1999; Foster and 

Wilson, 2006; Diba and Buzsáki, 2007; Karlsson and Frank, 2009; Gupta et al., 

2010). The spontaneous re-expression of these behaviorally relevant sequences is 

called hippocampal replay/reactivation.  

 

Replay events are temporally coupled with oscillations in the local-field potential 

called sharp-wave ripples(Foster and Wilson, 2006). These events are short lived 

and contain a high-frequency (100-250 Hz), short-lived (< 50 ms)(Ylinen et al., 

1995). In fact, spikes observed during a sharp-wave ripple are phase-locked to the 

ripple oscillation(Ylinen et al., 1995; Csicsvari et al., 1999a; Klausberger et al., 

2003), suggesting a mechanistic link between the two. Electrical stimulation of the 
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hippocampus during sharp-wave ripples disrupts replay and negatively affects the 

behavioral correlates of learning (Girardeau et al., 2009; Ego-Stengel and Wilson, 

2010; Jadhav et al., 2012). Replay is well poised to play a central role in the 

formation of hippocampal dependent memory formation.  

 

Lesion studies have suggested that the hippocampus does not store long-term 

memories, rather it temporarily stores information for later consolidation 

distributed in cortical networks (Buzsáki, 1998; Klausberger et al., 2003). Activity 

correlated with hippocampal replay has been observed in the cortex and subcortical 

structures (Ji and Wilson, 2008; Lansink et al., 2009; Peyrache et al., 2009; 

Logothetis et al., 2012). These cross-structural relationships have been observed at 

the level of unit activity, in the local field potentials, and in the BOLD response in 

humans. Sharp-wave ripples in the hippocampus have also been shown to be 

temporally coupled with oscillations in the cortex (Siapas and Wilson, 1998; Sirota 

et al., 2003; Mölle et al., 2006). Finally, reactivation of cortical sequences has been 

observed during the reactivation of hippocampal sequences, with a correlated 

content represented by the two events (Ji and Wilson, 2007). These results show 

that replay is a global phenomenon that recruits and coordinates the activity of 

networks distributed across the brains. However the mechanism responsible for 

coordinating spatially distributed networks are unknown. 
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Episodic memories can form despite cortical lesions, whereas lesions to the 

hippocampus disrupt episodic memory formation(Tauber, 1992; Kim and Frank, 

2009). These results suggest that mechanism could reside in the hippocampus as 

well as the finding that the hippocampus is capable of generating replay-like events 

in the absence of cortical inputs (Behrens et al., 2005; Maier et al., 2009). 

Additionally the disruption of internal hippocampal circuitry alters frequency of 

ripple events(Nakashiba et al., 2008). Nevertheless, there is evidence suggesting 

that cortical inputs into the hippocampus may determine the timing and content of 

replay events. Ripples in the hippocampus are temporally correlated with spindles 

in cortex; however, spindles in cortex tend to precede ripples in the hippocampus 

(Penagos, 2010), these results indicate that cortical precedes replay in the 

hippocampus, suggesting replay maybe responding to cortical drive. Additional 

evidence for this hypothesis is that, during sleep, the content expressed during 

hippocampal replay can be directly biased by cortical inputs(Bendor and Wilson, 

2012).  

 

Investigation of bilateral synchronization of the hippocampi during replay events is 

an appropriate point to begin studying the mechanisms responsible for coordinating 

replay events across the brain. If hippocampal replay is bilaterally coordinated, 

there is likely a common driver that is either intrinsic to the hippocampus (e.g., via 

the hippocampal commissure) or external, area sending common projections to the 

hippocampus (e.g., thalamus). Conversely, if bilateral replay events are 
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uncoordinated, anatomically separate inputs to each hippocampus are likely driving 

the individual events. To first understand the level of coordination between the two 

hippocampi, we simultaneously recorded from both hippocampi during sleep and 

while animals performed a spatial navigation task for a small food reward. We 

observed that content and timing of hippocampal replay events are highly 

correlated between the two hippocampi. Additionally we demonstrate that replay 

events that recruit a greater number of neurons are more correlated than events 

that recruit few units. Lastly we verify previously published work demonstrating 

that sharp-wave ripples are simultaneously generated by both hippocampi, but that 

bilateral ripples are not coordinated in phase. We extend these results by 

demonstrating that frequency of ripples is bilaterally correlated. These data will 

help shape future studies to elucidate the source(s) of this coordination. 
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RESULTS 
 

Sharp-Wave Ripples 

The synchrony of bilateral ripple generation was studied in 3 rats during periods of 

sleep (SLEEP) and pauses in navigation (PAUSE). Sharp-wave ripples were 

detected simultaneously in both hippocampi, confirming previous studies in 

mice(Buzsáki et al., 2003). Sharp-wave ripples were independently detected 

(Figure 2A) on multiple channels of LFP recorded from both hippocampi (Figure 

2B). Simultaneous ripple events were not detected in all cases, likely due to 

distance between electrodes, noisy signals, or an imperfect ripple detection 

algorithm. The probabilities of detecting coincident ripples on ipsilateral electrodes 

(PAUSE: 0.45 +/- 0.11, SLEEP: 0.75 +/-0.06) and contralateral pairs (PAUSE: 0.380 

+/- 0.11, SLEEP: 0.70 +/- .03) were not significantly different (Figure 2C). The 

probabilities of observing ipsilateral pairs are similar to previously reported 

numbers(Csicsvari et al., 2000). The higher probabilities during sleep are likely the 

result of increased ripple amplitude during SLEEP compared to PAUSE.)  

Ripple-triggered averages of the local field potential revealed sharp-waves for both 

ipsilateral and contralateral electrode pairs; however, the ripple oscillation was only 

revealed for ipsilateral comparisons. The phase of the ripple oscillation is correlated 

within (Figure 3C) but not between (Figure 3D) the hippocampi (Buzsáki et al., 

2003), explaining the failure of the triggered averages to capture the contralateral 

ripple oscillation. The frequencies of ripple oscillations; however, is correlated both 
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within (rrun = 0.497 and rsleep 0.607) and between the hippocampi (rrun = 0.312 and 

rsleep 0.367) (Figure 3A,B).  

 

These results verify previous reports of simultaneous ripple generation by both 

hippocampi, but they extend those results by demonstrating that the frequency of 

the ripple oscillation is correlated between the hippocampi. Exactly how the ripple 

frequency is not likely the result of common network dynamics internal to CA1; 

however, consistency in the frequency could be the result of the common CA3 inputs 

between hippocampi via the hippocampal commissure, as eliminating 

neurotransmitter release from CA3 pyramidal cells results in altered ripple 

frequency but not incidence (Nakashiba et al., 2009). 

 

Multi-Unit Activity 

The link between hippocampal unit activity and ipsilateral ripples is well 

documented (Csicsvari et al., 1999b; 2000). Here we found that the unit activity and 

sharp-wave ripples is maintained between the two hemispheres, consistent with the 

coincident occurrence of ripples. The firing rate of hippocampal units increased 

dramatically during sharp-wave ripples in the opposite hippocampus (Figure 4A), 

and the mean hippocampal multi-unit firing rate triggered on ripples in the 

contralateral hemisphere demonstrates the magnitude of this relationship (Figure 

4B). Bursts in the hippocampal during PAUSE and SLEEP multi-unit activity were 

highly correlated between the hemispheres. (Figure 4C). The strong correlations of 
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hippocampal unit activity during sharp-wave ripples are not surprising given the 

ripple synchrony results. Lastly, the mean firing rate during individual bursts in 

the multi-unit activity were significantly correlated (r=0.589), indicating that events 

strongly or weakly recruit activity in both hemispheres.  

 

Independent Position Decoding for Each Hippocampus 

Activity in either hippocampus can be decoded to produce position estimates. We 

found that the independently computed position estimates from both hippocampi 

were very similar. Establishing the level of similarity between run decoding 

estimates is crucial, as the run is used as a template for replay decoding. Confusion 

matrices constructed from the both estimates showed a strong diagonal structure, 

indicating a high level of agreement between the two estimates (Figure 5B). In 

addition, the confusion matrices for all analyzed sets were significantly more precise 

(p < 4.052x10-9 one-sided t-Test) than expected by chance (Figure 5C). Finally, 

estimates at each time-bin were highly correlated (Figure 5D), and the distribution 

of correlations between the hemispheres for all animals was significantly better 

than expected by chance (p < 2.499x10-12 one-sided t-Test).  

 

Bilateral Replay Decoding 

The spiking activity observed during sharp-wave ripples can be decoded to a reveal 

trajectory-like structure (Davidson et al., 2009). We used this previously described 

method to evaluate data recorded from both hippocampi. Independent decoding of 
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the activity in both hippocampi during putative replay events yielded qualitatively 

similar trajectories (Figure 6A). Examples shown in Figure 6 demonstrate that the 

information encoded by the two hippocampi was correlated for a significant fraction 

of the replay events. These results are important as the correlation of information 

lasts for periods of time, suggesting that the information encoded by both 

hippocampi changes over time in a bilaterally coherent manner. Not only are the 

visually identifiable trajectories highly correlated but events lacking obvious 

structure were correlated as well. As a population, replay events were significantly 

(PAUSE p<[3.10x10-26 / 0.034], SLEEP p<[2.21x10-25 / 0.21], [best/worst]-case, 2 

sample KS-Test) more correlated between the hippocampi than would be expected if 

the two hippocampi were expressing randomly selected, behaviorally relevant 

trajectories of the same length (Figure 6B). This relationship was true for all 

analyzed data sets and was stronger during PAUSE than SLEEP. One potential 

explanation for higher event correlations during PAUSE is that SLEEP replay 

events were decoded using PAUSE as a template, and replay events during SLEEP 

could potentially represent a greater number of environments. In addition, spike 

sorting errors and incorrectly matching cell identities between PAUSE and SLEEP 

epochs will decrease the quality of the decoded position estimates (Goodman and 

Johnson, 2008); inaccurate estimates of replay content will thus have lower 

bilateral correlations. 
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No examples of de-correlated replay estimates were found, this absence could be the 

result of either improper sampling of the hippocampal populations or rather de-

correlated bilateral replay might rarely, if ever, occur. The variance of decoded 

replay estimates is inversely proportional to the number of spikes observed during 

potential replay events (Zhang et al., 1998; Davidson et al., 2009). Therefor de-

correlated replay events are more likely to be detected during high rate events 

(events with many active neurons) as opposed to low rate events (events with few 

active neurons), as inconsistencies between the decoded positions are less likely to 

be the result of incomplete sampling. On average, the strength of event correlations 

increased as a function of the mean unsorted multi-unit firing during an event 

(Figure 6D). For all data sets, events containing more than 50% maximal activity 

were significantly more correlated than events with less than 50% maximal activity 

(p<0.024 paired rank-sum test) (Figure 6E). These results, coupled with the 

absence of examples of de-correlated bilateral replay events suggest that de-

correlated replay occurs rarely, if at all. 
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DISCUSSION 
 
 
This paper provides evidence that sharp-wave ripple events are simultaneously 

generated by both hippocampi. While previous publications have demonstrated 

bilateral coordination in ripple timing (Buzsáki et al., 2003). This study 

demonstrates for the first time that the frequency of the ripple oscillation within a 

sharp-wave ripple event is correlated between the hippocampi. The frequencies of 

non-coincident ripples events are not correlated demonstrating that in CA1 ripple 

frequency isn’t simply a function of internal network dynamics but that the ripple 

frequency is modulated in part by upstream structures. The identity of this 

upstream network is currently unknown, although there is evidence that it could be 

CA3 (Finnerty and Jefferys, 1993; Buzsáki et al., 2003). However further work 

needs to be done before a definitive statement can be made. 

 

This paper also demonstrates information encoded in the population activity of both 

hippocampi is correlated replay events. Previous work has shown that decoding the 

combined activity of both hippocampi during replay produces behaviorally relevant 

trajectories, but failed to explicitly investigate the relationship between the two 

spatially distant populations. These studies were conducted under the assumption 

that activity in the two structures is correlated; an assumption that is validated by 

the results in this paper. In addition to validating this assumption, this work lays 



Page 29 of 126 
 
 

the groundwork for further studies into the mechanisms governing the content and 

timing of replay events.  

Two potential mechanisms could explain the results of this paper. The first is that 

CA3 is responsible for triggering ripples and dictating coordinating the content of 

the replay event. Some models of sharp-wave ripple generation hypothesize that 

ripples are strong inputs from CA3 trigger ripples in CA1. The sharp-wave 

component of sharp-wave ripples events is hypothesized to be generated by 

synchronized inputs into CA1 from CA3 (Ylinen et al., 1995). As the output of CA3 

projects bilaterally to both hippocampi, through the hippocampal commissure, CA3 

is well poised to act as the agent responsible for bilaterally synchronizing CA1. 

However, it’s unclear if CA3 plays this role and bridges disparate information 

between the hippocampi. An alternative is that the cortical inputs into the 

hippocampus are already synchronized between the hemispheres and the synchrony 

observed in CA1 is the result of coherent cortical inputs.  

 

The role CA3 in synchronizing the content and timing of replay can be directly 

tested with a lesion experiment. Severing the hippocampal commissure, which 

contains the decussating CA3 output, will disconnect the two hippocampi while 

preserving the structure their internal networks. Following this procedure any 

bilateral synchrony of CA1 must be the result of common cortical inputs into both 

hippocampi; this structure, or lack thereof, can be used to infer if the mechanisms 
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responsible for coordinating the content and timing of replay events lie within the 

hippocampus or exist in upstream networks. 
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METHODS 
 

Electrophysiology and Behavior 

Three male Long-Evans rats, weighing between 400 and 600 grams, were implanted 

with micro-drive arrays containing either 24 (R1, R2) or 30 (R3) independently 

movable tetrodes targeted at dorsal CA1 and CA3 bilaterally. Following a successful 

surgery each tetrode was slowly lowered into the brain until they reached the cell-

layer of the target structure. A tetrode was placed in white matter dorsal to CA1 to 

serve as a reference. At the conclusion of the experiment electrode placement was 

verified using electrolytic lesions. Signals from the tetrodes were split into spike 

and local field potential channels. Spike channels were filtered between 300 Hz - 6 

kHz. Extra-cellular action potentials were detected as threshold crossings on any 

tetrode channel, and a 32-sample spike waveform for each channel was recorded for 

each threshold crossing. Local field potential signals were filtered between 0.5 and 

475 Hz and sampled at 1500 Hz. 

 

Following successful electrode placement the rats were food deprived to 85% of the 

baseline weights and received a food rewards for navigating a 3.1-meter linear track 

(R1, R2) or within a W-track (R3) environment. An overhead video camera and 

infrared light emitting diodes mounted on the implanted micro-drive array were 

used to track the rats’ position. All experiments were conducted in accordance with 

the guidelines of the US National Institute of Health, and under the supervision of 

their respective animal care facilities. 
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Sharp-wave Ripple Detection and Analysis 

The three tetrodes with the greatest number of units were selected for ripple 

analysis, with at least one tetrode from each hippocampus. Of the three, the tetrode 

with the most isolated units was designated as the trigger tetrode. Ripple events 

were detected on each tetrode using the envelope of the band-pass filtered (150 to 

250 Hz) local field potential. The absolute value of the Hilbert transform was used 

to estimate the envelope of a signal. Periods of time when the envelope exceeded 7 

SD above the mean were classified as candidate events. This is a variation of a 

previously described method (Csicsvari et al., 2000).  

The probability of detecting coincident ripples was computed as: 

𝑃 𝑑𝑒𝑡𝑒𝑐𝑡 =   
𝑛𝑅𝑖𝑝𝑝𝑙𝑒!"#$  &  !"#$
𝑛𝑅𝑖𝑝𝑝𝑙𝑒!"#$

 

Only ripples detected on the trigger channel that overlapped with events on test 

channels were used in the subsequent analysis. The peak of a ripple event was 

detected as the sample of the band-pass filtered LFP with the greatest value within 

the event. The mean frequency for each ripple was computed from average 

wavelength of the ripple oscillation between 25ms before and 25 ms after the ripple 

peak. The phase of the ripple oscillation was estimated using the angle of the 

Hilbert transformed band-pass filtered signal. The sharp-wave for each ripple event 

was isolated by band-pass filtering the raw LFP between 0.1 and 40 Hz.  

 

Multi Unit Burst Detection and Analysis 
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Peaks in the multi-unit firing rate were identified using similar methods to 

Davidson 2009. The multi-unit firing rate was estimated using a smoothed 

histogram (5ms bins; Gaussian kernel 10ms SD) of the unsorted multi-unit activity. 

Bursts in the multi-unit firing rate were computed using a dual threshold 

algorithm. Periods when the multi-unit rate exceeded a high threshold (4 SD above 

the mean) where flagged as candidate events. Event times were expanded until the 

rate dropped below a low threshold (0.5 SD above the mean). Multi-unit bursts were 

only computed during periods of immobility (velocity <5 cm/s)  

 

Computing Tuning Curves 

The environment was linearized and divided into 10 cm spatial bins. Tuning curves 

were calculated computed as a smoothed histogram (10cm bins; Gaussian kernel 

10cm SD) of occupancy corrected spike counts. For datasets on the W maze, tuning 

curves were calculated separately for each arm of the maze and then concatenated 

into a single curve. 

 

Position Decoding  

Single units were segregated into two groups, one for each hippocampus, and 

position estimates were computed using a Bayesian reconstruction algorithm(Zhang 

et al., 1998).This algorithm produces a probability distribution of positions from 

spiking. Navigation was decoded by dividing the experiment non-overlapping 250ms 

time-bins. 
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The similarity of navigation position estimates was computed in two ways. Time-

bins when the animal was stationary (velocity <15 cm/sec) were excluded from 

navigational analysis. A confusion matrix of the two estimates was computed using 

a 2D histogram of the peak of the pdf from each hemisphere for all time-bins when 

the animal was moving >15cm/sec. For each time-bin the mode of both pdfs was 

computed and the combinations of modes were counted. The precision of the 

confusion matrix was calculated by counting the of time-bins where the modes of 

both pdfs were within 20 cm of each other divided by the total number of time-bins. 

The correlation between the position estimates was computed on a time-bin-by-

time-bin basis. A null distribution of correlations was computed by randomly 

circularly shifting the left estimate decoded forwards or backwards in time.  

 

Replay Position Decoding  

Candidate replay events were decoded using the same methods as run, but with 

non-overlapping 20ms time-bins. The correlation between events was computed as 

the mean time-bin correlation but only for time-bins with spikes in both 

hemispheres. Events with no spikes in either hemisphere were not analyzed. A null 

distribution of event correlations was computed by randomly shuffling events in one 

hippocampus with ipsilateral events of the same length. The distribution of event 

correlations was then computed for the real vs. shuffled event pairs. The mean 

multi-unit firing rate of each hemisphere was computed for each event and events 
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were segregated into 10 groups of increasing firing rate. High and low rate events 

were defined as events when the multi-unit firing rate was greater than or less than 

the median firing rate for all candidate events in that dataset.  
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FIGURE LEGENDS 
 

Figure 1. Bilateral connectivity diagram of the hippocampal circuit. The entorhinal 

cortex provides the major inputs into the hippocampus providing inputs to both 

Dentate Gyrus (DG) and CA1. Within the hippocampus information flows from DG 

to CA3, from CA3 to CA1 and then CA1 projects back to entorhinal cortex. These 

projections are largely ipsilateral, with the major exception being the subset of the 

Schaffer Collaterals that project to contralateral CA3 and CA1. 

 

Figure 2. Sharp-ripples are generated simultaneously by the both hippocampi. The 

probability of detecting simultaneous sharp-wave ripples on two contra-lateral 

channels is the nearly equal to that for ipsi-lateral channels A. 500 ms of unfiltered 

hippocampal local field potential (LFP) recorded from dorsal CA1. The 500 ms 

segment contains several sharp-wave ripples. Ripples are detected by computing the 

envelope (ENV) of the band-pass (150-250 Hz) filtered signal (FILT). Peaks in the 

envelope that cross double threshold are defined as sharp-wave ripple events (RIP) 

B. 3 channels of LFP from each hemisphere recorded at the same time as A. Ripple 

detection was run on each channel independently and detected events are denoted 

as boxes behind the traces. C. Boxplots comparing the probability of detecting 

overlapping ripples on two different channels of LFP during run and sleep. D. 

Ripple peak triggered averages of unfiltered hippocampal LFP on three different 

channels. Averages were computed on the same channel as the trigger channel, 
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channels ipsilateral to the trigger channel, and channels contralateral to the trigger 

channel. 

 

Figure 3. The amplitude and frequency of sharp-wave ripples are correlated both 

within and between the hippocampi. The phase of the ripple oscillations; however, is 

correlated within a hippocampus but not between the hippocampi. A-B. The joint 

distribution of mean ripple frequency for all coincident ipsilateral (A) and 

contralateral (B) ripple pairs. C-D. The distribution of ripple oscillation phase 

differences computed between ipsilateral (C) and contralateral (D) channels.  

 

Figure 4. Hippocampal pyramidal cells increase their firing rate during sharp-

wave ripples in the contra-lateral hippocampus. The increased spiking activity 

during sharp-wave ripples is correlated between the hippocampi and the normalized 

magnitude of bursts is correlated between hemispheres. A. An example of increased 

spiking activity in the right (RED) hippocampus during a ripple in the left (BLUE) 

hippocampus. B. Ripple triggered averages of the contralateral hippocampal multi-

unit rate during run (RED) and sleep (BLUE). C. The bilateral cross-correlation of 

hippocampal multi-unit rate during peaks in the multi-unit firing for run (RED) 

and sleep (BLUE). D. The joint distribution of multi-unit firing rate, relative to the 

highest measured rate, for all multi-unit burst events.  
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Figure 5. Position estimates computed from spiking activity of each hippocampus 

are consistent during periods of navigation (velocity >15cm/sec). A. Posterior 

probability distributions of the decoded positions computed using the activity in a 

single hippocampus (a single lap, periods of immobility, is shown in greater detail). 

Darker shades of gray indicate higher probabilities. B. A confusion matrix 

constructed from the pdf modes restricted to time-bins when the animal was moving 

>15sm/sec. C. Boxplots demonstrating the precision of the confusion matrices 

computed for each data set. D. The distribution of correlations computed for each 

time-bin compared to a distribution of time shifted position estimates. E. Box plots 

of the mean correlation of decoded positions for each dataset. 

 

Figure 6. Bayesian decoding of hippocampal activity reveals that the two 

hippocampi encode similar positions during candidate replay events. A. Examples of 

trajectories decoded from each hippocampus during PAUSE and SLEEP. B. The 

distribution of mean event correlations computed for events in a single compared to 

a null distribution for both PAUSE and SLEEP replay events. The null distribution 

was derived by shuffling events within the group of events of the same length. C. 

Box plots comparing the distributions mean correlation for all events vs. the null 

distribution in all data sets. D. The distribution of mean event correlations as a 

function of hippocampal multi unit firing rate for a single animal. E. Box plots 

showing the distribution across all animals of mean event correlations for events 
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high (>50% median) and low (<50% median) multi-unit firing rates during PAUSE 

and SLEEP. 
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FIGURE 6 
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The Temporal Structure of CA1 Ripple 
Events 
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INTRODUCTION 
 

Uncovering the mechanisms of long-term memory formation has long been a pursuit 

of neuroscience; while a complete description of the mechanism is lacking, it is clear 

that the hippocampus plays an integral role. Lesion studies in both humans and 

animals have demonstrated that while the hippocampus does not store long-term 

memories (Squire & Alvarez, 1995), it is required for the formation of episodic 

memories (Schmolck, Kensinger, Corkin, & Squire, 2002). These findings 

demonstrated the importance in understanding the role of the hippocampus in 

determining the mechanisms of long-term memory formation. A prominent 

hypothesis of the hippocampus’s role in memory formation suggests that during 

learning, novel and salient information is encoded by the hippocampus. Then during 

later off-line periods information temporarily stored in the hippocampus is 

transferred to cortex for long-term encoding(Buzsáki, 1989). Hippocampal 

replay(Lee & Wilson, 2002; Wilson & McNaughton, 1994) is a candidate mechanism 

for the transfer of information to cortex for long-term memory formation. Disruption 

of replay events during sleep and behavior negatively impacts the behavioral 

correlates of spatial learning (Ego-Stengel & Wilson, 2010; Girardeau, Benchenane, 

Wiener, Buzsáki, & Zugaro, 2009; Jadhav, Kemere, German, & Frank, 2012). 

Furthermore, hippocampal replay is temporally correlated with different types of 

activity in cortex, both at the level of the local-field potential and in unit activity (Ji 

& Wilson, 2007; Penagos, 2010; Peyrache, Khamassi, Benchenane, Wiener, & 



Page 53 of 126 
 
 

Battaglia, 2009). These findings demonstrate that activity across the brain is 

correlated with hippocampal replay. 

 

The global mechanisms responsible for coordinating what gets replayed and when 

are unknown. The timescales on which activity is coordinated are also unknown. Is 

replay coordinated at the levels of individual events or are events coordinated at 

some finer timescale? Coordination on the time-scale of sharp-wave ripples is likely 

since hippocampal unit activity is timed to ripples and replay events can span 

multiple ripples (Davidson, Kloosterman, & Wilson, 2009). Additionally individual 

ripples are correlated with spindles in cortex (Siapas & Wilson, 1998; Sirota, 

Csicsvari, Buhl, & Buzsáki, 2003).  

 

This chapter will directly examine the temporal structure of ripple generation and 

present evidence that ripple generation is not random. Rather, evidence that ripple 

event generation is modulated by a 10-15 Hz rhythm is presented. We then observe 

this same rhythm in the unit activity of the hippocampus during ripple events, 

suggesting that the hippocampal replay code has rhythmic structure. Lastly, we will 

demonstrate the presence of similar rhythms the multi-unit activity of cortical 

regions downstream to the hippocampus. These results provide evidence that 

during potential replay events both hippocampal and cortical activity is coordinated 

to ripple events.  
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RESULTS 
 

Timing of CA1 Ripples and Units 

We analyzed the timing of ripple generation by the CA1 sub-region of the 

hippocampus. We started by detecting ripple events in the hippocampal LFP 

(Figure 1A) and then by grouping nearby ripples into sets. We then computed the 

intervals between adjacent ripple events (intervals greater than 1000ms were 

ignored, as they are not informative on the timescale of interest). The truncated 

distribution of inter-ripple-intervals was estimated using a histogram (5ms bins) 

and a kernel density estimator (Figure 1B). Both estimates had a peak at 75ms. 

The location of this peak indicates that ripple event generation is modulated by a 

10-15 Hz rhythm. Additionally, we found that more than 25% of all ripple events 

are generated as members of a ripple set (Figure 1C).  

 

Next we examined if multi-unit activity (MUA) in CA1 reflects the rhythmicity 

observed in ripple generation. We thought it likely, as hippocampal unit activity 

increases during ripple events (Figure 2A). We then computed the average multi-

unit firing rate in CA1 triggered on single ripples, doublets (sets with two or more 

ripples), and triplets (sets with three or more ripples). In all cases we observed a 

peak in the multi-unit firing rate that coincided with the ripple event. Furthermore, 

when doublets and triplets were used as the triggers, additional peaks were 

observed at 80 (Figure 2B,C) and 155ms (Figure 2C). The locations of these peaks 
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imply that unit activity in the hippocampus is modulated by the same 10-15 Hz 

rhythm that modulates ripple generation. 

 

MUA in RSX is Correlated with HPC Ripple and MUA 

We observed that MUA in RSX is moderately coordinated with ripples in CA1 

(Figure 3A). To characterize the relationship between ripples in CA1 and unit 

activity in RSX, we computed the average RSX MUA triggered on single ripples and 

doublets (Figure 3B). We observed that, on average, the RSX MUA peaked 10ms 

prior to the ripple, decreased substantially during the ripple, and then recovered 

approximately 95ms following the ripple. When doublets were used as triggers the 

peak of the recovery was significantly greater than for single ripples. The timing 

observed in the ripple-triggered averages was also reflected in the cross-correlation 

of HPC and RSX multi-unit rates (Figure 3C). 

 

Fast vs. Slow Doublets 

Next we sought to determine if the frequency of ripple generation had an impact on 

the structure of MUA in CA1 and RSX. We classified doublets (sets with two or 

more ripples) as “fast” or “slow” using the mean inter-ripple-interval (IRI) for each 

doublet. Doublets with a mean IRI less than 75ms were classified as fast and all 

other doublets were classified as slow. We observed that, on average, the HPC MUA 

was synchronized to the individual ripples in the doublet, regardless of the doublet 

class (Figure 4A). However, the relationship between ripple timing and RSX MUA 
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is not as robust as CA1. As we observed previously, RSX MUA is suppressed at the 

state of both fast and slow doublets; however, in the case of fast doublets the RSX 

MUA was suppressed for the duration of the doublet. Conversely, when slow 

doublets were used as triggers RSX MUA recovered prior to the onset of the second 

ripple (Figure 4B). These results suggest that ripple set speed could serve as a 

gating mechanism that either facilitates or inhibits cross-structural coordination 

during replay events. 
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DISCUSSION 
 

In summary we observed that timing of ripple generation by CA1 is modulated by a 

10-15 Hz rhythm. Further evidence for this rhythm was also observed in the ripple 

associated MUA of CA1. Next, we demonstrated that unit activity in RSX is 

temporally correlated with CA1 ripples. Lastly we demonstrated that coordination 

between CA1 and RSX is stronger during slow ripple events. These results provide 

strong evidence that the 10-15Hz rhythm observed in HPC ripple and MUA activity 

likely exists in other structures.  

 

Previous reports have demonstrated that hippocampal replay can span multiple 

ripples (Davidson et al., 2009). However, the dynamics governing the timing of 

ripple generation were undetermined. Furthermore, it was unknown whether 

ripples were generated with predictable timing or at random intervals. Here we 

have presented strong evidence that ripple generation is not random but rather 

event generation is modulated by a 10-15Hz rhythm. These results are important, 

as this structure will enable other brain regions to synchronize with replay-

associated activity in the hippocampus. Future work should focus on identifying the 

source of this rhythm and connecting it to already classified oscillation such as sleep 

spindles and the beta rhythm.  

 

Lastly, the finding that activity in RSX is entrained to slow doublets but not fast 

doublets suggest a dual function for HPC ripples. It may be that fast doublets are 
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expressed at times when the hippocampus is disconnected from its downstream 

structures and that slow doublets are used to facilitate the transfer of information 

between different brain regions.  
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METHODS 
 

Electrophysiology and Behavior 

Two male Long-Evans rats, weighing between 400 and 600 grams, were implanted 

with micro-drive arrays(Kloosterman et al., 2009) containing up to 30 

independently movable tetrodes(Nguyen et al., 2009) targeted at dorsal CA1, retro-

splenial cortex, and the anterior-dorsal thalamus. Following surgery, over the 

course of several weeks the tetrodes were slowly lowered into the brain until they 

reached their target structure. A single tetrode was left in white matter dorsal to 

CA1 to serve as a reference electrode. Signals from each tetrode were split into 

spike and local field potential channels. The spike channels were filtered between 

300 Hz - 6 kHz. Extra-cellular action potentials were detected as threshold 

crossings on any tetrode channel, and a 32-sample spike waveform for each channel 

was recorded for each threshold crossing. Local field potential signals were filtered 

between 0.5 and 475 Hz and sampled at 1500 Hz. Data on tetrodes with noise was 

discarded. 

 

Over the course of the experiment the rats were placed in a sleep box, or chamber 

used to encourage the sleeping. On several days the rats performed a navigation 

task, although only data acquired during sleep was analyzed. Movement in the 

sleep box was recorded using an overhead video camera and a precise estimate of 

position was computed using infrared light emitting diodes mounted on the micro-

drive. Periods of prolonged immobility (>100 seconds) were analyzed. All 
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experiments were conducted in accordance with the guidelines of the US National 

Institute of Health, and under the supervision of their respective animal care 

facilities. 

 

Ripple Event Detection 

We used a variation of a previously published method to detect ripple 

events(Csicsvari et al., 1999) in the hippocampal local field potential. Briefly, the 

wide-band LFP was filtered between 150-250 Hz, and then the envelope of the 

filtered signal was computed using the absolute value of the Hilbert transform. 

Periods of time when the envelope of the filtered signal remained above a low 

threshold (1 SD) for at least 25ms while also exceeding a 2nd higher (5 SD) at least 

once were classified as candidate ripple events. Ripple times were computed as the 

timestamp of global maximum of the band-pass filtered signal for each event.  

 

Ripple Set Classification 

Ripple sets were constructed as follows. Any ripples that occurred more than 500ms 

after the previous ripple were assigned to a new set. All ripples that occurred within 

250ms of the previous ripple were added to the previous ripple’s set. Ripple sets 

containing a single ripple were classified as singlets while sets containing a 

minimum of 2 or 3 ripples were classified as doublets and triplets, respectively. 

Doublets were divided into fast and slow groups using the mean inter-ripple-

interval for each set. Sets with a mean inter-ripple-interval less than 75ms were 
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classified as fast doublets; whereas, sets with a mean inter-ripple interval greater 

than 75ms were classified as slow doublets. 

 

Multi-Unit Rate Estimates 

The multi-unit firing rate for each structure was estimated using a variation of 

previously published methods(Davidson et al., 2009). Briefly, the multi-unit firing 

rate was estimated using a smoothed histogram (5ms bins; Gaussian kernel 10ms 

SD) constructed using the spike times from all tetrodes in the same structure, 

normalized by the number of tetrodes. 
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FIGURE LEGENDS 
 

Figure 1. Ripple generation by CA1 is modulated by a 10-15 Hz rhythm. A. 4 

examples of unfiltered local field potential, recorded in CA1. Each trace contains a 

set of sharp-wave ripple events. B. The distribution of inter-ripple-intervals was 

estimated using an unsmoothed histogram (5ms time-bins) and a kernel density 

estimator. C. The distribution of ripple set size, truncated to a set length of 5. 

 

Figure 2. During ripple sets, CA1 unit activity is entrained by the same rhythm 

that modulates the timing of ripple generation. A. 3 examples of unfiltered local 

field potential and the multi-unit firing rate, both in CA1, during ripple sets. B. The 

average multi-unit firing rate in CA1 triggered on all ripples (black), single ripples 

(red), and ripple doublets (blue), sets with 2 or more ripples. C. The average multi-

unit firing rate in CA1 triggered on all ripples (black), single ripples (red), and 

ripple triplets (green), sets with 3 or more ripples. 

 

Figure 3. During ripple sets, unit activity in RSX is correlated with both unit and 

ripple activity in CA1. A. 3 examples of unfiltered local field potential, in CA1, and 

the multi-unit firing rate in RSX. B. The average multi-unit firing rate in RSX 

triggered on single ripples (red) and ripple doublets (blue). C. The cross correlation 

of the multi-unit firing from CA1 and RSX.  
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Figure 4. Unit activity in RSX is more strongly modulated by slow ripple sets 

(mean inter-ripple-interval > 75ms) than fast ripple sets (mean inter-ripple-interval 

< 75ms). A. The average multi-unit firing rate in HPC triggered on fast (blue) and 

slow (gray) ripple doublets. B. The average multi-unit firing rate in RSX triggered 

on fast (green) and slow (gray) ripple doublets. 
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Figure 2 
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Figure 3 
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Figure 4 
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Abstract 
 
A fundamental task in neuroscience is to understand how neural ensembles 

represent information. Population decoding is a useful tool to extract information 

from neuronal populations based on the ensemble spiking activity. We propose a 

novel Bayesian decoding paradigm to decode unsorted spikes in the rat 

hippocampus. By directly using spike waveform features such as the peak 

amplitude, our approach integrates encoding and decoding into a coherent 

framework and avoids accumulation of spike-sorting errors. Our decoding paradigm 

is nonparametric, encoding model-free for representing stimuli, and minimizes 

information loss by utilizing all available spikes. We apply the proposed Bayesian 

decoding algorithm to a position reconstruction task for freely behaving rats based 

on tetrode recordings of rat hippocampal neuronal activity. Our detailed decoding 

analyses demonstrate that our approach is efficient and provides a more accurate 

position estimate than the standard sorting-based decoding algorithm. Our 

approach can be adapted to an online encoding/decoding framework for applications 

that require real-time decoding, such as brain-machine interfaces. 
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INTRODUCTION 
 

Features of sensory stimuli and intended motor actions are reflected in the activity 

of neuronal ensembles that are distributed across the brain (Sanger, 2003; Huys et 

al., 2007; Boloori et al., 2010). A fundamental goal in neuroscience is to understand 

how the information about external stimuli is transformed into neural activity 

patterns and how this information is represented in the brain. The relationship 

between stimuli and neural activity can be described by statistical encoding models 

(Brown et al., 1998; Sanger, 2003; Truccolo et al., 2005; Paninski et al., 2007). 

Inversion of these encoding models, i.e. extraction of information about the stimulus 

from observed neural activity (“neural decoding”), aids in revealing the principles of 

the encoding process (Quian Quiroga and Panzeri, 2009). Neural decoding can also 

be applied to uncover internal neural representations in the absence of an overt 

stimulus, for example the re-expression of spatial sequences in the hippocampus 

(Davidson et al., 2009; Gupta et al., 2010) or movement intentions in motor cortices 

(Georgopoulos et al., 1986; Zhuang et al., 2010). Decoding motor plans in particular 

is an important part of the development of neural prosthetics and brain-machine 

interfaces which may restore motor function in patients with neurological damage 

(Chapin, 2004; Schwartz et al., 2006; Hochberg et al., 2012). 

 

The principal goal of neural decoding is to extract as much information about a 

stimulus as possible from a neural signal. As with all signal processing, any 

additional operation on the raw signal in neural decoding adds complexity and leads 
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to possible loss of information. Most approaches for decoding neural spiking activity 

rely on the intermediate step of sorting spike waveforms into groups of single units. 

The spike sorting process is subject to at least two problems that could affect 

decoding performance. The first issue is that the goal of neural decoding to 

minimize the decoding error is substantially different from the goal to label each 

spike uniquely and confidently with the identity of the cell that emitted it. In 

particular spike sorting is generally conservative and many spikes are left 

unclassified in an attempt to minimize classification errors. However, spikes thrown 

out during the sorting process could still convey information about the stimulus and 

hence contribute to decoding performance. Second, inherent to spike sorting are 

misclassification errors – that is, incorrect assignment of spikes to a unit. 

Theoretical analysis has shown that different spike sorting errors have various 

impacts on information capacity, with false positive errors having the most serious 

effect (Goodman and Johnson, 2008). Another potential source of misclassification is 

the use of hard decision boundaries – it has been suggested that a soft decision 

boundary is more appropriate for evaluating neural ensemble codes (Wood and 

Black, 2008).  

 

To maximize the stimulus information extracted from neural spiking activity, we 

propose a novel Bayesian decoding paradigm that does not require the intermediate 

step of spike sorting. Key in our approach is a direct mapping between the raw data 

(i.e. spike waveform features) and the stimulus in a joint probability distribution. 
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This allows all detected spikes to be incorporated into the decoding process and 

hence information loss is minimized. In contrast to previous work, our approach 

does not assume a parametric or biophysical model to describe the relation between 

stimulus and neural activity. 

 

The performance of the new decoding approach is analyzed by applying it to 

hippocampal population recordings in order to estimation the location of a rat on a 

track. 
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METHODS 
 

Spike feature decoding framework 
ENCODING MODEL. The ultimate goal of our method is to reconstruct a sensory 

stimulus, motor action or other covariate (from here on referred to as “stimulus”) 

from neuronal spiking activity recorded from an array of sensors (e.g. single wire 

electrodes, stereotrodes or tetrodes). First, we build an encoding model that relates 

the neural activity on a single sensor to the stimulus of interest. Let’s assume that 

in the time period (0,𝑇] we recorded the time varying stimulus vector 𝒙(𝑡) as well as 

N discrete spike events and their waveforms at times 𝑡!, with 0 < 𝑡! < 𝑡! < ⋯ < 𝑡! ≤

𝑇. The detected spikes are treated as a spatial-temporal Poisson process, or 

equivalently as a marked temporal Poisson process, in which the spatial component 

(the “mark”) is a vector space 𝑆 of spike waveform features 𝒂 ∈ 𝑆. Examples of 

typical waveform features are peak amplitude, spike width, extracted principal 

components or other derived features. The same waveform features are generally 

used by spike sorting processes to extract single units from multi-unit activity. In 

our approach the spike-sorting step is bypassed by creating a direct mapping 

between spike waveform features and stimulus (Fig. 1). The spatial-temporal 

Poisson process is fully characterized by its generalized rate function 𝜆(𝒂, 𝑡). In 

cases when the rate is determined by the stimulus of interest, the rate function can 

be re-expressed as 𝜆 𝒂, 𝑡 = 𝜆(𝒂,𝒙 𝑡 ). Here, 𝜆(𝒂,𝒙) can be viewed as a tuning curve 

which relates the average rate of spike events with waveform features a to the 

stimulus x. 
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To compute the probability that we observe n spikes with associated features 𝒂!:! in 

a small time window [𝑡, 𝑡 + Δ𝑡) in the presence of a known stimulus, the waveform 

feature space S is first divided into J non-overlapping regions: 𝑆 ≡ 𝑆! ∪ 𝑆! ∪⋯∪ 𝑆! . 

Each region 𝑆! contains 𝑛! spikes, which is a subset of the observed n spikes (i.e. 

𝑛! = 𝑛!
!!! ). The expected number of spikes in each region 𝑆! follows a Poisson 

distribution with rate function: 𝜆!! 𝒙 = 𝜆 𝒂,𝒙 𝑑𝒂!!
. The likelihood of finding 

exactly 𝑛!:! spikes in regions 𝑆!:! can be computed from the product of Poisson 

likelihoods of all regions:  

𝑃 𝒂!:!|𝒙 = 𝑃 𝑛!:! 𝒙 = 𝑃 𝑛! 𝒙 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑛!; 𝜆!! 𝒙
!

!!!

!

!!!

  

=
Δ𝑡 𝜆 𝒂, 𝒙 𝑑𝒂!!

!!!

!!!
𝑒
−Δ𝑡 𝜆 𝒂, 𝒙 𝑑𝒂!!

!
!!!

𝑛!!
!

!!!

 

(1) 

In the limiting case when regions 𝑆!:! become sufficiently small such that 𝑛!:! are 

equal to 0 or 1 within the time interval Δ𝑡, the likelihood can be rewritten as: 

𝑃 𝒂!:!|𝒙 = Δ𝑡 ! 𝜆(𝒂! , 𝒙)
!

!!!

𝑒!!!"(𝒙)  (2) 

This likelihood function, when calculated for all possible waveform feature vectors 

a, completely characterizes the encoding process for a single sensor. For multiple 

sensors, assuming conditional spiking independence between sensors (i.e., each 

sensor records from an independent population of neurons), the joint data likelihood 

can be computed as a product of individual likelihoods contributed by each sensor. 
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For K sensors and 𝑛! spike events on the k-th electrode, the joint likelihood is given 

by: 

𝑃 𝒂!:! 𝒙 = 𝑃(𝒂!:!!|𝒙)
!

!!!

 (3) 

 

RELATION TO ENCODING WITH SPIKE SORTED UNITS. It is possible to choose the spike 

feature a such that it is a discrete scalar variable that represents cell identity (for 

example obtained through a spike sorting procedure). In that case, each region 𝑆! 

can be constructed such that it corresponds to a single cell c. This means that 

𝜆!(𝑥) = 𝜆!! 𝑥  is the tuning curve of cell c and 𝑛! = 𝑛! is the number of spikes 

emitted by cell c. By rewriting Eq. (1) we recover the likelihood for a population of 

spike sorted cells as a special case (Zhang et al., 1998): 

𝑃 𝑛!:! 𝒙 =
(Δ𝑡)!

𝑛!!!
!!!

𝜆!(𝒙)!!
!

!!!

𝑒−Δ𝑡 𝜆!!
!!! (𝒙)  (4) 

where C is the total number of cells and 𝑁 = 𝑛!!
!!!  is the total number of spike 

events. 

 

EVALUATION OF THE LIKELIHOOD. To compute the likelihood in Eq. (2), 

representations of the generalized rate function 𝜆(𝒂,𝒙) and its marginal rate 

function 𝜆(𝒙) need to be constructed. A parametric model of the rate functions 

would allow for straightforward evaluation during decoding, however, it is not clear 

what model, if any, would be appropriate. In contrast, non-parametric models 
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provide a more flexible estimate of the rate functions. For low dimensional problems 

simple histogram based rate functions can be pre-computed. This approach, 

however, quickly becomes impractical for a higher number of dimensions. For 

instance, tetrode recordings have four feature dimensions (e.g. spike waveform peak 

amplitude on each of the four tetrode wires) and at least one stimulus dimension. If 

each dimension were divided into 100 bins, a histogram-based representation would 

require a minimum of 1005 or 10,000,000,000 elements to be stored. This 

representation would require over 18 GB of memory (assuming 2 bytes of memory 

per element) for each tetrode and over 300 GB for an array of 18 tetrodes. In 

practice this representation would be extremely wasteful as only a fraction of the 

elements will be non-zero. For this reason we used kernel-density based estimators 

of the rate functions that are evaluated during the decoding process (see Bayesian 

decoding). 

To construct the kernel-density estimators, the generalized rate function 𝜆 𝒂,𝒙  and 

the marginal rate function 𝜆 𝒙  are decomposed into spike event probability 

distributions (𝑝 𝒂,𝒙  and 𝑝 𝒙 ) and a stimulus probability distribution (𝜋 𝒙 ): 

𝜆 𝒂, 𝒙 =
#𝑠𝑝𝑖𝑘𝑒𝑠(𝒂, 𝒙)
𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦(𝒙)

=
𝑁
𝑇
𝑝(𝒂, 𝒙)
𝜋(𝒙)

= 𝜇
𝑝(𝒂, 𝒙)
𝜋(𝒙)

 (5) 

𝜆 𝒙 = 𝜇
𝑝(𝒙)
𝜋(𝒙)

 (6) 

Here, #spikes represents a spike count, occupancy represents the total presentation 

time of stimulus x; N is the total number of spikes recorded in the time interval 

(0,𝑇] and 𝜇 is the average spiking rate. 
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The probability distributions  𝑝 𝒂,𝒙 , 𝑝 𝒙  and 𝜋 𝒙  can be estimated using the 

following multivariate kernel product density estimators: 

𝑝 𝒂, 𝒙 =
1
𝑁

𝐾!! 𝒂 − 𝒂!,!

!

!!!

!

!!!

𝐾!! 𝒙 − 𝒙!,!

!

!!!

 (7) 

𝑝 𝒙 =
1
𝑁

𝐾!! 𝒙 − 𝒙!,!

!

!!!

!

!!!

 (8) 

𝜋 𝒙 =
1
𝑅

𝐾!!(𝒙 − 𝒙!,!)
!

!!!

!

!!!

 (9) 

Here, d is the dimensionality of the feature vector a and q is the dimensionality of 

the stimulus x. 𝒂!,𝒙! !!!
!  represents the set of N spikes with associated feature 

vectors and stimuli which are collected during the encoding phase. 𝒙! !!!
!  

represents the set of R observed (or chosen) stimuli, which are generally sampled at 

regular time intervals during the encoding stage. 𝐾!(∙) is a kernel function with 

bandwidth h. Examples of kernels that may be used are: Gaussian, Epanechnikov, 

uniform, von Mises (for circular variables) or Kronecker delta (for discrete 

variables). The bandwidth of a kernel determines the amount of smoothing that is 

applied to the underlying data and therefore has a strong influence on the shape of 

the final density estimate. 

 

BAYESIAN DECODING. To infer the uncertainty or probability of a hidden stimulus 𝒙! 

at time t given the observed m spike events with associated features 𝒂!:!, we resort 

to Bayes rule:  
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𝑃 𝒙! 𝒂!:! =
𝑃 𝒂!:! 𝒙! 𝑃(𝒙!)

𝑃(𝒂!:!)
 (10) 

Bayes rule provides a way to combine prior information about the stimulus 𝑃(𝒙!) 

with information obtained from observations through the likelihood function 

𝑃 𝒂!:! 𝒙!  (taken from Eqs. (2) and (3)). The denominator 𝑃(𝒂!:!) is a normalizing 

constant such that the posterior 𝑃 𝒙! 𝒂!:!  is a proper probability distribution. The 

posterior distribution contains all information about the stimulus at time t that can 

be extracted from the observed spike events. If a non-informative temporal prior is 

assumed, then the aim of Bayesian decoding is to maximize the product of the 

likelihood and time-independent prior: 𝑃(𝒙|𝒂!:!) ∝ 𝑃 𝒂!:! 𝒙 𝑃(𝒙). If a completely 

non-informative prior is assumed, then Bayesian decoding is analogous to 

maximum likelihood estimation: 𝑃(𝒙|𝒂!:!) ∝ 𝑃 𝒂!:! 𝒙 . 

 

IMPLEMENTATION. The spike feature based decoder was implemented in Matlab (The 

Mathworks, Natick, MA) with custom C extensions. In Eqs. (5)-(9) we developed a 

representation for the rate functions 𝜆 𝒂,𝒙  and 𝜆 𝒙 , which are needed to compute 

the likelihood in Eq. (2). These rate functions are evaluated during the decoding 

stage and hence the only operation performed during encoding is the storage of the 

detected spikes and the stimulus. Decoding is performed separately for pre-defined 

time bins. For each detected spike and its associated features within a time bin, the 

rate function 𝜆 𝒂,𝒙  (Eq. (5)) is evaluated at a user-defined grid in stimulus space. 

Note that 𝑝 𝒙  and 𝜋 𝒙  and hence 𝜆 𝒙   can be pre-computed as they only depend on 

the spikes recorded in the encoding stage and not on the spikes observed in the 
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decoding stage. Finally, the likelihood (Eqs. (2) and (3)) and the posterior 

distributions (Eq. (10)) can be computed. Computations are performed in log-space, 

such that products in Eq. (2) are replaced by summations. 

 

Application to hippocampal recordings 

ELECTROPHYSIOLOGY AND BEHAVIOR. Eight male Long-Evans rats, weighing between 

400 and 600 grams, were implanted with custom-made micro-drive arrays 

(Kloosterman et al., 2009; Nguyen et al., 2009). Individual arrays carried between 

9-24 independently moveable tetrodes targeted to either the right dorsal 

hippocampus (n=8) or bilaterally to both hippocampi (n=4) (coordinates: 2.5 mm 

lateral and 4.0 mm posterior to bregma). The tetrodes were slowly lowered into the 

brain until they reached the cell layer of CA1 two to four weeks following array 

implantation. A reference electrode was positioned in the white matter overlying 

the dorsal hippocampus. In the case of bilateral recordings, separate ipsilateral 

references were used for each hippocampus. Signals were filtered between 300 Hz - 

6 kHz and all extracellular spike waveforms that crossed a preset amplitude 

threshold (73uV) on any of the four tetrode channels were sampled at 31250 Hz (32 

samples per spike waveform) and saved to disk. 

During 30-60 minute long recording sessions rats were allowed to freely explore a 

3.1-m linear track. While no behavioral restrictions were placed on the rats, they 

did receive a small food reward (chocolate sprinkle, fruit loop, etc.) at alternating 

ends of the track to encourage exploration. The position of the rats was tracked at 
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30 Hz using an overhead video camera and infrared light emitting diodes mounted 

on the implanted micro-drive array. All experiments were conducted under the 

supervision of the Massachusetts Institute of Technology Committee on Animal 

Care and followed the guidelines of the US National Institute of Health. 

 

DECODING OF ANIMAL’S POSITION. Data collected in a recording session was divided 

into a training set for construction of the encoding model, and a testing set for 

evaluation of the decoding. In both data sets only RUN epochs, when the animals 

were actively moving along the track at a speed higher than 15 cm/s, were selected 

for analyses. The stimulus of interest x corresponds to the one-dimensional position 

of the animals along the track. Only spikes of putative pyramidal cells (spike peak-

trough latency > 0.375 ms) that have a minimum peak amplitude of 125 µV were 

selected for decoding analysis. A four dimensional spike feature vector a was 

constructed from the spike waveform peak amplitudes on each tetrode. To establish 

a kernel density based estimate of the rate functions we used a truncated Gaussian 

kernel (cut-off at 4 standard deviations) for both the spike amplitude dimensions 

and the position dimension. For spike amplitude an isotropic kernel was used with 

the same kernel bandwidth in all four dimensions. The rate functions were 

evaluated at a regular grid with 10 cm intervals that spanned the whole track. For 

decoding, the testing data set was divided into non-overlapping 250 ms long time 

bins and spikes within each bin were used to compute the posterior distribution of 

position according to Eq. (10). A non-informative prior was used, making the 
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decoding similar to maximum likelihood estimation. The decoding error in each 

time bin was computed as the absolute difference between the true (observed) 

position at the center of the time bin and the maximum a posteriori (MAP) estimate 

of position. To assess decoding performance, we analyzed the cumulative 

distribution of decoding error, the median error and the confusion matrix.  

 

SPIKE SORTING BASED DECODING. For decoding based on sorted units, spikes were 

manually sorted on the basis of their 4-dimensional peak amplitude vectors using 

custom software (XClust, M.A.W.). Polygon cluster boundaries were defined using 

spikes in the training data set; these boundaries were then applied to spikes from 

the test dataset. Similar to the spike feature based decoding, all spikes were 

thresholded at 125 µV and only putative pyramidal neurons with a mean spike 

peak-to-trough latency >0.375 ms were included in the analysis. The spatial tuning 

curve of each cell was constructed using kernel-density estimation with a truncated 

Gaussian kernel and a spatial bandwidth that matched the bandwidth used for 

spike feature based decoding.  

 

RANDOMIZATION. To analyze in more detail the contribution of the association 

between spike amplitude vectors and position to decoding performance, two 

randomization procedures were used. For all spikes in the encoding stage, we either 

shuffled their positions on the track or their associated spike amplitude vectors. A 

total of 500 independent shuffles were performed to obtain a distribution of median 
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decoding errors. Based on this distribution, a Monte-Carlo P-value was calculated 

for the observed median decoding error obtained in the original non-randomized 

dataset. 
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RESULTS 
 

A total of 12 datasets from 8 rats were used to test the spike feature based decoding 

approach. Table 1 summarizes the experimental data and Table 2 tabulates the 

decoding results, as discussed in more detail below.  

 

Figure 2 shows an example of decoding the position of a rat (dataset SL15, see Table 

1) using the peak amplitudes of recorded hippocampal spikes as feature vector. 

Qualitatively, our estimates of the rat's position on the track accurately follow its 

true position during periods of locomotion (Fig. 2A-B). To assess the decoding 

performance, we computed a confusion matrix (Fig. 2C) and the distribution of 

errors (Fig. 2D). In this example, the median decoding error is 5.4 cm (which is less 

than the 10 cm sampling interval) and 90% of the errors fall within 19.7 cm. The 

confusion matrix shows a dominant diagonal structure, which indicates a high 

accuracy of decoding at most locations along the track. 

 

Choice of the kernel bandwidth 

For the kernel density based estimates of the rate functions in the encoding model it 

is important to select appropriate kernel bandwidth parameters that do not under-

smooth nor over-smooth the density. To determine the optimal bandwidths for the 

spike amplitude and position dimensions, decoding performance was assessed while 

varying the bandwidth parameters. For the example dataset shown in Figure 2, the 

combination of bandwidth parameters that minimized the median decoding error 
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was 30 µV for the spike amplitude and 10 cm for position (Fig. 3). Across all 

datasets, decoding performance deteriorated rapidly for small bandwidths (below 10 

µV and 5 cm) and more gradually for increasing bandwidths. Optimal bandwidth 

parameters varied between 10 µV and 40 µV for spike amplitude and between 5 cm 

and 20 cm for position. The bandwidth combination of 30 µV and 10 cm produced 

(near) optimal decoding performance in all datasets and was therefore used for all 

subsequent analyses.  

 

Contribution of spike amplitude information 

Using the selected bandwidths, the median decoding error across all datasets varied 

from 5.3 cm to 15.0 cm, with an average median error of 9.1 cm (see Table 2, column 

2). To investigate the extent to which spike amplitude information aids in the 

decoding of position, we compared the performance to a decoder based on spike 

timing alone using a single spatial tuning curve for each tetrode (multi-unit activity 

(MUA) decoding;  see (Fraser et al., 2009)). In all datasets the error distribution of 

the MUA decoder is significantly larger than the error distribution of the spike 

feature based decoder (one-sided two-sample Kolmogorov-Smirnov test, p < 0.03  to 

p < 6×10-14; see example in Fig. 2D). Overall, the median error was significantly 

reduced when spike amplitude information was included in our spike feature based 

decoding approach (Fig. 4A; see Table 2, columns 1 and 2; paired rank-sum test, p = 

4.88×10-4). To further investigate the contribution of spike amplitude information, 

we randomly shuffled the amplitude vectors of the spikes in the training set used to 
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construct the encoding model. In all datasets the median decoding error is 

significantly lower than what is expected by chance based on 500 shuffles (two-sided 

Monte Carlo p-value = 0.002; see example in Fig. 2E). After random shuffling of the 

spike amplitude vectors the decoding performance is worse than when decoding 

based on multi-unit activity alone (e.g. see Fig. 2E), even though in both cases only 

spike timing information can be used for decoding. The reason for this discrepancy 

is that after amplitude randomization, the selected kernel bandwidth of 30 µV is 

suboptimal (not shown). The decoding performance after shuffling will converge to 

the performance of the MUA based decoder when the bandwidth for the spike 

amplitude dimensions is increased towards infinity. 

  

Effect of electrode configuration 

Next, we examined the effect of electrode configuration (single-wire electrode, 

stereotrode or tetrode) on the performance of our spike feature based decoding. This 

question is motivated by the fact that the use of a particular electrode configuration 

varies between experiments and is also often correlated with different animal 

models and brain regions. Single-wire electrode and stereotrode configurations were 

simulated in our datasets by randomly selecting one or two channels for each 

tetrode. The spike amplitude threshold of 125 µV was re-applied after the selection, 

which reduced the total number of spikes used to construct the encoding model to 

49.8% ± 10.2% and 71.5% ± 6.2%  relative to the tetrode configuration for single 

wire and stereotrode respectively. The same sets of thresholded spikes were used in 
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MUA-based decoding for each electrode configuration. The spike amplitude based 

decoding for the simulated single wire electrode and stereotrode configurations was 

more accurate than the corresponding MUA decoder that only uses spike timing 

(one-sided two-sample Kolmogorov–Smirnov test of difference in error distributions, 

p < 0.01). The median decoding error for all data sets and across all electrode 

configurations is shown in Figure 4B. At the group level, the median error was 

reduced significantly when comparing stereotrodes to single-wire electrodes (paired 

rank-sum test, p = 4.8×10-4), or when comparing tetrodes to stereotrodes (paired 

rank-sum test, p = 4.8×10-4). The relative benefit of stereotrodes over single wire 

electrodes (range: 9%-65%, mean benefit 35%) was significantly (paired rank-sum 

test, p=0.0771 and p<.033 two sample KS test) larger than the benefit of tetrodes 

over stereotrodes (range: 9%-42.6%, mean benefit 24.5%).  

 

Comparison with decoding using sorted single-units 

Next, we compared the spike feature decoding approach to the standard practice in 

which spikes recorded on tetrodes are first sorted into separate single units (“single 

unit decoder”, see (Zhang et al., 1998)). As shown in Table 1, the number of sorted 

units across all datasets ranges from 9-41, and the fraction of sorted spikes out of 

all selected putative pyramidal neuron spikes ranges from 3.4% to 64.2%. Most non-

sorted spikes had maximum peak amplitude below 200 µV (59.7% to 75.1% of all 

selected spikes). Thus, the spike feature decoding approach can use information 

about the stimulus that is carried by spikes in low-amplitude regions, where spike 



Page 91 of 126 
 
 

sorting is difficult or impossible because of the high overlap between individual 

units and background activity. 

At the group level, the spike feature decoder performed significantly better than the 

decoder based on sorted single units (Fig. 5A; paired rank-sum test, p = 9.8×10-4). 

The level of performance improvement varied across the datasets. For the subset of 

datasets with a large number of isolated units (≥ 25 units) the performance of the 

two decoders was similar (Table 2, bottom 7 datasets; Fig. 5B). In contrast, a large 

increase in performance was observed for data sets with a low number of isolated 

units (< 25 units) (Table 2, top 5 datasets; Fig. 5B). Applying the spike feature 

decoding approach to the subset of successfully sorted spikes only resulted in 

decoding errors that were comparable to the single unit decoder in all datasets (Fig. 

5). This observation indicates that the improved performance of the spike feature 

decoder is due to the inclusion of non-sorted spikes. 

 

Unsupervised encoding-decoding paradigm 

Both encoding and decoding phases of the spike feature decoding paradigm can be 

performed without supervision. As such, this new paradigm is well suited for online 

decoding of stimuli from ongoing neural activity as is required for brain-computer 

interfaces. To demonstrate this we simulate an experiment in which the position of 

a rat is estimated as it explores a new environment (linear track) for the first time. 

As soon as the rat enters the new environment, neural data is acquired and for 

every 250 ms time bin the spikes and their waveform features are used to compute 
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an estimate of position. If the rat is actively moving (speed > 15 cm/s) in the same 

time bin, the encoding model is updated using the newly acquired spikes, their 

waveform features and the rat's physical location in the track. Thus at any given 

time decoding is performed using only the recorded spike data in the past. Figure 

6A shows the position estimates for the first two laps on the track. The estimate of 

the first lap of behavior is poor as there are only a few source spike events used for 

the reconstruction. However, this is in stark contrast to the second lap as the 

position estimate clearly recapitulates the rat's behavior, the median decoding error 

for the second lap only is 6.1 cm. As the experiment continues each successive lap 

uses the spikes of all preceding history in the encoding model. The position 

reconstruction of each lap is accurate as shown by the low median errors (Fig. 6B). 

These results suggest that only a limited amount of spiking history may be 

necessary to achieve accurate decoding results when online real-time decoding is 

required. 
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DISCUSSION 
 

We have demonstrated a novel Bayesian neural decoding approach that implements 

a direct mapping between spike waveform features and a sensory stimulus or other 

covariates. This new approach has several important advantages over other 

methods. First, the spike feature decoder uses both the timing and waveform 

features of all available spike events to maximize the amount of stimulus-related 

information that can be extracted from the neural signals. Second, there is no need 

for an intermediate spike sorting step that adds complexity and may lead to loss of 

information. Third, our approach defines a non-parametric encoding model to 

flexibly describe the relation between the stimulus and neural activity. And finally, 

the spike feature decoder allows both encoding and decoding stages to be performed 

without supervision. 

 

We tested the new decoding method on tetrode recordings from the hippocampus in 

freely behaving rats and showed that the animal’s location on a track could be 

accurately estimated. Our analysis showed that the inclusion of spike waveform 

features from all four channels on a tetrode resulted in significantly lower decoding 

errors than (simulated) stereotrode or single wire recordings in the same datasets. 

Two factors may contribute to this performance increase: a higher number of spike 

events that meet the peak amplitude threshold on tetrodes and the added spike 

feature dimensions that increase information content. Even so, if a trade-off has to 

be made between the number of wires and decoding performance, single wires or 
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stereotrode may be a good choice and provide better performance than using spike 

timing alone. 

 

In our tests we used spike peak amplitude as the feature for decoding, however it is 

possible to use any other set of spike features as well, for example waveform width, 

wave-shape parameters, or principal components. Our approach takes advantage of 

the same spike waveform information as most spike sorting methods, but does so 

without an explicit sorting step. The spike feature decoding approach performs at a 

similar level as decoding using spike sorted units, when applied to the identical set 

of (sorted) spike events. However, the new approach can utilize information carried 

by spikes that cannot be confidently classified as belonging to a single unit. In 

particular, many low-amplitude spikes that originate from cells far from the 

electrode are generally not classifiable. Still, these spikes may convey a small 

amount of information about the stimulus that can be extracted by the decoder. In 

our tests, we noticed the largest performance gain for data sets in which units were 

poorly separated. 

 

It is noteworthy to point out the key differences between our approach and other 

paradigms in which neural spiking data was used for decoding without a spike 

sorting step. Ventura (2008) proposed a paradigm in which the identities of neurons 

are extracted implicitly from the spike train recorded on a single electrode by 

assuming a known parametric model for the neurons’ tuning to the stimulus. This 
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approach worked well in simulations, but was not applied to real data set and it is 

not clear if the method will work equally well for populations of neurons with 

complex, non-parametric tuning functions. In addition, the decoding step assumes 

that the temporal evolution of the stimulus is smooth (Ventura, 2008). This 

assumption is not necessarily true or known to be true, for example if the goal is to 

decode a hidden stimulus with unknown temporal dynamics (Davidson et al., 2009; 

Kloosterman, 2011). In another study, multi-unit activity responses to movement 

where fitted with a spline function (Fraser et al., 2009) and thus each electrode was 

treated as a single “virtual” unit. This approach may work well if only a few 

neurons are recorded on each electrode, or if all neurons contributing to the multi-

unit activity have similar tuning properties. However, this method will likely 

perform poorly if the MUA contains spikes from many neurons with diverse 

responses, for example in the hippocampus. Stark and Abeles (2007) presented 

another interesting approach in which multi-unit activity, defined as the root-mean-

square of the 300 Hz – 6 kHz band of the local field potential, was used to predict 

arm movement in monkeys. In this method, spiking activity was not modeled 

explicitly and decoding was performed by a support vector machine classifier. 

Unlike our approach, the measure of multi-unit activity in Stark and Abeles (2007) 

does not separate the contributions of spike rate and amplitude. 

 

The main strength of the proposed spike feature decoding approach is that it 

provides straightforward stimulus estimation from information-rich spiking data in 
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an unsupervised manner. The method can be applied in online and real-time 

encoding/decoding scenarios, which makes it appealing for brain machine interfaces 

and neural prosthetics that use chronic implants. By utilizing the information 

carried by all spikes, whether or not they can be uniquely assigned to a single 

neuron, the spike feature decoding approach is more robust to changes in signal 

quality as observed in chronic recording applications. In addition, non-stationarity 

of the neural signals which is commonly encountered in long-term recordings and 

slow changes in the encoding model can be easily handled by restricting the spike 

events that contribute to the encoding model to a finite temporal window.  

 

For online applications it is important that the computations for encoding and 

decoding stages can be performed in real-time. In our current implementation 

encoding is cheap (all recorded spikes are simply retained), whereas decoding is 

computationally intensive. The complexity of decoding scales with the total number 

of spike events incorporated in the encoding model. Several strategies can be used 

to decrease the computational burden. First, it is possible to exclude spike events 

based on their waveform properties. For example, in our tests we filtered out spikes 

with peak amplitude below 125 µV and spikes from putative interneurons. This 

selection of spikes substantially reduced the computational burden without 

significantly affecting decoding performance. Another way to alleviate this problem, 

is to find compact and efficient representations of the kernel density estimates of 
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the rate functions (Mitra et al., 2002; Girolami, 2003; Zhou et al., 2003; Huang and 

Chow, 2006).  

 

Our decoding algorithm is based on the statistical assumption that the spike events 

follow a time-homogeneous spatial-temporal Poisson process (i.e. spike events are 

mutually independent in both spike feature space and time). This is equivalent to 

assuming an independent Poisson rate code for all neurons in the ensemble. 

Although this assumption is over-simplified and unrealistic for experimental data, 

it provides us with a simple and tractable solution for decoding analysis. 

[incorporate Sage’s suggestion on rate codes here] It is possible to relax the 

assumptions of Poisson statistics and independence - for example to incorporate 

temporal dependence the spike history in each electrode can be represented as an 

augmented temporal feature. Alternatively, the spatial local dependence can be 

modeled by considering a Neyman-Scott process (Diggle, 2003) or a Poisson cluster 

process (Bartlett, 1964; Wolpert and Ickstadt, 1998). These topics will be the subject 

of future investigations. 

 

Our decoding paradigm can be extended in several ways. For instance, we can 

reformulate the Bayesian decoding problem within the state-space framework by 

inclusion of a smooth temporal prior (Brown et al., 1998). A temporal prior can be 

useful for reconstruction of stimuli or covariates that are known to smoothly change 

over time, such as the position of rat or the movement of an arm. The spike feature 
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decoding can also be used to extract information from ensemble spiking activity by 

estimating the mutual information and entropy of the stimulus and neural 

responses. Estimation of these information measures may provide a better 

understanding the underlying principles of neural codes used in the brain (Jacobs et 

al., 2009; Quian Quiroga and Panzeri, 2009). 
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Table 1. Summary of experimental data (ranked by # sorted units) 

Dataset 

# Tetrodes # Spikes 
(total) 

# Spikes 
(sorted) 

% Sorted 
Spikes 

# Sorted 
Units 

R1d2 12  33  K   7.8K 23.4%  9 
R2d2 12  32  K   6.0K 18.8%  9 
R1d1 12 185  K   6.4K  3.5% 10 
FK11  9 197  K  21  K 10.7% 13 
R2d1 12 175  K  11  K  6.5% 14 
Sat2 18 790  K  82  K 10.4% 26 

Esm02 18 364  K  43  K 11.8% 28 
Esm01 18 416  K  39  K  9.4% 30 
SL13 24 139  K  48  K 34.5% 35 
SL16 24 188  K  39  K 20.7% 36 
SL14 24 148  K  34  K 22.8% 40 
SL15 24 250  K  52  K 20.8% 41 
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 Table 2. Summary of decoding performances across all datasets (ranked by #sorted 
units) 

 

 

  
 

M
U

A
 

d
eco

d
er 

fea
tu

re 
d

eco
d

er 
(tetro

d
e) 

fea
tu

re 
d

eco
d

er 
(stereo

tro
d

e) 

fea
tu

re 
d

eco
d

er 
(sin

g
le w

ire) 

sin
g

le u
n

it 
d

eco
d

er 
fea

tu
re 

d
eco

d
er 

(tetro
d

e) 

D
a

ta
set 

m
edian

 
error (cm

) 
m

edian
 error 

(cm
) 

[%
 

im
provem

en
t 

over M
U

A
 

decoder] 

m
edian

 error 
(cm

) 
[rel. ben

efit of 
tetrode vs. 

stereotrode] 

m
edian

 error 
(cm

) 
[rel. ben

efit of 
stereotrode vs. 

sin
gle w

ire] 

m
edian

 error 
(cm

) 
[%

 
im

provem
en

t 
over M

U
A

 
decoder] 

%
 

im
provem

en
t 

over sin
gle 

u
n

it decoder 

R
1d2 

85.3 
13.1 [ 84.6%

] 
22.8 [ 42.6%

] 
65.6 [ 65.2%

] 
37.5 [ 56.0%

] 
 65.1%

 
R

2d2 
74.1 

13.2 [ 82.2%
] 

20.8 [ 36.5%
] 

61.0 [ 66.0%
] 

51.2 [ 30.9%
] 

 74.3%
 

R
1d1 

43.1 
14.0 [ 67.5%

] 
23.8 [ 41.1%

] 
34.8 [ 31.7%

] 
54.1 [-25.5%

] 
 74.1%

 
F

K
11 

31.5 
 7.6 [ 75.8%

] 
12.4 [ 38.7%

] 
18.3 [ 32.0%

] 
13.6 [ 56.8%

] 
 44.1%

 
R

2d1 
39.7 

15.0 [ 62.3%
] 

25.8 [ 42.1%
] 

36.4 [ 29.1%
] 

61.8 [-55.7%
] 

 75.8%
 

S
at2 

47.0 
 8.9 [ 81.1%

] 
10.1 [ 11.9%

] 
22.9 [ 55.9%

] 
14.8 [ 68.4%

] 
 40.0%

 
E

sm
02 

12.9 
 5.3 [ 58.8%

] 
 6.7 [ 21.0%

] 
 8.7 [ 22.7%

] 
 8.2 [ 36.2%

] 
 35.4%

 
E

sm
01 

24.1 
 7.6 [ 68.3%

] 
 8.9 [ 14.4%

] 
12.3 [ 27.2%

] 
10.4 [ 57.1%

] 
 26.3%

 
S

L
13 

29.4 
 7.7 [ 73.8%

] 
 8.9 [ 13.2%

] 
14.0 [ 36.6%

] 
 8.6 [ 70.7%

] 
 10.3%

 
S

L
16 

21.9 
 5.6 [ 74.6%

] 
 6.4 [ 12.7%

] 
 8.4 [ 24.2%

] 
 7.2 [ 67.3%

] 
 22.3%

 
S

L
14 

12.1 
 6.1 [ 50.0%

] 
 6.7 [  9.0%

] 
 8.1 [ 17.8%

] 
 5.9 [ 51.6%

] 
- 3.4%

 
S

L
15 

15.2 
 5.4 [ 64.3%

] 
 6.4 [ 15.4%

] 
 8.0 [ 20.1%

] 
 6.8 [ 55.2%

] 
 20.3%

 
 



Page 104 of 126 
 
 

FIGURE LEGENDS 
 

Figure 1. Diagram of spike waveform feature decoding approach. In the encoding 

stage (left), a model describing the relation between spike waveform features and 

the stimulus of interest (for example an animal’s position) is constructed. Note that 

no prior sorting of the recorded spikes is required. In the decoding stage (right), the 

encoding model is used to obtain an estimate of the stimulus from the measured 

spike waveform features. 

 

Figure 2. Example of spike waveform feature decoding of a rat’s position on a 3 

meter long track (dataset SL15). A. Posterior probability distributions of the 

decoded position along the track for an epoch spanning multiple laps. Darker 

shades of gray indicate higher probabilities. Posterior distributions are computed 

for non-overlapping 250 ms long time bins. The red line represents the rat’s actual 

position on the track. B. Detailed view of the decoded trajectory for a single lap 

(first lap in A). C. Confusion matrix showing the distribution of estimated positions 

for all positions on the track. D. Empirical cumulative distribution function (CDF) 

of decoding errors for dataset SL15. Red: spike waveform feature decoder. Black: 

MUA decoder. Blue dashed line marks the 90% error percentile for the feature 

decoder. Inset shows detail of the CDFs. E. Median error statistics for the spike 

waveform feature decoder (red) and MUA decoder (black). In blue, the distribution 

of median errors obtained after randomizing the original spike amplitude vectors 

(n=500 randomizations). 
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Figure 3. Effect of kernel bandwidths on decoding performance. The median 

decoding error for one dataset (SL15) is color coded and plotted as function of the 

kernel bandwidths for position and spike amplitude. The lowest median error is 

associated with a bandwidth of 30 µV (spike amplitude) and 10 cm (position) as 

highlighted by the intersecting white rectangles. Plots on the left and top show a 

cross-section of the full matrix at the optimal bandwidths. 

 

Figure 4. Population summary statistics of the spike waveform feature decoder. A. 

Box plots comparing the distributions of median errors across all datasets for the 

spike waveform feature decoder and the MUA decoder. Gray lines represent data of 

all individual datasets. B. Box plots comparing the median error distributions 

across all datasets for three electrode configurations: single wires, stereotrodes and 

tetrodes. Gray lines represent data of all individual datasets. 

 

Figure 5. Comparison of the spike waveform feature decoder to the standard single 

unit decoder. A. Box plots comparing the distributions of median errors across all 

datasets for three different decoding scenarios: feature decoder using all spikes (left) 

or only the sorted spikes (middle) and a single unit decoder (right). B. Scatter plot of 

median decoding errors in all datasets for the single unit decoder versus the median 

decoding errors for the spike waveform feature decoder (black: all spikes, grey: 

sorted spikes). Datasets with fewer than 25 sorted units are indicated by crosses. 
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Note the large reduction in median decoding error for datasets with < 25 units when 

all spikes are included in the encoding and decoding stages. 

  

Figure 6. Simulated unsupervised online decoding. A. Posterior probability 

distributions for 250 ms time bins in two epochs corresponding to the first two laps 

on the track. Darker shades of gray indicate higher probabilities. The red line 

represents the rat’s actual position on the track. B. Median decoding error 

computed for each lap separately. The horizontal dashed line shows the mean of the 

median decoding error statistics across all laps 

.
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FIGURE 4 
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FIGURE 6 
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Models of Ripple Chain Generation 

A popular model of episodic memory formation theorizes that during experience, or 

learning, information from the periphery is encoded and processed by the neo-

cortex. However, long-term memories are not consolidated during the encoding 

stage but rather cortical information is passed to the hippocampus for short-term 

retention.  The hippocampus then rapidly forms short-lived (days to months) 

representations of the cortical information. 

 

During off-line periods, such as sleep, representations stored by the hippocampus 

are passed back to cortex and consolidated into memories that can persist for long 

periods of time (years to decades). These cortically encoded memories form slower 

than their hippocampal counterparts but can persists for years or decades.  

 

The electrophysiology of the hippocampus and particularly the phenomenon of 

hippocampal replay are explained by this model well. In-deed replay is a candidate 

mechanism by which hippocampal information returns to cortex for long-term 

consolidation. However, an alternative hypothesis for hippocampal replay suggests 

that rather than representing the information transfer from the hippocampus to 

cortex, replay is a part of the mechanism responsible for maintaining short-lasting 

hippocampal representations. This model claims that without replay, hippocampal 

representations would quickly deteriorate. 
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Early work on HPC reactivation demonstrated that replay occurred during sharp-

wave ripples in the HPC local-field potential.  Initially it was thought that ripples 

corresponded to individual replay events, however, it has recently been 

demonstrated that replay evens can span multiple individual ripples suggesting the 

existence of ripple sets or chains.  Specifically, it was determined that 

representations encoded by the hippocampus during replay are coherent across 

ripple events that are adjacent in time. These findings provide evidence that while 

ripples can be thought of as individual events, at some level information is being 

coordinated for the duration of a ripple event chain.  

 

The mechanisms responsible for chaining individual ripples together in both time 

and content are unknown. Here we propose two candidate mechanisms for chaining 

individual ripple events into longer event sets. 

 

Hippocampal Cortical Reciprocal Model 

The first model (Figure 1), which we call the reciprocal model, relies upon 

interactions between the neo-cortex and the hippocampus.  Replay events are 

initiated by cortex, which determines what information should be replayed and then 

provides feed-forward drive into the hippocampus, which triggers a single, ripple 

event in conjunctions with replay of the cortically specified content. Following the 

successful generation of a ripple with the appropriate content, cortex reacts by 

providing additional drive into the hippocampus, which triggers subsequent 
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ripple/replay events.  The back-and-forth between cortex and the hippocampus can 

continue as long as the two structures are synchronized.  

 

This model makes specific prediction about cortical activity during ripple chains. 

First it predicts the existence of some cortical activity that precedes each ripple in a 

ripple chain. Second it predicts that the timescale on which this putative activity 

operates are congruent with the time-scale on which ripple events are generated.  

More specifically, cortical drive should be observable, in some form, for each ripple 

event and the time between periods of cortical drive should reflect the time periods 

between ripple events. 

 

Next it suggests disrupting drive into the hippocampus, while sparing hippocampal 

activity, would be sufficient to disrupt ripple-chains.  Likewise disruption of the 

hippocampus, but not cortex, between ripples events should not disrupt the 

generation of ripple chains. 

 

Intrinsic Hippocampal Model 

An alternative model, called the intrinsic model (Figure 2), depends on the 

feedback circuitry contained within the hippocampal formation.  Like with the 

reciprocal model, the initial ripple in a ripple-chain is triggered by cortical drive; 

however, subsequent ripples are triggered through the hippocampal feedback 

circuitry in the hippocampus.   



119 of 126 
 
 

 

This model, like the reciprocal model, predicts cortical activity correlated with the 

first ripple in a ripple chain; however, during cortical activity would be de-

correlated with subsequent ripples in the same chain. 

 

The intrinsic model can be used to predict the result of hippocampal and cortical 

disruption on ripple event chains. As circuits contained entirely within 

hippocampus are hypothesized to generate ripple chains, disruption of cortical 

activity of should have little to no effect on production ripple chains.  Conversely, 

disruption of hippocampal activity between ripples could disrupt the chaining 

process. 

 

In an attempt to examine the validity of these two models, we investigated the 

ripple-associated activity in cortical multi-unit activity (MUA). We hypothesized 

that we might observe activity that was correlated with the on set of ripple chains 

indicating cortical drive triggering the on set of ripple chains.  Furthermore, we 

examined the cortical MUA for the complete duration of ripple-chains, hoping to 

determine if cortical activity is correlated with each ripple event or only the first 

event in the chain. 
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Electrophysiological Evidence Supporting the Models 

We analyzed ripple-associated activity of the retrosplenial cortex (RSX) in the rat 

looking for evidence of either model.  RSX was chosen over other cortical areas, such 

as M1 or S1, for several reasons. First RSX has strong reciprocal connections with 

the hippocampus. Second lesions to RSX induce a form of retrograde amnesia that 

resembles the type of amnesia observed in patients with HPC damage.  

Additionally, a subpopulation of neurons in RSX has spatial tuning properties 

related to the tuning properties of neurons in the hippocampal formation.   

Prior to ripples in CA1 we observed an increase in the multi-unit activity (MUA) in 

RSX and is dramatically suppressed during the ripple event.  In the case of ripple 

doublets, RSX MUA increases a second time; however, the distance between peaks 

in the RSX MUA is roughly 100ms.  The timescale of activity we observe during 

ripple doublets in RSX does not line up with the time-scale of HPC ripple associated 

activity.   These results provide evidence for both models.  First activity in RSX 

precedes ripples in the HPC and in the case of ripple doublets we see a second burst 

of activity in RSX; however, the time-scale do not align.  

 

We hypothesized that perhaps both models might be operating and that the interval 

between adjacent ripples in a doublet might indicate which model is dominating 

ripple generation at any given time.  We observed that the ripple associated MUA in 

RSX varied greatly depending on the time-interval between ripples in the same 

doublet.  In the case short interval doublets we observed activity in RSX prior to the 
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first ripple; however, for the remainder of the doublet the MUA activity in RSX 

remained suppresser. Conversely, for the long interval doublets we observed a 

strong recovery in the MUA of RSX followed by a second round of inhibition.  Again 

the distances between the peaks of MUA in RSX was ~100ms.  This timescale 

corresponds with what the HPC MUA associated with long and short interval 

doublets.  The HPC MUA is increases during ripple events, in the case of short-

interval doublets the time-intervals between peaks in the HPC MUA are short 

while longer inter-ripple-intervals yield longer inter-MUA-peak-intervals.  

However, only in the case of long-interval doublets do the timescale of activity in 

RSX and HPC align. 

 

These results provide evidence that both hippocampal-cortical interactions and 

internal hippocampal circuitry are involved in the generation of ripple-event chains.  

Furthermore, our results indicate that the intervals between ripples within a ripple 

chain indicate which model may be more active at any given time.  This is 

interesting as it supports a dual role for hippocampal replay.  Further work should 

be done to evaluate these models and results.    
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Figure 1. 
 
 
 

Cortical Hippocampal Reciprocal Model 
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Figure 2. 
 
 
 

Intrinsic Hippocampal Model
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